1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68
69 #include "tree.h"
70 #include "rcu.h"
71
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76
77 /* Data structures. */
78
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 .gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 .cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 .level = { &rcu_state.node[0] },
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117 /*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier(). When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158
159 /*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181
182 /*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
202 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)203 int rcu_get_gp_kthreads_prio(void)
204 {
205 return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
209 /*
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay. The longer the delay, the more the grace periods between
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
219
220 /*
221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
rcu_gp_in_progress(void)225 static int rcu_gp_in_progress(void)
226 {
227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229
230 /*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
rcu_get_n_cbs_cpu(int cpu)234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
238 if (rcu_segcblist_is_enabled(&rdp->cblist))
239 return rcu_segcblist_n_cbs(&rdp->cblist);
240 return 0;
241 }
242
rcu_softirq_qs(void)243 void rcu_softirq_qs(void)
244 {
245 rcu_qs();
246 rcu_preempt_deferred_qs(current);
247 rcu_tasks_qs(current, false);
248 }
249
250 /*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
rcu_dynticks_eqs_online(void)260 static void rcu_dynticks_eqs_online(void)
261 {
262 if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 return;
264 ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266
267 /*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
rcu_dynticks_snap(int cpu)271 static int rcu_dynticks_snap(int cpu)
272 {
273 smp_mb(); // Fundamental RCU ordering guarantee.
274 return ct_dynticks_cpu_acquire(cpu);
275 }
276
277 /*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
rcu_dynticks_in_eqs(int snap)281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 return !(snap & RCU_DYNTICKS_IDX);
284 }
285
286 /*
287 * Return true if the CPU corresponding to the specified rcu_data
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295
296 /*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 int snap;
303
304 // If not quiescent, force back to earlier extended quiescent state.
305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 smp_rmb(); // Order ->dynticks and *vp reads.
307 if (READ_ONCE(*vp))
308 return false; // Non-zero, so report failure;
309 smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311 // If still in the same extended quiescent state, we are good!
312 return snap == ct_dynticks_cpu(cpu);
313 }
314
315 /*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state. This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323 *
324 * The caller must have disabled interrupts and must not be idle.
325 */
rcu_momentary_dyntick_idle(void)326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 int seq;
329
330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 /* It is illegal to call this from idle state. */
333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337
338 /**
339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340 *
341 * If the current CPU is idle and running at a first-level (not nested)
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
345 */
rcu_is_cpu_rrupt_from_idle(void)346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 long nesting;
349
350 /*
351 * Usually called from the tick; but also used from smp_function_call()
352 * for expedited grace periods. This latter can result in running from
353 * the idle task, instead of an actual IPI.
354 */
355 lockdep_assert_irqs_disabled();
356
357 /* Check for counter underflows */
358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 "RCU dynticks_nesting counter underflow!");
360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363 /* Are we at first interrupt nesting level? */
364 nesting = ct_dynticks_nmi_nesting();
365 if (nesting > 1)
366 return false;
367
368 /*
369 * If we're not in an interrupt, we must be in the idle task!
370 */
371 WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
373 /* Does CPU appear to be idle from an RCU standpoint? */
374 return ct_dynticks_nesting() == 0;
375 }
376
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 // Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
389
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404
405 /*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414 /*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
adjust_jiffies_till_sched_qs(void)420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 unsigned long j;
423
424 /* If jiffies_till_sched_qs was specified, respect the request. */
425 if (jiffies_till_sched_qs != ULONG_MAX) {
426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 return;
428 }
429 /* Otherwise, set to third fqs scan, but bound below on large system. */
430 j = READ_ONCE(jiffies_till_first_fqs) +
431 2 * READ_ONCE(jiffies_till_next_fqs);
432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 ulong j;
441 int ret = kstrtoul(val, 0, &j);
442
443 if (!ret) {
444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 adjust_jiffies_till_sched_qs();
446 }
447 return ret;
448 }
449
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 ulong j;
453 int ret = kstrtoul(val, 0, &j);
454
455 if (!ret) {
456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 adjust_jiffies_till_sched_qs();
458 }
459 return ret;
460 }
461
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 .set = param_set_first_fqs_jiffies,
464 .get = param_get_ulong,
465 };
466
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 .set = param_set_next_fqs_jiffies,
469 .get = param_get_ulong,
470 };
471
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478
479 /*
480 * Return the number of RCU GPs completed thus far for debug & stats.
481 */
rcu_get_gp_seq(void)482 unsigned long rcu_get_gp_seq(void)
483 {
484 return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487
488 /*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats. Odd numbers mean that a batch is in progress, even
491 * numbers mean idle. The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
rcu_exp_batches_completed(void)494 unsigned long rcu_exp_batches_completed(void)
495 {
496 return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
500 /*
501 * Return the root node of the rcu_state structure.
502 */
rcu_get_root(void)503 static struct rcu_node *rcu_get_root(void)
504 {
505 return &rcu_state.node[0];
506 }
507
508 /*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 unsigned long *gp_seq)
513 {
514 switch (test_type) {
515 case RCU_FLAVOR:
516 *flags = READ_ONCE(rcu_state.gp_flags);
517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 break;
519 default:
520 break;
521 }
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527 * An empty function that will trigger a reschedule on
528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529 */
late_wakeup_func(struct irq_work * work)530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 IRQ_WORK_INIT(late_wakeup_func);
536
537 /*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
rcu_irq_work_resched(void)547 noinstr void rcu_irq_work_resched(void)
548 {
549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 return;
553
554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 return;
556
557 instrumentation_begin();
558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 }
561 instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564
565 #ifdef CONFIG_PROVE_RCU
566 /**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
rcu_irq_exit_check_preempt(void)569 void rcu_irq_exit_check_preempt(void)
570 {
571 lockdep_assert_irqs_disabled();
572
573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 "RCU dynticks_nesting counter underflow/zero!");
575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 DYNTICK_IRQ_NONIDLE,
577 "Bad RCU dynticks_nmi_nesting counter\n");
578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution. After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short. Except of course when it isn't. And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception. In that case, the RCU grace-period kthread
606 * will eventually cause one to happen. However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
__rcu_irq_enter_check_tick(void)610 void __rcu_irq_enter_check_tick(void)
611 {
612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
614 // If we're here from NMI there's nothing to do.
615 if (in_nmi())
616 return;
617
618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621 if (!tick_nohz_full_cpu(rdp->cpu) ||
622 !READ_ONCE(rdp->rcu_urgent_qs) ||
623 READ_ONCE(rdp->rcu_forced_tick)) {
624 // RCU doesn't need nohz_full help from this CPU, or it is
625 // already getting that help.
626 return;
627 }
628
629 // We get here only when not in an extended quiescent state and
630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
631 // already watching and (2) The fact that we are in an interrupt
632 // handler and that the rcu_node lock is an irq-disabled lock
633 // prevents self-deadlock. So we can safely recheck under the lock.
634 // Note that the nohz_full state currently cannot change.
635 raw_spin_lock_rcu_node(rdp->mynode);
636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 // A nohz_full CPU is in the kernel and RCU needs a
638 // quiescent state. Turn on the tick!
639 WRITE_ONCE(rdp->rcu_forced_tick, true);
640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 }
642 raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646
647 /*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so. This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API. This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
rcu_needs_cpu(void)658 int rcu_needs_cpu(void)
659 {
660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663
664 /*
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
668 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 WRITE_ONCE(rdp->rcu_forced_tick, false);
677 }
678 }
679
680 /**
681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682 *
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions. For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
694 */
rcu_is_watching(void)695 notrace bool rcu_is_watching(void)
696 {
697 bool ret;
698
699 preempt_disable_notrace();
700 ret = !rcu_dynticks_curr_cpu_in_eqs();
701 preempt_enable_notrace();
702 return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705
706 /*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU. This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU. Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
rcu_request_urgent_qs_task(struct task_struct * t)713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 int cpu;
716
717 barrier();
718 cpu = task_cpu(t);
719 if (!task_curr(t))
720 return; /* This task is not running on that CPU. */
721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723
724 /*
725 * When trying to report a quiescent state on behalf of some other CPU,
726 * it is our responsibility to check for and handle potential overflow
727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 raw_lockdep_assert_held_rcu_node(rnp);
734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 rnp->gp_seq))
736 WRITE_ONCE(rdp->gpwrap, true);
737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740
741 /*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state. Return 1 if this CPU
744 * is in dynticks idle mode, which is an extended quiescent state.
745 */
dyntick_save_progress_counter(struct rcu_data * rdp)746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 rcu_gpnum_ovf(rdp->mynode, rdp);
752 return 1;
753 }
754 return 0;
755 }
756
757 /*
758 * Returns positive if the specified CPU has passed through a quiescent state
759 * by virtue of being in or having passed through an dynticks idle state since
760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
761 * virtue of having been offline.
762 *
763 * Returns negative if the specified CPU needs a force resched.
764 *
765 * Returns zero otherwise.
766 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768 {
769 unsigned long jtsq;
770 int ret = 0;
771 struct rcu_node *rnp = rdp->mynode;
772
773 /*
774 * If the CPU passed through or entered a dynticks idle phase with
775 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 * already acknowledged the request to pass through a quiescent
777 * state. Either way, that CPU cannot possibly be in an RCU
778 * read-side critical section that started before the beginning
779 * of the current RCU grace period.
780 */
781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783 rcu_gpnum_ovf(rnp, rdp);
784 return 1;
785 }
786
787 /*
788 * Complain if a CPU that is considered to be offline from RCU's
789 * perspective has not yet reported a quiescent state. After all,
790 * the offline CPU should have reported a quiescent state during
791 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 * if it ran concurrently with either the CPU going offline or the
793 * last task on a leaf rcu_node structure exiting its RCU read-side
794 * critical section while all CPUs corresponding to that structure
795 * are offline. This added warning detects bugs in any of these
796 * code paths.
797 *
798 * The rcu_node structure's ->lock is held here, which excludes
799 * the relevant portions the CPU-hotplug code, the grace-period
800 * initialization code, and the rcu_read_unlock() code paths.
801 *
802 * For more detail, please refer to the "Hotplug CPU" section
803 * of RCU's Requirements documentation.
804 */
805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 struct rcu_node *rnp1;
807
808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 __func__, rnp->grplo, rnp->grphi, rnp->level,
810 (long)rnp->gp_seq, (long)rnp->completedqs);
811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 return 1; /* Break things loose after complaining. */
819 }
820
821 /*
822 * A CPU running for an extended time within the kernel can
823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 * variable are safe because the assignments are repeated if this
828 * CPU failed to pass through a quiescent state. This code
829 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 * is set way high.
831 */
832 jtsq = READ_ONCE(jiffies_to_sched_qs);
833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 time_after(jiffies, rcu_state.jiffies_resched) ||
836 rcu_state.cbovld)) {
837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 smp_store_release(&rdp->rcu_urgent_qs, true);
840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 }
843
844 /*
845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 * The above code handles this, but only for straight cond_resched().
847 * And some in-kernel loops check need_resched() before calling
848 * cond_resched(), which defeats the above code for CPUs that are
849 * running in-kernel with scheduling-clock interrupts disabled.
850 * So hit them over the head with the resched_cpu() hammer!
851 */
852 if (tick_nohz_full_cpu(rdp->cpu) &&
853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 rcu_state.cbovld)) {
855 WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 ret = -1;
858 }
859
860 /*
861 * If more than halfway to RCU CPU stall-warning time, invoke
862 * resched_cpu() more frequently to try to loosen things up a bit.
863 * Also check to see if the CPU is getting hammered with interrupts,
864 * but only once per grace period, just to keep the IPIs down to
865 * a dull roar.
866 */
867 if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 if (time_after(jiffies,
869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 ret = -1;
872 }
873 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 (rnp->ffmask & rdp->grpmask)) {
876 rdp->rcu_iw_pending = true;
877 rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 }
880
881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 int cpu = rdp->cpu;
883 struct rcu_snap_record *rsrp;
884 struct kernel_cpustat *kcsp;
885
886 kcsp = &kcpustat_cpu(cpu);
887
888 rsrp = &rdp->snap_record;
889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 rsrp->jiffies = jiffies;
896 rsrp->gp_seq = rdp->gp_seq;
897 }
898 }
899
900 return ret;
901 }
902
903 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 unsigned long gp_seq_req, const char *s)
906 {
907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 gp_seq_req, rnp->level,
909 rnp->grplo, rnp->grphi, s);
910 }
911
912 /*
913 * rcu_start_this_gp - Request the start of a particular grace period
914 * @rnp_start: The leaf node of the CPU from which to start.
915 * @rdp: The rcu_data corresponding to the CPU from which to start.
916 * @gp_seq_req: The gp_seq of the grace period to start.
917 *
918 * Start the specified grace period, as needed to handle newly arrived
919 * callbacks. The required future grace periods are recorded in each
920 * rcu_node structure's ->gp_seq_needed field. Returns true if there
921 * is reason to awaken the grace-period kthread.
922 *
923 * The caller must hold the specified rcu_node structure's ->lock, which
924 * is why the caller is responsible for waking the grace-period kthread.
925 *
926 * Returns true if the GP thread needs to be awakened else false.
927 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 unsigned long gp_seq_req)
930 {
931 bool ret = false;
932 struct rcu_node *rnp;
933
934 /*
935 * Use funnel locking to either acquire the root rcu_node
936 * structure's lock or bail out if the need for this grace period
937 * has already been recorded -- or if that grace period has in
938 * fact already started. If there is already a grace period in
939 * progress in a non-leaf node, no recording is needed because the
940 * end of the grace period will scan the leaf rcu_node structures.
941 * Note that rnp_start->lock must not be released.
942 */
943 raw_lockdep_assert_held_rcu_node(rnp_start);
944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 if (rnp != rnp_start)
947 raw_spin_lock_rcu_node(rnp);
948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 (rnp != rnp_start &&
951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 TPS("Prestarted"));
954 goto unlock_out;
955 }
956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958 /*
959 * We just marked the leaf or internal node, and a
960 * grace period is in progress, which means that
961 * rcu_gp_cleanup() will see the marking. Bail to
962 * reduce contention.
963 */
964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965 TPS("Startedleaf"));
966 goto unlock_out;
967 }
968 if (rnp != rnp_start && rnp->parent != NULL)
969 raw_spin_unlock_rcu_node(rnp);
970 if (!rnp->parent)
971 break; /* At root, and perhaps also leaf. */
972 }
973
974 /* If GP already in progress, just leave, otherwise start one. */
975 if (rcu_gp_in_progress()) {
976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 goto unlock_out;
978 }
979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 if (!READ_ONCE(rcu_state.gp_kthread)) {
983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 goto unlock_out;
985 }
986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 ret = true; /* Caller must wake GP kthread. */
988 unlock_out:
989 /* Push furthest requested GP to leaf node and rcu_data structure. */
990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 }
994 if (rnp != rnp_start)
995 raw_spin_unlock_rcu_node(rnp);
996 return ret;
997 }
998
999 /*
1000 * Clean up any old requests for the just-ended grace period. Also return
1001 * whether any additional grace periods have been requested.
1002 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004 {
1005 bool needmore;
1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007
1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 if (!needmore)
1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 return needmore;
1014 }
1015
swake_up_one_online_ipi(void * arg)1016 static void swake_up_one_online_ipi(void *arg)
1017 {
1018 struct swait_queue_head *wqh = arg;
1019
1020 swake_up_one(wqh);
1021 }
1022
swake_up_one_online(struct swait_queue_head * wqh)1023 static void swake_up_one_online(struct swait_queue_head *wqh)
1024 {
1025 int cpu = get_cpu();
1026
1027 /*
1028 * If called from rcutree_report_cpu_starting(), wake up
1029 * is dangerous that late in the CPU-down hotplug process. The
1030 * scheduler might queue an ignored hrtimer. Defer the wake up
1031 * to an online CPU instead.
1032 */
1033 if (unlikely(cpu_is_offline(cpu))) {
1034 int target;
1035
1036 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037 cpu_online_mask);
1038
1039 smp_call_function_single(target, swake_up_one_online_ipi,
1040 wqh, 0);
1041 put_cpu();
1042 } else {
1043 put_cpu();
1044 swake_up_one(wqh);
1045 }
1046 }
1047
1048 /*
1049 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1050 * interrupt or softirq handler, in which case we just might immediately
1051 * sleep upon return, resulting in a grace-period hang), and don't bother
1052 * awakening when there is nothing for the grace-period kthread to do
1053 * (as in several CPUs raced to awaken, we lost), and finally don't try
1054 * to awaken a kthread that has not yet been created. If all those checks
1055 * are passed, track some debug information and awaken.
1056 *
1057 * So why do the self-wakeup when in an interrupt or softirq handler
1058 * in the grace-period kthread's context? Because the kthread might have
1059 * been interrupted just as it was going to sleep, and just after the final
1060 * pre-sleep check of the awaken condition. In this case, a wakeup really
1061 * is required, and is therefore supplied.
1062 */
rcu_gp_kthread_wake(void)1063 static void rcu_gp_kthread_wake(void)
1064 {
1065 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1066
1067 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1068 !READ_ONCE(rcu_state.gp_flags) || !t)
1069 return;
1070 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1072 swake_up_one_online(&rcu_state.gp_wq);
1073 }
1074
1075 /*
1076 * If there is room, assign a ->gp_seq number to any callbacks on this
1077 * CPU that have not already been assigned. Also accelerate any callbacks
1078 * that were previously assigned a ->gp_seq number that has since proven
1079 * to be too conservative, which can happen if callbacks get assigned a
1080 * ->gp_seq number while RCU is idle, but with reference to a non-root
1081 * rcu_node structure. This function is idempotent, so it does not hurt
1082 * to call it repeatedly. Returns an flag saying that we should awaken
1083 * the RCU grace-period kthread.
1084 *
1085 * The caller must hold rnp->lock with interrupts disabled.
1086 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1087 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1088 {
1089 unsigned long gp_seq_req;
1090 bool ret = false;
1091
1092 rcu_lockdep_assert_cblist_protected(rdp);
1093 raw_lockdep_assert_held_rcu_node(rnp);
1094
1095 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1097 return false;
1098
1099 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100
1101 /*
1102 * Callbacks are often registered with incomplete grace-period
1103 * information. Something about the fact that getting exact
1104 * information requires acquiring a global lock... RCU therefore
1105 * makes a conservative estimate of the grace period number at which
1106 * a given callback will become ready to invoke. The following
1107 * code checks this estimate and improves it when possible, thus
1108 * accelerating callback invocation to an earlier grace-period
1109 * number.
1110 */
1111 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1112 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1114
1115 /* Trace depending on how much we were able to accelerate. */
1116 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1118 else
1119 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120
1121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122
1123 return ret;
1124 }
1125
1126 /*
1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128 * rcu_node structure's ->lock be held. It consults the cached value
1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131 * while holding the leaf rcu_node structure's ->lock.
1132 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1133 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1134 struct rcu_data *rdp)
1135 {
1136 unsigned long c;
1137 bool needwake;
1138
1139 rcu_lockdep_assert_cblist_protected(rdp);
1140 c = rcu_seq_snap(&rcu_state.gp_seq);
1141 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1142 /* Old request still live, so mark recent callbacks. */
1143 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144 return;
1145 }
1146 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1147 needwake = rcu_accelerate_cbs(rnp, rdp);
1148 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149 if (needwake)
1150 rcu_gp_kthread_wake();
1151 }
1152
1153 /*
1154 * Move any callbacks whose grace period has completed to the
1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1157 * sublist. This function is idempotent, so it does not hurt to
1158 * invoke it repeatedly. As long as it is not invoked -too- often...
1159 * Returns true if the RCU grace-period kthread needs to be awakened.
1160 *
1161 * The caller must hold rnp->lock with interrupts disabled.
1162 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1163 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1164 {
1165 rcu_lockdep_assert_cblist_protected(rdp);
1166 raw_lockdep_assert_held_rcu_node(rnp);
1167
1168 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1170 return false;
1171
1172 /*
1173 * Find all callbacks whose ->gp_seq numbers indicate that they
1174 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175 */
1176 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1177
1178 /* Classify any remaining callbacks. */
1179 return rcu_accelerate_cbs(rnp, rdp);
1180 }
1181
1182 /*
1183 * Move and classify callbacks, but only if doing so won't require
1184 * that the RCU grace-period kthread be awakened.
1185 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1186 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187 struct rcu_data *rdp)
1188 {
1189 rcu_lockdep_assert_cblist_protected(rdp);
1190 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1191 return;
1192 // The grace period cannot end while we hold the rcu_node lock.
1193 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1195 raw_spin_unlock_rcu_node(rnp);
1196 }
1197
1198 /*
1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200 * quiescent state. This is intended to be invoked when the CPU notices
1201 * a new grace period.
1202 */
rcu_strict_gp_check_qs(void)1203 static void rcu_strict_gp_check_qs(void)
1204 {
1205 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206 rcu_read_lock();
1207 rcu_read_unlock();
1208 }
1209 }
1210
1211 /*
1212 * Update CPU-local rcu_data state to record the beginnings and ends of
1213 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1214 * structure corresponding to the current CPU, and must have irqs disabled.
1215 * Returns true if the grace-period kthread needs to be awakened.
1216 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1217 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1218 {
1219 bool ret = false;
1220 bool need_qs;
1221 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1222
1223 raw_lockdep_assert_held_rcu_node(rnp);
1224
1225 if (rdp->gp_seq == rnp->gp_seq)
1226 return false; /* Nothing to do. */
1227
1228 /* Handle the ends of any preceding grace periods first. */
1229 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230 unlikely(READ_ONCE(rdp->gpwrap))) {
1231 if (!offloaded)
1232 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1233 rdp->core_needs_qs = false;
1234 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1235 } else {
1236 if (!offloaded)
1237 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1238 if (rdp->core_needs_qs)
1239 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1240 }
1241
1242 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244 unlikely(READ_ONCE(rdp->gpwrap))) {
1245 /*
1246 * If the current grace period is waiting for this CPU,
1247 * set up to detect a quiescent state, otherwise don't
1248 * go looking for one.
1249 */
1250 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1251 need_qs = !!(rnp->qsmask & rdp->grpmask);
1252 rdp->cpu_no_qs.b.norm = need_qs;
1253 rdp->core_needs_qs = need_qs;
1254 zero_cpu_stall_ticks(rdp);
1255 }
1256 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1257 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1258 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1259 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1261 WRITE_ONCE(rdp->gpwrap, false);
1262 rcu_gpnum_ovf(rnp, rdp);
1263 return ret;
1264 }
1265
note_gp_changes(struct rcu_data * rdp)1266 static void note_gp_changes(struct rcu_data *rdp)
1267 {
1268 unsigned long flags;
1269 bool needwake;
1270 struct rcu_node *rnp;
1271
1272 local_irq_save(flags);
1273 rnp = rdp->mynode;
1274 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1275 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1276 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1277 local_irq_restore(flags);
1278 return;
1279 }
1280 needwake = __note_gp_changes(rnp, rdp);
1281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1282 rcu_strict_gp_check_qs();
1283 if (needwake)
1284 rcu_gp_kthread_wake();
1285 }
1286
1287 static atomic_t *rcu_gp_slow_suppress;
1288
1289 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1290 void rcu_gp_slow_register(atomic_t *rgssp)
1291 {
1292 WARN_ON_ONCE(rcu_gp_slow_suppress);
1293
1294 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295 }
1296 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297
1298 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1299 void rcu_gp_slow_unregister(atomic_t *rgssp)
1300 {
1301 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1302
1303 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306
rcu_gp_slow_is_suppressed(void)1307 static bool rcu_gp_slow_is_suppressed(void)
1308 {
1309 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310
1311 return rgssp && atomic_read(rgssp);
1312 }
1313
rcu_gp_slow(int delay)1314 static void rcu_gp_slow(int delay)
1315 {
1316 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1318 schedule_timeout_idle(delay);
1319 }
1320
1321 static unsigned long sleep_duration;
1322
1323 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1324 void rcu_gp_set_torture_wait(int duration)
1325 {
1326 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327 WRITE_ONCE(sleep_duration, duration);
1328 }
1329 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330
1331 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1332 static void rcu_gp_torture_wait(void)
1333 {
1334 unsigned long duration;
1335
1336 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337 return;
1338 duration = xchg(&sleep_duration, 0UL);
1339 if (duration > 0) {
1340 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1341 schedule_timeout_idle(duration);
1342 pr_alert("%s: Wait complete\n", __func__);
1343 }
1344 }
1345
1346 /*
1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348 * processing.
1349 */
rcu_strict_gp_boundary(void * unused)1350 static void rcu_strict_gp_boundary(void *unused)
1351 {
1352 invoke_rcu_core();
1353 }
1354
1355 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1356 static void rcu_poll_gp_seq_start(unsigned long *snap)
1357 {
1358 struct rcu_node *rnp = rcu_get_root();
1359
1360 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1361 raw_lockdep_assert_held_rcu_node(rnp);
1362
1363 // If RCU was idle, note beginning of GP.
1364 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365 rcu_seq_start(&rcu_state.gp_seq_polled);
1366
1367 // Either way, record current state.
1368 *snap = rcu_state.gp_seq_polled;
1369 }
1370
1371 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1372 static void rcu_poll_gp_seq_end(unsigned long *snap)
1373 {
1374 struct rcu_node *rnp = rcu_get_root();
1375
1376 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1377 raw_lockdep_assert_held_rcu_node(rnp);
1378
1379 // If the previously noted GP is still in effect, record the
1380 // end of that GP. Either way, zero counter to avoid counter-wrap
1381 // problems.
1382 if (*snap && *snap == rcu_state.gp_seq_polled) {
1383 rcu_seq_end(&rcu_state.gp_seq_polled);
1384 rcu_state.gp_seq_polled_snap = 0;
1385 rcu_state.gp_seq_polled_exp_snap = 0;
1386 } else {
1387 *snap = 0;
1388 }
1389 }
1390
1391 // Make the polled API aware of the beginning of a grace period, but
1392 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1393 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394 {
1395 unsigned long flags;
1396 struct rcu_node *rnp = rcu_get_root();
1397
1398 if (rcu_init_invoked()) {
1399 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400 lockdep_assert_irqs_enabled();
1401 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1402 }
1403 rcu_poll_gp_seq_start(snap);
1404 if (rcu_init_invoked())
1405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1406 }
1407
1408 // Make the polled API aware of the end of a grace period, but where
1409 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1410 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411 {
1412 unsigned long flags;
1413 struct rcu_node *rnp = rcu_get_root();
1414
1415 if (rcu_init_invoked()) {
1416 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417 lockdep_assert_irqs_enabled();
1418 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1419 }
1420 rcu_poll_gp_seq_end(snap);
1421 if (rcu_init_invoked())
1422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423 }
1424
1425 /*
1426 * Initialize a new grace period. Return false if no grace period required.
1427 */
rcu_gp_init(void)1428 static noinline_for_stack bool rcu_gp_init(void)
1429 {
1430 unsigned long flags;
1431 unsigned long oldmask;
1432 unsigned long mask;
1433 struct rcu_data *rdp;
1434 struct rcu_node *rnp = rcu_get_root();
1435
1436 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1437 raw_spin_lock_irq_rcu_node(rnp);
1438 if (!READ_ONCE(rcu_state.gp_flags)) {
1439 /* Spurious wakeup, tell caller to go back to sleep. */
1440 raw_spin_unlock_irq_rcu_node(rnp);
1441 return false;
1442 }
1443 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1444
1445 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1446 /*
1447 * Grace period already in progress, don't start another.
1448 * Not supposed to be able to happen.
1449 */
1450 raw_spin_unlock_irq_rcu_node(rnp);
1451 return false;
1452 }
1453
1454 /* Advance to a new grace period and initialize state. */
1455 record_gp_stall_check_time();
1456 /* Record GP times before starting GP, hence rcu_seq_start(). */
1457 rcu_seq_start(&rcu_state.gp_seq);
1458 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1459 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1460 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1461 raw_spin_unlock_irq_rcu_node(rnp);
1462
1463 /*
1464 * Apply per-leaf buffered online and offline operations to
1465 * the rcu_node tree. Note that this new grace period need not
1466 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467 * offlining path, when combined with checks in this function,
1468 * will handle CPUs that are currently going offline or that will
1469 * go offline later. Please also refer to "Hotplug CPU" section
1470 * of RCU's Requirements documentation.
1471 */
1472 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1473 /* Exclude CPU hotplug operations. */
1474 rcu_for_each_leaf_node(rnp) {
1475 local_irq_save(flags);
1476 arch_spin_lock(&rcu_state.ofl_lock);
1477 raw_spin_lock_rcu_node(rnp);
1478 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479 !rnp->wait_blkd_tasks) {
1480 /* Nothing to do on this leaf rcu_node structure. */
1481 raw_spin_unlock_rcu_node(rnp);
1482 arch_spin_unlock(&rcu_state.ofl_lock);
1483 local_irq_restore(flags);
1484 continue;
1485 }
1486
1487 /* Record old state, apply changes to ->qsmaskinit field. */
1488 oldmask = rnp->qsmaskinit;
1489 rnp->qsmaskinit = rnp->qsmaskinitnext;
1490
1491 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492 if (!oldmask != !rnp->qsmaskinit) {
1493 if (!oldmask) { /* First online CPU for rcu_node. */
1494 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495 rcu_init_new_rnp(rnp);
1496 } else if (rcu_preempt_has_tasks(rnp)) {
1497 rnp->wait_blkd_tasks = true; /* blocked tasks */
1498 } else { /* Last offline CPU and can propagate. */
1499 rcu_cleanup_dead_rnp(rnp);
1500 }
1501 }
1502
1503 /*
1504 * If all waited-on tasks from prior grace period are
1505 * done, and if all this rcu_node structure's CPUs are
1506 * still offline, propagate up the rcu_node tree and
1507 * clear ->wait_blkd_tasks. Otherwise, if one of this
1508 * rcu_node structure's CPUs has since come back online,
1509 * simply clear ->wait_blkd_tasks.
1510 */
1511 if (rnp->wait_blkd_tasks &&
1512 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1513 rnp->wait_blkd_tasks = false;
1514 if (!rnp->qsmaskinit)
1515 rcu_cleanup_dead_rnp(rnp);
1516 }
1517
1518 raw_spin_unlock_rcu_node(rnp);
1519 arch_spin_unlock(&rcu_state.ofl_lock);
1520 local_irq_restore(flags);
1521 }
1522 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1523
1524 /*
1525 * Set the quiescent-state-needed bits in all the rcu_node
1526 * structures for all currently online CPUs in breadth-first
1527 * order, starting from the root rcu_node structure, relying on the
1528 * layout of the tree within the rcu_state.node[] array. Note that
1529 * other CPUs will access only the leaves of the hierarchy, thus
1530 * seeing that no grace period is in progress, at least until the
1531 * corresponding leaf node has been initialized.
1532 *
1533 * The grace period cannot complete until the initialization
1534 * process finishes, because this kthread handles both.
1535 */
1536 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1537 rcu_for_each_node_breadth_first(rnp) {
1538 rcu_gp_slow(gp_init_delay);
1539 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540 rdp = this_cpu_ptr(&rcu_data);
1541 rcu_preempt_check_blocked_tasks(rnp);
1542 rnp->qsmask = rnp->qsmaskinit;
1543 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1544 if (rnp == rdp->mynode)
1545 (void)__note_gp_changes(rnp, rdp);
1546 rcu_preempt_boost_start_gp(rnp);
1547 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1548 rnp->level, rnp->grplo,
1549 rnp->grphi, rnp->qsmask);
1550 /* Quiescent states for tasks on any now-offline CPUs. */
1551 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1552 rnp->rcu_gp_init_mask = mask;
1553 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1555 else
1556 raw_spin_unlock_irq_rcu_node(rnp);
1557 cond_resched_tasks_rcu_qs();
1558 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1559 }
1560
1561 // If strict, make all CPUs aware of new grace period.
1562 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564
1565 return true;
1566 }
1567
1568 /*
1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1570 * time.
1571 */
rcu_gp_fqs_check_wake(int * gfp)1572 static bool rcu_gp_fqs_check_wake(int *gfp)
1573 {
1574 struct rcu_node *rnp = rcu_get_root();
1575
1576 // If under overload conditions, force an immediate FQS scan.
1577 if (*gfp & RCU_GP_FLAG_OVLD)
1578 return true;
1579
1580 // Someone like call_rcu() requested a force-quiescent-state scan.
1581 *gfp = READ_ONCE(rcu_state.gp_flags);
1582 if (*gfp & RCU_GP_FLAG_FQS)
1583 return true;
1584
1585 // The current grace period has completed.
1586 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587 return true;
1588
1589 return false;
1590 }
1591
1592 /*
1593 * Do one round of quiescent-state forcing.
1594 */
rcu_gp_fqs(bool first_time)1595 static void rcu_gp_fqs(bool first_time)
1596 {
1597 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1598 struct rcu_node *rnp = rcu_get_root();
1599
1600 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1602
1603 WARN_ON_ONCE(nr_fqs > 3);
1604 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605 if (nr_fqs) {
1606 if (nr_fqs == 1) {
1607 WRITE_ONCE(rcu_state.jiffies_stall,
1608 jiffies + rcu_jiffies_till_stall_check());
1609 }
1610 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611 }
1612
1613 if (first_time) {
1614 /* Collect dyntick-idle snapshots. */
1615 force_qs_rnp(dyntick_save_progress_counter);
1616 } else {
1617 /* Handle dyntick-idle and offline CPUs. */
1618 force_qs_rnp(rcu_implicit_dynticks_qs);
1619 }
1620 /* Clear flag to prevent immediate re-entry. */
1621 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1622 raw_spin_lock_irq_rcu_node(rnp);
1623 WRITE_ONCE(rcu_state.gp_flags,
1624 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1625 raw_spin_unlock_irq_rcu_node(rnp);
1626 }
1627 }
1628
1629 /*
1630 * Loop doing repeated quiescent-state forcing until the grace period ends.
1631 */
rcu_gp_fqs_loop(void)1632 static noinline_for_stack void rcu_gp_fqs_loop(void)
1633 {
1634 bool first_gp_fqs = true;
1635 int gf = 0;
1636 unsigned long j;
1637 int ret;
1638 struct rcu_node *rnp = rcu_get_root();
1639
1640 j = READ_ONCE(jiffies_till_first_fqs);
1641 if (rcu_state.cbovld)
1642 gf = RCU_GP_FLAG_OVLD;
1643 ret = 0;
1644 for (;;) {
1645 if (rcu_state.cbovld) {
1646 j = (j + 2) / 3;
1647 if (j <= 0)
1648 j = 1;
1649 }
1650 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1651 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652 /*
1653 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654 * update; required for stall checks.
1655 */
1656 smp_wmb();
1657 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1658 jiffies + (j ? 3 * j : 2));
1659 }
1660 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1661 TPS("fqswait"));
1662 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1663 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664 rcu_gp_fqs_check_wake(&gf), j);
1665 rcu_gp_torture_wait();
1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1667 /* Locking provides needed memory barriers. */
1668 /*
1669 * Exit the loop if the root rcu_node structure indicates that the grace period
1670 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1671 * is required only for single-node rcu_node trees because readers blocking
1672 * the current grace period are queued only on leaf rcu_node structures.
1673 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675 * the corresponding leaf nodes have passed through their quiescent state.
1676 */
1677 if (!READ_ONCE(rnp->qsmask) &&
1678 !rcu_preempt_blocked_readers_cgp(rnp))
1679 break;
1680 /* If time for quiescent-state forcing, do it. */
1681 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1682 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1683 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1684 TPS("fqsstart"));
1685 rcu_gp_fqs(first_gp_fqs);
1686 gf = 0;
1687 if (first_gp_fqs) {
1688 first_gp_fqs = false;
1689 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690 }
1691 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1692 TPS("fqsend"));
1693 cond_resched_tasks_rcu_qs();
1694 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 ret = 0; /* Force full wait till next FQS. */
1696 j = READ_ONCE(jiffies_till_next_fqs);
1697 } else {
1698 /* Deal with stray signal. */
1699 cond_resched_tasks_rcu_qs();
1700 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701 WARN_ON(signal_pending(current));
1702 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1703 TPS("fqswaitsig"));
1704 ret = 1; /* Keep old FQS timing. */
1705 j = jiffies;
1706 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707 j = 1;
1708 else
1709 j = rcu_state.jiffies_force_qs - j;
1710 gf = 0;
1711 }
1712 }
1713 }
1714
1715 /*
1716 * Clean up after the old grace period.
1717 */
rcu_gp_cleanup(void)1718 static noinline void rcu_gp_cleanup(void)
1719 {
1720 int cpu;
1721 bool needgp = false;
1722 unsigned long gp_duration;
1723 unsigned long new_gp_seq;
1724 bool offloaded;
1725 struct rcu_data *rdp;
1726 struct rcu_node *rnp = rcu_get_root();
1727 struct swait_queue_head *sq;
1728
1729 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1730 raw_spin_lock_irq_rcu_node(rnp);
1731 rcu_state.gp_end = jiffies;
1732 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1733 if (gp_duration > rcu_state.gp_max)
1734 rcu_state.gp_max = gp_duration;
1735
1736 /*
1737 * We know the grace period is complete, but to everyone else
1738 * it appears to still be ongoing. But it is also the case
1739 * that to everyone else it looks like there is nothing that
1740 * they can do to advance the grace period. It is therefore
1741 * safe for us to drop the lock in order to mark the grace
1742 * period as completed in all of the rcu_node structures.
1743 */
1744 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1745 raw_spin_unlock_irq_rcu_node(rnp);
1746
1747 /*
1748 * Propagate new ->gp_seq value to rcu_node structures so that
1749 * other CPUs don't have to wait until the start of the next grace
1750 * period to process their callbacks. This also avoids some nasty
1751 * RCU grace-period initialization races by forcing the end of
1752 * the current grace period to be completely recorded in all of
1753 * the rcu_node structures before the beginning of the next grace
1754 * period is recorded in any of the rcu_node structures.
1755 */
1756 new_gp_seq = rcu_state.gp_seq;
1757 rcu_seq_end(&new_gp_seq);
1758 rcu_for_each_node_breadth_first(rnp) {
1759 raw_spin_lock_irq_rcu_node(rnp);
1760 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1761 dump_blkd_tasks(rnp, 10);
1762 WARN_ON_ONCE(rnp->qsmask);
1763 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1764 if (!rnp->parent)
1765 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1766 rdp = this_cpu_ptr(&rcu_data);
1767 if (rnp == rdp->mynode)
1768 needgp = __note_gp_changes(rnp, rdp) || needgp;
1769 /* smp_mb() provided by prior unlock-lock pair. */
1770 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1771 // Reset overload indication for CPUs no longer overloaded
1772 if (rcu_is_leaf_node(rnp))
1773 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774 rdp = per_cpu_ptr(&rcu_data, cpu);
1775 check_cb_ovld_locked(rdp, rnp);
1776 }
1777 sq = rcu_nocb_gp_get(rnp);
1778 raw_spin_unlock_irq_rcu_node(rnp);
1779 rcu_nocb_gp_cleanup(sq);
1780 cond_resched_tasks_rcu_qs();
1781 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1782 rcu_gp_slow(gp_cleanup_delay);
1783 }
1784 rnp = rcu_get_root();
1785 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1786
1787 /* Declare grace period done, trace first to use old GP number. */
1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1789 rcu_seq_end(&rcu_state.gp_seq);
1790 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1792 /* Check for GP requests since above loop. */
1793 rdp = this_cpu_ptr(&rcu_data);
1794 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1795 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1796 TPS("CleanupMore"));
1797 needgp = true;
1798 }
1799 /* Advance CBs to reduce false positives below. */
1800 offloaded = rcu_rdp_is_offloaded(rdp);
1801 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1802
1803 // We get here if a grace period was needed (“needgp”)
1804 // and the above call to rcu_accelerate_cbs() did not set
1805 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806 // the need for another grace period). The purpose
1807 // of the “offloaded” check is to avoid invoking
1808 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1809 // hold the ->nocb_lock needed to safely access an offloaded
1810 // ->cblist. We do not want to acquire that lock because
1811 // it can be heavily contended during callback floods.
1812
1813 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1814 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816 } else {
1817
1818 // We get here either if there is no need for an
1819 // additional grace period or if rcu_accelerate_cbs() has
1820 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
1821 // So all we need to do is to clear all of the other
1822 // ->gp_flags bits.
1823
1824 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1825 }
1826 raw_spin_unlock_irq_rcu_node(rnp);
1827
1828 // If strict, make all CPUs aware of the end of the old grace period.
1829 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1831 }
1832
1833 /*
1834 * Body of kthread that handles grace periods.
1835 */
rcu_gp_kthread(void * unused)1836 static int __noreturn rcu_gp_kthread(void *unused)
1837 {
1838 rcu_bind_gp_kthread();
1839 for (;;) {
1840
1841 /* Handle grace-period start. */
1842 for (;;) {
1843 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1844 TPS("reqwait"));
1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1846 swait_event_idle_exclusive(rcu_state.gp_wq,
1847 READ_ONCE(rcu_state.gp_flags) &
1848 RCU_GP_FLAG_INIT);
1849 rcu_gp_torture_wait();
1850 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1851 /* Locking provides needed memory barrier. */
1852 if (rcu_gp_init())
1853 break;
1854 cond_resched_tasks_rcu_qs();
1855 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1856 WARN_ON(signal_pending(current));
1857 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1858 TPS("reqwaitsig"));
1859 }
1860
1861 /* Handle quiescent-state forcing. */
1862 rcu_gp_fqs_loop();
1863
1864 /* Handle grace-period end. */
1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1866 rcu_gp_cleanup();
1867 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1868 }
1869 }
1870
1871 /*
1872 * Report a full set of quiescent states to the rcu_state data structure.
1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874 * another grace period is required. Whether we wake the grace-period
1875 * kthread or it awakens itself for the next round of quiescent-state
1876 * forcing, that kthread will clean up after the just-completed grace
1877 * period. Note that the caller must hold rnp->lock, which is released
1878 * before return.
1879 */
rcu_report_qs_rsp(unsigned long flags)1880 static void rcu_report_qs_rsp(unsigned long flags)
1881 __releases(rcu_get_root()->lock)
1882 {
1883 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1884 WARN_ON_ONCE(!rcu_gp_in_progress());
1885 WRITE_ONCE(rcu_state.gp_flags,
1886 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1887 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1888 rcu_gp_kthread_wake();
1889 }
1890
1891 /*
1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893 * Allows quiescent states for a group of CPUs to be reported at one go
1894 * to the specified rcu_node structure, though all the CPUs in the group
1895 * must be represented by the same rcu_node structure (which need not be a
1896 * leaf rcu_node structure, though it often will be). The gps parameter
1897 * is the grace-period snapshot, which means that the quiescent states
1898 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1899 * must be held upon entry, and it is released before return.
1900 *
1901 * As a special case, if mask is zero, the bit-already-cleared check is
1902 * disabled. This allows propagating quiescent state due to resumed tasks
1903 * during grace-period initialization.
1904 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1905 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906 unsigned long gps, unsigned long flags)
1907 __releases(rnp->lock)
1908 {
1909 unsigned long oldmask = 0;
1910 struct rcu_node *rnp_c;
1911
1912 raw_lockdep_assert_held_rcu_node(rnp);
1913
1914 /* Walk up the rcu_node hierarchy. */
1915 for (;;) {
1916 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917
1918 /*
1919 * Our bit has already been cleared, or the
1920 * relevant grace period is already over, so done.
1921 */
1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923 return;
1924 }
1925 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1926 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1927 rcu_preempt_blocked_readers_cgp(rnp));
1928 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1929 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1930 mask, rnp->qsmask, rnp->level,
1931 rnp->grplo, rnp->grphi,
1932 !!rnp->gp_tasks);
1933 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1934
1935 /* Other bits still set at this level, so done. */
1936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937 return;
1938 }
1939 rnp->completedqs = rnp->gp_seq;
1940 mask = rnp->grpmask;
1941 if (rnp->parent == NULL) {
1942
1943 /* No more levels. Exit loop holding root lock. */
1944
1945 break;
1946 }
1947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948 rnp_c = rnp;
1949 rnp = rnp->parent;
1950 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1951 oldmask = READ_ONCE(rnp_c->qsmask);
1952 }
1953
1954 /*
1955 * Get here if we are the last CPU to pass through a quiescent
1956 * state for this grace period. Invoke rcu_report_qs_rsp()
1957 * to clean up and start the next grace period if one is needed.
1958 */
1959 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1960 }
1961
1962 /*
1963 * Record a quiescent state for all tasks that were previously queued
1964 * on the specified rcu_node structure and that were blocking the current
1965 * RCU grace period. The caller must hold the corresponding rnp->lock with
1966 * irqs disabled, and this lock is released upon return, but irqs remain
1967 * disabled.
1968 */
1969 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1970 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1971 __releases(rnp->lock)
1972 {
1973 unsigned long gps;
1974 unsigned long mask;
1975 struct rcu_node *rnp_p;
1976
1977 raw_lockdep_assert_held_rcu_node(rnp);
1978 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1979 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980 rnp->qsmask != 0) {
1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982 return; /* Still need more quiescent states! */
1983 }
1984
1985 rnp->completedqs = rnp->gp_seq;
1986 rnp_p = rnp->parent;
1987 if (rnp_p == NULL) {
1988 /*
1989 * Only one rcu_node structure in the tree, so don't
1990 * try to report up to its nonexistent parent!
1991 */
1992 rcu_report_qs_rsp(flags);
1993 return;
1994 }
1995
1996 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997 gps = rnp->gp_seq;
1998 mask = rnp->grpmask;
1999 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2000 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2001 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2002 }
2003
2004 /*
2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2006 * structure. This must be called from the specified CPU.
2007 */
2008 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2009 rcu_report_qs_rdp(struct rcu_data *rdp)
2010 {
2011 unsigned long flags;
2012 unsigned long mask;
2013 bool needacc = false;
2014 struct rcu_node *rnp;
2015
2016 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017 rnp = rdp->mynode;
2018 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2019 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020 rdp->gpwrap) {
2021
2022 /*
2023 * The grace period in which this quiescent state was
2024 * recorded has ended, so don't report it upwards.
2025 * We will instead need a new quiescent state that lies
2026 * within the current grace period.
2027 */
2028 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030 return;
2031 }
2032 mask = rdp->grpmask;
2033 rdp->core_needs_qs = false;
2034 if ((rnp->qsmask & mask) == 0) {
2035 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2036 } else {
2037 /*
2038 * This GP can't end until cpu checks in, so all of our
2039 * callbacks can be processed during the next GP.
2040 *
2041 * NOCB kthreads have their own way to deal with that...
2042 */
2043 if (!rcu_rdp_is_offloaded(rdp)) {
2044 /*
2045 * The current GP has not yet ended, so it
2046 * should not be possible for rcu_accelerate_cbs()
2047 * to return true. So complain, but don't awaken.
2048 */
2049 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2050 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051 /*
2052 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053 * if in the middle of a (de-)offloading process.
2054 */
2055 needacc = true;
2056 }
2057
2058 rcu_disable_urgency_upon_qs(rdp);
2059 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2060 /* ^^^ Released rnp->lock */
2061
2062 if (needacc) {
2063 rcu_nocb_lock_irqsave(rdp, flags);
2064 rcu_accelerate_cbs_unlocked(rnp, rdp);
2065 rcu_nocb_unlock_irqrestore(rdp, flags);
2066 }
2067 }
2068 }
2069
2070 /*
2071 * Check to see if there is a new grace period of which this CPU
2072 * is not yet aware, and if so, set up local rcu_data state for it.
2073 * Otherwise, see if this CPU has just passed through its first
2074 * quiescent state for this grace period, and record that fact if so.
2075 */
2076 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2077 rcu_check_quiescent_state(struct rcu_data *rdp)
2078 {
2079 /* Check for grace-period ends and beginnings. */
2080 note_gp_changes(rdp);
2081
2082 /*
2083 * Does this CPU still need to do its part for current grace period?
2084 * If no, return and let the other CPUs do their part as well.
2085 */
2086 if (!rdp->core_needs_qs)
2087 return;
2088
2089 /*
2090 * Was there a quiescent state since the beginning of the grace
2091 * period? If no, then exit and wait for the next call.
2092 */
2093 if (rdp->cpu_no_qs.b.norm)
2094 return;
2095
2096 /*
2097 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098 * judge of that).
2099 */
2100 rcu_report_qs_rdp(rdp);
2101 }
2102
2103 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2104 static bool rcu_do_batch_check_time(long count, long tlimit,
2105 bool jlimit_check, unsigned long jlimit)
2106 {
2107 // Invoke local_clock() only once per 32 consecutive callbacks.
2108 return unlikely(tlimit) &&
2109 (!likely(count & 31) ||
2110 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111 jlimit_check && time_after(jiffies, jlimit))) &&
2112 local_clock() >= tlimit;
2113 }
2114
2115 /*
2116 * Invoke any RCU callbacks that have made it to the end of their grace
2117 * period. Throttle as specified by rdp->blimit.
2118 */
rcu_do_batch(struct rcu_data * rdp)2119 static void rcu_do_batch(struct rcu_data *rdp)
2120 {
2121 long bl;
2122 long count = 0;
2123 int div;
2124 bool __maybe_unused empty;
2125 unsigned long flags;
2126 unsigned long jlimit;
2127 bool jlimit_check = false;
2128 long pending;
2129 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2130 struct rcu_head *rhp;
2131 long tlimit = 0;
2132
2133 /* If no callbacks are ready, just return. */
2134 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135 trace_rcu_batch_start(rcu_state.name,
2136 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2137 trace_rcu_batch_end(rcu_state.name, 0,
2138 !rcu_segcblist_empty(&rdp->cblist),
2139 need_resched(), is_idle_task(current),
2140 rcu_is_callbacks_kthread(rdp));
2141 return;
2142 }
2143
2144 /*
2145 * Extract the list of ready callbacks, disabling IRQs to prevent
2146 * races with call_rcu() from interrupt handlers. Leave the
2147 * callback counts, as rcu_barrier() needs to be conservative.
2148 */
2149 rcu_nocb_lock_irqsave(rdp, flags);
2150 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2151 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2152 div = READ_ONCE(rcu_divisor);
2153 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2154 bl = max(rdp->blimit, pending >> div);
2155 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2156 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2157 const long npj = NSEC_PER_SEC / HZ;
2158 long rrn = READ_ONCE(rcu_resched_ns);
2159
2160 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2161 tlimit = local_clock() + rrn;
2162 jlimit = jiffies + (rrn + npj + 1) / npj;
2163 jlimit_check = true;
2164 }
2165 trace_rcu_batch_start(rcu_state.name,
2166 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2167 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2168 if (rcu_rdp_is_offloaded(rdp))
2169 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2170
2171 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2172 rcu_nocb_unlock_irqrestore(rdp, flags);
2173
2174 /* Invoke callbacks. */
2175 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2176 rhp = rcu_cblist_dequeue(&rcl);
2177
2178 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2179 rcu_callback_t f;
2180
2181 count++;
2182 debug_rcu_head_unqueue(rhp);
2183
2184 rcu_lock_acquire(&rcu_callback_map);
2185 trace_rcu_invoke_callback(rcu_state.name, rhp);
2186
2187 f = rhp->func;
2188 debug_rcu_head_callback(rhp);
2189 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2190 f(rhp);
2191
2192 rcu_lock_release(&rcu_callback_map);
2193
2194 /*
2195 * Stop only if limit reached and CPU has something to do.
2196 */
2197 if (in_serving_softirq()) {
2198 if (count >= bl && (need_resched() || !is_idle_task(current)))
2199 break;
2200 /*
2201 * Make sure we don't spend too much time here and deprive other
2202 * softirq vectors of CPU cycles.
2203 */
2204 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2205 break;
2206 } else {
2207 // In rcuc/rcuoc context, so no worries about
2208 // depriving other softirq vectors of CPU cycles.
2209 local_bh_enable();
2210 lockdep_assert_irqs_enabled();
2211 cond_resched_tasks_rcu_qs();
2212 lockdep_assert_irqs_enabled();
2213 local_bh_disable();
2214 // But rcuc kthreads can delay quiescent-state
2215 // reporting, so check time limits for them.
2216 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2217 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2218 rdp->rcu_cpu_has_work = 1;
2219 break;
2220 }
2221 }
2222 }
2223
2224 rcu_nocb_lock_irqsave(rdp, flags);
2225 rdp->n_cbs_invoked += count;
2226 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2227 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2228
2229 /* Update counts and requeue any remaining callbacks. */
2230 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2231 rcu_segcblist_add_len(&rdp->cblist, -count);
2232
2233 /* Reinstate batch limit if we have worked down the excess. */
2234 count = rcu_segcblist_n_cbs(&rdp->cblist);
2235 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2236 rdp->blimit = blimit;
2237
2238 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2239 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2240 rdp->qlen_last_fqs_check = 0;
2241 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2242 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2243 rdp->qlen_last_fqs_check = count;
2244
2245 /*
2246 * The following usually indicates a double call_rcu(). To track
2247 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2248 */
2249 empty = rcu_segcblist_empty(&rdp->cblist);
2250 WARN_ON_ONCE(count == 0 && !empty);
2251 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2252 count != 0 && empty);
2253 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2254 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2255
2256 rcu_nocb_unlock_irqrestore(rdp, flags);
2257
2258 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2259 }
2260
2261 /*
2262 * This function is invoked from each scheduling-clock interrupt,
2263 * and checks to see if this CPU is in a non-context-switch quiescent
2264 * state, for example, user mode or idle loop. It also schedules RCU
2265 * core processing. If the current grace period has gone on too long,
2266 * it will ask the scheduler to manufacture a context switch for the sole
2267 * purpose of providing the needed quiescent state.
2268 */
rcu_sched_clock_irq(int user)2269 void rcu_sched_clock_irq(int user)
2270 {
2271 unsigned long j;
2272
2273 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2274 j = jiffies;
2275 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2276 __this_cpu_write(rcu_data.last_sched_clock, j);
2277 }
2278 trace_rcu_utilization(TPS("Start scheduler-tick"));
2279 lockdep_assert_irqs_disabled();
2280 raw_cpu_inc(rcu_data.ticks_this_gp);
2281 /* The load-acquire pairs with the store-release setting to true. */
2282 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2283 /* Idle and userspace execution already are quiescent states. */
2284 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2285 set_tsk_need_resched(current);
2286 set_preempt_need_resched();
2287 }
2288 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2289 }
2290 rcu_flavor_sched_clock_irq(user);
2291 if (rcu_pending(user))
2292 invoke_rcu_core();
2293 if (user || rcu_is_cpu_rrupt_from_idle())
2294 rcu_note_voluntary_context_switch(current);
2295 lockdep_assert_irqs_disabled();
2296
2297 trace_rcu_utilization(TPS("End scheduler-tick"));
2298 }
2299
2300 /*
2301 * Scan the leaf rcu_node structures. For each structure on which all
2302 * CPUs have reported a quiescent state and on which there are tasks
2303 * blocking the current grace period, initiate RCU priority boosting.
2304 * Otherwise, invoke the specified function to check dyntick state for
2305 * each CPU that has not yet reported a quiescent state.
2306 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2307 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2308 {
2309 int cpu;
2310 unsigned long flags;
2311 struct rcu_node *rnp;
2312
2313 rcu_state.cbovld = rcu_state.cbovldnext;
2314 rcu_state.cbovldnext = false;
2315 rcu_for_each_leaf_node(rnp) {
2316 unsigned long mask = 0;
2317 unsigned long rsmask = 0;
2318
2319 cond_resched_tasks_rcu_qs();
2320 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2322 if (rnp->qsmask == 0) {
2323 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2324 /*
2325 * No point in scanning bits because they
2326 * are all zero. But we might need to
2327 * priority-boost blocked readers.
2328 */
2329 rcu_initiate_boost(rnp, flags);
2330 /* rcu_initiate_boost() releases rnp->lock */
2331 continue;
2332 }
2333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 continue;
2335 }
2336 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2337 struct rcu_data *rdp;
2338 int ret;
2339
2340 rdp = per_cpu_ptr(&rcu_data, cpu);
2341 ret = f(rdp);
2342 if (ret > 0) {
2343 mask |= rdp->grpmask;
2344 rcu_disable_urgency_upon_qs(rdp);
2345 }
2346 if (ret < 0)
2347 rsmask |= rdp->grpmask;
2348 }
2349 if (mask != 0) {
2350 /* Idle/offline CPUs, report (releases rnp->lock). */
2351 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2352 } else {
2353 /* Nothing to do here, so just drop the lock. */
2354 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2355 }
2356
2357 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2358 resched_cpu(cpu);
2359 }
2360 }
2361
2362 /*
2363 * Force quiescent states on reluctant CPUs, and also detect which
2364 * CPUs are in dyntick-idle mode.
2365 */
rcu_force_quiescent_state(void)2366 void rcu_force_quiescent_state(void)
2367 {
2368 unsigned long flags;
2369 bool ret;
2370 struct rcu_node *rnp;
2371 struct rcu_node *rnp_old = NULL;
2372
2373 /* Funnel through hierarchy to reduce memory contention. */
2374 rnp = raw_cpu_read(rcu_data.mynode);
2375 for (; rnp != NULL; rnp = rnp->parent) {
2376 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2377 !raw_spin_trylock(&rnp->fqslock);
2378 if (rnp_old != NULL)
2379 raw_spin_unlock(&rnp_old->fqslock);
2380 if (ret)
2381 return;
2382 rnp_old = rnp;
2383 }
2384 /* rnp_old == rcu_get_root(), rnp == NULL. */
2385
2386 /* Reached the root of the rcu_node tree, acquire lock. */
2387 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2388 raw_spin_unlock(&rnp_old->fqslock);
2389 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2390 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2391 return; /* Someone beat us to it. */
2392 }
2393 WRITE_ONCE(rcu_state.gp_flags,
2394 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2395 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2396 rcu_gp_kthread_wake();
2397 }
2398 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2399
2400 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2401 // grace periods.
strict_work_handler(struct work_struct * work)2402 static void strict_work_handler(struct work_struct *work)
2403 {
2404 rcu_read_lock();
2405 rcu_read_unlock();
2406 }
2407
2408 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2409 static __latent_entropy void rcu_core(void)
2410 {
2411 unsigned long flags;
2412 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2413 struct rcu_node *rnp = rdp->mynode;
2414 /*
2415 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2416 * Therefore this function can race with concurrent NOCB (de-)offloading
2417 * on this CPU and the below condition must be considered volatile.
2418 * However if we race with:
2419 *
2420 * _ Offloading: In the worst case we accelerate or process callbacks
2421 * concurrently with NOCB kthreads. We are guaranteed to
2422 * call rcu_nocb_lock() if that happens.
2423 *
2424 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2425 * processing. This is fine because the early stage
2426 * of deoffloading invokes rcu_core() after setting
2427 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2428 * what could have been dismissed without the need to wait
2429 * for the next rcu_pending() check in the next jiffy.
2430 */
2431 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2432
2433 if (cpu_is_offline(smp_processor_id()))
2434 return;
2435 trace_rcu_utilization(TPS("Start RCU core"));
2436 WARN_ON_ONCE(!rdp->beenonline);
2437
2438 /* Report any deferred quiescent states if preemption enabled. */
2439 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2440 rcu_preempt_deferred_qs(current);
2441 } else if (rcu_preempt_need_deferred_qs(current)) {
2442 set_tsk_need_resched(current);
2443 set_preempt_need_resched();
2444 }
2445
2446 /* Update RCU state based on any recent quiescent states. */
2447 rcu_check_quiescent_state(rdp);
2448
2449 /* No grace period and unregistered callbacks? */
2450 if (!rcu_gp_in_progress() &&
2451 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2452 rcu_nocb_lock_irqsave(rdp, flags);
2453 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2454 rcu_accelerate_cbs_unlocked(rnp, rdp);
2455 rcu_nocb_unlock_irqrestore(rdp, flags);
2456 }
2457
2458 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2459
2460 /* If there are callbacks ready, invoke them. */
2461 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2462 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2463 rcu_do_batch(rdp);
2464 /* Re-invoke RCU core processing if there are callbacks remaining. */
2465 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2466 invoke_rcu_core();
2467 }
2468
2469 /* Do any needed deferred wakeups of rcuo kthreads. */
2470 do_nocb_deferred_wakeup(rdp);
2471 trace_rcu_utilization(TPS("End RCU core"));
2472
2473 // If strict GPs, schedule an RCU reader in a clean environment.
2474 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2475 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2476 }
2477
rcu_core_si(struct softirq_action * h)2478 static void rcu_core_si(struct softirq_action *h)
2479 {
2480 rcu_core();
2481 }
2482
rcu_wake_cond(struct task_struct * t,int status)2483 static void rcu_wake_cond(struct task_struct *t, int status)
2484 {
2485 /*
2486 * If the thread is yielding, only wake it when this
2487 * is invoked from idle
2488 */
2489 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2490 wake_up_process(t);
2491 }
2492
invoke_rcu_core_kthread(void)2493 static void invoke_rcu_core_kthread(void)
2494 {
2495 struct task_struct *t;
2496 unsigned long flags;
2497
2498 local_irq_save(flags);
2499 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2500 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2501 if (t != NULL && t != current)
2502 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2503 local_irq_restore(flags);
2504 }
2505
2506 /*
2507 * Wake up this CPU's rcuc kthread to do RCU core processing.
2508 */
invoke_rcu_core(void)2509 static void invoke_rcu_core(void)
2510 {
2511 if (!cpu_online(smp_processor_id()))
2512 return;
2513 if (use_softirq)
2514 raise_softirq(RCU_SOFTIRQ);
2515 else
2516 invoke_rcu_core_kthread();
2517 }
2518
rcu_cpu_kthread_park(unsigned int cpu)2519 static void rcu_cpu_kthread_park(unsigned int cpu)
2520 {
2521 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2522 }
2523
rcu_cpu_kthread_should_run(unsigned int cpu)2524 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2525 {
2526 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2527 }
2528
2529 /*
2530 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2531 * the RCU softirq used in configurations of RCU that do not support RCU
2532 * priority boosting.
2533 */
rcu_cpu_kthread(unsigned int cpu)2534 static void rcu_cpu_kthread(unsigned int cpu)
2535 {
2536 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2537 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2538 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2539 int spincnt;
2540
2541 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2542 for (spincnt = 0; spincnt < 10; spincnt++) {
2543 WRITE_ONCE(*j, jiffies);
2544 local_bh_disable();
2545 *statusp = RCU_KTHREAD_RUNNING;
2546 local_irq_disable();
2547 work = *workp;
2548 WRITE_ONCE(*workp, 0);
2549 local_irq_enable();
2550 if (work)
2551 rcu_core();
2552 local_bh_enable();
2553 if (!READ_ONCE(*workp)) {
2554 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2555 *statusp = RCU_KTHREAD_WAITING;
2556 return;
2557 }
2558 }
2559 *statusp = RCU_KTHREAD_YIELDING;
2560 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2561 schedule_timeout_idle(2);
2562 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2563 *statusp = RCU_KTHREAD_WAITING;
2564 WRITE_ONCE(*j, jiffies);
2565 }
2566
2567 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2568 .store = &rcu_data.rcu_cpu_kthread_task,
2569 .thread_should_run = rcu_cpu_kthread_should_run,
2570 .thread_fn = rcu_cpu_kthread,
2571 .thread_comm = "rcuc/%u",
2572 .setup = rcu_cpu_kthread_setup,
2573 .park = rcu_cpu_kthread_park,
2574 };
2575
2576 /*
2577 * Spawn per-CPU RCU core processing kthreads.
2578 */
rcu_spawn_core_kthreads(void)2579 static int __init rcu_spawn_core_kthreads(void)
2580 {
2581 int cpu;
2582
2583 for_each_possible_cpu(cpu)
2584 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2585 if (use_softirq)
2586 return 0;
2587 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2588 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2589 return 0;
2590 }
2591
2592 /*
2593 * Handle any core-RCU processing required by a call_rcu() invocation.
2594 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2595 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2596 unsigned long flags)
2597 {
2598 /*
2599 * If called from an extended quiescent state, invoke the RCU
2600 * core in order to force a re-evaluation of RCU's idleness.
2601 */
2602 if (!rcu_is_watching())
2603 invoke_rcu_core();
2604
2605 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2606 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2607 return;
2608
2609 /*
2610 * Force the grace period if too many callbacks or too long waiting.
2611 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2612 * if some other CPU has recently done so. Also, don't bother
2613 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2614 * is the only one waiting for a grace period to complete.
2615 */
2616 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2617 rdp->qlen_last_fqs_check + qhimark)) {
2618
2619 /* Are we ignoring a completed grace period? */
2620 note_gp_changes(rdp);
2621
2622 /* Start a new grace period if one not already started. */
2623 if (!rcu_gp_in_progress()) {
2624 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2625 } else {
2626 /* Give the grace period a kick. */
2627 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2628 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2629 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2630 rcu_force_quiescent_state();
2631 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2632 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2633 }
2634 }
2635 }
2636
2637 /*
2638 * RCU callback function to leak a callback.
2639 */
rcu_leak_callback(struct rcu_head * rhp)2640 static void rcu_leak_callback(struct rcu_head *rhp)
2641 {
2642 }
2643
2644 /*
2645 * Check and if necessary update the leaf rcu_node structure's
2646 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2647 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2648 * structure's ->lock.
2649 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2650 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2651 {
2652 raw_lockdep_assert_held_rcu_node(rnp);
2653 if (qovld_calc <= 0)
2654 return; // Early boot and wildcard value set.
2655 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2656 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2657 else
2658 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2659 }
2660
2661 /*
2662 * Check and if necessary update the leaf rcu_node structure's
2663 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2664 * number of queued RCU callbacks. No locks need be held, but the
2665 * caller must have disabled interrupts.
2666 *
2667 * Note that this function ignores the possibility that there are a lot
2668 * of callbacks all of which have already seen the end of their respective
2669 * grace periods. This omission is due to the need for no-CBs CPUs to
2670 * be holding ->nocb_lock to do this check, which is too heavy for a
2671 * common-case operation.
2672 */
check_cb_ovld(struct rcu_data * rdp)2673 static void check_cb_ovld(struct rcu_data *rdp)
2674 {
2675 struct rcu_node *const rnp = rdp->mynode;
2676
2677 if (qovld_calc <= 0 ||
2678 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2679 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2680 return; // Early boot wildcard value or already set correctly.
2681 raw_spin_lock_rcu_node(rnp);
2682 check_cb_ovld_locked(rdp, rnp);
2683 raw_spin_unlock_rcu_node(rnp);
2684 }
2685
2686 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2687 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2688 {
2689 static atomic_t doublefrees;
2690 unsigned long flags;
2691 bool lazy;
2692 struct rcu_data *rdp;
2693 bool was_alldone;
2694
2695 /* Misaligned rcu_head! */
2696 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2697
2698 if (debug_rcu_head_queue(head)) {
2699 /*
2700 * Probable double call_rcu(), so leak the callback.
2701 * Use rcu:rcu_callback trace event to find the previous
2702 * time callback was passed to call_rcu().
2703 */
2704 if (atomic_inc_return(&doublefrees) < 4) {
2705 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2706 mem_dump_obj(head);
2707 }
2708 WRITE_ONCE(head->func, rcu_leak_callback);
2709 return;
2710 }
2711 head->func = func;
2712 head->next = NULL;
2713 kasan_record_aux_stack_noalloc(head);
2714 local_irq_save(flags);
2715 rdp = this_cpu_ptr(&rcu_data);
2716 lazy = lazy_in && !rcu_async_should_hurry();
2717
2718 /* Add the callback to our list. */
2719 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2720 // This can trigger due to call_rcu() from offline CPU:
2721 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2722 WARN_ON_ONCE(!rcu_is_watching());
2723 // Very early boot, before rcu_init(). Initialize if needed
2724 // and then drop through to queue the callback.
2725 if (rcu_segcblist_empty(&rdp->cblist))
2726 rcu_segcblist_init(&rdp->cblist);
2727 }
2728
2729 check_cb_ovld(rdp);
2730 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
2731 local_irq_restore(flags);
2732 return; // Enqueued onto ->nocb_bypass, so just leave.
2733 }
2734 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2735 rcu_segcblist_enqueue(&rdp->cblist, head);
2736 if (__is_kvfree_rcu_offset((unsigned long)func))
2737 trace_rcu_kvfree_callback(rcu_state.name, head,
2738 (unsigned long)func,
2739 rcu_segcblist_n_cbs(&rdp->cblist));
2740 else
2741 trace_rcu_callback(rcu_state.name, head,
2742 rcu_segcblist_n_cbs(&rdp->cblist));
2743
2744 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2745
2746 /* Go handle any RCU core processing required. */
2747 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2748 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2749 } else {
2750 __call_rcu_core(rdp, head, flags);
2751 }
2752 local_irq_restore(flags);
2753 }
2754
2755 #ifdef CONFIG_RCU_LAZY
2756 /**
2757 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2758 * flush all lazy callbacks (including the new one) to the main ->cblist while
2759 * doing so.
2760 *
2761 * @head: structure to be used for queueing the RCU updates.
2762 * @func: actual callback function to be invoked after the grace period
2763 *
2764 * The callback function will be invoked some time after a full grace
2765 * period elapses, in other words after all pre-existing RCU read-side
2766 * critical sections have completed.
2767 *
2768 * Use this API instead of call_rcu() if you don't want the callback to be
2769 * invoked after very long periods of time, which can happen on systems without
2770 * memory pressure and on systems which are lightly loaded or mostly idle.
2771 * This function will cause callbacks to be invoked sooner than later at the
2772 * expense of extra power. Other than that, this function is identical to, and
2773 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2774 * ordering and other functionality.
2775 */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2776 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2777 {
2778 return __call_rcu_common(head, func, false);
2779 }
2780 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2781 #endif
2782
2783 /**
2784 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2785 * By default the callbacks are 'lazy' and are kept hidden from the main
2786 * ->cblist to prevent starting of grace periods too soon.
2787 * If you desire grace periods to start very soon, use call_rcu_hurry().
2788 *
2789 * @head: structure to be used for queueing the RCU updates.
2790 * @func: actual callback function to be invoked after the grace period
2791 *
2792 * The callback function will be invoked some time after a full grace
2793 * period elapses, in other words after all pre-existing RCU read-side
2794 * critical sections have completed. However, the callback function
2795 * might well execute concurrently with RCU read-side critical sections
2796 * that started after call_rcu() was invoked.
2797 *
2798 * RCU read-side critical sections are delimited by rcu_read_lock()
2799 * and rcu_read_unlock(), and may be nested. In addition, but only in
2800 * v5.0 and later, regions of code across which interrupts, preemption,
2801 * or softirqs have been disabled also serve as RCU read-side critical
2802 * sections. This includes hardware interrupt handlers, softirq handlers,
2803 * and NMI handlers.
2804 *
2805 * Note that all CPUs must agree that the grace period extended beyond
2806 * all pre-existing RCU read-side critical section. On systems with more
2807 * than one CPU, this means that when "func()" is invoked, each CPU is
2808 * guaranteed to have executed a full memory barrier since the end of its
2809 * last RCU read-side critical section whose beginning preceded the call
2810 * to call_rcu(). It also means that each CPU executing an RCU read-side
2811 * critical section that continues beyond the start of "func()" must have
2812 * executed a memory barrier after the call_rcu() but before the beginning
2813 * of that RCU read-side critical section. Note that these guarantees
2814 * include CPUs that are offline, idle, or executing in user mode, as
2815 * well as CPUs that are executing in the kernel.
2816 *
2817 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2818 * resulting RCU callback function "func()", then both CPU A and CPU B are
2819 * guaranteed to execute a full memory barrier during the time interval
2820 * between the call to call_rcu() and the invocation of "func()" -- even
2821 * if CPU A and CPU B are the same CPU (but again only if the system has
2822 * more than one CPU).
2823 *
2824 * Implementation of these memory-ordering guarantees is described here:
2825 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2826 */
call_rcu(struct rcu_head * head,rcu_callback_t func)2827 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2828 {
2829 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2830 }
2831 EXPORT_SYMBOL_GPL(call_rcu);
2832
2833 /* Maximum number of jiffies to wait before draining a batch. */
2834 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2835 #define KFREE_N_BATCHES 2
2836 #define FREE_N_CHANNELS 2
2837
2838 /**
2839 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2840 * @list: List node. All blocks are linked between each other
2841 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2842 * @nr_records: Number of active pointers in the array
2843 * @records: Array of the kvfree_rcu() pointers
2844 */
2845 struct kvfree_rcu_bulk_data {
2846 struct list_head list;
2847 struct rcu_gp_oldstate gp_snap;
2848 unsigned long nr_records;
2849 void *records[];
2850 };
2851
2852 /*
2853 * This macro defines how many entries the "records" array
2854 * will contain. It is based on the fact that the size of
2855 * kvfree_rcu_bulk_data structure becomes exactly one page.
2856 */
2857 #define KVFREE_BULK_MAX_ENTR \
2858 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2859
2860 /**
2861 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2862 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2863 * @head_free: List of kfree_rcu() objects waiting for a grace period
2864 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2865 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2866 * @krcp: Pointer to @kfree_rcu_cpu structure
2867 */
2868
2869 struct kfree_rcu_cpu_work {
2870 struct rcu_work rcu_work;
2871 struct rcu_head *head_free;
2872 struct rcu_gp_oldstate head_free_gp_snap;
2873 struct list_head bulk_head_free[FREE_N_CHANNELS];
2874 struct kfree_rcu_cpu *krcp;
2875 };
2876
2877 /**
2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2880 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2881 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2882 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2883 * @lock: Synchronize access to this structure
2884 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2885 * @initialized: The @rcu_work fields have been initialized
2886 * @head_count: Number of objects in rcu_head singular list
2887 * @bulk_count: Number of objects in bulk-list
2888 * @bkvcache:
2889 * A simple cache list that contains objects for reuse purpose.
2890 * In order to save some per-cpu space the list is singular.
2891 * Even though it is lockless an access has to be protected by the
2892 * per-cpu lock.
2893 * @page_cache_work: A work to refill the cache when it is empty
2894 * @backoff_page_cache_fill: Delay cache refills
2895 * @work_in_progress: Indicates that page_cache_work is running
2896 * @hrtimer: A hrtimer for scheduling a page_cache_work
2897 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2898 *
2899 * This is a per-CPU structure. The reason that it is not included in
2900 * the rcu_data structure is to permit this code to be extracted from
2901 * the RCU files. Such extraction could allow further optimization of
2902 * the interactions with the slab allocators.
2903 */
2904 struct kfree_rcu_cpu {
2905 // Objects queued on a linked list
2906 // through their rcu_head structures.
2907 struct rcu_head *head;
2908 unsigned long head_gp_snap;
2909 atomic_t head_count;
2910
2911 // Objects queued on a bulk-list.
2912 struct list_head bulk_head[FREE_N_CHANNELS];
2913 atomic_t bulk_count[FREE_N_CHANNELS];
2914
2915 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2916 raw_spinlock_t lock;
2917 struct delayed_work monitor_work;
2918 bool initialized;
2919
2920 struct delayed_work page_cache_work;
2921 atomic_t backoff_page_cache_fill;
2922 atomic_t work_in_progress;
2923 struct hrtimer hrtimer;
2924
2925 struct llist_head bkvcache;
2926 int nr_bkv_objs;
2927 };
2928
2929 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2930 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2931 };
2932
2933 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2934 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2935 {
2936 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2937 int i;
2938
2939 for (i = 0; i < bhead->nr_records; i++)
2940 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2941 #endif
2942 }
2943
2944 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2945 krc_this_cpu_lock(unsigned long *flags)
2946 {
2947 struct kfree_rcu_cpu *krcp;
2948
2949 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2950 krcp = this_cpu_ptr(&krc);
2951 raw_spin_lock(&krcp->lock);
2952
2953 return krcp;
2954 }
2955
2956 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2957 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2958 {
2959 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2960 }
2961
2962 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2963 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2964 {
2965 if (!krcp->nr_bkv_objs)
2966 return NULL;
2967
2968 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2969 return (struct kvfree_rcu_bulk_data *)
2970 llist_del_first(&krcp->bkvcache);
2971 }
2972
2973 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2974 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2975 struct kvfree_rcu_bulk_data *bnode)
2976 {
2977 // Check the limit.
2978 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2979 return false;
2980
2981 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2982 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2983 return true;
2984 }
2985
2986 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2987 drain_page_cache(struct kfree_rcu_cpu *krcp)
2988 {
2989 unsigned long flags;
2990 struct llist_node *page_list, *pos, *n;
2991 int freed = 0;
2992
2993 if (!rcu_min_cached_objs)
2994 return 0;
2995
2996 raw_spin_lock_irqsave(&krcp->lock, flags);
2997 page_list = llist_del_all(&krcp->bkvcache);
2998 WRITE_ONCE(krcp->nr_bkv_objs, 0);
2999 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3000
3001 llist_for_each_safe(pos, n, page_list) {
3002 free_page((unsigned long)pos);
3003 freed++;
3004 }
3005
3006 return freed;
3007 }
3008
3009 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3010 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3011 struct kvfree_rcu_bulk_data *bnode, int idx)
3012 {
3013 unsigned long flags;
3014 int i;
3015
3016 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3017 debug_rcu_bhead_unqueue(bnode);
3018 rcu_lock_acquire(&rcu_callback_map);
3019 if (idx == 0) { // kmalloc() / kfree().
3020 trace_rcu_invoke_kfree_bulk_callback(
3021 rcu_state.name, bnode->nr_records,
3022 bnode->records);
3023
3024 kfree_bulk(bnode->nr_records, bnode->records);
3025 } else { // vmalloc() / vfree().
3026 for (i = 0; i < bnode->nr_records; i++) {
3027 trace_rcu_invoke_kvfree_callback(
3028 rcu_state.name, bnode->records[i], 0);
3029
3030 vfree(bnode->records[i]);
3031 }
3032 }
3033 rcu_lock_release(&rcu_callback_map);
3034 }
3035
3036 raw_spin_lock_irqsave(&krcp->lock, flags);
3037 if (put_cached_bnode(krcp, bnode))
3038 bnode = NULL;
3039 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3040
3041 if (bnode)
3042 free_page((unsigned long) bnode);
3043
3044 cond_resched_tasks_rcu_qs();
3045 }
3046
3047 static void
kvfree_rcu_list(struct rcu_head * head)3048 kvfree_rcu_list(struct rcu_head *head)
3049 {
3050 struct rcu_head *next;
3051
3052 for (; head; head = next) {
3053 void *ptr = (void *) head->func;
3054 unsigned long offset = (void *) head - ptr;
3055
3056 next = head->next;
3057 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3058 rcu_lock_acquire(&rcu_callback_map);
3059 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3060
3061 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3062 kvfree(ptr);
3063
3064 rcu_lock_release(&rcu_callback_map);
3065 cond_resched_tasks_rcu_qs();
3066 }
3067 }
3068
3069 /*
3070 * This function is invoked in workqueue context after a grace period.
3071 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3072 */
kfree_rcu_work(struct work_struct * work)3073 static void kfree_rcu_work(struct work_struct *work)
3074 {
3075 unsigned long flags;
3076 struct kvfree_rcu_bulk_data *bnode, *n;
3077 struct list_head bulk_head[FREE_N_CHANNELS];
3078 struct rcu_head *head;
3079 struct kfree_rcu_cpu *krcp;
3080 struct kfree_rcu_cpu_work *krwp;
3081 struct rcu_gp_oldstate head_gp_snap;
3082 int i;
3083
3084 krwp = container_of(to_rcu_work(work),
3085 struct kfree_rcu_cpu_work, rcu_work);
3086 krcp = krwp->krcp;
3087
3088 raw_spin_lock_irqsave(&krcp->lock, flags);
3089 // Channels 1 and 2.
3090 for (i = 0; i < FREE_N_CHANNELS; i++)
3091 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3092
3093 // Channel 3.
3094 head = krwp->head_free;
3095 krwp->head_free = NULL;
3096 head_gp_snap = krwp->head_free_gp_snap;
3097 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3098
3099 // Handle the first two channels.
3100 for (i = 0; i < FREE_N_CHANNELS; i++) {
3101 // Start from the tail page, so a GP is likely passed for it.
3102 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3103 kvfree_rcu_bulk(krcp, bnode, i);
3104 }
3105
3106 /*
3107 * This is used when the "bulk" path can not be used for the
3108 * double-argument of kvfree_rcu(). This happens when the
3109 * page-cache is empty, which means that objects are instead
3110 * queued on a linked list through their rcu_head structures.
3111 * This list is named "Channel 3".
3112 */
3113 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3114 kvfree_rcu_list(head);
3115 }
3116
3117 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3118 need_offload_krc(struct kfree_rcu_cpu *krcp)
3119 {
3120 int i;
3121
3122 for (i = 0; i < FREE_N_CHANNELS; i++)
3123 if (!list_empty(&krcp->bulk_head[i]))
3124 return true;
3125
3126 return !!READ_ONCE(krcp->head);
3127 }
3128
3129 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3130 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3131 {
3132 int i;
3133
3134 for (i = 0; i < FREE_N_CHANNELS; i++)
3135 if (!list_empty(&krwp->bulk_head_free[i]))
3136 return true;
3137
3138 return !!krwp->head_free;
3139 }
3140
krc_count(struct kfree_rcu_cpu * krcp)3141 static int krc_count(struct kfree_rcu_cpu *krcp)
3142 {
3143 int sum = atomic_read(&krcp->head_count);
3144 int i;
3145
3146 for (i = 0; i < FREE_N_CHANNELS; i++)
3147 sum += atomic_read(&krcp->bulk_count[i]);
3148
3149 return sum;
3150 }
3151
3152 static void
__schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3153 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3154 {
3155 long delay, delay_left;
3156
3157 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3158 if (delayed_work_pending(&krcp->monitor_work)) {
3159 delay_left = krcp->monitor_work.timer.expires - jiffies;
3160 if (delay < delay_left)
3161 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3162 return;
3163 }
3164 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3165 }
3166
3167 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3168 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3169 {
3170 unsigned long flags;
3171
3172 raw_spin_lock_irqsave(&krcp->lock, flags);
3173 __schedule_delayed_monitor_work(krcp);
3174 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3175 }
3176
3177 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3178 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3179 {
3180 struct list_head bulk_ready[FREE_N_CHANNELS];
3181 struct kvfree_rcu_bulk_data *bnode, *n;
3182 struct rcu_head *head_ready = NULL;
3183 unsigned long flags;
3184 int i;
3185
3186 raw_spin_lock_irqsave(&krcp->lock, flags);
3187 for (i = 0; i < FREE_N_CHANNELS; i++) {
3188 INIT_LIST_HEAD(&bulk_ready[i]);
3189
3190 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3191 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3192 break;
3193
3194 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3195 list_move(&bnode->list, &bulk_ready[i]);
3196 }
3197 }
3198
3199 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3200 head_ready = krcp->head;
3201 atomic_set(&krcp->head_count, 0);
3202 WRITE_ONCE(krcp->head, NULL);
3203 }
3204 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3205
3206 for (i = 0; i < FREE_N_CHANNELS; i++) {
3207 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3208 kvfree_rcu_bulk(krcp, bnode, i);
3209 }
3210
3211 if (head_ready)
3212 kvfree_rcu_list(head_ready);
3213 }
3214
3215 /*
3216 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3217 */
kfree_rcu_monitor(struct work_struct * work)3218 static void kfree_rcu_monitor(struct work_struct *work)
3219 {
3220 struct kfree_rcu_cpu *krcp = container_of(work,
3221 struct kfree_rcu_cpu, monitor_work.work);
3222 unsigned long flags;
3223 int i, j;
3224
3225 // Drain ready for reclaim.
3226 kvfree_rcu_drain_ready(krcp);
3227
3228 raw_spin_lock_irqsave(&krcp->lock, flags);
3229
3230 // Attempt to start a new batch.
3231 for (i = 0; i < KFREE_N_BATCHES; i++) {
3232 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3233
3234 // Try to detach bulk_head or head and attach it, only when
3235 // all channels are free. Any channel is not free means at krwp
3236 // there is on-going rcu work to handle krwp's free business.
3237 if (need_wait_for_krwp_work(krwp))
3238 continue;
3239
3240 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3241 if (need_offload_krc(krcp)) {
3242 // Channel 1 corresponds to the SLAB-pointer bulk path.
3243 // Channel 2 corresponds to vmalloc-pointer bulk path.
3244 for (j = 0; j < FREE_N_CHANNELS; j++) {
3245 if (list_empty(&krwp->bulk_head_free[j])) {
3246 atomic_set(&krcp->bulk_count[j], 0);
3247 list_replace_init(&krcp->bulk_head[j],
3248 &krwp->bulk_head_free[j]);
3249 }
3250 }
3251
3252 // Channel 3 corresponds to both SLAB and vmalloc
3253 // objects queued on the linked list.
3254 if (!krwp->head_free) {
3255 krwp->head_free = krcp->head;
3256 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3257 atomic_set(&krcp->head_count, 0);
3258 WRITE_ONCE(krcp->head, NULL);
3259 }
3260
3261 // One work is per one batch, so there are three
3262 // "free channels", the batch can handle. It can
3263 // be that the work is in the pending state when
3264 // channels have been detached following by each
3265 // other.
3266 queue_rcu_work(system_wq, &krwp->rcu_work);
3267 }
3268 }
3269
3270 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3271
3272 // If there is nothing to detach, it means that our job is
3273 // successfully done here. In case of having at least one
3274 // of the channels that is still busy we should rearm the
3275 // work to repeat an attempt. Because previous batches are
3276 // still in progress.
3277 if (need_offload_krc(krcp))
3278 schedule_delayed_monitor_work(krcp);
3279 }
3280
3281 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3282 schedule_page_work_fn(struct hrtimer *t)
3283 {
3284 struct kfree_rcu_cpu *krcp =
3285 container_of(t, struct kfree_rcu_cpu, hrtimer);
3286
3287 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3288 return HRTIMER_NORESTART;
3289 }
3290
fill_page_cache_func(struct work_struct * work)3291 static void fill_page_cache_func(struct work_struct *work)
3292 {
3293 struct kvfree_rcu_bulk_data *bnode;
3294 struct kfree_rcu_cpu *krcp =
3295 container_of(work, struct kfree_rcu_cpu,
3296 page_cache_work.work);
3297 unsigned long flags;
3298 int nr_pages;
3299 bool pushed;
3300 int i;
3301
3302 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3303 1 : rcu_min_cached_objs;
3304
3305 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3306 bnode = (struct kvfree_rcu_bulk_data *)
3307 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3308
3309 if (!bnode)
3310 break;
3311
3312 raw_spin_lock_irqsave(&krcp->lock, flags);
3313 pushed = put_cached_bnode(krcp, bnode);
3314 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3315
3316 if (!pushed) {
3317 free_page((unsigned long) bnode);
3318 break;
3319 }
3320 }
3321
3322 atomic_set(&krcp->work_in_progress, 0);
3323 atomic_set(&krcp->backoff_page_cache_fill, 0);
3324 }
3325
3326 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3327 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3328 {
3329 // If cache disabled, bail out.
3330 if (!rcu_min_cached_objs)
3331 return;
3332
3333 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3334 !atomic_xchg(&krcp->work_in_progress, 1)) {
3335 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3336 queue_delayed_work(system_wq,
3337 &krcp->page_cache_work,
3338 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3339 } else {
3340 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3341 krcp->hrtimer.function = schedule_page_work_fn;
3342 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3343 }
3344 }
3345 }
3346
3347 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3348 // state specified by flags. If can_alloc is true, the caller must
3349 // be schedulable and not be holding any locks or mutexes that might be
3350 // acquired by the memory allocator or anything that it might invoke.
3351 // Returns true if ptr was successfully recorded, else the caller must
3352 // use a fallback.
3353 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3354 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3355 unsigned long *flags, void *ptr, bool can_alloc)
3356 {
3357 struct kvfree_rcu_bulk_data *bnode;
3358 int idx;
3359
3360 *krcp = krc_this_cpu_lock(flags);
3361 if (unlikely(!(*krcp)->initialized))
3362 return false;
3363
3364 idx = !!is_vmalloc_addr(ptr);
3365 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3366 struct kvfree_rcu_bulk_data, list);
3367
3368 /* Check if a new block is required. */
3369 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3370 bnode = get_cached_bnode(*krcp);
3371 if (!bnode && can_alloc) {
3372 krc_this_cpu_unlock(*krcp, *flags);
3373
3374 // __GFP_NORETRY - allows a light-weight direct reclaim
3375 // what is OK from minimizing of fallback hitting point of
3376 // view. Apart of that it forbids any OOM invoking what is
3377 // also beneficial since we are about to release memory soon.
3378 //
3379 // __GFP_NOMEMALLOC - prevents from consuming of all the
3380 // memory reserves. Please note we have a fallback path.
3381 //
3382 // __GFP_NOWARN - it is supposed that an allocation can
3383 // be failed under low memory or high memory pressure
3384 // scenarios.
3385 bnode = (struct kvfree_rcu_bulk_data *)
3386 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3387 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3388 }
3389
3390 if (!bnode)
3391 return false;
3392
3393 // Initialize the new block and attach it.
3394 bnode->nr_records = 0;
3395 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3396 }
3397
3398 // Finally insert and update the GP for this page.
3399 bnode->records[bnode->nr_records++] = ptr;
3400 get_state_synchronize_rcu_full(&bnode->gp_snap);
3401 atomic_inc(&(*krcp)->bulk_count[idx]);
3402
3403 return true;
3404 }
3405
3406 /*
3407 * Queue a request for lazy invocation of the appropriate free routine
3408 * after a grace period. Please note that three paths are maintained,
3409 * two for the common case using arrays of pointers and a third one that
3410 * is used only when the main paths cannot be used, for example, due to
3411 * memory pressure.
3412 *
3413 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3414 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3415 * be free'd in workqueue context. This allows us to: batch requests together to
3416 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3417 */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3418 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3419 {
3420 unsigned long flags;
3421 struct kfree_rcu_cpu *krcp;
3422 bool success;
3423
3424 /*
3425 * Please note there is a limitation for the head-less
3426 * variant, that is why there is a clear rule for such
3427 * objects: it can be used from might_sleep() context
3428 * only. For other places please embed an rcu_head to
3429 * your data.
3430 */
3431 if (!head)
3432 might_sleep();
3433
3434 // Queue the object but don't yet schedule the batch.
3435 if (debug_rcu_head_queue(ptr)) {
3436 // Probable double kfree_rcu(), just leak.
3437 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3438 __func__, head);
3439
3440 // Mark as success and leave.
3441 return;
3442 }
3443
3444 kasan_record_aux_stack_noalloc(ptr);
3445 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3446 if (!success) {
3447 run_page_cache_worker(krcp);
3448
3449 if (head == NULL)
3450 // Inline if kvfree_rcu(one_arg) call.
3451 goto unlock_return;
3452
3453 head->func = ptr;
3454 head->next = krcp->head;
3455 WRITE_ONCE(krcp->head, head);
3456 atomic_inc(&krcp->head_count);
3457
3458 // Take a snapshot for this krcp.
3459 krcp->head_gp_snap = get_state_synchronize_rcu();
3460 success = true;
3461 }
3462
3463 /*
3464 * The kvfree_rcu() caller considers the pointer freed at this point
3465 * and likely removes any references to it. Since the actual slab
3466 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3467 * this object (no scanning or false positives reporting).
3468 */
3469 kmemleak_ignore(ptr);
3470
3471 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3472 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3473 __schedule_delayed_monitor_work(krcp);
3474
3475 unlock_return:
3476 krc_this_cpu_unlock(krcp, flags);
3477
3478 /*
3479 * Inline kvfree() after synchronize_rcu(). We can do
3480 * it from might_sleep() context only, so the current
3481 * CPU can pass the QS state.
3482 */
3483 if (!success) {
3484 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3485 synchronize_rcu();
3486 kvfree(ptr);
3487 }
3488 }
3489 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3490
3491 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3492 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3493 {
3494 int cpu;
3495 unsigned long count = 0;
3496
3497 /* Snapshot count of all CPUs */
3498 for_each_possible_cpu(cpu) {
3499 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3500
3501 count += krc_count(krcp);
3502 count += READ_ONCE(krcp->nr_bkv_objs);
3503 atomic_set(&krcp->backoff_page_cache_fill, 1);
3504 }
3505
3506 return count == 0 ? SHRINK_EMPTY : count;
3507 }
3508
3509 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3510 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3511 {
3512 int cpu, freed = 0;
3513
3514 for_each_possible_cpu(cpu) {
3515 int count;
3516 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3517
3518 count = krc_count(krcp);
3519 count += drain_page_cache(krcp);
3520 kfree_rcu_monitor(&krcp->monitor_work.work);
3521
3522 sc->nr_to_scan -= count;
3523 freed += count;
3524
3525 if (sc->nr_to_scan <= 0)
3526 break;
3527 }
3528
3529 return freed == 0 ? SHRINK_STOP : freed;
3530 }
3531
3532 static struct shrinker kfree_rcu_shrinker = {
3533 .count_objects = kfree_rcu_shrink_count,
3534 .scan_objects = kfree_rcu_shrink_scan,
3535 .batch = 0,
3536 .seeks = DEFAULT_SEEKS,
3537 };
3538
kfree_rcu_scheduler_running(void)3539 void __init kfree_rcu_scheduler_running(void)
3540 {
3541 int cpu;
3542
3543 for_each_possible_cpu(cpu) {
3544 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3545
3546 if (need_offload_krc(krcp))
3547 schedule_delayed_monitor_work(krcp);
3548 }
3549 }
3550
3551 /*
3552 * During early boot, any blocking grace-period wait automatically
3553 * implies a grace period.
3554 *
3555 * Later on, this could in theory be the case for kernels built with
3556 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3557 * is not a common case. Furthermore, this optimization would cause
3558 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3559 * grace-period optimization is ignored once the scheduler is running.
3560 */
rcu_blocking_is_gp(void)3561 static int rcu_blocking_is_gp(void)
3562 {
3563 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3564 might_sleep();
3565 return false;
3566 }
3567 return true;
3568 }
3569
3570 /**
3571 * synchronize_rcu - wait until a grace period has elapsed.
3572 *
3573 * Control will return to the caller some time after a full grace
3574 * period has elapsed, in other words after all currently executing RCU
3575 * read-side critical sections have completed. Note, however, that
3576 * upon return from synchronize_rcu(), the caller might well be executing
3577 * concurrently with new RCU read-side critical sections that began while
3578 * synchronize_rcu() was waiting.
3579 *
3580 * RCU read-side critical sections are delimited by rcu_read_lock()
3581 * and rcu_read_unlock(), and may be nested. In addition, but only in
3582 * v5.0 and later, regions of code across which interrupts, preemption,
3583 * or softirqs have been disabled also serve as RCU read-side critical
3584 * sections. This includes hardware interrupt handlers, softirq handlers,
3585 * and NMI handlers.
3586 *
3587 * Note that this guarantee implies further memory-ordering guarantees.
3588 * On systems with more than one CPU, when synchronize_rcu() returns,
3589 * each CPU is guaranteed to have executed a full memory barrier since
3590 * the end of its last RCU read-side critical section whose beginning
3591 * preceded the call to synchronize_rcu(). In addition, each CPU having
3592 * an RCU read-side critical section that extends beyond the return from
3593 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3594 * after the beginning of synchronize_rcu() and before the beginning of
3595 * that RCU read-side critical section. Note that these guarantees include
3596 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3597 * that are executing in the kernel.
3598 *
3599 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3600 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3601 * to have executed a full memory barrier during the execution of
3602 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3603 * again only if the system has more than one CPU).
3604 *
3605 * Implementation of these memory-ordering guarantees is described here:
3606 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3607 */
synchronize_rcu(void)3608 void synchronize_rcu(void)
3609 {
3610 unsigned long flags;
3611 struct rcu_node *rnp;
3612
3613 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3614 lock_is_held(&rcu_lock_map) ||
3615 lock_is_held(&rcu_sched_lock_map),
3616 "Illegal synchronize_rcu() in RCU read-side critical section");
3617 if (!rcu_blocking_is_gp()) {
3618 if (rcu_gp_is_expedited())
3619 synchronize_rcu_expedited();
3620 else
3621 wait_rcu_gp(call_rcu_hurry);
3622 return;
3623 }
3624
3625 // Context allows vacuous grace periods.
3626 // Note well that this code runs with !PREEMPT && !SMP.
3627 // In addition, all code that advances grace periods runs at
3628 // process level. Therefore, this normal GP overlaps with other
3629 // normal GPs only by being fully nested within them, which allows
3630 // reuse of ->gp_seq_polled_snap.
3631 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3632 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3633
3634 // Update the normal grace-period counters to record
3635 // this grace period, but only those used by the boot CPU.
3636 // The rcu_scheduler_starting() will take care of the rest of
3637 // these counters.
3638 local_irq_save(flags);
3639 WARN_ON_ONCE(num_online_cpus() > 1);
3640 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3641 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3642 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3643 local_irq_restore(flags);
3644 }
3645 EXPORT_SYMBOL_GPL(synchronize_rcu);
3646
3647 /**
3648 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3649 * @rgosp: Place to put state cookie
3650 *
3651 * Stores into @rgosp a value that will always be treated by functions
3652 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3653 * has already completed.
3654 */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3655 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3656 {
3657 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3658 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3659 }
3660 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3661
3662 /**
3663 * get_state_synchronize_rcu - Snapshot current RCU state
3664 *
3665 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666 * or poll_state_synchronize_rcu() to determine whether or not a full
3667 * grace period has elapsed in the meantime.
3668 */
get_state_synchronize_rcu(void)3669 unsigned long get_state_synchronize_rcu(void)
3670 {
3671 /*
3672 * Any prior manipulation of RCU-protected data must happen
3673 * before the load from ->gp_seq.
3674 */
3675 smp_mb(); /* ^^^ */
3676 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3677 }
3678 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3679
3680 /**
3681 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3682 * @rgosp: location to place combined normal/expedited grace-period state
3683 *
3684 * Places the normal and expedited grace-period states in @rgosp. This
3685 * state value can be passed to a later call to cond_synchronize_rcu_full()
3686 * or poll_state_synchronize_rcu_full() to determine whether or not a
3687 * grace period (whether normal or expedited) has elapsed in the meantime.
3688 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3689 * long, but is guaranteed to see all grace periods. In contrast, the
3690 * combined state occupies less memory, but can sometimes fail to take
3691 * grace periods into account.
3692 *
3693 * This does not guarantee that the needed grace period will actually
3694 * start.
3695 */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3696 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3697 {
3698 struct rcu_node *rnp = rcu_get_root();
3699
3700 /*
3701 * Any prior manipulation of RCU-protected data must happen
3702 * before the loads from ->gp_seq and ->expedited_sequence.
3703 */
3704 smp_mb(); /* ^^^ */
3705 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3706 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3707 }
3708 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3709
3710 /*
3711 * Helper function for start_poll_synchronize_rcu() and
3712 * start_poll_synchronize_rcu_full().
3713 */
start_poll_synchronize_rcu_common(void)3714 static void start_poll_synchronize_rcu_common(void)
3715 {
3716 unsigned long flags;
3717 bool needwake;
3718 struct rcu_data *rdp;
3719 struct rcu_node *rnp;
3720
3721 lockdep_assert_irqs_enabled();
3722 local_irq_save(flags);
3723 rdp = this_cpu_ptr(&rcu_data);
3724 rnp = rdp->mynode;
3725 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3726 // Note it is possible for a grace period to have elapsed between
3727 // the above call to get_state_synchronize_rcu() and the below call
3728 // to rcu_seq_snap. This is OK, the worst that happens is that we
3729 // get a grace period that no one needed. These accesses are ordered
3730 // by smp_mb(), and we are accessing them in the opposite order
3731 // from which they are updated at grace-period start, as required.
3732 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3733 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3734 if (needwake)
3735 rcu_gp_kthread_wake();
3736 }
3737
3738 /**
3739 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3740 *
3741 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3742 * or poll_state_synchronize_rcu() to determine whether or not a full
3743 * grace period has elapsed in the meantime. If the needed grace period
3744 * is not already slated to start, notifies RCU core of the need for that
3745 * grace period.
3746 *
3747 * Interrupts must be enabled for the case where it is necessary to awaken
3748 * the grace-period kthread.
3749 */
start_poll_synchronize_rcu(void)3750 unsigned long start_poll_synchronize_rcu(void)
3751 {
3752 unsigned long gp_seq = get_state_synchronize_rcu();
3753
3754 start_poll_synchronize_rcu_common();
3755 return gp_seq;
3756 }
3757 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3758
3759 /**
3760 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3761 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3762 *
3763 * Places the normal and expedited grace-period states in *@rgos. This
3764 * state value can be passed to a later call to cond_synchronize_rcu_full()
3765 * or poll_state_synchronize_rcu_full() to determine whether or not a
3766 * grace period (whether normal or expedited) has elapsed in the meantime.
3767 * If the needed grace period is not already slated to start, notifies
3768 * RCU core of the need for that grace period.
3769 *
3770 * Interrupts must be enabled for the case where it is necessary to awaken
3771 * the grace-period kthread.
3772 */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3773 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3774 {
3775 get_state_synchronize_rcu_full(rgosp);
3776
3777 start_poll_synchronize_rcu_common();
3778 }
3779 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3780
3781 /**
3782 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3783 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3784 *
3785 * If a full RCU grace period has elapsed since the earlier call from
3786 * which @oldstate was obtained, return @true, otherwise return @false.
3787 * If @false is returned, it is the caller's responsibility to invoke this
3788 * function later on until it does return @true. Alternatively, the caller
3789 * can explicitly wait for a grace period, for example, by passing @oldstate
3790 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3791 * on the one hand or by directly invoking either synchronize_rcu() or
3792 * synchronize_rcu_expedited() on the other.
3793 *
3794 * Yes, this function does not take counter wrap into account.
3795 * But counter wrap is harmless. If the counter wraps, we have waited for
3796 * more than a billion grace periods (and way more on a 64-bit system!).
3797 * Those needing to keep old state values for very long time periods
3798 * (many hours even on 32-bit systems) should check them occasionally and
3799 * either refresh them or set a flag indicating that the grace period has
3800 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3801 * to get a guaranteed-completed grace-period state.
3802 *
3803 * In addition, because oldstate compresses the grace-period state for
3804 * both normal and expedited grace periods into a single unsigned long,
3805 * it can miss a grace period when synchronize_rcu() runs concurrently
3806 * with synchronize_rcu_expedited(). If this is unacceptable, please
3807 * instead use the _full() variant of these polling APIs.
3808 *
3809 * This function provides the same memory-ordering guarantees that
3810 * would be provided by a synchronize_rcu() that was invoked at the call
3811 * to the function that provided @oldstate, and that returned at the end
3812 * of this function.
3813 */
poll_state_synchronize_rcu(unsigned long oldstate)3814 bool poll_state_synchronize_rcu(unsigned long oldstate)
3815 {
3816 if (oldstate == RCU_GET_STATE_COMPLETED ||
3817 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3818 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3819 return true;
3820 }
3821 return false;
3822 }
3823 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3824
3825 /**
3826 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3827 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3828 *
3829 * If a full RCU grace period has elapsed since the earlier call from
3830 * which *rgosp was obtained, return @true, otherwise return @false.
3831 * If @false is returned, it is the caller's responsibility to invoke this
3832 * function later on until it does return @true. Alternatively, the caller
3833 * can explicitly wait for a grace period, for example, by passing @rgosp
3834 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3835 *
3836 * Yes, this function does not take counter wrap into account.
3837 * But counter wrap is harmless. If the counter wraps, we have waited
3838 * for more than a billion grace periods (and way more on a 64-bit
3839 * system!). Those needing to keep rcu_gp_oldstate values for very
3840 * long time periods (many hours even on 32-bit systems) should check
3841 * them occasionally and either refresh them or set a flag indicating
3842 * that the grace period has completed. Alternatively, they can use
3843 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3844 * grace-period state.
3845 *
3846 * This function provides the same memory-ordering guarantees that would
3847 * be provided by a synchronize_rcu() that was invoked at the call to
3848 * the function that provided @rgosp, and that returned at the end of this
3849 * function. And this guarantee requires that the root rcu_node structure's
3850 * ->gp_seq field be checked instead of that of the rcu_state structure.
3851 * The problem is that the just-ending grace-period's callbacks can be
3852 * invoked between the time that the root rcu_node structure's ->gp_seq
3853 * field is updated and the time that the rcu_state structure's ->gp_seq
3854 * field is updated. Therefore, if a single synchronize_rcu() is to
3855 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3856 * then the root rcu_node structure is the one that needs to be polled.
3857 */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3858 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3859 {
3860 struct rcu_node *rnp = rcu_get_root();
3861
3862 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3863 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3864 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3865 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3866 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3867 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3868 return true;
3869 }
3870 return false;
3871 }
3872 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3873
3874 /**
3875 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3876 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3877 *
3878 * If a full RCU grace period has elapsed since the earlier call to
3879 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3880 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3881 *
3882 * Yes, this function does not take counter wrap into account.
3883 * But counter wrap is harmless. If the counter wraps, we have waited for
3884 * more than 2 billion grace periods (and way more on a 64-bit system!),
3885 * so waiting for a couple of additional grace periods should be just fine.
3886 *
3887 * This function provides the same memory-ordering guarantees that
3888 * would be provided by a synchronize_rcu() that was invoked at the call
3889 * to the function that provided @oldstate and that returned at the end
3890 * of this function.
3891 */
cond_synchronize_rcu(unsigned long oldstate)3892 void cond_synchronize_rcu(unsigned long oldstate)
3893 {
3894 if (!poll_state_synchronize_rcu(oldstate))
3895 synchronize_rcu();
3896 }
3897 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3898
3899 /**
3900 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3901 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3902 *
3903 * If a full RCU grace period has elapsed since the call to
3904 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3905 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3906 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3907 * for a full grace period.
3908 *
3909 * Yes, this function does not take counter wrap into account.
3910 * But counter wrap is harmless. If the counter wraps, we have waited for
3911 * more than 2 billion grace periods (and way more on a 64-bit system!),
3912 * so waiting for a couple of additional grace periods should be just fine.
3913 *
3914 * This function provides the same memory-ordering guarantees that
3915 * would be provided by a synchronize_rcu() that was invoked at the call
3916 * to the function that provided @rgosp and that returned at the end of
3917 * this function.
3918 */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3919 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3920 {
3921 if (!poll_state_synchronize_rcu_full(rgosp))
3922 synchronize_rcu();
3923 }
3924 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3925
3926 /*
3927 * Check to see if there is any immediate RCU-related work to be done by
3928 * the current CPU, returning 1 if so and zero otherwise. The checks are
3929 * in order of increasing expense: checks that can be carried out against
3930 * CPU-local state are performed first. However, we must check for CPU
3931 * stalls first, else we might not get a chance.
3932 */
rcu_pending(int user)3933 static int rcu_pending(int user)
3934 {
3935 bool gp_in_progress;
3936 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3937 struct rcu_node *rnp = rdp->mynode;
3938
3939 lockdep_assert_irqs_disabled();
3940
3941 /* Check for CPU stalls, if enabled. */
3942 check_cpu_stall(rdp);
3943
3944 /* Does this CPU need a deferred NOCB wakeup? */
3945 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3946 return 1;
3947
3948 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3949 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3950 return 0;
3951
3952 /* Is the RCU core waiting for a quiescent state from this CPU? */
3953 gp_in_progress = rcu_gp_in_progress();
3954 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3955 return 1;
3956
3957 /* Does this CPU have callbacks ready to invoke? */
3958 if (!rcu_rdp_is_offloaded(rdp) &&
3959 rcu_segcblist_ready_cbs(&rdp->cblist))
3960 return 1;
3961
3962 /* Has RCU gone idle with this CPU needing another grace period? */
3963 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3964 !rcu_rdp_is_offloaded(rdp) &&
3965 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3966 return 1;
3967
3968 /* Have RCU grace period completed or started? */
3969 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3970 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3971 return 1;
3972
3973 /* nothing to do */
3974 return 0;
3975 }
3976
3977 /*
3978 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3979 * the compiler is expected to optimize this away.
3980 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3981 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3982 {
3983 trace_rcu_barrier(rcu_state.name, s, cpu,
3984 atomic_read(&rcu_state.barrier_cpu_count), done);
3985 }
3986
3987 /*
3988 * RCU callback function for rcu_barrier(). If we are last, wake
3989 * up the task executing rcu_barrier().
3990 *
3991 * Note that the value of rcu_state.barrier_sequence must be captured
3992 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3993 * other CPUs might count the value down to zero before this CPU gets
3994 * around to invoking rcu_barrier_trace(), which might result in bogus
3995 * data from the next instance of rcu_barrier().
3996 */
rcu_barrier_callback(struct rcu_head * rhp)3997 static void rcu_barrier_callback(struct rcu_head *rhp)
3998 {
3999 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4000
4001 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4002 rcu_barrier_trace(TPS("LastCB"), -1, s);
4003 complete(&rcu_state.barrier_completion);
4004 } else {
4005 rcu_barrier_trace(TPS("CB"), -1, s);
4006 }
4007 }
4008
4009 /*
4010 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4011 */
rcu_barrier_entrain(struct rcu_data * rdp)4012 static void rcu_barrier_entrain(struct rcu_data *rdp)
4013 {
4014 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4015 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4016 bool wake_nocb = false;
4017 bool was_alldone = false;
4018
4019 lockdep_assert_held(&rcu_state.barrier_lock);
4020 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4021 return;
4022 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4023 rdp->barrier_head.func = rcu_barrier_callback;
4024 debug_rcu_head_queue(&rdp->barrier_head);
4025 rcu_nocb_lock(rdp);
4026 /*
4027 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4028 * queue. This way we don't wait for bypass timer that can reach seconds
4029 * if it's fully lazy.
4030 */
4031 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4032 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4033 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4034 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4035 atomic_inc(&rcu_state.barrier_cpu_count);
4036 } else {
4037 debug_rcu_head_unqueue(&rdp->barrier_head);
4038 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4039 }
4040 rcu_nocb_unlock(rdp);
4041 if (wake_nocb)
4042 wake_nocb_gp(rdp, false);
4043 smp_store_release(&rdp->barrier_seq_snap, gseq);
4044 }
4045
4046 /*
4047 * Called with preemption disabled, and from cross-cpu IRQ context.
4048 */
rcu_barrier_handler(void * cpu_in)4049 static void rcu_barrier_handler(void *cpu_in)
4050 {
4051 uintptr_t cpu = (uintptr_t)cpu_in;
4052 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4053
4054 lockdep_assert_irqs_disabled();
4055 WARN_ON_ONCE(cpu != rdp->cpu);
4056 WARN_ON_ONCE(cpu != smp_processor_id());
4057 raw_spin_lock(&rcu_state.barrier_lock);
4058 rcu_barrier_entrain(rdp);
4059 raw_spin_unlock(&rcu_state.barrier_lock);
4060 }
4061
4062 /**
4063 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4064 *
4065 * Note that this primitive does not necessarily wait for an RCU grace period
4066 * to complete. For example, if there are no RCU callbacks queued anywhere
4067 * in the system, then rcu_barrier() is within its rights to return
4068 * immediately, without waiting for anything, much less an RCU grace period.
4069 */
rcu_barrier(void)4070 void rcu_barrier(void)
4071 {
4072 uintptr_t cpu;
4073 unsigned long flags;
4074 unsigned long gseq;
4075 struct rcu_data *rdp;
4076 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4077
4078 rcu_barrier_trace(TPS("Begin"), -1, s);
4079
4080 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4081 mutex_lock(&rcu_state.barrier_mutex);
4082
4083 /* Did someone else do our work for us? */
4084 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4085 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4086 smp_mb(); /* caller's subsequent code after above check. */
4087 mutex_unlock(&rcu_state.barrier_mutex);
4088 return;
4089 }
4090
4091 /* Mark the start of the barrier operation. */
4092 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4093 rcu_seq_start(&rcu_state.barrier_sequence);
4094 gseq = rcu_state.barrier_sequence;
4095 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4096
4097 /*
4098 * Initialize the count to two rather than to zero in order
4099 * to avoid a too-soon return to zero in case of an immediate
4100 * invocation of the just-enqueued callback (or preemption of
4101 * this task). Exclude CPU-hotplug operations to ensure that no
4102 * offline non-offloaded CPU has callbacks queued.
4103 */
4104 init_completion(&rcu_state.barrier_completion);
4105 atomic_set(&rcu_state.barrier_cpu_count, 2);
4106 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4107
4108 /*
4109 * Force each CPU with callbacks to register a new callback.
4110 * When that callback is invoked, we will know that all of the
4111 * corresponding CPU's preceding callbacks have been invoked.
4112 */
4113 for_each_possible_cpu(cpu) {
4114 rdp = per_cpu_ptr(&rcu_data, cpu);
4115 retry:
4116 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4117 continue;
4118 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4119 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4120 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4121 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4122 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4123 continue;
4124 }
4125 if (!rcu_rdp_cpu_online(rdp)) {
4126 rcu_barrier_entrain(rdp);
4127 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4128 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4129 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4130 continue;
4131 }
4132 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4133 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4134 schedule_timeout_uninterruptible(1);
4135 goto retry;
4136 }
4137 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4138 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4139 }
4140
4141 /*
4142 * Now that we have an rcu_barrier_callback() callback on each
4143 * CPU, and thus each counted, remove the initial count.
4144 */
4145 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4146 complete(&rcu_state.barrier_completion);
4147
4148 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4149 wait_for_completion(&rcu_state.barrier_completion);
4150
4151 /* Mark the end of the barrier operation. */
4152 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4153 rcu_seq_end(&rcu_state.barrier_sequence);
4154 gseq = rcu_state.barrier_sequence;
4155 for_each_possible_cpu(cpu) {
4156 rdp = per_cpu_ptr(&rcu_data, cpu);
4157
4158 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4159 }
4160
4161 /* Other rcu_barrier() invocations can now safely proceed. */
4162 mutex_unlock(&rcu_state.barrier_mutex);
4163 }
4164 EXPORT_SYMBOL_GPL(rcu_barrier);
4165
4166 /*
4167 * Compute the mask of online CPUs for the specified rcu_node structure.
4168 * This will not be stable unless the rcu_node structure's ->lock is
4169 * held, but the bit corresponding to the current CPU will be stable
4170 * in most contexts.
4171 */
rcu_rnp_online_cpus(struct rcu_node * rnp)4172 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4173 {
4174 return READ_ONCE(rnp->qsmaskinitnext);
4175 }
4176
4177 /*
4178 * Is the CPU corresponding to the specified rcu_data structure online
4179 * from RCU's perspective? This perspective is given by that structure's
4180 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4181 */
rcu_rdp_cpu_online(struct rcu_data * rdp)4182 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4183 {
4184 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4185 }
4186
rcu_cpu_online(int cpu)4187 bool rcu_cpu_online(int cpu)
4188 {
4189 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4190
4191 return rcu_rdp_cpu_online(rdp);
4192 }
4193
4194 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4195
4196 /*
4197 * Is the current CPU online as far as RCU is concerned?
4198 *
4199 * Disable preemption to avoid false positives that could otherwise
4200 * happen due to the current CPU number being sampled, this task being
4201 * preempted, its old CPU being taken offline, resuming on some other CPU,
4202 * then determining that its old CPU is now offline.
4203 *
4204 * Disable checking if in an NMI handler because we cannot safely
4205 * report errors from NMI handlers anyway. In addition, it is OK to use
4206 * RCU on an offline processor during initial boot, hence the check for
4207 * rcu_scheduler_fully_active.
4208 */
rcu_lockdep_current_cpu_online(void)4209 bool rcu_lockdep_current_cpu_online(void)
4210 {
4211 struct rcu_data *rdp;
4212 bool ret = false;
4213
4214 if (in_nmi() || !rcu_scheduler_fully_active)
4215 return true;
4216 preempt_disable_notrace();
4217 rdp = this_cpu_ptr(&rcu_data);
4218 /*
4219 * Strictly, we care here about the case where the current CPU is
4220 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4221 * not being up to date. So arch_spin_is_locked() might have a
4222 * false positive if it's held by some *other* CPU, but that's
4223 * OK because that just means a false *negative* on the warning.
4224 */
4225 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4226 ret = true;
4227 preempt_enable_notrace();
4228 return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4231
4232 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4233
4234 // Has rcu_init() been invoked? This is used (for example) to determine
4235 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4236 static bool rcu_init_invoked(void)
4237 {
4238 return !!rcu_state.n_online_cpus;
4239 }
4240
4241 /*
4242 * Near the end of the offline process. Trace the fact that this CPU
4243 * is going offline.
4244 */
rcutree_dying_cpu(unsigned int cpu)4245 int rcutree_dying_cpu(unsigned int cpu)
4246 {
4247 bool blkd;
4248 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4249 struct rcu_node *rnp = rdp->mynode;
4250
4251 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4252 return 0;
4253
4254 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4255 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4256 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4257 return 0;
4258 }
4259
4260 /*
4261 * All CPUs for the specified rcu_node structure have gone offline,
4262 * and all tasks that were preempted within an RCU read-side critical
4263 * section while running on one of those CPUs have since exited their RCU
4264 * read-side critical section. Some other CPU is reporting this fact with
4265 * the specified rcu_node structure's ->lock held and interrupts disabled.
4266 * This function therefore goes up the tree of rcu_node structures,
4267 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4268 * the leaf rcu_node structure's ->qsmaskinit field has already been
4269 * updated.
4270 *
4271 * This function does check that the specified rcu_node structure has
4272 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4273 * prematurely. That said, invoking it after the fact will cost you
4274 * a needless lock acquisition. So once it has done its work, don't
4275 * invoke it again.
4276 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4277 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4278 {
4279 long mask;
4280 struct rcu_node *rnp = rnp_leaf;
4281
4282 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4283 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4284 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4285 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4286 return;
4287 for (;;) {
4288 mask = rnp->grpmask;
4289 rnp = rnp->parent;
4290 if (!rnp)
4291 break;
4292 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4293 rnp->qsmaskinit &= ~mask;
4294 /* Between grace periods, so better already be zero! */
4295 WARN_ON_ONCE(rnp->qsmask);
4296 if (rnp->qsmaskinit) {
4297 raw_spin_unlock_rcu_node(rnp);
4298 /* irqs remain disabled. */
4299 return;
4300 }
4301 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4302 }
4303 }
4304
4305 /*
4306 * The CPU has been completely removed, and some other CPU is reporting
4307 * this fact from process context. Do the remainder of the cleanup.
4308 * There can only be one CPU hotplug operation at a time, so no need for
4309 * explicit locking.
4310 */
rcutree_dead_cpu(unsigned int cpu)4311 int rcutree_dead_cpu(unsigned int cpu)
4312 {
4313 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4314 return 0;
4315
4316 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4317 // Stop-machine done, so allow nohz_full to disable tick.
4318 tick_dep_clear(TICK_DEP_BIT_RCU);
4319 return 0;
4320 }
4321
4322 /*
4323 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4324 * first CPU in a given leaf rcu_node structure coming online. The caller
4325 * must hold the corresponding leaf rcu_node ->lock with interrupts
4326 * disabled.
4327 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4328 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4329 {
4330 long mask;
4331 long oldmask;
4332 struct rcu_node *rnp = rnp_leaf;
4333
4334 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4335 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4336 for (;;) {
4337 mask = rnp->grpmask;
4338 rnp = rnp->parent;
4339 if (rnp == NULL)
4340 return;
4341 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4342 oldmask = rnp->qsmaskinit;
4343 rnp->qsmaskinit |= mask;
4344 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4345 if (oldmask)
4346 return;
4347 }
4348 }
4349
4350 /*
4351 * Do boot-time initialization of a CPU's per-CPU RCU data.
4352 */
4353 static void __init
rcu_boot_init_percpu_data(int cpu)4354 rcu_boot_init_percpu_data(int cpu)
4355 {
4356 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4357 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4358
4359 /* Set up local state, ensuring consistent view of global state. */
4360 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4361 INIT_WORK(&rdp->strict_work, strict_work_handler);
4362 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4363 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4364 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4365 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4366 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4367 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4368 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4369 rdp->last_sched_clock = jiffies;
4370 rdp->cpu = cpu;
4371 rcu_boot_init_nocb_percpu_data(rdp);
4372 }
4373
4374 /*
4375 * Invoked early in the CPU-online process, when pretty much all services
4376 * are available. The incoming CPU is not present.
4377 *
4378 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4379 * offline event can be happening at a given time. Note also that we can
4380 * accept some slop in the rsp->gp_seq access due to the fact that this
4381 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4382 * And any offloaded callbacks are being numbered elsewhere.
4383 */
rcutree_prepare_cpu(unsigned int cpu)4384 int rcutree_prepare_cpu(unsigned int cpu)
4385 {
4386 unsigned long flags;
4387 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4388 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4389 struct rcu_node *rnp = rcu_get_root();
4390
4391 /* Set up local state, ensuring consistent view of global state. */
4392 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4393 rdp->qlen_last_fqs_check = 0;
4394 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4395 rdp->blimit = blimit;
4396 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4397 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4398
4399 /*
4400 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4401 * (re-)initialized.
4402 */
4403 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4404 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4405
4406 /*
4407 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4408 * propagation up the rcu_node tree will happen at the beginning
4409 * of the next grace period.
4410 */
4411 rnp = rdp->mynode;
4412 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4413 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4414 rdp->gp_seq_needed = rdp->gp_seq;
4415 rdp->cpu_no_qs.b.norm = true;
4416 rdp->core_needs_qs = false;
4417 rdp->rcu_iw_pending = false;
4418 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4419 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4420 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4422 rcu_spawn_one_boost_kthread(rnp);
4423 rcu_spawn_cpu_nocb_kthread(cpu);
4424 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4425
4426 return 0;
4427 }
4428
4429 /*
4430 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4431 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4432 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4433 {
4434 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4435
4436 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4437 }
4438
4439 /*
4440 * Has the specified (known valid) CPU ever been fully online?
4441 */
rcu_cpu_beenfullyonline(int cpu)4442 bool rcu_cpu_beenfullyonline(int cpu)
4443 {
4444 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4445
4446 return smp_load_acquire(&rdp->beenonline);
4447 }
4448
4449 /*
4450 * Near the end of the CPU-online process. Pretty much all services
4451 * enabled, and the CPU is now very much alive.
4452 */
rcutree_online_cpu(unsigned int cpu)4453 int rcutree_online_cpu(unsigned int cpu)
4454 {
4455 unsigned long flags;
4456 struct rcu_data *rdp;
4457 struct rcu_node *rnp;
4458
4459 rdp = per_cpu_ptr(&rcu_data, cpu);
4460 rnp = rdp->mynode;
4461 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4462 rnp->ffmask |= rdp->grpmask;
4463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4464 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4465 return 0; /* Too early in boot for scheduler work. */
4466 sync_sched_exp_online_cleanup(cpu);
4467 rcutree_affinity_setting(cpu, -1);
4468
4469 // Stop-machine done, so allow nohz_full to disable tick.
4470 tick_dep_clear(TICK_DEP_BIT_RCU);
4471 return 0;
4472 }
4473
4474 /*
4475 * Near the beginning of the process. The CPU is still very much alive
4476 * with pretty much all services enabled.
4477 */
rcutree_offline_cpu(unsigned int cpu)4478 int rcutree_offline_cpu(unsigned int cpu)
4479 {
4480 unsigned long flags;
4481 struct rcu_data *rdp;
4482 struct rcu_node *rnp;
4483
4484 rdp = per_cpu_ptr(&rcu_data, cpu);
4485 rnp = rdp->mynode;
4486 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4487 rnp->ffmask &= ~rdp->grpmask;
4488 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4489
4490 rcutree_affinity_setting(cpu, cpu);
4491
4492 // nohz_full CPUs need the tick for stop-machine to work quickly
4493 tick_dep_set(TICK_DEP_BIT_RCU);
4494 return 0;
4495 }
4496
4497 /*
4498 * Mark the specified CPU as being online so that subsequent grace periods
4499 * (both expedited and normal) will wait on it. Note that this means that
4500 * incoming CPUs are not allowed to use RCU read-side critical sections
4501 * until this function is called. Failing to observe this restriction
4502 * will result in lockdep splats.
4503 *
4504 * Note that this function is special in that it is invoked directly
4505 * from the incoming CPU rather than from the cpuhp_step mechanism.
4506 * This is because this function must be invoked at a precise location.
4507 * This incoming CPU must not have enabled interrupts yet.
4508 */
rcu_cpu_starting(unsigned int cpu)4509 void rcu_cpu_starting(unsigned int cpu)
4510 {
4511 unsigned long mask;
4512 struct rcu_data *rdp;
4513 struct rcu_node *rnp;
4514 bool newcpu;
4515
4516 lockdep_assert_irqs_disabled();
4517 rdp = per_cpu_ptr(&rcu_data, cpu);
4518 if (rdp->cpu_started)
4519 return;
4520 rdp->cpu_started = true;
4521
4522 rnp = rdp->mynode;
4523 mask = rdp->grpmask;
4524 arch_spin_lock(&rcu_state.ofl_lock);
4525 rcu_dynticks_eqs_online();
4526 raw_spin_lock(&rcu_state.barrier_lock);
4527 raw_spin_lock_rcu_node(rnp);
4528 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4529 raw_spin_unlock(&rcu_state.barrier_lock);
4530 newcpu = !(rnp->expmaskinitnext & mask);
4531 rnp->expmaskinitnext |= mask;
4532 /* Allow lockless access for expedited grace periods. */
4533 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4534 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4535 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4536 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4537 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4538
4539 /* An incoming CPU should never be blocking a grace period. */
4540 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4541 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4542 unsigned long flags;
4543
4544 local_irq_save(flags);
4545 rcu_disable_urgency_upon_qs(rdp);
4546 /* Report QS -after- changing ->qsmaskinitnext! */
4547 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4548 } else {
4549 raw_spin_unlock_rcu_node(rnp);
4550 }
4551 arch_spin_unlock(&rcu_state.ofl_lock);
4552 smp_store_release(&rdp->beenonline, true);
4553 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4554 }
4555
4556 /*
4557 * The outgoing function has no further need of RCU, so remove it from
4558 * the rcu_node tree's ->qsmaskinitnext bit masks.
4559 *
4560 * Note that this function is special in that it is invoked directly
4561 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4562 * This is because this function must be invoked at a precise location.
4563 */
rcu_report_dead(unsigned int cpu)4564 void rcu_report_dead(unsigned int cpu)
4565 {
4566 unsigned long flags, seq_flags;
4567 unsigned long mask;
4568 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4569 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4570
4571 // Do any dangling deferred wakeups.
4572 do_nocb_deferred_wakeup(rdp);
4573
4574 rcu_preempt_deferred_qs(current);
4575
4576 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4577 mask = rdp->grpmask;
4578 local_irq_save(seq_flags);
4579 arch_spin_lock(&rcu_state.ofl_lock);
4580 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4581 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4582 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4583 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4584 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4585 rcu_disable_urgency_upon_qs(rdp);
4586 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4587 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4588 }
4589 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4590 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4591 arch_spin_unlock(&rcu_state.ofl_lock);
4592 local_irq_restore(seq_flags);
4593
4594 rdp->cpu_started = false;
4595 }
4596
4597 #ifdef CONFIG_HOTPLUG_CPU
4598 /*
4599 * The outgoing CPU has just passed through the dying-idle state, and we
4600 * are being invoked from the CPU that was IPIed to continue the offline
4601 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4602 */
rcutree_migrate_callbacks(int cpu)4603 void rcutree_migrate_callbacks(int cpu)
4604 {
4605 unsigned long flags;
4606 struct rcu_data *my_rdp;
4607 struct rcu_node *my_rnp;
4608 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4609 bool needwake;
4610
4611 if (rcu_rdp_is_offloaded(rdp))
4612 return;
4613
4614 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4615 if (rcu_segcblist_empty(&rdp->cblist)) {
4616 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4617 return; /* No callbacks to migrate. */
4618 }
4619
4620 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4621 rcu_barrier_entrain(rdp);
4622 my_rdp = this_cpu_ptr(&rcu_data);
4623 my_rnp = my_rdp->mynode;
4624 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4625 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4626 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4627 /* Leverage recent GPs and set GP for new callbacks. */
4628 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4629 rcu_advance_cbs(my_rnp, my_rdp);
4630 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4631 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4632 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4633 rcu_segcblist_disable(&rdp->cblist);
4634 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4635 check_cb_ovld_locked(my_rdp, my_rnp);
4636 if (rcu_rdp_is_offloaded(my_rdp)) {
4637 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4638 __call_rcu_nocb_wake(my_rdp, true, flags);
4639 } else {
4640 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4641 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4642 }
4643 local_irq_restore(flags);
4644 if (needwake)
4645 rcu_gp_kthread_wake();
4646 lockdep_assert_irqs_enabled();
4647 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4648 !rcu_segcblist_empty(&rdp->cblist),
4649 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4650 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4651 rcu_segcblist_first_cb(&rdp->cblist));
4652 }
4653 #endif
4654
4655 /*
4656 * On non-huge systems, use expedited RCU grace periods to make suspend
4657 * and hibernation run faster.
4658 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4659 static int rcu_pm_notify(struct notifier_block *self,
4660 unsigned long action, void *hcpu)
4661 {
4662 switch (action) {
4663 case PM_HIBERNATION_PREPARE:
4664 case PM_SUSPEND_PREPARE:
4665 rcu_async_hurry();
4666 rcu_expedite_gp();
4667 break;
4668 case PM_POST_HIBERNATION:
4669 case PM_POST_SUSPEND:
4670 rcu_unexpedite_gp();
4671 rcu_async_relax();
4672 break;
4673 default:
4674 break;
4675 }
4676 return NOTIFY_OK;
4677 }
4678
4679 #ifdef CONFIG_RCU_EXP_KTHREAD
4680 struct kthread_worker *rcu_exp_gp_kworker;
4681 struct kthread_worker *rcu_exp_par_gp_kworker;
4682
rcu_start_exp_gp_kworkers(void)4683 static void __init rcu_start_exp_gp_kworkers(void)
4684 {
4685 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4686 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4687 struct sched_param param = { .sched_priority = kthread_prio };
4688
4689 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4690 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4691 pr_err("Failed to create %s!\n", gp_kworker_name);
4692 rcu_exp_gp_kworker = NULL;
4693 return;
4694 }
4695
4696 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4697 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4698 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4699 rcu_exp_par_gp_kworker = NULL;
4700 kthread_destroy_worker(rcu_exp_gp_kworker);
4701 rcu_exp_gp_kworker = NULL;
4702 return;
4703 }
4704
4705 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4706 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4707 ¶m);
4708 }
4709
rcu_alloc_par_gp_wq(void)4710 static inline void rcu_alloc_par_gp_wq(void)
4711 {
4712 }
4713 #else /* !CONFIG_RCU_EXP_KTHREAD */
4714 struct workqueue_struct *rcu_par_gp_wq;
4715
rcu_start_exp_gp_kworkers(void)4716 static void __init rcu_start_exp_gp_kworkers(void)
4717 {
4718 }
4719
rcu_alloc_par_gp_wq(void)4720 static inline void rcu_alloc_par_gp_wq(void)
4721 {
4722 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4723 WARN_ON(!rcu_par_gp_wq);
4724 }
4725 #endif /* CONFIG_RCU_EXP_KTHREAD */
4726
4727 /*
4728 * Spawn the kthreads that handle RCU's grace periods.
4729 */
rcu_spawn_gp_kthread(void)4730 static int __init rcu_spawn_gp_kthread(void)
4731 {
4732 unsigned long flags;
4733 struct rcu_node *rnp;
4734 struct sched_param sp;
4735 struct task_struct *t;
4736 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4737
4738 rcu_scheduler_fully_active = 1;
4739 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4740 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4741 return 0;
4742 if (kthread_prio) {
4743 sp.sched_priority = kthread_prio;
4744 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4745 }
4746 rnp = rcu_get_root();
4747 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4748 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4749 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4750 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4751 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4753 wake_up_process(t);
4754 /* This is a pre-SMP initcall, we expect a single CPU */
4755 WARN_ON(num_online_cpus() > 1);
4756 /*
4757 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4758 * due to rcu_scheduler_fully_active.
4759 */
4760 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4761 rcu_spawn_one_boost_kthread(rdp->mynode);
4762 rcu_spawn_core_kthreads();
4763 /* Create kthread worker for expedited GPs */
4764 rcu_start_exp_gp_kworkers();
4765 return 0;
4766 }
4767 early_initcall(rcu_spawn_gp_kthread);
4768
4769 /*
4770 * This function is invoked towards the end of the scheduler's
4771 * initialization process. Before this is called, the idle task might
4772 * contain synchronous grace-period primitives (during which time, this idle
4773 * task is booting the system, and such primitives are no-ops). After this
4774 * function is called, any synchronous grace-period primitives are run as
4775 * expedited, with the requesting task driving the grace period forward.
4776 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4777 * runtime RCU functionality.
4778 */
rcu_scheduler_starting(void)4779 void rcu_scheduler_starting(void)
4780 {
4781 unsigned long flags;
4782 struct rcu_node *rnp;
4783
4784 WARN_ON(num_online_cpus() != 1);
4785 WARN_ON(nr_context_switches() > 0);
4786 rcu_test_sync_prims();
4787
4788 // Fix up the ->gp_seq counters.
4789 local_irq_save(flags);
4790 rcu_for_each_node_breadth_first(rnp)
4791 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4792 local_irq_restore(flags);
4793
4794 // Switch out of early boot mode.
4795 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4796 rcu_test_sync_prims();
4797 }
4798
4799 /*
4800 * Helper function for rcu_init() that initializes the rcu_state structure.
4801 */
rcu_init_one(void)4802 static void __init rcu_init_one(void)
4803 {
4804 static const char * const buf[] = RCU_NODE_NAME_INIT;
4805 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4806 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4807 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4808
4809 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4810 int cpustride = 1;
4811 int i;
4812 int j;
4813 struct rcu_node *rnp;
4814
4815 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4816
4817 /* Silence gcc 4.8 false positive about array index out of range. */
4818 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4819 panic("rcu_init_one: rcu_num_lvls out of range");
4820
4821 /* Initialize the level-tracking arrays. */
4822
4823 for (i = 1; i < rcu_num_lvls; i++)
4824 rcu_state.level[i] =
4825 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4826 rcu_init_levelspread(levelspread, num_rcu_lvl);
4827
4828 /* Initialize the elements themselves, starting from the leaves. */
4829
4830 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4831 cpustride *= levelspread[i];
4832 rnp = rcu_state.level[i];
4833 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4834 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4835 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4836 &rcu_node_class[i], buf[i]);
4837 raw_spin_lock_init(&rnp->fqslock);
4838 lockdep_set_class_and_name(&rnp->fqslock,
4839 &rcu_fqs_class[i], fqs[i]);
4840 rnp->gp_seq = rcu_state.gp_seq;
4841 rnp->gp_seq_needed = rcu_state.gp_seq;
4842 rnp->completedqs = rcu_state.gp_seq;
4843 rnp->qsmask = 0;
4844 rnp->qsmaskinit = 0;
4845 rnp->grplo = j * cpustride;
4846 rnp->grphi = (j + 1) * cpustride - 1;
4847 if (rnp->grphi >= nr_cpu_ids)
4848 rnp->grphi = nr_cpu_ids - 1;
4849 if (i == 0) {
4850 rnp->grpnum = 0;
4851 rnp->grpmask = 0;
4852 rnp->parent = NULL;
4853 } else {
4854 rnp->grpnum = j % levelspread[i - 1];
4855 rnp->grpmask = BIT(rnp->grpnum);
4856 rnp->parent = rcu_state.level[i - 1] +
4857 j / levelspread[i - 1];
4858 }
4859 rnp->level = i;
4860 INIT_LIST_HEAD(&rnp->blkd_tasks);
4861 rcu_init_one_nocb(rnp);
4862 init_waitqueue_head(&rnp->exp_wq[0]);
4863 init_waitqueue_head(&rnp->exp_wq[1]);
4864 init_waitqueue_head(&rnp->exp_wq[2]);
4865 init_waitqueue_head(&rnp->exp_wq[3]);
4866 spin_lock_init(&rnp->exp_lock);
4867 mutex_init(&rnp->boost_kthread_mutex);
4868 raw_spin_lock_init(&rnp->exp_poll_lock);
4869 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4870 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4871 }
4872 }
4873
4874 init_swait_queue_head(&rcu_state.gp_wq);
4875 init_swait_queue_head(&rcu_state.expedited_wq);
4876 rnp = rcu_first_leaf_node();
4877 for_each_possible_cpu(i) {
4878 while (i > rnp->grphi)
4879 rnp++;
4880 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4881 rcu_boot_init_percpu_data(i);
4882 }
4883 }
4884
4885 /*
4886 * Force priority from the kernel command-line into range.
4887 */
sanitize_kthread_prio(void)4888 static void __init sanitize_kthread_prio(void)
4889 {
4890 int kthread_prio_in = kthread_prio;
4891
4892 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4893 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4894 kthread_prio = 2;
4895 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4896 kthread_prio = 1;
4897 else if (kthread_prio < 0)
4898 kthread_prio = 0;
4899 else if (kthread_prio > 99)
4900 kthread_prio = 99;
4901
4902 if (kthread_prio != kthread_prio_in)
4903 pr_alert("%s: Limited prio to %d from %d\n",
4904 __func__, kthread_prio, kthread_prio_in);
4905 }
4906
4907 /*
4908 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4909 * replace the definitions in tree.h because those are needed to size
4910 * the ->node array in the rcu_state structure.
4911 */
rcu_init_geometry(void)4912 void rcu_init_geometry(void)
4913 {
4914 ulong d;
4915 int i;
4916 static unsigned long old_nr_cpu_ids;
4917 int rcu_capacity[RCU_NUM_LVLS];
4918 static bool initialized;
4919
4920 if (initialized) {
4921 /*
4922 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4923 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4924 */
4925 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4926 return;
4927 }
4928
4929 old_nr_cpu_ids = nr_cpu_ids;
4930 initialized = true;
4931
4932 /*
4933 * Initialize any unspecified boot parameters.
4934 * The default values of jiffies_till_first_fqs and
4935 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4936 * value, which is a function of HZ, then adding one for each
4937 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4938 */
4939 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4940 if (jiffies_till_first_fqs == ULONG_MAX)
4941 jiffies_till_first_fqs = d;
4942 if (jiffies_till_next_fqs == ULONG_MAX)
4943 jiffies_till_next_fqs = d;
4944 adjust_jiffies_till_sched_qs();
4945
4946 /* If the compile-time values are accurate, just leave. */
4947 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4948 nr_cpu_ids == NR_CPUS)
4949 return;
4950 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4951 rcu_fanout_leaf, nr_cpu_ids);
4952
4953 /*
4954 * The boot-time rcu_fanout_leaf parameter must be at least two
4955 * and cannot exceed the number of bits in the rcu_node masks.
4956 * Complain and fall back to the compile-time values if this
4957 * limit is exceeded.
4958 */
4959 if (rcu_fanout_leaf < 2 ||
4960 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4961 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4962 WARN_ON(1);
4963 return;
4964 }
4965
4966 /*
4967 * Compute number of nodes that can be handled an rcu_node tree
4968 * with the given number of levels.
4969 */
4970 rcu_capacity[0] = rcu_fanout_leaf;
4971 for (i = 1; i < RCU_NUM_LVLS; i++)
4972 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4973
4974 /*
4975 * The tree must be able to accommodate the configured number of CPUs.
4976 * If this limit is exceeded, fall back to the compile-time values.
4977 */
4978 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4979 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4980 WARN_ON(1);
4981 return;
4982 }
4983
4984 /* Calculate the number of levels in the tree. */
4985 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4986 }
4987 rcu_num_lvls = i + 1;
4988
4989 /* Calculate the number of rcu_nodes at each level of the tree. */
4990 for (i = 0; i < rcu_num_lvls; i++) {
4991 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4992 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4993 }
4994
4995 /* Calculate the total number of rcu_node structures. */
4996 rcu_num_nodes = 0;
4997 for (i = 0; i < rcu_num_lvls; i++)
4998 rcu_num_nodes += num_rcu_lvl[i];
4999 }
5000
5001 /*
5002 * Dump out the structure of the rcu_node combining tree associated
5003 * with the rcu_state structure.
5004 */
rcu_dump_rcu_node_tree(void)5005 static void __init rcu_dump_rcu_node_tree(void)
5006 {
5007 int level = 0;
5008 struct rcu_node *rnp;
5009
5010 pr_info("rcu_node tree layout dump\n");
5011 pr_info(" ");
5012 rcu_for_each_node_breadth_first(rnp) {
5013 if (rnp->level != level) {
5014 pr_cont("\n");
5015 pr_info(" ");
5016 level = rnp->level;
5017 }
5018 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5019 }
5020 pr_cont("\n");
5021 }
5022
5023 struct workqueue_struct *rcu_gp_wq;
5024
kfree_rcu_batch_init(void)5025 static void __init kfree_rcu_batch_init(void)
5026 {
5027 int cpu;
5028 int i, j;
5029
5030 /* Clamp it to [0:100] seconds interval. */
5031 if (rcu_delay_page_cache_fill_msec < 0 ||
5032 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5033
5034 rcu_delay_page_cache_fill_msec =
5035 clamp(rcu_delay_page_cache_fill_msec, 0,
5036 (int) (100 * MSEC_PER_SEC));
5037
5038 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5039 rcu_delay_page_cache_fill_msec);
5040 }
5041
5042 for_each_possible_cpu(cpu) {
5043 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5044
5045 for (i = 0; i < KFREE_N_BATCHES; i++) {
5046 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5047 krcp->krw_arr[i].krcp = krcp;
5048
5049 for (j = 0; j < FREE_N_CHANNELS; j++)
5050 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5051 }
5052
5053 for (i = 0; i < FREE_N_CHANNELS; i++)
5054 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5055
5056 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5057 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5058 krcp->initialized = true;
5059 }
5060 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5061 pr_err("Failed to register kfree_rcu() shrinker!\n");
5062 }
5063
rcu_init(void)5064 void __init rcu_init(void)
5065 {
5066 int cpu = smp_processor_id();
5067
5068 rcu_early_boot_tests();
5069
5070 kfree_rcu_batch_init();
5071 rcu_bootup_announce();
5072 sanitize_kthread_prio();
5073 rcu_init_geometry();
5074 rcu_init_one();
5075 if (dump_tree)
5076 rcu_dump_rcu_node_tree();
5077 if (use_softirq)
5078 open_softirq(RCU_SOFTIRQ, rcu_core_si);
5079
5080 /*
5081 * We don't need protection against CPU-hotplug here because
5082 * this is called early in boot, before either interrupts
5083 * or the scheduler are operational.
5084 */
5085 pm_notifier(rcu_pm_notify, 0);
5086 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5087 rcutree_prepare_cpu(cpu);
5088 rcu_cpu_starting(cpu);
5089 rcutree_online_cpu(cpu);
5090
5091 /* Create workqueue for Tree SRCU and for expedited GPs. */
5092 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5093 WARN_ON(!rcu_gp_wq);
5094 rcu_alloc_par_gp_wq();
5095
5096 /* Fill in default value for rcutree.qovld boot parameter. */
5097 /* -After- the rcu_node ->lock fields are initialized! */
5098 if (qovld < 0)
5099 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5100 else
5101 qovld_calc = qovld;
5102
5103 // Kick-start in case any polled grace periods started early.
5104 (void)start_poll_synchronize_rcu_expedited();
5105
5106 rcu_test_sync_prims();
5107 }
5108
5109 #include "tree_stall.h"
5110 #include "tree_exp.h"
5111 #include "tree_nocb.h"
5112 #include "tree_plugin.h"
5113