1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6
7 #include <asm/cpu_entry_area.h>
8 #include <asm/perf_event.h>
9 #include <asm/tlbflush.h>
10 #include <asm/insn.h>
11 #include <asm/io.h>
12 #include <asm/timer.h>
13
14 #include "../perf_event.h"
15
16 /* Waste a full page so it can be mapped into the cpu_entry_area */
17 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
18
19 /* The size of a BTS record in bytes: */
20 #define BTS_RECORD_SIZE 24
21
22 #define PEBS_FIXUP_SIZE PAGE_SIZE
23
24 /*
25 * pebs_record_32 for p4 and core not supported
26
27 struct pebs_record_32 {
28 u32 flags, ip;
29 u32 ax, bc, cx, dx;
30 u32 si, di, bp, sp;
31 };
32
33 */
34
35 union intel_x86_pebs_dse {
36 u64 val;
37 struct {
38 unsigned int ld_dse:4;
39 unsigned int ld_stlb_miss:1;
40 unsigned int ld_locked:1;
41 unsigned int ld_data_blk:1;
42 unsigned int ld_addr_blk:1;
43 unsigned int ld_reserved:24;
44 };
45 struct {
46 unsigned int st_l1d_hit:1;
47 unsigned int st_reserved1:3;
48 unsigned int st_stlb_miss:1;
49 unsigned int st_locked:1;
50 unsigned int st_reserved2:26;
51 };
52 struct {
53 unsigned int st_lat_dse:4;
54 unsigned int st_lat_stlb_miss:1;
55 unsigned int st_lat_locked:1;
56 unsigned int ld_reserved3:26;
57 };
58 struct {
59 unsigned int mtl_dse:5;
60 unsigned int mtl_locked:1;
61 unsigned int mtl_stlb_miss:1;
62 unsigned int mtl_fwd_blk:1;
63 unsigned int ld_reserved4:24;
64 };
65 };
66
67
68 /*
69 * Map PEBS Load Latency Data Source encodings to generic
70 * memory data source information
71 */
72 #define P(a, b) PERF_MEM_S(a, b)
73 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
74 #define LEVEL(x) P(LVLNUM, x)
75 #define REM P(REMOTE, REMOTE)
76 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
77
78 /* Version for Sandy Bridge and later */
79 static u64 pebs_data_source[] = {
80 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
81 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
82 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
83 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
84 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
85 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
86 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
87 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
88 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
89 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
90 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
91 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
92 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
93 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
94 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
95 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
96 };
97
98 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)99 void __init intel_pmu_pebs_data_source_nhm(void)
100 {
101 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
102 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
103 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
104 }
105
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)106 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
107 {
108 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
109
110 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
111 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
112 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
113 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
114 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
115 }
116
intel_pmu_pebs_data_source_skl(bool pmem)117 void __init intel_pmu_pebs_data_source_skl(bool pmem)
118 {
119 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
120 }
121
__intel_pmu_pebs_data_source_grt(u64 * data_source)122 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
123 {
124 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
125 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
126 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
127 }
128
intel_pmu_pebs_data_source_grt(void)129 void __init intel_pmu_pebs_data_source_grt(void)
130 {
131 __intel_pmu_pebs_data_source_grt(pebs_data_source);
132 }
133
intel_pmu_pebs_data_source_adl(void)134 void __init intel_pmu_pebs_data_source_adl(void)
135 {
136 u64 *data_source;
137
138 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
139 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
140 __intel_pmu_pebs_data_source_skl(false, data_source);
141
142 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
143 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
144 __intel_pmu_pebs_data_source_grt(data_source);
145 }
146
__intel_pmu_pebs_data_source_cmt(u64 * data_source)147 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
148 {
149 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
150 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
151 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE);
152 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
153 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
154 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
155 }
156
intel_pmu_pebs_data_source_mtl(void)157 void __init intel_pmu_pebs_data_source_mtl(void)
158 {
159 u64 *data_source;
160
161 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
162 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
163 __intel_pmu_pebs_data_source_skl(false, data_source);
164
165 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
166 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
167 __intel_pmu_pebs_data_source_cmt(data_source);
168 }
169
intel_pmu_pebs_data_source_cmt(void)170 void __init intel_pmu_pebs_data_source_cmt(void)
171 {
172 __intel_pmu_pebs_data_source_cmt(pebs_data_source);
173 }
174
precise_store_data(u64 status)175 static u64 precise_store_data(u64 status)
176 {
177 union intel_x86_pebs_dse dse;
178 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
179
180 dse.val = status;
181
182 /*
183 * bit 4: TLB access
184 * 1 = stored missed 2nd level TLB
185 *
186 * so it either hit the walker or the OS
187 * otherwise hit 2nd level TLB
188 */
189 if (dse.st_stlb_miss)
190 val |= P(TLB, MISS);
191 else
192 val |= P(TLB, HIT);
193
194 /*
195 * bit 0: hit L1 data cache
196 * if not set, then all we know is that
197 * it missed L1D
198 */
199 if (dse.st_l1d_hit)
200 val |= P(LVL, HIT);
201 else
202 val |= P(LVL, MISS);
203
204 /*
205 * bit 5: Locked prefix
206 */
207 if (dse.st_locked)
208 val |= P(LOCK, LOCKED);
209
210 return val;
211 }
212
precise_datala_hsw(struct perf_event * event,u64 status)213 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
214 {
215 union perf_mem_data_src dse;
216
217 dse.val = PERF_MEM_NA;
218
219 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
220 dse.mem_op = PERF_MEM_OP_STORE;
221 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
222 dse.mem_op = PERF_MEM_OP_LOAD;
223
224 /*
225 * L1 info only valid for following events:
226 *
227 * MEM_UOPS_RETIRED.STLB_MISS_STORES
228 * MEM_UOPS_RETIRED.LOCK_STORES
229 * MEM_UOPS_RETIRED.SPLIT_STORES
230 * MEM_UOPS_RETIRED.ALL_STORES
231 */
232 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
233 if (status & 1)
234 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
235 else
236 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
237 }
238 return dse.val;
239 }
240
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)241 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
242 {
243 /*
244 * TLB access
245 * 0 = did not miss 2nd level TLB
246 * 1 = missed 2nd level TLB
247 */
248 if (tlb)
249 *val |= P(TLB, MISS) | P(TLB, L2);
250 else
251 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
252
253 /* locked prefix */
254 if (lock)
255 *val |= P(LOCK, LOCKED);
256 }
257
258 /* Retrieve the latency data for e-core of ADL */
__adl_latency_data_small(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)259 static u64 __adl_latency_data_small(struct perf_event *event, u64 status,
260 u8 dse, bool tlb, bool lock, bool blk)
261 {
262 u64 val;
263
264 WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big);
265
266 dse &= PERF_PEBS_DATA_SOURCE_MASK;
267 val = hybrid_var(event->pmu, pebs_data_source)[dse];
268
269 pebs_set_tlb_lock(&val, tlb, lock);
270
271 if (blk)
272 val |= P(BLK, DATA);
273 else
274 val |= P(BLK, NA);
275
276 return val;
277 }
278
adl_latency_data_small(struct perf_event * event,u64 status)279 u64 adl_latency_data_small(struct perf_event *event, u64 status)
280 {
281 union intel_x86_pebs_dse dse;
282
283 dse.val = status;
284
285 return __adl_latency_data_small(event, status, dse.ld_dse,
286 dse.ld_locked, dse.ld_stlb_miss,
287 dse.ld_data_blk);
288 }
289
290 /* Retrieve the latency data for e-core of MTL */
mtl_latency_data_small(struct perf_event * event,u64 status)291 u64 mtl_latency_data_small(struct perf_event *event, u64 status)
292 {
293 union intel_x86_pebs_dse dse;
294
295 dse.val = status;
296
297 return __adl_latency_data_small(event, status, dse.mtl_dse,
298 dse.mtl_stlb_miss, dse.mtl_locked,
299 dse.mtl_fwd_blk);
300 }
301
load_latency_data(struct perf_event * event,u64 status)302 static u64 load_latency_data(struct perf_event *event, u64 status)
303 {
304 union intel_x86_pebs_dse dse;
305 u64 val;
306
307 dse.val = status;
308
309 /*
310 * use the mapping table for bit 0-3
311 */
312 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
313
314 /*
315 * Nehalem models do not support TLB, Lock infos
316 */
317 if (x86_pmu.pebs_no_tlb) {
318 val |= P(TLB, NA) | P(LOCK, NA);
319 return val;
320 }
321
322 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
323
324 /*
325 * Ice Lake and earlier models do not support block infos.
326 */
327 if (!x86_pmu.pebs_block) {
328 val |= P(BLK, NA);
329 return val;
330 }
331 /*
332 * bit 6: load was blocked since its data could not be forwarded
333 * from a preceding store
334 */
335 if (dse.ld_data_blk)
336 val |= P(BLK, DATA);
337
338 /*
339 * bit 7: load was blocked due to potential address conflict with
340 * a preceding store
341 */
342 if (dse.ld_addr_blk)
343 val |= P(BLK, ADDR);
344
345 if (!dse.ld_data_blk && !dse.ld_addr_blk)
346 val |= P(BLK, NA);
347
348 return val;
349 }
350
store_latency_data(struct perf_event * event,u64 status)351 static u64 store_latency_data(struct perf_event *event, u64 status)
352 {
353 union intel_x86_pebs_dse dse;
354 union perf_mem_data_src src;
355 u64 val;
356
357 dse.val = status;
358
359 /*
360 * use the mapping table for bit 0-3
361 */
362 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
363
364 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
365
366 val |= P(BLK, NA);
367
368 /*
369 * the pebs_data_source table is only for loads
370 * so override the mem_op to say STORE instead
371 */
372 src.val = val;
373 src.mem_op = P(OP,STORE);
374
375 return src.val;
376 }
377
378 struct pebs_record_core {
379 u64 flags, ip;
380 u64 ax, bx, cx, dx;
381 u64 si, di, bp, sp;
382 u64 r8, r9, r10, r11;
383 u64 r12, r13, r14, r15;
384 };
385
386 struct pebs_record_nhm {
387 u64 flags, ip;
388 u64 ax, bx, cx, dx;
389 u64 si, di, bp, sp;
390 u64 r8, r9, r10, r11;
391 u64 r12, r13, r14, r15;
392 u64 status, dla, dse, lat;
393 };
394
395 /*
396 * Same as pebs_record_nhm, with two additional fields.
397 */
398 struct pebs_record_hsw {
399 u64 flags, ip;
400 u64 ax, bx, cx, dx;
401 u64 si, di, bp, sp;
402 u64 r8, r9, r10, r11;
403 u64 r12, r13, r14, r15;
404 u64 status, dla, dse, lat;
405 u64 real_ip, tsx_tuning;
406 };
407
408 union hsw_tsx_tuning {
409 struct {
410 u32 cycles_last_block : 32,
411 hle_abort : 1,
412 rtm_abort : 1,
413 instruction_abort : 1,
414 non_instruction_abort : 1,
415 retry : 1,
416 data_conflict : 1,
417 capacity_writes : 1,
418 capacity_reads : 1;
419 };
420 u64 value;
421 };
422
423 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
424
425 /* Same as HSW, plus TSC */
426
427 struct pebs_record_skl {
428 u64 flags, ip;
429 u64 ax, bx, cx, dx;
430 u64 si, di, bp, sp;
431 u64 r8, r9, r10, r11;
432 u64 r12, r13, r14, r15;
433 u64 status, dla, dse, lat;
434 u64 real_ip, tsx_tuning;
435 u64 tsc;
436 };
437
init_debug_store_on_cpu(int cpu)438 void init_debug_store_on_cpu(int cpu)
439 {
440 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
441
442 if (!ds)
443 return;
444
445 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
446 (u32)((u64)(unsigned long)ds),
447 (u32)((u64)(unsigned long)ds >> 32));
448 }
449
fini_debug_store_on_cpu(int cpu)450 void fini_debug_store_on_cpu(int cpu)
451 {
452 if (!per_cpu(cpu_hw_events, cpu).ds)
453 return;
454
455 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
456 }
457
458 static DEFINE_PER_CPU(void *, insn_buffer);
459
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)460 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
461 {
462 unsigned long start = (unsigned long)cea;
463 phys_addr_t pa;
464 size_t msz = 0;
465
466 pa = virt_to_phys(addr);
467
468 preempt_disable();
469 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
470 cea_set_pte(cea, pa, prot);
471
472 /*
473 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
474 * all TLB entries for it.
475 */
476 flush_tlb_kernel_range(start, start + size);
477 preempt_enable();
478 }
479
ds_clear_cea(void * cea,size_t size)480 static void ds_clear_cea(void *cea, size_t size)
481 {
482 unsigned long start = (unsigned long)cea;
483 size_t msz = 0;
484
485 preempt_disable();
486 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
487 cea_set_pte(cea, 0, PAGE_NONE);
488
489 flush_tlb_kernel_range(start, start + size);
490 preempt_enable();
491 }
492
dsalloc_pages(size_t size,gfp_t flags,int cpu)493 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
494 {
495 unsigned int order = get_order(size);
496 int node = cpu_to_node(cpu);
497 struct page *page;
498
499 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
500 return page ? page_address(page) : NULL;
501 }
502
dsfree_pages(const void * buffer,size_t size)503 static void dsfree_pages(const void *buffer, size_t size)
504 {
505 if (buffer)
506 free_pages((unsigned long)buffer, get_order(size));
507 }
508
alloc_pebs_buffer(int cpu)509 static int alloc_pebs_buffer(int cpu)
510 {
511 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
512 struct debug_store *ds = hwev->ds;
513 size_t bsiz = x86_pmu.pebs_buffer_size;
514 int max, node = cpu_to_node(cpu);
515 void *buffer, *insn_buff, *cea;
516
517 if (!x86_pmu.pebs)
518 return 0;
519
520 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
521 if (unlikely(!buffer))
522 return -ENOMEM;
523
524 /*
525 * HSW+ already provides us the eventing ip; no need to allocate this
526 * buffer then.
527 */
528 if (x86_pmu.intel_cap.pebs_format < 2) {
529 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
530 if (!insn_buff) {
531 dsfree_pages(buffer, bsiz);
532 return -ENOMEM;
533 }
534 per_cpu(insn_buffer, cpu) = insn_buff;
535 }
536 hwev->ds_pebs_vaddr = buffer;
537 /* Update the cpu entry area mapping */
538 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
539 ds->pebs_buffer_base = (unsigned long) cea;
540 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
541 ds->pebs_index = ds->pebs_buffer_base;
542 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
543 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
544 return 0;
545 }
546
release_pebs_buffer(int cpu)547 static void release_pebs_buffer(int cpu)
548 {
549 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
550 void *cea;
551
552 if (!x86_pmu.pebs)
553 return;
554
555 kfree(per_cpu(insn_buffer, cpu));
556 per_cpu(insn_buffer, cpu) = NULL;
557
558 /* Clear the fixmap */
559 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
560 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
561 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
562 hwev->ds_pebs_vaddr = NULL;
563 }
564
alloc_bts_buffer(int cpu)565 static int alloc_bts_buffer(int cpu)
566 {
567 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
568 struct debug_store *ds = hwev->ds;
569 void *buffer, *cea;
570 int max;
571
572 if (!x86_pmu.bts)
573 return 0;
574
575 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
576 if (unlikely(!buffer)) {
577 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
578 return -ENOMEM;
579 }
580 hwev->ds_bts_vaddr = buffer;
581 /* Update the fixmap */
582 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
583 ds->bts_buffer_base = (unsigned long) cea;
584 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
585 ds->bts_index = ds->bts_buffer_base;
586 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
587 ds->bts_absolute_maximum = ds->bts_buffer_base +
588 max * BTS_RECORD_SIZE;
589 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
590 (max / 16) * BTS_RECORD_SIZE;
591 return 0;
592 }
593
release_bts_buffer(int cpu)594 static void release_bts_buffer(int cpu)
595 {
596 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
597 void *cea;
598
599 if (!x86_pmu.bts)
600 return;
601
602 /* Clear the fixmap */
603 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
604 ds_clear_cea(cea, BTS_BUFFER_SIZE);
605 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
606 hwev->ds_bts_vaddr = NULL;
607 }
608
alloc_ds_buffer(int cpu)609 static int alloc_ds_buffer(int cpu)
610 {
611 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
612
613 memset(ds, 0, sizeof(*ds));
614 per_cpu(cpu_hw_events, cpu).ds = ds;
615 return 0;
616 }
617
release_ds_buffer(int cpu)618 static void release_ds_buffer(int cpu)
619 {
620 per_cpu(cpu_hw_events, cpu).ds = NULL;
621 }
622
release_ds_buffers(void)623 void release_ds_buffers(void)
624 {
625 int cpu;
626
627 if (!x86_pmu.bts && !x86_pmu.pebs)
628 return;
629
630 for_each_possible_cpu(cpu)
631 release_ds_buffer(cpu);
632
633 for_each_possible_cpu(cpu) {
634 /*
635 * Again, ignore errors from offline CPUs, they will no longer
636 * observe cpu_hw_events.ds and not program the DS_AREA when
637 * they come up.
638 */
639 fini_debug_store_on_cpu(cpu);
640 }
641
642 for_each_possible_cpu(cpu) {
643 release_pebs_buffer(cpu);
644 release_bts_buffer(cpu);
645 }
646 }
647
reserve_ds_buffers(void)648 void reserve_ds_buffers(void)
649 {
650 int bts_err = 0, pebs_err = 0;
651 int cpu;
652
653 x86_pmu.bts_active = 0;
654 x86_pmu.pebs_active = 0;
655
656 if (!x86_pmu.bts && !x86_pmu.pebs)
657 return;
658
659 if (!x86_pmu.bts)
660 bts_err = 1;
661
662 if (!x86_pmu.pebs)
663 pebs_err = 1;
664
665 for_each_possible_cpu(cpu) {
666 if (alloc_ds_buffer(cpu)) {
667 bts_err = 1;
668 pebs_err = 1;
669 }
670
671 if (!bts_err && alloc_bts_buffer(cpu))
672 bts_err = 1;
673
674 if (!pebs_err && alloc_pebs_buffer(cpu))
675 pebs_err = 1;
676
677 if (bts_err && pebs_err)
678 break;
679 }
680
681 if (bts_err) {
682 for_each_possible_cpu(cpu)
683 release_bts_buffer(cpu);
684 }
685
686 if (pebs_err) {
687 for_each_possible_cpu(cpu)
688 release_pebs_buffer(cpu);
689 }
690
691 if (bts_err && pebs_err) {
692 for_each_possible_cpu(cpu)
693 release_ds_buffer(cpu);
694 } else {
695 if (x86_pmu.bts && !bts_err)
696 x86_pmu.bts_active = 1;
697
698 if (x86_pmu.pebs && !pebs_err)
699 x86_pmu.pebs_active = 1;
700
701 for_each_possible_cpu(cpu) {
702 /*
703 * Ignores wrmsr_on_cpu() errors for offline CPUs they
704 * will get this call through intel_pmu_cpu_starting().
705 */
706 init_debug_store_on_cpu(cpu);
707 }
708 }
709 }
710
711 /*
712 * BTS
713 */
714
715 struct event_constraint bts_constraint =
716 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
717
intel_pmu_enable_bts(u64 config)718 void intel_pmu_enable_bts(u64 config)
719 {
720 unsigned long debugctlmsr;
721
722 debugctlmsr = get_debugctlmsr();
723
724 debugctlmsr |= DEBUGCTLMSR_TR;
725 debugctlmsr |= DEBUGCTLMSR_BTS;
726 if (config & ARCH_PERFMON_EVENTSEL_INT)
727 debugctlmsr |= DEBUGCTLMSR_BTINT;
728
729 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
730 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
731
732 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
733 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
734
735 update_debugctlmsr(debugctlmsr);
736 }
737
intel_pmu_disable_bts(void)738 void intel_pmu_disable_bts(void)
739 {
740 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
741 unsigned long debugctlmsr;
742
743 if (!cpuc->ds)
744 return;
745
746 debugctlmsr = get_debugctlmsr();
747
748 debugctlmsr &=
749 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
750 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
751
752 update_debugctlmsr(debugctlmsr);
753 }
754
intel_pmu_drain_bts_buffer(void)755 int intel_pmu_drain_bts_buffer(void)
756 {
757 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
758 struct debug_store *ds = cpuc->ds;
759 struct bts_record {
760 u64 from;
761 u64 to;
762 u64 flags;
763 };
764 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
765 struct bts_record *at, *base, *top;
766 struct perf_output_handle handle;
767 struct perf_event_header header;
768 struct perf_sample_data data;
769 unsigned long skip = 0;
770 struct pt_regs regs;
771
772 if (!event)
773 return 0;
774
775 if (!x86_pmu.bts_active)
776 return 0;
777
778 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
779 top = (struct bts_record *)(unsigned long)ds->bts_index;
780
781 if (top <= base)
782 return 0;
783
784 memset(®s, 0, sizeof(regs));
785
786 ds->bts_index = ds->bts_buffer_base;
787
788 perf_sample_data_init(&data, 0, event->hw.last_period);
789
790 /*
791 * BTS leaks kernel addresses in branches across the cpl boundary,
792 * such as traps or system calls, so unless the user is asking for
793 * kernel tracing (and right now it's not possible), we'd need to
794 * filter them out. But first we need to count how many of those we
795 * have in the current batch. This is an extra O(n) pass, however,
796 * it's much faster than the other one especially considering that
797 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
798 * alloc_bts_buffer()).
799 */
800 for (at = base; at < top; at++) {
801 /*
802 * Note that right now *this* BTS code only works if
803 * attr::exclude_kernel is set, but let's keep this extra
804 * check here in case that changes.
805 */
806 if (event->attr.exclude_kernel &&
807 (kernel_ip(at->from) || kernel_ip(at->to)))
808 skip++;
809 }
810
811 /*
812 * Prepare a generic sample, i.e. fill in the invariant fields.
813 * We will overwrite the from and to address before we output
814 * the sample.
815 */
816 rcu_read_lock();
817 perf_prepare_sample(&data, event, ®s);
818 perf_prepare_header(&header, &data, event, ®s);
819
820 if (perf_output_begin(&handle, &data, event,
821 header.size * (top - base - skip)))
822 goto unlock;
823
824 for (at = base; at < top; at++) {
825 /* Filter out any records that contain kernel addresses. */
826 if (event->attr.exclude_kernel &&
827 (kernel_ip(at->from) || kernel_ip(at->to)))
828 continue;
829
830 data.ip = at->from;
831 data.addr = at->to;
832
833 perf_output_sample(&handle, &header, &data, event);
834 }
835
836 perf_output_end(&handle);
837
838 /* There's new data available. */
839 event->hw.interrupts++;
840 event->pending_kill = POLL_IN;
841 unlock:
842 rcu_read_unlock();
843 return 1;
844 }
845
intel_pmu_drain_pebs_buffer(void)846 static inline void intel_pmu_drain_pebs_buffer(void)
847 {
848 struct perf_sample_data data;
849
850 x86_pmu.drain_pebs(NULL, &data);
851 }
852
853 /*
854 * PEBS
855 */
856 struct event_constraint intel_core2_pebs_event_constraints[] = {
857 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
858 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
859 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
860 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
861 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
862 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
863 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
864 EVENT_CONSTRAINT_END
865 };
866
867 struct event_constraint intel_atom_pebs_event_constraints[] = {
868 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
869 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
870 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
871 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
872 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
873 /* Allow all events as PEBS with no flags */
874 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
875 EVENT_CONSTRAINT_END
876 };
877
878 struct event_constraint intel_slm_pebs_event_constraints[] = {
879 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
880 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
881 /* Allow all events as PEBS with no flags */
882 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
883 EVENT_CONSTRAINT_END
884 };
885
886 struct event_constraint intel_glm_pebs_event_constraints[] = {
887 /* Allow all events as PEBS with no flags */
888 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
889 EVENT_CONSTRAINT_END
890 };
891
892 struct event_constraint intel_grt_pebs_event_constraints[] = {
893 /* Allow all events as PEBS with no flags */
894 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
895 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
896 EVENT_CONSTRAINT_END
897 };
898
899 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
900 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
901 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
902 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
903 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
904 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
905 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
906 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
907 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
908 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
909 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
910 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
911 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
912 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
913 EVENT_CONSTRAINT_END
914 };
915
916 struct event_constraint intel_westmere_pebs_event_constraints[] = {
917 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
918 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
919 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
920 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
921 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
922 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
923 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
924 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
925 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
926 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
927 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
928 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
929 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
930 EVENT_CONSTRAINT_END
931 };
932
933 struct event_constraint intel_snb_pebs_event_constraints[] = {
934 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
935 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
936 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
937 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
938 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
939 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
940 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
941 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
942 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
943 /* Allow all events as PEBS with no flags */
944 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
945 EVENT_CONSTRAINT_END
946 };
947
948 struct event_constraint intel_ivb_pebs_event_constraints[] = {
949 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
950 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
951 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
952 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
953 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
954 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
955 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
956 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
957 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
958 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
959 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
960 /* Allow all events as PEBS with no flags */
961 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
962 EVENT_CONSTRAINT_END
963 };
964
965 struct event_constraint intel_hsw_pebs_event_constraints[] = {
966 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
967 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
968 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
969 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
970 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
971 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
972 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
973 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
974 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
975 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
976 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
977 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
978 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
979 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
980 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
981 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
982 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
983 /* Allow all events as PEBS with no flags */
984 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
985 EVENT_CONSTRAINT_END
986 };
987
988 struct event_constraint intel_bdw_pebs_event_constraints[] = {
989 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
990 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
991 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
992 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
993 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
994 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
995 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
996 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
997 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
998 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
999 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1000 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1001 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1002 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1003 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1004 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1005 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1006 /* Allow all events as PEBS with no flags */
1007 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1008 EVENT_CONSTRAINT_END
1009 };
1010
1011
1012 struct event_constraint intel_skl_pebs_event_constraints[] = {
1013 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
1014 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1015 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1016 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1017 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1018 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
1019 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1020 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1021 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1022 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1023 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1024 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1025 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1026 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1027 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
1028 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
1029 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
1030 /* Allow all events as PEBS with no flags */
1031 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1032 EVENT_CONSTRAINT_END
1033 };
1034
1035 struct event_constraint intel_icl_pebs_event_constraints[] = {
1036 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
1037 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1038 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
1039
1040 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1041 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1042 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1043 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1044 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1045 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1046 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1047 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1048
1049 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1050
1051 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
1052
1053 /*
1054 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1055 * need the full constraints from the main table.
1056 */
1057
1058 EVENT_CONSTRAINT_END
1059 };
1060
1061 struct event_constraint intel_spr_pebs_event_constraints[] = {
1062 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1063 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1064
1065 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1066 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1067 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1068 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1069 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1070 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1071 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1072 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1073 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1074 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1075
1076 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1077
1078 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1079
1080 /*
1081 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1082 * need the full constraints from the main table.
1083 */
1084
1085 EVENT_CONSTRAINT_END
1086 };
1087
intel_pebs_constraints(struct perf_event * event)1088 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1089 {
1090 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1091 struct event_constraint *c;
1092
1093 if (!event->attr.precise_ip)
1094 return NULL;
1095
1096 if (pebs_constraints) {
1097 for_each_event_constraint(c, pebs_constraints) {
1098 if (constraint_match(c, event->hw.config)) {
1099 event->hw.flags |= c->flags;
1100 return c;
1101 }
1102 }
1103 }
1104
1105 /*
1106 * Extended PEBS support
1107 * Makes the PEBS code search the normal constraints.
1108 */
1109 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1110 return NULL;
1111
1112 return &emptyconstraint;
1113 }
1114
1115 /*
1116 * We need the sched_task callback even for per-cpu events when we use
1117 * the large interrupt threshold, such that we can provide PID and TID
1118 * to PEBS samples.
1119 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1120 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1121 {
1122 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1123 return false;
1124
1125 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1126 }
1127
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1128 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1129 {
1130 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1131
1132 if (!sched_in && pebs_needs_sched_cb(cpuc))
1133 intel_pmu_drain_pebs_buffer();
1134 }
1135
pebs_update_threshold(struct cpu_hw_events * cpuc)1136 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1137 {
1138 struct debug_store *ds = cpuc->ds;
1139 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1140 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1141 u64 threshold;
1142 int reserved;
1143
1144 if (cpuc->n_pebs_via_pt)
1145 return;
1146
1147 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1148 reserved = max_pebs_events + num_counters_fixed;
1149 else
1150 reserved = max_pebs_events;
1151
1152 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1153 threshold = ds->pebs_absolute_maximum -
1154 reserved * cpuc->pebs_record_size;
1155 } else {
1156 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1157 }
1158
1159 ds->pebs_interrupt_threshold = threshold;
1160 }
1161
adaptive_pebs_record_size_update(void)1162 static void adaptive_pebs_record_size_update(void)
1163 {
1164 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1165 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1166 int sz = sizeof(struct pebs_basic);
1167
1168 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1169 sz += sizeof(struct pebs_meminfo);
1170 if (pebs_data_cfg & PEBS_DATACFG_GP)
1171 sz += sizeof(struct pebs_gprs);
1172 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1173 sz += sizeof(struct pebs_xmm);
1174 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1175 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1176
1177 cpuc->pebs_record_size = sz;
1178 }
1179
1180 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1181 PERF_SAMPLE_PHYS_ADDR | \
1182 PERF_SAMPLE_WEIGHT_TYPE | \
1183 PERF_SAMPLE_TRANSACTION | \
1184 PERF_SAMPLE_DATA_PAGE_SIZE)
1185
pebs_update_adaptive_cfg(struct perf_event * event)1186 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1187 {
1188 struct perf_event_attr *attr = &event->attr;
1189 u64 sample_type = attr->sample_type;
1190 u64 pebs_data_cfg = 0;
1191 bool gprs, tsx_weight;
1192
1193 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1194 attr->precise_ip > 1)
1195 return pebs_data_cfg;
1196
1197 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1198 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1199
1200 /*
1201 * We need GPRs when:
1202 * + user requested them
1203 * + precise_ip < 2 for the non event IP
1204 * + For RTM TSX weight we need GPRs for the abort code.
1205 */
1206 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1207 (attr->sample_regs_intr & PEBS_GP_REGS);
1208
1209 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1210 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1211 x86_pmu.rtm_abort_event);
1212
1213 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1214 pebs_data_cfg |= PEBS_DATACFG_GP;
1215
1216 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1217 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1218 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1219
1220 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1221 /*
1222 * For now always log all LBRs. Could configure this
1223 * later.
1224 */
1225 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1226 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1227 }
1228
1229 return pebs_data_cfg;
1230 }
1231
1232 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1233 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1234 struct perf_event *event, bool add)
1235 {
1236 struct pmu *pmu = event->pmu;
1237
1238 /*
1239 * Make sure we get updated with the first PEBS event.
1240 * During removal, ->pebs_data_cfg is still valid for
1241 * the last PEBS event. Don't clear it.
1242 */
1243 if ((cpuc->n_pebs == 1) && add)
1244 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1245
1246 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1247 if (!needed_cb)
1248 perf_sched_cb_inc(pmu);
1249 else
1250 perf_sched_cb_dec(pmu);
1251
1252 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1253 }
1254
1255 /*
1256 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1257 * iterating all remaining PEBS events to reconstruct the config.
1258 */
1259 if (x86_pmu.intel_cap.pebs_baseline && add) {
1260 u64 pebs_data_cfg;
1261
1262 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1263 /*
1264 * Be sure to update the thresholds when we change the record.
1265 */
1266 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1267 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1268 }
1269 }
1270
intel_pmu_pebs_add(struct perf_event * event)1271 void intel_pmu_pebs_add(struct perf_event *event)
1272 {
1273 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1274 struct hw_perf_event *hwc = &event->hw;
1275 bool needed_cb = pebs_needs_sched_cb(cpuc);
1276
1277 cpuc->n_pebs++;
1278 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1279 cpuc->n_large_pebs++;
1280 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1281 cpuc->n_pebs_via_pt++;
1282
1283 pebs_update_state(needed_cb, cpuc, event, true);
1284 }
1285
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1286 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1287 {
1288 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289
1290 if (!is_pebs_pt(event))
1291 return;
1292
1293 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1294 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1295 }
1296
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1297 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1298 {
1299 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1300 struct hw_perf_event *hwc = &event->hw;
1301 struct debug_store *ds = cpuc->ds;
1302 u64 value = ds->pebs_event_reset[hwc->idx];
1303 u32 base = MSR_RELOAD_PMC0;
1304 unsigned int idx = hwc->idx;
1305
1306 if (!is_pebs_pt(event))
1307 return;
1308
1309 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1310 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1311
1312 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1313
1314 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1315 base = MSR_RELOAD_FIXED_CTR0;
1316 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1317 if (x86_pmu.intel_cap.pebs_format < 5)
1318 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1319 else
1320 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1321 }
1322 wrmsrl(base + idx, value);
1323 }
1324
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1325 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1326 {
1327 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1328 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1329 intel_pmu_drain_pebs_buffer();
1330 }
1331
intel_pmu_pebs_enable(struct perf_event * event)1332 void intel_pmu_pebs_enable(struct perf_event *event)
1333 {
1334 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1335 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1336 struct hw_perf_event *hwc = &event->hw;
1337 struct debug_store *ds = cpuc->ds;
1338 unsigned int idx = hwc->idx;
1339
1340 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1341
1342 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1343
1344 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1345 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1346 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1347 cpuc->pebs_enabled |= 1ULL << 63;
1348
1349 if (x86_pmu.intel_cap.pebs_baseline) {
1350 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1351 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1352 /*
1353 * drain_pebs() assumes uniform record size;
1354 * hence we need to drain when changing said
1355 * size.
1356 */
1357 intel_pmu_drain_pebs_buffer();
1358 adaptive_pebs_record_size_update();
1359 wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1360 cpuc->active_pebs_data_cfg = pebs_data_cfg;
1361 }
1362 }
1363 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1364 cpuc->pebs_data_cfg = pebs_data_cfg;
1365 pebs_update_threshold(cpuc);
1366 }
1367
1368 if (idx >= INTEL_PMC_IDX_FIXED) {
1369 if (x86_pmu.intel_cap.pebs_format < 5)
1370 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1371 else
1372 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1373 }
1374
1375 /*
1376 * Use auto-reload if possible to save a MSR write in the PMI.
1377 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1378 */
1379 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1380 ds->pebs_event_reset[idx] =
1381 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1382 } else {
1383 ds->pebs_event_reset[idx] = 0;
1384 }
1385
1386 intel_pmu_pebs_via_pt_enable(event);
1387 }
1388
intel_pmu_pebs_del(struct perf_event * event)1389 void intel_pmu_pebs_del(struct perf_event *event)
1390 {
1391 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1392 struct hw_perf_event *hwc = &event->hw;
1393 bool needed_cb = pebs_needs_sched_cb(cpuc);
1394
1395 cpuc->n_pebs--;
1396 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1397 cpuc->n_large_pebs--;
1398 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1399 cpuc->n_pebs_via_pt--;
1400
1401 pebs_update_state(needed_cb, cpuc, event, false);
1402 }
1403
intel_pmu_pebs_disable(struct perf_event * event)1404 void intel_pmu_pebs_disable(struct perf_event *event)
1405 {
1406 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407 struct hw_perf_event *hwc = &event->hw;
1408
1409 intel_pmu_drain_large_pebs(cpuc);
1410
1411 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1412
1413 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1414 (x86_pmu.version < 5))
1415 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1416 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1417 cpuc->pebs_enabled &= ~(1ULL << 63);
1418
1419 intel_pmu_pebs_via_pt_disable(event);
1420
1421 if (cpuc->enabled)
1422 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1423
1424 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1425 }
1426
intel_pmu_pebs_enable_all(void)1427 void intel_pmu_pebs_enable_all(void)
1428 {
1429 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1430
1431 if (cpuc->pebs_enabled)
1432 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1433 }
1434
intel_pmu_pebs_disable_all(void)1435 void intel_pmu_pebs_disable_all(void)
1436 {
1437 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438
1439 if (cpuc->pebs_enabled)
1440 __intel_pmu_pebs_disable_all();
1441 }
1442
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1443 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1444 {
1445 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1446 unsigned long from = cpuc->lbr_entries[0].from;
1447 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1448 unsigned long ip = regs->ip;
1449 int is_64bit = 0;
1450 void *kaddr;
1451 int size;
1452
1453 /*
1454 * We don't need to fixup if the PEBS assist is fault like
1455 */
1456 if (!x86_pmu.intel_cap.pebs_trap)
1457 return 1;
1458
1459 /*
1460 * No LBR entry, no basic block, no rewinding
1461 */
1462 if (!cpuc->lbr_stack.nr || !from || !to)
1463 return 0;
1464
1465 /*
1466 * Basic blocks should never cross user/kernel boundaries
1467 */
1468 if (kernel_ip(ip) != kernel_ip(to))
1469 return 0;
1470
1471 /*
1472 * unsigned math, either ip is before the start (impossible) or
1473 * the basic block is larger than 1 page (sanity)
1474 */
1475 if ((ip - to) > PEBS_FIXUP_SIZE)
1476 return 0;
1477
1478 /*
1479 * We sampled a branch insn, rewind using the LBR stack
1480 */
1481 if (ip == to) {
1482 set_linear_ip(regs, from);
1483 return 1;
1484 }
1485
1486 size = ip - to;
1487 if (!kernel_ip(ip)) {
1488 int bytes;
1489 u8 *buf = this_cpu_read(insn_buffer);
1490
1491 /* 'size' must fit our buffer, see above */
1492 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1493 if (bytes != 0)
1494 return 0;
1495
1496 kaddr = buf;
1497 } else {
1498 kaddr = (void *)to;
1499 }
1500
1501 do {
1502 struct insn insn;
1503
1504 old_to = to;
1505
1506 #ifdef CONFIG_X86_64
1507 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1508 #endif
1509 insn_init(&insn, kaddr, size, is_64bit);
1510
1511 /*
1512 * Make sure there was not a problem decoding the instruction.
1513 * This is doubly important because we have an infinite loop if
1514 * insn.length=0.
1515 */
1516 if (insn_get_length(&insn))
1517 break;
1518
1519 to += insn.length;
1520 kaddr += insn.length;
1521 size -= insn.length;
1522 } while (to < ip);
1523
1524 if (to == ip) {
1525 set_linear_ip(regs, old_to);
1526 return 1;
1527 }
1528
1529 /*
1530 * Even though we decoded the basic block, the instruction stream
1531 * never matched the given IP, either the TO or the IP got corrupted.
1532 */
1533 return 0;
1534 }
1535
intel_get_tsx_weight(u64 tsx_tuning)1536 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1537 {
1538 if (tsx_tuning) {
1539 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1540 return tsx.cycles_last_block;
1541 }
1542 return 0;
1543 }
1544
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1545 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1546 {
1547 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1548
1549 /* For RTM XABORTs also log the abort code from AX */
1550 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1551 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1552 return txn;
1553 }
1554
get_pebs_status(void * n)1555 static inline u64 get_pebs_status(void *n)
1556 {
1557 if (x86_pmu.intel_cap.pebs_format < 4)
1558 return ((struct pebs_record_nhm *)n)->status;
1559 return ((struct pebs_basic *)n)->applicable_counters;
1560 }
1561
1562 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1563 (PERF_X86_EVENT_PEBS_ST_HSW | \
1564 PERF_X86_EVENT_PEBS_LD_HSW | \
1565 PERF_X86_EVENT_PEBS_NA_HSW)
1566
get_data_src(struct perf_event * event,u64 aux)1567 static u64 get_data_src(struct perf_event *event, u64 aux)
1568 {
1569 u64 val = PERF_MEM_NA;
1570 int fl = event->hw.flags;
1571 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1572
1573 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1574 val = load_latency_data(event, aux);
1575 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1576 val = store_latency_data(event, aux);
1577 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1578 val = x86_pmu.pebs_latency_data(event, aux);
1579 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1580 val = precise_datala_hsw(event, aux);
1581 else if (fst)
1582 val = precise_store_data(aux);
1583 return val;
1584 }
1585
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1586 static void setup_pebs_time(struct perf_event *event,
1587 struct perf_sample_data *data,
1588 u64 tsc)
1589 {
1590 /* Converting to a user-defined clock is not supported yet. */
1591 if (event->attr.use_clockid != 0)
1592 return;
1593
1594 /*
1595 * Doesn't support the conversion when the TSC is unstable.
1596 * The TSC unstable case is a corner case and very unlikely to
1597 * happen. If it happens, the TSC in a PEBS record will be
1598 * dropped and fall back to perf_event_clock().
1599 */
1600 if (!using_native_sched_clock() || !sched_clock_stable())
1601 return;
1602
1603 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1604 data->sample_flags |= PERF_SAMPLE_TIME;
1605 }
1606
1607 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1608 PERF_SAMPLE_PHYS_ADDR | \
1609 PERF_SAMPLE_DATA_PAGE_SIZE)
1610
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1611 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1612 struct pt_regs *iregs, void *__pebs,
1613 struct perf_sample_data *data,
1614 struct pt_regs *regs)
1615 {
1616 /*
1617 * We cast to the biggest pebs_record but are careful not to
1618 * unconditionally access the 'extra' entries.
1619 */
1620 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621 struct pebs_record_skl *pebs = __pebs;
1622 u64 sample_type;
1623 int fll;
1624
1625 if (pebs == NULL)
1626 return;
1627
1628 sample_type = event->attr.sample_type;
1629 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1630
1631 perf_sample_data_init(data, 0, event->hw.last_period);
1632
1633 data->period = event->hw.last_period;
1634
1635 /*
1636 * Use latency for weight (only avail with PEBS-LL)
1637 */
1638 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1639 data->weight.full = pebs->lat;
1640 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1641 }
1642
1643 /*
1644 * data.data_src encodes the data source
1645 */
1646 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1647 data->data_src.val = get_data_src(event, pebs->dse);
1648 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1649 }
1650
1651 /*
1652 * We must however always use iregs for the unwinder to stay sane; the
1653 * record BP,SP,IP can point into thin air when the record is from a
1654 * previous PMI context or an (I)RET happened between the record and
1655 * PMI.
1656 */
1657 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1658 perf_sample_save_callchain(data, event, iregs);
1659
1660 /*
1661 * We use the interrupt regs as a base because the PEBS record does not
1662 * contain a full regs set, specifically it seems to lack segment
1663 * descriptors, which get used by things like user_mode().
1664 *
1665 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1666 */
1667 *regs = *iregs;
1668
1669 /*
1670 * Initialize regs_>flags from PEBS,
1671 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1672 * i.e., do not rely on it being zero:
1673 */
1674 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1675
1676 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1677 regs->ax = pebs->ax;
1678 regs->bx = pebs->bx;
1679 regs->cx = pebs->cx;
1680 regs->dx = pebs->dx;
1681 regs->si = pebs->si;
1682 regs->di = pebs->di;
1683
1684 regs->bp = pebs->bp;
1685 regs->sp = pebs->sp;
1686
1687 #ifndef CONFIG_X86_32
1688 regs->r8 = pebs->r8;
1689 regs->r9 = pebs->r9;
1690 regs->r10 = pebs->r10;
1691 regs->r11 = pebs->r11;
1692 regs->r12 = pebs->r12;
1693 regs->r13 = pebs->r13;
1694 regs->r14 = pebs->r14;
1695 regs->r15 = pebs->r15;
1696 #endif
1697 }
1698
1699 if (event->attr.precise_ip > 1) {
1700 /*
1701 * Haswell and later processors have an 'eventing IP'
1702 * (real IP) which fixes the off-by-1 skid in hardware.
1703 * Use it when precise_ip >= 2 :
1704 */
1705 if (x86_pmu.intel_cap.pebs_format >= 2) {
1706 set_linear_ip(regs, pebs->real_ip);
1707 regs->flags |= PERF_EFLAGS_EXACT;
1708 } else {
1709 /* Otherwise, use PEBS off-by-1 IP: */
1710 set_linear_ip(regs, pebs->ip);
1711
1712 /*
1713 * With precise_ip >= 2, try to fix up the off-by-1 IP
1714 * using the LBR. If successful, the fixup function
1715 * corrects regs->ip and calls set_linear_ip() on regs:
1716 */
1717 if (intel_pmu_pebs_fixup_ip(regs))
1718 regs->flags |= PERF_EFLAGS_EXACT;
1719 }
1720 } else {
1721 /*
1722 * When precise_ip == 1, return the PEBS off-by-1 IP,
1723 * no fixup attempted:
1724 */
1725 set_linear_ip(regs, pebs->ip);
1726 }
1727
1728
1729 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1730 x86_pmu.intel_cap.pebs_format >= 1) {
1731 data->addr = pebs->dla;
1732 data->sample_flags |= PERF_SAMPLE_ADDR;
1733 }
1734
1735 if (x86_pmu.intel_cap.pebs_format >= 2) {
1736 /* Only set the TSX weight when no memory weight. */
1737 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1738 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1739 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1740 }
1741 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1742 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1743 pebs->ax);
1744 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1745 }
1746 }
1747
1748 /*
1749 * v3 supplies an accurate time stamp, so we use that
1750 * for the time stamp.
1751 *
1752 * We can only do this for the default trace clock.
1753 */
1754 if (x86_pmu.intel_cap.pebs_format >= 3)
1755 setup_pebs_time(event, data, pebs->tsc);
1756
1757 if (has_branch_stack(event))
1758 perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1759 }
1760
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1761 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1762 struct pebs_gprs *gprs)
1763 {
1764 regs->ax = gprs->ax;
1765 regs->bx = gprs->bx;
1766 regs->cx = gprs->cx;
1767 regs->dx = gprs->dx;
1768 regs->si = gprs->si;
1769 regs->di = gprs->di;
1770 regs->bp = gprs->bp;
1771 regs->sp = gprs->sp;
1772 #ifndef CONFIG_X86_32
1773 regs->r8 = gprs->r8;
1774 regs->r9 = gprs->r9;
1775 regs->r10 = gprs->r10;
1776 regs->r11 = gprs->r11;
1777 regs->r12 = gprs->r12;
1778 regs->r13 = gprs->r13;
1779 regs->r14 = gprs->r14;
1780 regs->r15 = gprs->r15;
1781 #endif
1782 }
1783
1784 #define PEBS_LATENCY_MASK 0xffff
1785 #define PEBS_CACHE_LATENCY_OFFSET 32
1786 #define PEBS_RETIRE_LATENCY_OFFSET 32
1787
1788 /*
1789 * With adaptive PEBS the layout depends on what fields are configured.
1790 */
1791
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1792 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1793 struct pt_regs *iregs, void *__pebs,
1794 struct perf_sample_data *data,
1795 struct pt_regs *regs)
1796 {
1797 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1798 struct pebs_basic *basic = __pebs;
1799 void *next_record = basic + 1;
1800 u64 sample_type;
1801 u64 format_size;
1802 struct pebs_meminfo *meminfo = NULL;
1803 struct pebs_gprs *gprs = NULL;
1804 struct x86_perf_regs *perf_regs;
1805
1806 if (basic == NULL)
1807 return;
1808
1809 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1810 perf_regs->xmm_regs = NULL;
1811
1812 sample_type = event->attr.sample_type;
1813 format_size = basic->format_size;
1814 perf_sample_data_init(data, 0, event->hw.last_period);
1815 data->period = event->hw.last_period;
1816
1817 setup_pebs_time(event, data, basic->tsc);
1818
1819 /*
1820 * We must however always use iregs for the unwinder to stay sane; the
1821 * record BP,SP,IP can point into thin air when the record is from a
1822 * previous PMI context or an (I)RET happened between the record and
1823 * PMI.
1824 */
1825 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1826 perf_sample_save_callchain(data, event, iregs);
1827
1828 *regs = *iregs;
1829 /* The ip in basic is EventingIP */
1830 set_linear_ip(regs, basic->ip);
1831 regs->flags = PERF_EFLAGS_EXACT;
1832
1833 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1834 if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
1835 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1836 else
1837 data->weight.var3_w = 0;
1838 }
1839
1840 /*
1841 * The record for MEMINFO is in front of GP
1842 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1843 * Save the pointer here but process later.
1844 */
1845 if (format_size & PEBS_DATACFG_MEMINFO) {
1846 meminfo = next_record;
1847 next_record = meminfo + 1;
1848 }
1849
1850 if (format_size & PEBS_DATACFG_GP) {
1851 gprs = next_record;
1852 next_record = gprs + 1;
1853
1854 if (event->attr.precise_ip < 2) {
1855 set_linear_ip(regs, gprs->ip);
1856 regs->flags &= ~PERF_EFLAGS_EXACT;
1857 }
1858
1859 if (sample_type & PERF_SAMPLE_REGS_INTR)
1860 adaptive_pebs_save_regs(regs, gprs);
1861 }
1862
1863 if (format_size & PEBS_DATACFG_MEMINFO) {
1864 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1865 u64 weight = meminfo->latency;
1866
1867 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1868 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1869 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1870 }
1871
1872 /*
1873 * Although meminfo::latency is defined as a u64,
1874 * only the lower 32 bits include the valid data
1875 * in practice on Ice Lake and earlier platforms.
1876 */
1877 if (sample_type & PERF_SAMPLE_WEIGHT) {
1878 data->weight.full = weight ?:
1879 intel_get_tsx_weight(meminfo->tsx_tuning);
1880 } else {
1881 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1882 intel_get_tsx_weight(meminfo->tsx_tuning);
1883 }
1884 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1885 }
1886
1887 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1888 data->data_src.val = get_data_src(event, meminfo->aux);
1889 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1890 }
1891
1892 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
1893 data->addr = meminfo->address;
1894 data->sample_flags |= PERF_SAMPLE_ADDR;
1895 }
1896
1897 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1898 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1899 gprs ? gprs->ax : 0);
1900 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1901 }
1902 }
1903
1904 if (format_size & PEBS_DATACFG_XMMS) {
1905 struct pebs_xmm *xmm = next_record;
1906
1907 next_record = xmm + 1;
1908 perf_regs->xmm_regs = xmm->xmm;
1909 }
1910
1911 if (format_size & PEBS_DATACFG_LBRS) {
1912 struct lbr_entry *lbr = next_record;
1913 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1914 & 0xff) + 1;
1915 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1916
1917 if (has_branch_stack(event)) {
1918 intel_pmu_store_pebs_lbrs(lbr);
1919 perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1920 }
1921 }
1922
1923 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1924 "PEBS record size %llu, expected %llu, config %llx\n",
1925 format_size >> 48,
1926 (u64)(next_record - __pebs),
1927 basic->format_size);
1928 }
1929
1930 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1931 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1932 {
1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934 void *at;
1935 u64 pebs_status;
1936
1937 /*
1938 * fmt0 does not have a status bitfield (does not use
1939 * perf_record_nhm format)
1940 */
1941 if (x86_pmu.intel_cap.pebs_format < 1)
1942 return base;
1943
1944 if (base == NULL)
1945 return NULL;
1946
1947 for (at = base; at < top; at += cpuc->pebs_record_size) {
1948 unsigned long status = get_pebs_status(at);
1949
1950 if (test_bit(bit, (unsigned long *)&status)) {
1951 /* PEBS v3 has accurate status bits */
1952 if (x86_pmu.intel_cap.pebs_format >= 3)
1953 return at;
1954
1955 if (status == (1 << bit))
1956 return at;
1957
1958 /* clear non-PEBS bit and re-check */
1959 pebs_status = status & cpuc->pebs_enabled;
1960 pebs_status &= PEBS_COUNTER_MASK;
1961 if (pebs_status == (1 << bit))
1962 return at;
1963 }
1964 }
1965 return NULL;
1966 }
1967
intel_pmu_auto_reload_read(struct perf_event * event)1968 void intel_pmu_auto_reload_read(struct perf_event *event)
1969 {
1970 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1971
1972 perf_pmu_disable(event->pmu);
1973 intel_pmu_drain_pebs_buffer();
1974 perf_pmu_enable(event->pmu);
1975 }
1976
1977 /*
1978 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1979 */
1980 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1981 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1982 {
1983 struct hw_perf_event *hwc = &event->hw;
1984 int shift = 64 - x86_pmu.cntval_bits;
1985 u64 period = hwc->sample_period;
1986 u64 prev_raw_count, new_raw_count;
1987 s64 new, old;
1988
1989 WARN_ON(!period);
1990
1991 /*
1992 * drain_pebs() only happens when the PMU is disabled.
1993 */
1994 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1995
1996 prev_raw_count = local64_read(&hwc->prev_count);
1997 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1998 local64_set(&hwc->prev_count, new_raw_count);
1999
2000 /*
2001 * Since the counter increments a negative counter value and
2002 * overflows on the sign switch, giving the interval:
2003 *
2004 * [-period, 0]
2005 *
2006 * the difference between two consecutive reads is:
2007 *
2008 * A) value2 - value1;
2009 * when no overflows have happened in between,
2010 *
2011 * B) (0 - value1) + (value2 - (-period));
2012 * when one overflow happened in between,
2013 *
2014 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2015 * when @n overflows happened in between.
2016 *
2017 * Here A) is the obvious difference, B) is the extension to the
2018 * discrete interval, where the first term is to the top of the
2019 * interval and the second term is from the bottom of the next
2020 * interval and C) the extension to multiple intervals, where the
2021 * middle term is the whole intervals covered.
2022 *
2023 * An equivalent of C, by reduction, is:
2024 *
2025 * value2 - value1 + n * period
2026 */
2027 new = ((s64)(new_raw_count << shift) >> shift);
2028 old = ((s64)(prev_raw_count << shift) >> shift);
2029 local64_add(new - old + count * period, &event->count);
2030
2031 local64_set(&hwc->period_left, -new);
2032
2033 perf_event_update_userpage(event);
2034
2035 return 0;
2036 }
2037
2038 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))2039 __intel_pmu_pebs_event(struct perf_event *event,
2040 struct pt_regs *iregs,
2041 struct perf_sample_data *data,
2042 void *base, void *top,
2043 int bit, int count,
2044 void (*setup_sample)(struct perf_event *,
2045 struct pt_regs *,
2046 void *,
2047 struct perf_sample_data *,
2048 struct pt_regs *))
2049 {
2050 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2051 struct hw_perf_event *hwc = &event->hw;
2052 struct x86_perf_regs perf_regs;
2053 struct pt_regs *regs = &perf_regs.regs;
2054 void *at = get_next_pebs_record_by_bit(base, top, bit);
2055 static struct pt_regs dummy_iregs;
2056
2057 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2058 /*
2059 * Now, auto-reload is only enabled in fixed period mode.
2060 * The reload value is always hwc->sample_period.
2061 * May need to change it, if auto-reload is enabled in
2062 * freq mode later.
2063 */
2064 intel_pmu_save_and_restart_reload(event, count);
2065 } else if (!intel_pmu_save_and_restart(event))
2066 return;
2067
2068 if (!iregs)
2069 iregs = &dummy_iregs;
2070
2071 while (count > 1) {
2072 setup_sample(event, iregs, at, data, regs);
2073 perf_event_output(event, data, regs);
2074 at += cpuc->pebs_record_size;
2075 at = get_next_pebs_record_by_bit(at, top, bit);
2076 count--;
2077 }
2078
2079 setup_sample(event, iregs, at, data, regs);
2080 if (iregs == &dummy_iregs) {
2081 /*
2082 * The PEBS records may be drained in the non-overflow context,
2083 * e.g., large PEBS + context switch. Perf should treat the
2084 * last record the same as other PEBS records, and doesn't
2085 * invoke the generic overflow handler.
2086 */
2087 perf_event_output(event, data, regs);
2088 } else {
2089 /*
2090 * All but the last records are processed.
2091 * The last one is left to be able to call the overflow handler.
2092 */
2093 if (perf_event_overflow(event, data, regs))
2094 x86_pmu_stop(event, 0);
2095 }
2096 }
2097
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2098 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2099 {
2100 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2101 struct debug_store *ds = cpuc->ds;
2102 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2103 struct pebs_record_core *at, *top;
2104 int n;
2105
2106 if (!x86_pmu.pebs_active)
2107 return;
2108
2109 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2110 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2111
2112 /*
2113 * Whatever else happens, drain the thing
2114 */
2115 ds->pebs_index = ds->pebs_buffer_base;
2116
2117 if (!test_bit(0, cpuc->active_mask))
2118 return;
2119
2120 WARN_ON_ONCE(!event);
2121
2122 if (!event->attr.precise_ip)
2123 return;
2124
2125 n = top - at;
2126 if (n <= 0) {
2127 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2128 intel_pmu_save_and_restart_reload(event, 0);
2129 return;
2130 }
2131
2132 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2133 setup_pebs_fixed_sample_data);
2134 }
2135
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)2136 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2137 {
2138 struct perf_event *event;
2139 int bit;
2140
2141 /*
2142 * The drain_pebs() could be called twice in a short period
2143 * for auto-reload event in pmu::read(). There are no
2144 * overflows have happened in between.
2145 * It needs to call intel_pmu_save_and_restart_reload() to
2146 * update the event->count for this case.
2147 */
2148 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2149 event = cpuc->events[bit];
2150 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2151 intel_pmu_save_and_restart_reload(event, 0);
2152 }
2153 }
2154
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2155 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2156 {
2157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2158 struct debug_store *ds = cpuc->ds;
2159 struct perf_event *event;
2160 void *base, *at, *top;
2161 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2162 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2163 int bit, i, size;
2164 u64 mask;
2165
2166 if (!x86_pmu.pebs_active)
2167 return;
2168
2169 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2170 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2171
2172 ds->pebs_index = ds->pebs_buffer_base;
2173
2174 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2175 size = x86_pmu.max_pebs_events;
2176 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2177 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2178 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2179 }
2180
2181 if (unlikely(base >= top)) {
2182 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2183 return;
2184 }
2185
2186 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2187 struct pebs_record_nhm *p = at;
2188 u64 pebs_status;
2189
2190 pebs_status = p->status & cpuc->pebs_enabled;
2191 pebs_status &= mask;
2192
2193 /* PEBS v3 has more accurate status bits */
2194 if (x86_pmu.intel_cap.pebs_format >= 3) {
2195 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2196 counts[bit]++;
2197
2198 continue;
2199 }
2200
2201 /*
2202 * On some CPUs the PEBS status can be zero when PEBS is
2203 * racing with clearing of GLOBAL_STATUS.
2204 *
2205 * Normally we would drop that record, but in the
2206 * case when there is only a single active PEBS event
2207 * we can assume it's for that event.
2208 */
2209 if (!pebs_status && cpuc->pebs_enabled &&
2210 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2211 pebs_status = p->status = cpuc->pebs_enabled;
2212
2213 bit = find_first_bit((unsigned long *)&pebs_status,
2214 x86_pmu.max_pebs_events);
2215 if (bit >= x86_pmu.max_pebs_events)
2216 continue;
2217
2218 /*
2219 * The PEBS hardware does not deal well with the situation
2220 * when events happen near to each other and multiple bits
2221 * are set. But it should happen rarely.
2222 *
2223 * If these events include one PEBS and multiple non-PEBS
2224 * events, it doesn't impact PEBS record. The record will
2225 * be handled normally. (slow path)
2226 *
2227 * If these events include two or more PEBS events, the
2228 * records for the events can be collapsed into a single
2229 * one, and it's not possible to reconstruct all events
2230 * that caused the PEBS record. It's called collision.
2231 * If collision happened, the record will be dropped.
2232 */
2233 if (pebs_status != (1ULL << bit)) {
2234 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2235 error[i]++;
2236 continue;
2237 }
2238
2239 counts[bit]++;
2240 }
2241
2242 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2243 if ((counts[bit] == 0) && (error[bit] == 0))
2244 continue;
2245
2246 event = cpuc->events[bit];
2247 if (WARN_ON_ONCE(!event))
2248 continue;
2249
2250 if (WARN_ON_ONCE(!event->attr.precise_ip))
2251 continue;
2252
2253 /* log dropped samples number */
2254 if (error[bit]) {
2255 perf_log_lost_samples(event, error[bit]);
2256
2257 if (iregs && perf_event_account_interrupt(event))
2258 x86_pmu_stop(event, 0);
2259 }
2260
2261 if (counts[bit]) {
2262 __intel_pmu_pebs_event(event, iregs, data, base,
2263 top, bit, counts[bit],
2264 setup_pebs_fixed_sample_data);
2265 }
2266 }
2267 }
2268
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2269 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2270 {
2271 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2274 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2275 struct debug_store *ds = cpuc->ds;
2276 struct perf_event *event;
2277 void *base, *at, *top;
2278 int bit, size;
2279 u64 mask;
2280
2281 if (!x86_pmu.pebs_active)
2282 return;
2283
2284 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2285 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2286
2287 ds->pebs_index = ds->pebs_buffer_base;
2288
2289 mask = ((1ULL << max_pebs_events) - 1) |
2290 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2291 size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2292
2293 if (unlikely(base >= top)) {
2294 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2295 return;
2296 }
2297
2298 for (at = base; at < top; at += cpuc->pebs_record_size) {
2299 u64 pebs_status;
2300
2301 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2302 pebs_status &= mask;
2303
2304 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2305 counts[bit]++;
2306 }
2307
2308 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2309 if (counts[bit] == 0)
2310 continue;
2311
2312 event = cpuc->events[bit];
2313 if (WARN_ON_ONCE(!event))
2314 continue;
2315
2316 if (WARN_ON_ONCE(!event->attr.precise_ip))
2317 continue;
2318
2319 __intel_pmu_pebs_event(event, iregs, data, base,
2320 top, bit, counts[bit],
2321 setup_pebs_adaptive_sample_data);
2322 }
2323 }
2324
2325 /*
2326 * BTS, PEBS probe and setup
2327 */
2328
intel_ds_init(void)2329 void __init intel_ds_init(void)
2330 {
2331 /*
2332 * No support for 32bit formats
2333 */
2334 if (!boot_cpu_has(X86_FEATURE_DTES64))
2335 return;
2336
2337 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2338 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2339 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2340 if (x86_pmu.version <= 4)
2341 x86_pmu.pebs_no_isolation = 1;
2342
2343 if (x86_pmu.pebs) {
2344 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2345 char *pebs_qual = "";
2346 int format = x86_pmu.intel_cap.pebs_format;
2347
2348 if (format < 4)
2349 x86_pmu.intel_cap.pebs_baseline = 0;
2350
2351 switch (format) {
2352 case 0:
2353 pr_cont("PEBS fmt0%c, ", pebs_type);
2354 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2355 /*
2356 * Using >PAGE_SIZE buffers makes the WRMSR to
2357 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2358 * mysteriously hang on Core2.
2359 *
2360 * As a workaround, we don't do this.
2361 */
2362 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2363 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2364 break;
2365
2366 case 1:
2367 pr_cont("PEBS fmt1%c, ", pebs_type);
2368 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2369 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2370 break;
2371
2372 case 2:
2373 pr_cont("PEBS fmt2%c, ", pebs_type);
2374 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2375 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2376 break;
2377
2378 case 3:
2379 pr_cont("PEBS fmt3%c, ", pebs_type);
2380 x86_pmu.pebs_record_size =
2381 sizeof(struct pebs_record_skl);
2382 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2383 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2384 break;
2385
2386 case 5:
2387 x86_pmu.pebs_ept = 1;
2388 fallthrough;
2389 case 4:
2390 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2391 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2392 if (x86_pmu.intel_cap.pebs_baseline) {
2393 x86_pmu.large_pebs_flags |=
2394 PERF_SAMPLE_BRANCH_STACK |
2395 PERF_SAMPLE_TIME;
2396 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2397 x86_pmu.pebs_capable = ~0ULL;
2398 pebs_qual = "-baseline";
2399 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2400 } else {
2401 /* Only basic record supported */
2402 x86_pmu.large_pebs_flags &=
2403 ~(PERF_SAMPLE_ADDR |
2404 PERF_SAMPLE_TIME |
2405 PERF_SAMPLE_DATA_SRC |
2406 PERF_SAMPLE_TRANSACTION |
2407 PERF_SAMPLE_REGS_USER |
2408 PERF_SAMPLE_REGS_INTR);
2409 }
2410 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2411
2412 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2413 pr_cont("PEBS-via-PT, ");
2414 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2415 }
2416
2417 break;
2418
2419 default:
2420 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2421 x86_pmu.pebs = 0;
2422 }
2423 }
2424 }
2425
perf_restore_debug_store(void)2426 void perf_restore_debug_store(void)
2427 {
2428 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2429
2430 if (!x86_pmu.bts && !x86_pmu.pebs)
2431 return;
2432
2433 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2434 }
2435