1 /*
2 * IMX EPIT Timer
3 *
4 * Copyright (c) 2008 OK Labs
5 * Copyright (c) 2011 NICTA Pty Ltd
6 * Originally written by Hans Jiang
7 * Updated by Peter Chubb
8 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
9 * Updated by Axel Heider
10 *
11 * This code is licensed under GPL version 2 or later. See
12 * the COPYING file in the top-level directory.
13 *
14 */
15
16 #include "qemu/osdep.h"
17 #include "hw/timer/imx_epit.h"
18 #include "migration/vmstate.h"
19 #include "hw/irq.h"
20 #include "hw/misc/imx_ccm.h"
21 #include "qemu/module.h"
22 #include "qemu/log.h"
23
24 #ifndef DEBUG_IMX_EPIT
25 #define DEBUG_IMX_EPIT 0
26 #endif
27
28 #define DPRINTF(fmt, args...) \
29 do { \
30 if (DEBUG_IMX_EPIT) { \
31 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \
32 __func__, ##args); \
33 } \
34 } while (0)
35
imx_epit_reg_name(uint32_t reg)36 static const char *imx_epit_reg_name(uint32_t reg)
37 {
38 switch (reg) {
39 case 0:
40 return "CR";
41 case 1:
42 return "SR";
43 case 2:
44 return "LR";
45 case 3:
46 return "CMP";
47 case 4:
48 return "CNT";
49 default:
50 return "[?]";
51 }
52 }
53
54 /*
55 * Exact clock frequencies vary from board to board.
56 * These are typical.
57 */
58 static const IMXClk imx_epit_clocks[] = {
59 CLK_NONE, /* 00 disabled */
60 CLK_IPG, /* 01 ipg_clk, ~532MHz */
61 CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */
62 CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */
63 };
64
65 /*
66 * Update interrupt status
67 */
imx_epit_update_int(IMXEPITState * s)68 static void imx_epit_update_int(IMXEPITState *s)
69 {
70 if ((s->sr & SR_OCIF) && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) {
71 qemu_irq_raise(s->irq);
72 } else {
73 qemu_irq_lower(s->irq);
74 }
75 }
76
imx_epit_get_freq(IMXEPITState * s)77 static uint32_t imx_epit_get_freq(IMXEPITState *s)
78 {
79 uint32_t clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, CR_CLKSRC_BITS);
80 uint32_t prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, CR_PRESCALE_BITS);
81 uint32_t f_in = imx_ccm_get_clock_frequency(s->ccm, imx_epit_clocks[clksrc]);
82 uint32_t freq = f_in / prescaler;
83 DPRINTF("ptimer frequency is %u\n", freq);
84 return freq;
85 }
86
87 /*
88 * This is called both on hardware (device) reset and software reset.
89 */
imx_epit_reset(IMXEPITState * s,bool is_hard_reset)90 static void imx_epit_reset(IMXEPITState *s, bool is_hard_reset)
91 {
92 /* Soft reset doesn't touch some bits; hard reset clears them */
93 if (is_hard_reset) {
94 s->cr = 0;
95 } else {
96 s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN);
97 }
98 s->sr = 0;
99 s->lr = EPIT_TIMER_MAX;
100 s->cmp = 0;
101 ptimer_transaction_begin(s->timer_cmp);
102 ptimer_transaction_begin(s->timer_reload);
103
104 /*
105 * The reset switches off the input clock, so even if the CR.EN is still
106 * set, the timers are no longer running.
107 */
108 assert(imx_epit_get_freq(s) == 0);
109 ptimer_stop(s->timer_cmp);
110 ptimer_stop(s->timer_reload);
111 /* init both timers to EPIT_TIMER_MAX */
112 ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1);
113 ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1);
114 ptimer_transaction_commit(s->timer_cmp);
115 ptimer_transaction_commit(s->timer_reload);
116 }
117
imx_epit_read(void * opaque,hwaddr offset,unsigned size)118 static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size)
119 {
120 IMXEPITState *s = IMX_EPIT(opaque);
121 uint32_t reg_value = 0;
122
123 switch (offset >> 2) {
124 case 0: /* Control Register */
125 reg_value = s->cr;
126 break;
127
128 case 1: /* Status Register */
129 reg_value = s->sr;
130 break;
131
132 case 2: /* LR - ticks*/
133 reg_value = s->lr;
134 break;
135
136 case 3: /* CMP */
137 reg_value = s->cmp;
138 break;
139
140 case 4: /* CNT */
141 reg_value = ptimer_get_count(s->timer_reload);
142 break;
143
144 default:
145 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
146 HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
147 break;
148 }
149
150 DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value);
151
152 return reg_value;
153 }
154
155 /*
156 * Must be called from a ptimer_transaction_begin/commit block for
157 * s->timer_cmp, but outside of a transaction block of s->timer_reload,
158 * so the proper counter value is read.
159 */
imx_epit_update_compare_timer(IMXEPITState * s)160 static void imx_epit_update_compare_timer(IMXEPITState *s)
161 {
162 uint64_t counter = 0;
163 bool is_oneshot = false;
164 /*
165 * The compare timer only has to run if the timer peripheral is active
166 * and there is an input clock, Otherwise it can be switched off.
167 */
168 bool is_active = (s->cr & CR_EN) && imx_epit_get_freq(s);
169 if (is_active) {
170 /*
171 * Calculate next timeout for compare timer. Reading the reload
172 * counter returns proper results only if pending transactions
173 * on it are committed here. Otherwise stale values are be read.
174 */
175 counter = ptimer_get_count(s->timer_reload);
176 uint64_t limit = ptimer_get_limit(s->timer_cmp);
177 /*
178 * The compare timer is a periodic timer if the limit is at least
179 * the compare value. Otherwise it may fire at most once in the
180 * current round.
181 */
182 is_oneshot = (limit < s->cmp);
183 if (counter >= s->cmp) {
184 /* The compare timer fires in the current round. */
185 counter -= s->cmp;
186 } else if (!is_oneshot) {
187 /*
188 * The compare timer fires after a reload, as it is below the
189 * compare value already in this round. Note that the counter
190 * value calculated below can be above the 32-bit limit, which
191 * is legal here because the compare timer is an internal
192 * helper ptimer only.
193 */
194 counter += limit - s->cmp;
195 } else {
196 /*
197 * The compare timer won't fire in this round, and the limit is
198 * set to a value below the compare value. This practically means
199 * it will never fire, so it can be switched off.
200 */
201 is_active = false;
202 }
203 }
204
205 /*
206 * Set the compare timer and let it run, or stop it. This is agnostic
207 * of CR.OCIEN bit, as this bit affects interrupt generation only. The
208 * compare timer needs to run even if no interrupts are to be generated,
209 * because the SR.OCIF bit must be updated also.
210 * Note that the timer might already be stopped or be running with
211 * counter values. However, finding out when an update is needed and
212 * when not is not trivial. It's much easier applying the setting again,
213 * as this does not harm either and the overhead is negligible.
214 */
215 if (is_active) {
216 ptimer_set_count(s->timer_cmp, counter);
217 ptimer_run(s->timer_cmp, is_oneshot ? 1 : 0);
218 } else {
219 ptimer_stop(s->timer_cmp);
220 }
221
222 }
223
imx_epit_write_cr(IMXEPITState * s,uint32_t value)224 static void imx_epit_write_cr(IMXEPITState *s, uint32_t value)
225 {
226 uint32_t oldcr = s->cr;
227
228 s->cr = value & 0x03ffffff;
229
230 if (s->cr & CR_SWR) {
231 /*
232 * Reset clears CR.SWR again. It does not touch CR.EN, but the timers
233 * are still stopped because the input clock is disabled.
234 */
235 imx_epit_reset(s, false);
236 } else {
237 uint32_t freq;
238 uint32_t toggled_cr_bits = oldcr ^ s->cr;
239 /* re-initialize the limits if CR.RLD has changed */
240 bool set_limit = toggled_cr_bits & CR_RLD;
241 /* set the counter if the timer got just enabled and CR.ENMOD is set */
242 bool is_switched_on = (toggled_cr_bits & s->cr) & CR_EN;
243 bool set_counter = is_switched_on && (s->cr & CR_ENMOD);
244
245 ptimer_transaction_begin(s->timer_cmp);
246 ptimer_transaction_begin(s->timer_reload);
247 freq = imx_epit_get_freq(s);
248 if (freq) {
249 ptimer_set_freq(s->timer_reload, freq);
250 ptimer_set_freq(s->timer_cmp, freq);
251 }
252
253 if (set_limit || set_counter) {
254 uint64_t limit = (s->cr & CR_RLD) ? s->lr : EPIT_TIMER_MAX;
255 ptimer_set_limit(s->timer_reload, limit, set_counter ? 1 : 0);
256 if (set_limit) {
257 ptimer_set_limit(s->timer_cmp, limit, 0);
258 }
259 }
260 /*
261 * If there is an input clock and the peripheral is enabled, then
262 * ensure the wall clock timer is ticking. Otherwise stop the timers.
263 * The compare timer will be updated later.
264 */
265 if (freq && (s->cr & CR_EN)) {
266 ptimer_run(s->timer_reload, 0);
267 } else {
268 ptimer_stop(s->timer_reload);
269 }
270 /* Commit changes to reload timer, so they can propagate. */
271 ptimer_transaction_commit(s->timer_reload);
272 /* Update compare timer based on the committed reload timer value. */
273 imx_epit_update_compare_timer(s);
274 ptimer_transaction_commit(s->timer_cmp);
275 }
276
277 /*
278 * The interrupt state can change due to:
279 * - reset clears both SR.OCIF and CR.OCIE
280 * - write to CR.EN or CR.OCIE
281 */
282 imx_epit_update_int(s);
283 }
284
imx_epit_write_sr(IMXEPITState * s,uint32_t value)285 static void imx_epit_write_sr(IMXEPITState *s, uint32_t value)
286 {
287 /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */
288 if (value & SR_OCIF) {
289 s->sr = 0; /* SR.OCIF is the only bit in this register anyway */
290 imx_epit_update_int(s);
291 }
292 }
293
imx_epit_write_lr(IMXEPITState * s,uint32_t value)294 static void imx_epit_write_lr(IMXEPITState *s, uint32_t value)
295 {
296 s->lr = value;
297
298 ptimer_transaction_begin(s->timer_cmp);
299 ptimer_transaction_begin(s->timer_reload);
300 if (s->cr & CR_RLD) {
301 /* Also set the limit if the LRD bit is set */
302 /* If IOVW bit is set then set the timer value */
303 ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW);
304 ptimer_set_limit(s->timer_cmp, s->lr, 0);
305 } else if (s->cr & CR_IOVW) {
306 /* If IOVW bit is set then set the timer value */
307 ptimer_set_count(s->timer_reload, s->lr);
308 }
309 /* Commit the changes to s->timer_reload, so they can propagate. */
310 ptimer_transaction_commit(s->timer_reload);
311 /* Update the compare timer based on the committed reload timer value. */
312 imx_epit_update_compare_timer(s);
313 ptimer_transaction_commit(s->timer_cmp);
314 }
315
imx_epit_write_cmp(IMXEPITState * s,uint32_t value)316 static void imx_epit_write_cmp(IMXEPITState *s, uint32_t value)
317 {
318 s->cmp = value;
319
320 /* Update the compare timer based on the committed reload timer value. */
321 ptimer_transaction_begin(s->timer_cmp);
322 imx_epit_update_compare_timer(s);
323 ptimer_transaction_commit(s->timer_cmp);
324 }
325
imx_epit_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)326 static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value,
327 unsigned size)
328 {
329 IMXEPITState *s = IMX_EPIT(opaque);
330
331 DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2),
332 (uint32_t)value);
333
334 switch (offset >> 2) {
335 case 0: /* CR */
336 imx_epit_write_cr(s, (uint32_t)value);
337 break;
338
339 case 1: /* SR */
340 imx_epit_write_sr(s, (uint32_t)value);
341 break;
342
343 case 2: /* LR */
344 imx_epit_write_lr(s, (uint32_t)value);
345 break;
346
347 case 3: /* CMP */
348 imx_epit_write_cmp(s, (uint32_t)value);
349 break;
350
351 default:
352 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
353 HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset);
354 break;
355 }
356 }
357
imx_epit_cmp(void * opaque)358 static void imx_epit_cmp(void *opaque)
359 {
360 IMXEPITState *s = IMX_EPIT(opaque);
361
362 /* The cmp ptimer can't be running when the peripheral is disabled */
363 assert(s->cr & CR_EN);
364
365 DPRINTF("sr was %d\n", s->sr);
366 /* Set interrupt status bit SR.OCIF and update the interrupt state */
367 s->sr |= SR_OCIF;
368 imx_epit_update_int(s);
369 }
370
imx_epit_reload(void * opaque)371 static void imx_epit_reload(void *opaque)
372 {
373 /* No action required on rollover of timer_reload */
374 }
375
376 static const MemoryRegionOps imx_epit_ops = {
377 .read = imx_epit_read,
378 .write = imx_epit_write,
379 .endianness = DEVICE_NATIVE_ENDIAN,
380 };
381
382 static const VMStateDescription vmstate_imx_timer_epit = {
383 .name = TYPE_IMX_EPIT,
384 .version_id = 3,
385 .minimum_version_id = 3,
386 .fields = (const VMStateField[]) {
387 VMSTATE_UINT32(cr, IMXEPITState),
388 VMSTATE_UINT32(sr, IMXEPITState),
389 VMSTATE_UINT32(lr, IMXEPITState),
390 VMSTATE_UINT32(cmp, IMXEPITState),
391 VMSTATE_PTIMER(timer_reload, IMXEPITState),
392 VMSTATE_PTIMER(timer_cmp, IMXEPITState),
393 VMSTATE_END_OF_LIST()
394 }
395 };
396
imx_epit_realize(DeviceState * dev,Error ** errp)397 static void imx_epit_realize(DeviceState *dev, Error **errp)
398 {
399 IMXEPITState *s = IMX_EPIT(dev);
400 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
401
402 DPRINTF("\n");
403
404 sysbus_init_irq(sbd, &s->irq);
405 memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT,
406 0x00001000);
407 sysbus_init_mmio(sbd, &s->iomem);
408
409 /*
410 * The reload timer keeps running when the peripheral is enabled. It is a
411 * kind of wall clock that does not generate any interrupts. The callback
412 * needs to be provided, but it does nothing as the ptimer already supports
413 * all necessary reloading functionality.
414 */
415 s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_LEGACY);
416
417 /*
418 * The compare timer is running only when the peripheral configuration is
419 * in a state that will generate compare interrupts.
420 */
421 s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_LEGACY);
422 }
423
imx_epit_dev_reset(DeviceState * dev)424 static void imx_epit_dev_reset(DeviceState *dev)
425 {
426 IMXEPITState *s = IMX_EPIT(dev);
427 imx_epit_reset(s, true);
428 }
429
imx_epit_class_init(ObjectClass * klass,void * data)430 static void imx_epit_class_init(ObjectClass *klass, void *data)
431 {
432 DeviceClass *dc = DEVICE_CLASS(klass);
433
434 dc->realize = imx_epit_realize;
435 device_class_set_legacy_reset(dc, imx_epit_dev_reset);
436 dc->vmsd = &vmstate_imx_timer_epit;
437 dc->desc = "i.MX periodic timer";
438 }
439
440 static const TypeInfo imx_epit_info = {
441 .name = TYPE_IMX_EPIT,
442 .parent = TYPE_SYS_BUS_DEVICE,
443 .instance_size = sizeof(IMXEPITState),
444 .class_init = imx_epit_class_init,
445 };
446
imx_epit_register_types(void)447 static void imx_epit_register_types(void)
448 {
449 type_register_static(&imx_epit_info);
450 }
451
452 type_init(imx_epit_register_types)
453