1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210 {
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223 }
224
225 /**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248 }
249
250 /**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315 }
316
317 /**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360 }
361
362 /**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374 {
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408 }
409
410 /**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_VLAN;
444
445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 vsi = ice_get_vf_vsi(vf);
447 if (!vsi) {
448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 goto err;
450 }
451
452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 vf->driver_caps);
454
455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457
458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460
461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463
464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466
467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469
470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472
473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475
476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478
479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481
482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)
483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC;
484
485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
487
488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
490
491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
493
494 vfres->num_vsis = 1;
495 /* Tx and Rx queue are equal for VF */
496 vfres->num_queue_pairs = vsi->num_txq;
497 vfres->max_vectors = vf->pf->vfs.num_msix_per;
498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
500 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
501
502 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID;
503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
506 vf->hw_lan_addr);
507
508 /* match guest capabilities */
509 vf->driver_caps = vfres->vf_cap_flags;
510
511 ice_vc_set_caps_allowlist(vf);
512 ice_vc_set_working_allowlist(vf);
513
514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
515
516 err:
517 /* send the response back to the VF */
518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
519 (u8 *)vfres, len);
520
521 kfree(vfres);
522 return ret;
523 }
524
525 /**
526 * ice_vc_reset_vf_msg
527 * @vf: pointer to the VF info
528 *
529 * called from the VF to reset itself,
530 * unlike other virtchnl messages, PF driver
531 * doesn't send the response back to the VF
532 */
ice_vc_reset_vf_msg(struct ice_vf * vf)533 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
534 {
535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
536 ice_reset_vf(vf, 0);
537 }
538
539 /**
540 * ice_vc_isvalid_vsi_id
541 * @vf: pointer to the VF info
542 * @vsi_id: VF relative VSI ID
543 *
544 * check for the valid VSI ID
545 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)546 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
547 {
548 return vsi_id == ICE_VF_VSI_ID;
549 }
550
551 /**
552 * ice_vc_isvalid_q_id
553 * @vsi: VSI to check queue ID against
554 * @qid: VSI relative queue ID
555 *
556 * check for the valid queue ID
557 */
ice_vc_isvalid_q_id(struct ice_vsi * vsi,u8 qid)558 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid)
559 {
560 /* allocated Tx and Rx queues should be always equal for VF VSI */
561 return qid < vsi->alloc_txq;
562 }
563
564 /**
565 * ice_vc_isvalid_ring_len
566 * @ring_len: length of ring
567 *
568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
569 * or zero
570 */
ice_vc_isvalid_ring_len(u16 ring_len)571 static bool ice_vc_isvalid_ring_len(u16 ring_len)
572 {
573 return ring_len == 0 ||
574 (ring_len >= ICE_MIN_NUM_DESC &&
575 ring_len <= ICE_MAX_NUM_DESC &&
576 !(ring_len % ICE_REQ_DESC_MULTIPLE));
577 }
578
579 /**
580 * ice_vc_validate_pattern
581 * @vf: pointer to the VF info
582 * @proto: virtchnl protocol headers
583 *
584 * validate the pattern is supported or not.
585 *
586 * Return: true on success, false on error.
587 */
588 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)589 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
590 {
591 bool is_ipv4 = false;
592 bool is_ipv6 = false;
593 bool is_udp = false;
594 u16 ptype = -1;
595 int i = 0;
596
597 while (i < proto->count &&
598 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
599 switch (proto->proto_hdr[i].type) {
600 case VIRTCHNL_PROTO_HDR_ETH:
601 ptype = ICE_PTYPE_MAC_PAY;
602 break;
603 case VIRTCHNL_PROTO_HDR_IPV4:
604 ptype = ICE_PTYPE_IPV4_PAY;
605 is_ipv4 = true;
606 break;
607 case VIRTCHNL_PROTO_HDR_IPV6:
608 ptype = ICE_PTYPE_IPV6_PAY;
609 is_ipv6 = true;
610 break;
611 case VIRTCHNL_PROTO_HDR_UDP:
612 if (is_ipv4)
613 ptype = ICE_PTYPE_IPV4_UDP_PAY;
614 else if (is_ipv6)
615 ptype = ICE_PTYPE_IPV6_UDP_PAY;
616 is_udp = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_TCP:
619 if (is_ipv4)
620 ptype = ICE_PTYPE_IPV4_TCP_PAY;
621 else if (is_ipv6)
622 ptype = ICE_PTYPE_IPV6_TCP_PAY;
623 break;
624 case VIRTCHNL_PROTO_HDR_SCTP:
625 if (is_ipv4)
626 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
627 else if (is_ipv6)
628 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
629 break;
630 case VIRTCHNL_PROTO_HDR_GTPU_IP:
631 case VIRTCHNL_PROTO_HDR_GTPU_EH:
632 if (is_ipv4)
633 ptype = ICE_MAC_IPV4_GTPU;
634 else if (is_ipv6)
635 ptype = ICE_MAC_IPV6_GTPU;
636 goto out;
637 case VIRTCHNL_PROTO_HDR_L2TPV3:
638 if (is_ipv4)
639 ptype = ICE_MAC_IPV4_L2TPV3;
640 else if (is_ipv6)
641 ptype = ICE_MAC_IPV6_L2TPV3;
642 goto out;
643 case VIRTCHNL_PROTO_HDR_ESP:
644 if (is_ipv4)
645 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
646 ICE_MAC_IPV4_ESP;
647 else if (is_ipv6)
648 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
649 ICE_MAC_IPV6_ESP;
650 goto out;
651 case VIRTCHNL_PROTO_HDR_AH:
652 if (is_ipv4)
653 ptype = ICE_MAC_IPV4_AH;
654 else if (is_ipv6)
655 ptype = ICE_MAC_IPV6_AH;
656 goto out;
657 case VIRTCHNL_PROTO_HDR_PFCP:
658 if (is_ipv4)
659 ptype = ICE_MAC_IPV4_PFCP_SESSION;
660 else if (is_ipv6)
661 ptype = ICE_MAC_IPV6_PFCP_SESSION;
662 goto out;
663 default:
664 break;
665 }
666 i++;
667 }
668
669 out:
670 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
671 }
672
673 /**
674 * ice_vc_parse_rss_cfg - parses hash fields and headers from
675 * a specific virtchnl RSS cfg
676 * @hw: pointer to the hardware
677 * @rss_cfg: pointer to the virtchnl RSS cfg
678 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
679 * to configure
680 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
681 *
682 * Return true if all the protocol header and hash fields in the RSS cfg could
683 * be parsed, else return false
684 *
685 * This function parses the virtchnl RSS cfg to be the intended
686 * hash fields and the intended header for RSS configuration
687 */
688 static bool
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,u32 * addl_hdrs,u64 * hash_flds)689 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
690 u32 *addl_hdrs, u64 *hash_flds)
691 {
692 const struct ice_vc_hash_field_match_type *hf_list;
693 const struct ice_vc_hdr_match_type *hdr_list;
694 int i, hf_list_len, hdr_list_len;
695
696 hf_list = ice_vc_hash_field_list;
697 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
698 hdr_list = ice_vc_hdr_list;
699 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
700
701 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
702 struct virtchnl_proto_hdr *proto_hdr =
703 &rss_cfg->proto_hdrs.proto_hdr[i];
704 bool hdr_found = false;
705 int j;
706
707 /* Find matched ice headers according to virtchnl headers. */
708 for (j = 0; j < hdr_list_len; j++) {
709 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
710
711 if (proto_hdr->type == hdr_map.vc_hdr) {
712 *addl_hdrs |= hdr_map.ice_hdr;
713 hdr_found = true;
714 }
715 }
716
717 if (!hdr_found)
718 return false;
719
720 /* Find matched ice hash fields according to
721 * virtchnl hash fields.
722 */
723 for (j = 0; j < hf_list_len; j++) {
724 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
725
726 if (proto_hdr->type == hf_map.vc_hdr &&
727 proto_hdr->field_selector == hf_map.vc_hash_field) {
728 *hash_flds |= hf_map.ice_hash_field;
729 break;
730 }
731 }
732 }
733
734 return true;
735 }
736
737 /**
738 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
739 * RSS offloads
740 * @caps: VF driver negotiated capabilities
741 *
742 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
743 * else return false
744 */
ice_vf_adv_rss_offload_ena(u32 caps)745 static bool ice_vf_adv_rss_offload_ena(u32 caps)
746 {
747 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
748 }
749
750 /**
751 * ice_vc_handle_rss_cfg
752 * @vf: pointer to the VF info
753 * @msg: pointer to the message buffer
754 * @add: add a RSS config if true, otherwise delete a RSS config
755 *
756 * This function adds/deletes a RSS config
757 */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)758 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
759 {
760 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
761 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
762 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
763 struct device *dev = ice_pf_to_dev(vf->pf);
764 struct ice_hw *hw = &vf->pf->hw;
765 struct ice_vsi *vsi;
766
767 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
768 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
769 vf->vf_id);
770 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
771 goto error_param;
772 }
773
774 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
775 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
776 vf->vf_id);
777 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
778 goto error_param;
779 }
780
781 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
782 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
783 goto error_param;
784 }
785
786 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
787 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
788 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
789 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
790 vf->vf_id);
791 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
792 goto error_param;
793 }
794
795 vsi = ice_get_vf_vsi(vf);
796 if (!vsi) {
797 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
798 goto error_param;
799 }
800
801 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
802 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803 goto error_param;
804 }
805
806 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
807 struct ice_vsi_ctx *ctx;
808 u8 lut_type, hash_type;
809 int status;
810
811 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
812 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
813 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
814
815 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
816 if (!ctx) {
817 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
818 goto error_param;
819 }
820
821 ctx->info.q_opt_rss =
822 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
823 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
824
825 /* Preserve existing queueing option setting */
826 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
827 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
828 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
829 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
830
831 ctx->info.valid_sections =
832 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
833
834 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
835 if (status) {
836 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
837 status, ice_aq_str(hw->adminq.sq_last_status));
838 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
839 } else {
840 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
841 }
842
843 kfree(ctx);
844 } else {
845 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
846 u64 hash_flds = ICE_HASH_INVALID;
847
848 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
849 &hash_flds)) {
850 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
851 goto error_param;
852 }
853
854 if (add) {
855 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
856 addl_hdrs)) {
857 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
858 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
859 vsi->vsi_num, v_ret);
860 }
861 } else {
862 int status;
863
864 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
865 addl_hdrs);
866 /* We just ignore -ENOENT, because if two configurations
867 * share the same profile remove one of them actually
868 * removes both, since the profile is deleted.
869 */
870 if (status && status != -ENOENT) {
871 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
872 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
873 vf->vf_id, status);
874 }
875 }
876 }
877
878 error_param:
879 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
880 }
881
882 /**
883 * ice_vc_config_rss_key
884 * @vf: pointer to the VF info
885 * @msg: pointer to the msg buffer
886 *
887 * Configure the VF's RSS key
888 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)889 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
890 {
891 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
892 struct virtchnl_rss_key *vrk =
893 (struct virtchnl_rss_key *)msg;
894 struct ice_vsi *vsi;
895
896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
897 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
898 goto error_param;
899 }
900
901 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
902 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
903 goto error_param;
904 }
905
906 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
907 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
908 goto error_param;
909 }
910
911 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
912 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
913 goto error_param;
914 }
915
916 vsi = ice_get_vf_vsi(vf);
917 if (!vsi) {
918 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
919 goto error_param;
920 }
921
922 if (ice_set_rss_key(vsi, vrk->key))
923 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
924 error_param:
925 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
926 NULL, 0);
927 }
928
929 /**
930 * ice_vc_config_rss_lut
931 * @vf: pointer to the VF info
932 * @msg: pointer to the msg buffer
933 *
934 * Configure the VF's RSS LUT
935 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)936 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
937 {
938 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
939 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
940 struct ice_vsi *vsi;
941
942 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
943 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
944 goto error_param;
945 }
946
947 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
948 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
949 goto error_param;
950 }
951
952 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
953 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
954 goto error_param;
955 }
956
957 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
958 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
959 goto error_param;
960 }
961
962 vsi = ice_get_vf_vsi(vf);
963 if (!vsi) {
964 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
965 goto error_param;
966 }
967
968 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
969 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
970 error_param:
971 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
972 NULL, 0);
973 }
974
975 /**
976 * ice_vc_cfg_promiscuous_mode_msg
977 * @vf: pointer to the VF info
978 * @msg: pointer to the msg buffer
979 *
980 * called from the VF to configure VF VSIs promiscuous mode
981 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)982 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
983 {
984 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
985 bool rm_promisc, alluni = false, allmulti = false;
986 struct virtchnl_promisc_info *info =
987 (struct virtchnl_promisc_info *)msg;
988 struct ice_vsi_vlan_ops *vlan_ops;
989 int mcast_err = 0, ucast_err = 0;
990 struct ice_pf *pf = vf->pf;
991 struct ice_vsi *vsi;
992 u8 mcast_m, ucast_m;
993 struct device *dev;
994 int ret = 0;
995
996 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
997 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
998 goto error_param;
999 }
1000
1001 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1002 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1003 goto error_param;
1004 }
1005
1006 vsi = ice_get_vf_vsi(vf);
1007 if (!vsi) {
1008 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1009 goto error_param;
1010 }
1011
1012 dev = ice_pf_to_dev(pf);
1013 if (!ice_is_vf_trusted(vf)) {
1014 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1015 vf->vf_id);
1016 /* Leave v_ret alone, lie to the VF on purpose. */
1017 goto error_param;
1018 }
1019
1020 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1021 alluni = true;
1022
1023 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1024 allmulti = true;
1025
1026 rm_promisc = !allmulti && !alluni;
1027
1028 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1029 if (rm_promisc)
1030 ret = vlan_ops->ena_rx_filtering(vsi);
1031 else
1032 ret = vlan_ops->dis_rx_filtering(vsi);
1033 if (ret) {
1034 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1035 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1036 goto error_param;
1037 }
1038
1039 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1040
1041 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1042 if (alluni) {
1043 /* in this case we're turning on promiscuous mode */
1044 ret = ice_set_dflt_vsi(vsi);
1045 } else {
1046 /* in this case we're turning off promiscuous mode */
1047 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1048 ret = ice_clear_dflt_vsi(vsi);
1049 }
1050
1051 /* in this case we're turning on/off only
1052 * allmulticast
1053 */
1054 if (allmulti)
1055 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1056 else
1057 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1058
1059 if (ret) {
1060 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1061 vf->vf_id, ret);
1062 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1063 goto error_param;
1064 }
1065 } else {
1066 if (alluni)
1067 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1068 else
1069 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1070
1071 if (allmulti)
1072 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1073 else
1074 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1075
1076 if (ucast_err || mcast_err)
1077 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1078 }
1079
1080 if (!mcast_err) {
1081 if (allmulti &&
1082 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1083 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1084 vf->vf_id);
1085 else if (!allmulti &&
1086 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1087 vf->vf_states))
1088 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1089 vf->vf_id);
1090 } else {
1091 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1092 vf->vf_id, mcast_err);
1093 }
1094
1095 if (!ucast_err) {
1096 if (alluni &&
1097 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1098 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1099 vf->vf_id);
1100 else if (!alluni &&
1101 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1102 vf->vf_states))
1103 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1104 vf->vf_id);
1105 } else {
1106 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1107 vf->vf_id, ucast_err);
1108 }
1109
1110 error_param:
1111 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1112 v_ret, NULL, 0);
1113 }
1114
1115 /**
1116 * ice_vc_get_stats_msg
1117 * @vf: pointer to the VF info
1118 * @msg: pointer to the msg buffer
1119 *
1120 * called from the VF to get VSI stats
1121 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1122 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1123 {
1124 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1125 struct virtchnl_queue_select *vqs =
1126 (struct virtchnl_queue_select *)msg;
1127 struct ice_eth_stats stats = { 0 };
1128 struct ice_vsi *vsi;
1129
1130 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1131 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1132 goto error_param;
1133 }
1134
1135 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1136 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1137 goto error_param;
1138 }
1139
1140 vsi = ice_get_vf_vsi(vf);
1141 if (!vsi) {
1142 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1143 goto error_param;
1144 }
1145
1146 ice_update_eth_stats(vsi);
1147
1148 stats = vsi->eth_stats;
1149
1150 error_param:
1151 /* send the response to the VF */
1152 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1153 (u8 *)&stats, sizeof(stats));
1154 }
1155
1156 /**
1157 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1158 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1159 *
1160 * Return true on successful validation, else false
1161 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1162 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1163 {
1164 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1165 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1166 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1167 return false;
1168
1169 return true;
1170 }
1171
1172 /**
1173 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1174 * @vsi: VSI of the VF to configure
1175 * @q_idx: VF queue index used to determine the queue in the PF's space
1176 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1177 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1178 {
1179 struct ice_hw *hw = &vsi->back->hw;
1180 u32 pfq = vsi->txq_map[q_idx];
1181 u32 reg;
1182
1183 reg = rd32(hw, QINT_TQCTL(pfq));
1184
1185 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1186 * this is most likely a poll mode VF driver, so don't enable an
1187 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1188 */
1189 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1190 return;
1191
1192 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1193 }
1194
1195 /**
1196 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1197 * @vsi: VSI of the VF to configure
1198 * @q_idx: VF queue index used to determine the queue in the PF's space
1199 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1200 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1201 {
1202 struct ice_hw *hw = &vsi->back->hw;
1203 u32 pfq = vsi->rxq_map[q_idx];
1204 u32 reg;
1205
1206 reg = rd32(hw, QINT_RQCTL(pfq));
1207
1208 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1209 * this is most likely a poll mode VF driver, so don't enable an
1210 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1211 */
1212 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1213 return;
1214
1215 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1216 }
1217
1218 /**
1219 * ice_vc_ena_qs_msg
1220 * @vf: pointer to the VF info
1221 * @msg: pointer to the msg buffer
1222 *
1223 * called from the VF to enable all or specific queue(s)
1224 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1225 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1226 {
1227 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1228 struct virtchnl_queue_select *vqs =
1229 (struct virtchnl_queue_select *)msg;
1230 struct ice_vsi *vsi;
1231 unsigned long q_map;
1232 u16 vf_q_id;
1233
1234 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1235 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1236 goto error_param;
1237 }
1238
1239 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1240 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1241 goto error_param;
1242 }
1243
1244 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1245 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1246 goto error_param;
1247 }
1248
1249 vsi = ice_get_vf_vsi(vf);
1250 if (!vsi) {
1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1252 goto error_param;
1253 }
1254
1255 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1256 * Tx queue group list was configured and the context bits were
1257 * programmed using ice_vsi_cfg_txqs
1258 */
1259 q_map = vqs->rx_queues;
1260 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1261 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1262 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1263 goto error_param;
1264 }
1265
1266 /* Skip queue if enabled */
1267 if (test_bit(vf_q_id, vf->rxq_ena))
1268 continue;
1269
1270 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1271 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1272 vf_q_id, vsi->vsi_num);
1273 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1274 goto error_param;
1275 }
1276
1277 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1278 set_bit(vf_q_id, vf->rxq_ena);
1279 }
1280
1281 q_map = vqs->tx_queues;
1282 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1283 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1284 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1285 goto error_param;
1286 }
1287
1288 /* Skip queue if enabled */
1289 if (test_bit(vf_q_id, vf->txq_ena))
1290 continue;
1291
1292 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1293 set_bit(vf_q_id, vf->txq_ena);
1294 }
1295
1296 /* Set flag to indicate that queues are enabled */
1297 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1298 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1299
1300 error_param:
1301 /* send the response to the VF */
1302 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1303 NULL, 0);
1304 }
1305
1306 /**
1307 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1308 * @vf: VF to disable queue for
1309 * @vsi: VSI for the VF
1310 * @q_id: VF relative (0-based) queue ID
1311 *
1312 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1313 * disabled then clear q_id bit in the enabled queues bitmap and return
1314 * success. Otherwise return error.
1315 */
1316 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1317 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1318 {
1319 struct ice_txq_meta txq_meta = { 0 };
1320 struct ice_tx_ring *ring;
1321 int err;
1322
1323 if (!test_bit(q_id, vf->txq_ena))
1324 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1325 q_id, vsi->vsi_num);
1326
1327 ring = vsi->tx_rings[q_id];
1328 if (!ring)
1329 return -EINVAL;
1330
1331 ice_fill_txq_meta(vsi, ring, &txq_meta);
1332
1333 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1334 if (err) {
1335 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1336 q_id, vsi->vsi_num);
1337 return err;
1338 }
1339
1340 /* Clear enabled queues flag */
1341 clear_bit(q_id, vf->txq_ena);
1342
1343 return 0;
1344 }
1345
1346 /**
1347 * ice_vc_dis_qs_msg
1348 * @vf: pointer to the VF info
1349 * @msg: pointer to the msg buffer
1350 *
1351 * called from the VF to disable all or specific queue(s)
1352 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1353 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1354 {
1355 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1356 struct virtchnl_queue_select *vqs =
1357 (struct virtchnl_queue_select *)msg;
1358 struct ice_vsi *vsi;
1359 unsigned long q_map;
1360 u16 vf_q_id;
1361
1362 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1363 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1364 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1365 goto error_param;
1366 }
1367
1368 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1369 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1370 goto error_param;
1371 }
1372
1373 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1374 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1375 goto error_param;
1376 }
1377
1378 vsi = ice_get_vf_vsi(vf);
1379 if (!vsi) {
1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 goto error_param;
1382 }
1383
1384 if (vqs->tx_queues) {
1385 q_map = vqs->tx_queues;
1386
1387 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1388 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1390 goto error_param;
1391 }
1392
1393 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1394 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1395 goto error_param;
1396 }
1397 }
1398 }
1399
1400 q_map = vqs->rx_queues;
1401 /* speed up Rx queue disable by batching them if possible */
1402 if (q_map &&
1403 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1404 if (ice_vsi_stop_all_rx_rings(vsi)) {
1405 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1406 vsi->vsi_num);
1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408 goto error_param;
1409 }
1410
1411 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1412 } else if (q_map) {
1413 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1414 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) {
1415 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1416 goto error_param;
1417 }
1418
1419 /* Skip queue if not enabled */
1420 if (!test_bit(vf_q_id, vf->rxq_ena))
1421 continue;
1422
1423 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1424 true)) {
1425 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1426 vf_q_id, vsi->vsi_num);
1427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1428 goto error_param;
1429 }
1430
1431 /* Clear enabled queues flag */
1432 clear_bit(vf_q_id, vf->rxq_ena);
1433 }
1434 }
1435
1436 /* Clear enabled queues flag */
1437 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1438 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1439
1440 error_param:
1441 /* send the response to the VF */
1442 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1443 NULL, 0);
1444 }
1445
1446 /**
1447 * ice_cfg_interrupt
1448 * @vf: pointer to the VF info
1449 * @vsi: the VSI being configured
1450 * @vector_id: vector ID
1451 * @map: vector map for mapping vectors to queues
1452 * @q_vector: structure for interrupt vector
1453 * configure the IRQ to queue map
1454 */
1455 static int
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,u16 vector_id,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1456 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1457 struct virtchnl_vector_map *map,
1458 struct ice_q_vector *q_vector)
1459 {
1460 u16 vsi_q_id, vsi_q_id_idx;
1461 unsigned long qmap;
1462
1463 q_vector->num_ring_rx = 0;
1464 q_vector->num_ring_tx = 0;
1465
1466 qmap = map->rxq_map;
1467 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1468 vsi_q_id = vsi_q_id_idx;
1469
1470 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1471 return VIRTCHNL_STATUS_ERR_PARAM;
1472
1473 q_vector->num_ring_rx++;
1474 q_vector->rx.itr_idx = map->rxitr_idx;
1475 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1476 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1477 q_vector->rx.itr_idx);
1478 }
1479
1480 qmap = map->txq_map;
1481 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1482 vsi_q_id = vsi_q_id_idx;
1483
1484 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id))
1485 return VIRTCHNL_STATUS_ERR_PARAM;
1486
1487 q_vector->num_ring_tx++;
1488 q_vector->tx.itr_idx = map->txitr_idx;
1489 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1490 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1491 q_vector->tx.itr_idx);
1492 }
1493
1494 return VIRTCHNL_STATUS_SUCCESS;
1495 }
1496
1497 /**
1498 * ice_vc_cfg_irq_map_msg
1499 * @vf: pointer to the VF info
1500 * @msg: pointer to the msg buffer
1501 *
1502 * called from the VF to configure the IRQ to queue map
1503 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1504 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1505 {
1506 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1507 u16 num_q_vectors_mapped, vsi_id, vector_id;
1508 struct virtchnl_irq_map_info *irqmap_info;
1509 struct virtchnl_vector_map *map;
1510 struct ice_pf *pf = vf->pf;
1511 struct ice_vsi *vsi;
1512 int i;
1513
1514 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1515 num_q_vectors_mapped = irqmap_info->num_vectors;
1516
1517 /* Check to make sure number of VF vectors mapped is not greater than
1518 * number of VF vectors originally allocated, and check that
1519 * there is actually at least a single VF queue vector mapped
1520 */
1521 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1522 pf->vfs.num_msix_per < num_q_vectors_mapped ||
1523 !num_q_vectors_mapped) {
1524 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1525 goto error_param;
1526 }
1527
1528 vsi = ice_get_vf_vsi(vf);
1529 if (!vsi) {
1530 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1531 goto error_param;
1532 }
1533
1534 for (i = 0; i < num_q_vectors_mapped; i++) {
1535 struct ice_q_vector *q_vector;
1536
1537 map = &irqmap_info->vecmap[i];
1538
1539 vector_id = map->vector_id;
1540 vsi_id = map->vsi_id;
1541 /* vector_id is always 0-based for each VF, and can never be
1542 * larger than or equal to the max allowed interrupts per VF
1543 */
1544 if (!(vector_id < pf->vfs.num_msix_per) ||
1545 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1546 (!vector_id && (map->rxq_map || map->txq_map))) {
1547 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1548 goto error_param;
1549 }
1550
1551 /* No need to map VF miscellaneous or rogue vector */
1552 if (!vector_id)
1553 continue;
1554
1555 /* Subtract non queue vector from vector_id passed by VF
1556 * to get actual number of VSI queue vector array index
1557 */
1558 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1559 if (!q_vector) {
1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1561 goto error_param;
1562 }
1563
1564 /* lookout for the invalid queue index */
1565 v_ret = (enum virtchnl_status_code)
1566 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1567 if (v_ret)
1568 goto error_param;
1569 }
1570
1571 error_param:
1572 /* send the response to the VF */
1573 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1574 NULL, 0);
1575 }
1576
1577 /**
1578 * ice_vc_cfg_qs_msg
1579 * @vf: pointer to the VF info
1580 * @msg: pointer to the msg buffer
1581 *
1582 * called from the VF to configure the Rx/Tx queues
1583 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1584 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1585 {
1586 struct virtchnl_vsi_queue_config_info *qci =
1587 (struct virtchnl_vsi_queue_config_info *)msg;
1588 struct virtchnl_queue_pair_info *qpi;
1589 struct ice_pf *pf = vf->pf;
1590 struct ice_lag *lag;
1591 struct ice_vsi *vsi;
1592 u8 act_prt, pri_prt;
1593 int i = -1, q_idx;
1594
1595 lag = pf->lag;
1596 mutex_lock(&pf->lag_mutex);
1597 act_prt = ICE_LAG_INVALID_PORT;
1598 pri_prt = pf->hw.port_info->lport;
1599 if (lag && lag->bonded && lag->primary) {
1600 act_prt = lag->active_port;
1601 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1602 lag->upper_netdev)
1603 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1604 else
1605 act_prt = ICE_LAG_INVALID_PORT;
1606 }
1607
1608 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1609 goto error_param;
1610
1611 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1612 goto error_param;
1613
1614 vsi = ice_get_vf_vsi(vf);
1615 if (!vsi)
1616 goto error_param;
1617
1618 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1619 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1620 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1621 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1622 goto error_param;
1623 }
1624
1625 for (i = 0; i < qci->num_queue_pairs; i++) {
1626 qpi = &qci->qpair[i];
1627 if (qpi->txq.vsi_id != qci->vsi_id ||
1628 qpi->rxq.vsi_id != qci->vsi_id ||
1629 qpi->rxq.queue_id != qpi->txq.queue_id ||
1630 qpi->txq.headwb_enabled ||
1631 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1632 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1633 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) {
1634 goto error_param;
1635 }
1636
1637 q_idx = qpi->rxq.queue_id;
1638
1639 /* make sure selected "q_idx" is in valid range of queues
1640 * for selected "vsi"
1641 */
1642 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1643 goto error_param;
1644 }
1645
1646 /* copy Tx queue info from VF into VSI */
1647 if (qpi->txq.ring_len > 0) {
1648 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr;
1649 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len;
1650
1651 /* Disable any existing queue first */
1652 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1653 goto error_param;
1654
1655 /* Configure a queue with the requested settings */
1656 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1657 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1658 vf->vf_id, q_idx);
1659 goto error_param;
1660 }
1661 }
1662
1663 /* copy Rx queue info from VF into VSI */
1664 if (qpi->rxq.ring_len > 0) {
1665 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1666 struct ice_rx_ring *ring = vsi->rx_rings[q_idx];
1667 u32 rxdid;
1668
1669 ring->dma = qpi->rxq.dma_ring_addr;
1670 ring->count = qpi->rxq.ring_len;
1671
1672 if (qpi->rxq.crc_disable &&
1673 !(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)) {
1674 goto error_param;
1675 }
1676
1677 if (qpi->rxq.crc_disable)
1678 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1679 else
1680 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1681
1682 if (qpi->rxq.databuffer_size != 0 &&
1683 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1684 qpi->rxq.databuffer_size < 1024))
1685 goto error_param;
1686 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1687 ring->rx_buf_len = vsi->rx_buf_len;
1688 if (qpi->rxq.max_pkt_size > max_frame_size ||
1689 qpi->rxq.max_pkt_size < 64)
1690 goto error_param;
1691
1692 vsi->max_frame = qpi->rxq.max_pkt_size;
1693 /* add space for the port VLAN since the VF driver is
1694 * not expected to account for it in the MTU
1695 * calculation
1696 */
1697 if (ice_vf_is_port_vlan_ena(vf))
1698 vsi->max_frame += VLAN_HLEN;
1699
1700 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1701 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1702 vf->vf_id, q_idx);
1703 goto error_param;
1704 }
1705
1706 /* If Rx flex desc is supported, select RXDID for Rx
1707 * queues. Otherwise, use legacy 32byte descriptor
1708 * format. Legacy 16byte descriptor is not supported.
1709 * If this RXDID is selected, return error.
1710 */
1711 if (vf->driver_caps &
1712 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1713 rxdid = qpi->rxq.rxdid;
1714 if (!(BIT(rxdid) & pf->supported_rxdids))
1715 goto error_param;
1716 } else {
1717 rxdid = ICE_RXDID_LEGACY_1;
1718 }
1719
1720 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1721 vsi->rxq_map[q_idx],
1722 rxdid, 0x03, false);
1723 }
1724 }
1725
1726 if (lag && lag->bonded && lag->primary &&
1727 act_prt != ICE_LAG_INVALID_PORT)
1728 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1729 mutex_unlock(&pf->lag_mutex);
1730
1731 /* send the response to the VF */
1732 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1733 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1734 error_param:
1735 /* disable whatever we can */
1736 for (; i >= 0; i--) {
1737 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1738 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1739 vf->vf_id, i);
1740 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1741 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1742 vf->vf_id, i);
1743 }
1744
1745 if (lag && lag->bonded && lag->primary &&
1746 act_prt != ICE_LAG_INVALID_PORT)
1747 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1748 mutex_unlock(&pf->lag_mutex);
1749
1750 ice_lag_move_new_vf_nodes(vf);
1751
1752 /* send the response to the VF */
1753 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1754 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1755 }
1756
1757 /**
1758 * ice_can_vf_change_mac
1759 * @vf: pointer to the VF info
1760 *
1761 * Return true if the VF is allowed to change its MAC filters, false otherwise
1762 */
ice_can_vf_change_mac(struct ice_vf * vf)1763 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1764 {
1765 /* If the VF MAC address has been set administratively (via the
1766 * ndo_set_vf_mac command), then deny permission to the VF to
1767 * add/delete unicast MAC addresses, unless the VF is trusted
1768 */
1769 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1770 return false;
1771
1772 return true;
1773 }
1774
1775 /**
1776 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1777 * @vc_ether_addr: used to extract the type
1778 */
1779 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)1780 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1781 {
1782 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1783 }
1784
1785 /**
1786 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1787 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1788 */
1789 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)1790 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1791 {
1792 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1793
1794 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1795 }
1796
1797 /**
1798 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1799 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1800 *
1801 * This function should only be called when the MAC address in
1802 * virtchnl_ether_addr is a valid unicast MAC
1803 */
1804 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)1805 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1806 {
1807 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1808
1809 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1810 }
1811
1812 /**
1813 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1814 * @vf: VF to update
1815 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1816 */
1817 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1818 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1819 {
1820 u8 *mac_addr = vc_ether_addr->addr;
1821
1822 if (!is_valid_ether_addr(mac_addr))
1823 return;
1824
1825 /* only allow legacy VF drivers to set the device and hardware MAC if it
1826 * is zero and allow new VF drivers to set the hardware MAC if the type
1827 * was correctly specified over VIRTCHNL
1828 */
1829 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1830 is_zero_ether_addr(vf->hw_lan_addr)) ||
1831 ice_is_vc_addr_primary(vc_ether_addr)) {
1832 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1833 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1834 }
1835
1836 /* hardware and device MACs are already set, but its possible that the
1837 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1838 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1839 * away for the legacy VF driver case as it will be updated in the
1840 * delete flow for this case
1841 */
1842 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1843 ether_addr_copy(vf->legacy_last_added_umac.addr,
1844 mac_addr);
1845 vf->legacy_last_added_umac.time_modified = jiffies;
1846 }
1847 }
1848
1849 /**
1850 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1851 * @vf: pointer to the VF info
1852 * @vsi: pointer to the VF's VSI
1853 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1854 */
1855 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1856 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1857 struct virtchnl_ether_addr *vc_ether_addr)
1858 {
1859 struct device *dev = ice_pf_to_dev(vf->pf);
1860 u8 *mac_addr = vc_ether_addr->addr;
1861 int ret;
1862
1863 /* device MAC already added */
1864 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1865 return 0;
1866
1867 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1868 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1869 return -EPERM;
1870 }
1871
1872 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1873 if (ret == -EEXIST) {
1874 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1875 vf->vf_id);
1876 /* don't return since we might need to update
1877 * the primary MAC in ice_vfhw_mac_add() below
1878 */
1879 } else if (ret) {
1880 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1881 mac_addr, vf->vf_id, ret);
1882 return ret;
1883 } else {
1884 vf->num_mac++;
1885 }
1886
1887 ice_vfhw_mac_add(vf, vc_ether_addr);
1888
1889 return ret;
1890 }
1891
1892 /**
1893 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1894 * @last_added_umac: structure used to check expiration
1895 */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)1896 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1897 {
1898 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1899 return time_is_before_jiffies(last_added_umac->time_modified +
1900 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1901 }
1902
1903 /**
1904 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1905 * @vf: VF to update
1906 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1907 *
1908 * only update cached hardware MAC for legacy VF drivers on delete
1909 * because we cannot guarantee order/type of MAC from the VF driver
1910 */
1911 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1912 ice_update_legacy_cached_mac(struct ice_vf *vf,
1913 struct virtchnl_ether_addr *vc_ether_addr)
1914 {
1915 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1916 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1917 return;
1918
1919 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1920 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1921 }
1922
1923 /**
1924 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1925 * @vf: VF to update
1926 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1927 */
1928 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1929 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1930 {
1931 u8 *mac_addr = vc_ether_addr->addr;
1932
1933 if (!is_valid_ether_addr(mac_addr) ||
1934 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1935 return;
1936
1937 /* allow the device MAC to be repopulated in the add flow and don't
1938 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1939 * to be persistent on VM reboot and across driver unload/load, which
1940 * won't work if we clear the hardware MAC here
1941 */
1942 eth_zero_addr(vf->dev_lan_addr);
1943
1944 ice_update_legacy_cached_mac(vf, vc_ether_addr);
1945 }
1946
1947 /**
1948 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1949 * @vf: pointer to the VF info
1950 * @vsi: pointer to the VF's VSI
1951 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1952 */
1953 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1954 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1955 struct virtchnl_ether_addr *vc_ether_addr)
1956 {
1957 struct device *dev = ice_pf_to_dev(vf->pf);
1958 u8 *mac_addr = vc_ether_addr->addr;
1959 int status;
1960
1961 if (!ice_can_vf_change_mac(vf) &&
1962 ether_addr_equal(vf->dev_lan_addr, mac_addr))
1963 return 0;
1964
1965 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1966 if (status == -ENOENT) {
1967 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1968 vf->vf_id);
1969 return -ENOENT;
1970 } else if (status) {
1971 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1972 mac_addr, vf->vf_id, status);
1973 return -EIO;
1974 }
1975
1976 ice_vfhw_mac_del(vf, vc_ether_addr);
1977
1978 vf->num_mac--;
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * ice_vc_handle_mac_addr_msg
1985 * @vf: pointer to the VF info
1986 * @msg: pointer to the msg buffer
1987 * @set: true if MAC filters are being set, false otherwise
1988 *
1989 * add guest MAC address filter
1990 */
1991 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)1992 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1993 {
1994 int (*ice_vc_cfg_mac)
1995 (struct ice_vf *vf, struct ice_vsi *vsi,
1996 struct virtchnl_ether_addr *virtchnl_ether_addr);
1997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1998 struct virtchnl_ether_addr_list *al =
1999 (struct virtchnl_ether_addr_list *)msg;
2000 struct ice_pf *pf = vf->pf;
2001 enum virtchnl_ops vc_op;
2002 struct ice_vsi *vsi;
2003 int i;
2004
2005 if (set) {
2006 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2007 ice_vc_cfg_mac = ice_vc_add_mac_addr;
2008 } else {
2009 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2010 ice_vc_cfg_mac = ice_vc_del_mac_addr;
2011 }
2012
2013 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2014 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2016 goto handle_mac_exit;
2017 }
2018
2019 /* If this VF is not privileged, then we can't add more than a
2020 * limited number of addresses. Check to make sure that the
2021 * additions do not push us over the limit.
2022 */
2023 if (set && !ice_is_vf_trusted(vf) &&
2024 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2025 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2026 vf->vf_id);
2027 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2028 goto handle_mac_exit;
2029 }
2030
2031 vsi = ice_get_vf_vsi(vf);
2032 if (!vsi) {
2033 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2034 goto handle_mac_exit;
2035 }
2036
2037 for (i = 0; i < al->num_elements; i++) {
2038 u8 *mac_addr = al->list[i].addr;
2039 int result;
2040
2041 if (is_broadcast_ether_addr(mac_addr) ||
2042 is_zero_ether_addr(mac_addr))
2043 continue;
2044
2045 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2046 if (result == -EEXIST || result == -ENOENT) {
2047 continue;
2048 } else if (result) {
2049 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2050 goto handle_mac_exit;
2051 }
2052 }
2053
2054 handle_mac_exit:
2055 /* send the response to the VF */
2056 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2057 }
2058
2059 /**
2060 * ice_vc_add_mac_addr_msg
2061 * @vf: pointer to the VF info
2062 * @msg: pointer to the msg buffer
2063 *
2064 * add guest MAC address filter
2065 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2066 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2067 {
2068 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2069 }
2070
2071 /**
2072 * ice_vc_del_mac_addr_msg
2073 * @vf: pointer to the VF info
2074 * @msg: pointer to the msg buffer
2075 *
2076 * remove guest MAC address filter
2077 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2078 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2079 {
2080 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2081 }
2082
2083 /**
2084 * ice_vc_request_qs_msg
2085 * @vf: pointer to the VF info
2086 * @msg: pointer to the msg buffer
2087 *
2088 * VFs get a default number of queues but can use this message to request a
2089 * different number. If the request is successful, PF will reset the VF and
2090 * return 0. If unsuccessful, PF will send message informing VF of number of
2091 * available queue pairs via virtchnl message response to VF.
2092 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2093 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2094 {
2095 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2096 struct virtchnl_vf_res_request *vfres =
2097 (struct virtchnl_vf_res_request *)msg;
2098 u16 req_queues = vfres->num_queue_pairs;
2099 struct ice_pf *pf = vf->pf;
2100 u16 max_allowed_vf_queues;
2101 u16 tx_rx_queue_left;
2102 struct device *dev;
2103 u16 cur_queues;
2104
2105 dev = ice_pf_to_dev(pf);
2106 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2107 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2108 goto error_param;
2109 }
2110
2111 cur_queues = vf->num_vf_qs;
2112 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2113 ice_get_avail_rxq_count(pf));
2114 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2115 if (!req_queues) {
2116 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2117 vf->vf_id);
2118 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2119 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2120 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2121 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2122 } else if (req_queues > cur_queues &&
2123 req_queues - cur_queues > tx_rx_queue_left) {
2124 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2125 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2126 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2127 ICE_MAX_RSS_QS_PER_VF);
2128 } else {
2129 /* request is successful, then reset VF */
2130 vf->num_req_qs = req_queues;
2131 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2132 dev_info(dev, "VF %d granted request of %u queues.\n",
2133 vf->vf_id, req_queues);
2134 return 0;
2135 }
2136
2137 error_param:
2138 /* send the response to the VF */
2139 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2140 v_ret, (u8 *)vfres, sizeof(*vfres));
2141 }
2142
2143 /**
2144 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2145 * @caps: VF driver negotiated capabilities
2146 *
2147 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2148 */
ice_vf_vlan_offload_ena(u32 caps)2149 static bool ice_vf_vlan_offload_ena(u32 caps)
2150 {
2151 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2152 }
2153
2154 /**
2155 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2156 * @vf: VF used to determine if VLAN promiscuous config is allowed
2157 */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2158 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2159 {
2160 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2161 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2162 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2163 return true;
2164
2165 return false;
2166 }
2167
2168 /**
2169 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2170 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2171 * @vlan: VLAN used to enable VLAN promiscuous
2172 *
2173 * This function should only be called if VLAN promiscuous mode is allowed,
2174 * which can be determined via ice_is_vlan_promisc_allowed().
2175 */
ice_vf_ena_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2176 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2177 {
2178 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2179 int status;
2180
2181 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2182 vlan->vid);
2183 if (status && status != -EEXIST)
2184 return status;
2185
2186 return 0;
2187 }
2188
2189 /**
2190 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2191 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2192 * @vlan: VLAN used to disable VLAN promiscuous
2193 *
2194 * This function should only be called if VLAN promiscuous mode is allowed,
2195 * which can be determined via ice_is_vlan_promisc_allowed().
2196 */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2197 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2198 {
2199 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2200 int status;
2201
2202 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2203 vlan->vid);
2204 if (status && status != -ENOENT)
2205 return status;
2206
2207 return 0;
2208 }
2209
2210 /**
2211 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2212 * @vf: VF to check against
2213 * @vsi: VF's VSI
2214 *
2215 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2216 * wants to, so return false.
2217 *
2218 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2219 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2220 */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2221 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2222 {
2223 if (ice_is_vf_trusted(vf))
2224 return false;
2225
2226 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2227 return ((ice_vsi_num_non_zero_vlans(vsi) +
2228 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2229 }
2230
2231 /**
2232 * ice_vc_process_vlan_msg
2233 * @vf: pointer to the VF info
2234 * @msg: pointer to the msg buffer
2235 * @add_v: Add VLAN if true, otherwise delete VLAN
2236 *
2237 * Process virtchnl op to add or remove programmed guest VLAN ID
2238 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2239 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2240 {
2241 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2242 struct virtchnl_vlan_filter_list *vfl =
2243 (struct virtchnl_vlan_filter_list *)msg;
2244 struct ice_pf *pf = vf->pf;
2245 bool vlan_promisc = false;
2246 struct ice_vsi *vsi;
2247 struct device *dev;
2248 int status = 0;
2249 int i;
2250
2251 dev = ice_pf_to_dev(pf);
2252 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2253 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2254 goto error_param;
2255 }
2256
2257 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2259 goto error_param;
2260 }
2261
2262 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2263 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2264 goto error_param;
2265 }
2266
2267 for (i = 0; i < vfl->num_elements; i++) {
2268 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2269 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2270 dev_err(dev, "invalid VF VLAN id %d\n",
2271 vfl->vlan_id[i]);
2272 goto error_param;
2273 }
2274 }
2275
2276 vsi = ice_get_vf_vsi(vf);
2277 if (!vsi) {
2278 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2279 goto error_param;
2280 }
2281
2282 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2283 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2284 vf->vf_id);
2285 /* There is no need to let VF know about being not trusted,
2286 * so we can just return success message here
2287 */
2288 goto error_param;
2289 }
2290
2291 /* in DVM a VF can add/delete inner VLAN filters when
2292 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2293 */
2294 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2295 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2296 goto error_param;
2297 }
2298
2299 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2300 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2301 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2302 */
2303 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2304 !ice_is_dvm_ena(&pf->hw) &&
2305 !ice_vf_is_port_vlan_ena(vf);
2306
2307 if (add_v) {
2308 for (i = 0; i < vfl->num_elements; i++) {
2309 u16 vid = vfl->vlan_id[i];
2310 struct ice_vlan vlan;
2311
2312 if (ice_vf_has_max_vlans(vf, vsi)) {
2313 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2314 vf->vf_id);
2315 /* There is no need to let VF know about being
2316 * not trusted, so we can just return success
2317 * message here as well.
2318 */
2319 goto error_param;
2320 }
2321
2322 /* we add VLAN 0 by default for each VF so we can enable
2323 * Tx VLAN anti-spoof without triggering MDD events so
2324 * we don't need to add it again here
2325 */
2326 if (!vid)
2327 continue;
2328
2329 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2330 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2331 if (status) {
2332 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2333 goto error_param;
2334 }
2335
2336 /* Enable VLAN filtering on first non-zero VLAN */
2337 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2338 if (vf->spoofchk) {
2339 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2340 if (status) {
2341 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2342 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2343 vid, status);
2344 goto error_param;
2345 }
2346 }
2347 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2348 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2349 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2350 vid, status);
2351 goto error_param;
2352 }
2353 } else if (vlan_promisc) {
2354 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2355 if (status) {
2356 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2357 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2358 vid, status);
2359 }
2360 }
2361 }
2362 } else {
2363 /* In case of non_trusted VF, number of VLAN elements passed
2364 * to PF for removal might be greater than number of VLANs
2365 * filter programmed for that VF - So, use actual number of
2366 * VLANS added earlier with add VLAN opcode. In order to avoid
2367 * removing VLAN that doesn't exist, which result to sending
2368 * erroneous failed message back to the VF
2369 */
2370 int num_vf_vlan;
2371
2372 num_vf_vlan = vsi->num_vlan;
2373 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2374 u16 vid = vfl->vlan_id[i];
2375 struct ice_vlan vlan;
2376
2377 /* we add VLAN 0 by default for each VF so we can enable
2378 * Tx VLAN anti-spoof without triggering MDD events so
2379 * we don't want a VIRTCHNL request to remove it
2380 */
2381 if (!vid)
2382 continue;
2383
2384 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2385 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2386 if (status) {
2387 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2388 goto error_param;
2389 }
2390
2391 /* Disable VLAN filtering when only VLAN 0 is left */
2392 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2393 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2394 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2395 }
2396
2397 if (vlan_promisc)
2398 ice_vf_dis_vlan_promisc(vsi, &vlan);
2399 }
2400 }
2401
2402 error_param:
2403 /* send the response to the VF */
2404 if (add_v)
2405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2406 NULL, 0);
2407 else
2408 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2409 NULL, 0);
2410 }
2411
2412 /**
2413 * ice_vc_add_vlan_msg
2414 * @vf: pointer to the VF info
2415 * @msg: pointer to the msg buffer
2416 *
2417 * Add and program guest VLAN ID
2418 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2419 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2420 {
2421 return ice_vc_process_vlan_msg(vf, msg, true);
2422 }
2423
2424 /**
2425 * ice_vc_remove_vlan_msg
2426 * @vf: pointer to the VF info
2427 * @msg: pointer to the msg buffer
2428 *
2429 * remove programmed guest VLAN ID
2430 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2431 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2432 {
2433 return ice_vc_process_vlan_msg(vf, msg, false);
2434 }
2435
2436 /**
2437 * ice_vc_ena_vlan_stripping
2438 * @vf: pointer to the VF info
2439 *
2440 * Enable VLAN header stripping for a given VF
2441 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2442 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2443 {
2444 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2445 struct ice_vsi *vsi;
2446
2447 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2448 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2449 goto error_param;
2450 }
2451
2452 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2453 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2454 goto error_param;
2455 }
2456
2457 vsi = ice_get_vf_vsi(vf);
2458 if (!vsi) {
2459 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2460 goto error_param;
2461 }
2462
2463 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2464 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2465
2466 error_param:
2467 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2468 v_ret, NULL, 0);
2469 }
2470
2471 /**
2472 * ice_vc_dis_vlan_stripping
2473 * @vf: pointer to the VF info
2474 *
2475 * Disable VLAN header stripping for a given VF
2476 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2477 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2478 {
2479 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2480 struct ice_vsi *vsi;
2481
2482 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2483 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2484 goto error_param;
2485 }
2486
2487 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2488 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2489 goto error_param;
2490 }
2491
2492 vsi = ice_get_vf_vsi(vf);
2493 if (!vsi) {
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 goto error_param;
2496 }
2497
2498 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2499 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2500
2501 error_param:
2502 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2503 v_ret, NULL, 0);
2504 }
2505
2506 /**
2507 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2508 * @vf: pointer to the VF info
2509 */
ice_vc_get_rss_hena(struct ice_vf * vf)2510 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2511 {
2512 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2513 struct virtchnl_rss_hena *vrh = NULL;
2514 int len = 0, ret;
2515
2516 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2517 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2518 goto err;
2519 }
2520
2521 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2522 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2523 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2524 goto err;
2525 }
2526
2527 len = sizeof(struct virtchnl_rss_hena);
2528 vrh = kzalloc(len, GFP_KERNEL);
2529 if (!vrh) {
2530 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2531 len = 0;
2532 goto err;
2533 }
2534
2535 vrh->hena = ICE_DEFAULT_RSS_HENA;
2536 err:
2537 /* send the response back to the VF */
2538 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2539 (u8 *)vrh, len);
2540 kfree(vrh);
2541 return ret;
2542 }
2543
2544 /**
2545 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2546 * @vf: pointer to the VF info
2547 * @msg: pointer to the msg buffer
2548 */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2549 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2550 {
2551 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2552 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2553 struct ice_pf *pf = vf->pf;
2554 struct ice_vsi *vsi;
2555 struct device *dev;
2556 int status;
2557
2558 dev = ice_pf_to_dev(pf);
2559
2560 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2561 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2562 goto err;
2563 }
2564
2565 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2566 dev_err(dev, "RSS not supported by PF\n");
2567 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2568 goto err;
2569 }
2570
2571 vsi = ice_get_vf_vsi(vf);
2572 if (!vsi) {
2573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2574 goto err;
2575 }
2576
2577 /* clear all previously programmed RSS configuration to allow VF drivers
2578 * the ability to customize the RSS configuration and/or completely
2579 * disable RSS
2580 */
2581 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2582 if (status && !vrh->hena) {
2583 /* only report failure to clear the current RSS configuration if
2584 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2585 */
2586 v_ret = ice_err_to_virt_err(status);
2587 goto err;
2588 } else if (status) {
2589 /* allow the VF to update the RSS configuration even on failure
2590 * to clear the current RSS confguration in an attempt to keep
2591 * RSS in a working state
2592 */
2593 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2594 vf->vf_id);
2595 }
2596
2597 if (vrh->hena) {
2598 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2599 v_ret = ice_err_to_virt_err(status);
2600 }
2601
2602 /* send the response to the VF */
2603 err:
2604 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2605 NULL, 0);
2606 }
2607
2608 /**
2609 * ice_vc_query_rxdid - query RXDID supported by DDP package
2610 * @vf: pointer to VF info
2611 *
2612 * Called from VF to query a bitmap of supported flexible
2613 * descriptor RXDIDs of a DDP package.
2614 */
ice_vc_query_rxdid(struct ice_vf * vf)2615 static int ice_vc_query_rxdid(struct ice_vf *vf)
2616 {
2617 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2618 struct virtchnl_supported_rxdids *rxdid = NULL;
2619 struct ice_hw *hw = &vf->pf->hw;
2620 struct ice_pf *pf = vf->pf;
2621 int len = 0;
2622 int ret, i;
2623 u32 regval;
2624
2625 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2626 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2627 goto err;
2628 }
2629
2630 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2631 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2632 goto err;
2633 }
2634
2635 len = sizeof(struct virtchnl_supported_rxdids);
2636 rxdid = kzalloc(len, GFP_KERNEL);
2637 if (!rxdid) {
2638 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2639 len = 0;
2640 goto err;
2641 }
2642
2643 /* RXDIDs supported by DDP package can be read from the register
2644 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2645 * is not listed in DDP package, add it in the bitmap manually.
2646 * Legacy 16byte descriptor is not supported.
2647 */
2648 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2649
2650 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2651 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2652 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2653 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2654 rxdid->supported_rxdids |= BIT(i);
2655 }
2656
2657 pf->supported_rxdids = rxdid->supported_rxdids;
2658
2659 err:
2660 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2661 v_ret, (u8 *)rxdid, len);
2662 kfree(rxdid);
2663 return ret;
2664 }
2665
2666 /**
2667 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2668 * @vf: VF to enable/disable VLAN stripping for on initialization
2669 *
2670 * Set the default for VLAN stripping based on whether a port VLAN is configured
2671 * and the current VLAN mode of the device.
2672 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)2673 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2674 {
2675 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2676
2677 if (!vsi)
2678 return -EINVAL;
2679
2680 /* don't modify stripping if port VLAN is configured in SVM since the
2681 * port VLAN is based on the inner/single VLAN in SVM
2682 */
2683 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2684 return 0;
2685
2686 if (ice_vf_vlan_offload_ena(vf->driver_caps))
2687 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2688 else
2689 return vsi->inner_vlan_ops.dis_stripping(vsi);
2690 }
2691
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)2692 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2693 {
2694 if (vf->trusted)
2695 return VLAN_N_VID;
2696 else
2697 return ICE_MAX_VLAN_PER_VF;
2698 }
2699
2700 /**
2701 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2702 * @vf: VF that being checked for
2703 *
2704 * When the device is in double VLAN mode, check whether or not the outer VLAN
2705 * is allowed.
2706 */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)2707 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2708 {
2709 if (ice_vf_is_port_vlan_ena(vf))
2710 return true;
2711
2712 return false;
2713 }
2714
2715 /**
2716 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2717 * @vf: VF that capabilities are being set for
2718 * @caps: VLAN capabilities to populate
2719 *
2720 * Determine VLAN capabilities support based on whether a port VLAN is
2721 * configured. If a port VLAN is configured then the VF should use the inner
2722 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2723 * capabilies.
2724 */
2725 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2726 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2727 {
2728 struct virtchnl_vlan_supported_caps *supported_caps;
2729
2730 if (ice_vf_outer_vlan_not_allowed(vf)) {
2731 /* until support for inner VLAN filtering is added when a port
2732 * VLAN is configured, only support software offloaded inner
2733 * VLANs when a port VLAN is confgured in DVM
2734 */
2735 supported_caps = &caps->filtering.filtering_support;
2736 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2737
2738 supported_caps = &caps->offloads.stripping_support;
2739 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2740 VIRTCHNL_VLAN_TOGGLE |
2741 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2742 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2743
2744 supported_caps = &caps->offloads.insertion_support;
2745 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2746 VIRTCHNL_VLAN_TOGGLE |
2747 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2748 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2749
2750 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2751 caps->offloads.ethertype_match =
2752 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2753 } else {
2754 supported_caps = &caps->filtering.filtering_support;
2755 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2756 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2757 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2758 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2759 VIRTCHNL_VLAN_ETHERTYPE_AND;
2760 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2761 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2762 VIRTCHNL_VLAN_ETHERTYPE_9100;
2763
2764 supported_caps = &caps->offloads.stripping_support;
2765 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2766 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2767 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2768 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2769 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2770 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2771 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2772 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2773 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2774
2775 supported_caps = &caps->offloads.insertion_support;
2776 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2777 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2778 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2779 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2780 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2781 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2782 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2783 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2784 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2785
2786 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2787
2788 caps->offloads.ethertype_match =
2789 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2790 }
2791
2792 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2793 }
2794
2795 /**
2796 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2797 * @vf: VF that capabilities are being set for
2798 * @caps: VLAN capabilities to populate
2799 *
2800 * Determine VLAN capabilities support based on whether a port VLAN is
2801 * configured. If a port VLAN is configured then the VF does not have any VLAN
2802 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2803 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2804 * VLAN fitlering and offload capabilities.
2805 */
2806 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2807 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2808 {
2809 struct virtchnl_vlan_supported_caps *supported_caps;
2810
2811 if (ice_vf_is_port_vlan_ena(vf)) {
2812 supported_caps = &caps->filtering.filtering_support;
2813 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2814 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2815
2816 supported_caps = &caps->offloads.stripping_support;
2817 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2818 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2819
2820 supported_caps = &caps->offloads.insertion_support;
2821 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2822 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2823
2824 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2825 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2826 caps->filtering.max_filters = 0;
2827 } else {
2828 supported_caps = &caps->filtering.filtering_support;
2829 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2830 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2831 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2832
2833 supported_caps = &caps->offloads.stripping_support;
2834 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2835 VIRTCHNL_VLAN_TOGGLE |
2836 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2838
2839 supported_caps = &caps->offloads.insertion_support;
2840 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2841 VIRTCHNL_VLAN_TOGGLE |
2842 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2843 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2844
2845 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2846 caps->offloads.ethertype_match =
2847 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2848 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2849 }
2850 }
2851
2852 /**
2853 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2854 * @vf: VF to determine VLAN capabilities for
2855 *
2856 * This will only be called if the VF and PF successfully negotiated
2857 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2858 *
2859 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2860 * is configured or not.
2861 */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)2862 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2863 {
2864 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2865 struct virtchnl_vlan_caps *caps = NULL;
2866 int err, len = 0;
2867
2868 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2869 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2870 goto out;
2871 }
2872
2873 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2874 if (!caps) {
2875 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2876 goto out;
2877 }
2878 len = sizeof(*caps);
2879
2880 if (ice_is_dvm_ena(&vf->pf->hw))
2881 ice_vc_set_dvm_caps(vf, caps);
2882 else
2883 ice_vc_set_svm_caps(vf, caps);
2884
2885 /* store negotiated caps to prevent invalid VF messages */
2886 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2887
2888 out:
2889 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2890 v_ret, (u8 *)caps, len);
2891 kfree(caps);
2892 return err;
2893 }
2894
2895 /**
2896 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2897 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2898 * @tpid: VLAN TPID used for validation
2899 *
2900 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2901 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2902 */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)2903 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2904 {
2905 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2906
2907 switch (tpid) {
2908 case ETH_P_8021Q:
2909 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2910 break;
2911 case ETH_P_8021AD:
2912 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2913 break;
2914 case ETH_P_QINQ1:
2915 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2916 break;
2917 }
2918
2919 if (!(filtering_caps & vlan_ethertype))
2920 return false;
2921
2922 return true;
2923 }
2924
2925 /**
2926 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2927 * @vc_vlan: virtchnl_vlan to validate
2928 *
2929 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2930 * false. Otherwise return true.
2931 */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)2932 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2933 {
2934 if (!vc_vlan->tci || !vc_vlan->tpid)
2935 return false;
2936
2937 return true;
2938 }
2939
2940 /**
2941 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2942 * @vfc: negotiated/supported VLAN filtering capabilities
2943 * @vfl: VLAN filter list from VF to validate
2944 *
2945 * Validate all of the filters in the VLAN filter list from the VF. If any of
2946 * the checks fail then return false. Otherwise return true.
2947 */
2948 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)2949 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2950 struct virtchnl_vlan_filter_list_v2 *vfl)
2951 {
2952 u16 i;
2953
2954 if (!vfl->num_elements)
2955 return false;
2956
2957 for (i = 0; i < vfl->num_elements; i++) {
2958 struct virtchnl_vlan_supported_caps *filtering_support =
2959 &vfc->filtering_support;
2960 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2961 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2962 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2963
2964 if ((ice_vc_is_valid_vlan(outer) &&
2965 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2966 (ice_vc_is_valid_vlan(inner) &&
2967 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2968 return false;
2969
2970 if ((outer->tci_mask &&
2971 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2972 (inner->tci_mask &&
2973 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2974 return false;
2975
2976 if (((outer->tci & VLAN_PRIO_MASK) &&
2977 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2978 ((inner->tci & VLAN_PRIO_MASK) &&
2979 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2980 return false;
2981
2982 if ((ice_vc_is_valid_vlan(outer) &&
2983 !ice_vc_validate_vlan_tpid(filtering_support->outer,
2984 outer->tpid)) ||
2985 (ice_vc_is_valid_vlan(inner) &&
2986 !ice_vc_validate_vlan_tpid(filtering_support->inner,
2987 inner->tpid)))
2988 return false;
2989 }
2990
2991 return true;
2992 }
2993
2994 /**
2995 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2996 * @vc_vlan: struct virtchnl_vlan to transform
2997 */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)2998 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2999 {
3000 struct ice_vlan vlan = { 0 };
3001
3002 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3003 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
3004 vlan.tpid = vc_vlan->tpid;
3005
3006 return vlan;
3007 }
3008
3009 /**
3010 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3011 * @vsi: VF's VSI used to perform the action
3012 * @vlan_action: function to perform the action with (i.e. add/del)
3013 * @vlan: VLAN filter to perform the action with
3014 */
3015 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)3016 ice_vc_vlan_action(struct ice_vsi *vsi,
3017 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3018 struct ice_vlan *vlan)
3019 {
3020 int err;
3021
3022 err = vlan_action(vsi, vlan);
3023 if (err)
3024 return err;
3025
3026 return 0;
3027 }
3028
3029 /**
3030 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3031 * @vf: VF used to delete the VLAN(s)
3032 * @vsi: VF's VSI used to delete the VLAN(s)
3033 * @vfl: virthchnl filter list used to delete the filters
3034 */
3035 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3036 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3037 struct virtchnl_vlan_filter_list_v2 *vfl)
3038 {
3039 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3040 int err;
3041 u16 i;
3042
3043 for (i = 0; i < vfl->num_elements; i++) {
3044 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3045 struct virtchnl_vlan *vc_vlan;
3046
3047 vc_vlan = &vlan_fltr->outer;
3048 if (ice_vc_is_valid_vlan(vc_vlan)) {
3049 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3050
3051 err = ice_vc_vlan_action(vsi,
3052 vsi->outer_vlan_ops.del_vlan,
3053 &vlan);
3054 if (err)
3055 return err;
3056
3057 if (vlan_promisc)
3058 ice_vf_dis_vlan_promisc(vsi, &vlan);
3059
3060 /* Disable VLAN filtering when only VLAN 0 is left */
3061 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3062 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3063 if (err)
3064 return err;
3065 }
3066 }
3067
3068 vc_vlan = &vlan_fltr->inner;
3069 if (ice_vc_is_valid_vlan(vc_vlan)) {
3070 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3071
3072 err = ice_vc_vlan_action(vsi,
3073 vsi->inner_vlan_ops.del_vlan,
3074 &vlan);
3075 if (err)
3076 return err;
3077
3078 /* no support for VLAN promiscuous on inner VLAN unless
3079 * we are in Single VLAN Mode (SVM)
3080 */
3081 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3082 if (vlan_promisc)
3083 ice_vf_dis_vlan_promisc(vsi, &vlan);
3084
3085 /* Disable VLAN filtering when only VLAN 0 is left */
3086 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3087 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3088 if (err)
3089 return err;
3090 }
3091 }
3092 }
3093 }
3094
3095 return 0;
3096 }
3097
3098 /**
3099 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3100 * @vf: VF the message was received from
3101 * @msg: message received from the VF
3102 */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3103 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3104 {
3105 struct virtchnl_vlan_filter_list_v2 *vfl =
3106 (struct virtchnl_vlan_filter_list_v2 *)msg;
3107 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3108 struct ice_vsi *vsi;
3109
3110 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3111 vfl)) {
3112 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3113 goto out;
3114 }
3115
3116 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3117 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3118 goto out;
3119 }
3120
3121 vsi = ice_get_vf_vsi(vf);
3122 if (!vsi) {
3123 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3124 goto out;
3125 }
3126
3127 if (ice_vc_del_vlans(vf, vsi, vfl))
3128 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3129
3130 out:
3131 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3132 0);
3133 }
3134
3135 /**
3136 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3137 * @vf: VF used to add the VLAN(s)
3138 * @vsi: VF's VSI used to add the VLAN(s)
3139 * @vfl: virthchnl filter list used to add the filters
3140 */
3141 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3142 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3143 struct virtchnl_vlan_filter_list_v2 *vfl)
3144 {
3145 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3146 int err;
3147 u16 i;
3148
3149 for (i = 0; i < vfl->num_elements; i++) {
3150 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3151 struct virtchnl_vlan *vc_vlan;
3152
3153 vc_vlan = &vlan_fltr->outer;
3154 if (ice_vc_is_valid_vlan(vc_vlan)) {
3155 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3156
3157 err = ice_vc_vlan_action(vsi,
3158 vsi->outer_vlan_ops.add_vlan,
3159 &vlan);
3160 if (err)
3161 return err;
3162
3163 if (vlan_promisc) {
3164 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3165 if (err)
3166 return err;
3167 }
3168
3169 /* Enable VLAN filtering on first non-zero VLAN */
3170 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3171 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3172 if (err)
3173 return err;
3174 }
3175 }
3176
3177 vc_vlan = &vlan_fltr->inner;
3178 if (ice_vc_is_valid_vlan(vc_vlan)) {
3179 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3180
3181 err = ice_vc_vlan_action(vsi,
3182 vsi->inner_vlan_ops.add_vlan,
3183 &vlan);
3184 if (err)
3185 return err;
3186
3187 /* no support for VLAN promiscuous on inner VLAN unless
3188 * we are in Single VLAN Mode (SVM)
3189 */
3190 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3191 if (vlan_promisc) {
3192 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3193 if (err)
3194 return err;
3195 }
3196
3197 /* Enable VLAN filtering on first non-zero VLAN */
3198 if (vf->spoofchk && vlan.vid) {
3199 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3200 if (err)
3201 return err;
3202 }
3203 }
3204 }
3205 }
3206
3207 return 0;
3208 }
3209
3210 /**
3211 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3212 * @vsi: VF VSI used to get number of existing VLAN filters
3213 * @vfc: negotiated/supported VLAN filtering capabilities
3214 * @vfl: VLAN filter list from VF to validate
3215 *
3216 * Validate all of the filters in the VLAN filter list from the VF during the
3217 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3218 * Otherwise return true.
3219 */
3220 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3221 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3222 struct virtchnl_vlan_filtering_caps *vfc,
3223 struct virtchnl_vlan_filter_list_v2 *vfl)
3224 {
3225 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3226 vfl->num_elements;
3227
3228 if (num_requested_filters > vfc->max_filters)
3229 return false;
3230
3231 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3232 }
3233
3234 /**
3235 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3236 * @vf: VF the message was received from
3237 * @msg: message received from the VF
3238 */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3239 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3240 {
3241 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3242 struct virtchnl_vlan_filter_list_v2 *vfl =
3243 (struct virtchnl_vlan_filter_list_v2 *)msg;
3244 struct ice_vsi *vsi;
3245
3246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3248 goto out;
3249 }
3250
3251 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3252 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3253 goto out;
3254 }
3255
3256 vsi = ice_get_vf_vsi(vf);
3257 if (!vsi) {
3258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3259 goto out;
3260 }
3261
3262 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3263 &vf->vlan_v2_caps.filtering,
3264 vfl)) {
3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3266 goto out;
3267 }
3268
3269 if (ice_vc_add_vlans(vf, vsi, vfl))
3270 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3271
3272 out:
3273 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3274 0);
3275 }
3276
3277 /**
3278 * ice_vc_valid_vlan_setting - validate VLAN setting
3279 * @negotiated_settings: negotiated VLAN settings during VF init
3280 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3281 */
3282 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3283 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3284 {
3285 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3286 return false;
3287
3288 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3289 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3290 */
3291 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3292 hweight32(ethertype_setting) > 1)
3293 return false;
3294
3295 /* ability to modify the VLAN setting was not negotiated */
3296 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3297 return false;
3298
3299 return true;
3300 }
3301
3302 /**
3303 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3304 * @caps: negotiated VLAN settings during VF init
3305 * @msg: message to validate
3306 *
3307 * Used to validate any VLAN virtchnl message sent as a
3308 * virtchnl_vlan_setting structure. Validates the message against the
3309 * negotiated/supported caps during VF driver init.
3310 */
3311 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3312 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3313 struct virtchnl_vlan_setting *msg)
3314 {
3315 if ((!msg->outer_ethertype_setting &&
3316 !msg->inner_ethertype_setting) ||
3317 (!caps->outer && !caps->inner))
3318 return false;
3319
3320 if (msg->outer_ethertype_setting &&
3321 !ice_vc_valid_vlan_setting(caps->outer,
3322 msg->outer_ethertype_setting))
3323 return false;
3324
3325 if (msg->inner_ethertype_setting &&
3326 !ice_vc_valid_vlan_setting(caps->inner,
3327 msg->inner_ethertype_setting))
3328 return false;
3329
3330 return true;
3331 }
3332
3333 /**
3334 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3335 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3336 * @tpid: VLAN TPID to populate
3337 */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3338 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3339 {
3340 switch (ethertype_setting) {
3341 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3342 *tpid = ETH_P_8021Q;
3343 break;
3344 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3345 *tpid = ETH_P_8021AD;
3346 break;
3347 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3348 *tpid = ETH_P_QINQ1;
3349 break;
3350 default:
3351 *tpid = 0;
3352 return -EINVAL;
3353 }
3354
3355 return 0;
3356 }
3357
3358 /**
3359 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3360 * @vsi: VF's VSI used to enable the VLAN offload
3361 * @ena_offload: function used to enable the VLAN offload
3362 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3363 */
3364 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3365 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3366 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3367 u32 ethertype_setting)
3368 {
3369 u16 tpid;
3370 int err;
3371
3372 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3373 if (err)
3374 return err;
3375
3376 err = ena_offload(vsi, tpid);
3377 if (err)
3378 return err;
3379
3380 return 0;
3381 }
3382
3383 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3384 #define ICE_L2TSEL_BIT_OFFSET 23
3385 enum ice_l2tsel {
3386 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3387 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3388 };
3389
3390 /**
3391 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3392 * @vsi: VSI used to update l2tsel on
3393 * @l2tsel: l2tsel setting requested
3394 *
3395 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3396 * This will modify which descriptor field the first offloaded VLAN will be
3397 * stripped into.
3398 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3399 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3400 {
3401 struct ice_hw *hw = &vsi->back->hw;
3402 u32 l2tsel_bit;
3403 int i;
3404
3405 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3406 l2tsel_bit = 0;
3407 else
3408 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3409
3410 for (i = 0; i < vsi->alloc_rxq; i++) {
3411 u16 pfq = vsi->rxq_map[i];
3412 u32 qrx_context_offset;
3413 u32 regval;
3414
3415 qrx_context_offset =
3416 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3417
3418 regval = rd32(hw, qrx_context_offset);
3419 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3420 regval |= l2tsel_bit;
3421 wr32(hw, qrx_context_offset, regval);
3422 }
3423 }
3424
3425 /**
3426 * ice_vc_ena_vlan_stripping_v2_msg
3427 * @vf: VF the message was received from
3428 * @msg: message received from the VF
3429 *
3430 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3431 */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3432 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3433 {
3434 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3435 struct virtchnl_vlan_supported_caps *stripping_support;
3436 struct virtchnl_vlan_setting *strip_msg =
3437 (struct virtchnl_vlan_setting *)msg;
3438 u32 ethertype_setting;
3439 struct ice_vsi *vsi;
3440
3441 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3442 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3443 goto out;
3444 }
3445
3446 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3447 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3448 goto out;
3449 }
3450
3451 vsi = ice_get_vf_vsi(vf);
3452 if (!vsi) {
3453 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3454 goto out;
3455 }
3456
3457 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3458 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3459 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3460 goto out;
3461 }
3462
3463 ethertype_setting = strip_msg->outer_ethertype_setting;
3464 if (ethertype_setting) {
3465 if (ice_vc_ena_vlan_offload(vsi,
3466 vsi->outer_vlan_ops.ena_stripping,
3467 ethertype_setting)) {
3468 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3469 goto out;
3470 } else {
3471 enum ice_l2tsel l2tsel =
3472 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3473
3474 /* PF tells the VF that the outer VLAN tag is always
3475 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3476 * inner is always extracted to
3477 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3478 * support outer stripping so the first tag always ends
3479 * up in L2TAG2_2ND and the second/inner tag, if
3480 * enabled, is extracted in L2TAG1.
3481 */
3482 ice_vsi_update_l2tsel(vsi, l2tsel);
3483 }
3484 }
3485
3486 ethertype_setting = strip_msg->inner_ethertype_setting;
3487 if (ethertype_setting &&
3488 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3489 ethertype_setting)) {
3490 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3491 goto out;
3492 }
3493
3494 out:
3495 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3496 v_ret, NULL, 0);
3497 }
3498
3499 /**
3500 * ice_vc_dis_vlan_stripping_v2_msg
3501 * @vf: VF the message was received from
3502 * @msg: message received from the VF
3503 *
3504 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3505 */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3506 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3507 {
3508 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3509 struct virtchnl_vlan_supported_caps *stripping_support;
3510 struct virtchnl_vlan_setting *strip_msg =
3511 (struct virtchnl_vlan_setting *)msg;
3512 u32 ethertype_setting;
3513 struct ice_vsi *vsi;
3514
3515 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3516 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3517 goto out;
3518 }
3519
3520 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3521 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3522 goto out;
3523 }
3524
3525 vsi = ice_get_vf_vsi(vf);
3526 if (!vsi) {
3527 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3528 goto out;
3529 }
3530
3531 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3532 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3533 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3534 goto out;
3535 }
3536
3537 ethertype_setting = strip_msg->outer_ethertype_setting;
3538 if (ethertype_setting) {
3539 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3540 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3541 goto out;
3542 } else {
3543 enum ice_l2tsel l2tsel =
3544 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3545
3546 /* PF tells the VF that the outer VLAN tag is always
3547 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3548 * inner is always extracted to
3549 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3550 * support inner stripping while outer stripping is
3551 * disabled so that the first and only tag is extracted
3552 * in L2TAG1.
3553 */
3554 ice_vsi_update_l2tsel(vsi, l2tsel);
3555 }
3556 }
3557
3558 ethertype_setting = strip_msg->inner_ethertype_setting;
3559 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3560 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3561 goto out;
3562 }
3563
3564 out:
3565 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3566 v_ret, NULL, 0);
3567 }
3568
3569 /**
3570 * ice_vc_ena_vlan_insertion_v2_msg
3571 * @vf: VF the message was received from
3572 * @msg: message received from the VF
3573 *
3574 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3575 */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3576 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3577 {
3578 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3579 struct virtchnl_vlan_supported_caps *insertion_support;
3580 struct virtchnl_vlan_setting *insertion_msg =
3581 (struct virtchnl_vlan_setting *)msg;
3582 u32 ethertype_setting;
3583 struct ice_vsi *vsi;
3584
3585 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587 goto out;
3588 }
3589
3590 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3591 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3592 goto out;
3593 }
3594
3595 vsi = ice_get_vf_vsi(vf);
3596 if (!vsi) {
3597 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3598 goto out;
3599 }
3600
3601 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3602 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3603 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3604 goto out;
3605 }
3606
3607 ethertype_setting = insertion_msg->outer_ethertype_setting;
3608 if (ethertype_setting &&
3609 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3610 ethertype_setting)) {
3611 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3612 goto out;
3613 }
3614
3615 ethertype_setting = insertion_msg->inner_ethertype_setting;
3616 if (ethertype_setting &&
3617 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3618 ethertype_setting)) {
3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3620 goto out;
3621 }
3622
3623 out:
3624 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3625 v_ret, NULL, 0);
3626 }
3627
3628 /**
3629 * ice_vc_dis_vlan_insertion_v2_msg
3630 * @vf: VF the message was received from
3631 * @msg: message received from the VF
3632 *
3633 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3634 */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3635 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3636 {
3637 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3638 struct virtchnl_vlan_supported_caps *insertion_support;
3639 struct virtchnl_vlan_setting *insertion_msg =
3640 (struct virtchnl_vlan_setting *)msg;
3641 u32 ethertype_setting;
3642 struct ice_vsi *vsi;
3643
3644 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3645 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3646 goto out;
3647 }
3648
3649 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3650 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3651 goto out;
3652 }
3653
3654 vsi = ice_get_vf_vsi(vf);
3655 if (!vsi) {
3656 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3657 goto out;
3658 }
3659
3660 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3661 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3663 goto out;
3664 }
3665
3666 ethertype_setting = insertion_msg->outer_ethertype_setting;
3667 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3668 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3669 goto out;
3670 }
3671
3672 ethertype_setting = insertion_msg->inner_ethertype_setting;
3673 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3674 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3675 goto out;
3676 }
3677
3678 out:
3679 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3680 v_ret, NULL, 0);
3681 }
3682
3683 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3684 .get_ver_msg = ice_vc_get_ver_msg,
3685 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3686 .reset_vf = ice_vc_reset_vf_msg,
3687 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3688 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3689 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3690 .ena_qs_msg = ice_vc_ena_qs_msg,
3691 .dis_qs_msg = ice_vc_dis_qs_msg,
3692 .request_qs_msg = ice_vc_request_qs_msg,
3693 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3694 .config_rss_key = ice_vc_config_rss_key,
3695 .config_rss_lut = ice_vc_config_rss_lut,
3696 .get_stats_msg = ice_vc_get_stats_msg,
3697 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3698 .add_vlan_msg = ice_vc_add_vlan_msg,
3699 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3700 .query_rxdid = ice_vc_query_rxdid,
3701 .get_rss_hena = ice_vc_get_rss_hena,
3702 .set_rss_hena_msg = ice_vc_set_rss_hena,
3703 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3704 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3705 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3706 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3707 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3708 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3709 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3710 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3711 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3712 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3713 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3714 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3715 };
3716
3717 /**
3718 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3719 * @vf: the VF to switch ops
3720 */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)3721 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3722 {
3723 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3724 }
3725
3726 /**
3727 * ice_vc_repr_add_mac
3728 * @vf: pointer to VF
3729 * @msg: virtchannel message
3730 *
3731 * When port representors are created, we do not add MAC rule
3732 * to firmware, we store it so that PF could report same
3733 * MAC as VF.
3734 */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)3735 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3736 {
3737 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3738 struct virtchnl_ether_addr_list *al =
3739 (struct virtchnl_ether_addr_list *)msg;
3740 struct ice_vsi *vsi;
3741 struct ice_pf *pf;
3742 int i;
3743
3744 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3745 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3746 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3747 goto handle_mac_exit;
3748 }
3749
3750 pf = vf->pf;
3751
3752 vsi = ice_get_vf_vsi(vf);
3753 if (!vsi) {
3754 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3755 goto handle_mac_exit;
3756 }
3757
3758 for (i = 0; i < al->num_elements; i++) {
3759 u8 *mac_addr = al->list[i].addr;
3760
3761 if (!is_unicast_ether_addr(mac_addr) ||
3762 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3763 continue;
3764
3765 if (vf->pf_set_mac) {
3766 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3767 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3768 goto handle_mac_exit;
3769 }
3770
3771 ice_vfhw_mac_add(vf, &al->list[i]);
3772 vf->num_mac++;
3773 break;
3774 }
3775
3776 handle_mac_exit:
3777 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3778 v_ret, NULL, 0);
3779 }
3780
3781 /**
3782 * ice_vc_repr_del_mac - response with success for deleting MAC
3783 * @vf: pointer to VF
3784 * @msg: virtchannel message
3785 *
3786 * Respond with success to not break normal VF flow.
3787 * For legacy VF driver try to update cached MAC address.
3788 */
3789 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)3790 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3791 {
3792 struct virtchnl_ether_addr_list *al =
3793 (struct virtchnl_ether_addr_list *)msg;
3794
3795 ice_update_legacy_cached_mac(vf, &al->list[0]);
3796
3797 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3798 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3799 }
3800
3801 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)3802 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3803 {
3804 dev_dbg(ice_pf_to_dev(vf->pf),
3805 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3806 vf->vf_id);
3807 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3808 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3809 NULL, 0);
3810 }
3811
3812 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3813 .get_ver_msg = ice_vc_get_ver_msg,
3814 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3815 .reset_vf = ice_vc_reset_vf_msg,
3816 .add_mac_addr_msg = ice_vc_repr_add_mac,
3817 .del_mac_addr_msg = ice_vc_repr_del_mac,
3818 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3819 .ena_qs_msg = ice_vc_ena_qs_msg,
3820 .dis_qs_msg = ice_vc_dis_qs_msg,
3821 .request_qs_msg = ice_vc_request_qs_msg,
3822 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3823 .config_rss_key = ice_vc_config_rss_key,
3824 .config_rss_lut = ice_vc_config_rss_lut,
3825 .get_stats_msg = ice_vc_get_stats_msg,
3826 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3827 .add_vlan_msg = ice_vc_add_vlan_msg,
3828 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3829 .query_rxdid = ice_vc_query_rxdid,
3830 .get_rss_hena = ice_vc_get_rss_hena,
3831 .set_rss_hena_msg = ice_vc_set_rss_hena,
3832 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3833 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3834 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3835 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3836 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3837 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3838 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3839 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3840 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3841 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3842 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3843 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3844 };
3845
3846 /**
3847 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3848 * @vf: the VF to switch ops
3849 */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)3850 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3851 {
3852 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3853 }
3854
3855 /**
3856 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3857 * @vf: the VF to check
3858 * @mbxdata: data about the state of the mailbox
3859 *
3860 * Detect if a given VF might be malicious and attempting to overflow the PF
3861 * mailbox. If so, log a warning message and ignore this event.
3862 */
3863 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)3864 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3865 {
3866 bool report_malvf = false;
3867 struct device *dev;
3868 struct ice_pf *pf;
3869 int status;
3870
3871 pf = vf->pf;
3872 dev = ice_pf_to_dev(pf);
3873
3874 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3875 return vf->mbx_info.malicious;
3876
3877 /* check to see if we have a newly malicious VF */
3878 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3879 &report_malvf);
3880 if (status)
3881 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3882 vf->vf_id, vf->dev_lan_addr, status);
3883
3884 if (report_malvf) {
3885 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3886 u8 zero_addr[ETH_ALEN] = {};
3887
3888 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3889 vf->dev_lan_addr,
3890 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3891 }
3892
3893 return vf->mbx_info.malicious;
3894 }
3895
3896 /**
3897 * ice_vc_process_vf_msg - Process request from VF
3898 * @pf: pointer to the PF structure
3899 * @event: pointer to the AQ event
3900 * @mbxdata: information used to detect VF attempting mailbox overflow
3901 *
3902 * called from the common asq/arq handler to
3903 * process request from VF
3904 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)3905 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3906 struct ice_mbx_data *mbxdata)
3907 {
3908 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3909 s16 vf_id = le16_to_cpu(event->desc.retval);
3910 const struct ice_virtchnl_ops *ops;
3911 u16 msglen = event->msg_len;
3912 u8 *msg = event->msg_buf;
3913 struct ice_vf *vf = NULL;
3914 struct device *dev;
3915 int err = 0;
3916
3917 dev = ice_pf_to_dev(pf);
3918
3919 vf = ice_get_vf_by_id(pf, vf_id);
3920 if (!vf) {
3921 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3922 vf_id, v_opcode, msglen);
3923 return;
3924 }
3925
3926 mutex_lock(&vf->cfg_lock);
3927
3928 /* Check if the VF is trying to overflow the mailbox */
3929 if (ice_is_malicious_vf(vf, mbxdata))
3930 goto finish;
3931
3932 /* Check if VF is disabled. */
3933 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3934 err = -EPERM;
3935 goto error_handler;
3936 }
3937
3938 ops = vf->virtchnl_ops;
3939
3940 /* Perform basic checks on the msg */
3941 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3942 if (err) {
3943 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3944 err = -EPERM;
3945 else
3946 err = -EINVAL;
3947 }
3948
3949 error_handler:
3950 if (err) {
3951 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3952 NULL, 0);
3953 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3954 vf_id, v_opcode, msglen, err);
3955 goto finish;
3956 }
3957
3958 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3959 ice_vc_send_msg_to_vf(vf, v_opcode,
3960 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3961 0);
3962 goto finish;
3963 }
3964
3965 switch (v_opcode) {
3966 case VIRTCHNL_OP_VERSION:
3967 err = ops->get_ver_msg(vf, msg);
3968 break;
3969 case VIRTCHNL_OP_GET_VF_RESOURCES:
3970 err = ops->get_vf_res_msg(vf, msg);
3971 if (ice_vf_init_vlan_stripping(vf))
3972 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3973 vf->vf_id);
3974 ice_vc_notify_vf_link_state(vf);
3975 break;
3976 case VIRTCHNL_OP_RESET_VF:
3977 ops->reset_vf(vf);
3978 break;
3979 case VIRTCHNL_OP_ADD_ETH_ADDR:
3980 err = ops->add_mac_addr_msg(vf, msg);
3981 break;
3982 case VIRTCHNL_OP_DEL_ETH_ADDR:
3983 err = ops->del_mac_addr_msg(vf, msg);
3984 break;
3985 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3986 err = ops->cfg_qs_msg(vf, msg);
3987 break;
3988 case VIRTCHNL_OP_ENABLE_QUEUES:
3989 err = ops->ena_qs_msg(vf, msg);
3990 ice_vc_notify_vf_link_state(vf);
3991 break;
3992 case VIRTCHNL_OP_DISABLE_QUEUES:
3993 err = ops->dis_qs_msg(vf, msg);
3994 break;
3995 case VIRTCHNL_OP_REQUEST_QUEUES:
3996 err = ops->request_qs_msg(vf, msg);
3997 break;
3998 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3999 err = ops->cfg_irq_map_msg(vf, msg);
4000 break;
4001 case VIRTCHNL_OP_CONFIG_RSS_KEY:
4002 err = ops->config_rss_key(vf, msg);
4003 break;
4004 case VIRTCHNL_OP_CONFIG_RSS_LUT:
4005 err = ops->config_rss_lut(vf, msg);
4006 break;
4007 case VIRTCHNL_OP_GET_STATS:
4008 err = ops->get_stats_msg(vf, msg);
4009 break;
4010 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4011 err = ops->cfg_promiscuous_mode_msg(vf, msg);
4012 break;
4013 case VIRTCHNL_OP_ADD_VLAN:
4014 err = ops->add_vlan_msg(vf, msg);
4015 break;
4016 case VIRTCHNL_OP_DEL_VLAN:
4017 err = ops->remove_vlan_msg(vf, msg);
4018 break;
4019 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4020 err = ops->query_rxdid(vf);
4021 break;
4022 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4023 err = ops->get_rss_hena(vf);
4024 break;
4025 case VIRTCHNL_OP_SET_RSS_HENA:
4026 err = ops->set_rss_hena_msg(vf, msg);
4027 break;
4028 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4029 err = ops->ena_vlan_stripping(vf);
4030 break;
4031 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4032 err = ops->dis_vlan_stripping(vf);
4033 break;
4034 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4035 err = ops->add_fdir_fltr_msg(vf, msg);
4036 break;
4037 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4038 err = ops->del_fdir_fltr_msg(vf, msg);
4039 break;
4040 case VIRTCHNL_OP_ADD_RSS_CFG:
4041 err = ops->handle_rss_cfg_msg(vf, msg, true);
4042 break;
4043 case VIRTCHNL_OP_DEL_RSS_CFG:
4044 err = ops->handle_rss_cfg_msg(vf, msg, false);
4045 break;
4046 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4047 err = ops->get_offload_vlan_v2_caps(vf);
4048 break;
4049 case VIRTCHNL_OP_ADD_VLAN_V2:
4050 err = ops->add_vlan_v2_msg(vf, msg);
4051 break;
4052 case VIRTCHNL_OP_DEL_VLAN_V2:
4053 err = ops->remove_vlan_v2_msg(vf, msg);
4054 break;
4055 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4056 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4057 break;
4058 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4059 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4060 break;
4061 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4062 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4063 break;
4064 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4065 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4066 break;
4067 case VIRTCHNL_OP_UNKNOWN:
4068 default:
4069 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4070 vf_id);
4071 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4072 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4073 NULL, 0);
4074 break;
4075 }
4076 if (err) {
4077 /* Helper function cares less about error return values here
4078 * as it is busy with pending work.
4079 */
4080 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4081 vf_id, v_opcode, err);
4082 }
4083
4084 finish:
4085 mutex_unlock(&vf->cfg_lock);
4086 ice_put_vf(vf);
4087 }
4088