xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision 24778b1c7ee7aca9721ed4757b0e0df0c16390f7)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "xen-emu.h"
42 #include "hyperv.h"
43 #include "hyperv-proto.h"
44 
45 #include "gdbstub/enums.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/ratelimit.h"
49 #include "qemu/config-file.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "hw/i386/x86.h"
53 #include "hw/i386/kvm/xen_evtchn.h"
54 #include "hw/i386/pc.h"
55 #include "hw/i386/apic.h"
56 #include "hw/i386/apic_internal.h"
57 #include "hw/i386/apic-msidef.h"
58 #include "hw/i386/intel_iommu.h"
59 #include "hw/i386/topology.h"
60 #include "hw/i386/x86-iommu.h"
61 #include "hw/i386/e820_memory_layout.h"
62 
63 #include "hw/xen/xen.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/pci/msi.h"
67 #include "hw/pci/msix.h"
68 #include "migration/blocker.h"
69 #include "exec/memattrs.h"
70 #include "trace.h"
71 
72 #include CONFIG_DEVICES
73 
74 //#define DEBUG_KVM
75 
76 #ifdef DEBUG_KVM
77 #define DPRINTF(fmt, ...) \
78     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...) \
81     do { } while (0)
82 #endif
83 
84 /*
85  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
86  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
87  * Since these must be part of guest physical memory, we need to allocate
88  * them, both by setting their start addresses in the kernel and by
89  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
90  * so this value allows up to 16M BIOSes.
91  */
92 #define KVM_IDENTITY_BASE 0xfeffc000
93 
94 /* From arch/x86/kvm/lapic.h */
95 #define KVM_APIC_BUS_CYCLE_NS       1
96 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
97 
98 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
99  * 255 kvm_msr_entry structs */
100 #define MSR_BUF_SIZE 4096
101 
102 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
103 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
104 typedef struct {
105     uint32_t msr;
106     QEMURDMSRHandler *rdmsr;
107     QEMUWRMSRHandler *wrmsr;
108 } KVMMSRHandlers;
109 
110 static void kvm_init_msrs(X86CPU *cpu);
111 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
112                           QEMUWRMSRHandler *wrmsr);
113 
114 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
115     KVM_CAP_INFO(SET_TSS_ADDR),
116     KVM_CAP_INFO(EXT_CPUID),
117     KVM_CAP_INFO(MP_STATE),
118     KVM_CAP_INFO(SIGNAL_MSI),
119     KVM_CAP_INFO(IRQ_ROUTING),
120     KVM_CAP_INFO(DEBUGREGS),
121     KVM_CAP_INFO(XSAVE),
122     KVM_CAP_INFO(VCPU_EVENTS),
123     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
124     KVM_CAP_INFO(MCE),
125     KVM_CAP_INFO(ADJUST_CLOCK),
126     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
127     KVM_CAP_LAST_INFO
128 };
129 
130 static bool has_msr_star;
131 static bool has_msr_hsave_pa;
132 static bool has_msr_tsc_aux;
133 static bool has_msr_tsc_adjust;
134 static bool has_msr_tsc_deadline;
135 static bool has_msr_feature_control;
136 static bool has_msr_misc_enable;
137 static bool has_msr_smbase;
138 static bool has_msr_bndcfgs;
139 static int lm_capable_kernel;
140 static bool has_msr_hv_hypercall;
141 static bool has_msr_hv_crash;
142 static bool has_msr_hv_reset;
143 static bool has_msr_hv_vpindex;
144 static bool hv_vpindex_settable;
145 static bool has_msr_hv_runtime;
146 static bool has_msr_hv_synic;
147 static bool has_msr_hv_stimer;
148 static bool has_msr_hv_frequencies;
149 static bool has_msr_hv_reenlightenment;
150 static bool has_msr_hv_syndbg_options;
151 static bool has_msr_xss;
152 static bool has_msr_umwait;
153 static bool has_msr_spec_ctrl;
154 static bool has_tsc_scale_msr;
155 static bool has_msr_tsx_ctrl;
156 static bool has_msr_virt_ssbd;
157 static bool has_msr_smi_count;
158 static bool has_msr_arch_capabs;
159 static bool has_msr_core_capabs;
160 static bool has_msr_vmx_vmfunc;
161 static bool has_msr_ucode_rev;
162 static bool has_msr_vmx_procbased_ctls2;
163 static bool has_msr_perf_capabs;
164 static bool has_msr_pkrs;
165 static bool has_msr_hwcr;
166 
167 static uint32_t has_architectural_pmu_version;
168 static uint32_t num_architectural_pmu_gp_counters;
169 static uint32_t num_architectural_pmu_fixed_counters;
170 
171 static int has_xsave2;
172 static int has_xcrs;
173 static int has_sregs2;
174 static int has_exception_payload;
175 static int has_triple_fault_event;
176 
177 static bool has_msr_mcg_ext_ctl;
178 
179 static struct kvm_cpuid2 *cpuid_cache;
180 static struct kvm_cpuid2 *hv_cpuid_cache;
181 static struct kvm_msr_list *kvm_feature_msrs;
182 
183 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
184 
185 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
186 static RateLimit bus_lock_ratelimit_ctrl;
187 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
188 
189 static const char *vm_type_name[] = {
190     [KVM_X86_DEFAULT_VM] = "default",
191     [KVM_X86_SEV_VM] = "SEV",
192     [KVM_X86_SEV_ES_VM] = "SEV-ES",
193     [KVM_X86_SNP_VM] = "SEV-SNP",
194 };
195 
kvm_is_vm_type_supported(int type)196 bool kvm_is_vm_type_supported(int type)
197 {
198     uint32_t machine_types;
199 
200     /*
201      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
202      * is always supported
203      */
204     if (type == KVM_X86_DEFAULT_VM) {
205         return true;
206     }
207 
208     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
209                                         KVM_CAP_VM_TYPES);
210     return !!(machine_types & BIT(type));
211 }
212 
kvm_get_vm_type(MachineState * ms)213 int kvm_get_vm_type(MachineState *ms)
214 {
215     int kvm_type = KVM_X86_DEFAULT_VM;
216 
217     if (ms->cgs) {
218         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
219             error_report("configuration type %s not supported for x86 guests",
220                          object_get_typename(OBJECT(ms->cgs)));
221             exit(1);
222         }
223         kvm_type = x86_confidential_guest_kvm_type(
224             X86_CONFIDENTIAL_GUEST(ms->cgs));
225     }
226 
227     if (!kvm_is_vm_type_supported(kvm_type)) {
228         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
229         exit(1);
230     }
231 
232     return kvm_type;
233 }
234 
kvm_enable_hypercall(uint64_t enable_mask)235 bool kvm_enable_hypercall(uint64_t enable_mask)
236 {
237     KVMState *s = KVM_STATE(current_accel());
238 
239     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
240 }
241 
kvm_has_smm(void)242 bool kvm_has_smm(void)
243 {
244     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
245 }
246 
kvm_has_adjust_clock_stable(void)247 bool kvm_has_adjust_clock_stable(void)
248 {
249     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
250 
251     return (ret & KVM_CLOCK_TSC_STABLE);
252 }
253 
kvm_has_exception_payload(void)254 bool kvm_has_exception_payload(void)
255 {
256     return has_exception_payload;
257 }
258 
kvm_x2apic_api_set_flags(uint64_t flags)259 static bool kvm_x2apic_api_set_flags(uint64_t flags)
260 {
261     KVMState *s = KVM_STATE(current_accel());
262 
263     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
264 }
265 
266 #define MEMORIZE(fn, _result) \
267     ({ \
268         static bool _memorized; \
269         \
270         if (_memorized) { \
271             return _result; \
272         } \
273         _memorized = true; \
274         _result = fn; \
275     })
276 
277 static bool has_x2apic_api;
278 
kvm_has_x2apic_api(void)279 bool kvm_has_x2apic_api(void)
280 {
281     return has_x2apic_api;
282 }
283 
kvm_enable_x2apic(void)284 bool kvm_enable_x2apic(void)
285 {
286     return MEMORIZE(
287              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
288                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
289              has_x2apic_api);
290 }
291 
kvm_hv_vpindex_settable(void)292 bool kvm_hv_vpindex_settable(void)
293 {
294     return hv_vpindex_settable;
295 }
296 
kvm_get_tsc(CPUState * cs)297 static int kvm_get_tsc(CPUState *cs)
298 {
299     X86CPU *cpu = X86_CPU(cs);
300     CPUX86State *env = &cpu->env;
301     uint64_t value;
302     int ret;
303 
304     if (env->tsc_valid) {
305         return 0;
306     }
307 
308     env->tsc_valid = !runstate_is_running();
309 
310     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
311     if (ret < 0) {
312         return ret;
313     }
314 
315     env->tsc = value;
316     return 0;
317 }
318 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)319 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
320 {
321     kvm_get_tsc(cpu);
322 }
323 
kvm_synchronize_all_tsc(void)324 void kvm_synchronize_all_tsc(void)
325 {
326     CPUState *cpu;
327 
328     if (kvm_enabled()) {
329         CPU_FOREACH(cpu) {
330             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
331         }
332     }
333 }
334 
try_get_cpuid(KVMState * s,int max)335 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
336 {
337     struct kvm_cpuid2 *cpuid;
338     int r, size;
339 
340     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
341     cpuid = g_malloc0(size);
342     cpuid->nent = max;
343     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
344     if (r == 0 && cpuid->nent >= max) {
345         r = -E2BIG;
346     }
347     if (r < 0) {
348         if (r == -E2BIG) {
349             g_free(cpuid);
350             return NULL;
351         } else {
352             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
353                     strerror(-r));
354             exit(1);
355         }
356     }
357     return cpuid;
358 }
359 
360 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
361  * for all entries.
362  */
get_supported_cpuid(KVMState * s)363 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
364 {
365     struct kvm_cpuid2 *cpuid;
366     int max = 1;
367 
368     if (cpuid_cache != NULL) {
369         return cpuid_cache;
370     }
371     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
372         max *= 2;
373     }
374     cpuid_cache = cpuid;
375     return cpuid;
376 }
377 
host_tsx_broken(void)378 static bool host_tsx_broken(void)
379 {
380     int family, model, stepping;\
381     char vendor[CPUID_VENDOR_SZ + 1];
382 
383     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
384 
385     /* Check if we are running on a Haswell host known to have broken TSX */
386     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
387            (family == 6) &&
388            ((model == 63 && stepping < 4) ||
389             model == 60 || model == 69 || model == 70);
390 }
391 
392 /* Returns the value for a specific register on the cpuid entry
393  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)394 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
395 {
396     uint32_t ret = 0;
397     switch (reg) {
398     case R_EAX:
399         ret = entry->eax;
400         break;
401     case R_EBX:
402         ret = entry->ebx;
403         break;
404     case R_ECX:
405         ret = entry->ecx;
406         break;
407     case R_EDX:
408         ret = entry->edx;
409         break;
410     }
411     return ret;
412 }
413 
414 /* Find matching entry for function/index on kvm_cpuid2 struct
415  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)416 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
417                                                  uint32_t function,
418                                                  uint32_t index)
419 {
420     int i;
421     for (i = 0; i < cpuid->nent; ++i) {
422         if (cpuid->entries[i].function == function &&
423             cpuid->entries[i].index == index) {
424             return &cpuid->entries[i];
425         }
426     }
427     /* not found: */
428     return NULL;
429 }
430 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)431 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
432                                       uint32_t index, int reg)
433 {
434     struct kvm_cpuid2 *cpuid;
435     uint32_t ret = 0;
436     uint32_t cpuid_1_edx, unused;
437     uint64_t bitmask;
438 
439     cpuid = get_supported_cpuid(s);
440 
441     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
442     if (entry) {
443         ret = cpuid_entry_get_reg(entry, reg);
444     }
445 
446     /* Fixups for the data returned by KVM, below */
447 
448     if (function == 1 && reg == R_EDX) {
449         /* KVM before 2.6.30 misreports the following features */
450         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
451         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
452         ret |= CPUID_HT;
453     } else if (function == 1 && reg == R_ECX) {
454         /* We can set the hypervisor flag, even if KVM does not return it on
455          * GET_SUPPORTED_CPUID
456          */
457         ret |= CPUID_EXT_HYPERVISOR;
458         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
459          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
460          * and the irqchip is in the kernel.
461          */
462         if (kvm_irqchip_in_kernel() &&
463                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
464             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
465         }
466 
467         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
468          * without the in-kernel irqchip
469          */
470         if (!kvm_irqchip_in_kernel()) {
471             ret &= ~CPUID_EXT_X2APIC;
472         }
473 
474         if (enable_cpu_pm) {
475             int disable_exits = kvm_check_extension(s,
476                                                     KVM_CAP_X86_DISABLE_EXITS);
477 
478             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
479                 ret |= CPUID_EXT_MONITOR;
480             }
481         }
482     } else if (function == 6 && reg == R_EAX) {
483         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
484     } else if (function == 7 && index == 0 && reg == R_EBX) {
485         /* Not new instructions, just an optimization.  */
486         uint32_t ebx;
487         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
488         ret |= ebx & CPUID_7_0_EBX_ERMS;
489 
490         if (host_tsx_broken()) {
491             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
492         }
493     } else if (function == 7 && index == 0 && reg == R_EDX) {
494         /* Not new instructions, just an optimization.  */
495         uint32_t edx;
496         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
497         ret |= edx & CPUID_7_0_EDX_FSRM;
498 
499         /*
500          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
501          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
502          * returned by KVM_GET_MSR_INDEX_LIST.
503          *
504          * But also, because Windows does not like ARCH_CAPABILITIES on AMD
505          * mcahines at all, do not show the fake ARCH_CAPABILITIES MSR that
506          * KVM sets up.
507          */
508         if (!has_msr_arch_capabs || !(edx & CPUID_7_0_EDX_ARCH_CAPABILITIES)) {
509             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
510         }
511     } else if (function == 7 && index == 1 && reg == R_EAX) {
512         /* Not new instructions, just an optimization.  */
513         uint32_t eax;
514         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
515         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
516     } else if (function == 7 && index == 2 && reg == R_EDX) {
517         uint32_t edx;
518         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
519         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
520     } else if (function == 0xd && index == 0 &&
521                (reg == R_EAX || reg == R_EDX)) {
522         /*
523          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
524          * features that still have to be enabled with the arch_prctl
525          * system call.  QEMU needs the full value, which is retrieved
526          * with KVM_GET_DEVICE_ATTR.
527          */
528         struct kvm_device_attr attr = {
529             .group = 0,
530             .attr = KVM_X86_XCOMP_GUEST_SUPP,
531             .addr = (unsigned long) &bitmask
532         };
533 
534         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
535         if (!sys_attr) {
536             return ret;
537         }
538 
539         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
540         if (rc < 0) {
541             if (rc != -ENXIO) {
542                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
543                             "error: %d", rc);
544             }
545             return ret;
546         }
547         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
548     } else if (function == 0x80000001 && reg == R_ECX) {
549         /*
550          * It's safe to enable TOPOEXT even if it's not returned by
551          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
552          * us to keep CPU models including TOPOEXT runnable on older kernels.
553          */
554         ret |= CPUID_EXT3_TOPOEXT;
555     } else if (function == 0x80000001 && reg == R_EDX) {
556         /* On Intel, kvm returns cpuid according to the Intel spec,
557          * so add missing bits according to the AMD spec:
558          */
559         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
560         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
561     } else if (function == 0x80000007 && reg == R_EBX) {
562         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
563     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
564         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
565          * be enabled without the in-kernel irqchip
566          */
567         if (!kvm_irqchip_in_kernel()) {
568             ret &= ~CPUID_KVM_PV_UNHALT;
569         }
570         if (kvm_irqchip_is_split()) {
571             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
572         }
573     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
574         ret |= CPUID_KVM_HINTS_REALTIME;
575     }
576 
577     if (current_machine->cgs) {
578         ret = x86_confidential_guest_mask_cpuid_features(
579             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
580             function, index, reg, ret);
581     }
582     return ret;
583 }
584 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)585 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
586 {
587     struct {
588         struct kvm_msrs info;
589         struct kvm_msr_entry entries[1];
590     } msr_data = {};
591     uint64_t value;
592     uint32_t ret, can_be_one, must_be_one;
593 
594     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
595         return 0;
596     }
597 
598     /* Check if requested MSR is supported feature MSR */
599     int i;
600     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
601         if (kvm_feature_msrs->indices[i] == index) {
602             break;
603         }
604     if (i == kvm_feature_msrs->nmsrs) {
605         return 0; /* if the feature MSR is not supported, simply return 0 */
606     }
607 
608     msr_data.info.nmsrs = 1;
609     msr_data.entries[0].index = index;
610 
611     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
612     if (ret != 1) {
613         error_report("KVM get MSR (index=0x%x) feature failed, %s",
614             index, strerror(-ret));
615         exit(1);
616     }
617 
618     value = msr_data.entries[0].data;
619     switch (index) {
620     case MSR_IA32_VMX_PROCBASED_CTLS2:
621         if (!has_msr_vmx_procbased_ctls2) {
622             /* KVM forgot to add these bits for some time, do this ourselves. */
623             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
624                 CPUID_XSAVE_XSAVES) {
625                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
626             }
627             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
628                 CPUID_EXT_RDRAND) {
629                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
630             }
631             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
632                 CPUID_7_0_EBX_INVPCID) {
633                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
634             }
635             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
636                 CPUID_7_0_EBX_RDSEED) {
637                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
638             }
639             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
640                 CPUID_EXT2_RDTSCP) {
641                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
642             }
643         }
644         /* fall through */
645     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
646     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
647     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
648     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
649         /*
650          * Return true for bits that can be one, but do not have to be one.
651          * The SDM tells us which bits could have a "must be one" setting,
652          * so we can do the opposite transformation in make_vmx_msr_value.
653          */
654         must_be_one = (uint32_t)value;
655         can_be_one = (uint32_t)(value >> 32);
656         return can_be_one & ~must_be_one;
657 
658     default:
659         return value;
660     }
661 }
662 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)663 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
664                                      int *max_banks)
665 {
666     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
667     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
668 }
669 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)670 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
671 {
672     CPUState *cs = CPU(cpu);
673     CPUX86State *env = &cpu->env;
674     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
675                       MCI_STATUS_ADDRV;
676     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
677     int flags = 0;
678 
679     if (!IS_AMD_CPU(env)) {
680         status |= MCI_STATUS_S | MCI_STATUS_UC;
681         if (code == BUS_MCEERR_AR) {
682             status |= MCI_STATUS_AR | 0x134;
683             mcg_status |= MCG_STATUS_EIPV;
684         } else {
685             status |= 0xc0;
686         }
687     } else {
688         if (code == BUS_MCEERR_AR) {
689             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
690             mcg_status |= MCG_STATUS_EIPV;
691         } else {
692             /* Setting the POISON bit for deferred errors indicates to the
693              * guest kernel that the address provided by the MCE is valid
694              * and usable which will ensure that the guest kernel will send
695              * a SIGBUS_AO signal to the guest process. This allows for
696              * more desirable behavior in the case that the guest process
697              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
698              * which indicates that the process would prefer to handle or
699              * shutdown due to the poisoned memory condition before the
700              * memory has been accessed.
701              *
702              * While the POISON bit would not be set in a deferred error
703              * sent from hardware, the bit is not meaningful for deferred
704              * errors and can be reused in this scenario.
705              */
706             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
707         }
708     }
709 
710     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
711     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
712      * guest kernel back into env->mcg_ext_ctl.
713      */
714     cpu_synchronize_state(cs);
715     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
716         mcg_status |= MCG_STATUS_LMCE;
717         flags = 0;
718     }
719 
720     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
721                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
722 }
723 
emit_hypervisor_memory_failure(MemoryFailureAction action,bool ar)724 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
725 {
726     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
727 
728     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
729                                    &mff);
730 }
731 
hardware_memory_error(void * host_addr)732 static void hardware_memory_error(void *host_addr)
733 {
734     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
735     error_report("QEMU got Hardware memory error at addr %p", host_addr);
736     exit(1);
737 }
738 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)739 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
740 {
741     X86CPU *cpu = X86_CPU(c);
742     CPUX86State *env = &cpu->env;
743     ram_addr_t ram_addr;
744     hwaddr paddr;
745 
746     /* If we get an action required MCE, it has been injected by KVM
747      * while the VM was running.  An action optional MCE instead should
748      * be coming from the main thread, which qemu_init_sigbus identifies
749      * as the "early kill" thread.
750      */
751     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
752 
753     if ((env->mcg_cap & MCG_SER_P) && addr) {
754         ram_addr = qemu_ram_addr_from_host(addr);
755         if (ram_addr != RAM_ADDR_INVALID &&
756             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
757             kvm_hwpoison_page_add(ram_addr);
758             kvm_mce_inject(cpu, paddr, code);
759 
760             /*
761              * Use different logging severity based on error type.
762              * If there is additional MCE reporting on the hypervisor, QEMU VA
763              * could be another source to identify the PA and MCE details.
764              */
765             if (code == BUS_MCEERR_AR) {
766                 error_report("Guest MCE Memory Error at QEMU addr %p and "
767                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
768                     addr, paddr, "BUS_MCEERR_AR");
769             } else {
770                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
771                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
772                      addr, paddr, "BUS_MCEERR_AO");
773             }
774 
775             return;
776         }
777 
778         if (code == BUS_MCEERR_AO) {
779             warn_report("Hardware memory error at addr %p of type %s "
780                 "for memory used by QEMU itself instead of guest system!",
781                  addr, "BUS_MCEERR_AO");
782         }
783     }
784 
785     if (code == BUS_MCEERR_AR) {
786         hardware_memory_error(addr);
787     }
788 
789     /* Hope we are lucky for AO MCE, just notify a event */
790     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
791 }
792 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)793 static void kvm_queue_exception(CPUX86State *env,
794                                 int32_t exception_nr,
795                                 uint8_t exception_has_payload,
796                                 uint64_t exception_payload)
797 {
798     assert(env->exception_nr == -1);
799     assert(!env->exception_pending);
800     assert(!env->exception_injected);
801     assert(!env->exception_has_payload);
802 
803     env->exception_nr = exception_nr;
804 
805     if (has_exception_payload) {
806         env->exception_pending = 1;
807 
808         env->exception_has_payload = exception_has_payload;
809         env->exception_payload = exception_payload;
810     } else {
811         env->exception_injected = 1;
812 
813         if (exception_nr == EXCP01_DB) {
814             assert(exception_has_payload);
815             env->dr[6] = exception_payload;
816         } else if (exception_nr == EXCP0E_PAGE) {
817             assert(exception_has_payload);
818             env->cr[2] = exception_payload;
819         } else {
820             assert(!exception_has_payload);
821         }
822     }
823 }
824 
cpu_update_state(void * opaque,bool running,RunState state)825 static void cpu_update_state(void *opaque, bool running, RunState state)
826 {
827     CPUX86State *env = opaque;
828 
829     if (running) {
830         env->tsc_valid = false;
831     }
832 }
833 
kvm_arch_vcpu_id(CPUState * cs)834 unsigned long kvm_arch_vcpu_id(CPUState *cs)
835 {
836     X86CPU *cpu = X86_CPU(cs);
837     return cpu->apic_id;
838 }
839 
840 #ifndef KVM_CPUID_SIGNATURE_NEXT
841 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
842 #endif
843 
hyperv_enabled(X86CPU * cpu)844 static bool hyperv_enabled(X86CPU *cpu)
845 {
846     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
847         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
848          cpu->hyperv_features || cpu->hyperv_passthrough);
849 }
850 
851 /*
852  * Check whether target_freq is within conservative
853  * ntp correctable bounds (250ppm) of freq
854  */
freq_within_bounds(int freq,int target_freq)855 static inline bool freq_within_bounds(int freq, int target_freq)
856 {
857         int max_freq = freq + (freq * 250 / 1000000);
858         int min_freq = freq - (freq * 250 / 1000000);
859 
860         if (target_freq >= min_freq && target_freq <= max_freq) {
861                 return true;
862         }
863 
864         return false;
865 }
866 
kvm_arch_set_tsc_khz(CPUState * cs)867 static int kvm_arch_set_tsc_khz(CPUState *cs)
868 {
869     X86CPU *cpu = X86_CPU(cs);
870     CPUX86State *env = &cpu->env;
871     int r, cur_freq;
872     bool set_ioctl = false;
873 
874     if (!env->tsc_khz) {
875         return 0;
876     }
877 
878     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
879                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
880 
881     /*
882      * If TSC scaling is supported, attempt to set TSC frequency.
883      */
884     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
885         set_ioctl = true;
886     }
887 
888     /*
889      * If desired TSC frequency is within bounds of NTP correction,
890      * attempt to set TSC frequency.
891      */
892     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
893         set_ioctl = true;
894     }
895 
896     r = set_ioctl ?
897         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
898         -ENOTSUP;
899 
900     if (r < 0) {
901         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
902          * TSC frequency doesn't match the one we want.
903          */
904         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
905                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
906                    -ENOTSUP;
907         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
908             warn_report("TSC frequency mismatch between "
909                         "VM (%" PRId64 " kHz) and host (%d kHz), "
910                         "and TSC scaling unavailable",
911                         env->tsc_khz, cur_freq);
912             return r;
913         }
914     }
915 
916     return 0;
917 }
918 
tsc_is_stable_and_known(CPUX86State * env)919 static bool tsc_is_stable_and_known(CPUX86State *env)
920 {
921     if (!env->tsc_khz) {
922         return false;
923     }
924     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
925         || env->user_tsc_khz;
926 }
927 
928 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
929 
930 static struct {
931     const char *desc;
932     struct {
933         uint32_t func;
934         int reg;
935         uint32_t bits;
936     } flags[2];
937     uint64_t dependencies;
938     bool skip_passthrough;
939 } kvm_hyperv_properties[] = {
940     [HYPERV_FEAT_RELAXED] = {
941         .desc = "relaxed timing (hv-relaxed)",
942         .flags = {
943             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
944              .bits = HV_RELAXED_TIMING_RECOMMENDED}
945         }
946     },
947     [HYPERV_FEAT_VAPIC] = {
948         .desc = "virtual APIC (hv-vapic)",
949         .flags = {
950             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
951              .bits = HV_APIC_ACCESS_AVAILABLE}
952         }
953     },
954     [HYPERV_FEAT_TIME] = {
955         .desc = "clocksources (hv-time)",
956         .flags = {
957             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
958              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
959         }
960     },
961     [HYPERV_FEAT_CRASH] = {
962         .desc = "crash MSRs (hv-crash)",
963         .flags = {
964             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
965              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
966         }
967     },
968     [HYPERV_FEAT_RESET] = {
969         .desc = "reset MSR (hv-reset)",
970         .flags = {
971             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
972              .bits = HV_RESET_AVAILABLE}
973         }
974     },
975     [HYPERV_FEAT_VPINDEX] = {
976         .desc = "VP_INDEX MSR (hv-vpindex)",
977         .flags = {
978             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
979              .bits = HV_VP_INDEX_AVAILABLE}
980         }
981     },
982     [HYPERV_FEAT_RUNTIME] = {
983         .desc = "VP_RUNTIME MSR (hv-runtime)",
984         .flags = {
985             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
986              .bits = HV_VP_RUNTIME_AVAILABLE}
987         }
988     },
989     [HYPERV_FEAT_SYNIC] = {
990         .desc = "synthetic interrupt controller (hv-synic)",
991         .flags = {
992             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
993              .bits = HV_SYNIC_AVAILABLE}
994         }
995     },
996     [HYPERV_FEAT_STIMER] = {
997         .desc = "synthetic timers (hv-stimer)",
998         .flags = {
999             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1000              .bits = HV_SYNTIMERS_AVAILABLE}
1001         },
1002         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1003     },
1004     [HYPERV_FEAT_FREQUENCIES] = {
1005         .desc = "frequency MSRs (hv-frequencies)",
1006         .flags = {
1007             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1008              .bits = HV_ACCESS_FREQUENCY_MSRS},
1009             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1010              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1011         }
1012     },
1013     [HYPERV_FEAT_REENLIGHTENMENT] = {
1014         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1015         .flags = {
1016             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1017              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1018         }
1019     },
1020     [HYPERV_FEAT_TLBFLUSH] = {
1021         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1022         .flags = {
1023             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1024              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1025              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1026         },
1027         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1028     },
1029     [HYPERV_FEAT_EVMCS] = {
1030         .desc = "enlightened VMCS (hv-evmcs)",
1031         .flags = {
1032             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1033              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1034         },
1035         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1036     },
1037     [HYPERV_FEAT_IPI] = {
1038         .desc = "paravirtualized IPI (hv-ipi)",
1039         .flags = {
1040             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1041              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1042              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1043         },
1044         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1045     },
1046     [HYPERV_FEAT_STIMER_DIRECT] = {
1047         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1048         .flags = {
1049             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1050              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1051         },
1052         .dependencies = BIT(HYPERV_FEAT_STIMER)
1053     },
1054     [HYPERV_FEAT_AVIC] = {
1055         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1056         .flags = {
1057             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1058              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1059         }
1060     },
1061     [HYPERV_FEAT_SYNDBG] = {
1062         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1063         .flags = {
1064             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1065              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1066         },
1067         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1068         .skip_passthrough = true,
1069     },
1070     [HYPERV_FEAT_MSR_BITMAP] = {
1071         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1072         .flags = {
1073             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1074              .bits = HV_NESTED_MSR_BITMAP}
1075         }
1076     },
1077     [HYPERV_FEAT_XMM_INPUT] = {
1078         .desc = "XMM fast hypercall input (hv-xmm-input)",
1079         .flags = {
1080             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1081              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1082         }
1083     },
1084     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1085         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1086         .flags = {
1087             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1088              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1089         },
1090         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1091     },
1092     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1093         .desc = "direct TLB flush (hv-tlbflush-direct)",
1094         .flags = {
1095             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1096              .bits = HV_NESTED_DIRECT_FLUSH}
1097         },
1098         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1099     },
1100 };
1101 
try_get_hv_cpuid(CPUState * cs,int max,bool do_sys_ioctl)1102 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1103                                            bool do_sys_ioctl)
1104 {
1105     struct kvm_cpuid2 *cpuid;
1106     int r, size;
1107 
1108     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1109     cpuid = g_malloc0(size);
1110     cpuid->nent = max;
1111 
1112     if (do_sys_ioctl) {
1113         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1114     } else {
1115         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1116     }
1117     if (r == 0 && cpuid->nent >= max) {
1118         r = -E2BIG;
1119     }
1120     if (r < 0) {
1121         if (r == -E2BIG) {
1122             g_free(cpuid);
1123             return NULL;
1124         } else {
1125             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1126                     strerror(-r));
1127             exit(1);
1128         }
1129     }
1130     return cpuid;
1131 }
1132 
1133 /*
1134  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1135  * for all entries.
1136  */
get_supported_hv_cpuid(CPUState * cs)1137 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1138 {
1139     struct kvm_cpuid2 *cpuid;
1140     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1141     int max = 11;
1142     int i;
1143     bool do_sys_ioctl;
1144 
1145     do_sys_ioctl =
1146         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1147 
1148     /*
1149      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1150      * unsupported, kvm_hyperv_expand_features() checks for that.
1151      */
1152     assert(do_sys_ioctl || cs->kvm_state);
1153 
1154     /*
1155      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1156      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1157      * it and re-trying until we succeed.
1158      */
1159     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1160         max++;
1161     }
1162 
1163     /*
1164      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1165      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1166      * information early, just check for the capability and set the bit
1167      * manually.
1168      */
1169     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1170                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1171         for (i = 0; i < cpuid->nent; i++) {
1172             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1173                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1174             }
1175         }
1176     }
1177 
1178     return cpuid;
1179 }
1180 
1181 /*
1182  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1183  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1184  */
get_supported_hv_cpuid_legacy(CPUState * cs)1185 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1186 {
1187     X86CPU *cpu = X86_CPU(cs);
1188     struct kvm_cpuid2 *cpuid;
1189     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1190 
1191     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1192     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1193     cpuid->nent = 2;
1194 
1195     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1196     entry_feat = &cpuid->entries[0];
1197     entry_feat->function = HV_CPUID_FEATURES;
1198 
1199     entry_recomm = &cpuid->entries[1];
1200     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1201     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1202 
1203     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1204         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1205         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1206         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1207         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1208         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1209     }
1210 
1211     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1212         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1213         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1214     }
1215 
1216     if (has_msr_hv_frequencies) {
1217         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1218         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1219     }
1220 
1221     if (has_msr_hv_crash) {
1222         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1223     }
1224 
1225     if (has_msr_hv_reenlightenment) {
1226         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1227     }
1228 
1229     if (has_msr_hv_reset) {
1230         entry_feat->eax |= HV_RESET_AVAILABLE;
1231     }
1232 
1233     if (has_msr_hv_vpindex) {
1234         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1235     }
1236 
1237     if (has_msr_hv_runtime) {
1238         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1239     }
1240 
1241     if (has_msr_hv_synic) {
1242         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1243             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1244 
1245         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1246             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1247         }
1248     }
1249 
1250     if (has_msr_hv_stimer) {
1251         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1252     }
1253 
1254     if (has_msr_hv_syndbg_options) {
1255         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1256         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1257         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1258     }
1259 
1260     if (kvm_check_extension(cs->kvm_state,
1261                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1262         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1263         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1264     }
1265 
1266     if (kvm_check_extension(cs->kvm_state,
1267                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1268         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1269     }
1270 
1271     if (kvm_check_extension(cs->kvm_state,
1272                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1273         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1274         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1275     }
1276 
1277     return cpuid;
1278 }
1279 
hv_cpuid_get_host(CPUState * cs,uint32_t func,int reg)1280 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1281 {
1282     struct kvm_cpuid_entry2 *entry;
1283     struct kvm_cpuid2 *cpuid;
1284 
1285     if (hv_cpuid_cache) {
1286         cpuid = hv_cpuid_cache;
1287     } else {
1288         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1289             cpuid = get_supported_hv_cpuid(cs);
1290         } else {
1291             /*
1292              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1293              * before KVM context is created but this is only done when
1294              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1295              * KVM_CAP_HYPERV_CPUID.
1296              */
1297             assert(cs->kvm_state);
1298 
1299             cpuid = get_supported_hv_cpuid_legacy(cs);
1300         }
1301         hv_cpuid_cache = cpuid;
1302     }
1303 
1304     if (!cpuid) {
1305         return 0;
1306     }
1307 
1308     entry = cpuid_find_entry(cpuid, func, 0);
1309     if (!entry) {
1310         return 0;
1311     }
1312 
1313     return cpuid_entry_get_reg(entry, reg);
1314 }
1315 
hyperv_feature_supported(CPUState * cs,int feature)1316 static bool hyperv_feature_supported(CPUState *cs, int feature)
1317 {
1318     uint32_t func, bits;
1319     int i, reg;
1320 
1321     /*
1322      * kvm_hyperv_properties needs to define at least one CPUID flag which
1323      * must be used to detect the feature, it's hard to say whether it is
1324      * supported or not otherwise.
1325      */
1326     assert(kvm_hyperv_properties[feature].flags[0].func);
1327 
1328     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1329 
1330         func = kvm_hyperv_properties[feature].flags[i].func;
1331         reg = kvm_hyperv_properties[feature].flags[i].reg;
1332         bits = kvm_hyperv_properties[feature].flags[i].bits;
1333 
1334         if (!func) {
1335             continue;
1336         }
1337 
1338         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1339             return false;
1340         }
1341     }
1342 
1343     return true;
1344 }
1345 
1346 /* Checks that all feature dependencies are enabled */
hv_feature_check_deps(X86CPU * cpu,int feature,Error ** errp)1347 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1348 {
1349     uint64_t deps;
1350     int dep_feat;
1351 
1352     deps = kvm_hyperv_properties[feature].dependencies;
1353     while (deps) {
1354         dep_feat = ctz64(deps);
1355         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1356             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1357                        kvm_hyperv_properties[feature].desc,
1358                        kvm_hyperv_properties[dep_feat].desc);
1359             return false;
1360         }
1361         deps &= ~(1ull << dep_feat);
1362     }
1363 
1364     return true;
1365 }
1366 
hv_build_cpuid_leaf(CPUState * cs,uint32_t func,int reg)1367 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1368 {
1369     X86CPU *cpu = X86_CPU(cs);
1370     uint32_t r = 0;
1371     int i, j;
1372 
1373     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1374         if (!hyperv_feat_enabled(cpu, i)) {
1375             continue;
1376         }
1377 
1378         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1379             if (kvm_hyperv_properties[i].flags[j].func != func) {
1380                 continue;
1381             }
1382             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1383                 continue;
1384             }
1385 
1386             r |= kvm_hyperv_properties[i].flags[j].bits;
1387         }
1388     }
1389 
1390     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1391     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1392         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1393             r |= DEFAULT_EVMCS_VERSION;
1394         }
1395     }
1396 
1397     return r;
1398 }
1399 
1400 /*
1401  * Expand Hyper-V CPU features. In partucular, check that all the requested
1402  * features are supported by the host and the sanity of the configuration
1403  * (that all the required dependencies are included). Also, this takes care
1404  * of 'hv_passthrough' mode and fills the environment with all supported
1405  * Hyper-V features.
1406  */
kvm_hyperv_expand_features(X86CPU * cpu,Error ** errp)1407 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1408 {
1409     CPUState *cs = CPU(cpu);
1410     Error *local_err = NULL;
1411     int feat;
1412 
1413     if (!hyperv_enabled(cpu))
1414         return true;
1415 
1416     /*
1417      * When kvm_hyperv_expand_features is called at CPU feature expansion
1418      * time per-CPU kvm_state is not available yet so we can only proceed
1419      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1420      */
1421     if (!cs->kvm_state &&
1422         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1423         return true;
1424 
1425     if (cpu->hyperv_passthrough) {
1426         cpu->hyperv_vendor_id[0] =
1427             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1428         cpu->hyperv_vendor_id[1] =
1429             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1430         cpu->hyperv_vendor_id[2] =
1431             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1432         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1433                                        sizeof(cpu->hyperv_vendor_id) + 1);
1434         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1435                sizeof(cpu->hyperv_vendor_id));
1436         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1437 
1438         cpu->hyperv_interface_id[0] =
1439             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1440         cpu->hyperv_interface_id[1] =
1441             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1442         cpu->hyperv_interface_id[2] =
1443             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1444         cpu->hyperv_interface_id[3] =
1445             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1446 
1447         cpu->hyperv_ver_id_build =
1448             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1449         cpu->hyperv_ver_id_major =
1450             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1451         cpu->hyperv_ver_id_minor =
1452             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1453         cpu->hyperv_ver_id_sp =
1454             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1455         cpu->hyperv_ver_id_sb =
1456             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1457         cpu->hyperv_ver_id_sn =
1458             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1459 
1460         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1461                                             R_EAX);
1462         cpu->hyperv_limits[0] =
1463             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1464         cpu->hyperv_limits[1] =
1465             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1466         cpu->hyperv_limits[2] =
1467             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1468 
1469         cpu->hyperv_spinlock_attempts =
1470             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1471 
1472         /*
1473          * Mark feature as enabled in 'cpu->hyperv_features' as
1474          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1475          */
1476         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1477             if (hyperv_feature_supported(cs, feat) &&
1478                 !kvm_hyperv_properties[feat].skip_passthrough) {
1479                 cpu->hyperv_features |= BIT(feat);
1480             }
1481         }
1482     } else {
1483         /* Check features availability and dependencies */
1484         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1485             /* If the feature was not requested skip it. */
1486             if (!hyperv_feat_enabled(cpu, feat)) {
1487                 continue;
1488             }
1489 
1490             /* Check if the feature is supported by KVM */
1491             if (!hyperv_feature_supported(cs, feat)) {
1492                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1493                            kvm_hyperv_properties[feat].desc);
1494                 return false;
1495             }
1496 
1497             /* Check dependencies */
1498             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1499                 error_propagate(errp, local_err);
1500                 return false;
1501             }
1502         }
1503     }
1504 
1505     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1506     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1507         !cpu->hyperv_synic_kvm_only &&
1508         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1509         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1510                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1511                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1512         return false;
1513     }
1514 
1515     return true;
1516 }
1517 
1518 /*
1519  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1520  */
hyperv_fill_cpuids(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1521 static int hyperv_fill_cpuids(CPUState *cs,
1522                               struct kvm_cpuid_entry2 *cpuid_ent)
1523 {
1524     X86CPU *cpu = X86_CPU(cs);
1525     struct kvm_cpuid_entry2 *c;
1526     uint32_t signature[3];
1527     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1528     uint32_t nested_eax =
1529         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1530 
1531     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1532         HV_CPUID_IMPLEMENT_LIMITS;
1533 
1534     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1535         max_cpuid_leaf =
1536             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1537     }
1538 
1539     c = &cpuid_ent[cpuid_i++];
1540     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1541     c->eax = max_cpuid_leaf;
1542     c->ebx = cpu->hyperv_vendor_id[0];
1543     c->ecx = cpu->hyperv_vendor_id[1];
1544     c->edx = cpu->hyperv_vendor_id[2];
1545 
1546     c = &cpuid_ent[cpuid_i++];
1547     c->function = HV_CPUID_INTERFACE;
1548     c->eax = cpu->hyperv_interface_id[0];
1549     c->ebx = cpu->hyperv_interface_id[1];
1550     c->ecx = cpu->hyperv_interface_id[2];
1551     c->edx = cpu->hyperv_interface_id[3];
1552 
1553     c = &cpuid_ent[cpuid_i++];
1554     c->function = HV_CPUID_VERSION;
1555     c->eax = cpu->hyperv_ver_id_build;
1556     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1557         cpu->hyperv_ver_id_minor;
1558     c->ecx = cpu->hyperv_ver_id_sp;
1559     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1560         (cpu->hyperv_ver_id_sn & 0xffffff);
1561 
1562     c = &cpuid_ent[cpuid_i++];
1563     c->function = HV_CPUID_FEATURES;
1564     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1565     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1566     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1567 
1568     /* Unconditionally required with any Hyper-V enlightenment */
1569     c->eax |= HV_HYPERCALL_AVAILABLE;
1570 
1571     /* SynIC and Vmbus devices require messages/signals hypercalls */
1572     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1573         !cpu->hyperv_synic_kvm_only) {
1574         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1575     }
1576 
1577 
1578     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1579     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1580 
1581     c = &cpuid_ent[cpuid_i++];
1582     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1583     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1584     c->ebx = cpu->hyperv_spinlock_attempts;
1585 
1586     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1587         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1588         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1589     }
1590 
1591     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1592         c->eax |= HV_NO_NONARCH_CORESHARING;
1593     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1594         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1595             HV_NO_NONARCH_CORESHARING;
1596     }
1597 
1598     c = &cpuid_ent[cpuid_i++];
1599     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1600     c->eax = cpu->hv_max_vps;
1601     c->ebx = cpu->hyperv_limits[0];
1602     c->ecx = cpu->hyperv_limits[1];
1603     c->edx = cpu->hyperv_limits[2];
1604 
1605     if (nested_eax) {
1606         uint32_t function;
1607 
1608         /* Create zeroed 0x40000006..0x40000009 leaves */
1609         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1610              function < HV_CPUID_NESTED_FEATURES; function++) {
1611             c = &cpuid_ent[cpuid_i++];
1612             c->function = function;
1613         }
1614 
1615         c = &cpuid_ent[cpuid_i++];
1616         c->function = HV_CPUID_NESTED_FEATURES;
1617         c->eax = nested_eax;
1618     }
1619 
1620     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1621         c = &cpuid_ent[cpuid_i++];
1622         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1623         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1624             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1625         memcpy(signature, "Microsoft VS", 12);
1626         c->eax = 0;
1627         c->ebx = signature[0];
1628         c->ecx = signature[1];
1629         c->edx = signature[2];
1630 
1631         c = &cpuid_ent[cpuid_i++];
1632         c->function = HV_CPUID_SYNDBG_INTERFACE;
1633         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1634         c->eax = signature[0];
1635         c->ebx = 0;
1636         c->ecx = 0;
1637         c->edx = 0;
1638 
1639         c = &cpuid_ent[cpuid_i++];
1640         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1641         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1642         c->ebx = 0;
1643         c->ecx = 0;
1644         c->edx = 0;
1645     }
1646 
1647     return cpuid_i;
1648 }
1649 
1650 static Error *hv_passthrough_mig_blocker;
1651 static Error *hv_no_nonarch_cs_mig_blocker;
1652 
1653 /* Checks that the exposed eVMCS version range is supported by KVM */
evmcs_version_supported(uint16_t evmcs_version,uint16_t supported_evmcs_version)1654 static bool evmcs_version_supported(uint16_t evmcs_version,
1655                                     uint16_t supported_evmcs_version)
1656 {
1657     uint8_t min_version = evmcs_version & 0xff;
1658     uint8_t max_version = evmcs_version >> 8;
1659     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1660     uint8_t max_supported_version = supported_evmcs_version >> 8;
1661 
1662     return (min_version >= min_supported_version) &&
1663         (max_version <= max_supported_version);
1664 }
1665 
hyperv_init_vcpu(X86CPU * cpu)1666 static int hyperv_init_vcpu(X86CPU *cpu)
1667 {
1668     CPUState *cs = CPU(cpu);
1669     Error *local_err = NULL;
1670     int ret;
1671 
1672     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1673         error_setg(&hv_passthrough_mig_blocker,
1674                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1675                    " set of hv-* flags instead");
1676         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1677         if (ret < 0) {
1678             error_report_err(local_err);
1679             return ret;
1680         }
1681     }
1682 
1683     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1684         hv_no_nonarch_cs_mig_blocker == NULL) {
1685         error_setg(&hv_no_nonarch_cs_mig_blocker,
1686                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1687                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1688                    " make sure SMT is disabled and/or that vCPUs are properly"
1689                    " pinned)");
1690         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1691         if (ret < 0) {
1692             error_report_err(local_err);
1693             return ret;
1694         }
1695     }
1696 
1697     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1698         /*
1699          * the kernel doesn't support setting vp_index; assert that its value
1700          * is in sync
1701          */
1702         uint64_t value;
1703 
1704         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1705         if (ret < 0) {
1706             return ret;
1707         }
1708 
1709         if (value != hyperv_vp_index(CPU(cpu))) {
1710             error_report("kernel's vp_index != QEMU's vp_index");
1711             return -ENXIO;
1712         }
1713     }
1714 
1715     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1716         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1717             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1718         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1719         if (ret < 0) {
1720             error_report("failed to turn on HyperV SynIC in KVM: %s",
1721                          strerror(-ret));
1722             return ret;
1723         }
1724 
1725         if (!cpu->hyperv_synic_kvm_only) {
1726             ret = hyperv_x86_synic_add(cpu);
1727             if (ret < 0) {
1728                 error_report("failed to create HyperV SynIC: %s",
1729                              strerror(-ret));
1730                 return ret;
1731             }
1732         }
1733     }
1734 
1735     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1736         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1737         uint16_t supported_evmcs_version;
1738 
1739         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1740                                   (uintptr_t)&supported_evmcs_version);
1741 
1742         /*
1743          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1744          * option sets. Note: we hardcode the maximum supported eVMCS version
1745          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1746          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1747          * to be added.
1748          */
1749         if (ret < 0) {
1750             error_report("Hyper-V %s is not supported by kernel",
1751                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1752             return ret;
1753         }
1754 
1755         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1756             error_report("eVMCS version range [%d..%d] is not supported by "
1757                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1758                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1759                          supported_evmcs_version >> 8);
1760             return -ENOTSUP;
1761         }
1762     }
1763 
1764     if (cpu->hyperv_enforce_cpuid) {
1765         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1766         if (ret < 0) {
1767             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1768                          strerror(-ret));
1769             return ret;
1770         }
1771     }
1772 
1773     /* Skip SynIC and VP_INDEX since they are hard deps already */
1774     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1775         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1776         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1777         hyperv_x86_set_vmbus_recommended_features_enabled();
1778     }
1779 
1780     return 0;
1781 }
1782 
1783 static Error *invtsc_mig_blocker;
1784 
1785 #define KVM_MAX_CPUID_ENTRIES  100
1786 
kvm_init_xsave(CPUX86State * env)1787 static void kvm_init_xsave(CPUX86State *env)
1788 {
1789     if (has_xsave2) {
1790         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1791     } else {
1792         env->xsave_buf_len = sizeof(struct kvm_xsave);
1793     }
1794 
1795     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1796     memset(env->xsave_buf, 0, env->xsave_buf_len);
1797     /*
1798      * The allocated storage must be large enough for all of the
1799      * possible XSAVE state components.
1800      */
1801     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1802            env->xsave_buf_len);
1803 }
1804 
kvm_init_nested_state(CPUX86State * env)1805 static void kvm_init_nested_state(CPUX86State *env)
1806 {
1807     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1808     uint32_t size;
1809 
1810     if (!env->nested_state) {
1811         return;
1812     }
1813 
1814     size = env->nested_state->size;
1815 
1816     memset(env->nested_state, 0, size);
1817     env->nested_state->size = size;
1818 
1819     if (cpu_has_vmx(env)) {
1820         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1821         vmx_hdr = &env->nested_state->hdr.vmx;
1822         vmx_hdr->vmxon_pa = -1ull;
1823         vmx_hdr->vmcs12_pa = -1ull;
1824     } else if (cpu_has_svm(env)) {
1825         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1826     }
1827 }
1828 
kvm_x86_build_cpuid(CPUX86State * env,struct kvm_cpuid_entry2 * entries,uint32_t cpuid_i)1829 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1830                                     struct kvm_cpuid_entry2 *entries,
1831                                     uint32_t cpuid_i)
1832 {
1833     uint32_t limit, i, j;
1834     uint32_t unused;
1835     struct kvm_cpuid_entry2 *c;
1836 
1837     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1838 
1839     for (i = 0; i <= limit; i++) {
1840         j = 0;
1841         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1842             goto full;
1843         }
1844         c = &entries[cpuid_i++];
1845         switch (i) {
1846         case 2: {
1847             /* Keep reading function 2 till all the input is received */
1848             int times;
1849 
1850             c->function = i;
1851             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1852             times = c->eax & 0xff;
1853             if (times > 1) {
1854                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1855                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1856             }
1857 
1858             for (j = 1; j < times; ++j) {
1859                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1860                     goto full;
1861                 }
1862                 c = &entries[cpuid_i++];
1863                 c->function = i;
1864                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1865                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1866             }
1867             break;
1868         }
1869         case 0x1f:
1870             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1871                 cpuid_i--;
1872                 break;
1873             }
1874             /* fallthrough */
1875         case 4:
1876         case 0xb:
1877         case 0xd:
1878             for (j = 0; ; j++) {
1879                 c->function = i;
1880                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1881                 c->index = j;
1882                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1883 
1884                 if (i == 4 && c->eax == 0) {
1885                     break;
1886                 }
1887                 if (i == 0xb && !(c->ecx & 0xff00)) {
1888                     break;
1889                 }
1890                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1891                     break;
1892                 }
1893                 if (i == 0xd && c->eax == 0) {
1894                     if (j < 63) {
1895                         continue;
1896                     } else {
1897                         cpuid_i--;
1898                         break;
1899                     }
1900                 }
1901                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1902                     goto full;
1903                 }
1904                 c = &entries[cpuid_i++];
1905             }
1906             break;
1907         case 0x12:
1908             for (j = 0; ; j++) {
1909                 c->function = i;
1910                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1911                 c->index = j;
1912                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1913 
1914                 if (j > 1 && (c->eax & 0xf) != 1) {
1915                     break;
1916                 }
1917 
1918                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1919                     goto full;
1920                 }
1921                 c = &entries[cpuid_i++];
1922             }
1923             break;
1924         case 0x7:
1925         case 0x14:
1926         case 0x1d:
1927         case 0x1e:
1928         case 0x24: {
1929             uint32_t times;
1930 
1931             c->function = i;
1932             c->index = 0;
1933             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1934             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1935             times = c->eax;
1936 
1937             for (j = 1; j <= times; ++j) {
1938                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1939                     goto full;
1940                 }
1941                 c = &entries[cpuid_i++];
1942                 c->function = i;
1943                 c->index = j;
1944                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1945                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946             }
1947             break;
1948         }
1949         default:
1950             c->function = i;
1951             c->flags = 0;
1952             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1953             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1954                 /*
1955                  * KVM already returns all zeroes if a CPUID entry is missing,
1956                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1957                  */
1958                 cpuid_i--;
1959             }
1960             break;
1961         }
1962     }
1963 
1964     if (limit >= 0x0a) {
1965         uint32_t eax, edx;
1966 
1967         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1968 
1969         has_architectural_pmu_version = eax & 0xff;
1970         if (has_architectural_pmu_version > 0) {
1971             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1972 
1973             /* Shouldn't be more than 32, since that's the number of bits
1974              * available in EBX to tell us _which_ counters are available.
1975              * Play it safe.
1976              */
1977             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1978                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1979             }
1980 
1981             if (has_architectural_pmu_version > 1) {
1982                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1983 
1984                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1985                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1986                 }
1987             }
1988         }
1989     }
1990 
1991     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1992 
1993     for (i = 0x80000000; i <= limit; i++) {
1994         j = 0;
1995         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1996             goto full;
1997         }
1998         c = &entries[cpuid_i++];
1999 
2000         switch (i) {
2001         case 0x8000001d:
2002             /* Query for all AMD cache information leaves */
2003             for (j = 0; ; j++) {
2004                 c->function = i;
2005                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2006                 c->index = j;
2007                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2008 
2009                 if (c->eax == 0) {
2010                     break;
2011                 }
2012                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2013                     goto full;
2014                 }
2015                 c = &entries[cpuid_i++];
2016             }
2017             break;
2018         default:
2019             c->function = i;
2020             c->flags = 0;
2021             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2022             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2023                 /*
2024                  * KVM already returns all zeroes if a CPUID entry is missing,
2025                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2026                  */
2027                 cpuid_i--;
2028             }
2029             break;
2030         }
2031     }
2032 
2033     /* Call Centaur's CPUID instructions they are supported. */
2034     if (env->cpuid_xlevel2 > 0) {
2035         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2036 
2037         for (i = 0xC0000000; i <= limit; i++) {
2038             j = 0;
2039             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2040                 goto full;
2041             }
2042             c = &entries[cpuid_i++];
2043 
2044             c->function = i;
2045             c->flags = 0;
2046             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2047         }
2048     }
2049 
2050     return cpuid_i;
2051 
2052 full:
2053     fprintf(stderr, "cpuid_data is full, no space for "
2054             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2055     abort();
2056 }
2057 
kvm_arch_init_vcpu(CPUState * cs)2058 int kvm_arch_init_vcpu(CPUState *cs)
2059 {
2060     struct {
2061         struct kvm_cpuid2 cpuid;
2062         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2063     } cpuid_data;
2064     /*
2065      * The kernel defines these structs with padding fields so there
2066      * should be no extra padding in our cpuid_data struct.
2067      */
2068     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2069                       sizeof(struct kvm_cpuid2) +
2070                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2071 
2072     X86CPU *cpu = X86_CPU(cs);
2073     CPUX86State *env = &cpu->env;
2074     uint32_t cpuid_i;
2075     struct kvm_cpuid_entry2 *c;
2076     uint32_t signature[3];
2077     int kvm_base = KVM_CPUID_SIGNATURE;
2078     int max_nested_state_len;
2079     int r;
2080     Error *local_err = NULL;
2081 
2082     memset(&cpuid_data, 0, sizeof(cpuid_data));
2083 
2084     cpuid_i = 0;
2085 
2086     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2087 
2088     r = kvm_arch_set_tsc_khz(cs);
2089     if (r < 0) {
2090         return r;
2091     }
2092 
2093     /* vcpu's TSC frequency is either specified by user, or following
2094      * the value used by KVM if the former is not present. In the
2095      * latter case, we query it from KVM and record in env->tsc_khz,
2096      * so that vcpu's TSC frequency can be migrated later via this field.
2097      */
2098     if (!env->tsc_khz) {
2099         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2100             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2101             -ENOTSUP;
2102         if (r > 0) {
2103             env->tsc_khz = r;
2104         }
2105     }
2106 
2107     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2108 
2109     /*
2110      * kvm_hyperv_expand_features() is called here for the second time in case
2111      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2112      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2113      * check which Hyper-V enlightenments are supported and which are not, we
2114      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2115      * behavior is preserved.
2116      */
2117     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2118         error_report_err(local_err);
2119         return -ENOSYS;
2120     }
2121 
2122     if (hyperv_enabled(cpu)) {
2123         r = hyperv_init_vcpu(cpu);
2124         if (r) {
2125             return r;
2126         }
2127 
2128         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2129         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2130         has_msr_hv_hypercall = true;
2131     }
2132 
2133     if (cs->kvm_state->xen_version) {
2134 #ifdef CONFIG_XEN_EMU
2135         struct kvm_cpuid_entry2 *xen_max_leaf;
2136 
2137         memcpy(signature, "XenVMMXenVMM", 12);
2138 
2139         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2140         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2141         c->eax = kvm_base + XEN_CPUID_TIME;
2142         c->ebx = signature[0];
2143         c->ecx = signature[1];
2144         c->edx = signature[2];
2145 
2146         c = &cpuid_data.entries[cpuid_i++];
2147         c->function = kvm_base + XEN_CPUID_VENDOR;
2148         c->eax = cs->kvm_state->xen_version;
2149         c->ebx = 0;
2150         c->ecx = 0;
2151         c->edx = 0;
2152 
2153         c = &cpuid_data.entries[cpuid_i++];
2154         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2155         /* Number of hypercall-transfer pages */
2156         c->eax = 1;
2157         /* Hypercall MSR base address */
2158         if (hyperv_enabled(cpu)) {
2159             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2160             kvm_xen_init(cs->kvm_state, c->ebx);
2161         } else {
2162             c->ebx = XEN_HYPERCALL_MSR;
2163         }
2164         c->ecx = 0;
2165         c->edx = 0;
2166 
2167         c = &cpuid_data.entries[cpuid_i++];
2168         c->function = kvm_base + XEN_CPUID_TIME;
2169         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2170             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2171         /* default=0 (emulate if necessary) */
2172         c->ebx = 0;
2173         /* guest tsc frequency */
2174         c->ecx = env->user_tsc_khz;
2175         /* guest tsc incarnation (migration count) */
2176         c->edx = 0;
2177 
2178         c = &cpuid_data.entries[cpuid_i++];
2179         c->function = kvm_base + XEN_CPUID_HVM;
2180         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2181         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2182             c->function = kvm_base + XEN_CPUID_HVM;
2183 
2184             if (cpu->xen_vapic) {
2185                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2186                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2187             }
2188 
2189             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2190 
2191             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2192                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2193                 c->ebx = cs->cpu_index;
2194             }
2195 
2196             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2197                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2198             }
2199         }
2200 
2201         r = kvm_xen_init_vcpu(cs);
2202         if (r) {
2203             return r;
2204         }
2205 
2206         kvm_base += 0x100;
2207 #else /* CONFIG_XEN_EMU */
2208         /* This should never happen as kvm_arch_init() would have died first. */
2209         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2210         abort();
2211 #endif
2212     } else if (cpu->expose_kvm) {
2213         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2214         c = &cpuid_data.entries[cpuid_i++];
2215         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2216         c->eax = KVM_CPUID_FEATURES | kvm_base;
2217         c->ebx = signature[0];
2218         c->ecx = signature[1];
2219         c->edx = signature[2];
2220 
2221         c = &cpuid_data.entries[cpuid_i++];
2222         c->function = KVM_CPUID_FEATURES | kvm_base;
2223         c->eax = env->features[FEAT_KVM];
2224         c->edx = env->features[FEAT_KVM_HINTS];
2225     }
2226 
2227     if (cpu->kvm_pv_enforce_cpuid) {
2228         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2229         if (r < 0) {
2230             fprintf(stderr,
2231                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2232                     strerror(-r));
2233             abort();
2234         }
2235     }
2236 
2237     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2238     cpuid_data.cpuid.nent = cpuid_i;
2239 
2240     if (((env->cpuid_version >> 8)&0xF) >= 6
2241         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2242            (CPUID_MCE | CPUID_MCA)) {
2243         uint64_t mcg_cap, unsupported_caps;
2244         int banks;
2245         int ret;
2246 
2247         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2248         if (ret < 0) {
2249             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2250             return ret;
2251         }
2252 
2253         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2254             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2255                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2256             return -ENOTSUP;
2257         }
2258 
2259         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2260         if (unsupported_caps) {
2261             if (unsupported_caps & MCG_LMCE_P) {
2262                 error_report("kvm: LMCE not supported");
2263                 return -ENOTSUP;
2264             }
2265             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2266                         unsupported_caps);
2267         }
2268 
2269         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2270         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2271         if (ret < 0) {
2272             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2273             return ret;
2274         }
2275     }
2276 
2277     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2278 
2279     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2280     if (c) {
2281         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2282                                   !!(c->ecx & CPUID_EXT_SMX);
2283     }
2284 
2285     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2286     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2287         has_msr_feature_control = true;
2288     }
2289 
2290     if (env->mcg_cap & MCG_LMCE_P) {
2291         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2292     }
2293 
2294     if (!env->user_tsc_khz) {
2295         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2296             invtsc_mig_blocker == NULL) {
2297             error_setg(&invtsc_mig_blocker,
2298                        "State blocked by non-migratable CPU device"
2299                        " (invtsc flag)");
2300             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2301             if (r < 0) {
2302                 error_report_err(local_err);
2303                 return r;
2304             }
2305         }
2306     }
2307 
2308     if (cpu->vmware_cpuid_freq
2309         /* Guests depend on 0x40000000 to detect this feature, so only expose
2310          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2311         && cpu->expose_kvm
2312         && kvm_base == KVM_CPUID_SIGNATURE
2313         /* TSC clock must be stable and known for this feature. */
2314         && tsc_is_stable_and_known(env)) {
2315 
2316         c = &cpuid_data.entries[cpuid_i++];
2317         c->function = KVM_CPUID_SIGNATURE | 0x10;
2318         c->eax = env->tsc_khz;
2319         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2320         c->ecx = c->edx = 0;
2321 
2322         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2323         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2324     }
2325 
2326     cpuid_data.cpuid.nent = cpuid_i;
2327 
2328     cpuid_data.cpuid.padding = 0;
2329     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2330     if (r) {
2331         goto fail;
2332     }
2333     kvm_init_xsave(env);
2334 
2335     max_nested_state_len = kvm_max_nested_state_length();
2336     if (max_nested_state_len > 0) {
2337         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2338 
2339         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2340             env->nested_state = g_malloc0(max_nested_state_len);
2341             env->nested_state->size = max_nested_state_len;
2342 
2343             kvm_init_nested_state(env);
2344         }
2345     }
2346 
2347     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2348 
2349     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2350         has_msr_tsc_aux = false;
2351     }
2352 
2353     kvm_init_msrs(cpu);
2354 
2355     return 0;
2356 
2357  fail:
2358     migrate_del_blocker(&invtsc_mig_blocker);
2359 
2360     return r;
2361 }
2362 
kvm_arch_destroy_vcpu(CPUState * cs)2363 int kvm_arch_destroy_vcpu(CPUState *cs)
2364 {
2365     X86CPU *cpu = X86_CPU(cs);
2366     CPUX86State *env = &cpu->env;
2367 
2368     g_free(env->xsave_buf);
2369 
2370     g_free(cpu->kvm_msr_buf);
2371     cpu->kvm_msr_buf = NULL;
2372 
2373     g_free(env->nested_state);
2374     env->nested_state = NULL;
2375 
2376     qemu_del_vm_change_state_handler(cpu->vmsentry);
2377 
2378     return 0;
2379 }
2380 
kvm_arch_reset_vcpu(X86CPU * cpu)2381 void kvm_arch_reset_vcpu(X86CPU *cpu)
2382 {
2383     CPUX86State *env = &cpu->env;
2384 
2385     env->xcr0 = 1;
2386     if (kvm_irqchip_in_kernel()) {
2387         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2388                                           KVM_MP_STATE_UNINITIALIZED;
2389     } else {
2390         env->mp_state = KVM_MP_STATE_RUNNABLE;
2391     }
2392 
2393     /* enabled by default */
2394     env->poll_control_msr = 1;
2395 
2396     kvm_init_nested_state(env);
2397 
2398     sev_es_set_reset_vector(CPU(cpu));
2399 }
2400 
kvm_arch_after_reset_vcpu(X86CPU * cpu)2401 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2402 {
2403     CPUX86State *env = &cpu->env;
2404     int i;
2405 
2406     /*
2407      * Reset SynIC after all other devices have been reset to let them remove
2408      * their SINT routes first.
2409      */
2410     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2411         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2412             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2413         }
2414 
2415         hyperv_x86_synic_reset(cpu);
2416     }
2417 }
2418 
kvm_arch_reset_parked_vcpu(unsigned long vcpu_id,int kvm_fd)2419 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2420 {
2421     g_autofree struct kvm_msrs *msrs = NULL;
2422 
2423     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2424     msrs->entries[0].index = MSR_IA32_TSC;
2425     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2426     msrs->nmsrs++;
2427 
2428     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2429         warn_report("parked vCPU %lu TSC reset failed: %d",
2430                     vcpu_id, errno);
2431     }
2432 }
2433 
kvm_arch_do_init_vcpu(X86CPU * cpu)2434 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2435 {
2436     CPUX86State *env = &cpu->env;
2437 
2438     /* APs get directly into wait-for-SIPI state.  */
2439     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2440         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2441     }
2442 }
2443 
kvm_get_supported_feature_msrs(KVMState * s)2444 static int kvm_get_supported_feature_msrs(KVMState *s)
2445 {
2446     int ret = 0;
2447 
2448     if (kvm_feature_msrs != NULL) {
2449         return 0;
2450     }
2451 
2452     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2453         return 0;
2454     }
2455 
2456     struct kvm_msr_list msr_list;
2457 
2458     msr_list.nmsrs = 0;
2459     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2460     if (ret < 0 && ret != -E2BIG) {
2461         error_report("Fetch KVM feature MSR list failed: %s",
2462             strerror(-ret));
2463         return ret;
2464     }
2465 
2466     assert(msr_list.nmsrs > 0);
2467     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2468                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2469 
2470     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2471     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2472 
2473     if (ret < 0) {
2474         error_report("Fetch KVM feature MSR list failed: %s",
2475             strerror(-ret));
2476         g_free(kvm_feature_msrs);
2477         kvm_feature_msrs = NULL;
2478         return ret;
2479     }
2480 
2481     return 0;
2482 }
2483 
kvm_get_supported_msrs(KVMState * s)2484 static int kvm_get_supported_msrs(KVMState *s)
2485 {
2486     int ret = 0;
2487     struct kvm_msr_list msr_list, *kvm_msr_list;
2488 
2489     /*
2490      *  Obtain MSR list from KVM.  These are the MSRs that we must
2491      *  save/restore.
2492      */
2493     msr_list.nmsrs = 0;
2494     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2495     if (ret < 0 && ret != -E2BIG) {
2496         return ret;
2497     }
2498     /*
2499      * Old kernel modules had a bug and could write beyond the provided
2500      * memory. Allocate at least a safe amount of 1K.
2501      */
2502     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2503                                           msr_list.nmsrs *
2504                                           sizeof(msr_list.indices[0])));
2505 
2506     kvm_msr_list->nmsrs = msr_list.nmsrs;
2507     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2508     if (ret >= 0) {
2509         int i;
2510 
2511         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2512             switch (kvm_msr_list->indices[i]) {
2513             case MSR_STAR:
2514                 has_msr_star = true;
2515                 break;
2516             case MSR_VM_HSAVE_PA:
2517                 has_msr_hsave_pa = true;
2518                 break;
2519             case MSR_TSC_AUX:
2520                 has_msr_tsc_aux = true;
2521                 break;
2522             case MSR_TSC_ADJUST:
2523                 has_msr_tsc_adjust = true;
2524                 break;
2525             case MSR_IA32_TSCDEADLINE:
2526                 has_msr_tsc_deadline = true;
2527                 break;
2528             case MSR_IA32_SMBASE:
2529                 has_msr_smbase = true;
2530                 break;
2531             case MSR_SMI_COUNT:
2532                 has_msr_smi_count = true;
2533                 break;
2534             case MSR_IA32_MISC_ENABLE:
2535                 has_msr_misc_enable = true;
2536                 break;
2537             case MSR_IA32_BNDCFGS:
2538                 has_msr_bndcfgs = true;
2539                 break;
2540             case MSR_IA32_XSS:
2541                 has_msr_xss = true;
2542                 break;
2543             case MSR_IA32_UMWAIT_CONTROL:
2544                 has_msr_umwait = true;
2545                 break;
2546             case HV_X64_MSR_CRASH_CTL:
2547                 has_msr_hv_crash = true;
2548                 break;
2549             case HV_X64_MSR_RESET:
2550                 has_msr_hv_reset = true;
2551                 break;
2552             case HV_X64_MSR_VP_INDEX:
2553                 has_msr_hv_vpindex = true;
2554                 break;
2555             case HV_X64_MSR_VP_RUNTIME:
2556                 has_msr_hv_runtime = true;
2557                 break;
2558             case HV_X64_MSR_SCONTROL:
2559                 has_msr_hv_synic = true;
2560                 break;
2561             case HV_X64_MSR_STIMER0_CONFIG:
2562                 has_msr_hv_stimer = true;
2563                 break;
2564             case HV_X64_MSR_TSC_FREQUENCY:
2565                 has_msr_hv_frequencies = true;
2566                 break;
2567             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2568                 has_msr_hv_reenlightenment = true;
2569                 break;
2570             case HV_X64_MSR_SYNDBG_OPTIONS:
2571                 has_msr_hv_syndbg_options = true;
2572                 break;
2573             case MSR_IA32_SPEC_CTRL:
2574                 has_msr_spec_ctrl = true;
2575                 break;
2576             case MSR_AMD64_TSC_RATIO:
2577                 has_tsc_scale_msr = true;
2578                 break;
2579             case MSR_IA32_TSX_CTRL:
2580                 has_msr_tsx_ctrl = true;
2581                 break;
2582             case MSR_VIRT_SSBD:
2583                 has_msr_virt_ssbd = true;
2584                 break;
2585             case MSR_IA32_ARCH_CAPABILITIES:
2586                 has_msr_arch_capabs = true;
2587                 break;
2588             case MSR_IA32_CORE_CAPABILITY:
2589                 has_msr_core_capabs = true;
2590                 break;
2591             case MSR_IA32_PERF_CAPABILITIES:
2592                 has_msr_perf_capabs = true;
2593                 break;
2594             case MSR_IA32_VMX_VMFUNC:
2595                 has_msr_vmx_vmfunc = true;
2596                 break;
2597             case MSR_IA32_UCODE_REV:
2598                 has_msr_ucode_rev = true;
2599                 break;
2600             case MSR_IA32_VMX_PROCBASED_CTLS2:
2601                 has_msr_vmx_procbased_ctls2 = true;
2602                 break;
2603             case MSR_IA32_PKRS:
2604                 has_msr_pkrs = true;
2605                 break;
2606             case MSR_K7_HWCR:
2607                 has_msr_hwcr = true;
2608             }
2609         }
2610     }
2611 
2612     g_free(kvm_msr_list);
2613 
2614     return ret;
2615 }
2616 
kvm_rdmsr_core_thread_count(X86CPU * cpu,uint32_t msr,uint64_t * val)2617 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2618                                         uint32_t msr,
2619                                         uint64_t *val)
2620 {
2621     *val = cpu_x86_get_msr_core_thread_count(cpu);
2622 
2623     return true;
2624 }
2625 
kvm_rdmsr_rapl_power_unit(X86CPU * cpu,uint32_t msr,uint64_t * val)2626 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2627                                       uint32_t msr,
2628                                       uint64_t *val)
2629 {
2630 
2631     CPUState *cs = CPU(cpu);
2632 
2633     *val = cs->kvm_state->msr_energy.msr_unit;
2634 
2635     return true;
2636 }
2637 
kvm_rdmsr_pkg_power_limit(X86CPU * cpu,uint32_t msr,uint64_t * val)2638 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2639                                       uint32_t msr,
2640                                       uint64_t *val)
2641 {
2642 
2643     CPUState *cs = CPU(cpu);
2644 
2645     *val = cs->kvm_state->msr_energy.msr_limit;
2646 
2647     return true;
2648 }
2649 
kvm_rdmsr_pkg_power_info(X86CPU * cpu,uint32_t msr,uint64_t * val)2650 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2651                                      uint32_t msr,
2652                                      uint64_t *val)
2653 {
2654 
2655     CPUState *cs = CPU(cpu);
2656 
2657     *val = cs->kvm_state->msr_energy.msr_info;
2658 
2659     return true;
2660 }
2661 
kvm_rdmsr_pkg_energy_status(X86CPU * cpu,uint32_t msr,uint64_t * val)2662 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2663                                         uint32_t msr,
2664                                         uint64_t *val)
2665 {
2666 
2667     CPUState *cs = CPU(cpu);
2668     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2669 
2670     return true;
2671 }
2672 
2673 static Notifier smram_machine_done;
2674 static KVMMemoryListener smram_listener;
2675 static AddressSpace smram_address_space;
2676 static MemoryRegion smram_as_root;
2677 static MemoryRegion smram_as_mem;
2678 
register_smram_listener(Notifier * n,void * unused)2679 static void register_smram_listener(Notifier *n, void *unused)
2680 {
2681     MemoryRegion *smram =
2682         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2683 
2684     /* Outer container... */
2685     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2686     memory_region_set_enabled(&smram_as_root, true);
2687 
2688     /* ... with two regions inside: normal system memory with low
2689      * priority, and...
2690      */
2691     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2692                              get_system_memory(), 0, ~0ull);
2693     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2694     memory_region_set_enabled(&smram_as_mem, true);
2695 
2696     if (smram) {
2697         /* ... SMRAM with higher priority */
2698         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2699         memory_region_set_enabled(smram, true);
2700     }
2701 
2702     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2703     kvm_memory_listener_register(kvm_state, &smram_listener,
2704                                  &smram_address_space, 1, "kvm-smram");
2705 }
2706 
kvm_msr_energy_thread(void * data)2707 static void *kvm_msr_energy_thread(void *data)
2708 {
2709     KVMState *s = data;
2710     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2711 
2712     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2713     g_autofree vmsr_thread_stat *thd_stat = NULL;
2714     g_autofree CPUState *cpu = NULL;
2715     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2716     unsigned int num_threads = 0;
2717 
2718     X86CPUTopoIDs topo_ids;
2719 
2720     rcu_register_thread();
2721 
2722     /* Allocate memory for each package energy status */
2723     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2724 
2725     /* Allocate memory for thread stats */
2726     thd_stat = g_new0(vmsr_thread_stat, 1);
2727 
2728     /* Allocate memory for holding virtual package energy counter */
2729     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2730 
2731     /* Populate the max tick of each packages */
2732     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2733         /*
2734          * Max numbers of ticks per package
2735          * Time in second * Number of ticks/second * Number of cores/package
2736          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2737          */
2738         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2739                         * sysconf(_SC_CLK_TCK)
2740                         * vmsr->host_topo.pkg_cpu_count[i];
2741     }
2742 
2743     while (true) {
2744         /* Get all qemu threads id */
2745         g_autofree pid_t *thread_ids
2746             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2747 
2748         if (thread_ids == NULL) {
2749             goto clean;
2750         }
2751 
2752         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2753         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2754         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2755 
2756         /* Populate all the thread stats */
2757         for (int i = 0; i < num_threads; i++) {
2758             thd_stat[i].utime = g_new0(unsigned long long, 2);
2759             thd_stat[i].stime = g_new0(unsigned long long, 2);
2760             thd_stat[i].thread_id = thread_ids[i];
2761             vmsr_read_thread_stat(vmsr->pid,
2762                                   thd_stat[i].thread_id,
2763                                   &thd_stat[i].utime[0],
2764                                   &thd_stat[i].stime[0],
2765                                   &thd_stat[i].cpu_id);
2766             thd_stat[i].pkg_id =
2767                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2768         }
2769 
2770         /* Retrieve all packages power plane energy counter */
2771         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2772             for (int j = 0; j < num_threads; j++) {
2773                 /*
2774                  * Use the first thread we found that ran on the CPU
2775                  * of the package to read the packages energy counter
2776                  */
2777                 if (thd_stat[j].pkg_id == i) {
2778                     pkg_stat[i].e_start =
2779                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2780                                   thd_stat[j].cpu_id,
2781                                   thd_stat[j].thread_id,
2782                                   s->msr_energy.sioc);
2783                     break;
2784                 }
2785             }
2786         }
2787 
2788         /* Sleep a short period while the other threads are working */
2789         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2790 
2791         /*
2792          * Retrieve all packages power plane energy counter
2793          * Calculate the delta of all packages
2794          */
2795         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2796             for (int j = 0; j < num_threads; j++) {
2797                 /*
2798                  * Use the first thread we found that ran on the CPU
2799                  * of the package to read the packages energy counter
2800                  */
2801                 if (thd_stat[j].pkg_id == i) {
2802                     pkg_stat[i].e_end =
2803                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2804                                   thd_stat[j].cpu_id,
2805                                   thd_stat[j].thread_id,
2806                                   s->msr_energy.sioc);
2807                     /*
2808                      * Prevent the case we have migrate the VM
2809                      * during the sleep period or any other cases
2810                      * were energy counter might be lower after
2811                      * the sleep period.
2812                      */
2813                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2814                         pkg_stat[i].e_delta =
2815                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2816                     } else {
2817                         pkg_stat[i].e_delta = 0;
2818                     }
2819                     break;
2820                 }
2821             }
2822         }
2823 
2824         /* Delta of ticks spend by each thread between the sample */
2825         for (int i = 0; i < num_threads; i++) {
2826             vmsr_read_thread_stat(vmsr->pid,
2827                                   thd_stat[i].thread_id,
2828                                   &thd_stat[i].utime[1],
2829                                   &thd_stat[i].stime[1],
2830                                   &thd_stat[i].cpu_id);
2831 
2832             if (vmsr->pid < 0) {
2833                 /*
2834                  * We don't count the dead thread
2835                  * i.e threads that existed before the sleep
2836                  * and not anymore
2837                  */
2838                 thd_stat[i].delta_ticks = 0;
2839             } else {
2840                 vmsr_delta_ticks(thd_stat, i);
2841             }
2842         }
2843 
2844         /*
2845          * Identify the vcpu threads
2846          * Calculate the number of vcpu per package
2847          */
2848         CPU_FOREACH(cpu) {
2849             for (int i = 0; i < num_threads; i++) {
2850                 if (cpu->thread_id == thd_stat[i].thread_id) {
2851                     thd_stat[i].is_vcpu = true;
2852                     thd_stat[i].vcpu_id = cpu->cpu_index;
2853                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2854                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2855                     break;
2856                 }
2857             }
2858         }
2859 
2860         /* Retrieve the virtual package number of each vCPU */
2861         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2862             for (int j = 0; j < num_threads; j++) {
2863                 if ((thd_stat[j].acpi_id ==
2864                         vmsr->guest_cpu_list->cpus[i].arch_id)
2865                     && (thd_stat[j].is_vcpu == true)) {
2866                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2867                         &vmsr->guest_topo_info, &topo_ids);
2868                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2869                 }
2870             }
2871         }
2872 
2873         /* Calculate the total energy of all non-vCPU thread */
2874         for (int i = 0; i < num_threads; i++) {
2875             if ((thd_stat[i].is_vcpu != true) &&
2876                 (thd_stat[i].delta_ticks > 0)) {
2877                 double temp;
2878                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2879                     thd_stat[i].delta_ticks,
2880                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2881                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2882                     += (uint64_t)lround(temp);
2883             }
2884         }
2885 
2886         /* Calculate the ratio per non-vCPU thread of each package */
2887         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2888             if (pkg_stat[i].nb_vcpu > 0) {
2889                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2890             }
2891         }
2892 
2893         /*
2894          * Calculate the energy for each Package:
2895          * Energy Package = sum of each vCPU energy that belongs to the package
2896          */
2897         for (int i = 0; i < num_threads; i++) {
2898             if ((thd_stat[i].is_vcpu == true) && \
2899                     (thd_stat[i].delta_ticks > 0)) {
2900                 double temp;
2901                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2902                     thd_stat[i].delta_ticks,
2903                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2904                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2905                     (uint64_t)lround(temp);
2906                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2907                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2908             }
2909         }
2910 
2911         /*
2912          * Finally populate the vmsr register of each vCPU with the total
2913          * package value to emulate the real hardware where each CPU return the
2914          * value of the package it belongs.
2915          */
2916         for (int i = 0; i < num_threads; i++) {
2917             if ((thd_stat[i].is_vcpu == true) && \
2918                     (thd_stat[i].delta_ticks > 0)) {
2919                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2920                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2921           }
2922         }
2923 
2924         /* Freeing memory before zeroing the pointer */
2925         for (int i = 0; i < num_threads; i++) {
2926             g_free(thd_stat[i].utime);
2927             g_free(thd_stat[i].stime);
2928         }
2929    }
2930 
2931 clean:
2932     rcu_unregister_thread();
2933     return NULL;
2934 }
2935 
kvm_msr_energy_thread_init(KVMState * s,MachineState * ms)2936 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2937 {
2938     MachineClass *mc = MACHINE_GET_CLASS(ms);
2939     struct KVMMsrEnergy *r = &s->msr_energy;
2940 
2941     /*
2942      * Sanity check
2943      * 1. Host cpu must be Intel cpu
2944      * 2. RAPL must be enabled on the Host
2945      */
2946     if (!is_host_cpu_intel()) {
2947         error_report("The RAPL feature can only be enabled on hosts "
2948                      "with Intel CPU models");
2949         return -1;
2950     }
2951 
2952     if (!is_rapl_enabled()) {
2953         return -1;
2954     }
2955 
2956     /* Retrieve the virtual topology */
2957     vmsr_init_topo_info(&r->guest_topo_info, ms);
2958 
2959     /* Retrieve the number of vcpu */
2960     r->guest_vcpus = ms->smp.cpus;
2961 
2962     /* Retrieve the number of virtual sockets */
2963     r->guest_vsockets = ms->smp.sockets;
2964 
2965     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2966     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2967 
2968     /* Retrieve the CPUArchIDlist */
2969     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2970 
2971     /* Max number of cpus on the Host */
2972     r->host_topo.maxcpus = vmsr_get_maxcpus();
2973     if (r->host_topo.maxcpus == 0) {
2974         error_report("host max cpus = 0");
2975         return -1;
2976     }
2977 
2978     /* Max number of packages on the host */
2979     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2980     if (r->host_topo.maxpkgs == 0) {
2981         error_report("host max pkgs = 0");
2982         return -1;
2983     }
2984 
2985     /* Allocate memory for each package on the host */
2986     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
2987     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
2988 
2989     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
2990                                 r->host_topo.maxpkgs);
2991     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
2992         if (r->host_topo.pkg_cpu_count[i] == 0) {
2993             error_report("cpu per packages = 0 on package_%d", i);
2994             return -1;
2995         }
2996     }
2997 
2998     /* Get QEMU PID*/
2999     r->pid = getpid();
3000 
3001     /* Compute the socket path if necessary */
3002     if (s->msr_energy.socket_path == NULL) {
3003         s->msr_energy.socket_path = vmsr_compute_default_paths();
3004     }
3005 
3006     /* Open socket with vmsr helper */
3007     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3008 
3009     if (s->msr_energy.sioc == NULL) {
3010         error_report("vmsr socket opening failed");
3011         return -1;
3012     }
3013 
3014     /* Those MSR values should not change */
3015     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3016                                     s->msr_energy.sioc);
3017     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3018                                     s->msr_energy.sioc);
3019     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3020                                     s->msr_energy.sioc);
3021     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3022         error_report("can't read any virtual msr");
3023         return -1;
3024     }
3025 
3026     qemu_thread_create(&r->msr_thr, "kvm-msr",
3027                        kvm_msr_energy_thread,
3028                        s, QEMU_THREAD_JOINABLE);
3029     return 0;
3030 }
3031 
kvm_arch_get_default_type(MachineState * ms)3032 int kvm_arch_get_default_type(MachineState *ms)
3033 {
3034     return 0;
3035 }
3036 
kvm_vm_enable_exception_payload(KVMState * s)3037 static int kvm_vm_enable_exception_payload(KVMState *s)
3038 {
3039     int ret = 0;
3040     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3041     if (has_exception_payload) {
3042         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3043         if (ret < 0) {
3044             error_report("kvm: Failed to enable exception payload cap: %s",
3045                          strerror(-ret));
3046         }
3047     }
3048 
3049     return ret;
3050 }
3051 
kvm_vm_enable_triple_fault_event(KVMState * s)3052 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3053 {
3054     int ret = 0;
3055     has_triple_fault_event = \
3056         kvm_check_extension(s,
3057                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3058     if (has_triple_fault_event) {
3059         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3060         if (ret < 0) {
3061             error_report("kvm: Failed to enable triple fault event cap: %s",
3062                          strerror(-ret));
3063         }
3064     }
3065     return ret;
3066 }
3067 
kvm_vm_set_identity_map_addr(KVMState * s,uint64_t identity_base)3068 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3069 {
3070     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3071 }
3072 
kvm_vm_set_nr_mmu_pages(KVMState * s)3073 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3074 {
3075     uint64_t shadow_mem;
3076     int ret = 0;
3077     shadow_mem = object_property_get_int(OBJECT(s),
3078                                          "kvm-shadow-mem",
3079                                          &error_abort);
3080     if (shadow_mem != -1) {
3081         shadow_mem /= 4096;
3082         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3083     }
3084     return ret;
3085 }
3086 
kvm_vm_set_tss_addr(KVMState * s,uint64_t tss_base)3087 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3088 {
3089     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3090 }
3091 
kvm_vm_enable_disable_exits(KVMState * s)3092 static int kvm_vm_enable_disable_exits(KVMState *s)
3093 {
3094     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3095 
3096     if (disable_exits) {
3097         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3098                           KVM_X86_DISABLE_EXITS_HLT |
3099                           KVM_X86_DISABLE_EXITS_PAUSE |
3100                           KVM_X86_DISABLE_EXITS_CSTATE);
3101     }
3102 
3103     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3104                              disable_exits);
3105 }
3106 
kvm_vm_enable_bus_lock_exit(KVMState * s)3107 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3108 {
3109     int ret = 0;
3110     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3111     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3112         error_report("kvm: bus lock detection unsupported");
3113         return -ENOTSUP;
3114     }
3115     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3116                             KVM_BUS_LOCK_DETECTION_EXIT);
3117     if (ret < 0) {
3118         error_report("kvm: Failed to enable bus lock detection cap: %s",
3119                      strerror(-ret));
3120     }
3121 
3122     return ret;
3123 }
3124 
kvm_vm_enable_notify_vmexit(KVMState * s)3125 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3126 {
3127     int ret = 0;
3128     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3129         uint64_t notify_window_flags =
3130             ((uint64_t)s->notify_window << 32) |
3131             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3132             KVM_X86_NOTIFY_VMEXIT_USER;
3133         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3134                                 notify_window_flags);
3135         if (ret < 0) {
3136             error_report("kvm: Failed to enable notify vmexit cap: %s",
3137                          strerror(-ret));
3138         }
3139     }
3140     return ret;
3141 }
3142 
kvm_vm_enable_userspace_msr(KVMState * s)3143 static int kvm_vm_enable_userspace_msr(KVMState *s)
3144 {
3145     int ret;
3146 
3147     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3148                             KVM_MSR_EXIT_REASON_FILTER);
3149     if (ret < 0) {
3150         error_report("Could not enable user space MSRs: %s",
3151                      strerror(-ret));
3152         exit(1);
3153     }
3154 
3155     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3156                          kvm_rdmsr_core_thread_count, NULL);
3157     if (ret < 0) {
3158         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3159                      strerror(-ret));
3160         exit(1);
3161     }
3162 
3163     return 0;
3164 }
3165 
kvm_vm_enable_energy_msrs(KVMState * s)3166 static int kvm_vm_enable_energy_msrs(KVMState *s)
3167 {
3168     int ret;
3169 
3170     if (s->msr_energy.enable == true) {
3171         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3172                              kvm_rdmsr_rapl_power_unit, NULL);
3173         if (ret < 0) {
3174             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3175                          strerror(-ret));
3176             return ret;
3177         }
3178 
3179         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3180                              kvm_rdmsr_pkg_power_limit, NULL);
3181         if (ret < 0) {
3182             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3183                          strerror(-ret));
3184             return ret;
3185         }
3186 
3187         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3188                              kvm_rdmsr_pkg_power_info, NULL);
3189         if (ret < 0) {
3190             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3191                          strerror(-ret));
3192             return ret;
3193         }
3194         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3195                              kvm_rdmsr_pkg_energy_status, NULL);
3196         if (ret < 0) {
3197             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3198                          strerror(-ret));
3199             return ret;
3200         }
3201     }
3202     return 0;
3203 }
3204 
kvm_arch_init(MachineState * ms,KVMState * s)3205 int kvm_arch_init(MachineState *ms, KVMState *s)
3206 {
3207     int ret;
3208     struct utsname utsname;
3209     Error *local_err = NULL;
3210 
3211     /*
3212      * Initialize SEV context, if required
3213      *
3214      * If no memory encryption is requested (ms->cgs == NULL) this is
3215      * a no-op.
3216      *
3217      * It's also a no-op if a non-SEV confidential guest support
3218      * mechanism is selected.  SEV is the only mechanism available to
3219      * select on x86 at present, so this doesn't arise, but if new
3220      * mechanisms are supported in future (e.g. TDX), they'll need
3221      * their own initialization either here or elsewhere.
3222      */
3223     if (ms->cgs) {
3224         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3225         if (ret < 0) {
3226             error_report_err(local_err);
3227             return ret;
3228         }
3229     }
3230 
3231     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3232     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3233 
3234     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3235 
3236     ret = kvm_vm_enable_exception_payload(s);
3237     if (ret < 0) {
3238         return ret;
3239     }
3240 
3241     ret = kvm_vm_enable_triple_fault_event(s);
3242     if (ret < 0) {
3243         return ret;
3244     }
3245 
3246     if (s->xen_version) {
3247 #ifdef CONFIG_XEN_EMU
3248         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3249             error_report("kvm: Xen support only available in PC machine");
3250             return -ENOTSUP;
3251         }
3252         /* hyperv_enabled() doesn't work yet. */
3253         uint32_t msr = XEN_HYPERCALL_MSR;
3254         ret = kvm_xen_init(s, msr);
3255         if (ret < 0) {
3256             return ret;
3257         }
3258 #else
3259         error_report("kvm: Xen support not enabled in qemu");
3260         return -ENOTSUP;
3261 #endif
3262     }
3263 
3264     ret = kvm_get_supported_msrs(s);
3265     if (ret < 0) {
3266         return ret;
3267     }
3268 
3269     ret = kvm_get_supported_feature_msrs(s);
3270     if (ret < 0) {
3271         return ret;
3272     }
3273 
3274     uname(&utsname);
3275     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3276 
3277     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3278     if (ret < 0) {
3279         return ret;
3280     }
3281 
3282     /* Set TSS base one page after EPT identity map. */
3283     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3284     if (ret < 0) {
3285         return ret;
3286     }
3287 
3288     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3289     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3290 
3291     ret = kvm_vm_set_nr_mmu_pages(s);
3292     if (ret < 0) {
3293         return ret;
3294     }
3295 
3296     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3297         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3298         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3299         smram_machine_done.notify = register_smram_listener;
3300         qemu_add_machine_init_done_notifier(&smram_machine_done);
3301     }
3302 
3303     if (enable_cpu_pm) {
3304         ret = kvm_vm_enable_disable_exits(s);
3305         if (ret < 0) {
3306             error_report("kvm: guest stopping CPU not supported: %s",
3307                          strerror(-ret));
3308             return ret;
3309         }
3310     }
3311 
3312     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3313         X86MachineState *x86ms = X86_MACHINE(ms);
3314 
3315         if (x86ms->bus_lock_ratelimit > 0) {
3316             ret = kvm_vm_enable_bus_lock_exit(s);
3317             if (ret < 0) {
3318                 return ret;
3319             }
3320             ratelimit_init(&bus_lock_ratelimit_ctrl);
3321             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3322                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3323         }
3324     }
3325 
3326     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3327         ret = kvm_vm_enable_notify_vmexit(s);
3328         if (ret < 0) {
3329             return ret;
3330         }
3331     }
3332 
3333     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3334         ret = kvm_vm_enable_userspace_msr(s);
3335         if (ret < 0) {
3336             return ret;
3337         }
3338 
3339         if (s->msr_energy.enable == true) {
3340             ret = kvm_vm_enable_energy_msrs(s);
3341             if (ret < 0) {
3342                 return ret;
3343             }
3344 
3345             ret = kvm_msr_energy_thread_init(s, ms);
3346             if (ret < 0) {
3347                 error_report("kvm : error RAPL feature requirement not met");
3348                 return ret;
3349             }
3350         }
3351     }
3352 
3353     return 0;
3354 }
3355 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3356 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3357 {
3358     lhs->selector = rhs->selector;
3359     lhs->base = rhs->base;
3360     lhs->limit = rhs->limit;
3361     lhs->type = 3;
3362     lhs->present = 1;
3363     lhs->dpl = 3;
3364     lhs->db = 0;
3365     lhs->s = 1;
3366     lhs->l = 0;
3367     lhs->g = 0;
3368     lhs->avl = 0;
3369     lhs->unusable = 0;
3370 }
3371 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3372 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3373 {
3374     unsigned flags = rhs->flags;
3375     lhs->selector = rhs->selector;
3376     lhs->base = rhs->base;
3377     lhs->limit = rhs->limit;
3378     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3379     lhs->present = (flags & DESC_P_MASK) != 0;
3380     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3381     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3382     lhs->s = (flags & DESC_S_MASK) != 0;
3383     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3384     lhs->g = (flags & DESC_G_MASK) != 0;
3385     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3386     lhs->unusable = !lhs->present;
3387     lhs->padding = 0;
3388 }
3389 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)3390 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3391 {
3392     lhs->selector = rhs->selector;
3393     lhs->base = rhs->base;
3394     lhs->limit = rhs->limit;
3395     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3396                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3397                  (rhs->dpl << DESC_DPL_SHIFT) |
3398                  (rhs->db << DESC_B_SHIFT) |
3399                  (rhs->s * DESC_S_MASK) |
3400                  (rhs->l << DESC_L_SHIFT) |
3401                  (rhs->g * DESC_G_MASK) |
3402                  (rhs->avl * DESC_AVL_MASK);
3403 }
3404 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)3405 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3406 {
3407     if (set) {
3408         *kvm_reg = *qemu_reg;
3409     } else {
3410         *qemu_reg = *kvm_reg;
3411     }
3412 }
3413 
kvm_getput_regs(X86CPU * cpu,int set)3414 static int kvm_getput_regs(X86CPU *cpu, int set)
3415 {
3416     CPUX86State *env = &cpu->env;
3417     struct kvm_regs regs;
3418     int ret = 0;
3419 
3420     if (!set) {
3421         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3422         if (ret < 0) {
3423             return ret;
3424         }
3425     }
3426 
3427     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3428     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3429     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3430     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3431     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3432     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3433     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3434     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3435 #ifdef TARGET_X86_64
3436     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3437     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3438     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3439     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3440     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3441     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3442     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3443     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3444 #endif
3445 
3446     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3447     kvm_getput_reg(&regs.rip, &env->eip, set);
3448 
3449     if (set) {
3450         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3451     }
3452 
3453     return ret;
3454 }
3455 
kvm_put_xsave(X86CPU * cpu)3456 static int kvm_put_xsave(X86CPU *cpu)
3457 {
3458     CPUX86State *env = &cpu->env;
3459     void *xsave = env->xsave_buf;
3460 
3461     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3462 
3463     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3464 }
3465 
kvm_put_xcrs(X86CPU * cpu)3466 static int kvm_put_xcrs(X86CPU *cpu)
3467 {
3468     CPUX86State *env = &cpu->env;
3469     struct kvm_xcrs xcrs = {};
3470 
3471     if (!has_xcrs) {
3472         return 0;
3473     }
3474 
3475     xcrs.nr_xcrs = 1;
3476     xcrs.flags = 0;
3477     xcrs.xcrs[0].xcr = 0;
3478     xcrs.xcrs[0].value = env->xcr0;
3479     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3480 }
3481 
kvm_put_sregs(X86CPU * cpu)3482 static int kvm_put_sregs(X86CPU *cpu)
3483 {
3484     CPUX86State *env = &cpu->env;
3485     struct kvm_sregs sregs;
3486 
3487     /*
3488      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3489      * always followed by KVM_SET_VCPU_EVENTS.
3490      */
3491     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3492 
3493     if ((env->eflags & VM_MASK)) {
3494         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3495         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3496         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3497         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3498         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3499         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3500     } else {
3501         set_seg(&sregs.cs, &env->segs[R_CS]);
3502         set_seg(&sregs.ds, &env->segs[R_DS]);
3503         set_seg(&sregs.es, &env->segs[R_ES]);
3504         set_seg(&sregs.fs, &env->segs[R_FS]);
3505         set_seg(&sregs.gs, &env->segs[R_GS]);
3506         set_seg(&sregs.ss, &env->segs[R_SS]);
3507     }
3508 
3509     set_seg(&sregs.tr, &env->tr);
3510     set_seg(&sregs.ldt, &env->ldt);
3511 
3512     sregs.idt.limit = env->idt.limit;
3513     sregs.idt.base = env->idt.base;
3514     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3515     sregs.gdt.limit = env->gdt.limit;
3516     sregs.gdt.base = env->gdt.base;
3517     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3518 
3519     sregs.cr0 = env->cr[0];
3520     sregs.cr2 = env->cr[2];
3521     sregs.cr3 = env->cr[3];
3522     sregs.cr4 = env->cr[4];
3523 
3524     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3525     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3526 
3527     sregs.efer = env->efer;
3528 
3529     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3530 }
3531 
kvm_put_sregs2(X86CPU * cpu)3532 static int kvm_put_sregs2(X86CPU *cpu)
3533 {
3534     CPUX86State *env = &cpu->env;
3535     struct kvm_sregs2 sregs;
3536     int i;
3537 
3538     sregs.flags = 0;
3539 
3540     if ((env->eflags & VM_MASK)) {
3541         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3542         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3543         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3544         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3545         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3546         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3547     } else {
3548         set_seg(&sregs.cs, &env->segs[R_CS]);
3549         set_seg(&sregs.ds, &env->segs[R_DS]);
3550         set_seg(&sregs.es, &env->segs[R_ES]);
3551         set_seg(&sregs.fs, &env->segs[R_FS]);
3552         set_seg(&sregs.gs, &env->segs[R_GS]);
3553         set_seg(&sregs.ss, &env->segs[R_SS]);
3554     }
3555 
3556     set_seg(&sregs.tr, &env->tr);
3557     set_seg(&sregs.ldt, &env->ldt);
3558 
3559     sregs.idt.limit = env->idt.limit;
3560     sregs.idt.base = env->idt.base;
3561     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3562     sregs.gdt.limit = env->gdt.limit;
3563     sregs.gdt.base = env->gdt.base;
3564     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3565 
3566     sregs.cr0 = env->cr[0];
3567     sregs.cr2 = env->cr[2];
3568     sregs.cr3 = env->cr[3];
3569     sregs.cr4 = env->cr[4];
3570 
3571     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3572     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3573 
3574     sregs.efer = env->efer;
3575 
3576     if (env->pdptrs_valid) {
3577         for (i = 0; i < 4; i++) {
3578             sregs.pdptrs[i] = env->pdptrs[i];
3579         }
3580         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3581     }
3582 
3583     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3584 }
3585 
3586 
kvm_msr_buf_reset(X86CPU * cpu)3587 static void kvm_msr_buf_reset(X86CPU *cpu)
3588 {
3589     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3590 }
3591 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)3592 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3593 {
3594     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3595     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3596     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3597 
3598     assert((void *)(entry + 1) <= limit);
3599 
3600     entry->index = index;
3601     entry->reserved = 0;
3602     entry->data = value;
3603     msrs->nmsrs++;
3604 }
3605 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)3606 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3607 {
3608     kvm_msr_buf_reset(cpu);
3609     kvm_msr_entry_add(cpu, index, value);
3610 
3611     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3612 }
3613 
kvm_get_one_msr(X86CPU * cpu,int index,uint64_t * value)3614 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3615 {
3616     int ret;
3617     struct {
3618         struct kvm_msrs info;
3619         struct kvm_msr_entry entries[1];
3620     } msr_data = {
3621         .info.nmsrs = 1,
3622         .entries[0].index = index,
3623     };
3624 
3625     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3626     if (ret < 0) {
3627         return ret;
3628     }
3629     assert(ret == 1);
3630     *value = msr_data.entries[0].data;
3631     return ret;
3632 }
kvm_put_apicbase(X86CPU * cpu,uint64_t value)3633 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3634 {
3635     int ret;
3636 
3637     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3638     assert(ret == 1);
3639 }
3640 
kvm_put_tscdeadline_msr(X86CPU * cpu)3641 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3642 {
3643     CPUX86State *env = &cpu->env;
3644     int ret;
3645 
3646     if (!has_msr_tsc_deadline) {
3647         return 0;
3648     }
3649 
3650     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3651     if (ret < 0) {
3652         return ret;
3653     }
3654 
3655     assert(ret == 1);
3656     return 0;
3657 }
3658 
3659 /*
3660  * Provide a separate write service for the feature control MSR in order to
3661  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3662  * before writing any other state because forcibly leaving nested mode
3663  * invalidates the VCPU state.
3664  */
kvm_put_msr_feature_control(X86CPU * cpu)3665 static int kvm_put_msr_feature_control(X86CPU *cpu)
3666 {
3667     int ret;
3668 
3669     if (!has_msr_feature_control) {
3670         return 0;
3671     }
3672 
3673     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3674                           cpu->env.msr_ia32_feature_control);
3675     if (ret < 0) {
3676         return ret;
3677     }
3678 
3679     assert(ret == 1);
3680     return 0;
3681 }
3682 
make_vmx_msr_value(uint32_t index,uint32_t features)3683 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3684 {
3685     uint32_t default1, can_be_one, can_be_zero;
3686     uint32_t must_be_one;
3687 
3688     switch (index) {
3689     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3690         default1 = 0x00000016;
3691         break;
3692     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3693         default1 = 0x0401e172;
3694         break;
3695     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3696         default1 = 0x000011ff;
3697         break;
3698     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3699         default1 = 0x00036dff;
3700         break;
3701     case MSR_IA32_VMX_PROCBASED_CTLS2:
3702         default1 = 0;
3703         break;
3704     default:
3705         abort();
3706     }
3707 
3708     /* If a feature bit is set, the control can be either set or clear.
3709      * Otherwise the value is limited to either 0 or 1 by default1.
3710      */
3711     can_be_one = features | default1;
3712     can_be_zero = features | ~default1;
3713     must_be_one = ~can_be_zero;
3714 
3715     /*
3716      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3717      * Bit 32:63 -> 1 if the control bit can be one.
3718      */
3719     return must_be_one | (((uint64_t)can_be_one) << 32);
3720 }
3721 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)3722 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3723 {
3724     uint64_t kvm_vmx_basic =
3725         kvm_arch_get_supported_msr_feature(kvm_state,
3726                                            MSR_IA32_VMX_BASIC);
3727 
3728     if (!kvm_vmx_basic) {
3729         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3730          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3731          */
3732         return;
3733     }
3734 
3735     uint64_t kvm_vmx_misc =
3736         kvm_arch_get_supported_msr_feature(kvm_state,
3737                                            MSR_IA32_VMX_MISC);
3738     uint64_t kvm_vmx_ept_vpid =
3739         kvm_arch_get_supported_msr_feature(kvm_state,
3740                                            MSR_IA32_VMX_EPT_VPID_CAP);
3741 
3742     /*
3743      * If the guest is 64-bit, a value of 1 is allowed for the host address
3744      * space size vmexit control.
3745      */
3746     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3747         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3748 
3749     /*
3750      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3751      * not change them for backwards compatibility.
3752      */
3753     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3754         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3755          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3756          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3757 
3758     /*
3759      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3760      * change in the future but are always zero for now, clear them to be
3761      * future proof.  Bits 32-63 in theory could change, though KVM does
3762      * not support dual-monitor treatment and probably never will; mask
3763      * them out as well.
3764      */
3765     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3766         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3767          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3768 
3769     /*
3770      * EPT memory types should not change either, so we do not bother
3771      * adding features for them.
3772      */
3773     uint64_t fixed_vmx_ept_mask =
3774             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3775              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3776     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3777 
3778     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3779                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3780                                          f[FEAT_VMX_PROCBASED_CTLS]));
3781     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3782                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3783                                          f[FEAT_VMX_PINBASED_CTLS]));
3784     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3785                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3786                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3787     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3788                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3789                                          f[FEAT_VMX_ENTRY_CTLS]));
3790     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3791                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3792                                          f[FEAT_VMX_SECONDARY_CTLS]));
3793     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3794                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3795     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3796                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3797     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3798                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3799     if (has_msr_vmx_vmfunc) {
3800         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3801     }
3802 
3803     /*
3804      * Just to be safe, write these with constant values.  The CRn_FIXED1
3805      * MSRs are generated by KVM based on the vCPU's CPUID.
3806      */
3807     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3808                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3809     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3810                       CR4_VMXE_MASK);
3811 
3812     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3813         /* FRED injected-event data (0x2052).  */
3814         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3815     } else if (f[FEAT_VMX_EXIT_CTLS] &
3816                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3817         /* Secondary VM-exit controls (0x2044).  */
3818         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3819     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3820         /* TSC multiplier (0x2032).  */
3821         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3822     } else {
3823         /* Preemption timer (0x482E).  */
3824         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3825     }
3826 }
3827 
kvm_msr_entry_add_perf(X86CPU * cpu,FeatureWordArray f)3828 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3829 {
3830     uint64_t kvm_perf_cap =
3831         kvm_arch_get_supported_msr_feature(kvm_state,
3832                                            MSR_IA32_PERF_CAPABILITIES);
3833 
3834     if (kvm_perf_cap) {
3835         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3836                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3837     }
3838 }
3839 
kvm_buf_set_msrs(X86CPU * cpu)3840 static int kvm_buf_set_msrs(X86CPU *cpu)
3841 {
3842     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3843     if (ret < 0) {
3844         return ret;
3845     }
3846 
3847     if (ret < cpu->kvm_msr_buf->nmsrs) {
3848         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3849         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3850                      (uint32_t)e->index, (uint64_t)e->data);
3851     }
3852 
3853     assert(ret == cpu->kvm_msr_buf->nmsrs);
3854     return 0;
3855 }
3856 
kvm_init_msrs(X86CPU * cpu)3857 static void kvm_init_msrs(X86CPU *cpu)
3858 {
3859     CPUX86State *env = &cpu->env;
3860 
3861     kvm_msr_buf_reset(cpu);
3862     if (has_msr_arch_capabs) {
3863         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3864                           env->features[FEAT_ARCH_CAPABILITIES]);
3865     }
3866 
3867     if (has_msr_core_capabs) {
3868         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3869                           env->features[FEAT_CORE_CAPABILITY]);
3870     }
3871 
3872     if (has_msr_perf_capabs && cpu->enable_pmu) {
3873         kvm_msr_entry_add_perf(cpu, env->features);
3874     }
3875 
3876     if (has_msr_ucode_rev) {
3877         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3878     }
3879 
3880     /*
3881      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3882      * all kernels with MSR features should have them.
3883      */
3884     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3885         kvm_msr_entry_add_vmx(cpu, env->features);
3886     }
3887 
3888     assert(kvm_buf_set_msrs(cpu) == 0);
3889 }
3890 
kvm_put_msrs(X86CPU * cpu,int level)3891 static int kvm_put_msrs(X86CPU *cpu, int level)
3892 {
3893     CPUX86State *env = &cpu->env;
3894     int i;
3895 
3896     kvm_msr_buf_reset(cpu);
3897 
3898     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3899     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3900     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3901     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3902     if (has_msr_star) {
3903         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3904     }
3905     if (has_msr_hsave_pa) {
3906         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3907     }
3908     if (has_msr_tsc_aux) {
3909         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3910     }
3911     if (has_msr_tsc_adjust) {
3912         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3913     }
3914     if (has_msr_misc_enable) {
3915         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3916                           env->msr_ia32_misc_enable);
3917     }
3918     if (has_msr_smbase) {
3919         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3920     }
3921     if (has_msr_smi_count) {
3922         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3923     }
3924     if (has_msr_pkrs) {
3925         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3926     }
3927     if (has_msr_bndcfgs) {
3928         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3929     }
3930     if (has_msr_xss) {
3931         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3932     }
3933     if (has_msr_umwait) {
3934         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3935     }
3936     if (has_msr_spec_ctrl) {
3937         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3938     }
3939     if (has_tsc_scale_msr) {
3940         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3941     }
3942 
3943     if (has_msr_tsx_ctrl) {
3944         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3945     }
3946     if (has_msr_virt_ssbd) {
3947         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3948     }
3949     if (has_msr_hwcr) {
3950         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3951     }
3952 
3953 #ifdef TARGET_X86_64
3954     if (lm_capable_kernel) {
3955         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3956         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3957         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3958         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3959         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3960             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3961             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3962             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3963             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3964             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3965             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3966             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3967             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3968             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3969         }
3970     }
3971 #endif
3972 
3973     /*
3974      * The following MSRs have side effects on the guest or are too heavy
3975      * for normal writeback. Limit them to reset or full state updates.
3976      */
3977     if (level >= KVM_PUT_RESET_STATE) {
3978         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3979         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3980             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3981             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3982         }
3983         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
3984             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3985         }
3986         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
3987             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3988         }
3989         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
3990             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3991         }
3992         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
3993             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3994         }
3995 
3996         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
3997             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3998         }
3999 
4000         if (has_architectural_pmu_version > 0) {
4001             if (has_architectural_pmu_version > 1) {
4002                 /* Stop the counter.  */
4003                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4004                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4005             }
4006 
4007             /* Set the counter values.  */
4008             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4009                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4010                                   env->msr_fixed_counters[i]);
4011             }
4012             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4013                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4014                                   env->msr_gp_counters[i]);
4015                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4016                                   env->msr_gp_evtsel[i]);
4017             }
4018             if (has_architectural_pmu_version > 1) {
4019                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4020                                   env->msr_global_status);
4021                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4022                                   env->msr_global_ovf_ctrl);
4023 
4024                 /* Now start the PMU.  */
4025                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4026                                   env->msr_fixed_ctr_ctrl);
4027                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4028                                   env->msr_global_ctrl);
4029             }
4030         }
4031         /*
4032          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4033          * only sync them to KVM on the first cpu
4034          */
4035         if (current_cpu == first_cpu) {
4036             if (has_msr_hv_hypercall) {
4037                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4038                                   env->msr_hv_guest_os_id);
4039                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4040                                   env->msr_hv_hypercall);
4041             }
4042             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4043                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4044                                   env->msr_hv_tsc);
4045             }
4046             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4047                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4048                                   env->msr_hv_reenlightenment_control);
4049                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4050                                   env->msr_hv_tsc_emulation_control);
4051                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4052                                   env->msr_hv_tsc_emulation_status);
4053             }
4054             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4055                 has_msr_hv_syndbg_options) {
4056                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4057                                   hyperv_syndbg_query_options());
4058             }
4059         }
4060         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4061             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4062                               env->msr_hv_vapic);
4063         }
4064         if (has_msr_hv_crash) {
4065             int j;
4066 
4067             for (j = 0; j < HV_CRASH_PARAMS; j++)
4068                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4069                                   env->msr_hv_crash_params[j]);
4070 
4071             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4072         }
4073         if (has_msr_hv_runtime) {
4074             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4075         }
4076         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4077             && hv_vpindex_settable) {
4078             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4079                               hyperv_vp_index(CPU(cpu)));
4080         }
4081         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4082             int j;
4083 
4084             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4085 
4086             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4087                               env->msr_hv_synic_control);
4088             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4089                               env->msr_hv_synic_evt_page);
4090             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4091                               env->msr_hv_synic_msg_page);
4092 
4093             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4094                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4095                                   env->msr_hv_synic_sint[j]);
4096             }
4097         }
4098         if (has_msr_hv_stimer) {
4099             int j;
4100 
4101             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4102                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4103                                 env->msr_hv_stimer_config[j]);
4104             }
4105 
4106             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4107                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4108                                 env->msr_hv_stimer_count[j]);
4109             }
4110         }
4111         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4112             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4113 
4114             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4115             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4116             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4117             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4118             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4119             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4120             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4121             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4122             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4123             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4124             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4125             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4126             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4127                 /* The CPU GPs if we write to a bit above the physical limit of
4128                  * the host CPU (and KVM emulates that)
4129                  */
4130                 uint64_t mask = env->mtrr_var[i].mask;
4131                 mask &= phys_mask;
4132 
4133                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4134                                   env->mtrr_var[i].base);
4135                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4136             }
4137         }
4138         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4139             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4140                                                     0x14, 1, R_EAX) & 0x7;
4141 
4142             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4143                             env->msr_rtit_ctrl);
4144             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4145                             env->msr_rtit_status);
4146             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4147                             env->msr_rtit_output_base);
4148             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4149                             env->msr_rtit_output_mask);
4150             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4151                             env->msr_rtit_cr3_match);
4152             for (i = 0; i < addr_num; i++) {
4153                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4154                             env->msr_rtit_addrs[i]);
4155             }
4156         }
4157 
4158         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4159             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4160                               env->msr_ia32_sgxlepubkeyhash[0]);
4161             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4162                               env->msr_ia32_sgxlepubkeyhash[1]);
4163             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4164                               env->msr_ia32_sgxlepubkeyhash[2]);
4165             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4166                               env->msr_ia32_sgxlepubkeyhash[3]);
4167         }
4168 
4169         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4170             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4171                               env->msr_xfd);
4172             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4173                               env->msr_xfd_err);
4174         }
4175 
4176         if (kvm_enabled() && cpu->enable_pmu &&
4177             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4178             uint64_t depth;
4179             int ret;
4180 
4181             /*
4182              * Only migrate Arch LBR states when the host Arch LBR depth
4183              * equals that of source guest's, this is to avoid mismatch
4184              * of guest/host config for the msr hence avoid unexpected
4185              * misbehavior.
4186              */
4187             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4188 
4189             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4190                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4191                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4192 
4193                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4194                     if (!env->lbr_records[i].from) {
4195                         continue;
4196                     }
4197                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4198                                       env->lbr_records[i].from);
4199                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4200                                       env->lbr_records[i].to);
4201                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4202                                       env->lbr_records[i].info);
4203                 }
4204             }
4205         }
4206 
4207         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4208          *       kvm_put_msr_feature_control. */
4209     }
4210 
4211     if (env->mcg_cap) {
4212         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4213         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4214         if (has_msr_mcg_ext_ctl) {
4215             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4216         }
4217         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4218             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4219         }
4220     }
4221 
4222     return kvm_buf_set_msrs(cpu);
4223 }
4224 
4225 
kvm_get_xsave(X86CPU * cpu)4226 static int kvm_get_xsave(X86CPU *cpu)
4227 {
4228     CPUX86State *env = &cpu->env;
4229     void *xsave = env->xsave_buf;
4230     unsigned long type;
4231     int ret;
4232 
4233     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4234     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4235     if (ret < 0) {
4236         return ret;
4237     }
4238     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4239 
4240     return 0;
4241 }
4242 
kvm_get_xcrs(X86CPU * cpu)4243 static int kvm_get_xcrs(X86CPU *cpu)
4244 {
4245     CPUX86State *env = &cpu->env;
4246     int i, ret;
4247     struct kvm_xcrs xcrs;
4248 
4249     if (!has_xcrs) {
4250         return 0;
4251     }
4252 
4253     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4254     if (ret < 0) {
4255         return ret;
4256     }
4257 
4258     for (i = 0; i < xcrs.nr_xcrs; i++) {
4259         /* Only support xcr0 now */
4260         if (xcrs.xcrs[i].xcr == 0) {
4261             env->xcr0 = xcrs.xcrs[i].value;
4262             break;
4263         }
4264     }
4265     return 0;
4266 }
4267 
kvm_get_sregs(X86CPU * cpu)4268 static int kvm_get_sregs(X86CPU *cpu)
4269 {
4270     CPUX86State *env = &cpu->env;
4271     struct kvm_sregs sregs;
4272     int ret;
4273 
4274     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4275     if (ret < 0) {
4276         return ret;
4277     }
4278 
4279     /*
4280      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4281      * always preceded by KVM_GET_VCPU_EVENTS.
4282      */
4283 
4284     get_seg(&env->segs[R_CS], &sregs.cs);
4285     get_seg(&env->segs[R_DS], &sregs.ds);
4286     get_seg(&env->segs[R_ES], &sregs.es);
4287     get_seg(&env->segs[R_FS], &sregs.fs);
4288     get_seg(&env->segs[R_GS], &sregs.gs);
4289     get_seg(&env->segs[R_SS], &sregs.ss);
4290 
4291     get_seg(&env->tr, &sregs.tr);
4292     get_seg(&env->ldt, &sregs.ldt);
4293 
4294     env->idt.limit = sregs.idt.limit;
4295     env->idt.base = sregs.idt.base;
4296     env->gdt.limit = sregs.gdt.limit;
4297     env->gdt.base = sregs.gdt.base;
4298 
4299     env->cr[0] = sregs.cr0;
4300     env->cr[2] = sregs.cr2;
4301     env->cr[3] = sregs.cr3;
4302     env->cr[4] = sregs.cr4;
4303 
4304     env->efer = sregs.efer;
4305     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4306         env->cr[0] & CR0_PG_MASK) {
4307         env->efer |= MSR_EFER_LMA;
4308     }
4309 
4310     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4311     x86_update_hflags(env);
4312 
4313     return 0;
4314 }
4315 
kvm_get_sregs2(X86CPU * cpu)4316 static int kvm_get_sregs2(X86CPU *cpu)
4317 {
4318     CPUX86State *env = &cpu->env;
4319     struct kvm_sregs2 sregs;
4320     int i, ret;
4321 
4322     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4323     if (ret < 0) {
4324         return ret;
4325     }
4326 
4327     get_seg(&env->segs[R_CS], &sregs.cs);
4328     get_seg(&env->segs[R_DS], &sregs.ds);
4329     get_seg(&env->segs[R_ES], &sregs.es);
4330     get_seg(&env->segs[R_FS], &sregs.fs);
4331     get_seg(&env->segs[R_GS], &sregs.gs);
4332     get_seg(&env->segs[R_SS], &sregs.ss);
4333 
4334     get_seg(&env->tr, &sregs.tr);
4335     get_seg(&env->ldt, &sregs.ldt);
4336 
4337     env->idt.limit = sregs.idt.limit;
4338     env->idt.base = sregs.idt.base;
4339     env->gdt.limit = sregs.gdt.limit;
4340     env->gdt.base = sregs.gdt.base;
4341 
4342     env->cr[0] = sregs.cr0;
4343     env->cr[2] = sregs.cr2;
4344     env->cr[3] = sregs.cr3;
4345     env->cr[4] = sregs.cr4;
4346 
4347     env->efer = sregs.efer;
4348     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4349         env->cr[0] & CR0_PG_MASK) {
4350         env->efer |= MSR_EFER_LMA;
4351     }
4352 
4353     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4354 
4355     if (env->pdptrs_valid) {
4356         for (i = 0; i < 4; i++) {
4357             env->pdptrs[i] = sregs.pdptrs[i];
4358         }
4359     }
4360 
4361     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4362     x86_update_hflags(env);
4363 
4364     return 0;
4365 }
4366 
kvm_get_msrs(X86CPU * cpu)4367 static int kvm_get_msrs(X86CPU *cpu)
4368 {
4369     CPUX86State *env = &cpu->env;
4370     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4371     int ret, i;
4372     uint64_t mtrr_top_bits;
4373 
4374     kvm_msr_buf_reset(cpu);
4375 
4376     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4377     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4378     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4379     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4380     if (has_msr_star) {
4381         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4382     }
4383     if (has_msr_hsave_pa) {
4384         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4385     }
4386     if (has_msr_tsc_aux) {
4387         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4388     }
4389     if (has_msr_tsc_adjust) {
4390         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4391     }
4392     if (has_msr_tsc_deadline) {
4393         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4394     }
4395     if (has_msr_misc_enable) {
4396         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4397     }
4398     if (has_msr_smbase) {
4399         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4400     }
4401     if (has_msr_smi_count) {
4402         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4403     }
4404     if (has_msr_feature_control) {
4405         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4406     }
4407     if (has_msr_pkrs) {
4408         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4409     }
4410     if (has_msr_bndcfgs) {
4411         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4412     }
4413     if (has_msr_xss) {
4414         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4415     }
4416     if (has_msr_umwait) {
4417         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4418     }
4419     if (has_msr_spec_ctrl) {
4420         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4421     }
4422     if (has_tsc_scale_msr) {
4423         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4424     }
4425 
4426     if (has_msr_tsx_ctrl) {
4427         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4428     }
4429     if (has_msr_virt_ssbd) {
4430         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4431     }
4432     if (!env->tsc_valid) {
4433         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4434         env->tsc_valid = !runstate_is_running();
4435     }
4436     if (has_msr_hwcr) {
4437         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4438     }
4439 
4440 #ifdef TARGET_X86_64
4441     if (lm_capable_kernel) {
4442         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4443         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4444         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4445         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4446         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4447             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4448             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4449             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4450             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4451             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4452             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4453             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4454             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4455             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4456         }
4457     }
4458 #endif
4459     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4460         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4461         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4462     }
4463     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4464         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4465     }
4466     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4467         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4468     }
4469     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4470         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4471     }
4472     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4473         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4474     }
4475     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4476         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4477     }
4478     if (has_architectural_pmu_version > 0) {
4479         if (has_architectural_pmu_version > 1) {
4480             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4481             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4482             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4483             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4484         }
4485         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4486             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4487         }
4488         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4489             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4490             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4491         }
4492     }
4493 
4494     if (env->mcg_cap) {
4495         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4496         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4497         if (has_msr_mcg_ext_ctl) {
4498             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4499         }
4500         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4501             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4502         }
4503     }
4504 
4505     if (has_msr_hv_hypercall) {
4506         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4507         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4508     }
4509     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4510         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4511     }
4512     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4513         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4514     }
4515     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4516         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4517         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4518         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4519     }
4520     if (has_msr_hv_syndbg_options) {
4521         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4522     }
4523     if (has_msr_hv_crash) {
4524         int j;
4525 
4526         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4527             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4528         }
4529     }
4530     if (has_msr_hv_runtime) {
4531         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4532     }
4533     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4534         uint32_t msr;
4535 
4536         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4537         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4538         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4539         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4540             kvm_msr_entry_add(cpu, msr, 0);
4541         }
4542     }
4543     if (has_msr_hv_stimer) {
4544         uint32_t msr;
4545 
4546         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4547              msr++) {
4548             kvm_msr_entry_add(cpu, msr, 0);
4549         }
4550     }
4551     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4552         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4553         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4554         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4555         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4556         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4557         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4558         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4559         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4560         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4561         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4562         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4563         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4564         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4565             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4566             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4567         }
4568     }
4569 
4570     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4571         int addr_num =
4572             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4573 
4574         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4575         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4576         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4577         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4578         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4579         for (i = 0; i < addr_num; i++) {
4580             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4581         }
4582     }
4583 
4584     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4585         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4586         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4587         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4588         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4589     }
4590 
4591     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4592         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4593         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4594     }
4595 
4596     if (kvm_enabled() && cpu->enable_pmu &&
4597         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4598         uint64_t depth;
4599 
4600         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4601         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4602             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4603             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4604 
4605             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4606                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4607                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4608                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4609             }
4610         }
4611     }
4612 
4613     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4614     if (ret < 0) {
4615         return ret;
4616     }
4617 
4618     if (ret < cpu->kvm_msr_buf->nmsrs) {
4619         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4620         error_report("error: failed to get MSR 0x%" PRIx32,
4621                      (uint32_t)e->index);
4622     }
4623 
4624     assert(ret == cpu->kvm_msr_buf->nmsrs);
4625     /*
4626      * MTRR masks: Each mask consists of 5 parts
4627      * a  10..0: must be zero
4628      * b  11   : valid bit
4629      * c n-1.12: actual mask bits
4630      * d  51..n: reserved must be zero
4631      * e  63.52: reserved must be zero
4632      *
4633      * 'n' is the number of physical bits supported by the CPU and is
4634      * apparently always <= 52.   We know our 'n' but don't know what
4635      * the destinations 'n' is; it might be smaller, in which case
4636      * it masks (c) on loading. It might be larger, in which case
4637      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4638      * we're migrating to.
4639      */
4640 
4641     if (cpu->fill_mtrr_mask) {
4642         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4643         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4644         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4645     } else {
4646         mtrr_top_bits = 0;
4647     }
4648 
4649     for (i = 0; i < ret; i++) {
4650         uint32_t index = msrs[i].index;
4651         switch (index) {
4652         case MSR_IA32_SYSENTER_CS:
4653             env->sysenter_cs = msrs[i].data;
4654             break;
4655         case MSR_IA32_SYSENTER_ESP:
4656             env->sysenter_esp = msrs[i].data;
4657             break;
4658         case MSR_IA32_SYSENTER_EIP:
4659             env->sysenter_eip = msrs[i].data;
4660             break;
4661         case MSR_PAT:
4662             env->pat = msrs[i].data;
4663             break;
4664         case MSR_STAR:
4665             env->star = msrs[i].data;
4666             break;
4667 #ifdef TARGET_X86_64
4668         case MSR_CSTAR:
4669             env->cstar = msrs[i].data;
4670             break;
4671         case MSR_KERNELGSBASE:
4672             env->kernelgsbase = msrs[i].data;
4673             break;
4674         case MSR_FMASK:
4675             env->fmask = msrs[i].data;
4676             break;
4677         case MSR_LSTAR:
4678             env->lstar = msrs[i].data;
4679             break;
4680         case MSR_IA32_FRED_RSP0:
4681             env->fred_rsp0 = msrs[i].data;
4682             break;
4683         case MSR_IA32_FRED_RSP1:
4684             env->fred_rsp1 = msrs[i].data;
4685             break;
4686         case MSR_IA32_FRED_RSP2:
4687             env->fred_rsp2 = msrs[i].data;
4688             break;
4689         case MSR_IA32_FRED_RSP3:
4690             env->fred_rsp3 = msrs[i].data;
4691             break;
4692         case MSR_IA32_FRED_STKLVLS:
4693             env->fred_stklvls = msrs[i].data;
4694             break;
4695         case MSR_IA32_FRED_SSP1:
4696             env->fred_ssp1 = msrs[i].data;
4697             break;
4698         case MSR_IA32_FRED_SSP2:
4699             env->fred_ssp2 = msrs[i].data;
4700             break;
4701         case MSR_IA32_FRED_SSP3:
4702             env->fred_ssp3 = msrs[i].data;
4703             break;
4704         case MSR_IA32_FRED_CONFIG:
4705             env->fred_config = msrs[i].data;
4706             break;
4707 #endif
4708         case MSR_IA32_TSC:
4709             env->tsc = msrs[i].data;
4710             break;
4711         case MSR_TSC_AUX:
4712             env->tsc_aux = msrs[i].data;
4713             break;
4714         case MSR_TSC_ADJUST:
4715             env->tsc_adjust = msrs[i].data;
4716             break;
4717         case MSR_IA32_TSCDEADLINE:
4718             env->tsc_deadline = msrs[i].data;
4719             break;
4720         case MSR_VM_HSAVE_PA:
4721             env->vm_hsave = msrs[i].data;
4722             break;
4723         case MSR_KVM_SYSTEM_TIME:
4724             env->system_time_msr = msrs[i].data;
4725             break;
4726         case MSR_KVM_WALL_CLOCK:
4727             env->wall_clock_msr = msrs[i].data;
4728             break;
4729         case MSR_MCG_STATUS:
4730             env->mcg_status = msrs[i].data;
4731             break;
4732         case MSR_MCG_CTL:
4733             env->mcg_ctl = msrs[i].data;
4734             break;
4735         case MSR_MCG_EXT_CTL:
4736             env->mcg_ext_ctl = msrs[i].data;
4737             break;
4738         case MSR_IA32_MISC_ENABLE:
4739             env->msr_ia32_misc_enable = msrs[i].data;
4740             break;
4741         case MSR_IA32_SMBASE:
4742             env->smbase = msrs[i].data;
4743             break;
4744         case MSR_SMI_COUNT:
4745             env->msr_smi_count = msrs[i].data;
4746             break;
4747         case MSR_IA32_FEATURE_CONTROL:
4748             env->msr_ia32_feature_control = msrs[i].data;
4749             break;
4750         case MSR_IA32_BNDCFGS:
4751             env->msr_bndcfgs = msrs[i].data;
4752             break;
4753         case MSR_IA32_XSS:
4754             env->xss = msrs[i].data;
4755             break;
4756         case MSR_IA32_UMWAIT_CONTROL:
4757             env->umwait = msrs[i].data;
4758             break;
4759         case MSR_IA32_PKRS:
4760             env->pkrs = msrs[i].data;
4761             break;
4762         default:
4763             if (msrs[i].index >= MSR_MC0_CTL &&
4764                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4765                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4766             }
4767             break;
4768         case MSR_KVM_ASYNC_PF_EN:
4769             env->async_pf_en_msr = msrs[i].data;
4770             break;
4771         case MSR_KVM_ASYNC_PF_INT:
4772             env->async_pf_int_msr = msrs[i].data;
4773             break;
4774         case MSR_KVM_PV_EOI_EN:
4775             env->pv_eoi_en_msr = msrs[i].data;
4776             break;
4777         case MSR_KVM_STEAL_TIME:
4778             env->steal_time_msr = msrs[i].data;
4779             break;
4780         case MSR_KVM_POLL_CONTROL: {
4781             env->poll_control_msr = msrs[i].data;
4782             break;
4783         }
4784         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4785             env->msr_fixed_ctr_ctrl = msrs[i].data;
4786             break;
4787         case MSR_CORE_PERF_GLOBAL_CTRL:
4788             env->msr_global_ctrl = msrs[i].data;
4789             break;
4790         case MSR_CORE_PERF_GLOBAL_STATUS:
4791             env->msr_global_status = msrs[i].data;
4792             break;
4793         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4794             env->msr_global_ovf_ctrl = msrs[i].data;
4795             break;
4796         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4797             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4798             break;
4799         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4800             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4801             break;
4802         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4803             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4804             break;
4805         case HV_X64_MSR_HYPERCALL:
4806             env->msr_hv_hypercall = msrs[i].data;
4807             break;
4808         case HV_X64_MSR_GUEST_OS_ID:
4809             env->msr_hv_guest_os_id = msrs[i].data;
4810             break;
4811         case HV_X64_MSR_APIC_ASSIST_PAGE:
4812             env->msr_hv_vapic = msrs[i].data;
4813             break;
4814         case HV_X64_MSR_REFERENCE_TSC:
4815             env->msr_hv_tsc = msrs[i].data;
4816             break;
4817         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4818             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4819             break;
4820         case HV_X64_MSR_VP_RUNTIME:
4821             env->msr_hv_runtime = msrs[i].data;
4822             break;
4823         case HV_X64_MSR_SCONTROL:
4824             env->msr_hv_synic_control = msrs[i].data;
4825             break;
4826         case HV_X64_MSR_SIEFP:
4827             env->msr_hv_synic_evt_page = msrs[i].data;
4828             break;
4829         case HV_X64_MSR_SIMP:
4830             env->msr_hv_synic_msg_page = msrs[i].data;
4831             break;
4832         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4833             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4834             break;
4835         case HV_X64_MSR_STIMER0_CONFIG:
4836         case HV_X64_MSR_STIMER1_CONFIG:
4837         case HV_X64_MSR_STIMER2_CONFIG:
4838         case HV_X64_MSR_STIMER3_CONFIG:
4839             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4840                                 msrs[i].data;
4841             break;
4842         case HV_X64_MSR_STIMER0_COUNT:
4843         case HV_X64_MSR_STIMER1_COUNT:
4844         case HV_X64_MSR_STIMER2_COUNT:
4845         case HV_X64_MSR_STIMER3_COUNT:
4846             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4847                                 msrs[i].data;
4848             break;
4849         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4850             env->msr_hv_reenlightenment_control = msrs[i].data;
4851             break;
4852         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4853             env->msr_hv_tsc_emulation_control = msrs[i].data;
4854             break;
4855         case HV_X64_MSR_TSC_EMULATION_STATUS:
4856             env->msr_hv_tsc_emulation_status = msrs[i].data;
4857             break;
4858         case HV_X64_MSR_SYNDBG_OPTIONS:
4859             env->msr_hv_syndbg_options = msrs[i].data;
4860             break;
4861         case MSR_MTRRdefType:
4862             env->mtrr_deftype = msrs[i].data;
4863             break;
4864         case MSR_MTRRfix64K_00000:
4865             env->mtrr_fixed[0] = msrs[i].data;
4866             break;
4867         case MSR_MTRRfix16K_80000:
4868             env->mtrr_fixed[1] = msrs[i].data;
4869             break;
4870         case MSR_MTRRfix16K_A0000:
4871             env->mtrr_fixed[2] = msrs[i].data;
4872             break;
4873         case MSR_MTRRfix4K_C0000:
4874             env->mtrr_fixed[3] = msrs[i].data;
4875             break;
4876         case MSR_MTRRfix4K_C8000:
4877             env->mtrr_fixed[4] = msrs[i].data;
4878             break;
4879         case MSR_MTRRfix4K_D0000:
4880             env->mtrr_fixed[5] = msrs[i].data;
4881             break;
4882         case MSR_MTRRfix4K_D8000:
4883             env->mtrr_fixed[6] = msrs[i].data;
4884             break;
4885         case MSR_MTRRfix4K_E0000:
4886             env->mtrr_fixed[7] = msrs[i].data;
4887             break;
4888         case MSR_MTRRfix4K_E8000:
4889             env->mtrr_fixed[8] = msrs[i].data;
4890             break;
4891         case MSR_MTRRfix4K_F0000:
4892             env->mtrr_fixed[9] = msrs[i].data;
4893             break;
4894         case MSR_MTRRfix4K_F8000:
4895             env->mtrr_fixed[10] = msrs[i].data;
4896             break;
4897         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4898             if (index & 1) {
4899                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4900                                                                mtrr_top_bits;
4901             } else {
4902                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4903             }
4904             break;
4905         case MSR_IA32_SPEC_CTRL:
4906             env->spec_ctrl = msrs[i].data;
4907             break;
4908         case MSR_AMD64_TSC_RATIO:
4909             env->amd_tsc_scale_msr = msrs[i].data;
4910             break;
4911         case MSR_IA32_TSX_CTRL:
4912             env->tsx_ctrl = msrs[i].data;
4913             break;
4914         case MSR_VIRT_SSBD:
4915             env->virt_ssbd = msrs[i].data;
4916             break;
4917         case MSR_IA32_RTIT_CTL:
4918             env->msr_rtit_ctrl = msrs[i].data;
4919             break;
4920         case MSR_IA32_RTIT_STATUS:
4921             env->msr_rtit_status = msrs[i].data;
4922             break;
4923         case MSR_IA32_RTIT_OUTPUT_BASE:
4924             env->msr_rtit_output_base = msrs[i].data;
4925             break;
4926         case MSR_IA32_RTIT_OUTPUT_MASK:
4927             env->msr_rtit_output_mask = msrs[i].data;
4928             break;
4929         case MSR_IA32_RTIT_CR3_MATCH:
4930             env->msr_rtit_cr3_match = msrs[i].data;
4931             break;
4932         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4933             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4934             break;
4935         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4936             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4937                            msrs[i].data;
4938             break;
4939         case MSR_IA32_XFD:
4940             env->msr_xfd = msrs[i].data;
4941             break;
4942         case MSR_IA32_XFD_ERR:
4943             env->msr_xfd_err = msrs[i].data;
4944             break;
4945         case MSR_ARCH_LBR_CTL:
4946             env->msr_lbr_ctl = msrs[i].data;
4947             break;
4948         case MSR_ARCH_LBR_DEPTH:
4949             env->msr_lbr_depth = msrs[i].data;
4950             break;
4951         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4952             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4953             break;
4954         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4955             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4956             break;
4957         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4958             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4959             break;
4960         case MSR_K7_HWCR:
4961             env->msr_hwcr = msrs[i].data;
4962             break;
4963         }
4964     }
4965 
4966     return 0;
4967 }
4968 
kvm_put_mp_state(X86CPU * cpu)4969 static int kvm_put_mp_state(X86CPU *cpu)
4970 {
4971     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4972 
4973     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4974 }
4975 
kvm_get_mp_state(X86CPU * cpu)4976 static int kvm_get_mp_state(X86CPU *cpu)
4977 {
4978     CPUState *cs = CPU(cpu);
4979     CPUX86State *env = &cpu->env;
4980     struct kvm_mp_state mp_state;
4981     int ret;
4982 
4983     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4984     if (ret < 0) {
4985         return ret;
4986     }
4987     env->mp_state = mp_state.mp_state;
4988     if (kvm_irqchip_in_kernel()) {
4989         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4990     }
4991     return 0;
4992 }
4993 
kvm_get_apic(X86CPU * cpu)4994 static int kvm_get_apic(X86CPU *cpu)
4995 {
4996     DeviceState *apic = cpu->apic_state;
4997     struct kvm_lapic_state kapic;
4998     int ret;
4999 
5000     if (apic && kvm_irqchip_in_kernel()) {
5001         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
5002         if (ret < 0) {
5003             return ret;
5004         }
5005 
5006         kvm_get_apic_state(apic, &kapic);
5007     }
5008     return 0;
5009 }
5010 
kvm_put_vcpu_events(X86CPU * cpu,int level)5011 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5012 {
5013     CPUState *cs = CPU(cpu);
5014     CPUX86State *env = &cpu->env;
5015     struct kvm_vcpu_events events = {};
5016 
5017     events.flags = 0;
5018 
5019     if (has_exception_payload) {
5020         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5021         events.exception.pending = env->exception_pending;
5022         events.exception_has_payload = env->exception_has_payload;
5023         events.exception_payload = env->exception_payload;
5024     }
5025     events.exception.nr = env->exception_nr;
5026     events.exception.injected = env->exception_injected;
5027     events.exception.has_error_code = env->has_error_code;
5028     events.exception.error_code = env->error_code;
5029 
5030     events.interrupt.injected = (env->interrupt_injected >= 0);
5031     events.interrupt.nr = env->interrupt_injected;
5032     events.interrupt.soft = env->soft_interrupt;
5033 
5034     events.nmi.injected = env->nmi_injected;
5035     events.nmi.pending = env->nmi_pending;
5036     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5037 
5038     events.sipi_vector = env->sipi_vector;
5039 
5040     if (has_msr_smbase) {
5041         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5042         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5043         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5044         if (kvm_irqchip_in_kernel()) {
5045             /* As soon as these are moved to the kernel, remove them
5046              * from cs->interrupt_request.
5047              */
5048             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5049             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5050             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5051         } else {
5052             /* Keep these in cs->interrupt_request.  */
5053             events.smi.pending = 0;
5054             events.smi.latched_init = 0;
5055         }
5056     }
5057 
5058     if (level >= KVM_PUT_RESET_STATE) {
5059         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5060         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5061             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5062         }
5063     }
5064 
5065     if (has_triple_fault_event) {
5066         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5067         events.triple_fault.pending = env->triple_fault_pending;
5068     }
5069 
5070     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5071 }
5072 
kvm_get_vcpu_events(X86CPU * cpu)5073 static int kvm_get_vcpu_events(X86CPU *cpu)
5074 {
5075     CPUX86State *env = &cpu->env;
5076     struct kvm_vcpu_events events;
5077     int ret;
5078 
5079     memset(&events, 0, sizeof(events));
5080     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5081     if (ret < 0) {
5082        return ret;
5083     }
5084 
5085     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5086         env->exception_pending = events.exception.pending;
5087         env->exception_has_payload = events.exception_has_payload;
5088         env->exception_payload = events.exception_payload;
5089     } else {
5090         env->exception_pending = 0;
5091         env->exception_has_payload = false;
5092     }
5093     env->exception_injected = events.exception.injected;
5094     env->exception_nr =
5095         (env->exception_pending || env->exception_injected) ?
5096         events.exception.nr : -1;
5097     env->has_error_code = events.exception.has_error_code;
5098     env->error_code = events.exception.error_code;
5099 
5100     env->interrupt_injected =
5101         events.interrupt.injected ? events.interrupt.nr : -1;
5102     env->soft_interrupt = events.interrupt.soft;
5103 
5104     env->nmi_injected = events.nmi.injected;
5105     env->nmi_pending = events.nmi.pending;
5106     if (events.nmi.masked) {
5107         env->hflags2 |= HF2_NMI_MASK;
5108     } else {
5109         env->hflags2 &= ~HF2_NMI_MASK;
5110     }
5111 
5112     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5113         if (events.smi.smm) {
5114             env->hflags |= HF_SMM_MASK;
5115         } else {
5116             env->hflags &= ~HF_SMM_MASK;
5117         }
5118         if (events.smi.pending) {
5119             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5120         } else {
5121             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5122         }
5123         if (events.smi.smm_inside_nmi) {
5124             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5125         } else {
5126             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5127         }
5128         if (events.smi.latched_init) {
5129             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5130         } else {
5131             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5132         }
5133     }
5134 
5135     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5136         env->triple_fault_pending = events.triple_fault.pending;
5137     }
5138 
5139     env->sipi_vector = events.sipi_vector;
5140 
5141     return 0;
5142 }
5143 
kvm_put_debugregs(X86CPU * cpu)5144 static int kvm_put_debugregs(X86CPU *cpu)
5145 {
5146     CPUX86State *env = &cpu->env;
5147     struct kvm_debugregs dbgregs;
5148     int i;
5149 
5150     memset(&dbgregs, 0, sizeof(dbgregs));
5151     for (i = 0; i < 4; i++) {
5152         dbgregs.db[i] = env->dr[i];
5153     }
5154     dbgregs.dr6 = env->dr[6];
5155     dbgregs.dr7 = env->dr[7];
5156     dbgregs.flags = 0;
5157 
5158     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5159 }
5160 
kvm_get_debugregs(X86CPU * cpu)5161 static int kvm_get_debugregs(X86CPU *cpu)
5162 {
5163     CPUX86State *env = &cpu->env;
5164     struct kvm_debugregs dbgregs;
5165     int i, ret;
5166 
5167     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5168     if (ret < 0) {
5169         return ret;
5170     }
5171     for (i = 0; i < 4; i++) {
5172         env->dr[i] = dbgregs.db[i];
5173     }
5174     env->dr[4] = env->dr[6] = dbgregs.dr6;
5175     env->dr[5] = env->dr[7] = dbgregs.dr7;
5176 
5177     return 0;
5178 }
5179 
kvm_put_nested_state(X86CPU * cpu)5180 static int kvm_put_nested_state(X86CPU *cpu)
5181 {
5182     CPUX86State *env = &cpu->env;
5183     int max_nested_state_len = kvm_max_nested_state_length();
5184 
5185     if (!env->nested_state) {
5186         return 0;
5187     }
5188 
5189     /*
5190      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5191      */
5192     if (env->hflags & HF_GUEST_MASK) {
5193         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5194     } else {
5195         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5196     }
5197 
5198     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5199     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5200         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5201     } else {
5202         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5203     }
5204 
5205     assert(env->nested_state->size <= max_nested_state_len);
5206     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5207 }
5208 
kvm_get_nested_state(X86CPU * cpu)5209 static int kvm_get_nested_state(X86CPU *cpu)
5210 {
5211     CPUX86State *env = &cpu->env;
5212     int max_nested_state_len = kvm_max_nested_state_length();
5213     int ret;
5214 
5215     if (!env->nested_state) {
5216         return 0;
5217     }
5218 
5219     /*
5220      * It is possible that migration restored a smaller size into
5221      * nested_state->hdr.size than what our kernel support.
5222      * We preserve migration origin nested_state->hdr.size for
5223      * call to KVM_SET_NESTED_STATE but wish that our next call
5224      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5225      */
5226     env->nested_state->size = max_nested_state_len;
5227 
5228     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5229     if (ret < 0) {
5230         return ret;
5231     }
5232 
5233     /*
5234      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5235      */
5236     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5237         env->hflags |= HF_GUEST_MASK;
5238     } else {
5239         env->hflags &= ~HF_GUEST_MASK;
5240     }
5241 
5242     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5243     if (cpu_has_svm(env)) {
5244         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5245             env->hflags2 |= HF2_GIF_MASK;
5246         } else {
5247             env->hflags2 &= ~HF2_GIF_MASK;
5248         }
5249     }
5250 
5251     return ret;
5252 }
5253 
kvm_arch_put_registers(CPUState * cpu,int level,Error ** errp)5254 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5255 {
5256     X86CPU *x86_cpu = X86_CPU(cpu);
5257     int ret;
5258 
5259     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5260 
5261     /*
5262      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5263      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5264      * precede kvm_put_nested_state() when 'real' nested state is set.
5265      */
5266     if (level >= KVM_PUT_RESET_STATE) {
5267         ret = kvm_put_msr_feature_control(x86_cpu);
5268         if (ret < 0) {
5269             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5270             return ret;
5271         }
5272     }
5273 
5274     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5275     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5276     if (ret < 0) {
5277         error_setg_errno(errp, -ret, "Failed to set special registers");
5278         return ret;
5279     }
5280 
5281     if (level >= KVM_PUT_RESET_STATE) {
5282         ret = kvm_put_nested_state(x86_cpu);
5283         if (ret < 0) {
5284             error_setg_errno(errp, -ret, "Failed to set nested state");
5285             return ret;
5286         }
5287     }
5288 
5289     if (level == KVM_PUT_FULL_STATE) {
5290         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5291          * because TSC frequency mismatch shouldn't abort migration,
5292          * unless the user explicitly asked for a more strict TSC
5293          * setting (e.g. using an explicit "tsc-freq" option).
5294          */
5295         kvm_arch_set_tsc_khz(cpu);
5296     }
5297 
5298 #ifdef CONFIG_XEN_EMU
5299     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5300         ret = kvm_put_xen_state(cpu);
5301         if (ret < 0) {
5302             error_setg_errno(errp, -ret, "Failed to set Xen state");
5303             return ret;
5304         }
5305     }
5306 #endif
5307 
5308     ret = kvm_getput_regs(x86_cpu, 1);
5309     if (ret < 0) {
5310         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5311         return ret;
5312     }
5313     ret = kvm_put_xsave(x86_cpu);
5314     if (ret < 0) {
5315         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5316         return ret;
5317     }
5318     ret = kvm_put_xcrs(x86_cpu);
5319     if (ret < 0) {
5320         error_setg_errno(errp, -ret, "Failed to set XCRs");
5321         return ret;
5322     }
5323     ret = kvm_put_msrs(x86_cpu, level);
5324     if (ret < 0) {
5325         error_setg_errno(errp, -ret, "Failed to set MSRs");
5326         return ret;
5327     }
5328     ret = kvm_put_vcpu_events(x86_cpu, level);
5329     if (ret < 0) {
5330         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5331         return ret;
5332     }
5333     if (level >= KVM_PUT_RESET_STATE) {
5334         ret = kvm_put_mp_state(x86_cpu);
5335         if (ret < 0) {
5336             error_setg_errno(errp, -ret, "Failed to set MP state");
5337             return ret;
5338         }
5339     }
5340 
5341     ret = kvm_put_tscdeadline_msr(x86_cpu);
5342     if (ret < 0) {
5343         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5344         return ret;
5345     }
5346     ret = kvm_put_debugregs(x86_cpu);
5347     if (ret < 0) {
5348         error_setg_errno(errp, -ret, "Failed to set debug registers");
5349         return ret;
5350     }
5351     return 0;
5352 }
5353 
kvm_arch_get_registers(CPUState * cs,Error ** errp)5354 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5355 {
5356     X86CPU *cpu = X86_CPU(cs);
5357     int ret;
5358 
5359     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5360 
5361     ret = kvm_get_vcpu_events(cpu);
5362     if (ret < 0) {
5363         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5364         goto out;
5365     }
5366     /*
5367      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5368      * KVM_GET_REGS and KVM_GET_SREGS.
5369      */
5370     ret = kvm_get_mp_state(cpu);
5371     if (ret < 0) {
5372         error_setg_errno(errp, -ret, "Failed to get MP state");
5373         goto out;
5374     }
5375     ret = kvm_getput_regs(cpu, 0);
5376     if (ret < 0) {
5377         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5378         goto out;
5379     }
5380     ret = kvm_get_xsave(cpu);
5381     if (ret < 0) {
5382         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5383         goto out;
5384     }
5385     ret = kvm_get_xcrs(cpu);
5386     if (ret < 0) {
5387         error_setg_errno(errp, -ret, "Failed to get XCRs");
5388         goto out;
5389     }
5390     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5391     if (ret < 0) {
5392         error_setg_errno(errp, -ret, "Failed to get special registers");
5393         goto out;
5394     }
5395     ret = kvm_get_msrs(cpu);
5396     if (ret < 0) {
5397         error_setg_errno(errp, -ret, "Failed to get MSRs");
5398         goto out;
5399     }
5400     ret = kvm_get_apic(cpu);
5401     if (ret < 0) {
5402         error_setg_errno(errp, -ret, "Failed to get APIC");
5403         goto out;
5404     }
5405     ret = kvm_get_debugregs(cpu);
5406     if (ret < 0) {
5407         error_setg_errno(errp, -ret, "Failed to get debug registers");
5408         goto out;
5409     }
5410     ret = kvm_get_nested_state(cpu);
5411     if (ret < 0) {
5412         error_setg_errno(errp, -ret, "Failed to get nested state");
5413         goto out;
5414     }
5415 #ifdef CONFIG_XEN_EMU
5416     if (xen_mode == XEN_EMULATE) {
5417         ret = kvm_get_xen_state(cs);
5418         if (ret < 0) {
5419             error_setg_errno(errp, -ret, "Failed to get Xen state");
5420             goto out;
5421         }
5422     }
5423 #endif
5424     ret = 0;
5425  out:
5426     cpu_sync_bndcs_hflags(&cpu->env);
5427     return ret;
5428 }
5429 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)5430 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5431 {
5432     X86CPU *x86_cpu = X86_CPU(cpu);
5433     CPUX86State *env = &x86_cpu->env;
5434     int ret;
5435 
5436     /* Inject NMI */
5437     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5438         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5439             bql_lock();
5440             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5441             bql_unlock();
5442             DPRINTF("injected NMI\n");
5443             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5444             if (ret < 0) {
5445                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5446                         strerror(-ret));
5447             }
5448         }
5449         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5450             bql_lock();
5451             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5452             bql_unlock();
5453             DPRINTF("injected SMI\n");
5454             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5455             if (ret < 0) {
5456                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5457                         strerror(-ret));
5458             }
5459         }
5460     }
5461 
5462     if (!kvm_pic_in_kernel()) {
5463         bql_lock();
5464     }
5465 
5466     /* Force the VCPU out of its inner loop to process any INIT requests
5467      * or (for userspace APIC, but it is cheap to combine the checks here)
5468      * pending TPR access reports.
5469      */
5470     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5471         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5472             !(env->hflags & HF_SMM_MASK)) {
5473             cpu->exit_request = 1;
5474         }
5475         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5476             cpu->exit_request = 1;
5477         }
5478     }
5479 
5480     if (!kvm_pic_in_kernel()) {
5481         /* Try to inject an interrupt if the guest can accept it */
5482         if (run->ready_for_interrupt_injection &&
5483             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5484             (env->eflags & IF_MASK)) {
5485             int irq;
5486 
5487             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5488             irq = cpu_get_pic_interrupt(env);
5489             if (irq >= 0) {
5490                 struct kvm_interrupt intr;
5491 
5492                 intr.irq = irq;
5493                 DPRINTF("injected interrupt %d\n", irq);
5494                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5495                 if (ret < 0) {
5496                     fprintf(stderr,
5497                             "KVM: injection failed, interrupt lost (%s)\n",
5498                             strerror(-ret));
5499                 }
5500             }
5501         }
5502 
5503         /* If we have an interrupt but the guest is not ready to receive an
5504          * interrupt, request an interrupt window exit.  This will
5505          * cause a return to userspace as soon as the guest is ready to
5506          * receive interrupts. */
5507         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5508             run->request_interrupt_window = 1;
5509         } else {
5510             run->request_interrupt_window = 0;
5511         }
5512 
5513         DPRINTF("setting tpr\n");
5514         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5515 
5516         bql_unlock();
5517     }
5518 }
5519 
kvm_rate_limit_on_bus_lock(void)5520 static void kvm_rate_limit_on_bus_lock(void)
5521 {
5522     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5523 
5524     if (delay_ns) {
5525         g_usleep(delay_ns / SCALE_US);
5526     }
5527 }
5528 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)5529 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5530 {
5531     X86CPU *x86_cpu = X86_CPU(cpu);
5532     CPUX86State *env = &x86_cpu->env;
5533 
5534     if (run->flags & KVM_RUN_X86_SMM) {
5535         env->hflags |= HF_SMM_MASK;
5536     } else {
5537         env->hflags &= ~HF_SMM_MASK;
5538     }
5539     if (run->if_flag) {
5540         env->eflags |= IF_MASK;
5541     } else {
5542         env->eflags &= ~IF_MASK;
5543     }
5544     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5545         kvm_rate_limit_on_bus_lock();
5546     }
5547 
5548 #ifdef CONFIG_XEN_EMU
5549     /*
5550      * If the callback is asserted as a GSI (or PCI INTx) then check if
5551      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5552      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5553      * EOI and only resample then, exactly how the VFIO eventfd pairs
5554      * are designed to work for level triggered interrupts.
5555      */
5556     if (x86_cpu->env.xen_callback_asserted) {
5557         kvm_xen_maybe_deassert_callback(cpu);
5558     }
5559 #endif
5560 
5561     /* We need to protect the apic state against concurrent accesses from
5562      * different threads in case the userspace irqchip is used. */
5563     if (!kvm_irqchip_in_kernel()) {
5564         bql_lock();
5565     }
5566     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5567     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5568     if (!kvm_irqchip_in_kernel()) {
5569         bql_unlock();
5570     }
5571     return cpu_get_mem_attrs(env);
5572 }
5573 
kvm_arch_process_async_events(CPUState * cs)5574 int kvm_arch_process_async_events(CPUState *cs)
5575 {
5576     X86CPU *cpu = X86_CPU(cs);
5577     CPUX86State *env = &cpu->env;
5578 
5579     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5580         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5581         assert(env->mcg_cap);
5582 
5583         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5584 
5585         kvm_cpu_synchronize_state(cs);
5586 
5587         if (env->exception_nr == EXCP08_DBLE) {
5588             /* this means triple fault */
5589             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5590             cs->exit_request = 1;
5591             return 0;
5592         }
5593         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5594         env->has_error_code = 0;
5595 
5596         cs->halted = 0;
5597         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5598             env->mp_state = KVM_MP_STATE_RUNNABLE;
5599         }
5600     }
5601 
5602     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5603         !(env->hflags & HF_SMM_MASK)) {
5604         kvm_cpu_synchronize_state(cs);
5605         do_cpu_init(cpu);
5606     }
5607 
5608     if (kvm_irqchip_in_kernel()) {
5609         return 0;
5610     }
5611 
5612     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5613         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5614         apic_poll_irq(cpu->apic_state);
5615     }
5616     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5617          (env->eflags & IF_MASK)) ||
5618         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5619         cs->halted = 0;
5620     }
5621     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5622         kvm_cpu_synchronize_state(cs);
5623         do_cpu_sipi(cpu);
5624     }
5625     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5626         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5627         kvm_cpu_synchronize_state(cs);
5628         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5629                                       env->tpr_access_type);
5630     }
5631 
5632     return cs->halted;
5633 }
5634 
kvm_handle_halt(X86CPU * cpu)5635 static int kvm_handle_halt(X86CPU *cpu)
5636 {
5637     CPUState *cs = CPU(cpu);
5638     CPUX86State *env = &cpu->env;
5639 
5640     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5641           (env->eflags & IF_MASK)) &&
5642         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5643         cs->halted = 1;
5644         return EXCP_HLT;
5645     }
5646 
5647     return 0;
5648 }
5649 
kvm_handle_tpr_access(X86CPU * cpu)5650 static int kvm_handle_tpr_access(X86CPU *cpu)
5651 {
5652     CPUState *cs = CPU(cpu);
5653     struct kvm_run *run = cs->kvm_run;
5654 
5655     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5656                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5657                                                            : TPR_ACCESS_READ);
5658     return 1;
5659 }
5660 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5661 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5662 {
5663     static const uint8_t int3 = 0xcc;
5664 
5665     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5666         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5667         return -EINVAL;
5668     }
5669     return 0;
5670 }
5671 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5672 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5673 {
5674     uint8_t int3;
5675 
5676     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5677         return -EINVAL;
5678     }
5679     if (int3 != 0xcc) {
5680         return 0;
5681     }
5682     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5683         return -EINVAL;
5684     }
5685     return 0;
5686 }
5687 
5688 static struct {
5689     target_ulong addr;
5690     int len;
5691     int type;
5692 } hw_breakpoint[4];
5693 
5694 static int nb_hw_breakpoint;
5695 
find_hw_breakpoint(target_ulong addr,int len,int type)5696 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5697 {
5698     int n;
5699 
5700     for (n = 0; n < nb_hw_breakpoint; n++) {
5701         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5702             (hw_breakpoint[n].len == len || len == -1)) {
5703             return n;
5704         }
5705     }
5706     return -1;
5707 }
5708 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)5709 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5710 {
5711     switch (type) {
5712     case GDB_BREAKPOINT_HW:
5713         len = 1;
5714         break;
5715     case GDB_WATCHPOINT_WRITE:
5716     case GDB_WATCHPOINT_ACCESS:
5717         switch (len) {
5718         case 1:
5719             break;
5720         case 2:
5721         case 4:
5722         case 8:
5723             if (addr & (len - 1)) {
5724                 return -EINVAL;
5725             }
5726             break;
5727         default:
5728             return -EINVAL;
5729         }
5730         break;
5731     default:
5732         return -ENOSYS;
5733     }
5734 
5735     if (nb_hw_breakpoint == 4) {
5736         return -ENOBUFS;
5737     }
5738     if (find_hw_breakpoint(addr, len, type) >= 0) {
5739         return -EEXIST;
5740     }
5741     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5742     hw_breakpoint[nb_hw_breakpoint].len = len;
5743     hw_breakpoint[nb_hw_breakpoint].type = type;
5744     nb_hw_breakpoint++;
5745 
5746     return 0;
5747 }
5748 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)5749 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5750 {
5751     int n;
5752 
5753     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5754     if (n < 0) {
5755         return -ENOENT;
5756     }
5757     nb_hw_breakpoint--;
5758     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5759 
5760     return 0;
5761 }
5762 
kvm_arch_remove_all_hw_breakpoints(void)5763 void kvm_arch_remove_all_hw_breakpoints(void)
5764 {
5765     nb_hw_breakpoint = 0;
5766 }
5767 
5768 static CPUWatchpoint hw_watchpoint;
5769 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)5770 static int kvm_handle_debug(X86CPU *cpu,
5771                             struct kvm_debug_exit_arch *arch_info)
5772 {
5773     CPUState *cs = CPU(cpu);
5774     CPUX86State *env = &cpu->env;
5775     int ret = 0;
5776     int n;
5777 
5778     if (arch_info->exception == EXCP01_DB) {
5779         if (arch_info->dr6 & DR6_BS) {
5780             if (cs->singlestep_enabled) {
5781                 ret = EXCP_DEBUG;
5782             }
5783         } else {
5784             for (n = 0; n < 4; n++) {
5785                 if (arch_info->dr6 & (1 << n)) {
5786                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5787                     case 0x0:
5788                         ret = EXCP_DEBUG;
5789                         break;
5790                     case 0x1:
5791                         ret = EXCP_DEBUG;
5792                         cs->watchpoint_hit = &hw_watchpoint;
5793                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5794                         hw_watchpoint.flags = BP_MEM_WRITE;
5795                         break;
5796                     case 0x3:
5797                         ret = EXCP_DEBUG;
5798                         cs->watchpoint_hit = &hw_watchpoint;
5799                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5800                         hw_watchpoint.flags = BP_MEM_ACCESS;
5801                         break;
5802                     }
5803                 }
5804             }
5805         }
5806     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5807         ret = EXCP_DEBUG;
5808     }
5809     if (ret == 0) {
5810         cpu_synchronize_state(cs);
5811         assert(env->exception_nr == -1);
5812 
5813         /* pass to guest */
5814         kvm_queue_exception(env, arch_info->exception,
5815                             arch_info->exception == EXCP01_DB,
5816                             arch_info->dr6);
5817         env->has_error_code = 0;
5818     }
5819 
5820     return ret;
5821 }
5822 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)5823 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5824 {
5825     const uint8_t type_code[] = {
5826         [GDB_BREAKPOINT_HW] = 0x0,
5827         [GDB_WATCHPOINT_WRITE] = 0x1,
5828         [GDB_WATCHPOINT_ACCESS] = 0x3
5829     };
5830     const uint8_t len_code[] = {
5831         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5832     };
5833     int n;
5834 
5835     if (kvm_sw_breakpoints_active(cpu)) {
5836         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5837     }
5838     if (nb_hw_breakpoint > 0) {
5839         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5840         dbg->arch.debugreg[7] = 0x0600;
5841         for (n = 0; n < nb_hw_breakpoint; n++) {
5842             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5843             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5844                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5845                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5846         }
5847     }
5848 }
5849 
kvm_install_msr_filters(KVMState * s)5850 static int kvm_install_msr_filters(KVMState *s)
5851 {
5852     uint64_t zero = 0;
5853     struct kvm_msr_filter filter = {
5854         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5855     };
5856     int i, j = 0;
5857 
5858     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5859     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5860         KVMMSRHandlers *handler = &msr_handlers[i];
5861         if (handler->msr) {
5862             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5863 
5864             *range = (struct kvm_msr_filter_range) {
5865                 .flags = 0,
5866                 .nmsrs = 1,
5867                 .base = handler->msr,
5868                 .bitmap = (__u8 *)&zero,
5869             };
5870 
5871             if (handler->rdmsr) {
5872                 range->flags |= KVM_MSR_FILTER_READ;
5873             }
5874 
5875             if (handler->wrmsr) {
5876                 range->flags |= KVM_MSR_FILTER_WRITE;
5877             }
5878         }
5879     }
5880 
5881     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5882 }
5883 
kvm_filter_msr(KVMState * s,uint32_t msr,QEMURDMSRHandler * rdmsr,QEMUWRMSRHandler * wrmsr)5884 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5885                           QEMUWRMSRHandler *wrmsr)
5886 {
5887     int i, ret;
5888 
5889     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5890         if (!msr_handlers[i].msr) {
5891             msr_handlers[i] = (KVMMSRHandlers) {
5892                 .msr = msr,
5893                 .rdmsr = rdmsr,
5894                 .wrmsr = wrmsr,
5895             };
5896 
5897             ret = kvm_install_msr_filters(s);
5898             if (ret) {
5899                 msr_handlers[i] = (KVMMSRHandlers) { };
5900                 return ret;
5901             }
5902 
5903             return 0;
5904         }
5905     }
5906 
5907     return -EINVAL;
5908 }
5909 
kvm_handle_rdmsr(X86CPU * cpu,struct kvm_run * run)5910 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5911 {
5912     int i;
5913     bool r;
5914 
5915     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5916         KVMMSRHandlers *handler = &msr_handlers[i];
5917         if (run->msr.index == handler->msr) {
5918             if (handler->rdmsr) {
5919                 r = handler->rdmsr(cpu, handler->msr,
5920                                    (uint64_t *)&run->msr.data);
5921                 run->msr.error = r ? 0 : 1;
5922                 return 0;
5923             }
5924         }
5925     }
5926 
5927     g_assert_not_reached();
5928 }
5929 
kvm_handle_wrmsr(X86CPU * cpu,struct kvm_run * run)5930 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5931 {
5932     int i;
5933     bool r;
5934 
5935     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5936         KVMMSRHandlers *handler = &msr_handlers[i];
5937         if (run->msr.index == handler->msr) {
5938             if (handler->wrmsr) {
5939                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5940                 run->msr.error = r ? 0 : 1;
5941                 return 0;
5942             }
5943         }
5944     }
5945 
5946     g_assert_not_reached();
5947 }
5948 
5949 static bool has_sgx_provisioning;
5950 
__kvm_enable_sgx_provisioning(KVMState * s)5951 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5952 {
5953     int fd, ret;
5954 
5955     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5956         return false;
5957     }
5958 
5959     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5960     if (fd < 0) {
5961         return false;
5962     }
5963 
5964     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5965     if (ret) {
5966         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5967         exit(1);
5968     }
5969     close(fd);
5970     return true;
5971 }
5972 
kvm_enable_sgx_provisioning(KVMState * s)5973 bool kvm_enable_sgx_provisioning(KVMState *s)
5974 {
5975     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5976 }
5977 
host_supports_vmx(void)5978 static bool host_supports_vmx(void)
5979 {
5980     uint32_t ecx, unused;
5981 
5982     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5983     return ecx & CPUID_EXT_VMX;
5984 }
5985 
5986 /*
5987  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5988  * to service guest-initiated memory attribute update requests so that
5989  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5990  * backed by the private memory pool provided by guest_memfd, and as such
5991  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5992  *
5993  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5994  * migration, are not implemented here currently.
5995  *
5996  * For the guest_memfd use-case, these exits will generally be synthesized
5997  * by KVM based on platform-specific hypercalls, like GHCB requests in the
5998  * case of SEV-SNP, and not issued directly within the guest though the
5999  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
6000  * not actually advertised to guests via the KVM CPUID feature bit, as
6001  * opposed to SEV live migration where it would be. Since it is unlikely the
6002  * SEV live migration use-case would be useful for guest-memfd backed guests,
6003  * because private/shared page tracking is already provided through other
6004  * means, these 2 use-cases should be treated as being mutually-exclusive.
6005  */
kvm_handle_hc_map_gpa_range(struct kvm_run * run)6006 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
6007 {
6008     uint64_t gpa, size, attributes;
6009 
6010     if (!machine_require_guest_memfd(current_machine))
6011         return -EINVAL;
6012 
6013     gpa = run->hypercall.args[0];
6014     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6015     attributes = run->hypercall.args[2];
6016 
6017     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6018 
6019     return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6020 }
6021 
kvm_handle_hypercall(struct kvm_run * run)6022 static int kvm_handle_hypercall(struct kvm_run *run)
6023 {
6024     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6025         return kvm_handle_hc_map_gpa_range(run);
6026 
6027     return -EINVAL;
6028 }
6029 
6030 #define VMX_INVALID_GUEST_STATE 0x80000021
6031 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)6032 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6033 {
6034     X86CPU *cpu = X86_CPU(cs);
6035     uint64_t code;
6036     int ret;
6037     bool ctx_invalid;
6038     KVMState *state;
6039 
6040     switch (run->exit_reason) {
6041     case KVM_EXIT_HLT:
6042         DPRINTF("handle_hlt\n");
6043         bql_lock();
6044         ret = kvm_handle_halt(cpu);
6045         bql_unlock();
6046         break;
6047     case KVM_EXIT_SET_TPR:
6048         ret = 0;
6049         break;
6050     case KVM_EXIT_TPR_ACCESS:
6051         bql_lock();
6052         ret = kvm_handle_tpr_access(cpu);
6053         bql_unlock();
6054         break;
6055     case KVM_EXIT_FAIL_ENTRY:
6056         code = run->fail_entry.hardware_entry_failure_reason;
6057         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6058                 code);
6059         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6060             fprintf(stderr,
6061                     "\nIf you're running a guest on an Intel machine without "
6062                         "unrestricted mode\n"
6063                     "support, the failure can be most likely due to the guest "
6064                         "entering an invalid\n"
6065                     "state for Intel VT. For example, the guest maybe running "
6066                         "in big real mode\n"
6067                     "which is not supported on less recent Intel processors."
6068                         "\n\n");
6069         }
6070         ret = -1;
6071         break;
6072     case KVM_EXIT_EXCEPTION:
6073         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6074                 run->ex.exception, run->ex.error_code);
6075         ret = -1;
6076         break;
6077     case KVM_EXIT_DEBUG:
6078         DPRINTF("kvm_exit_debug\n");
6079         bql_lock();
6080         ret = kvm_handle_debug(cpu, &run->debug.arch);
6081         bql_unlock();
6082         break;
6083     case KVM_EXIT_HYPERV:
6084         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6085         break;
6086     case KVM_EXIT_IOAPIC_EOI:
6087         ioapic_eoi_broadcast(run->eoi.vector);
6088         ret = 0;
6089         break;
6090     case KVM_EXIT_X86_BUS_LOCK:
6091         /* already handled in kvm_arch_post_run */
6092         ret = 0;
6093         break;
6094     case KVM_EXIT_NOTIFY:
6095         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6096         state = KVM_STATE(current_accel());
6097         if (ctx_invalid ||
6098             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6099             warn_report("KVM internal error: Encountered a notify exit "
6100                         "with invalid context in guest.");
6101             ret = -1;
6102         } else {
6103             warn_report_once("KVM: Encountered a notify exit with valid "
6104                              "context in guest. "
6105                              "The guest could be misbehaving.");
6106             ret = 0;
6107         }
6108         break;
6109     case KVM_EXIT_X86_RDMSR:
6110         /* We only enable MSR filtering, any other exit is bogus */
6111         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6112         ret = kvm_handle_rdmsr(cpu, run);
6113         break;
6114     case KVM_EXIT_X86_WRMSR:
6115         /* We only enable MSR filtering, any other exit is bogus */
6116         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6117         ret = kvm_handle_wrmsr(cpu, run);
6118         break;
6119 #ifdef CONFIG_XEN_EMU
6120     case KVM_EXIT_XEN:
6121         ret = kvm_xen_handle_exit(cpu, &run->xen);
6122         break;
6123 #endif
6124     case KVM_EXIT_HYPERCALL:
6125         ret = kvm_handle_hypercall(run);
6126         break;
6127     default:
6128         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6129         ret = -1;
6130         break;
6131     }
6132 
6133     return ret;
6134 }
6135 
kvm_arch_stop_on_emulation_error(CPUState * cs)6136 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6137 {
6138     X86CPU *cpu = X86_CPU(cs);
6139     CPUX86State *env = &cpu->env;
6140 
6141     kvm_cpu_synchronize_state(cs);
6142     return !(env->cr[0] & CR0_PE_MASK) ||
6143            ((env->segs[R_CS].selector  & 3) != 3);
6144 }
6145 
kvm_arch_init_irq_routing(KVMState * s)6146 void kvm_arch_init_irq_routing(KVMState *s)
6147 {
6148     /* We know at this point that we're using the in-kernel
6149      * irqchip, so we can use irqfds, and on x86 we know
6150      * we can use msi via irqfd and GSI routing.
6151      */
6152     kvm_msi_via_irqfd_allowed = true;
6153     kvm_gsi_routing_allowed = true;
6154 
6155     if (kvm_irqchip_is_split()) {
6156         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6157         int i;
6158 
6159         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6160            MSI routes for signaling interrupts to the local apics. */
6161         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6162             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6163                 error_report("Could not enable split IRQ mode.");
6164                 exit(1);
6165             }
6166         }
6167         kvm_irqchip_commit_route_changes(&c);
6168     }
6169 }
6170 
kvm_arch_irqchip_create(KVMState * s)6171 int kvm_arch_irqchip_create(KVMState *s)
6172 {
6173     int ret;
6174     if (kvm_kernel_irqchip_split()) {
6175         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6176         if (ret) {
6177             error_report("Could not enable split irqchip mode: %s",
6178                          strerror(-ret));
6179             exit(1);
6180         } else {
6181             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6182             kvm_split_irqchip = true;
6183             return 1;
6184         }
6185     } else {
6186         return 0;
6187     }
6188 }
6189 
kvm_swizzle_msi_ext_dest_id(uint64_t address)6190 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6191 {
6192     CPUX86State *env;
6193     uint64_t ext_id;
6194 
6195     if (!first_cpu) {
6196         return address;
6197     }
6198     env = &X86_CPU(first_cpu)->env;
6199     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6200         return address;
6201     }
6202 
6203     /*
6204      * If the remappable format bit is set, or the upper bits are
6205      * already set in address_hi, or the low extended bits aren't
6206      * there anyway, do nothing.
6207      */
6208     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6209     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6210         return address;
6211     }
6212 
6213     address &= ~ext_id;
6214     address |= ext_id << 35;
6215     return address;
6216 }
6217 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)6218 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6219                              uint64_t address, uint32_t data, PCIDevice *dev)
6220 {
6221     X86IOMMUState *iommu = x86_iommu_get_default();
6222 
6223     if (iommu) {
6224         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6225 
6226         if (class->int_remap) {
6227             int ret;
6228             MSIMessage src, dst;
6229 
6230             src.address = route->u.msi.address_hi;
6231             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6232             src.address |= route->u.msi.address_lo;
6233             src.data = route->u.msi.data;
6234 
6235             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6236                                    pci_requester_id(dev) :      \
6237                                    X86_IOMMU_SID_INVALID);
6238             if (ret) {
6239                 trace_kvm_x86_fixup_msi_error(route->gsi);
6240                 return 1;
6241             }
6242 
6243             /*
6244              * Handled untranslated compatibility format interrupt with
6245              * extended destination ID in the low bits 11-5. */
6246             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6247 
6248             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6249             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6250             route->u.msi.data = dst.data;
6251             return 0;
6252         }
6253     }
6254 
6255 #ifdef CONFIG_XEN_EMU
6256     if (xen_mode == XEN_EMULATE) {
6257         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6258 
6259         /*
6260          * If it was a PIRQ and successfully routed (handled == 0) or it was
6261          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6262          */
6263         if (handled <= 0) {
6264             return handled;
6265         }
6266     }
6267 #endif
6268 
6269     address = kvm_swizzle_msi_ext_dest_id(address);
6270     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6271     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6272     return 0;
6273 }
6274 
6275 typedef struct MSIRouteEntry MSIRouteEntry;
6276 
6277 struct MSIRouteEntry {
6278     PCIDevice *dev;             /* Device pointer */
6279     int vector;                 /* MSI/MSIX vector index */
6280     int virq;                   /* Virtual IRQ index */
6281     QLIST_ENTRY(MSIRouteEntry) list;
6282 };
6283 
6284 /* List of used GSI routes */
6285 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6286     QLIST_HEAD_INITIALIZER(msi_route_list);
6287 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)6288 void kvm_update_msi_routes_all(void *private, bool global,
6289                                uint32_t index, uint32_t mask)
6290 {
6291     int cnt = 0, vector;
6292     MSIRouteEntry *entry;
6293     MSIMessage msg;
6294     PCIDevice *dev;
6295 
6296     /* TODO: explicit route update */
6297     QLIST_FOREACH(entry, &msi_route_list, list) {
6298         cnt++;
6299         vector = entry->vector;
6300         dev = entry->dev;
6301         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6302             msg = msix_get_message(dev, vector);
6303         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6304             msg = msi_get_message(dev, vector);
6305         } else {
6306             /*
6307              * Either MSI/MSIX is disabled for the device, or the
6308              * specific message was masked out.  Skip this one.
6309              */
6310             continue;
6311         }
6312         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6313     }
6314     kvm_irqchip_commit_routes(kvm_state);
6315     trace_kvm_x86_update_msi_routes(cnt);
6316 }
6317 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)6318 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6319                                 int vector, PCIDevice *dev)
6320 {
6321     static bool notify_list_inited = false;
6322     MSIRouteEntry *entry;
6323 
6324     if (!dev) {
6325         /* These are (possibly) IOAPIC routes only used for split
6326          * kernel irqchip mode, while what we are housekeeping are
6327          * PCI devices only. */
6328         return 0;
6329     }
6330 
6331     entry = g_new0(MSIRouteEntry, 1);
6332     entry->dev = dev;
6333     entry->vector = vector;
6334     entry->virq = route->gsi;
6335     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6336 
6337     trace_kvm_x86_add_msi_route(route->gsi);
6338 
6339     if (!notify_list_inited) {
6340         /* For the first time we do add route, add ourselves into
6341          * IOMMU's IEC notify list if needed. */
6342         X86IOMMUState *iommu = x86_iommu_get_default();
6343         if (iommu) {
6344             x86_iommu_iec_register_notifier(iommu,
6345                                             kvm_update_msi_routes_all,
6346                                             NULL);
6347         }
6348         notify_list_inited = true;
6349     }
6350     return 0;
6351 }
6352 
kvm_arch_release_virq_post(int virq)6353 int kvm_arch_release_virq_post(int virq)
6354 {
6355     MSIRouteEntry *entry, *next;
6356     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6357         if (entry->virq == virq) {
6358             trace_kvm_x86_remove_msi_route(virq);
6359             QLIST_REMOVE(entry, list);
6360             g_free(entry);
6361             break;
6362         }
6363     }
6364     return 0;
6365 }
6366 
kvm_arch_msi_data_to_gsi(uint32_t data)6367 int kvm_arch_msi_data_to_gsi(uint32_t data)
6368 {
6369     abort();
6370 }
6371 
kvm_has_waitpkg(void)6372 bool kvm_has_waitpkg(void)
6373 {
6374     return has_msr_umwait;
6375 }
6376 
6377 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6378 
kvm_request_xsave_components(X86CPU * cpu,uint64_t mask)6379 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6380 {
6381     KVMState *s = kvm_state;
6382     uint64_t supported;
6383 
6384     mask &= XSTATE_DYNAMIC_MASK;
6385     if (!mask) {
6386         return;
6387     }
6388     /*
6389      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6390      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6391      * about them already because they are not supported features.
6392      */
6393     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6394     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6395     mask &= supported;
6396 
6397     while (mask) {
6398         int bit = ctz64(mask);
6399         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6400         if (rc) {
6401             /*
6402              * Older kernel version (<5.17) do not support
6403              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6404              * any dynamic feature from kvm_arch_get_supported_cpuid.
6405              */
6406             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6407                         "for feature bit %d", bit);
6408         }
6409         mask &= ~BIT_ULL(bit);
6410     }
6411 }
6412 
kvm_arch_get_notify_vmexit(Object * obj,Error ** errp)6413 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6414 {
6415     KVMState *s = KVM_STATE(obj);
6416     return s->notify_vmexit;
6417 }
6418 
kvm_arch_set_notify_vmexit(Object * obj,int value,Error ** errp)6419 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6420 {
6421     KVMState *s = KVM_STATE(obj);
6422 
6423     if (s->fd != -1) {
6424         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6425         return;
6426     }
6427 
6428     s->notify_vmexit = value;
6429 }
6430 
kvm_arch_get_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6431 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6432                                        const char *name, void *opaque,
6433                                        Error **errp)
6434 {
6435     KVMState *s = KVM_STATE(obj);
6436     uint32_t value = s->notify_window;
6437 
6438     visit_type_uint32(v, name, &value, errp);
6439 }
6440 
kvm_arch_set_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6441 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6442                                        const char *name, void *opaque,
6443                                        Error **errp)
6444 {
6445     KVMState *s = KVM_STATE(obj);
6446     uint32_t value;
6447 
6448     if (s->fd != -1) {
6449         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6450         return;
6451     }
6452 
6453     if (!visit_type_uint32(v, name, &value, errp)) {
6454         return;
6455     }
6456 
6457     s->notify_window = value;
6458 }
6459 
kvm_arch_get_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6460 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6461                                      const char *name, void *opaque,
6462                                      Error **errp)
6463 {
6464     KVMState *s = KVM_STATE(obj);
6465     uint32_t value = s->xen_version;
6466 
6467     visit_type_uint32(v, name, &value, errp);
6468 }
6469 
kvm_arch_set_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6470 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6471                                      const char *name, void *opaque,
6472                                      Error **errp)
6473 {
6474     KVMState *s = KVM_STATE(obj);
6475     Error *error = NULL;
6476     uint32_t value;
6477 
6478     visit_type_uint32(v, name, &value, &error);
6479     if (error) {
6480         error_propagate(errp, error);
6481         return;
6482     }
6483 
6484     s->xen_version = value;
6485     if (value && xen_mode == XEN_DISABLED) {
6486         xen_mode = XEN_EMULATE;
6487     }
6488 }
6489 
kvm_arch_get_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6490 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6491                                                const char *name, void *opaque,
6492                                                Error **errp)
6493 {
6494     KVMState *s = KVM_STATE(obj);
6495     uint16_t value = s->xen_gnttab_max_frames;
6496 
6497     visit_type_uint16(v, name, &value, errp);
6498 }
6499 
kvm_arch_set_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6500 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6501                                                const char *name, void *opaque,
6502                                                Error **errp)
6503 {
6504     KVMState *s = KVM_STATE(obj);
6505     Error *error = NULL;
6506     uint16_t value;
6507 
6508     visit_type_uint16(v, name, &value, &error);
6509     if (error) {
6510         error_propagate(errp, error);
6511         return;
6512     }
6513 
6514     s->xen_gnttab_max_frames = value;
6515 }
6516 
kvm_arch_get_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6517 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6518                                              const char *name, void *opaque,
6519                                              Error **errp)
6520 {
6521     KVMState *s = KVM_STATE(obj);
6522     uint16_t value = s->xen_evtchn_max_pirq;
6523 
6524     visit_type_uint16(v, name, &value, errp);
6525 }
6526 
kvm_arch_set_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6527 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6528                                              const char *name, void *opaque,
6529                                              Error **errp)
6530 {
6531     KVMState *s = KVM_STATE(obj);
6532     Error *error = NULL;
6533     uint16_t value;
6534 
6535     visit_type_uint16(v, name, &value, &error);
6536     if (error) {
6537         error_propagate(errp, error);
6538         return;
6539     }
6540 
6541     s->xen_evtchn_max_pirq = value;
6542 }
6543 
kvm_arch_accel_class_init(ObjectClass * oc)6544 void kvm_arch_accel_class_init(ObjectClass *oc)
6545 {
6546     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6547                                    &NotifyVmexitOption_lookup,
6548                                    kvm_arch_get_notify_vmexit,
6549                                    kvm_arch_set_notify_vmexit);
6550     object_class_property_set_description(oc, "notify-vmexit",
6551                                           "Enable notify VM exit");
6552 
6553     object_class_property_add(oc, "notify-window", "uint32",
6554                               kvm_arch_get_notify_window,
6555                               kvm_arch_set_notify_window,
6556                               NULL, NULL);
6557     object_class_property_set_description(oc, "notify-window",
6558                                           "Clock cycles without an event window "
6559                                           "after which a notification VM exit occurs");
6560 
6561     object_class_property_add(oc, "xen-version", "uint32",
6562                               kvm_arch_get_xen_version,
6563                               kvm_arch_set_xen_version,
6564                               NULL, NULL);
6565     object_class_property_set_description(oc, "xen-version",
6566                                           "Xen version to be emulated "
6567                                           "(in XENVER_version form "
6568                                           "e.g. 0x4000a for 4.10)");
6569 
6570     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6571                               kvm_arch_get_xen_gnttab_max_frames,
6572                               kvm_arch_set_xen_gnttab_max_frames,
6573                               NULL, NULL);
6574     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6575                                           "Maximum number of grant table frames");
6576 
6577     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6578                               kvm_arch_get_xen_evtchn_max_pirq,
6579                               kvm_arch_set_xen_evtchn_max_pirq,
6580                               NULL, NULL);
6581     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6582                                           "Maximum number of Xen PIRQs");
6583 }
6584 
kvm_set_max_apic_id(uint32_t max_apic_id)6585 void kvm_set_max_apic_id(uint32_t max_apic_id)
6586 {
6587     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6588 }
6589