xref: /openbmc/linux/arch/loongarch/kernel/numa.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Author:  Xiang Gao <gaoxiang@loongson.cn>
4  *          Huacai Chen <chenhuacai@loongson.cn>
5  *
6  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
7  */
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/mmzone.h>
12 #include <linux/export.h>
13 #include <linux/nodemask.h>
14 #include <linux/swap.h>
15 #include <linux/memblock.h>
16 #include <linux/pfn.h>
17 #include <linux/acpi.h>
18 #include <linux/efi.h>
19 #include <linux/irq.h>
20 #include <linux/pci.h>
21 #include <asm/bootinfo.h>
22 #include <asm/loongson.h>
23 #include <asm/numa.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/sections.h>
27 #include <asm/time.h>
28 
29 int numa_off;
30 struct pglist_data *node_data[MAX_NUMNODES];
31 unsigned char node_distances[MAX_NUMNODES][MAX_NUMNODES];
32 
33 EXPORT_SYMBOL(node_data);
34 EXPORT_SYMBOL(node_distances);
35 
36 static struct numa_meminfo numa_meminfo;
37 cpumask_t cpus_on_node[MAX_NUMNODES];
38 cpumask_t phys_cpus_on_node[MAX_NUMNODES];
39 EXPORT_SYMBOL(cpus_on_node);
40 
41 /*
42  * apicid, cpu, node mappings
43  */
44 s16 __cpuid_to_node[CONFIG_NR_CPUS] = {
45 	[0 ... CONFIG_NR_CPUS - 1] = NUMA_NO_NODE
46 };
47 EXPORT_SYMBOL(__cpuid_to_node);
48 
49 nodemask_t numa_nodes_parsed __initdata;
50 
51 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
52 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
53 EXPORT_SYMBOL(__per_cpu_offset);
54 
pcpu_cpu_to_node(int cpu)55 static int __init pcpu_cpu_to_node(int cpu)
56 {
57 	return early_cpu_to_node(cpu);
58 }
59 
pcpu_cpu_distance(unsigned int from,unsigned int to)60 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
61 {
62 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
63 		return LOCAL_DISTANCE;
64 	else
65 		return REMOTE_DISTANCE;
66 }
67 
pcpu_populate_pte(unsigned long addr)68 void __init pcpu_populate_pte(unsigned long addr)
69 {
70 	populate_kernel_pte(addr);
71 }
72 
setup_per_cpu_areas(void)73 void __init setup_per_cpu_areas(void)
74 {
75 	unsigned long delta;
76 	unsigned int cpu;
77 	int rc = -EINVAL;
78 
79 	if (pcpu_chosen_fc == PCPU_FC_AUTO) {
80 		if (nr_node_ids >= 8)
81 			pcpu_chosen_fc = PCPU_FC_PAGE;
82 		else
83 			pcpu_chosen_fc = PCPU_FC_EMBED;
84 	}
85 
86 	/*
87 	 * Always reserve area for module percpu variables.  That's
88 	 * what the legacy allocator did.
89 	 */
90 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
91 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
92 					    PERCPU_DYNAMIC_RESERVE, PMD_SIZE,
93 					    pcpu_cpu_distance, pcpu_cpu_to_node);
94 		if (rc < 0)
95 			pr_warn("%s allocator failed (%d), falling back to page size\n",
96 				pcpu_fc_names[pcpu_chosen_fc], rc);
97 	}
98 	if (rc < 0)
99 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_cpu_to_node);
100 	if (rc < 0)
101 		panic("cannot initialize percpu area (err=%d)", rc);
102 
103 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
104 	for_each_possible_cpu(cpu)
105 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
106 }
107 #endif
108 
109 /*
110  * Get nodeid by logical cpu number.
111  * __cpuid_to_node maps phyical cpu id to node, so we
112  * should use cpu_logical_map(cpu) to index it.
113  *
114  * This routine is only used in early phase during
115  * booting, after setup_per_cpu_areas calling and numa_node
116  * initialization, cpu_to_node will be used instead.
117  */
early_cpu_to_node(int cpu)118 int early_cpu_to_node(int cpu)
119 {
120 	int physid = cpu_logical_map(cpu);
121 
122 	if (physid < 0)
123 		return NUMA_NO_NODE;
124 
125 	return __cpuid_to_node[physid];
126 }
127 
early_numa_add_cpu(int cpuid,s16 node)128 void __init early_numa_add_cpu(int cpuid, s16 node)
129 {
130 	int cpu = __cpu_number_map[cpuid];
131 
132 	if (cpu < 0)
133 		return;
134 
135 	cpumask_set_cpu(cpu, &cpus_on_node[node]);
136 	cpumask_set_cpu(cpuid, &phys_cpus_on_node[node]);
137 }
138 
numa_add_cpu(unsigned int cpu)139 void numa_add_cpu(unsigned int cpu)
140 {
141 	int nid = cpu_to_node(cpu);
142 	cpumask_set_cpu(cpu, &cpus_on_node[nid]);
143 }
144 
numa_remove_cpu(unsigned int cpu)145 void numa_remove_cpu(unsigned int cpu)
146 {
147 	int nid = cpu_to_node(cpu);
148 	cpumask_clear_cpu(cpu, &cpus_on_node[nid]);
149 }
150 
numa_add_memblk_to(int nid,u64 start,u64 end,struct numa_meminfo * mi)151 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
152 				     struct numa_meminfo *mi)
153 {
154 	/* ignore zero length blks */
155 	if (start == end)
156 		return 0;
157 
158 	/* whine about and ignore invalid blks */
159 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
160 		pr_warn("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
161 			   nid, start, end - 1);
162 		return 0;
163 	}
164 
165 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
166 		pr_err("NUMA: too many memblk ranges\n");
167 		return -EINVAL;
168 	}
169 
170 	mi->blk[mi->nr_blks].start = PFN_ALIGN(start);
171 	mi->blk[mi->nr_blks].end = PFN_ALIGN(end - PAGE_SIZE + 1);
172 	mi->blk[mi->nr_blks].nid = nid;
173 	mi->nr_blks++;
174 	return 0;
175 }
176 
177 /**
178  * numa_add_memblk - Add one numa_memblk to numa_meminfo
179  * @nid: NUMA node ID of the new memblk
180  * @start: Start address of the new memblk
181  * @end: End address of the new memblk
182  *
183  * Add a new memblk to the default numa_meminfo.
184  *
185  * RETURNS:
186  * 0 on success, -errno on failure.
187  */
numa_add_memblk(int nid,u64 start,u64 end)188 int __init numa_add_memblk(int nid, u64 start, u64 end)
189 {
190 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
191 }
192 
alloc_node_data(int nid)193 static void __init alloc_node_data(int nid)
194 {
195 	void *nd;
196 	unsigned long nd_pa;
197 	size_t nd_sz = roundup(sizeof(pg_data_t), PAGE_SIZE);
198 
199 	nd_pa = memblock_phys_alloc_try_nid(nd_sz, SMP_CACHE_BYTES, nid);
200 	if (!nd_pa) {
201 		pr_err("Cannot find %zu Byte for node_data (initial node: %d)\n", nd_sz, nid);
202 		return;
203 	}
204 
205 	nd = __va(nd_pa);
206 
207 	node_data[nid] = nd;
208 	memset(nd, 0, sizeof(pg_data_t));
209 }
210 
node_mem_init(unsigned int node)211 static void __init node_mem_init(unsigned int node)
212 {
213 	unsigned long start_pfn, end_pfn;
214 	unsigned long node_addrspace_offset;
215 
216 	node_addrspace_offset = nid_to_addrbase(node);
217 	pr_info("Node%d's addrspace_offset is 0x%lx\n",
218 			node, node_addrspace_offset);
219 
220 	get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
221 	pr_info("Node%d: start_pfn=0x%lx, end_pfn=0x%lx\n",
222 		node, start_pfn, end_pfn);
223 
224 	alloc_node_data(node);
225 }
226 
227 #ifdef CONFIG_ACPI_NUMA
228 
add_node_intersection(u32 node,u64 start,u64 size,u32 type)229 static void __init add_node_intersection(u32 node, u64 start, u64 size, u32 type)
230 {
231 	static unsigned long num_physpages;
232 
233 	num_physpages += (size >> PAGE_SHIFT);
234 	pr_info("Node%d: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n",
235 		node, type, start, size);
236 	pr_info("       start_pfn:0x%llx, end_pfn:0x%llx, num_physpages:0x%lx\n",
237 		start >> PAGE_SHIFT, (start + size) >> PAGE_SHIFT, num_physpages);
238 	memblock_set_node(start, size, &memblock.memory, node);
239 }
240 
241 /*
242  * add_numamem_region
243  *
244  * Add a uasable memory region described by BIOS. The
245  * routine gets each intersection between BIOS's region
246  * and node's region, and adds them into node's memblock
247  * pool.
248  *
249  */
add_numamem_region(u64 start,u64 end,u32 type)250 static void __init add_numamem_region(u64 start, u64 end, u32 type)
251 {
252 	u32 i;
253 	u64 ofs = start;
254 
255 	if (start >= end) {
256 		pr_debug("Invalid region: %016llx-%016llx\n", start, end);
257 		return;
258 	}
259 
260 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
261 		struct numa_memblk *mb = &numa_meminfo.blk[i];
262 
263 		if (ofs > mb->end)
264 			continue;
265 
266 		if (end > mb->end) {
267 			add_node_intersection(mb->nid, ofs, mb->end - ofs, type);
268 			ofs = mb->end;
269 		} else {
270 			add_node_intersection(mb->nid, ofs, end - ofs, type);
271 			break;
272 		}
273 	}
274 }
275 
init_node_memblock(void)276 static void __init init_node_memblock(void)
277 {
278 	u32 mem_type;
279 	u64 mem_end, mem_start, mem_size;
280 	efi_memory_desc_t *md;
281 
282 	/* Parse memory information and activate */
283 	for_each_efi_memory_desc(md) {
284 		mem_type = md->type;
285 		mem_start = md->phys_addr;
286 		mem_size = md->num_pages << EFI_PAGE_SHIFT;
287 		mem_end = mem_start + mem_size;
288 
289 		switch (mem_type) {
290 		case EFI_LOADER_CODE:
291 		case EFI_LOADER_DATA:
292 		case EFI_BOOT_SERVICES_CODE:
293 		case EFI_BOOT_SERVICES_DATA:
294 		case EFI_PERSISTENT_MEMORY:
295 		case EFI_CONVENTIONAL_MEMORY:
296 			add_numamem_region(mem_start, mem_end, mem_type);
297 			break;
298 		case EFI_PAL_CODE:
299 		case EFI_UNUSABLE_MEMORY:
300 		case EFI_ACPI_RECLAIM_MEMORY:
301 			add_numamem_region(mem_start, mem_end, mem_type);
302 			fallthrough;
303 		case EFI_RESERVED_TYPE:
304 		case EFI_RUNTIME_SERVICES_CODE:
305 		case EFI_RUNTIME_SERVICES_DATA:
306 		case EFI_MEMORY_MAPPED_IO:
307 		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
308 			pr_info("Resvd: mem_type:%d, mem_start:0x%llx, mem_size:0x%llx Bytes\n",
309 					mem_type, mem_start, mem_size);
310 			break;
311 		}
312 	}
313 }
314 
numa_default_distance(void)315 static void __init numa_default_distance(void)
316 {
317 	int row, col;
318 
319 	for (row = 0; row < MAX_NUMNODES; row++)
320 		for (col = 0; col < MAX_NUMNODES; col++) {
321 			if (col == row)
322 				node_distances[row][col] = LOCAL_DISTANCE;
323 			else
324 				/* We assume that one node per package here!
325 				 *
326 				 * A SLIT should be used for multiple nodes
327 				 * per package to override default setting.
328 				 */
329 				node_distances[row][col] = REMOTE_DISTANCE;
330 	}
331 }
332 
333 /*
334  * fake_numa_init() - For Non-ACPI systems
335  * Return: 0 on success, -errno on failure.
336  */
fake_numa_init(void)337 static int __init fake_numa_init(void)
338 {
339 	phys_addr_t start = memblock_start_of_DRAM();
340 	phys_addr_t end = memblock_end_of_DRAM() - 1;
341 
342 	node_set(0, numa_nodes_parsed);
343 	pr_info("Faking a node at [mem %pap-%pap]\n", &start, &end);
344 
345 	return numa_add_memblk(0, start, end + 1);
346 }
347 
init_numa_memory(void)348 int __init init_numa_memory(void)
349 {
350 	int i;
351 	int ret;
352 	int node;
353 
354 	for (i = 0; i < NR_CPUS; i++)
355 		set_cpuid_to_node(i, NUMA_NO_NODE);
356 
357 	numa_default_distance();
358 	nodes_clear(numa_nodes_parsed);
359 	nodes_clear(node_possible_map);
360 	nodes_clear(node_online_map);
361 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
362 
363 	/* Parse SRAT and SLIT if provided by firmware. */
364 	ret = acpi_disabled ? fake_numa_init() : acpi_numa_init();
365 	if (ret < 0)
366 		return ret;
367 
368 	node_possible_map = numa_nodes_parsed;
369 	if (WARN_ON(nodes_empty(node_possible_map)))
370 		return -EINVAL;
371 
372 	init_node_memblock();
373 	if (!memblock_validate_numa_coverage(SZ_1M))
374 		return -EINVAL;
375 
376 	for_each_node_mask(node, node_possible_map) {
377 		node_mem_init(node);
378 		node_set_online(node);
379 	}
380 	max_low_pfn = PHYS_PFN(memblock_end_of_DRAM());
381 
382 	setup_nr_node_ids();
383 	loongson_sysconf.nr_nodes = nr_node_ids;
384 	loongson_sysconf.cores_per_node = cpumask_weight(&phys_cpus_on_node[0]);
385 
386 	return 0;
387 }
388 
389 #endif
390 
paging_init(void)391 void __init paging_init(void)
392 {
393 	unsigned int node;
394 	unsigned long zones_size[MAX_NR_ZONES] = {0, };
395 
396 	for_each_online_node(node) {
397 		unsigned long start_pfn, end_pfn;
398 
399 		get_pfn_range_for_nid(node, &start_pfn, &end_pfn);
400 
401 		if (end_pfn > max_low_pfn)
402 			max_low_pfn = end_pfn;
403 	}
404 #ifdef CONFIG_ZONE_DMA32
405 	zones_size[ZONE_DMA32] = MAX_DMA32_PFN;
406 #endif
407 	zones_size[ZONE_NORMAL] = max_low_pfn;
408 	free_area_init(zones_size);
409 }
410 
mem_init(void)411 void __init mem_init(void)
412 {
413 	high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
414 	memblock_free_all();
415 }
416 
pcibus_to_node(struct pci_bus * bus)417 int pcibus_to_node(struct pci_bus *bus)
418 {
419 	return dev_to_node(&bus->dev);
420 }
421 EXPORT_SYMBOL(pcibus_to_node);
422