xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 5a4c98323b01d52382575a7a4d6bf7bf5f326047)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 
15 #define HCLGEVF_NAME	"hclgevf"
16 
17 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
18 
19 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
20 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
21 				  unsigned long delay);
22 
23 static struct hnae3_ae_algo ae_algovf;
24 
25 static struct workqueue_struct *hclgevf_wq;
26 
27 static const struct pci_device_id ae_algovf_pci_tbl[] = {
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
29 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
30 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
31 	/* required last entry */
32 	{0, }
33 };
34 
35 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
36 
37 /* hclgevf_cmd_send - send command to command queue
38  * @hw: pointer to the hw struct
39  * @desc: prefilled descriptor for describing the command
40  * @num : the number of descriptors to be sent
41  *
42  * This is the main send command for command queue, it
43  * sends the queue, cleans the queue, etc
44  */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)45 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
46 {
47 	return hclge_comm_cmd_send(&hw->hw, desc, num);
48 }
49 
hclgevf_arq_init(struct hclgevf_dev * hdev)50 void hclgevf_arq_init(struct hclgevf_dev *hdev)
51 {
52 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
53 
54 	spin_lock(&cmdq->crq.lock);
55 	/* initialize the pointers of async rx queue of mailbox */
56 	hdev->arq.hdev = hdev;
57 	hdev->arq.head = 0;
58 	hdev->arq.tail = 0;
59 	atomic_set(&hdev->arq.count, 0);
60 	spin_unlock(&cmdq->crq.lock);
61 }
62 
hclgevf_ae_get_hdev(struct hnae3_handle * handle)63 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
64 {
65 	if (!handle->client)
66 		return container_of(handle, struct hclgevf_dev, nic);
67 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
68 		return container_of(handle, struct hclgevf_dev, roce);
69 	else
70 		return container_of(handle, struct hclgevf_dev, nic);
71 }
72 
hclgevf_update_stats(struct hnae3_handle * handle)73 static void hclgevf_update_stats(struct hnae3_handle *handle)
74 {
75 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
76 	int status;
77 
78 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
79 	if (status)
80 		dev_err(&hdev->pdev->dev,
81 			"VF update of TQPS stats fail, status = %d.\n",
82 			status);
83 }
84 
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)85 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
86 {
87 	if (strset == ETH_SS_TEST)
88 		return -EOPNOTSUPP;
89 	else if (strset == ETH_SS_STATS)
90 		return hclge_comm_tqps_get_sset_count(handle);
91 
92 	return 0;
93 }
94 
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)95 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
96 				u8 *data)
97 {
98 	u8 *p = (char *)data;
99 
100 	if (strset == ETH_SS_STATS)
101 		p = hclge_comm_tqps_get_strings(handle, p);
102 }
103 
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)104 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
105 {
106 	hclge_comm_tqps_get_stats(handle, data);
107 }
108 
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)109 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
110 				   u8 subcode)
111 {
112 	if (msg) {
113 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
114 		msg->code = code;
115 		msg->subcode = subcode;
116 	}
117 }
118 
hclgevf_get_basic_info(struct hclgevf_dev * hdev)119 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
120 {
121 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
122 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
123 	struct hclge_basic_info *basic_info;
124 	struct hclge_vf_to_pf_msg send_msg;
125 	unsigned long caps;
126 	int status;
127 
128 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
129 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
130 				      sizeof(resp_msg));
131 	if (status) {
132 		dev_err(&hdev->pdev->dev,
133 			"failed to get basic info from pf, ret = %d", status);
134 		return status;
135 	}
136 
137 	basic_info = (struct hclge_basic_info *)resp_msg;
138 
139 	hdev->hw_tc_map = basic_info->hw_tc_map;
140 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
141 	caps = le32_to_cpu(basic_info->pf_caps);
142 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
143 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
144 
145 	return 0;
146 }
147 
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)148 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
149 {
150 	struct hnae3_handle *nic = &hdev->nic;
151 	struct hclge_vf_to_pf_msg send_msg;
152 	u8 resp_msg;
153 	int ret;
154 
155 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
156 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
157 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
158 				   sizeof(u8));
159 	if (ret) {
160 		dev_err(&hdev->pdev->dev,
161 			"VF request to get port based vlan state failed %d",
162 			ret);
163 		return ret;
164 	}
165 
166 	nic->port_base_vlan_state = resp_msg;
167 
168 	return 0;
169 }
170 
hclgevf_get_queue_info(struct hclgevf_dev * hdev)171 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
172 {
173 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
174 
175 	struct hclge_mbx_vf_queue_info *queue_info;
176 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
177 	struct hclge_vf_to_pf_msg send_msg;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      HCLGEVF_TQPS_RSS_INFO_LEN);
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"VF request to get tqp info from PF failed %d",
186 			status);
187 		return status;
188 	}
189 
190 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
191 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
192 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
193 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
194 
195 	return 0;
196 }
197 
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)198 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
199 {
200 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
201 
202 	struct hclge_mbx_vf_queue_depth *queue_depth;
203 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
204 	struct hclge_vf_to_pf_msg send_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
208 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
209 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
210 	if (ret) {
211 		dev_err(&hdev->pdev->dev,
212 			"VF request to get tqp depth info from PF failed %d",
213 			ret);
214 		return ret;
215 	}
216 
217 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
218 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
219 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
220 
221 	return 0;
222 }
223 
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)224 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
225 {
226 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
227 	struct hclge_vf_to_pf_msg send_msg;
228 	u16 qid_in_pf = 0;
229 	u8 resp_data[2];
230 	int ret;
231 
232 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
233 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
234 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
235 				   sizeof(resp_data));
236 	if (!ret)
237 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
238 
239 	return qid_in_pf;
240 }
241 
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)242 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
243 {
244 	struct hclge_vf_to_pf_msg send_msg;
245 	u8 resp_msg[2];
246 	int ret;
247 
248 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
249 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
250 				   sizeof(resp_msg));
251 	if (ret) {
252 		dev_err(&hdev->pdev->dev,
253 			"VF request to get the pf port media type failed %d",
254 			ret);
255 		return ret;
256 	}
257 
258 	hdev->hw.mac.media_type = resp_msg[0];
259 	hdev->hw.mac.module_type = resp_msg[1];
260 
261 	return 0;
262 }
263 
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)264 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
265 {
266 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
267 	struct hclge_comm_tqp *tqp;
268 	int i;
269 
270 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
271 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
272 	if (!hdev->htqp)
273 		return -ENOMEM;
274 
275 	tqp = hdev->htqp;
276 
277 	for (i = 0; i < hdev->num_tqps; i++) {
278 		tqp->dev = &hdev->pdev->dev;
279 		tqp->index = i;
280 
281 		tqp->q.ae_algo = &ae_algovf;
282 		tqp->q.buf_size = hdev->rx_buf_len;
283 		tqp->q.tx_desc_num = hdev->num_tx_desc;
284 		tqp->q.rx_desc_num = hdev->num_rx_desc;
285 
286 		/* need an extended offset to configure queues >=
287 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
288 		 */
289 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
290 			tqp->q.io_base = hdev->hw.hw.io_base +
291 					 HCLGEVF_TQP_REG_OFFSET +
292 					 i * HCLGEVF_TQP_REG_SIZE;
293 		else
294 			tqp->q.io_base = hdev->hw.hw.io_base +
295 					 HCLGEVF_TQP_REG_OFFSET +
296 					 HCLGEVF_TQP_EXT_REG_OFFSET +
297 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
298 					 HCLGEVF_TQP_REG_SIZE;
299 
300 		/* when device supports tx push and has device memory,
301 		 * the queue can execute push mode or doorbell mode on
302 		 * device memory.
303 		 */
304 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
305 			tqp->q.mem_base = hdev->hw.hw.mem_base +
306 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
307 
308 		tqp++;
309 	}
310 
311 	return 0;
312 }
313 
hclgevf_knic_setup(struct hclgevf_dev * hdev)314 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
315 {
316 	struct hnae3_handle *nic = &hdev->nic;
317 	struct hnae3_knic_private_info *kinfo;
318 	u16 new_tqps = hdev->num_tqps;
319 	unsigned int i;
320 	u8 num_tc = 0;
321 
322 	kinfo = &nic->kinfo;
323 	kinfo->num_tx_desc = hdev->num_tx_desc;
324 	kinfo->num_rx_desc = hdev->num_rx_desc;
325 	kinfo->rx_buf_len = hdev->rx_buf_len;
326 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
327 		if (hdev->hw_tc_map & BIT(i))
328 			num_tc++;
329 
330 	num_tc = num_tc ? num_tc : 1;
331 	kinfo->tc_info.num_tc = num_tc;
332 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
333 	new_tqps = kinfo->rss_size * num_tc;
334 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
335 
336 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
337 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
338 	if (!kinfo->tqp)
339 		return -ENOMEM;
340 
341 	for (i = 0; i < kinfo->num_tqps; i++) {
342 		hdev->htqp[i].q.handle = &hdev->nic;
343 		hdev->htqp[i].q.tqp_index = i;
344 		kinfo->tqp[i] = &hdev->htqp[i].q;
345 	}
346 
347 	/* after init the max rss_size and tqps, adjust the default tqp numbers
348 	 * and rss size with the actual vector numbers
349 	 */
350 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
351 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
352 				kinfo->rss_size);
353 
354 	return 0;
355 }
356 
hclgevf_request_link_info(struct hclgevf_dev * hdev)357 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
358 {
359 	struct hclge_vf_to_pf_msg send_msg;
360 	int status;
361 
362 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
363 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
364 	if (status)
365 		dev_err(&hdev->pdev->dev,
366 			"VF failed to fetch link status(%d) from PF", status);
367 }
368 
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)369 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
370 {
371 	struct hnae3_handle *rhandle = &hdev->roce;
372 	struct hnae3_handle *handle = &hdev->nic;
373 	struct hnae3_client *rclient;
374 	struct hnae3_client *client;
375 
376 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
377 		return;
378 
379 	client = handle->client;
380 	rclient = hdev->roce_client;
381 
382 	link_state =
383 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
384 	if (link_state != hdev->hw.mac.link) {
385 		hdev->hw.mac.link = link_state;
386 		client->ops->link_status_change(handle, !!link_state);
387 		if (rclient && rclient->ops->link_status_change)
388 			rclient->ops->link_status_change(rhandle, !!link_state);
389 	}
390 
391 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
392 }
393 
hclgevf_update_link_mode(struct hclgevf_dev * hdev)394 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
395 {
396 #define HCLGEVF_ADVERTISING	0
397 #define HCLGEVF_SUPPORTED	1
398 
399 	struct hclge_vf_to_pf_msg send_msg;
400 
401 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
402 	send_msg.data[0] = HCLGEVF_ADVERTISING;
403 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
404 	send_msg.data[0] = HCLGEVF_SUPPORTED;
405 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
406 }
407 
hclgevf_set_handle_info(struct hclgevf_dev * hdev)408 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
409 {
410 	struct hnae3_handle *nic = &hdev->nic;
411 	int ret;
412 
413 	nic->ae_algo = &ae_algovf;
414 	nic->pdev = hdev->pdev;
415 	bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
416 		    MAX_NUMNODES);
417 	nic->flags |= HNAE3_SUPPORT_VF;
418 	nic->kinfo.io_base = hdev->hw.hw.io_base;
419 
420 	ret = hclgevf_knic_setup(hdev);
421 	if (ret)
422 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
423 			ret);
424 	return ret;
425 }
426 
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)427 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
428 {
429 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
430 		dev_warn(&hdev->pdev->dev,
431 			 "vector(vector_id %d) has been freed.\n", vector_id);
432 		return;
433 	}
434 
435 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
436 	hdev->num_msi_left += 1;
437 	hdev->num_msi_used -= 1;
438 }
439 
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)440 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
441 			      struct hnae3_vector_info *vector_info)
442 {
443 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
444 	struct hnae3_vector_info *vector = vector_info;
445 	int alloc = 0;
446 	int i, j;
447 
448 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
449 	vector_num = min(hdev->num_msi_left, vector_num);
450 
451 	for (j = 0; j < vector_num; j++) {
452 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
453 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
454 				vector->vector = pci_irq_vector(hdev->pdev, i);
455 				vector->io_addr = hdev->hw.hw.io_base +
456 					HCLGEVF_VECTOR_REG_BASE +
457 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
458 				hdev->vector_status[i] = 0;
459 				hdev->vector_irq[i] = vector->vector;
460 
461 				vector++;
462 				alloc++;
463 
464 				break;
465 			}
466 		}
467 	}
468 	hdev->num_msi_left -= alloc;
469 	hdev->num_msi_used += alloc;
470 
471 	return alloc;
472 }
473 
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)474 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
475 {
476 	int i;
477 
478 	for (i = 0; i < hdev->num_msi; i++)
479 		if (vector == hdev->vector_irq[i])
480 			return i;
481 
482 	return -EINVAL;
483 }
484 
485 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)486 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
487 {
488 #define HCLGEVF_RSS_MBX_RESP_LEN	8
489 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
490 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
491 	struct hclge_vf_to_pf_msg send_msg;
492 	u16 msg_num, hash_key_index;
493 	u8 index;
494 	int ret;
495 
496 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
497 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
498 			HCLGEVF_RSS_MBX_RESP_LEN;
499 	for (index = 0; index < msg_num; index++) {
500 		send_msg.data[0] = index;
501 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
502 					   HCLGEVF_RSS_MBX_RESP_LEN);
503 		if (ret) {
504 			dev_err(&hdev->pdev->dev,
505 				"VF get rss hash key from PF failed, ret=%d",
506 				ret);
507 			return ret;
508 		}
509 
510 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
511 		if (index == msg_num - 1)
512 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
513 			       &resp_msg[0],
514 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
515 		else
516 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
517 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
518 	}
519 
520 	return 0;
521 }
522 
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)523 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
524 			   u8 *hfunc)
525 {
526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
527 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
528 	int ret;
529 
530 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
531 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
532 	} else {
533 		if (hfunc)
534 			*hfunc = ETH_RSS_HASH_TOP;
535 		if (key) {
536 			ret = hclgevf_get_rss_hash_key(hdev);
537 			if (ret)
538 				return ret;
539 			memcpy(key, rss_cfg->rss_hash_key,
540 			       HCLGE_COMM_RSS_KEY_SIZE);
541 		}
542 	}
543 
544 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
545 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
546 
547 	return 0;
548 }
549 
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)550 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
551 			   const u8 *key, const u8 hfunc)
552 {
553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
555 	int ret, i;
556 
557 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
558 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
559 						  hfunc);
560 		if (ret)
561 			return ret;
562 	}
563 
564 	/* update the shadow RSS table with user specified qids */
565 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
566 		rss_cfg->rss_indirection_tbl[i] = indir[i];
567 
568 	/* update the hardware */
569 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
570 					      rss_cfg->rss_indirection_tbl);
571 }
572 
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)573 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
574 				 struct ethtool_rxnfc *nfc)
575 {
576 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
577 	int ret;
578 
579 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
580 		return -EOPNOTSUPP;
581 
582 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
583 				       &hdev->rss_cfg, nfc);
584 	if (ret)
585 		dev_err(&hdev->pdev->dev,
586 		"failed to set rss tuple, ret = %d.\n", ret);
587 
588 	return ret;
589 }
590 
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)591 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
592 				 struct ethtool_rxnfc *nfc)
593 {
594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
595 	u8 tuple_sets;
596 	int ret;
597 
598 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
599 		return -EOPNOTSUPP;
600 
601 	nfc->data = 0;
602 
603 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
604 				       &tuple_sets);
605 	if (ret || !tuple_sets)
606 		return ret;
607 
608 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
609 
610 	return 0;
611 }
612 
hclgevf_get_tc_size(struct hnae3_handle * handle)613 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
614 {
615 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
616 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
617 
618 	return rss_cfg->rss_size;
619 }
620 
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)621 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
622 				       int vector_id,
623 				       struct hnae3_ring_chain_node *ring_chain)
624 {
625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
626 	struct hclge_vf_to_pf_msg send_msg;
627 	struct hnae3_ring_chain_node *node;
628 	int status;
629 	int i = 0;
630 
631 	memset(&send_msg, 0, sizeof(send_msg));
632 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
633 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
634 	send_msg.vector_id = vector_id;
635 
636 	for (node = ring_chain; node; node = node->next) {
637 		send_msg.param[i].ring_type =
638 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
639 
640 		send_msg.param[i].tqp_index = node->tqp_index;
641 		send_msg.param[i].int_gl_index =
642 					hnae3_get_field(node->int_gl_idx,
643 							HNAE3_RING_GL_IDX_M,
644 							HNAE3_RING_GL_IDX_S);
645 
646 		i++;
647 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
648 			send_msg.ring_num = i;
649 
650 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
651 						      NULL, 0);
652 			if (status) {
653 				dev_err(&hdev->pdev->dev,
654 					"Map TQP fail, status is %d.\n",
655 					status);
656 				return status;
657 			}
658 			i = 0;
659 		}
660 	}
661 
662 	return 0;
663 }
664 
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)665 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
666 				      struct hnae3_ring_chain_node *ring_chain)
667 {
668 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
669 	int vector_id;
670 
671 	vector_id = hclgevf_get_vector_index(hdev, vector);
672 	if (vector_id < 0) {
673 		dev_err(&handle->pdev->dev,
674 			"Get vector index fail. ret =%d\n", vector_id);
675 		return vector_id;
676 	}
677 
678 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
679 }
680 
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)681 static int hclgevf_unmap_ring_from_vector(
682 				struct hnae3_handle *handle,
683 				int vector,
684 				struct hnae3_ring_chain_node *ring_chain)
685 {
686 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
687 	int ret, vector_id;
688 
689 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
690 		return 0;
691 
692 	vector_id = hclgevf_get_vector_index(hdev, vector);
693 	if (vector_id < 0) {
694 		dev_err(&handle->pdev->dev,
695 			"Get vector index fail. ret =%d\n", vector_id);
696 		return vector_id;
697 	}
698 
699 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
700 	if (ret)
701 		dev_err(&handle->pdev->dev,
702 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
703 			vector_id,
704 			ret);
705 
706 	return ret;
707 }
708 
hclgevf_put_vector(struct hnae3_handle * handle,int vector)709 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
710 {
711 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
712 	int vector_id;
713 
714 	vector_id = hclgevf_get_vector_index(hdev, vector);
715 	if (vector_id < 0) {
716 		dev_err(&handle->pdev->dev,
717 			"hclgevf_put_vector get vector index fail. ret =%d\n",
718 			vector_id);
719 		return vector_id;
720 	}
721 
722 	hclgevf_free_vector(hdev, vector_id);
723 
724 	return 0;
725 }
726 
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)727 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
728 					bool en_uc_pmc, bool en_mc_pmc,
729 					bool en_bc_pmc)
730 {
731 	struct hnae3_handle *handle = &hdev->nic;
732 	struct hclge_vf_to_pf_msg send_msg;
733 	int ret;
734 
735 	memset(&send_msg, 0, sizeof(send_msg));
736 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
737 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
738 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
739 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
740 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
741 					     &handle->priv_flags) ? 1 : 0;
742 
743 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
744 	if (ret)
745 		dev_err(&hdev->pdev->dev,
746 			"Set promisc mode fail, status is %d.\n", ret);
747 
748 	return ret;
749 }
750 
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)751 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
752 				    bool en_mc_pmc)
753 {
754 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
755 	bool en_bc_pmc;
756 
757 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
758 
759 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
760 					    en_bc_pmc);
761 }
762 
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)763 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
764 {
765 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
766 
767 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
768 	hclgevf_task_schedule(hdev, 0);
769 }
770 
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)771 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
772 {
773 	struct hnae3_handle *handle = &hdev->nic;
774 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
775 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
776 	int ret;
777 
778 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
779 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
780 		if (!ret)
781 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
782 	}
783 }
784 
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)785 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
786 				       u16 stream_id, bool enable)
787 {
788 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
789 	struct hclge_desc desc;
790 
791 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
792 
793 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
794 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
795 	req->stream_id = cpu_to_le16(stream_id);
796 	if (enable)
797 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
798 
799 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
800 }
801 
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)802 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
803 {
804 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
805 	int ret;
806 	u16 i;
807 
808 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
809 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
810 		if (ret)
811 			return ret;
812 	}
813 
814 	return 0;
815 }
816 
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)817 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
818 {
819 	struct hclge_vf_to_pf_msg send_msg;
820 	u8 host_mac[ETH_ALEN];
821 	int status;
822 
823 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
824 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
825 				      ETH_ALEN);
826 	if (status) {
827 		dev_err(&hdev->pdev->dev,
828 			"fail to get VF MAC from host %d", status);
829 		return status;
830 	}
831 
832 	ether_addr_copy(p, host_mac);
833 
834 	return 0;
835 }
836 
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)837 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
838 {
839 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
840 	u8 host_mac_addr[ETH_ALEN];
841 
842 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
843 		return;
844 
845 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
846 	if (hdev->has_pf_mac)
847 		ether_addr_copy(p, host_mac_addr);
848 	else
849 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
850 }
851 
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)852 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
853 				bool is_first)
854 {
855 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
856 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
857 	struct hclge_vf_to_pf_msg send_msg;
858 	u8 *new_mac_addr = (u8 *)p;
859 	int status;
860 
861 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
862 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
863 	ether_addr_copy(send_msg.data, new_mac_addr);
864 	if (is_first && !hdev->has_pf_mac)
865 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
866 	else
867 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
868 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
869 	if (!status)
870 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
871 
872 	return status;
873 }
874 
875 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)876 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
877 {
878 	struct hclgevf_mac_addr_node *mac_node, *tmp;
879 
880 	list_for_each_entry_safe(mac_node, tmp, list, node)
881 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
882 			return mac_node;
883 
884 	return NULL;
885 }
886 
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)887 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
888 				    enum HCLGEVF_MAC_NODE_STATE state)
889 {
890 	switch (state) {
891 	/* from set_rx_mode or tmp_add_list */
892 	case HCLGEVF_MAC_TO_ADD:
893 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
894 			mac_node->state = HCLGEVF_MAC_ACTIVE;
895 		break;
896 	/* only from set_rx_mode */
897 	case HCLGEVF_MAC_TO_DEL:
898 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
899 			list_del(&mac_node->node);
900 			kfree(mac_node);
901 		} else {
902 			mac_node->state = HCLGEVF_MAC_TO_DEL;
903 		}
904 		break;
905 	/* only from tmp_add_list, the mac_node->state won't be
906 	 * HCLGEVF_MAC_ACTIVE
907 	 */
908 	case HCLGEVF_MAC_ACTIVE:
909 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
910 			mac_node->state = HCLGEVF_MAC_ACTIVE;
911 		break;
912 	}
913 }
914 
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)915 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
916 				   enum HCLGEVF_MAC_NODE_STATE state,
917 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
918 				   const unsigned char *addr)
919 {
920 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
921 	struct hclgevf_mac_addr_node *mac_node;
922 	struct list_head *list;
923 
924 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
925 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
926 
927 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
928 
929 	/* if the mac addr is already in the mac list, no need to add a new
930 	 * one into it, just check the mac addr state, convert it to a new
931 	 * state, or just remove it, or do nothing.
932 	 */
933 	mac_node = hclgevf_find_mac_node(list, addr);
934 	if (mac_node) {
935 		hclgevf_update_mac_node(mac_node, state);
936 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
937 		return 0;
938 	}
939 	/* if this address is never added, unnecessary to delete */
940 	if (state == HCLGEVF_MAC_TO_DEL) {
941 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
942 		return -ENOENT;
943 	}
944 
945 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
946 	if (!mac_node) {
947 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
948 		return -ENOMEM;
949 	}
950 
951 	mac_node->state = state;
952 	ether_addr_copy(mac_node->mac_addr, addr);
953 	list_add_tail(&mac_node->node, list);
954 
955 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
956 	return 0;
957 }
958 
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)959 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
960 			       const unsigned char *addr)
961 {
962 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
963 				       HCLGEVF_MAC_ADDR_UC, addr);
964 }
965 
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)966 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
967 			      const unsigned char *addr)
968 {
969 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
970 				       HCLGEVF_MAC_ADDR_UC, addr);
971 }
972 
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)973 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
974 			       const unsigned char *addr)
975 {
976 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
977 				       HCLGEVF_MAC_ADDR_MC, addr);
978 }
979 
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)980 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
981 			      const unsigned char *addr)
982 {
983 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
984 				       HCLGEVF_MAC_ADDR_MC, addr);
985 }
986 
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)987 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
988 				    struct hclgevf_mac_addr_node *mac_node,
989 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
990 {
991 	struct hclge_vf_to_pf_msg send_msg;
992 	u8 code, subcode;
993 
994 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
995 		code = HCLGE_MBX_SET_UNICAST;
996 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
997 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
998 		else
999 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1000 	} else {
1001 		code = HCLGE_MBX_SET_MULTICAST;
1002 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1003 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1004 		else
1005 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1006 	}
1007 
1008 	hclgevf_build_send_msg(&send_msg, code, subcode);
1009 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1010 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1011 }
1012 
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1013 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1014 				    struct list_head *list,
1015 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1016 {
1017 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1018 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1019 	int ret;
1020 
1021 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1022 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1023 		if  (ret) {
1024 			hnae3_format_mac_addr(format_mac_addr,
1025 					      mac_node->mac_addr);
1026 			dev_err(&hdev->pdev->dev,
1027 				"failed to configure mac %s, state = %d, ret = %d\n",
1028 				format_mac_addr, mac_node->state, ret);
1029 			return;
1030 		}
1031 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1032 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1033 		} else {
1034 			list_del(&mac_node->node);
1035 			kfree(mac_node);
1036 		}
1037 	}
1038 }
1039 
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1040 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1041 				       struct list_head *mac_list)
1042 {
1043 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1044 
1045 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1046 		/* if the mac address from tmp_add_list is not in the
1047 		 * uc/mc_mac_list, it means have received a TO_DEL request
1048 		 * during the time window of sending mac config request to PF
1049 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1050 		 * then it will be removed at next time. If is TO_ADD, it means
1051 		 * send TO_ADD request failed, so just remove the mac node.
1052 		 */
1053 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1054 		if (new_node) {
1055 			hclgevf_update_mac_node(new_node, mac_node->state);
1056 			list_del(&mac_node->node);
1057 			kfree(mac_node);
1058 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1059 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1060 			list_move_tail(&mac_node->node, mac_list);
1061 		} else {
1062 			list_del(&mac_node->node);
1063 			kfree(mac_node);
1064 		}
1065 	}
1066 }
1067 
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1068 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1069 				       struct list_head *mac_list)
1070 {
1071 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1072 
1073 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1074 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1075 		if (new_node) {
1076 			/* If the mac addr is exist in the mac list, it means
1077 			 * received a new request TO_ADD during the time window
1078 			 * of sending mac addr configurrequest to PF, so just
1079 			 * change the mac state to ACTIVE.
1080 			 */
1081 			new_node->state = HCLGEVF_MAC_ACTIVE;
1082 			list_del(&mac_node->node);
1083 			kfree(mac_node);
1084 		} else {
1085 			list_move_tail(&mac_node->node, mac_list);
1086 		}
1087 	}
1088 }
1089 
hclgevf_clear_list(struct list_head * list)1090 static void hclgevf_clear_list(struct list_head *list)
1091 {
1092 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1093 
1094 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1095 		list_del(&mac_node->node);
1096 		kfree(mac_node);
1097 	}
1098 }
1099 
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1100 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1101 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1102 {
1103 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1104 	struct list_head tmp_add_list, tmp_del_list;
1105 	struct list_head *list;
1106 
1107 	INIT_LIST_HEAD(&tmp_add_list);
1108 	INIT_LIST_HEAD(&tmp_del_list);
1109 
1110 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1111 	 * we can add/delete these mac addr outside the spin lock
1112 	 */
1113 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1114 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1115 
1116 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1117 
1118 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1119 		switch (mac_node->state) {
1120 		case HCLGEVF_MAC_TO_DEL:
1121 			list_move_tail(&mac_node->node, &tmp_del_list);
1122 			break;
1123 		case HCLGEVF_MAC_TO_ADD:
1124 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1125 			if (!new_node)
1126 				goto stop_traverse;
1127 
1128 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1129 			new_node->state = mac_node->state;
1130 			list_add_tail(&new_node->node, &tmp_add_list);
1131 			break;
1132 		default:
1133 			break;
1134 		}
1135 	}
1136 
1137 stop_traverse:
1138 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1139 
1140 	/* delete first, in order to get max mac table space for adding */
1141 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1142 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1143 
1144 	/* if some mac addresses were added/deleted fail, move back to the
1145 	 * mac_list, and retry at next time.
1146 	 */
1147 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1148 
1149 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1150 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1151 
1152 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1153 }
1154 
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1155 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1156 {
1157 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1158 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1159 }
1160 
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1161 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1162 {
1163 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1164 
1165 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1166 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1167 
1168 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1169 }
1170 
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1171 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1172 {
1173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1174 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1175 	struct hclge_vf_to_pf_msg send_msg;
1176 
1177 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1178 		return -EOPNOTSUPP;
1179 
1180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1181 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1182 	send_msg.data[0] = enable ? 1 : 0;
1183 
1184 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1185 }
1186 
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1187 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1188 				   __be16 proto, u16 vlan_id,
1189 				   bool is_kill)
1190 {
1191 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1192 	struct hclge_mbx_vlan_filter *vlan_filter;
1193 	struct hclge_vf_to_pf_msg send_msg;
1194 	int ret;
1195 
1196 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1197 		return -EINVAL;
1198 
1199 	if (proto != htons(ETH_P_8021Q))
1200 		return -EPROTONOSUPPORT;
1201 
1202 	/* When device is resetting or reset failed, firmware is unable to
1203 	 * handle mailbox. Just record the vlan id, and remove it after
1204 	 * reset finished.
1205 	 */
1206 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1207 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1208 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1209 		return -EBUSY;
1210 	} else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1211 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1212 	}
1213 
1214 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1215 			       HCLGE_MBX_VLAN_FILTER);
1216 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1217 	vlan_filter->is_kill = is_kill;
1218 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1219 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1220 
1221 	/* when remove hw vlan filter failed, record the vlan id,
1222 	 * and try to remove it from hw later, to be consistence
1223 	 * with stack.
1224 	 */
1225 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1226 	if (is_kill && ret)
1227 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1228 
1229 	return ret;
1230 }
1231 
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1232 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1233 {
1234 #define HCLGEVF_MAX_SYNC_COUNT	60
1235 	struct hnae3_handle *handle = &hdev->nic;
1236 	int ret, sync_cnt = 0;
1237 	u16 vlan_id;
1238 
1239 	if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1240 		return;
1241 
1242 	rtnl_lock();
1243 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1244 	while (vlan_id != VLAN_N_VID) {
1245 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1246 					      vlan_id, true);
1247 		if (ret)
1248 			break;
1249 
1250 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1251 		sync_cnt++;
1252 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1253 			break;
1254 
1255 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1256 	}
1257 	rtnl_unlock();
1258 }
1259 
hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev * hdev,bool enable)1260 static int hclgevf_en_hw_strip_rxvtag_cmd(struct hclgevf_dev *hdev, bool enable)
1261 {
1262 	struct hclge_vf_to_pf_msg send_msg;
1263 
1264 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1265 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1266 	send_msg.data[0] = enable ? 1 : 0;
1267 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1268 }
1269 
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1270 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1271 {
1272 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1273 	int ret;
1274 
1275 	ret = hclgevf_en_hw_strip_rxvtag_cmd(hdev, enable);
1276 	if (ret)
1277 		return ret;
1278 
1279 	hdev->rxvtag_strip_en = enable;
1280 	return 0;
1281 }
1282 
hclgevf_reset_tqp(struct hnae3_handle * handle)1283 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1284 {
1285 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1286 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1287 	struct hclge_vf_to_pf_msg send_msg;
1288 	u8 return_status = 0;
1289 	int ret;
1290 	u16 i;
1291 
1292 	/* disable vf queue before send queue reset msg to PF */
1293 	ret = hclgevf_tqp_enable(handle, false);
1294 	if (ret) {
1295 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1296 			ret);
1297 		return ret;
1298 	}
1299 
1300 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1301 
1302 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1303 				   sizeof(return_status));
1304 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1305 		return ret;
1306 
1307 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1308 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1309 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1310 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1311 		if (ret)
1312 			return ret;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1318 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1319 {
1320 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1321 	struct hclge_mbx_mtu_info *mtu_info;
1322 	struct hclge_vf_to_pf_msg send_msg;
1323 
1324 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1325 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1326 	mtu_info->mtu = cpu_to_le32(new_mtu);
1327 
1328 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1329 }
1330 
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1331 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1332 				 enum hnae3_reset_notify_type type)
1333 {
1334 	struct hnae3_client *client = hdev->nic_client;
1335 	struct hnae3_handle *handle = &hdev->nic;
1336 	int ret;
1337 
1338 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1339 	    !client)
1340 		return 0;
1341 
1342 	if (!client->ops->reset_notify)
1343 		return -EOPNOTSUPP;
1344 
1345 	ret = client->ops->reset_notify(handle, type);
1346 	if (ret)
1347 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1348 			type, ret);
1349 
1350 	return ret;
1351 }
1352 
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1353 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1354 				      enum hnae3_reset_notify_type type)
1355 {
1356 	struct hnae3_client *client = hdev->roce_client;
1357 	struct hnae3_handle *handle = &hdev->roce;
1358 	int ret;
1359 
1360 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1361 		return 0;
1362 
1363 	if (!client->ops->reset_notify)
1364 		return -EOPNOTSUPP;
1365 
1366 	ret = client->ops->reset_notify(handle, type);
1367 	if (ret)
1368 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1369 			type, ret);
1370 	return ret;
1371 }
1372 
hclgevf_reset_wait(struct hclgevf_dev * hdev)1373 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1374 {
1375 #define HCLGEVF_RESET_WAIT_US	20000
1376 #define HCLGEVF_RESET_WAIT_CNT	2000
1377 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1378 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1379 
1380 	u32 val;
1381 	int ret;
1382 
1383 	if (hdev->reset_type == HNAE3_VF_RESET)
1384 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1385 					 HCLGEVF_VF_RST_ING, val,
1386 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1387 					 HCLGEVF_RESET_WAIT_US,
1388 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1389 	else
1390 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1391 					 HCLGEVF_RST_ING, val,
1392 					 !(val & HCLGEVF_RST_ING_BITS),
1393 					 HCLGEVF_RESET_WAIT_US,
1394 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1395 
1396 	/* hardware completion status should be available by this time */
1397 	if (ret) {
1398 		dev_err(&hdev->pdev->dev,
1399 			"couldn't get reset done status from h/w, timeout!\n");
1400 		return ret;
1401 	}
1402 
1403 	/* we will wait a bit more to let reset of the stack to complete. This
1404 	 * might happen in case reset assertion was made by PF. Yes, this also
1405 	 * means we might end up waiting bit more even for VF reset.
1406 	 */
1407 	if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1408 		msleep(5000);
1409 	else
1410 		msleep(500);
1411 
1412 	return 0;
1413 }
1414 
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1415 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1416 {
1417 	u32 reg_val;
1418 
1419 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1420 	if (enable)
1421 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1422 	else
1423 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1424 
1425 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1426 			  reg_val);
1427 }
1428 
hclgevf_reset_stack(struct hclgevf_dev * hdev)1429 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1430 {
1431 	int ret;
1432 
1433 	/* uninitialize the nic client */
1434 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/* re-initialize the hclge device */
1439 	ret = hclgevf_reset_hdev(hdev);
1440 	if (ret) {
1441 		dev_err(&hdev->pdev->dev,
1442 			"hclge device re-init failed, VF is disabled!\n");
1443 		return ret;
1444 	}
1445 
1446 	/* bring up the nic client again */
1447 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1448 	if (ret)
1449 		return ret;
1450 
1451 	/* clear handshake status with IMP */
1452 	hclgevf_reset_handshake(hdev, false);
1453 
1454 	/* bring up the nic to enable TX/RX again */
1455 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1456 }
1457 
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1458 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1459 {
1460 #define HCLGEVF_RESET_SYNC_TIME 100
1461 
1462 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1463 		struct hclge_vf_to_pf_msg send_msg;
1464 		int ret;
1465 
1466 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1467 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1468 		if (ret) {
1469 			dev_err(&hdev->pdev->dev,
1470 				"failed to assert VF reset, ret = %d\n", ret);
1471 			return ret;
1472 		}
1473 		hdev->rst_stats.vf_func_rst_cnt++;
1474 	}
1475 
1476 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1477 	/* inform hardware that preparatory work is done */
1478 	msleep(HCLGEVF_RESET_SYNC_TIME);
1479 	hclgevf_reset_handshake(hdev, true);
1480 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1481 		 hdev->reset_type);
1482 
1483 	return 0;
1484 }
1485 
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1486 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1487 {
1488 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1489 		 hdev->rst_stats.vf_func_rst_cnt);
1490 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1491 		 hdev->rst_stats.flr_rst_cnt);
1492 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1493 		 hdev->rst_stats.vf_rst_cnt);
1494 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1495 		 hdev->rst_stats.rst_done_cnt);
1496 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1497 		 hdev->rst_stats.hw_rst_done_cnt);
1498 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1499 		 hdev->rst_stats.rst_cnt);
1500 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1501 		 hdev->rst_stats.rst_fail_cnt);
1502 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1503 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1504 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1505 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1506 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1507 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1508 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1509 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1510 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1511 }
1512 
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1513 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1514 {
1515 	/* recover handshake status with IMP when reset fail */
1516 	hclgevf_reset_handshake(hdev, true);
1517 	hdev->rst_stats.rst_fail_cnt++;
1518 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1519 		hdev->rst_stats.rst_fail_cnt);
1520 
1521 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1522 		set_bit(hdev->reset_type, &hdev->reset_pending);
1523 
1524 	if (hclgevf_is_reset_pending(hdev)) {
1525 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1526 		hclgevf_reset_task_schedule(hdev);
1527 	} else {
1528 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1529 		hclgevf_dump_rst_info(hdev);
1530 	}
1531 }
1532 
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1533 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1534 {
1535 	int ret;
1536 
1537 	hdev->rst_stats.rst_cnt++;
1538 
1539 	/* perform reset of the stack & ae device for a client */
1540 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1541 	if (ret)
1542 		return ret;
1543 
1544 	rtnl_lock();
1545 	/* bring down the nic to stop any ongoing TX/RX */
1546 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1547 	rtnl_unlock();
1548 	if (ret)
1549 		return ret;
1550 
1551 	return hclgevf_reset_prepare_wait(hdev);
1552 }
1553 
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1554 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1555 {
1556 	int ret;
1557 
1558 	hdev->rst_stats.hw_rst_done_cnt++;
1559 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1560 	if (ret)
1561 		return ret;
1562 
1563 	rtnl_lock();
1564 	/* now, re-initialize the nic client and ae device */
1565 	ret = hclgevf_reset_stack(hdev);
1566 	rtnl_unlock();
1567 	if (ret) {
1568 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1569 		return ret;
1570 	}
1571 
1572 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1573 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1574 	 * times
1575 	 */
1576 	if (ret &&
1577 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1578 		return ret;
1579 
1580 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1581 	if (ret)
1582 		return ret;
1583 
1584 	hdev->last_reset_time = jiffies;
1585 	hdev->rst_stats.rst_done_cnt++;
1586 	hdev->rst_stats.rst_fail_cnt = 0;
1587 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1588 
1589 	return 0;
1590 }
1591 
hclgevf_reset(struct hclgevf_dev * hdev)1592 static void hclgevf_reset(struct hclgevf_dev *hdev)
1593 {
1594 	if (hclgevf_reset_prepare(hdev))
1595 		goto err_reset;
1596 
1597 	/* check if VF could successfully fetch the hardware reset completion
1598 	 * status from the hardware
1599 	 */
1600 	if (hclgevf_reset_wait(hdev)) {
1601 		/* can't do much in this situation, will disable VF */
1602 		dev_err(&hdev->pdev->dev,
1603 			"failed to fetch H/W reset completion status\n");
1604 		goto err_reset;
1605 	}
1606 
1607 	if (hclgevf_reset_rebuild(hdev))
1608 		goto err_reset;
1609 
1610 	return;
1611 
1612 err_reset:
1613 	hclgevf_reset_err_handle(hdev);
1614 }
1615 
hclgevf_get_reset_level(unsigned long * addr)1616 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1617 {
1618 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1619 
1620 	/* return the highest priority reset level amongst all */
1621 	if (test_bit(HNAE3_VF_RESET, addr)) {
1622 		rst_level = HNAE3_VF_RESET;
1623 		clear_bit(HNAE3_VF_RESET, addr);
1624 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1625 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1626 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1627 		rst_level = HNAE3_VF_FULL_RESET;
1628 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1629 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1630 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1631 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1632 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1633 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1634 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1635 		rst_level = HNAE3_VF_FUNC_RESET;
1636 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1637 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1638 		rst_level = HNAE3_FLR_RESET;
1639 		clear_bit(HNAE3_FLR_RESET, addr);
1640 	}
1641 
1642 	return rst_level;
1643 }
1644 
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1645 static void hclgevf_reset_event(struct pci_dev *pdev,
1646 				struct hnae3_handle *handle)
1647 {
1648 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1649 	struct hclgevf_dev *hdev = ae_dev->priv;
1650 
1651 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1652 
1653 	if (hdev->default_reset_request)
1654 		hdev->reset_level =
1655 			hclgevf_get_reset_level(&hdev->default_reset_request);
1656 	else
1657 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1658 
1659 	/* reset of this VF requested */
1660 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1661 	hclgevf_reset_task_schedule(hdev);
1662 
1663 	hdev->last_reset_time = jiffies;
1664 }
1665 
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1666 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1667 					  enum hnae3_reset_type rst_type)
1668 {
1669 	struct hclgevf_dev *hdev = ae_dev->priv;
1670 
1671 	set_bit(rst_type, &hdev->default_reset_request);
1672 }
1673 
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1674 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1675 {
1676 	writel(en ? 1 : 0, vector->addr);
1677 }
1678 
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1679 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1680 					  enum hnae3_reset_type rst_type)
1681 {
1682 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1683 #define HCLGEVF_RESET_RETRY_CNT		5
1684 
1685 	struct hclgevf_dev *hdev = ae_dev->priv;
1686 	int retry_cnt = 0;
1687 	int ret;
1688 
1689 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1690 		down(&hdev->reset_sem);
1691 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1692 		hdev->reset_type = rst_type;
1693 		ret = hclgevf_reset_prepare(hdev);
1694 		if (!ret && !hdev->reset_pending)
1695 			break;
1696 
1697 		dev_err(&hdev->pdev->dev,
1698 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1699 			ret, hdev->reset_pending, retry_cnt);
1700 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1701 		up(&hdev->reset_sem);
1702 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1703 	}
1704 
1705 	/* disable misc vector before reset done */
1706 	hclgevf_enable_vector(&hdev->misc_vector, false);
1707 
1708 	if (hdev->reset_type == HNAE3_FLR_RESET)
1709 		hdev->rst_stats.flr_rst_cnt++;
1710 }
1711 
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1712 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1713 {
1714 	struct hclgevf_dev *hdev = ae_dev->priv;
1715 	int ret;
1716 
1717 	hclgevf_enable_vector(&hdev->misc_vector, true);
1718 
1719 	ret = hclgevf_reset_rebuild(hdev);
1720 	if (ret)
1721 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1722 			 ret);
1723 
1724 	hdev->reset_type = HNAE3_NONE_RESET;
1725 	if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1726 		up(&hdev->reset_sem);
1727 }
1728 
hclgevf_get_fw_version(struct hnae3_handle * handle)1729 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1730 {
1731 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1732 
1733 	return hdev->fw_version;
1734 }
1735 
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1736 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1737 {
1738 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1739 
1740 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1741 					    HCLGEVF_MISC_VECTOR_NUM);
1742 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1743 	/* vector status always valid for Vector 0 */
1744 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1745 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1746 
1747 	hdev->num_msi_left -= 1;
1748 	hdev->num_msi_used += 1;
1749 }
1750 
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1751 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1752 {
1753 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1754 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1755 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1756 			      &hdev->state))
1757 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1758 }
1759 
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1760 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1761 {
1762 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1763 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1764 			      &hdev->state))
1765 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1766 }
1767 
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1768 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1769 				  unsigned long delay)
1770 {
1771 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1772 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1773 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1774 }
1775 
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1776 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1777 {
1778 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1779 
1780 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1781 		return;
1782 
1783 	down(&hdev->reset_sem);
1784 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1785 
1786 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1787 			       &hdev->reset_state)) {
1788 		/* PF has intimated that it is about to reset the hardware.
1789 		 * We now have to poll & check if hardware has actually
1790 		 * completed the reset sequence. On hardware reset completion,
1791 		 * VF needs to reset the client and ae device.
1792 		 */
1793 		hdev->reset_attempts = 0;
1794 
1795 		hdev->last_reset_time = jiffies;
1796 		hdev->reset_type =
1797 			hclgevf_get_reset_level(&hdev->reset_pending);
1798 		if (hdev->reset_type != HNAE3_NONE_RESET)
1799 			hclgevf_reset(hdev);
1800 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1801 				      &hdev->reset_state)) {
1802 		/* we could be here when either of below happens:
1803 		 * 1. reset was initiated due to watchdog timeout caused by
1804 		 *    a. IMP was earlier reset and our TX got choked down and
1805 		 *       which resulted in watchdog reacting and inducing VF
1806 		 *       reset. This also means our cmdq would be unreliable.
1807 		 *    b. problem in TX due to other lower layer(example link
1808 		 *       layer not functioning properly etc.)
1809 		 * 2. VF reset might have been initiated due to some config
1810 		 *    change.
1811 		 *
1812 		 * NOTE: Theres no clear way to detect above cases than to react
1813 		 * to the response of PF for this reset request. PF will ack the
1814 		 * 1b and 2. cases but we will not get any intimation about 1a
1815 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1816 		 * communication between PF and VF would be broken.
1817 		 *
1818 		 * if we are never geting into pending state it means either:
1819 		 * 1. PF is not receiving our request which could be due to IMP
1820 		 *    reset
1821 		 * 2. PF is screwed
1822 		 * We cannot do much for 2. but to check first we can try reset
1823 		 * our PCIe + stack and see if it alleviates the problem.
1824 		 */
1825 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1826 			/* prepare for full reset of stack + pcie interface */
1827 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1828 
1829 			/* "defer" schedule the reset task again */
1830 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1831 		} else {
1832 			hdev->reset_attempts++;
1833 
1834 			set_bit(hdev->reset_level, &hdev->reset_pending);
1835 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1836 		}
1837 		hclgevf_reset_task_schedule(hdev);
1838 	}
1839 
1840 	hdev->reset_type = HNAE3_NONE_RESET;
1841 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1842 	up(&hdev->reset_sem);
1843 }
1844 
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1845 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1846 {
1847 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1848 		return;
1849 
1850 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1851 		return;
1852 
1853 	hclgevf_mbx_async_handler(hdev);
1854 
1855 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1856 }
1857 
hclgevf_keep_alive(struct hclgevf_dev * hdev)1858 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1859 {
1860 	struct hclge_vf_to_pf_msg send_msg;
1861 	int ret;
1862 
1863 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1864 		return;
1865 
1866 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1867 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1868 	if (ret)
1869 		dev_err(&hdev->pdev->dev,
1870 			"VF sends keep alive cmd failed(=%d)\n", ret);
1871 }
1872 
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1873 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1874 {
1875 	unsigned long delta = round_jiffies_relative(HZ);
1876 	struct hnae3_handle *handle = &hdev->nic;
1877 
1878 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1879 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1880 		return;
1881 
1882 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1883 		delta = jiffies - hdev->last_serv_processed;
1884 
1885 		if (delta < round_jiffies_relative(HZ)) {
1886 			delta = round_jiffies_relative(HZ) - delta;
1887 			goto out;
1888 		}
1889 	}
1890 
1891 	hdev->serv_processed_cnt++;
1892 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1893 		hclgevf_keep_alive(hdev);
1894 
1895 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1896 		hdev->last_serv_processed = jiffies;
1897 		goto out;
1898 	}
1899 
1900 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1901 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1902 
1903 	/* VF does not need to request link status when this bit is set, because
1904 	 * PF will push its link status to VFs when link status changed.
1905 	 */
1906 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1907 		hclgevf_request_link_info(hdev);
1908 
1909 	hclgevf_update_link_mode(hdev);
1910 
1911 	hclgevf_sync_vlan_filter(hdev);
1912 
1913 	hclgevf_sync_mac_table(hdev);
1914 
1915 	hclgevf_sync_promisc_mode(hdev);
1916 
1917 	hdev->last_serv_processed = jiffies;
1918 
1919 out:
1920 	hclgevf_task_schedule(hdev, delta);
1921 }
1922 
hclgevf_service_task(struct work_struct * work)1923 static void hclgevf_service_task(struct work_struct *work)
1924 {
1925 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1926 						service_task.work);
1927 
1928 	hclgevf_reset_service_task(hdev);
1929 	hclgevf_mailbox_service_task(hdev);
1930 	hclgevf_periodic_service_task(hdev);
1931 
1932 	/* Handle reset and mbx again in case periodical task delays the
1933 	 * handling by calling hclgevf_task_schedule() in
1934 	 * hclgevf_periodic_service_task()
1935 	 */
1936 	hclgevf_reset_service_task(hdev);
1937 	hclgevf_mailbox_service_task(hdev);
1938 }
1939 
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1940 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1941 {
1942 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1943 }
1944 
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1945 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1946 						      u32 *clearval)
1947 {
1948 	u32 val, cmdq_stat_reg, rst_ing_reg;
1949 
1950 	/* fetch the events from their corresponding regs */
1951 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1952 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1953 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1954 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1955 		dev_info(&hdev->pdev->dev,
1956 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1957 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1958 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1959 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1960 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1961 		hdev->rst_stats.vf_rst_cnt++;
1962 		/* set up VF hardware reset status, its PF will clear
1963 		 * this status when PF has initialized done.
1964 		 */
1965 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1966 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1967 				  val | HCLGEVF_VF_RST_ING_BIT);
1968 		return HCLGEVF_VECTOR0_EVENT_RST;
1969 	}
1970 
1971 	/* check for vector0 mailbox(=CMDQ RX) event source */
1972 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1973 		/* for revision 0x21, clearing interrupt is writing bit 0
1974 		 * to the clear register, writing bit 1 means to keep the
1975 		 * old value.
1976 		 * for revision 0x20, the clear register is a read & write
1977 		 * register, so we should just write 0 to the bit we are
1978 		 * handling, and keep other bits as cmdq_stat_reg.
1979 		 */
1980 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1981 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1982 		else
1983 			*clearval = cmdq_stat_reg &
1984 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1985 
1986 		return HCLGEVF_VECTOR0_EVENT_MBX;
1987 	}
1988 
1989 	/* print other vector0 event source */
1990 	dev_info(&hdev->pdev->dev,
1991 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
1992 		 cmdq_stat_reg);
1993 
1994 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1995 }
1996 
hclgevf_reset_timer(struct timer_list * t)1997 static void hclgevf_reset_timer(struct timer_list *t)
1998 {
1999 	struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2000 
2001 	hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2002 	hclgevf_reset_task_schedule(hdev);
2003 }
2004 
hclgevf_misc_irq_handle(int irq,void * data)2005 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2006 {
2007 #define HCLGEVF_RESET_DELAY	5
2008 
2009 	enum hclgevf_evt_cause event_cause;
2010 	struct hclgevf_dev *hdev = data;
2011 	u32 clearval;
2012 
2013 	hclgevf_enable_vector(&hdev->misc_vector, false);
2014 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2015 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2016 		hclgevf_clear_event_cause(hdev, clearval);
2017 
2018 	switch (event_cause) {
2019 	case HCLGEVF_VECTOR0_EVENT_RST:
2020 		mod_timer(&hdev->reset_timer,
2021 			  jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2022 		break;
2023 	case HCLGEVF_VECTOR0_EVENT_MBX:
2024 		hclgevf_mbx_handler(hdev);
2025 		break;
2026 	default:
2027 		break;
2028 	}
2029 
2030 	hclgevf_enable_vector(&hdev->misc_vector, true);
2031 
2032 	return IRQ_HANDLED;
2033 }
2034 
hclgevf_configure(struct hclgevf_dev * hdev)2035 static int hclgevf_configure(struct hclgevf_dev *hdev)
2036 {
2037 	int ret;
2038 
2039 	hdev->gro_en = true;
2040 
2041 	ret = hclgevf_get_basic_info(hdev);
2042 	if (ret)
2043 		return ret;
2044 
2045 	/* get current port based vlan state from PF */
2046 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2047 	if (ret)
2048 		return ret;
2049 
2050 	/* get queue configuration from PF */
2051 	ret = hclgevf_get_queue_info(hdev);
2052 	if (ret)
2053 		return ret;
2054 
2055 	/* get queue depth info from PF */
2056 	ret = hclgevf_get_queue_depth(hdev);
2057 	if (ret)
2058 		return ret;
2059 
2060 	return hclgevf_get_pf_media_type(hdev);
2061 }
2062 
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2063 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2064 {
2065 	struct pci_dev *pdev = ae_dev->pdev;
2066 	struct hclgevf_dev *hdev;
2067 
2068 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2069 	if (!hdev)
2070 		return -ENOMEM;
2071 
2072 	hdev->pdev = pdev;
2073 	hdev->ae_dev = ae_dev;
2074 	ae_dev->priv = hdev;
2075 
2076 	return 0;
2077 }
2078 
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2079 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2080 {
2081 	struct hnae3_handle *roce = &hdev->roce;
2082 	struct hnae3_handle *nic = &hdev->nic;
2083 
2084 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2085 
2086 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2087 	    hdev->num_msi_left == 0)
2088 		return -EINVAL;
2089 
2090 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2091 
2092 	roce->rinfo.netdev = nic->kinfo.netdev;
2093 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2094 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2095 
2096 	roce->pdev = nic->pdev;
2097 	roce->ae_algo = nic->ae_algo;
2098 	bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2099 		    MAX_NUMNODES);
2100 	return 0;
2101 }
2102 
hclgevf_config_gro(struct hclgevf_dev * hdev)2103 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2104 {
2105 	struct hclgevf_cfg_gro_status_cmd *req;
2106 	struct hclge_desc desc;
2107 	int ret;
2108 
2109 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2110 		return 0;
2111 
2112 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2113 				     false);
2114 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2115 
2116 	req->gro_en = hdev->gro_en ? 1 : 0;
2117 
2118 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2119 	if (ret)
2120 		dev_err(&hdev->pdev->dev,
2121 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2122 
2123 	return ret;
2124 }
2125 
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2126 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2127 {
2128 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2129 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2130 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2131 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2132 	int ret;
2133 
2134 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2135 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2136 						  rss_cfg->rss_algo,
2137 						  rss_cfg->rss_hash_key);
2138 		if (ret)
2139 			return ret;
2140 
2141 		ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2142 		if (ret)
2143 			return ret;
2144 	}
2145 
2146 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2147 					     rss_cfg->rss_indirection_tbl);
2148 	if (ret)
2149 		return ret;
2150 
2151 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2152 				   tc_offset, tc_valid, tc_size);
2153 
2154 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2155 					  tc_valid, tc_size);
2156 }
2157 
hclgevf_init_vlan_config(struct hclgevf_dev * hdev,bool rxvtag_strip_en)2158 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev,
2159 				    bool rxvtag_strip_en)
2160 {
2161 	struct hnae3_handle *nic = &hdev->nic;
2162 	int ret;
2163 
2164 	ret = hclgevf_en_hw_strip_rxvtag(nic, rxvtag_strip_en);
2165 	if (ret) {
2166 		dev_err(&hdev->pdev->dev,
2167 			"failed to enable rx vlan offload, ret = %d\n", ret);
2168 		return ret;
2169 	}
2170 
2171 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2172 				       false);
2173 }
2174 
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2175 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2176 {
2177 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2178 
2179 	unsigned long last = hdev->serv_processed_cnt;
2180 	int i = 0;
2181 
2182 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2183 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2184 	       last == hdev->serv_processed_cnt)
2185 		usleep_range(1, 1);
2186 }
2187 
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2188 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2189 {
2190 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2191 
2192 	if (enable) {
2193 		hclgevf_task_schedule(hdev, 0);
2194 	} else {
2195 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2196 
2197 		smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2198 		hclgevf_flush_link_update(hdev);
2199 	}
2200 }
2201 
hclgevf_ae_start(struct hnae3_handle * handle)2202 static int hclgevf_ae_start(struct hnae3_handle *handle)
2203 {
2204 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2205 
2206 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2207 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2208 
2209 	hclge_comm_reset_tqp_stats(handle);
2210 
2211 	hclgevf_request_link_info(hdev);
2212 
2213 	hclgevf_update_link_mode(hdev);
2214 
2215 	return 0;
2216 }
2217 
hclgevf_ae_stop(struct hnae3_handle * handle)2218 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2219 {
2220 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2221 
2222 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2223 
2224 	if (hdev->reset_type != HNAE3_VF_RESET)
2225 		hclgevf_reset_tqp(handle);
2226 
2227 	hclge_comm_reset_tqp_stats(handle);
2228 	hclgevf_update_link_status(hdev, 0);
2229 }
2230 
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2231 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2232 {
2233 #define HCLGEVF_STATE_ALIVE	1
2234 #define HCLGEVF_STATE_NOT_ALIVE	0
2235 
2236 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2237 	struct hclge_vf_to_pf_msg send_msg;
2238 
2239 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2240 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2241 				HCLGEVF_STATE_NOT_ALIVE;
2242 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2243 }
2244 
hclgevf_client_start(struct hnae3_handle * handle)2245 static int hclgevf_client_start(struct hnae3_handle *handle)
2246 {
2247 	return hclgevf_set_alive(handle, true);
2248 }
2249 
hclgevf_client_stop(struct hnae3_handle * handle)2250 static void hclgevf_client_stop(struct hnae3_handle *handle)
2251 {
2252 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2253 	int ret;
2254 
2255 	ret = hclgevf_set_alive(handle, false);
2256 	if (ret)
2257 		dev_warn(&hdev->pdev->dev,
2258 			 "%s failed %d\n", __func__, ret);
2259 }
2260 
hclgevf_state_init(struct hclgevf_dev * hdev)2261 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2262 {
2263 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2264 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2265 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2266 
2267 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2268 
2269 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2270 	sema_init(&hdev->reset_sem, 1);
2271 
2272 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2273 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2274 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2275 
2276 	/* bring the device down */
2277 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2278 }
2279 
hclgevf_state_uninit(struct hclgevf_dev * hdev)2280 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2281 {
2282 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2283 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2284 
2285 	if (hdev->service_task.work.func)
2286 		cancel_delayed_work_sync(&hdev->service_task);
2287 
2288 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2289 }
2290 
hclgevf_init_msi(struct hclgevf_dev * hdev)2291 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2292 {
2293 	struct pci_dev *pdev = hdev->pdev;
2294 	int vectors;
2295 	int i;
2296 
2297 	if (hnae3_dev_roce_supported(hdev))
2298 		vectors = pci_alloc_irq_vectors(pdev,
2299 						hdev->roce_base_msix_offset + 1,
2300 						hdev->num_msi,
2301 						PCI_IRQ_MSIX);
2302 	else
2303 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2304 						hdev->num_msi,
2305 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2306 
2307 	if (vectors < 0) {
2308 		dev_err(&pdev->dev,
2309 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2310 			vectors);
2311 		return vectors;
2312 	}
2313 	if (vectors < hdev->num_msi)
2314 		dev_warn(&hdev->pdev->dev,
2315 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2316 			 hdev->num_msi, vectors);
2317 
2318 	hdev->num_msi = vectors;
2319 	hdev->num_msi_left = vectors;
2320 
2321 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2322 					   sizeof(u16), GFP_KERNEL);
2323 	if (!hdev->vector_status) {
2324 		pci_free_irq_vectors(pdev);
2325 		return -ENOMEM;
2326 	}
2327 
2328 	for (i = 0; i < hdev->num_msi; i++)
2329 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2330 
2331 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2332 					sizeof(int), GFP_KERNEL);
2333 	if (!hdev->vector_irq) {
2334 		devm_kfree(&pdev->dev, hdev->vector_status);
2335 		pci_free_irq_vectors(pdev);
2336 		return -ENOMEM;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2342 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2343 {
2344 	struct pci_dev *pdev = hdev->pdev;
2345 
2346 	devm_kfree(&pdev->dev, hdev->vector_status);
2347 	devm_kfree(&pdev->dev, hdev->vector_irq);
2348 	pci_free_irq_vectors(pdev);
2349 }
2350 
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2351 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2352 {
2353 	int ret;
2354 
2355 	hclgevf_get_misc_vector(hdev);
2356 
2357 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2358 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2359 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2360 			  0, hdev->misc_vector.name, hdev);
2361 	if (ret) {
2362 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2363 			hdev->misc_vector.vector_irq);
2364 		return ret;
2365 	}
2366 
2367 	hclgevf_clear_event_cause(hdev, 0);
2368 
2369 	/* enable misc. vector(vector 0) */
2370 	hclgevf_enable_vector(&hdev->misc_vector, true);
2371 
2372 	return ret;
2373 }
2374 
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2375 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2376 {
2377 	/* disable misc vector(vector 0) */
2378 	hclgevf_enable_vector(&hdev->misc_vector, false);
2379 	synchronize_irq(hdev->misc_vector.vector_irq);
2380 	free_irq(hdev->misc_vector.vector_irq, hdev);
2381 	hclgevf_free_vector(hdev, 0);
2382 }
2383 
hclgevf_info_show(struct hclgevf_dev * hdev)2384 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2385 {
2386 	struct device *dev = &hdev->pdev->dev;
2387 
2388 	dev_info(dev, "VF info begin:\n");
2389 
2390 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2391 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2392 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2393 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2394 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2395 	dev_info(dev, "PF media type of this VF: %u\n",
2396 		 hdev->hw.mac.media_type);
2397 
2398 	dev_info(dev, "VF info end.\n");
2399 }
2400 
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2401 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2402 					    struct hnae3_client *client)
2403 {
2404 	struct hclgevf_dev *hdev = ae_dev->priv;
2405 	int rst_cnt = hdev->rst_stats.rst_cnt;
2406 	int ret;
2407 
2408 	ret = client->ops->init_instance(&hdev->nic);
2409 	if (ret)
2410 		return ret;
2411 
2412 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2413 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2414 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2415 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2416 
2417 		client->ops->uninit_instance(&hdev->nic, 0);
2418 		return -EBUSY;
2419 	}
2420 
2421 	hnae3_set_client_init_flag(client, ae_dev, 1);
2422 
2423 	if (netif_msg_drv(&hdev->nic))
2424 		hclgevf_info_show(hdev);
2425 
2426 	return 0;
2427 }
2428 
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2429 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2430 					     struct hnae3_client *client)
2431 {
2432 	struct hclgevf_dev *hdev = ae_dev->priv;
2433 	int ret;
2434 
2435 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2436 	    !hdev->nic_client)
2437 		return 0;
2438 
2439 	ret = hclgevf_init_roce_base_info(hdev);
2440 	if (ret)
2441 		return ret;
2442 
2443 	ret = client->ops->init_instance(&hdev->roce);
2444 	if (ret)
2445 		return ret;
2446 
2447 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2448 	hnae3_set_client_init_flag(client, ae_dev, 1);
2449 
2450 	return 0;
2451 }
2452 
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2453 static int hclgevf_init_client_instance(struct hnae3_client *client,
2454 					struct hnae3_ae_dev *ae_dev)
2455 {
2456 	struct hclgevf_dev *hdev = ae_dev->priv;
2457 	int ret;
2458 
2459 	switch (client->type) {
2460 	case HNAE3_CLIENT_KNIC:
2461 		hdev->nic_client = client;
2462 		hdev->nic.client = client;
2463 
2464 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2465 		if (ret)
2466 			goto clear_nic;
2467 
2468 		ret = hclgevf_init_roce_client_instance(ae_dev,
2469 							hdev->roce_client);
2470 		if (ret)
2471 			goto clear_roce;
2472 
2473 		break;
2474 	case HNAE3_CLIENT_ROCE:
2475 		if (hnae3_dev_roce_supported(hdev)) {
2476 			hdev->roce_client = client;
2477 			hdev->roce.client = client;
2478 		}
2479 
2480 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2481 		if (ret)
2482 			goto clear_roce;
2483 
2484 		break;
2485 	default:
2486 		return -EINVAL;
2487 	}
2488 
2489 	return 0;
2490 
2491 clear_nic:
2492 	hdev->nic_client = NULL;
2493 	hdev->nic.client = NULL;
2494 	return ret;
2495 clear_roce:
2496 	hdev->roce_client = NULL;
2497 	hdev->roce.client = NULL;
2498 	return ret;
2499 }
2500 
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2501 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2502 					   struct hnae3_ae_dev *ae_dev)
2503 {
2504 	struct hclgevf_dev *hdev = ae_dev->priv;
2505 
2506 	/* un-init roce, if it exists */
2507 	if (hdev->roce_client) {
2508 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2509 			msleep(HCLGEVF_WAIT_RESET_DONE);
2510 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2511 
2512 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2513 		hdev->roce_client = NULL;
2514 		hdev->roce.client = NULL;
2515 	}
2516 
2517 	/* un-init nic/unic, if this was not called by roce client */
2518 	if (client->ops->uninit_instance && hdev->nic_client &&
2519 	    client->type != HNAE3_CLIENT_ROCE) {
2520 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2521 			msleep(HCLGEVF_WAIT_RESET_DONE);
2522 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2523 
2524 		client->ops->uninit_instance(&hdev->nic, 0);
2525 		hdev->nic_client = NULL;
2526 		hdev->nic.client = NULL;
2527 	}
2528 }
2529 
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2530 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2531 {
2532 	struct pci_dev *pdev = hdev->pdev;
2533 	struct hclgevf_hw *hw = &hdev->hw;
2534 
2535 	/* for device does not have device memory, return directly */
2536 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2537 		return 0;
2538 
2539 	hw->hw.mem_base =
2540 		devm_ioremap_wc(&pdev->dev,
2541 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2542 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2543 	if (!hw->hw.mem_base) {
2544 		dev_err(&pdev->dev, "failed to map device memory\n");
2545 		return -EFAULT;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
hclgevf_pci_init(struct hclgevf_dev * hdev)2551 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2552 {
2553 	struct pci_dev *pdev = hdev->pdev;
2554 	struct hclgevf_hw *hw;
2555 	int ret;
2556 
2557 	ret = pci_enable_device(pdev);
2558 	if (ret) {
2559 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2560 		return ret;
2561 	}
2562 
2563 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2564 	if (ret) {
2565 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2566 		goto err_disable_device;
2567 	}
2568 
2569 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2570 	if (ret) {
2571 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2572 		goto err_disable_device;
2573 	}
2574 
2575 	pci_set_master(pdev);
2576 	hw = &hdev->hw;
2577 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2578 	if (!hw->hw.io_base) {
2579 		dev_err(&pdev->dev, "can't map configuration register space\n");
2580 		ret = -ENOMEM;
2581 		goto err_release_regions;
2582 	}
2583 
2584 	ret = hclgevf_dev_mem_map(hdev);
2585 	if (ret)
2586 		goto err_unmap_io_base;
2587 
2588 	return 0;
2589 
2590 err_unmap_io_base:
2591 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2592 err_release_regions:
2593 	pci_release_regions(pdev);
2594 err_disable_device:
2595 	pci_disable_device(pdev);
2596 
2597 	return ret;
2598 }
2599 
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2600 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2601 {
2602 	struct pci_dev *pdev = hdev->pdev;
2603 
2604 	if (hdev->hw.hw.mem_base)
2605 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2606 
2607 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2608 	pci_release_regions(pdev);
2609 	pci_disable_device(pdev);
2610 }
2611 
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2612 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2613 {
2614 	struct hclgevf_query_res_cmd *req;
2615 	struct hclge_desc desc;
2616 	int ret;
2617 
2618 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2619 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2620 	if (ret) {
2621 		dev_err(&hdev->pdev->dev,
2622 			"query vf resource failed, ret = %d.\n", ret);
2623 		return ret;
2624 	}
2625 
2626 	req = (struct hclgevf_query_res_cmd *)desc.data;
2627 
2628 	if (hnae3_dev_roce_supported(hdev)) {
2629 		hdev->roce_base_msix_offset =
2630 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2631 				HCLGEVF_MSIX_OFT_ROCEE_M,
2632 				HCLGEVF_MSIX_OFT_ROCEE_S);
2633 		hdev->num_roce_msix =
2634 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2635 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2636 
2637 		/* nic's msix numbers is always equals to the roce's. */
2638 		hdev->num_nic_msix = hdev->num_roce_msix;
2639 
2640 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2641 		 * are queued before Roce vectors. The offset is fixed to 64.
2642 		 */
2643 		hdev->num_msi = hdev->num_roce_msix +
2644 				hdev->roce_base_msix_offset;
2645 	} else {
2646 		hdev->num_msi =
2647 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2648 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2649 
2650 		hdev->num_nic_msix = hdev->num_msi;
2651 	}
2652 
2653 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2654 		dev_err(&hdev->pdev->dev,
2655 			"Just %u msi resources, not enough for vf(min:2).\n",
2656 			hdev->num_nic_msix);
2657 		return -EINVAL;
2658 	}
2659 
2660 	return 0;
2661 }
2662 
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2663 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2664 {
2665 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2666 
2667 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2668 
2669 	ae_dev->dev_specs.max_non_tso_bd_num =
2670 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2671 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2672 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2673 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2674 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2675 }
2676 
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2677 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2678 				    struct hclge_desc *desc)
2679 {
2680 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2681 	struct hclgevf_dev_specs_0_cmd *req0;
2682 	struct hclgevf_dev_specs_1_cmd *req1;
2683 
2684 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2685 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2686 
2687 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2688 	ae_dev->dev_specs.rss_ind_tbl_size =
2689 					le16_to_cpu(req0->rss_ind_tbl_size);
2690 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2691 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2692 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2693 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2694 }
2695 
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2696 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2697 {
2698 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2699 
2700 	if (!dev_specs->max_non_tso_bd_num)
2701 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2702 	if (!dev_specs->rss_ind_tbl_size)
2703 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2704 	if (!dev_specs->rss_key_size)
2705 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2706 	if (!dev_specs->max_int_gl)
2707 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2708 	if (!dev_specs->max_frm_size)
2709 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2710 }
2711 
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2712 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2713 {
2714 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2715 	int ret;
2716 	int i;
2717 
2718 	/* set default specifications as devices lower than version V3 do not
2719 	 * support querying specifications from firmware.
2720 	 */
2721 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2722 		hclgevf_set_default_dev_specs(hdev);
2723 		return 0;
2724 	}
2725 
2726 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2727 		hclgevf_cmd_setup_basic_desc(&desc[i],
2728 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2729 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2730 	}
2731 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2732 
2733 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2734 	if (ret)
2735 		return ret;
2736 
2737 	hclgevf_parse_dev_specs(hdev, desc);
2738 	hclgevf_check_dev_specs(hdev);
2739 
2740 	return 0;
2741 }
2742 
hclgevf_pci_reset(struct hclgevf_dev * hdev)2743 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2744 {
2745 	struct pci_dev *pdev = hdev->pdev;
2746 	int ret = 0;
2747 
2748 	if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2749 	     hdev->reset_type == HNAE3_FLR_RESET) &&
2750 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2751 		hclgevf_misc_irq_uninit(hdev);
2752 		hclgevf_uninit_msi(hdev);
2753 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2754 	}
2755 
2756 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2757 		pci_set_master(pdev);
2758 		ret = hclgevf_init_msi(hdev);
2759 		if (ret) {
2760 			dev_err(&pdev->dev,
2761 				"failed(%d) to init MSI/MSI-X\n", ret);
2762 			return ret;
2763 		}
2764 
2765 		ret = hclgevf_misc_irq_init(hdev);
2766 		if (ret) {
2767 			hclgevf_uninit_msi(hdev);
2768 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2769 				ret);
2770 			return ret;
2771 		}
2772 
2773 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2774 	}
2775 
2776 	return ret;
2777 }
2778 
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2779 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2780 {
2781 	struct hclge_vf_to_pf_msg send_msg;
2782 
2783 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2784 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2785 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2786 }
2787 
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2788 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2789 {
2790 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2791 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2792 }
2793 
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2794 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2795 {
2796 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2797 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2798 }
2799 
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2800 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2801 {
2802 	struct pci_dev *pdev = hdev->pdev;
2803 	int ret;
2804 
2805 	ret = hclgevf_pci_reset(hdev);
2806 	if (ret) {
2807 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2808 		return ret;
2809 	}
2810 
2811 	hclgevf_arq_init(hdev);
2812 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2813 				  &hdev->fw_version, false,
2814 				  hdev->reset_pending);
2815 	if (ret) {
2816 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2817 		return ret;
2818 	}
2819 
2820 	ret = hclgevf_rss_init_hw(hdev);
2821 	if (ret) {
2822 		dev_err(&hdev->pdev->dev,
2823 			"failed(%d) to initialize RSS\n", ret);
2824 		return ret;
2825 	}
2826 
2827 	ret = hclgevf_config_gro(hdev);
2828 	if (ret)
2829 		return ret;
2830 
2831 	ret = hclgevf_init_vlan_config(hdev, hdev->rxvtag_strip_en);
2832 	if (ret) {
2833 		dev_err(&hdev->pdev->dev,
2834 			"failed(%d) to initialize VLAN config\n", ret);
2835 		return ret;
2836 	}
2837 
2838 	/* get current port based vlan state from PF */
2839 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2840 	if (ret)
2841 		return ret;
2842 
2843 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2844 
2845 	hclgevf_init_rxd_adv_layout(hdev);
2846 
2847 	dev_info(&hdev->pdev->dev, "Reset done\n");
2848 
2849 	return 0;
2850 }
2851 
hclgevf_init_hdev(struct hclgevf_dev * hdev)2852 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2853 {
2854 	struct pci_dev *pdev = hdev->pdev;
2855 	int ret;
2856 
2857 	ret = hclgevf_pci_init(hdev);
2858 	if (ret)
2859 		return ret;
2860 
2861 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2862 	if (ret)
2863 		goto err_cmd_queue_init;
2864 
2865 	hclgevf_arq_init(hdev);
2866 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2867 				  &hdev->fw_version, false,
2868 				  hdev->reset_pending);
2869 	if (ret)
2870 		goto err_cmd_init;
2871 
2872 	/* Get vf resource */
2873 	ret = hclgevf_query_vf_resource(hdev);
2874 	if (ret)
2875 		goto err_cmd_init;
2876 
2877 	ret = hclgevf_query_dev_specs(hdev);
2878 	if (ret) {
2879 		dev_err(&pdev->dev,
2880 			"failed to query dev specifications, ret = %d\n", ret);
2881 		goto err_cmd_init;
2882 	}
2883 
2884 	ret = hclgevf_init_msi(hdev);
2885 	if (ret) {
2886 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2887 		goto err_cmd_init;
2888 	}
2889 
2890 	hclgevf_state_init(hdev);
2891 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2892 	hdev->reset_type = HNAE3_NONE_RESET;
2893 
2894 	ret = hclgevf_misc_irq_init(hdev);
2895 	if (ret)
2896 		goto err_misc_irq_init;
2897 
2898 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2899 
2900 	ret = hclgevf_configure(hdev);
2901 	if (ret) {
2902 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2903 		goto err_config;
2904 	}
2905 
2906 	ret = hclgevf_alloc_tqps(hdev);
2907 	if (ret) {
2908 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2909 		goto err_config;
2910 	}
2911 
2912 	ret = hclgevf_set_handle_info(hdev);
2913 	if (ret)
2914 		goto err_config;
2915 
2916 	ret = hclgevf_config_gro(hdev);
2917 	if (ret)
2918 		goto err_config;
2919 
2920 	/* Initialize RSS for this VF */
2921 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2922 				      &hdev->rss_cfg);
2923 	if (ret) {
2924 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2925 		goto err_config;
2926 	}
2927 
2928 	ret = hclgevf_rss_init_hw(hdev);
2929 	if (ret) {
2930 		dev_err(&hdev->pdev->dev,
2931 			"failed(%d) to initialize RSS\n", ret);
2932 		goto err_config;
2933 	}
2934 
2935 	/* ensure vf tbl list as empty before init */
2936 	ret = hclgevf_clear_vport_list(hdev);
2937 	if (ret) {
2938 		dev_err(&pdev->dev,
2939 			"failed to clear tbl list configuration, ret = %d.\n",
2940 			ret);
2941 		goto err_config;
2942 	}
2943 
2944 	ret = hclgevf_init_vlan_config(hdev, true);
2945 	if (ret) {
2946 		dev_err(&hdev->pdev->dev,
2947 			"failed(%d) to initialize VLAN config\n", ret);
2948 		goto err_config;
2949 	}
2950 
2951 	hclgevf_init_rxd_adv_layout(hdev);
2952 
2953 	ret = hclgevf_devlink_init(hdev);
2954 	if (ret)
2955 		goto err_config;
2956 
2957 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2958 
2959 	hdev->last_reset_time = jiffies;
2960 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2961 		 HCLGEVF_DRIVER_NAME);
2962 
2963 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2964 	timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2965 
2966 	return 0;
2967 
2968 err_config:
2969 	hclgevf_misc_irq_uninit(hdev);
2970 err_misc_irq_init:
2971 	hclgevf_state_uninit(hdev);
2972 	hclgevf_uninit_msi(hdev);
2973 err_cmd_init:
2974 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2975 err_cmd_queue_init:
2976 	hclgevf_pci_uninit(hdev);
2977 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2978 	return ret;
2979 }
2980 
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)2981 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2982 {
2983 	struct hclge_vf_to_pf_msg send_msg;
2984 
2985 	hclgevf_state_uninit(hdev);
2986 	hclgevf_uninit_rxd_adv_layout(hdev);
2987 
2988 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
2989 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2990 
2991 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2992 		hclgevf_misc_irq_uninit(hdev);
2993 		hclgevf_uninit_msi(hdev);
2994 	}
2995 
2996 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2997 	hclgevf_devlink_uninit(hdev);
2998 	hclgevf_pci_uninit(hdev);
2999 	hclgevf_uninit_mac_list(hdev);
3000 }
3001 
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3002 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3003 {
3004 	struct pci_dev *pdev = ae_dev->pdev;
3005 	int ret;
3006 
3007 	ret = hclgevf_alloc_hdev(ae_dev);
3008 	if (ret) {
3009 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3010 		return ret;
3011 	}
3012 
3013 	ret = hclgevf_init_hdev(ae_dev->priv);
3014 	if (ret) {
3015 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3016 		return ret;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3022 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3023 {
3024 	struct hclgevf_dev *hdev = ae_dev->priv;
3025 
3026 	hclgevf_uninit_hdev(hdev);
3027 	ae_dev->priv = NULL;
3028 }
3029 
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3030 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3031 {
3032 	struct hnae3_handle *nic = &hdev->nic;
3033 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3034 
3035 	return min_t(u32, hdev->rss_size_max,
3036 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3037 }
3038 
3039 /**
3040  * hclgevf_get_channels - Get the current channels enabled and max supported.
3041  * @handle: hardware information for network interface
3042  * @ch: ethtool channels structure
3043  *
3044  * We don't support separate tx and rx queues as channels. The other count
3045  * represents how many queues are being used for control. max_combined counts
3046  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3047  * q_vectors since we support a lot more queue pairs than q_vectors.
3048  **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3049 static void hclgevf_get_channels(struct hnae3_handle *handle,
3050 				 struct ethtool_channels *ch)
3051 {
3052 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3053 
3054 	ch->max_combined = hclgevf_get_max_channels(hdev);
3055 	ch->other_count = 0;
3056 	ch->max_other = 0;
3057 	ch->combined_count = handle->kinfo.rss_size;
3058 }
3059 
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3060 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3061 					  u16 *alloc_tqps, u16 *max_rss_size)
3062 {
3063 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3064 
3065 	*alloc_tqps = hdev->num_tqps;
3066 	*max_rss_size = hdev->rss_size_max;
3067 }
3068 
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3069 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3070 				    u32 new_tqps_num)
3071 {
3072 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3074 	u16 max_rss_size;
3075 
3076 	kinfo->req_rss_size = new_tqps_num;
3077 
3078 	max_rss_size = min_t(u16, hdev->rss_size_max,
3079 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3080 
3081 	/* Use the user's configuration when it is not larger than
3082 	 * max_rss_size, otherwise, use the maximum specification value.
3083 	 */
3084 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3085 	    kinfo->req_rss_size <= max_rss_size)
3086 		kinfo->rss_size = kinfo->req_rss_size;
3087 	else if (kinfo->rss_size > max_rss_size ||
3088 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3089 		kinfo->rss_size = max_rss_size;
3090 
3091 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3092 }
3093 
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3094 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3095 				bool rxfh_configured)
3096 {
3097 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3098 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3099 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3100 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3101 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3102 	u16 cur_rss_size = kinfo->rss_size;
3103 	u16 cur_tqps = kinfo->num_tqps;
3104 	u32 *rss_indir;
3105 	unsigned int i;
3106 	int ret;
3107 
3108 	hclgevf_update_rss_size(handle, new_tqps_num);
3109 
3110 	hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3111 				   tc_offset, tc_valid, tc_size);
3112 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3113 					 tc_valid, tc_size);
3114 	if (ret)
3115 		return ret;
3116 
3117 	/* RSS indirection table has been configured by user */
3118 	if (rxfh_configured)
3119 		goto out;
3120 
3121 	/* Reinitializes the rss indirect table according to the new RSS size */
3122 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3123 			    sizeof(u32), GFP_KERNEL);
3124 	if (!rss_indir)
3125 		return -ENOMEM;
3126 
3127 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3128 		rss_indir[i] = i % kinfo->rss_size;
3129 
3130 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3131 
3132 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3133 	if (ret)
3134 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3135 			ret);
3136 
3137 	kfree(rss_indir);
3138 
3139 out:
3140 	if (!ret)
3141 		dev_info(&hdev->pdev->dev,
3142 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3143 			 cur_rss_size, kinfo->rss_size,
3144 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3145 
3146 	return ret;
3147 }
3148 
hclgevf_get_status(struct hnae3_handle * handle)3149 static int hclgevf_get_status(struct hnae3_handle *handle)
3150 {
3151 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3152 
3153 	return hdev->hw.mac.link;
3154 }
3155 
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3156 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3157 					    u8 *auto_neg, u32 *speed,
3158 					    u8 *duplex, u32 *lane_num)
3159 {
3160 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3161 
3162 	if (speed)
3163 		*speed = hdev->hw.mac.speed;
3164 	if (duplex)
3165 		*duplex = hdev->hw.mac.duplex;
3166 	if (auto_neg)
3167 		*auto_neg = AUTONEG_DISABLE;
3168 }
3169 
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3170 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3171 				 u8 duplex)
3172 {
3173 	hdev->hw.mac.speed = speed;
3174 	hdev->hw.mac.duplex = duplex;
3175 }
3176 
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3177 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3178 {
3179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3180 	bool gro_en_old = hdev->gro_en;
3181 	int ret;
3182 
3183 	hdev->gro_en = enable;
3184 	ret = hclgevf_config_gro(hdev);
3185 	if (ret)
3186 		hdev->gro_en = gro_en_old;
3187 
3188 	return ret;
3189 }
3190 
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3191 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3192 				   u8 *module_type)
3193 {
3194 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3195 
3196 	if (media_type)
3197 		*media_type = hdev->hw.mac.media_type;
3198 
3199 	if (module_type)
3200 		*module_type = hdev->hw.mac.module_type;
3201 }
3202 
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3203 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3204 {
3205 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3206 
3207 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3208 }
3209 
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3210 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3211 {
3212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3213 
3214 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3215 }
3216 
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3217 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3218 {
3219 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3220 
3221 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3222 }
3223 
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3224 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3225 {
3226 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3227 
3228 	return hdev->rst_stats.hw_rst_done_cnt;
3229 }
3230 
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3231 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3232 				  unsigned long *supported,
3233 				  unsigned long *advertising)
3234 {
3235 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3236 
3237 	*supported = hdev->hw.mac.supported;
3238 	*advertising = hdev->hw.mac.advertising;
3239 }
3240 
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3241 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3242 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3243 {
3244 	struct hnae3_handle *nic = &hdev->nic;
3245 	struct hclge_vf_to_pf_msg send_msg;
3246 	int ret;
3247 
3248 	rtnl_lock();
3249 
3250 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3251 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3252 		dev_warn(&hdev->pdev->dev,
3253 			 "is resetting when updating port based vlan info\n");
3254 		rtnl_unlock();
3255 		return;
3256 	}
3257 
3258 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3259 	if (ret) {
3260 		rtnl_unlock();
3261 		return;
3262 	}
3263 
3264 	/* send msg to PF and wait update port based vlan info */
3265 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3266 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3267 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3268 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3269 	if (!ret) {
3270 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3271 			nic->port_base_vlan_state = state;
3272 		else
3273 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3274 	}
3275 
3276 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3277 	rtnl_unlock();
3278 }
3279 
3280 static const struct hnae3_ae_ops hclgevf_ops = {
3281 	.init_ae_dev = hclgevf_init_ae_dev,
3282 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3283 	.reset_prepare = hclgevf_reset_prepare_general,
3284 	.reset_done = hclgevf_reset_done,
3285 	.init_client_instance = hclgevf_init_client_instance,
3286 	.uninit_client_instance = hclgevf_uninit_client_instance,
3287 	.start = hclgevf_ae_start,
3288 	.stop = hclgevf_ae_stop,
3289 	.client_start = hclgevf_client_start,
3290 	.client_stop = hclgevf_client_stop,
3291 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3292 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3293 	.get_vector = hclgevf_get_vector,
3294 	.put_vector = hclgevf_put_vector,
3295 	.reset_queue = hclgevf_reset_tqp,
3296 	.get_mac_addr = hclgevf_get_mac_addr,
3297 	.set_mac_addr = hclgevf_set_mac_addr,
3298 	.add_uc_addr = hclgevf_add_uc_addr,
3299 	.rm_uc_addr = hclgevf_rm_uc_addr,
3300 	.add_mc_addr = hclgevf_add_mc_addr,
3301 	.rm_mc_addr = hclgevf_rm_mc_addr,
3302 	.get_stats = hclgevf_get_stats,
3303 	.update_stats = hclgevf_update_stats,
3304 	.get_strings = hclgevf_get_strings,
3305 	.get_sset_count = hclgevf_get_sset_count,
3306 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3307 	.get_rss = hclgevf_get_rss,
3308 	.set_rss = hclgevf_set_rss,
3309 	.get_rss_tuple = hclgevf_get_rss_tuple,
3310 	.set_rss_tuple = hclgevf_set_rss_tuple,
3311 	.get_tc_size = hclgevf_get_tc_size,
3312 	.get_fw_version = hclgevf_get_fw_version,
3313 	.set_vlan_filter = hclgevf_set_vlan_filter,
3314 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3315 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3316 	.reset_event = hclgevf_reset_event,
3317 	.set_default_reset_request = hclgevf_set_def_reset_request,
3318 	.set_channels = hclgevf_set_channels,
3319 	.get_channels = hclgevf_get_channels,
3320 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3321 	.get_regs_len = hclgevf_get_regs_len,
3322 	.get_regs = hclgevf_get_regs,
3323 	.get_status = hclgevf_get_status,
3324 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3325 	.get_media_type = hclgevf_get_media_type,
3326 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3327 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3328 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3329 	.set_gro_en = hclgevf_gro_en,
3330 	.set_mtu = hclgevf_set_mtu,
3331 	.get_global_queue_id = hclgevf_get_qid_global,
3332 	.set_timer_task = hclgevf_set_timer_task,
3333 	.get_link_mode = hclgevf_get_link_mode,
3334 	.set_promisc_mode = hclgevf_set_promisc_mode,
3335 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3336 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3337 };
3338 
3339 static struct hnae3_ae_algo ae_algovf = {
3340 	.ops = &hclgevf_ops,
3341 	.pdev_id_table = ae_algovf_pci_tbl,
3342 };
3343 
hclgevf_init(void)3344 static int __init hclgevf_init(void)
3345 {
3346 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3347 
3348 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3349 	if (!hclgevf_wq) {
3350 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3351 		return -ENOMEM;
3352 	}
3353 
3354 	hnae3_register_ae_algo(&ae_algovf);
3355 
3356 	return 0;
3357 }
3358 
hclgevf_exit(void)3359 static void __exit hclgevf_exit(void)
3360 {
3361 	hnae3_acquire_unload_lock();
3362 	hnae3_unregister_ae_algo(&ae_algovf);
3363 	destroy_workqueue(hclgevf_wq);
3364 	hnae3_release_unload_lock();
3365 }
3366 module_init(hclgevf_init);
3367 module_exit(hclgevf_exit);
3368 
3369 MODULE_LICENSE("GPL");
3370 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3371 MODULE_DESCRIPTION("HCLGEVF Driver");
3372 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3373