xref: /openbmc/linux/kernel/time/hrtimer.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 
50 #include "tick-internal.h"
51 
52 /*
53  * Masks for selecting the soft and hard context timers from
54  * cpu_base->active
55  */
56 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60 
61 static void retrigger_next_event(void *arg);
62 
63 /*
64  * The timer bases:
65  *
66  * There are more clockids than hrtimer bases. Thus, we index
67  * into the timer bases by the hrtimer_base_type enum. When trying
68  * to reach a base using a clockid, hrtimer_clockid_to_base()
69  * is used to convert from clockid to the proper hrtimer_base_type.
70  */
71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
72 {
73 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
74 	.clock_base =
75 	{
76 		{
77 			.index = HRTIMER_BASE_MONOTONIC,
78 			.clockid = CLOCK_MONOTONIC,
79 			.get_time = &ktime_get,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 			.get_time = &ktime_get_real,
85 		},
86 		{
87 			.index = HRTIMER_BASE_BOOTTIME,
88 			.clockid = CLOCK_BOOTTIME,
89 			.get_time = &ktime_get_boottime,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 		},
96 		{
97 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
98 			.clockid = CLOCK_MONOTONIC,
99 			.get_time = &ktime_get,
100 		},
101 		{
102 			.index = HRTIMER_BASE_REALTIME_SOFT,
103 			.clockid = CLOCK_REALTIME,
104 			.get_time = &ktime_get_real,
105 		},
106 		{
107 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
108 			.clockid = CLOCK_BOOTTIME,
109 			.get_time = &ktime_get_boottime,
110 		},
111 		{
112 			.index = HRTIMER_BASE_TAI_SOFT,
113 			.clockid = CLOCK_TAI,
114 			.get_time = &ktime_get_clocktai,
115 		},
116 	},
117 	.csd = CSD_INIT(retrigger_next_event, NULL)
118 };
119 
120 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
121 	/* Make sure we catch unsupported clockids */
122 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
123 
124 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
125 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
126 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
127 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
128 };
129 
hrtimer_base_is_online(struct hrtimer_cpu_base * base)130 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
131 {
132 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
133 		return true;
134 	else
135 		return likely(base->online);
136 }
137 
138 /*
139  * Functions and macros which are different for UP/SMP systems are kept in a
140  * single place
141  */
142 #ifdef CONFIG_SMP
143 
144 /*
145  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
146  * such that hrtimer_callback_running() can unconditionally dereference
147  * timer->base->cpu_base
148  */
149 static struct hrtimer_cpu_base migration_cpu_base = {
150 	.clock_base = { {
151 		.cpu_base = &migration_cpu_base,
152 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
153 						     &migration_cpu_base.lock),
154 	}, },
155 };
156 
157 #define migration_base	migration_cpu_base.clock_base[0]
158 
159 /*
160  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
161  * means that all timers which are tied to this base via timer->base are
162  * locked, and the base itself is locked too.
163  *
164  * So __run_timers/migrate_timers can safely modify all timers which could
165  * be found on the lists/queues.
166  *
167  * When the timer's base is locked, and the timer removed from list, it is
168  * possible to set timer->base = &migration_base and drop the lock: the timer
169  * remains locked.
170  */
171 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)172 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
173 					     unsigned long *flags)
174 	__acquires(&timer->base->lock)
175 {
176 	struct hrtimer_clock_base *base;
177 
178 	for (;;) {
179 		base = READ_ONCE(timer->base);
180 		if (likely(base != &migration_base)) {
181 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
182 			if (likely(base == timer->base))
183 				return base;
184 			/* The timer has migrated to another CPU: */
185 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
186 		}
187 		cpu_relax();
188 	}
189 }
190 
191 /*
192  * Check if the elected target is suitable considering its next
193  * event and the hotplug state of the current CPU.
194  *
195  * If the elected target is remote and its next event is after the timer
196  * to queue, then a remote reprogram is necessary. However there is no
197  * guarantee the IPI handling the operation would arrive in time to meet
198  * the high resolution deadline. In this case the local CPU becomes a
199  * preferred target, unless it is offline.
200  *
201  * High and low resolution modes are handled the same way for simplicity.
202  *
203  * Called with cpu_base->lock of target cpu held.
204  */
hrtimer_suitable_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base,struct hrtimer_cpu_base * new_cpu_base,struct hrtimer_cpu_base * this_cpu_base)205 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
206 				    struct hrtimer_cpu_base *new_cpu_base,
207 				    struct hrtimer_cpu_base *this_cpu_base)
208 {
209 	ktime_t expires;
210 
211 	/*
212 	 * The local CPU clockevent can be reprogrammed. Also get_target_base()
213 	 * guarantees it is online.
214 	 */
215 	if (new_cpu_base == this_cpu_base)
216 		return true;
217 
218 	/*
219 	 * The offline local CPU can't be the default target if the
220 	 * next remote target event is after this timer. Keep the
221 	 * elected new base. An IPI will we issued to reprogram
222 	 * it as a last resort.
223 	 */
224 	if (!hrtimer_base_is_online(this_cpu_base))
225 		return true;
226 
227 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
228 
229 	return expires >= new_base->cpu_base->expires_next;
230 }
231 
get_target_base(struct hrtimer_cpu_base * base,int pinned)232 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
233 {
234 	if (!hrtimer_base_is_online(base)) {
235 		int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
236 
237 		return &per_cpu(hrtimer_bases, cpu);
238 	}
239 
240 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
241 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
242 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
243 #endif
244 	return base;
245 }
246 
247 /*
248  * We switch the timer base to a power-optimized selected CPU target,
249  * if:
250  *	- NO_HZ_COMMON is enabled
251  *	- timer migration is enabled
252  *	- the timer callback is not running
253  *	- the timer is not the first expiring timer on the new target
254  *
255  * If one of the above requirements is not fulfilled we move the timer
256  * to the current CPU or leave it on the previously assigned CPU if
257  * the timer callback is currently running.
258  */
259 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)260 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
261 		    int pinned)
262 {
263 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
264 	struct hrtimer_clock_base *new_base;
265 	int basenum = base->index;
266 
267 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
268 	new_cpu_base = get_target_base(this_cpu_base, pinned);
269 again:
270 	new_base = &new_cpu_base->clock_base[basenum];
271 
272 	if (base != new_base) {
273 		/*
274 		 * We are trying to move timer to new_base.
275 		 * However we can't change timer's base while it is running,
276 		 * so we keep it on the same CPU. No hassle vs. reprogramming
277 		 * the event source in the high resolution case. The softirq
278 		 * code will take care of this when the timer function has
279 		 * completed. There is no conflict as we hold the lock until
280 		 * the timer is enqueued.
281 		 */
282 		if (unlikely(hrtimer_callback_running(timer)))
283 			return base;
284 
285 		/* See the comment in lock_hrtimer_base() */
286 		WRITE_ONCE(timer->base, &migration_base);
287 		raw_spin_unlock(&base->cpu_base->lock);
288 		raw_spin_lock(&new_base->cpu_base->lock);
289 
290 		if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
291 					     this_cpu_base)) {
292 			raw_spin_unlock(&new_base->cpu_base->lock);
293 			raw_spin_lock(&base->cpu_base->lock);
294 			new_cpu_base = this_cpu_base;
295 			WRITE_ONCE(timer->base, base);
296 			goto again;
297 		}
298 		WRITE_ONCE(timer->base, new_base);
299 	} else {
300 		if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) {
301 			new_cpu_base = this_cpu_base;
302 			goto again;
303 		}
304 	}
305 	return new_base;
306 }
307 
308 #else /* CONFIG_SMP */
309 
310 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)311 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
312 	__acquires(&timer->base->cpu_base->lock)
313 {
314 	struct hrtimer_clock_base *base = timer->base;
315 
316 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
317 
318 	return base;
319 }
320 
321 # define switch_hrtimer_base(t, b, p)	(b)
322 
323 #endif	/* !CONFIG_SMP */
324 
325 /*
326  * Functions for the union type storage format of ktime_t which are
327  * too large for inlining:
328  */
329 #if BITS_PER_LONG < 64
330 /*
331  * Divide a ktime value by a nanosecond value
332  */
__ktime_divns(const ktime_t kt,s64 div)333 s64 __ktime_divns(const ktime_t kt, s64 div)
334 {
335 	int sft = 0;
336 	s64 dclc;
337 	u64 tmp;
338 
339 	dclc = ktime_to_ns(kt);
340 	tmp = dclc < 0 ? -dclc : dclc;
341 
342 	/* Make sure the divisor is less than 2^32: */
343 	while (div >> 32) {
344 		sft++;
345 		div >>= 1;
346 	}
347 	tmp >>= sft;
348 	do_div(tmp, (u32) div);
349 	return dclc < 0 ? -tmp : tmp;
350 }
351 EXPORT_SYMBOL_GPL(__ktime_divns);
352 #endif /* BITS_PER_LONG >= 64 */
353 
354 /*
355  * Add two ktime values and do a safety check for overflow:
356  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)357 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
358 {
359 	ktime_t res = ktime_add_unsafe(lhs, rhs);
360 
361 	/*
362 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
363 	 * return to user space in a timespec:
364 	 */
365 	if (res < 0 || res < lhs || res < rhs)
366 		res = ktime_set(KTIME_SEC_MAX, 0);
367 
368 	return res;
369 }
370 
371 EXPORT_SYMBOL_GPL(ktime_add_safe);
372 
373 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
374 
375 static const struct debug_obj_descr hrtimer_debug_descr;
376 
hrtimer_debug_hint(void * addr)377 static void *hrtimer_debug_hint(void *addr)
378 {
379 	return ((struct hrtimer *) addr)->function;
380 }
381 
382 /*
383  * fixup_init is called when:
384  * - an active object is initialized
385  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)386 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
387 {
388 	struct hrtimer *timer = addr;
389 
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		hrtimer_cancel(timer);
393 		debug_object_init(timer, &hrtimer_debug_descr);
394 		return true;
395 	default:
396 		return false;
397 	}
398 }
399 
400 /*
401  * fixup_activate is called when:
402  * - an active object is activated
403  * - an unknown non-static object is activated
404  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)405 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
406 {
407 	switch (state) {
408 	case ODEBUG_STATE_ACTIVE:
409 		WARN_ON(1);
410 		fallthrough;
411 	default:
412 		return false;
413 	}
414 }
415 
416 /*
417  * fixup_free is called when:
418  * - an active object is freed
419  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)420 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
421 {
422 	struct hrtimer *timer = addr;
423 
424 	switch (state) {
425 	case ODEBUG_STATE_ACTIVE:
426 		hrtimer_cancel(timer);
427 		debug_object_free(timer, &hrtimer_debug_descr);
428 		return true;
429 	default:
430 		return false;
431 	}
432 }
433 
434 static const struct debug_obj_descr hrtimer_debug_descr = {
435 	.name		= "hrtimer",
436 	.debug_hint	= hrtimer_debug_hint,
437 	.fixup_init	= hrtimer_fixup_init,
438 	.fixup_activate	= hrtimer_fixup_activate,
439 	.fixup_free	= hrtimer_fixup_free,
440 };
441 
debug_hrtimer_init(struct hrtimer * timer)442 static inline void debug_hrtimer_init(struct hrtimer *timer)
443 {
444 	debug_object_init(timer, &hrtimer_debug_descr);
445 }
446 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)447 static inline void debug_hrtimer_activate(struct hrtimer *timer,
448 					  enum hrtimer_mode mode)
449 {
450 	debug_object_activate(timer, &hrtimer_debug_descr);
451 }
452 
debug_hrtimer_deactivate(struct hrtimer * timer)453 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
454 {
455 	debug_object_deactivate(timer, &hrtimer_debug_descr);
456 }
457 
458 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
459 			   enum hrtimer_mode mode);
460 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)461 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
462 			   enum hrtimer_mode mode)
463 {
464 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
465 	__hrtimer_init(timer, clock_id, mode);
466 }
467 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
468 
469 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
470 				   clockid_t clock_id, enum hrtimer_mode mode);
471 
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)472 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
473 				   clockid_t clock_id, enum hrtimer_mode mode)
474 {
475 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
476 	__hrtimer_init_sleeper(sl, clock_id, mode);
477 }
478 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
479 
destroy_hrtimer_on_stack(struct hrtimer * timer)480 void destroy_hrtimer_on_stack(struct hrtimer *timer)
481 {
482 	debug_object_free(timer, &hrtimer_debug_descr);
483 }
484 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
485 
486 #else
487 
debug_hrtimer_init(struct hrtimer * timer)488 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)489 static inline void debug_hrtimer_activate(struct hrtimer *timer,
490 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)491 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
492 #endif
493 
494 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)495 debug_init(struct hrtimer *timer, clockid_t clockid,
496 	   enum hrtimer_mode mode)
497 {
498 	debug_hrtimer_init(timer);
499 	trace_hrtimer_init(timer, clockid, mode);
500 }
501 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)502 static inline void debug_activate(struct hrtimer *timer,
503 				  enum hrtimer_mode mode)
504 {
505 	debug_hrtimer_activate(timer, mode);
506 	trace_hrtimer_start(timer, mode);
507 }
508 
debug_deactivate(struct hrtimer * timer)509 static inline void debug_deactivate(struct hrtimer *timer)
510 {
511 	debug_hrtimer_deactivate(timer);
512 	trace_hrtimer_cancel(timer);
513 }
514 
515 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)516 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
517 {
518 	unsigned int idx;
519 
520 	if (!*active)
521 		return NULL;
522 
523 	idx = __ffs(*active);
524 	*active &= ~(1U << idx);
525 
526 	return &cpu_base->clock_base[idx];
527 }
528 
529 #define for_each_active_base(base, cpu_base, active)	\
530 	while ((base = __next_base((cpu_base), &(active))))
531 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)532 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
533 					 const struct hrtimer *exclude,
534 					 unsigned int active,
535 					 ktime_t expires_next)
536 {
537 	struct hrtimer_clock_base *base;
538 	ktime_t expires;
539 
540 	for_each_active_base(base, cpu_base, active) {
541 		struct timerqueue_node *next;
542 		struct hrtimer *timer;
543 
544 		next = timerqueue_getnext(&base->active);
545 		timer = container_of(next, struct hrtimer, node);
546 		if (timer == exclude) {
547 			/* Get to the next timer in the queue. */
548 			next = timerqueue_iterate_next(next);
549 			if (!next)
550 				continue;
551 
552 			timer = container_of(next, struct hrtimer, node);
553 		}
554 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
555 		if (expires < expires_next) {
556 			expires_next = expires;
557 
558 			/* Skip cpu_base update if a timer is being excluded. */
559 			if (exclude)
560 				continue;
561 
562 			if (timer->is_soft)
563 				cpu_base->softirq_next_timer = timer;
564 			else
565 				cpu_base->next_timer = timer;
566 		}
567 	}
568 	/*
569 	 * clock_was_set() might have changed base->offset of any of
570 	 * the clock bases so the result might be negative. Fix it up
571 	 * to prevent a false positive in clockevents_program_event().
572 	 */
573 	if (expires_next < 0)
574 		expires_next = 0;
575 	return expires_next;
576 }
577 
578 /*
579  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
580  * but does not set cpu_base::*expires_next, that is done by
581  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
582  * cpu_base::*expires_next right away, reprogramming logic would no longer
583  * work.
584  *
585  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
586  * those timers will get run whenever the softirq gets handled, at the end of
587  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
588  *
589  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
590  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
591  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
592  *
593  * @active_mask must be one of:
594  *  - HRTIMER_ACTIVE_ALL,
595  *  - HRTIMER_ACTIVE_SOFT, or
596  *  - HRTIMER_ACTIVE_HARD.
597  */
598 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)599 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
600 {
601 	unsigned int active;
602 	struct hrtimer *next_timer = NULL;
603 	ktime_t expires_next = KTIME_MAX;
604 
605 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
606 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
607 		cpu_base->softirq_next_timer = NULL;
608 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
609 							 active, KTIME_MAX);
610 
611 		next_timer = cpu_base->softirq_next_timer;
612 	}
613 
614 	if (active_mask & HRTIMER_ACTIVE_HARD) {
615 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
616 		cpu_base->next_timer = next_timer;
617 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
618 							 expires_next);
619 	}
620 
621 	return expires_next;
622 }
623 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)624 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
625 {
626 	ktime_t expires_next, soft = KTIME_MAX;
627 
628 	/*
629 	 * If the soft interrupt has already been activated, ignore the
630 	 * soft bases. They will be handled in the already raised soft
631 	 * interrupt.
632 	 */
633 	if (!cpu_base->softirq_activated) {
634 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
635 		/*
636 		 * Update the soft expiry time. clock_settime() might have
637 		 * affected it.
638 		 */
639 		cpu_base->softirq_expires_next = soft;
640 	}
641 
642 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
643 	/*
644 	 * If a softirq timer is expiring first, update cpu_base->next_timer
645 	 * and program the hardware with the soft expiry time.
646 	 */
647 	if (expires_next > soft) {
648 		cpu_base->next_timer = cpu_base->softirq_next_timer;
649 		expires_next = soft;
650 	}
651 
652 	return expires_next;
653 }
654 
hrtimer_update_base(struct hrtimer_cpu_base * base)655 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
656 {
657 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
658 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
659 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
660 
661 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
662 					    offs_real, offs_boot, offs_tai);
663 
664 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
665 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
666 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
667 
668 	return now;
669 }
670 
671 /*
672  * Is the high resolution mode active ?
673  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)674 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
675 {
676 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
677 		cpu_base->hres_active : 0;
678 }
679 
hrtimer_hres_active(void)680 static inline int hrtimer_hres_active(void)
681 {
682 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
683 }
684 
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)685 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
686 				struct hrtimer *next_timer,
687 				ktime_t expires_next)
688 {
689 	cpu_base->expires_next = expires_next;
690 
691 	/*
692 	 * If hres is not active, hardware does not have to be
693 	 * reprogrammed yet.
694 	 *
695 	 * If a hang was detected in the last timer interrupt then we
696 	 * leave the hang delay active in the hardware. We want the
697 	 * system to make progress. That also prevents the following
698 	 * scenario:
699 	 * T1 expires 50ms from now
700 	 * T2 expires 5s from now
701 	 *
702 	 * T1 is removed, so this code is called and would reprogram
703 	 * the hardware to 5s from now. Any hrtimer_start after that
704 	 * will not reprogram the hardware due to hang_detected being
705 	 * set. So we'd effectively block all timers until the T2 event
706 	 * fires.
707 	 */
708 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
709 		return;
710 
711 	tick_program_event(expires_next, 1);
712 }
713 
714 /*
715  * Reprogram the event source with checking both queues for the
716  * next event
717  * Called with interrupts disabled and base->lock held
718  */
719 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)720 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
721 {
722 	ktime_t expires_next;
723 
724 	expires_next = hrtimer_update_next_event(cpu_base);
725 
726 	if (skip_equal && expires_next == cpu_base->expires_next)
727 		return;
728 
729 	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
730 }
731 
732 /* High resolution timer related functions */
733 #ifdef CONFIG_HIGH_RES_TIMERS
734 
735 /*
736  * High resolution timer enabled ?
737  */
738 static bool hrtimer_hres_enabled __read_mostly  = true;
739 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
740 EXPORT_SYMBOL_GPL(hrtimer_resolution);
741 
742 /*
743  * Enable / Disable high resolution mode
744  */
setup_hrtimer_hres(char * str)745 static int __init setup_hrtimer_hres(char *str)
746 {
747 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
748 }
749 
750 __setup("highres=", setup_hrtimer_hres);
751 
752 /*
753  * hrtimer_high_res_enabled - query, if the highres mode is enabled
754  */
hrtimer_is_hres_enabled(void)755 static inline int hrtimer_is_hres_enabled(void)
756 {
757 	return hrtimer_hres_enabled;
758 }
759 
760 /*
761  * Switch to high resolution mode
762  */
hrtimer_switch_to_hres(void)763 static void hrtimer_switch_to_hres(void)
764 {
765 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
766 
767 	if (tick_init_highres()) {
768 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
769 			base->cpu);
770 		return;
771 	}
772 	base->hres_active = 1;
773 	hrtimer_resolution = HIGH_RES_NSEC;
774 
775 	tick_setup_sched_timer();
776 	/* "Retrigger" the interrupt to get things going */
777 	retrigger_next_event(NULL);
778 }
779 
780 #else
781 
hrtimer_is_hres_enabled(void)782 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)783 static inline void hrtimer_switch_to_hres(void) { }
784 
785 #endif /* CONFIG_HIGH_RES_TIMERS */
786 /*
787  * Retrigger next event is called after clock was set with interrupts
788  * disabled through an SMP function call or directly from low level
789  * resume code.
790  *
791  * This is only invoked when:
792  *	- CONFIG_HIGH_RES_TIMERS is enabled.
793  *	- CONFIG_NOHZ_COMMON is enabled
794  *
795  * For the other cases this function is empty and because the call sites
796  * are optimized out it vanishes as well, i.e. no need for lots of
797  * #ifdeffery.
798  */
retrigger_next_event(void * arg)799 static void retrigger_next_event(void *arg)
800 {
801 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
802 
803 	/*
804 	 * When high resolution mode or nohz is active, then the offsets of
805 	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
806 	 * next tick will take care of that.
807 	 *
808 	 * If high resolution mode is active then the next expiring timer
809 	 * must be reevaluated and the clock event device reprogrammed if
810 	 * necessary.
811 	 *
812 	 * In the NOHZ case the update of the offset and the reevaluation
813 	 * of the next expiring timer is enough. The return from the SMP
814 	 * function call will take care of the reprogramming in case the
815 	 * CPU was in a NOHZ idle sleep.
816 	 */
817 	if (!__hrtimer_hres_active(base) && !tick_nohz_active)
818 		return;
819 
820 	raw_spin_lock(&base->lock);
821 	hrtimer_update_base(base);
822 	if (__hrtimer_hres_active(base))
823 		hrtimer_force_reprogram(base, 0);
824 	else
825 		hrtimer_update_next_event(base);
826 	raw_spin_unlock(&base->lock);
827 }
828 
829 /*
830  * When a timer is enqueued and expires earlier than the already enqueued
831  * timers, we have to check, whether it expires earlier than the timer for
832  * which the clock event device was armed.
833  *
834  * Called with interrupts disabled and base->cpu_base.lock held
835  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)836 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
837 {
838 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
839 	struct hrtimer_clock_base *base = timer->base;
840 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
841 
842 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
843 
844 	/*
845 	 * CLOCK_REALTIME timer might be requested with an absolute
846 	 * expiry time which is less than base->offset. Set it to 0.
847 	 */
848 	if (expires < 0)
849 		expires = 0;
850 
851 	if (timer->is_soft) {
852 		/*
853 		 * soft hrtimer could be started on a remote CPU. In this
854 		 * case softirq_expires_next needs to be updated on the
855 		 * remote CPU. The soft hrtimer will not expire before the
856 		 * first hard hrtimer on the remote CPU -
857 		 * hrtimer_check_target() prevents this case.
858 		 */
859 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
860 
861 		if (timer_cpu_base->softirq_activated)
862 			return;
863 
864 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
865 			return;
866 
867 		timer_cpu_base->softirq_next_timer = timer;
868 		timer_cpu_base->softirq_expires_next = expires;
869 
870 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
871 		    !reprogram)
872 			return;
873 	}
874 
875 	/*
876 	 * If the timer is not on the current cpu, we cannot reprogram
877 	 * the other cpus clock event device.
878 	 */
879 	if (base->cpu_base != cpu_base)
880 		return;
881 
882 	if (expires >= cpu_base->expires_next)
883 		return;
884 
885 	/*
886 	 * If the hrtimer interrupt is running, then it will reevaluate the
887 	 * clock bases and reprogram the clock event device.
888 	 */
889 	if (cpu_base->in_hrtirq)
890 		return;
891 
892 	cpu_base->next_timer = timer;
893 
894 	__hrtimer_reprogram(cpu_base, timer, expires);
895 }
896 
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)897 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
898 			     unsigned int active)
899 {
900 	struct hrtimer_clock_base *base;
901 	unsigned int seq;
902 	ktime_t expires;
903 
904 	/*
905 	 * Update the base offsets unconditionally so the following
906 	 * checks whether the SMP function call is required works.
907 	 *
908 	 * The update is safe even when the remote CPU is in the hrtimer
909 	 * interrupt or the hrtimer soft interrupt and expiring affected
910 	 * bases. Either it will see the update before handling a base or
911 	 * it will see it when it finishes the processing and reevaluates
912 	 * the next expiring timer.
913 	 */
914 	seq = cpu_base->clock_was_set_seq;
915 	hrtimer_update_base(cpu_base);
916 
917 	/*
918 	 * If the sequence did not change over the update then the
919 	 * remote CPU already handled it.
920 	 */
921 	if (seq == cpu_base->clock_was_set_seq)
922 		return false;
923 
924 	/*
925 	 * If the remote CPU is currently handling an hrtimer interrupt, it
926 	 * will reevaluate the first expiring timer of all clock bases
927 	 * before reprogramming. Nothing to do here.
928 	 */
929 	if (cpu_base->in_hrtirq)
930 		return false;
931 
932 	/*
933 	 * Walk the affected clock bases and check whether the first expiring
934 	 * timer in a clock base is moving ahead of the first expiring timer of
935 	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
936 	 * event devices cannot be remotely reprogrammed.
937 	 */
938 	active &= cpu_base->active_bases;
939 
940 	for_each_active_base(base, cpu_base, active) {
941 		struct timerqueue_node *next;
942 
943 		next = timerqueue_getnext(&base->active);
944 		expires = ktime_sub(next->expires, base->offset);
945 		if (expires < cpu_base->expires_next)
946 			return true;
947 
948 		/* Extra check for softirq clock bases */
949 		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
950 			continue;
951 		if (cpu_base->softirq_activated)
952 			continue;
953 		if (expires < cpu_base->softirq_expires_next)
954 			return true;
955 	}
956 	return false;
957 }
958 
959 /*
960  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
961  * CLOCK_BOOTTIME (for late sleep time injection).
962  *
963  * This requires to update the offsets for these clocks
964  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
965  * also requires to eventually reprogram the per CPU clock event devices
966  * when the change moves an affected timer ahead of the first expiring
967  * timer on that CPU. Obviously remote per CPU clock event devices cannot
968  * be reprogrammed. The other reason why an IPI has to be sent is when the
969  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
970  * in the tick, which obviously might be stopped, so this has to bring out
971  * the remote CPU which might sleep in idle to get this sorted.
972  */
clock_was_set(unsigned int bases)973 void clock_was_set(unsigned int bases)
974 {
975 	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
976 	cpumask_var_t mask;
977 	int cpu;
978 
979 	if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
980 		goto out_timerfd;
981 
982 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
983 		on_each_cpu(retrigger_next_event, NULL, 1);
984 		goto out_timerfd;
985 	}
986 
987 	/* Avoid interrupting CPUs if possible */
988 	cpus_read_lock();
989 	for_each_online_cpu(cpu) {
990 		unsigned long flags;
991 
992 		cpu_base = &per_cpu(hrtimer_bases, cpu);
993 		raw_spin_lock_irqsave(&cpu_base->lock, flags);
994 
995 		if (update_needs_ipi(cpu_base, bases))
996 			cpumask_set_cpu(cpu, mask);
997 
998 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
999 	}
1000 
1001 	preempt_disable();
1002 	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
1003 	preempt_enable();
1004 	cpus_read_unlock();
1005 	free_cpumask_var(mask);
1006 
1007 out_timerfd:
1008 	timerfd_clock_was_set();
1009 }
1010 
clock_was_set_work(struct work_struct * work)1011 static void clock_was_set_work(struct work_struct *work)
1012 {
1013 	clock_was_set(CLOCK_SET_WALL);
1014 }
1015 
1016 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
1017 
1018 /*
1019  * Called from timekeeping code to reprogram the hrtimer interrupt device
1020  * on all cpus and to notify timerfd.
1021  */
clock_was_set_delayed(void)1022 void clock_was_set_delayed(void)
1023 {
1024 	schedule_work(&hrtimer_work);
1025 }
1026 
1027 /*
1028  * Called during resume either directly from via timekeeping_resume()
1029  * or in the case of s2idle from tick_unfreeze() to ensure that the
1030  * hrtimers are up to date.
1031  */
hrtimers_resume_local(void)1032 void hrtimers_resume_local(void)
1033 {
1034 	lockdep_assert_irqs_disabled();
1035 	/* Retrigger on the local CPU */
1036 	retrigger_next_event(NULL);
1037 }
1038 
1039 /*
1040  * Counterpart to lock_hrtimer_base above:
1041  */
1042 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1043 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1044 	__releases(&timer->base->cpu_base->lock)
1045 {
1046 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1047 }
1048 
1049 /**
1050  * hrtimer_forward - forward the timer expiry
1051  * @timer:	hrtimer to forward
1052  * @now:	forward past this time
1053  * @interval:	the interval to forward
1054  *
1055  * Forward the timer expiry so it will expire in the future.
1056  * Returns the number of overruns.
1057  *
1058  * Can be safely called from the callback function of @timer. If
1059  * called from other contexts @timer must neither be enqueued nor
1060  * running the callback and the caller needs to take care of
1061  * serialization.
1062  *
1063  * Note: This only updates the timer expiry value and does not requeue
1064  * the timer.
1065  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1066 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1067 {
1068 	u64 orun = 1;
1069 	ktime_t delta;
1070 
1071 	delta = ktime_sub(now, hrtimer_get_expires(timer));
1072 
1073 	if (delta < 0)
1074 		return 0;
1075 
1076 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1077 		return 0;
1078 
1079 	if (interval < hrtimer_resolution)
1080 		interval = hrtimer_resolution;
1081 
1082 	if (unlikely(delta >= interval)) {
1083 		s64 incr = ktime_to_ns(interval);
1084 
1085 		orun = ktime_divns(delta, incr);
1086 		hrtimer_add_expires_ns(timer, incr * orun);
1087 		if (hrtimer_get_expires_tv64(timer) > now)
1088 			return orun;
1089 		/*
1090 		 * This (and the ktime_add() below) is the
1091 		 * correction for exact:
1092 		 */
1093 		orun++;
1094 	}
1095 	hrtimer_add_expires(timer, interval);
1096 
1097 	return orun;
1098 }
1099 EXPORT_SYMBOL_GPL(hrtimer_forward);
1100 
1101 /*
1102  * enqueue_hrtimer - internal function to (re)start a timer
1103  *
1104  * The timer is inserted in expiry order. Insertion into the
1105  * red black tree is O(log(n)). Must hold the base lock.
1106  *
1107  * Returns 1 when the new timer is the leftmost timer in the tree.
1108  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1109 static int enqueue_hrtimer(struct hrtimer *timer,
1110 			   struct hrtimer_clock_base *base,
1111 			   enum hrtimer_mode mode)
1112 {
1113 	debug_activate(timer, mode);
1114 	WARN_ON_ONCE(!base->cpu_base->online);
1115 
1116 	base->cpu_base->active_bases |= 1 << base->index;
1117 
1118 	/* Pairs with the lockless read in hrtimer_is_queued() */
1119 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1120 
1121 	return timerqueue_add(&base->active, &timer->node);
1122 }
1123 
1124 /*
1125  * __remove_hrtimer - internal function to remove a timer
1126  *
1127  * Caller must hold the base lock.
1128  *
1129  * High resolution timer mode reprograms the clock event device when the
1130  * timer is the one which expires next. The caller can disable this by setting
1131  * reprogram to zero. This is useful, when the context does a reprogramming
1132  * anyway (e.g. timer interrupt)
1133  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1134 static void __remove_hrtimer(struct hrtimer *timer,
1135 			     struct hrtimer_clock_base *base,
1136 			     u8 newstate, int reprogram)
1137 {
1138 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1139 	u8 state = timer->state;
1140 
1141 	/* Pairs with the lockless read in hrtimer_is_queued() */
1142 	WRITE_ONCE(timer->state, newstate);
1143 	if (!(state & HRTIMER_STATE_ENQUEUED))
1144 		return;
1145 
1146 	if (!timerqueue_del(&base->active, &timer->node))
1147 		cpu_base->active_bases &= ~(1 << base->index);
1148 
1149 	/*
1150 	 * Note: If reprogram is false we do not update
1151 	 * cpu_base->next_timer. This happens when we remove the first
1152 	 * timer on a remote cpu. No harm as we never dereference
1153 	 * cpu_base->next_timer. So the worst thing what can happen is
1154 	 * an superfluous call to hrtimer_force_reprogram() on the
1155 	 * remote cpu later on if the same timer gets enqueued again.
1156 	 */
1157 	if (reprogram && timer == cpu_base->next_timer)
1158 		hrtimer_force_reprogram(cpu_base, 1);
1159 }
1160 
1161 /*
1162  * remove hrtimer, called with base lock held
1163  */
1164 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1165 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1166 	       bool restart, bool keep_local)
1167 {
1168 	u8 state = timer->state;
1169 
1170 	if (state & HRTIMER_STATE_ENQUEUED) {
1171 		bool reprogram;
1172 
1173 		/*
1174 		 * Remove the timer and force reprogramming when high
1175 		 * resolution mode is active and the timer is on the current
1176 		 * CPU. If we remove a timer on another CPU, reprogramming is
1177 		 * skipped. The interrupt event on this CPU is fired and
1178 		 * reprogramming happens in the interrupt handler. This is a
1179 		 * rare case and less expensive than a smp call.
1180 		 */
1181 		debug_deactivate(timer);
1182 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1183 
1184 		/*
1185 		 * If the timer is not restarted then reprogramming is
1186 		 * required if the timer is local. If it is local and about
1187 		 * to be restarted, avoid programming it twice (on removal
1188 		 * and a moment later when it's requeued).
1189 		 */
1190 		if (!restart)
1191 			state = HRTIMER_STATE_INACTIVE;
1192 		else
1193 			reprogram &= !keep_local;
1194 
1195 		__remove_hrtimer(timer, base, state, reprogram);
1196 		return 1;
1197 	}
1198 	return 0;
1199 }
1200 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1201 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1202 					    const enum hrtimer_mode mode)
1203 {
1204 #ifdef CONFIG_TIME_LOW_RES
1205 	/*
1206 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1207 	 * granular time values. For relative timers we add hrtimer_resolution
1208 	 * (i.e. one jiffie) to prevent short timeouts.
1209 	 */
1210 	timer->is_rel = mode & HRTIMER_MODE_REL;
1211 	if (timer->is_rel)
1212 		tim = ktime_add_safe(tim, hrtimer_resolution);
1213 #endif
1214 	return tim;
1215 }
1216 
1217 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1218 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1219 {
1220 	ktime_t expires;
1221 
1222 	/*
1223 	 * Find the next SOFT expiration.
1224 	 */
1225 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1226 
1227 	/*
1228 	 * reprogramming needs to be triggered, even if the next soft
1229 	 * hrtimer expires at the same time than the next hard
1230 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1231 	 */
1232 	if (expires == KTIME_MAX)
1233 		return;
1234 
1235 	/*
1236 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1237 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1238 	 */
1239 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1240 }
1241 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1242 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1243 				    u64 delta_ns, const enum hrtimer_mode mode,
1244 				    struct hrtimer_clock_base *base)
1245 {
1246 	struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1247 	struct hrtimer_clock_base *new_base;
1248 	bool force_local, first;
1249 
1250 	/*
1251 	 * If the timer is on the local cpu base and is the first expiring
1252 	 * timer then this might end up reprogramming the hardware twice
1253 	 * (on removal and on enqueue). To avoid that by prevent the
1254 	 * reprogram on removal, keep the timer local to the current CPU
1255 	 * and enforce reprogramming after it is queued no matter whether
1256 	 * it is the new first expiring timer again or not.
1257 	 */
1258 	force_local = base->cpu_base == this_cpu_base;
1259 	force_local &= base->cpu_base->next_timer == timer;
1260 
1261 	/*
1262 	 * Don't force local queuing if this enqueue happens on a unplugged
1263 	 * CPU after hrtimer_cpu_dying() has been invoked.
1264 	 */
1265 	force_local &= this_cpu_base->online;
1266 
1267 	/*
1268 	 * Remove an active timer from the queue. In case it is not queued
1269 	 * on the current CPU, make sure that remove_hrtimer() updates the
1270 	 * remote data correctly.
1271 	 *
1272 	 * If it's on the current CPU and the first expiring timer, then
1273 	 * skip reprogramming, keep the timer local and enforce
1274 	 * reprogramming later if it was the first expiring timer.  This
1275 	 * avoids programming the underlying clock event twice (once at
1276 	 * removal and once after enqueue).
1277 	 */
1278 	remove_hrtimer(timer, base, true, force_local);
1279 
1280 	if (mode & HRTIMER_MODE_REL)
1281 		tim = ktime_add_safe(tim, base->get_time());
1282 
1283 	tim = hrtimer_update_lowres(timer, tim, mode);
1284 
1285 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1286 
1287 	/* Switch the timer base, if necessary: */
1288 	if (!force_local) {
1289 		new_base = switch_hrtimer_base(timer, base,
1290 					       mode & HRTIMER_MODE_PINNED);
1291 	} else {
1292 		new_base = base;
1293 	}
1294 
1295 	first = enqueue_hrtimer(timer, new_base, mode);
1296 	if (!force_local) {
1297 		/*
1298 		 * If the current CPU base is online, then the timer is
1299 		 * never queued on a remote CPU if it would be the first
1300 		 * expiring timer there.
1301 		 */
1302 		if (hrtimer_base_is_online(this_cpu_base))
1303 			return first;
1304 
1305 		/*
1306 		 * Timer was enqueued remote because the current base is
1307 		 * already offline. If the timer is the first to expire,
1308 		 * kick the remote CPU to reprogram the clock event.
1309 		 */
1310 		if (first) {
1311 			struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1312 
1313 			smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1314 		}
1315 		return 0;
1316 	}
1317 
1318 	/*
1319 	 * Timer was forced to stay on the current CPU to avoid
1320 	 * reprogramming on removal and enqueue. Force reprogram the
1321 	 * hardware by evaluating the new first expiring timer.
1322 	 */
1323 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1324 	return 0;
1325 }
1326 
1327 /**
1328  * hrtimer_start_range_ns - (re)start an hrtimer
1329  * @timer:	the timer to be added
1330  * @tim:	expiry time
1331  * @delta_ns:	"slack" range for the timer
1332  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1333  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1334  *		softirq based mode is considered for debug purpose only!
1335  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1336 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1337 			    u64 delta_ns, const enum hrtimer_mode mode)
1338 {
1339 	struct hrtimer_clock_base *base;
1340 	unsigned long flags;
1341 
1342 	if (WARN_ON_ONCE(!timer->function))
1343 		return;
1344 	/*
1345 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1346 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1347 	 * expiry mode because unmarked timers are moved to softirq expiry.
1348 	 */
1349 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1350 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1351 	else
1352 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1353 
1354 	base = lock_hrtimer_base(timer, &flags);
1355 
1356 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1357 		hrtimer_reprogram(timer, true);
1358 
1359 	unlock_hrtimer_base(timer, &flags);
1360 }
1361 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1362 
1363 /**
1364  * hrtimer_try_to_cancel - try to deactivate a timer
1365  * @timer:	hrtimer to stop
1366  *
1367  * Returns:
1368  *
1369  *  *  0 when the timer was not active
1370  *  *  1 when the timer was active
1371  *  * -1 when the timer is currently executing the callback function and
1372  *    cannot be stopped
1373  */
hrtimer_try_to_cancel(struct hrtimer * timer)1374 int hrtimer_try_to_cancel(struct hrtimer *timer)
1375 {
1376 	struct hrtimer_clock_base *base;
1377 	unsigned long flags;
1378 	int ret = -1;
1379 
1380 	/*
1381 	 * Check lockless first. If the timer is not active (neither
1382 	 * enqueued nor running the callback, nothing to do here.  The
1383 	 * base lock does not serialize against a concurrent enqueue,
1384 	 * so we can avoid taking it.
1385 	 */
1386 	if (!hrtimer_active(timer))
1387 		return 0;
1388 
1389 	base = lock_hrtimer_base(timer, &flags);
1390 
1391 	if (!hrtimer_callback_running(timer))
1392 		ret = remove_hrtimer(timer, base, false, false);
1393 
1394 	unlock_hrtimer_base(timer, &flags);
1395 
1396 	return ret;
1397 
1398 }
1399 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1400 
1401 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1402 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1403 {
1404 	spin_lock_init(&base->softirq_expiry_lock);
1405 }
1406 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1407 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1408 {
1409 	spin_lock(&base->softirq_expiry_lock);
1410 }
1411 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1412 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1413 {
1414 	spin_unlock(&base->softirq_expiry_lock);
1415 }
1416 
1417 /*
1418  * The counterpart to hrtimer_cancel_wait_running().
1419  *
1420  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1421  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1422  * allows the waiter to acquire the lock and make progress.
1423  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1424 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1425 				      unsigned long flags)
1426 {
1427 	if (atomic_read(&cpu_base->timer_waiters)) {
1428 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1429 		spin_unlock(&cpu_base->softirq_expiry_lock);
1430 		spin_lock(&cpu_base->softirq_expiry_lock);
1431 		raw_spin_lock_irq(&cpu_base->lock);
1432 	}
1433 }
1434 
1435 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1436 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1437 {
1438 	return base == &migration_base;
1439 }
1440 #else
is_migration_base(struct hrtimer_clock_base * base)1441 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1442 {
1443 	return false;
1444 }
1445 #endif
1446 
1447 /*
1448  * This function is called on PREEMPT_RT kernels when the fast path
1449  * deletion of a timer failed because the timer callback function was
1450  * running.
1451  *
1452  * This prevents priority inversion: if the soft irq thread is preempted
1453  * in the middle of a timer callback, then calling del_timer_sync() can
1454  * lead to two issues:
1455  *
1456  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1457  *    handler to complete. This can result in unbound priority inversion.
1458  *
1459  *  - If the caller originates from the task which preempted the timer
1460  *    handler on the same CPU, then spin waiting for the timer handler to
1461  *    complete is never going to end.
1462  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1463 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1464 {
1465 	/* Lockless read. Prevent the compiler from reloading it below */
1466 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1467 
1468 	/*
1469 	 * Just relax if the timer expires in hard interrupt context or if
1470 	 * it is currently on the migration base.
1471 	 */
1472 	if (!timer->is_soft || is_migration_base(base)) {
1473 		cpu_relax();
1474 		return;
1475 	}
1476 
1477 	/*
1478 	 * Mark the base as contended and grab the expiry lock, which is
1479 	 * held by the softirq across the timer callback. Drop the lock
1480 	 * immediately so the softirq can expire the next timer. In theory
1481 	 * the timer could already be running again, but that's more than
1482 	 * unlikely and just causes another wait loop.
1483 	 */
1484 	atomic_inc(&base->cpu_base->timer_waiters);
1485 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1486 	atomic_dec(&base->cpu_base->timer_waiters);
1487 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1488 }
1489 #else
1490 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1491 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1492 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1493 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1494 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1495 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1496 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1497 					     unsigned long flags) { }
1498 #endif
1499 
1500 /**
1501  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1502  * @timer:	the timer to be cancelled
1503  *
1504  * Returns:
1505  *  0 when the timer was not active
1506  *  1 when the timer was active
1507  */
hrtimer_cancel(struct hrtimer * timer)1508 int hrtimer_cancel(struct hrtimer *timer)
1509 {
1510 	int ret;
1511 
1512 	do {
1513 		ret = hrtimer_try_to_cancel(timer);
1514 
1515 		if (ret < 0)
1516 			hrtimer_cancel_wait_running(timer);
1517 	} while (ret < 0);
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1521 
1522 /**
1523  * __hrtimer_get_remaining - get remaining time for the timer
1524  * @timer:	the timer to read
1525  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1526  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1527 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1528 {
1529 	unsigned long flags;
1530 	ktime_t rem;
1531 
1532 	lock_hrtimer_base(timer, &flags);
1533 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1534 		rem = hrtimer_expires_remaining_adjusted(timer);
1535 	else
1536 		rem = hrtimer_expires_remaining(timer);
1537 	unlock_hrtimer_base(timer, &flags);
1538 
1539 	return rem;
1540 }
1541 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1542 
1543 #ifdef CONFIG_NO_HZ_COMMON
1544 /**
1545  * hrtimer_get_next_event - get the time until next expiry event
1546  *
1547  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1548  */
hrtimer_get_next_event(void)1549 u64 hrtimer_get_next_event(void)
1550 {
1551 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1552 	u64 expires = KTIME_MAX;
1553 	unsigned long flags;
1554 
1555 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1556 
1557 	if (!__hrtimer_hres_active(cpu_base))
1558 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1559 
1560 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1561 
1562 	return expires;
1563 }
1564 
1565 /**
1566  * hrtimer_next_event_without - time until next expiry event w/o one timer
1567  * @exclude:	timer to exclude
1568  *
1569  * Returns the next expiry time over all timers except for the @exclude one or
1570  * KTIME_MAX if none of them is pending.
1571  */
hrtimer_next_event_without(const struct hrtimer * exclude)1572 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1573 {
1574 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1575 	u64 expires = KTIME_MAX;
1576 	unsigned long flags;
1577 
1578 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1579 
1580 	if (__hrtimer_hres_active(cpu_base)) {
1581 		unsigned int active;
1582 
1583 		if (!cpu_base->softirq_activated) {
1584 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1585 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1586 							    active, KTIME_MAX);
1587 		}
1588 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1589 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1590 						    expires);
1591 	}
1592 
1593 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1594 
1595 	return expires;
1596 }
1597 #endif
1598 
hrtimer_clockid_to_base(clockid_t clock_id)1599 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1600 {
1601 	if (likely(clock_id < MAX_CLOCKS)) {
1602 		int base = hrtimer_clock_to_base_table[clock_id];
1603 
1604 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1605 			return base;
1606 	}
1607 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1608 	return HRTIMER_BASE_MONOTONIC;
1609 }
1610 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1611 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1612 			   enum hrtimer_mode mode)
1613 {
1614 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1615 	struct hrtimer_cpu_base *cpu_base;
1616 	int base;
1617 
1618 	/*
1619 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1620 	 * marked for hard interrupt expiry mode are moved into soft
1621 	 * interrupt context for latency reasons and because the callbacks
1622 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1623 	 */
1624 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1625 		softtimer = true;
1626 
1627 	memset(timer, 0, sizeof(struct hrtimer));
1628 
1629 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1630 
1631 	/*
1632 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1633 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1634 	 * ensure POSIX compliance.
1635 	 */
1636 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1637 		clock_id = CLOCK_MONOTONIC;
1638 
1639 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1640 	base += hrtimer_clockid_to_base(clock_id);
1641 	timer->is_soft = softtimer;
1642 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1643 	timer->base = &cpu_base->clock_base[base];
1644 	timerqueue_init(&timer->node);
1645 }
1646 
1647 /**
1648  * hrtimer_init - initialize a timer to the given clock
1649  * @timer:	the timer to be initialized
1650  * @clock_id:	the clock to be used
1651  * @mode:       The modes which are relevant for initialization:
1652  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1653  *              HRTIMER_MODE_REL_SOFT
1654  *
1655  *              The PINNED variants of the above can be handed in,
1656  *              but the PINNED bit is ignored as pinning happens
1657  *              when the hrtimer is started
1658  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1659 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1660 		  enum hrtimer_mode mode)
1661 {
1662 	debug_init(timer, clock_id, mode);
1663 	__hrtimer_init(timer, clock_id, mode);
1664 }
1665 EXPORT_SYMBOL_GPL(hrtimer_init);
1666 
1667 /*
1668  * A timer is active, when it is enqueued into the rbtree or the
1669  * callback function is running or it's in the state of being migrated
1670  * to another cpu.
1671  *
1672  * It is important for this function to not return a false negative.
1673  */
hrtimer_active(const struct hrtimer * timer)1674 bool hrtimer_active(const struct hrtimer *timer)
1675 {
1676 	struct hrtimer_clock_base *base;
1677 	unsigned int seq;
1678 
1679 	do {
1680 		base = READ_ONCE(timer->base);
1681 		seq = raw_read_seqcount_begin(&base->seq);
1682 
1683 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1684 		    base->running == timer)
1685 			return true;
1686 
1687 	} while (read_seqcount_retry(&base->seq, seq) ||
1688 		 base != READ_ONCE(timer->base));
1689 
1690 	return false;
1691 }
1692 EXPORT_SYMBOL_GPL(hrtimer_active);
1693 
1694 /*
1695  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1696  * distinct sections:
1697  *
1698  *  - queued:	the timer is queued
1699  *  - callback:	the timer is being ran
1700  *  - post:	the timer is inactive or (re)queued
1701  *
1702  * On the read side we ensure we observe timer->state and cpu_base->running
1703  * from the same section, if anything changed while we looked at it, we retry.
1704  * This includes timer->base changing because sequence numbers alone are
1705  * insufficient for that.
1706  *
1707  * The sequence numbers are required because otherwise we could still observe
1708  * a false negative if the read side got smeared over multiple consecutive
1709  * __run_hrtimer() invocations.
1710  */
1711 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1712 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1713 			  struct hrtimer_clock_base *base,
1714 			  struct hrtimer *timer, ktime_t *now,
1715 			  unsigned long flags) __must_hold(&cpu_base->lock)
1716 {
1717 	enum hrtimer_restart (*fn)(struct hrtimer *);
1718 	bool expires_in_hardirq;
1719 	int restart;
1720 
1721 	lockdep_assert_held(&cpu_base->lock);
1722 
1723 	debug_deactivate(timer);
1724 	base->running = timer;
1725 
1726 	/*
1727 	 * Separate the ->running assignment from the ->state assignment.
1728 	 *
1729 	 * As with a regular write barrier, this ensures the read side in
1730 	 * hrtimer_active() cannot observe base->running == NULL &&
1731 	 * timer->state == INACTIVE.
1732 	 */
1733 	raw_write_seqcount_barrier(&base->seq);
1734 
1735 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1736 	fn = timer->function;
1737 
1738 	/*
1739 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1740 	 * timer is restarted with a period then it becomes an absolute
1741 	 * timer. If its not restarted it does not matter.
1742 	 */
1743 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1744 		timer->is_rel = false;
1745 
1746 	/*
1747 	 * The timer is marked as running in the CPU base, so it is
1748 	 * protected against migration to a different CPU even if the lock
1749 	 * is dropped.
1750 	 */
1751 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1752 	trace_hrtimer_expire_entry(timer, now);
1753 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1754 
1755 	restart = fn(timer);
1756 
1757 	lockdep_hrtimer_exit(expires_in_hardirq);
1758 	trace_hrtimer_expire_exit(timer);
1759 	raw_spin_lock_irq(&cpu_base->lock);
1760 
1761 	/*
1762 	 * Note: We clear the running state after enqueue_hrtimer and
1763 	 * we do not reprogram the event hardware. Happens either in
1764 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1765 	 *
1766 	 * Note: Because we dropped the cpu_base->lock above,
1767 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1768 	 * for us already.
1769 	 */
1770 	if (restart != HRTIMER_NORESTART &&
1771 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1772 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1773 
1774 	/*
1775 	 * Separate the ->running assignment from the ->state assignment.
1776 	 *
1777 	 * As with a regular write barrier, this ensures the read side in
1778 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1779 	 * timer->state == INACTIVE.
1780 	 */
1781 	raw_write_seqcount_barrier(&base->seq);
1782 
1783 	WARN_ON_ONCE(base->running != timer);
1784 	base->running = NULL;
1785 }
1786 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1787 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1788 				 unsigned long flags, unsigned int active_mask)
1789 {
1790 	struct hrtimer_clock_base *base;
1791 	unsigned int active = cpu_base->active_bases & active_mask;
1792 
1793 	for_each_active_base(base, cpu_base, active) {
1794 		struct timerqueue_node *node;
1795 		ktime_t basenow;
1796 
1797 		basenow = ktime_add(now, base->offset);
1798 
1799 		while ((node = timerqueue_getnext(&base->active))) {
1800 			struct hrtimer *timer;
1801 
1802 			timer = container_of(node, struct hrtimer, node);
1803 
1804 			/*
1805 			 * The immediate goal for using the softexpires is
1806 			 * minimizing wakeups, not running timers at the
1807 			 * earliest interrupt after their soft expiration.
1808 			 * This allows us to avoid using a Priority Search
1809 			 * Tree, which can answer a stabbing query for
1810 			 * overlapping intervals and instead use the simple
1811 			 * BST we already have.
1812 			 * We don't add extra wakeups by delaying timers that
1813 			 * are right-of a not yet expired timer, because that
1814 			 * timer will have to trigger a wakeup anyway.
1815 			 */
1816 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1817 				break;
1818 
1819 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1820 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1821 				hrtimer_sync_wait_running(cpu_base, flags);
1822 		}
1823 	}
1824 }
1825 
hrtimer_run_softirq(struct softirq_action * h)1826 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1827 {
1828 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1829 	unsigned long flags;
1830 	ktime_t now;
1831 
1832 	hrtimer_cpu_base_lock_expiry(cpu_base);
1833 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1834 
1835 	now = hrtimer_update_base(cpu_base);
1836 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1837 
1838 	cpu_base->softirq_activated = 0;
1839 	hrtimer_update_softirq_timer(cpu_base, true);
1840 
1841 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1842 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1843 }
1844 
1845 #ifdef CONFIG_HIGH_RES_TIMERS
1846 
1847 /*
1848  * High resolution timer interrupt
1849  * Called with interrupts disabled
1850  */
hrtimer_interrupt(struct clock_event_device * dev)1851 void hrtimer_interrupt(struct clock_event_device *dev)
1852 {
1853 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1854 	ktime_t expires_next, now, entry_time, delta;
1855 	unsigned long flags;
1856 	int retries = 0;
1857 
1858 	BUG_ON(!cpu_base->hres_active);
1859 	cpu_base->nr_events++;
1860 	dev->next_event = KTIME_MAX;
1861 
1862 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1863 	entry_time = now = hrtimer_update_base(cpu_base);
1864 retry:
1865 	cpu_base->in_hrtirq = 1;
1866 	/*
1867 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1868 	 * held to prevent that a timer is enqueued in our queue via
1869 	 * the migration code. This does not affect enqueueing of
1870 	 * timers which run their callback and need to be requeued on
1871 	 * this CPU.
1872 	 */
1873 	cpu_base->expires_next = KTIME_MAX;
1874 
1875 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1876 		cpu_base->softirq_expires_next = KTIME_MAX;
1877 		cpu_base->softirq_activated = 1;
1878 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1879 	}
1880 
1881 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1882 
1883 	/* Reevaluate the clock bases for the [soft] next expiry */
1884 	expires_next = hrtimer_update_next_event(cpu_base);
1885 	/*
1886 	 * Store the new expiry value so the migration code can verify
1887 	 * against it.
1888 	 */
1889 	cpu_base->expires_next = expires_next;
1890 	cpu_base->in_hrtirq = 0;
1891 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1892 
1893 	/* Reprogramming necessary ? */
1894 	if (!tick_program_event(expires_next, 0)) {
1895 		cpu_base->hang_detected = 0;
1896 		return;
1897 	}
1898 
1899 	/*
1900 	 * The next timer was already expired due to:
1901 	 * - tracing
1902 	 * - long lasting callbacks
1903 	 * - being scheduled away when running in a VM
1904 	 *
1905 	 * We need to prevent that we loop forever in the hrtimer
1906 	 * interrupt routine. We give it 3 attempts to avoid
1907 	 * overreacting on some spurious event.
1908 	 *
1909 	 * Acquire base lock for updating the offsets and retrieving
1910 	 * the current time.
1911 	 */
1912 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1913 	now = hrtimer_update_base(cpu_base);
1914 	cpu_base->nr_retries++;
1915 	if (++retries < 3)
1916 		goto retry;
1917 	/*
1918 	 * Give the system a chance to do something else than looping
1919 	 * here. We stored the entry time, so we know exactly how long
1920 	 * we spent here. We schedule the next event this amount of
1921 	 * time away.
1922 	 */
1923 	cpu_base->nr_hangs++;
1924 	cpu_base->hang_detected = 1;
1925 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1926 
1927 	delta = ktime_sub(now, entry_time);
1928 	if ((unsigned int)delta > cpu_base->max_hang_time)
1929 		cpu_base->max_hang_time = (unsigned int) delta;
1930 	/*
1931 	 * Limit it to a sensible value as we enforce a longer
1932 	 * delay. Give the CPU at least 100ms to catch up.
1933 	 */
1934 	if (delta > 100 * NSEC_PER_MSEC)
1935 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1936 	else
1937 		expires_next = ktime_add(now, delta);
1938 	tick_program_event(expires_next, 1);
1939 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1940 }
1941 
1942 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1943 static inline void __hrtimer_peek_ahead_timers(void)
1944 {
1945 	struct tick_device *td;
1946 
1947 	if (!hrtimer_hres_active())
1948 		return;
1949 
1950 	td = this_cpu_ptr(&tick_cpu_device);
1951 	if (td && td->evtdev)
1952 		hrtimer_interrupt(td->evtdev);
1953 }
1954 
1955 #else /* CONFIG_HIGH_RES_TIMERS */
1956 
__hrtimer_peek_ahead_timers(void)1957 static inline void __hrtimer_peek_ahead_timers(void) { }
1958 
1959 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1960 
1961 /*
1962  * Called from run_local_timers in hardirq context every jiffy
1963  */
hrtimer_run_queues(void)1964 void hrtimer_run_queues(void)
1965 {
1966 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1967 	unsigned long flags;
1968 	ktime_t now;
1969 
1970 	if (__hrtimer_hres_active(cpu_base))
1971 		return;
1972 
1973 	/*
1974 	 * This _is_ ugly: We have to check periodically, whether we
1975 	 * can switch to highres and / or nohz mode. The clocksource
1976 	 * switch happens with xtime_lock held. Notification from
1977 	 * there only sets the check bit in the tick_oneshot code,
1978 	 * otherwise we might deadlock vs. xtime_lock.
1979 	 */
1980 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1981 		hrtimer_switch_to_hres();
1982 		return;
1983 	}
1984 
1985 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1986 	now = hrtimer_update_base(cpu_base);
1987 
1988 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1989 		cpu_base->softirq_expires_next = KTIME_MAX;
1990 		cpu_base->softirq_activated = 1;
1991 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1992 	}
1993 
1994 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1995 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1996 }
1997 
1998 /*
1999  * Sleep related functions:
2000  */
hrtimer_wakeup(struct hrtimer * timer)2001 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2002 {
2003 	struct hrtimer_sleeper *t =
2004 		container_of(timer, struct hrtimer_sleeper, timer);
2005 	struct task_struct *task = t->task;
2006 
2007 	t->task = NULL;
2008 	if (task)
2009 		wake_up_process(task);
2010 
2011 	return HRTIMER_NORESTART;
2012 }
2013 
2014 /**
2015  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2016  * @sl:		sleeper to be started
2017  * @mode:	timer mode abs/rel
2018  *
2019  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2020  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2021  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)2022 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2023 				   enum hrtimer_mode mode)
2024 {
2025 	/*
2026 	 * Make the enqueue delivery mode check work on RT. If the sleeper
2027 	 * was initialized for hard interrupt delivery, force the mode bit.
2028 	 * This is a special case for hrtimer_sleepers because
2029 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
2030 	 * fiddling with this decision is avoided at the call sites.
2031 	 */
2032 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2033 		mode |= HRTIMER_MODE_HARD;
2034 
2035 	hrtimer_start_expires(&sl->timer, mode);
2036 }
2037 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2038 
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2039 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2040 				   clockid_t clock_id, enum hrtimer_mode mode)
2041 {
2042 	/*
2043 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2044 	 * marked for hard interrupt expiry mode are moved into soft
2045 	 * interrupt context either for latency reasons or because the
2046 	 * hrtimer callback takes regular spinlocks or invokes other
2047 	 * functions which are not suitable for hard interrupt context on
2048 	 * PREEMPT_RT.
2049 	 *
2050 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2051 	 * context, but there is a latency concern: Untrusted userspace can
2052 	 * spawn many threads which arm timers for the same expiry time on
2053 	 * the same CPU. That causes a latency spike due to the wakeup of
2054 	 * a gazillion threads.
2055 	 *
2056 	 * OTOH, privileged real-time user space applications rely on the
2057 	 * low latency of hard interrupt wakeups. If the current task is in
2058 	 * a real-time scheduling class, mark the mode for hard interrupt
2059 	 * expiry.
2060 	 */
2061 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2062 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
2063 			mode |= HRTIMER_MODE_HARD;
2064 	}
2065 
2066 	__hrtimer_init(&sl->timer, clock_id, mode);
2067 	sl->timer.function = hrtimer_wakeup;
2068 	sl->task = current;
2069 }
2070 
2071 /**
2072  * hrtimer_init_sleeper - initialize sleeper to the given clock
2073  * @sl:		sleeper to be initialized
2074  * @clock_id:	the clock to be used
2075  * @mode:	timer mode abs/rel
2076  */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2077 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2078 			  enum hrtimer_mode mode)
2079 {
2080 	debug_init(&sl->timer, clock_id, mode);
2081 	__hrtimer_init_sleeper(sl, clock_id, mode);
2082 
2083 }
2084 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2085 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2086 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2087 {
2088 	switch(restart->nanosleep.type) {
2089 #ifdef CONFIG_COMPAT_32BIT_TIME
2090 	case TT_COMPAT:
2091 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2092 			return -EFAULT;
2093 		break;
2094 #endif
2095 	case TT_NATIVE:
2096 		if (put_timespec64(ts, restart->nanosleep.rmtp))
2097 			return -EFAULT;
2098 		break;
2099 	default:
2100 		BUG();
2101 	}
2102 	return -ERESTART_RESTARTBLOCK;
2103 }
2104 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2105 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2106 {
2107 	struct restart_block *restart;
2108 
2109 	do {
2110 		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2111 		hrtimer_sleeper_start_expires(t, mode);
2112 
2113 		if (likely(t->task))
2114 			schedule();
2115 
2116 		hrtimer_cancel(&t->timer);
2117 		mode = HRTIMER_MODE_ABS;
2118 
2119 	} while (t->task && !signal_pending(current));
2120 
2121 	__set_current_state(TASK_RUNNING);
2122 
2123 	if (!t->task)
2124 		return 0;
2125 
2126 	restart = &current->restart_block;
2127 	if (restart->nanosleep.type != TT_NONE) {
2128 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2129 		struct timespec64 rmt;
2130 
2131 		if (rem <= 0)
2132 			return 0;
2133 		rmt = ktime_to_timespec64(rem);
2134 
2135 		return nanosleep_copyout(restart, &rmt);
2136 	}
2137 	return -ERESTART_RESTARTBLOCK;
2138 }
2139 
hrtimer_nanosleep_restart(struct restart_block * restart)2140 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2141 {
2142 	struct hrtimer_sleeper t;
2143 	int ret;
2144 
2145 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2146 				      HRTIMER_MODE_ABS);
2147 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2148 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2149 	destroy_hrtimer_on_stack(&t.timer);
2150 	return ret;
2151 }
2152 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2153 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2154 		       const clockid_t clockid)
2155 {
2156 	struct restart_block *restart;
2157 	struct hrtimer_sleeper t;
2158 	int ret = 0;
2159 
2160 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2161 	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2162 	ret = do_nanosleep(&t, mode);
2163 	if (ret != -ERESTART_RESTARTBLOCK)
2164 		goto out;
2165 
2166 	/* Absolute timers do not update the rmtp value and restart: */
2167 	if (mode == HRTIMER_MODE_ABS) {
2168 		ret = -ERESTARTNOHAND;
2169 		goto out;
2170 	}
2171 
2172 	restart = &current->restart_block;
2173 	restart->nanosleep.clockid = t.timer.base->clockid;
2174 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2175 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2176 out:
2177 	destroy_hrtimer_on_stack(&t.timer);
2178 	return ret;
2179 }
2180 
2181 #ifdef CONFIG_64BIT
2182 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2183 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2184 		struct __kernel_timespec __user *, rmtp)
2185 {
2186 	struct timespec64 tu;
2187 
2188 	if (get_timespec64(&tu, rqtp))
2189 		return -EFAULT;
2190 
2191 	if (!timespec64_valid(&tu))
2192 		return -EINVAL;
2193 
2194 	current->restart_block.fn = do_no_restart_syscall;
2195 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2196 	current->restart_block.nanosleep.rmtp = rmtp;
2197 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2198 				 CLOCK_MONOTONIC);
2199 }
2200 
2201 #endif
2202 
2203 #ifdef CONFIG_COMPAT_32BIT_TIME
2204 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2205 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2206 		       struct old_timespec32 __user *, rmtp)
2207 {
2208 	struct timespec64 tu;
2209 
2210 	if (get_old_timespec32(&tu, rqtp))
2211 		return -EFAULT;
2212 
2213 	if (!timespec64_valid(&tu))
2214 		return -EINVAL;
2215 
2216 	current->restart_block.fn = do_no_restart_syscall;
2217 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2218 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2219 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2220 				 CLOCK_MONOTONIC);
2221 }
2222 #endif
2223 
2224 /*
2225  * Functions related to boot-time initialization:
2226  */
hrtimers_prepare_cpu(unsigned int cpu)2227 int hrtimers_prepare_cpu(unsigned int cpu)
2228 {
2229 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2230 	int i;
2231 
2232 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2233 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2234 
2235 		clock_b->cpu_base = cpu_base;
2236 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2237 		timerqueue_init_head(&clock_b->active);
2238 	}
2239 
2240 	cpu_base->cpu = cpu;
2241 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2242 	return 0;
2243 }
2244 
hrtimers_cpu_starting(unsigned int cpu)2245 int hrtimers_cpu_starting(unsigned int cpu)
2246 {
2247 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2248 
2249 	/* Clear out any left over state from a CPU down operation */
2250 	cpu_base->active_bases = 0;
2251 	cpu_base->hres_active = 0;
2252 	cpu_base->hang_detected = 0;
2253 	cpu_base->next_timer = NULL;
2254 	cpu_base->softirq_next_timer = NULL;
2255 	cpu_base->expires_next = KTIME_MAX;
2256 	cpu_base->softirq_expires_next = KTIME_MAX;
2257 	cpu_base->online = 1;
2258 	return 0;
2259 }
2260 
2261 #ifdef CONFIG_HOTPLUG_CPU
2262 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2263 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2264 				struct hrtimer_clock_base *new_base)
2265 {
2266 	struct hrtimer *timer;
2267 	struct timerqueue_node *node;
2268 
2269 	while ((node = timerqueue_getnext(&old_base->active))) {
2270 		timer = container_of(node, struct hrtimer, node);
2271 		BUG_ON(hrtimer_callback_running(timer));
2272 		debug_deactivate(timer);
2273 
2274 		/*
2275 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2276 		 * timer could be seen as !active and just vanish away
2277 		 * under us on another CPU
2278 		 */
2279 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2280 		timer->base = new_base;
2281 		/*
2282 		 * Enqueue the timers on the new cpu. This does not
2283 		 * reprogram the event device in case the timer
2284 		 * expires before the earliest on this CPU, but we run
2285 		 * hrtimer_interrupt after we migrated everything to
2286 		 * sort out already expired timers and reprogram the
2287 		 * event device.
2288 		 */
2289 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2290 	}
2291 }
2292 
hrtimers_cpu_dying(unsigned int dying_cpu)2293 int hrtimers_cpu_dying(unsigned int dying_cpu)
2294 {
2295 	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2296 	struct hrtimer_cpu_base *old_base, *new_base;
2297 
2298 	tick_cancel_sched_timer(dying_cpu);
2299 
2300 	old_base = this_cpu_ptr(&hrtimer_bases);
2301 	new_base = &per_cpu(hrtimer_bases, ncpu);
2302 
2303 	/*
2304 	 * The caller is globally serialized and nobody else
2305 	 * takes two locks at once, deadlock is not possible.
2306 	 */
2307 	raw_spin_lock(&old_base->lock);
2308 	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2309 
2310 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2311 		migrate_hrtimer_list(&old_base->clock_base[i],
2312 				     &new_base->clock_base[i]);
2313 	}
2314 
2315 	/*
2316 	 * The migration might have changed the first expiring softirq
2317 	 * timer on this CPU. Update it.
2318 	 */
2319 	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2320 	/* Tell the other CPU to retrigger the next event */
2321 	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2322 
2323 	raw_spin_unlock(&new_base->lock);
2324 	old_base->online = 0;
2325 	raw_spin_unlock(&old_base->lock);
2326 
2327 	return 0;
2328 }
2329 
2330 #endif /* CONFIG_HOTPLUG_CPU */
2331 
hrtimers_init(void)2332 void __init hrtimers_init(void)
2333 {
2334 	hrtimers_prepare_cpu(smp_processor_id());
2335 	hrtimers_cpu_starting(smp_processor_id());
2336 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2337 }
2338 
2339 /**
2340  * schedule_hrtimeout_range_clock - sleep until timeout
2341  * @expires:	timeout value (ktime_t)
2342  * @delta:	slack in expires timeout (ktime_t)
2343  * @mode:	timer mode
2344  * @clock_id:	timer clock to be used
2345  */
2346 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2347 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2348 			       const enum hrtimer_mode mode, clockid_t clock_id)
2349 {
2350 	struct hrtimer_sleeper t;
2351 
2352 	/*
2353 	 * Optimize when a zero timeout value is given. It does not
2354 	 * matter whether this is an absolute or a relative time.
2355 	 */
2356 	if (expires && *expires == 0) {
2357 		__set_current_state(TASK_RUNNING);
2358 		return 0;
2359 	}
2360 
2361 	/*
2362 	 * A NULL parameter means "infinite"
2363 	 */
2364 	if (!expires) {
2365 		schedule();
2366 		return -EINTR;
2367 	}
2368 
2369 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2370 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2371 	hrtimer_sleeper_start_expires(&t, mode);
2372 
2373 	if (likely(t.task))
2374 		schedule();
2375 
2376 	hrtimer_cancel(&t.timer);
2377 	destroy_hrtimer_on_stack(&t.timer);
2378 
2379 	__set_current_state(TASK_RUNNING);
2380 
2381 	return !t.task ? 0 : -EINTR;
2382 }
2383 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2384 
2385 /**
2386  * schedule_hrtimeout_range - sleep until timeout
2387  * @expires:	timeout value (ktime_t)
2388  * @delta:	slack in expires timeout (ktime_t)
2389  * @mode:	timer mode
2390  *
2391  * Make the current task sleep until the given expiry time has
2392  * elapsed. The routine will return immediately unless
2393  * the current task state has been set (see set_current_state()).
2394  *
2395  * The @delta argument gives the kernel the freedom to schedule the
2396  * actual wakeup to a time that is both power and performance friendly
2397  * for regular (non RT/DL) tasks.
2398  * The kernel give the normal best effort behavior for "@expires+@delta",
2399  * but may decide to fire the timer earlier, but no earlier than @expires.
2400  *
2401  * You can set the task state as follows -
2402  *
2403  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2404  * pass before the routine returns unless the current task is explicitly
2405  * woken up, (e.g. by wake_up_process()).
2406  *
2407  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2408  * delivered to the current task or the current task is explicitly woken
2409  * up.
2410  *
2411  * The current task state is guaranteed to be TASK_RUNNING when this
2412  * routine returns.
2413  *
2414  * Returns 0 when the timer has expired. If the task was woken before the
2415  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2416  * by an explicit wakeup, it returns -EINTR.
2417  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2418 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2419 				     const enum hrtimer_mode mode)
2420 {
2421 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2422 					      CLOCK_MONOTONIC);
2423 }
2424 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2425 
2426 /**
2427  * schedule_hrtimeout - sleep until timeout
2428  * @expires:	timeout value (ktime_t)
2429  * @mode:	timer mode
2430  *
2431  * Make the current task sleep until the given expiry time has
2432  * elapsed. The routine will return immediately unless
2433  * the current task state has been set (see set_current_state()).
2434  *
2435  * You can set the task state as follows -
2436  *
2437  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2438  * pass before the routine returns unless the current task is explicitly
2439  * woken up, (e.g. by wake_up_process()).
2440  *
2441  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2442  * delivered to the current task or the current task is explicitly woken
2443  * up.
2444  *
2445  * The current task state is guaranteed to be TASK_RUNNING when this
2446  * routine returns.
2447  *
2448  * Returns 0 when the timer has expired. If the task was woken before the
2449  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2450  * by an explicit wakeup, it returns -EINTR.
2451  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2452 int __sched schedule_hrtimeout(ktime_t *expires,
2453 			       const enum hrtimer_mode mode)
2454 {
2455 	return schedule_hrtimeout_range(expires, 0, mode);
2456 }
2457 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2458