xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/iommu.h>
44 #include <linux/ubsan.h>
45 
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <asm/realmode.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fpu/api.h>
55 #include <asm/cpu.h>
56 #include <asm/cpu_entry_area.h>
57 #include <asm/mce.h>
58 #include <asm/fixmap.h>
59 #include <asm/mach_traps.h>
60 #include <asm/alternative.h>
61 #include <asm/fpu/xstate.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64 #include <asm/insn.h>
65 #include <asm/insn-eval.h>
66 #include <asm/vdso.h>
67 #include <asm/tdx.h>
68 #include <asm/cfi.h>
69 
70 #ifdef CONFIG_X86_64
71 #include <asm/x86_init.h>
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75 #endif
76 
77 #include <asm/proto.h>
78 
79 DECLARE_BITMAP(system_vectors, NR_VECTORS);
80 
is_valid_bugaddr(unsigned long addr)81 __always_inline int is_valid_bugaddr(unsigned long addr)
82 {
83 	if (addr < TASK_SIZE_MAX)
84 		return 0;
85 
86 	/*
87 	 * We got #UD, if the text isn't readable we'd have gotten
88 	 * a different exception.
89 	 */
90 	return *(unsigned short *)addr == INSN_UD2;
91 }
92 
93 /*
94  * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
95  * If it's a UD1, further decode to determine its use:
96  *
97  * UBSan{0}:     67 0f b9 00             ud1    (%eax),%eax
98  * UBSan{10}:    67 0f b9 40 10          ud1    0x10(%eax),%eax
99  * static_call:  0f b9 cc                ud1    %esp,%ecx
100  *
101  * Notably UBSAN uses EAX, static_call uses ECX.
102  */
decode_bug(unsigned long addr,s32 * imm,int * len)103 __always_inline int decode_bug(unsigned long addr, s32 *imm, int *len)
104 {
105 	unsigned long start = addr;
106 	u8 v;
107 
108 	if (addr < TASK_SIZE_MAX)
109 		return BUG_NONE;
110 
111 	v = *(u8 *)(addr++);
112 	if (v == INSN_ASOP)
113 		v = *(u8 *)(addr++);
114 	if (v != OPCODE_ESCAPE)
115 		return BUG_NONE;
116 
117 	v = *(u8 *)(addr++);
118 	if (v == SECOND_BYTE_OPCODE_UD2) {
119 		*len = addr - start;
120 		return BUG_UD2;
121 	}
122 
123 	if (v != SECOND_BYTE_OPCODE_UD1)
124 		return BUG_NONE;
125 
126 	*imm = 0;
127 	v = *(u8 *)(addr++);		/* ModRM */
128 
129 	if (X86_MODRM_MOD(v) != 3 && X86_MODRM_RM(v) == 4)
130 		addr++;			/* SIB */
131 
132 	/* Decode immediate, if present */
133 	switch (X86_MODRM_MOD(v)) {
134 	case 0: if (X86_MODRM_RM(v) == 5)
135 			addr += 4; /* RIP + disp32 */
136 		break;
137 
138 	case 1: *imm = *(s8 *)addr;
139 		addr += 1;
140 		break;
141 
142 	case 2: *imm = *(s32 *)addr;
143 		addr += 4;
144 		break;
145 
146 	case 3: break;
147 	}
148 
149 	/* record instruction length */
150 	*len = addr - start;
151 
152 	if (X86_MODRM_REG(v) == 0)	/* EAX */
153 		return BUG_UD1_UBSAN;
154 
155 	return BUG_UD1;
156 }
157 
158 
159 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)160 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
161 		  struct pt_regs *regs,	long error_code)
162 {
163 	if (v8086_mode(regs)) {
164 		/*
165 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
166 		 * On nmi (interrupt 2), do_trap should not be called.
167 		 */
168 		if (trapnr < X86_TRAP_UD) {
169 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
170 						error_code, trapnr))
171 				return 0;
172 		}
173 	} else if (!user_mode(regs)) {
174 		if (fixup_exception(regs, trapnr, error_code, 0))
175 			return 0;
176 
177 		tsk->thread.error_code = error_code;
178 		tsk->thread.trap_nr = trapnr;
179 		die(str, regs, error_code);
180 	} else {
181 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
182 			return 0;
183 	}
184 
185 	/*
186 	 * We want error_code and trap_nr set for userspace faults and
187 	 * kernelspace faults which result in die(), but not
188 	 * kernelspace faults which are fixed up.  die() gives the
189 	 * process no chance to handle the signal and notice the
190 	 * kernel fault information, so that won't result in polluting
191 	 * the information about previously queued, but not yet
192 	 * delivered, faults.  See also exc_general_protection below.
193 	 */
194 	tsk->thread.error_code = error_code;
195 	tsk->thread.trap_nr = trapnr;
196 
197 	return -1;
198 }
199 
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)200 static void show_signal(struct task_struct *tsk, int signr,
201 			const char *type, const char *desc,
202 			struct pt_regs *regs, long error_code)
203 {
204 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
205 	    printk_ratelimit()) {
206 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
207 			tsk->comm, task_pid_nr(tsk), type, desc,
208 			regs->ip, regs->sp, error_code);
209 		print_vma_addr(KERN_CONT " in ", regs->ip);
210 		pr_cont("\n");
211 	}
212 }
213 
214 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)215 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
216 	long error_code, int sicode, void __user *addr)
217 {
218 	struct task_struct *tsk = current;
219 
220 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
221 		return;
222 
223 	show_signal(tsk, signr, "trap ", str, regs, error_code);
224 
225 	if (!sicode)
226 		force_sig(signr);
227 	else
228 		force_sig_fault(signr, sicode, addr);
229 }
230 NOKPROBE_SYMBOL(do_trap);
231 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)232 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
233 	unsigned long trapnr, int signr, int sicode, void __user *addr)
234 {
235 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
236 
237 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
238 			NOTIFY_STOP) {
239 		cond_local_irq_enable(regs);
240 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
241 		cond_local_irq_disable(regs);
242 	}
243 }
244 
245 /*
246  * Posix requires to provide the address of the faulting instruction for
247  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
248  *
249  * This address is usually regs->ip, but when an uprobe moved the code out
250  * of line then regs->ip points to the XOL code which would confuse
251  * anything which analyzes the fault address vs. the unmodified binary. If
252  * a trap happened in XOL code then uprobe maps regs->ip back to the
253  * original instruction address.
254  */
error_get_trap_addr(struct pt_regs * regs)255 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
256 {
257 	return (void __user *)uprobe_get_trap_addr(regs);
258 }
259 
DEFINE_IDTENTRY(exc_divide_error)260 DEFINE_IDTENTRY(exc_divide_error)
261 {
262 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
263 		      FPE_INTDIV, error_get_trap_addr(regs));
264 }
265 
DEFINE_IDTENTRY(exc_overflow)266 DEFINE_IDTENTRY(exc_overflow)
267 {
268 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
269 }
270 
271 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)272 void handle_invalid_op(struct pt_regs *regs)
273 #else
274 static inline void handle_invalid_op(struct pt_regs *regs)
275 #endif
276 {
277 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
278 		      ILL_ILLOPN, error_get_trap_addr(regs));
279 }
280 
handle_bug(struct pt_regs * regs)281 static noinstr bool handle_bug(struct pt_regs *regs)
282 {
283 	bool handled = false;
284 	int ud_type, ud_len;
285 	s32 ud_imm;
286 
287 	ud_type = decode_bug(regs->ip, &ud_imm, &ud_len);
288 	if (ud_type == BUG_NONE)
289 		return handled;
290 
291 	/*
292 	 * All lies, just get the WARN/BUG out.
293 	 */
294 	instrumentation_begin();
295 	/*
296 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
297 	 * is a rare case that uses @regs without passing them to
298 	 * irqentry_enter().
299 	 */
300 	kmsan_unpoison_entry_regs(regs);
301 	/*
302 	 * Since we're emulating a CALL with exceptions, restore the interrupt
303 	 * state to what it was at the exception site.
304 	 */
305 	if (regs->flags & X86_EFLAGS_IF)
306 		raw_local_irq_enable();
307 
308 	switch (ud_type) {
309 	case BUG_UD2:
310 		if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
311 		    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
312 			regs->ip += ud_len;
313 			handled = true;
314 		}
315 		break;
316 
317 	case BUG_UD1_UBSAN:
318 		if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
319 			pr_crit("%s at %pS\n",
320 				report_ubsan_failure(regs, ud_imm),
321 				(void *)regs->ip);
322 		}
323 		break;
324 
325 	default:
326 		break;
327 	}
328 
329 	if (regs->flags & X86_EFLAGS_IF)
330 		raw_local_irq_disable();
331 	instrumentation_end();
332 
333 	return handled;
334 }
335 
DEFINE_IDTENTRY_RAW(exc_invalid_op)336 DEFINE_IDTENTRY_RAW(exc_invalid_op)
337 {
338 	irqentry_state_t state;
339 
340 	/*
341 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
342 	 * handle it before exception entry to avoid recursive WARN
343 	 * in case exception entry is the one triggering WARNs.
344 	 */
345 	if (!user_mode(regs) && handle_bug(regs))
346 		return;
347 
348 	state = irqentry_enter(regs);
349 	instrumentation_begin();
350 	handle_invalid_op(regs);
351 	instrumentation_end();
352 	irqentry_exit(regs, state);
353 }
354 
DEFINE_IDTENTRY(exc_coproc_segment_overrun)355 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
356 {
357 	do_error_trap(regs, 0, "coprocessor segment overrun",
358 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
359 }
360 
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)361 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
362 {
363 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
364 		      0, NULL);
365 }
366 
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)367 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
368 {
369 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
370 		      SIGBUS, 0, NULL);
371 }
372 
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)373 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
374 {
375 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
376 		      0, NULL);
377 }
378 
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)379 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
380 {
381 	char *str = "alignment check";
382 
383 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
384 		return;
385 
386 	if (!user_mode(regs))
387 		die("Split lock detected\n", regs, error_code);
388 
389 	local_irq_enable();
390 
391 	if (handle_user_split_lock(regs, error_code))
392 		goto out;
393 
394 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
395 		error_code, BUS_ADRALN, NULL);
396 
397 out:
398 	local_irq_disable();
399 }
400 
401 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)402 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
403 						unsigned long fault_address,
404 						struct stack_info *info)
405 {
406 	const char *name = stack_type_name(info->type);
407 
408 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
409 	       name, (void *)fault_address, info->begin, info->end);
410 
411 	die("stack guard page", regs, 0);
412 
413 	/* Be absolutely certain we don't return. */
414 	panic("%s stack guard hit", name);
415 }
416 #endif
417 
418 /*
419  * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64
420  * version of exc_double_fault() as noreturn.  Otherwise the noreturn mismatch
421  * between configs triggers objtool warnings.
422  *
423  * This is a temporary hack until we have compiler or plugin support for
424  * annotating noreturns.
425  */
426 #ifdef CONFIG_X86_ESPFIX64
427 #define always_true() true
428 #else
429 bool always_true(void);
always_true(void)430 bool __weak always_true(void) { return true; }
431 #endif
432 
433 /*
434  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
435  *
436  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
437  * SDM's warnings about double faults being unrecoverable, returning works as
438  * expected.  Presumably what the SDM actually means is that the CPU may get
439  * the register state wrong on entry, so returning could be a bad idea.
440  *
441  * Various CPU engineers have promised that double faults due to an IRET fault
442  * while the stack is read-only are, in fact, recoverable.
443  *
444  * On x86_32, this is entered through a task gate, and regs are synthesized
445  * from the TSS.  Returning is, in principle, okay, but changes to regs will
446  * be lost.  If, for some reason, we need to return to a context with modified
447  * regs, the shim code could be adjusted to synchronize the registers.
448  *
449  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
450  * to be read before doing anything else.
451  */
DEFINE_IDTENTRY_DF(exc_double_fault)452 DEFINE_IDTENTRY_DF(exc_double_fault)
453 {
454 	static const char str[] = "double fault";
455 	struct task_struct *tsk = current;
456 
457 #ifdef CONFIG_VMAP_STACK
458 	unsigned long address = read_cr2();
459 	struct stack_info info;
460 #endif
461 
462 #ifdef CONFIG_X86_ESPFIX64
463 	extern unsigned char native_irq_return_iret[];
464 
465 	/*
466 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
467 	 * end up promoting it to a doublefault.  In that case, take
468 	 * advantage of the fact that we're not using the normal (TSS.sp0)
469 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
470 	 * and then modify our own IRET frame so that, when we return,
471 	 * we land directly at the #GP(0) vector with the stack already
472 	 * set up according to its expectations.
473 	 *
474 	 * The net result is that our #GP handler will think that we
475 	 * entered from usermode with the bad user context.
476 	 *
477 	 * No need for nmi_enter() here because we don't use RCU.
478 	 */
479 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
480 		regs->cs == __KERNEL_CS &&
481 		regs->ip == (unsigned long)native_irq_return_iret)
482 	{
483 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
484 		unsigned long *p = (unsigned long *)regs->sp;
485 
486 		/*
487 		 * regs->sp points to the failing IRET frame on the
488 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
489 		 * in gpregs->ss through gpregs->ip.
490 		 *
491 		 */
492 		gpregs->ip	= p[0];
493 		gpregs->cs	= p[1];
494 		gpregs->flags	= p[2];
495 		gpregs->sp	= p[3];
496 		gpregs->ss	= p[4];
497 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
498 
499 		/*
500 		 * Adjust our frame so that we return straight to the #GP
501 		 * vector with the expected RSP value.  This is safe because
502 		 * we won't enable interrupts or schedule before we invoke
503 		 * general_protection, so nothing will clobber the stack
504 		 * frame we just set up.
505 		 *
506 		 * We will enter general_protection with kernel GSBASE,
507 		 * which is what the stub expects, given that the faulting
508 		 * RIP will be the IRET instruction.
509 		 */
510 		regs->ip = (unsigned long)asm_exc_general_protection;
511 		regs->sp = (unsigned long)&gpregs->orig_ax;
512 
513 		return;
514 	}
515 #endif
516 
517 	irqentry_nmi_enter(regs);
518 	instrumentation_begin();
519 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
520 
521 	tsk->thread.error_code = error_code;
522 	tsk->thread.trap_nr = X86_TRAP_DF;
523 
524 #ifdef CONFIG_VMAP_STACK
525 	/*
526 	 * If we overflow the stack into a guard page, the CPU will fail
527 	 * to deliver #PF and will send #DF instead.  Similarly, if we
528 	 * take any non-IST exception while too close to the bottom of
529 	 * the stack, the processor will get a page fault while
530 	 * delivering the exception and will generate a double fault.
531 	 *
532 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
533 	 * Page-Fault Exception (#PF):
534 	 *
535 	 *   Processors update CR2 whenever a page fault is detected. If a
536 	 *   second page fault occurs while an earlier page fault is being
537 	 *   delivered, the faulting linear address of the second fault will
538 	 *   overwrite the contents of CR2 (replacing the previous
539 	 *   address). These updates to CR2 occur even if the page fault
540 	 *   results in a double fault or occurs during the delivery of a
541 	 *   double fault.
542 	 *
543 	 * The logic below has a small possibility of incorrectly diagnosing
544 	 * some errors as stack overflows.  For example, if the IDT or GDT
545 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
546 	 * causing #GP and we hit this condition while CR2 coincidentally
547 	 * points to the stack guard page, we'll think we overflowed the
548 	 * stack.  Given that we're going to panic one way or another
549 	 * if this happens, this isn't necessarily worth fixing.
550 	 *
551 	 * If necessary, we could improve the test by only diagnosing
552 	 * a stack overflow if the saved RSP points within 47 bytes of
553 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
554 	 * take an exception, the stack is already aligned and there
555 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
556 	 * possible error code, so a stack overflow would *not* double
557 	 * fault.  With any less space left, exception delivery could
558 	 * fail, and, as a practical matter, we've overflowed the
559 	 * stack even if the actual trigger for the double fault was
560 	 * something else.
561 	 */
562 	if (get_stack_guard_info((void *)address, &info))
563 		handle_stack_overflow(regs, address, &info);
564 #endif
565 
566 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
567 	die("double fault", regs, error_code);
568 	if (always_true())
569 		panic("Machine halted.");
570 	instrumentation_end();
571 }
572 
DEFINE_IDTENTRY(exc_bounds)573 DEFINE_IDTENTRY(exc_bounds)
574 {
575 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
576 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
577 		return;
578 	cond_local_irq_enable(regs);
579 
580 	if (!user_mode(regs))
581 		die("bounds", regs, 0);
582 
583 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
584 
585 	cond_local_irq_disable(regs);
586 }
587 
588 enum kernel_gp_hint {
589 	GP_NO_HINT,
590 	GP_NON_CANONICAL,
591 	GP_CANONICAL
592 };
593 
594 /*
595  * When an uncaught #GP occurs, try to determine the memory address accessed by
596  * the instruction and return that address to the caller. Also, try to figure
597  * out whether any part of the access to that address was non-canonical.
598  */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)599 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
600 						 unsigned long *addr)
601 {
602 	u8 insn_buf[MAX_INSN_SIZE];
603 	struct insn insn;
604 	int ret;
605 
606 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
607 			MAX_INSN_SIZE))
608 		return GP_NO_HINT;
609 
610 	ret = insn_decode_kernel(&insn, insn_buf);
611 	if (ret < 0)
612 		return GP_NO_HINT;
613 
614 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
615 	if (*addr == -1UL)
616 		return GP_NO_HINT;
617 
618 #ifdef CONFIG_X86_64
619 	/*
620 	 * Check that:
621 	 *  - the operand is not in the kernel half
622 	 *  - the last byte of the operand is not in the user canonical half
623 	 */
624 	if (*addr < ~__VIRTUAL_MASK &&
625 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
626 		return GP_NON_CANONICAL;
627 #endif
628 
629 	return GP_CANONICAL;
630 }
631 
632 #define GPFSTR "general protection fault"
633 
fixup_iopl_exception(struct pt_regs * regs)634 static bool fixup_iopl_exception(struct pt_regs *regs)
635 {
636 	struct thread_struct *t = &current->thread;
637 	unsigned char byte;
638 	unsigned long ip;
639 
640 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
641 		return false;
642 
643 	if (insn_get_effective_ip(regs, &ip))
644 		return false;
645 
646 	if (get_user(byte, (const char __user *)ip))
647 		return false;
648 
649 	if (byte != 0xfa && byte != 0xfb)
650 		return false;
651 
652 	if (!t->iopl_warn && printk_ratelimit()) {
653 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
654 		       current->comm, task_pid_nr(current), ip);
655 		print_vma_addr(KERN_CONT " in ", ip);
656 		pr_cont("\n");
657 		t->iopl_warn = 1;
658 	}
659 
660 	regs->ip += 1;
661 	return true;
662 }
663 
664 /*
665  * The unprivileged ENQCMD instruction generates #GPs if the
666  * IA32_PASID MSR has not been populated.  If possible, populate
667  * the MSR from a PASID previously allocated to the mm.
668  */
try_fixup_enqcmd_gp(void)669 static bool try_fixup_enqcmd_gp(void)
670 {
671 #ifdef CONFIG_IOMMU_SVA
672 	u32 pasid;
673 
674 	/*
675 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
676 	 * writing to the MSR is only possible when fpregs
677 	 * are valid and the fpstate is not.  This is
678 	 * guaranteed when handling a userspace exception
679 	 * in *before* interrupts are re-enabled.
680 	 */
681 	lockdep_assert_irqs_disabled();
682 
683 	/*
684 	 * Hardware without ENQCMD will not generate
685 	 * #GPs that can be fixed up here.
686 	 */
687 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
688 		return false;
689 
690 	/*
691 	 * If the mm has not been allocated a
692 	 * PASID, the #GP can not be fixed up.
693 	 */
694 	if (!mm_valid_pasid(current->mm))
695 		return false;
696 
697 	pasid = current->mm->pasid;
698 
699 	/*
700 	 * Did this thread already have its PASID activated?
701 	 * If so, the #GP must be from something else.
702 	 */
703 	if (current->pasid_activated)
704 		return false;
705 
706 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
707 	current->pasid_activated = 1;
708 
709 	return true;
710 #else
711 	return false;
712 #endif
713 }
714 
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)715 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
716 				    unsigned long error_code, const char *str,
717 				    unsigned long address)
718 {
719 	if (fixup_exception(regs, trapnr, error_code, address))
720 		return true;
721 
722 	current->thread.error_code = error_code;
723 	current->thread.trap_nr = trapnr;
724 
725 	/*
726 	 * To be potentially processing a kprobe fault and to trust the result
727 	 * from kprobe_running(), we have to be non-preemptible.
728 	 */
729 	if (!preemptible() && kprobe_running() &&
730 	    kprobe_fault_handler(regs, trapnr))
731 		return true;
732 
733 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
734 }
735 
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)736 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
737 				   unsigned long error_code, const char *str)
738 {
739 	current->thread.error_code = error_code;
740 	current->thread.trap_nr = trapnr;
741 	show_signal(current, SIGSEGV, "", str, regs, error_code);
742 	force_sig(SIGSEGV);
743 }
744 
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)745 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
746 {
747 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
748 	enum kernel_gp_hint hint = GP_NO_HINT;
749 	unsigned long gp_addr;
750 
751 	if (user_mode(regs) && try_fixup_enqcmd_gp())
752 		return;
753 
754 	cond_local_irq_enable(regs);
755 
756 	if (static_cpu_has(X86_FEATURE_UMIP)) {
757 		if (user_mode(regs) && fixup_umip_exception(regs))
758 			goto exit;
759 	}
760 
761 	if (v8086_mode(regs)) {
762 		local_irq_enable();
763 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
764 		local_irq_disable();
765 		return;
766 	}
767 
768 	if (user_mode(regs)) {
769 		if (fixup_iopl_exception(regs))
770 			goto exit;
771 
772 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
773 			goto exit;
774 
775 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
776 		goto exit;
777 	}
778 
779 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
780 		goto exit;
781 
782 	if (error_code)
783 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
784 	else
785 		hint = get_kernel_gp_address(regs, &gp_addr);
786 
787 	if (hint != GP_NO_HINT)
788 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
789 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
790 						    : "maybe for address",
791 			 gp_addr);
792 
793 	/*
794 	 * KASAN is interested only in the non-canonical case, clear it
795 	 * otherwise.
796 	 */
797 	if (hint != GP_NON_CANONICAL)
798 		gp_addr = 0;
799 
800 	die_addr(desc, regs, error_code, gp_addr);
801 
802 exit:
803 	cond_local_irq_disable(regs);
804 }
805 
do_int3(struct pt_regs * regs)806 static bool do_int3(struct pt_regs *regs)
807 {
808 	int res;
809 
810 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
811 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
812 			 SIGTRAP) == NOTIFY_STOP)
813 		return true;
814 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
815 
816 #ifdef CONFIG_KPROBES
817 	if (kprobe_int3_handler(regs))
818 		return true;
819 #endif
820 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
821 
822 	return res == NOTIFY_STOP;
823 }
824 NOKPROBE_SYMBOL(do_int3);
825 
do_int3_user(struct pt_regs * regs)826 static void do_int3_user(struct pt_regs *regs)
827 {
828 	if (do_int3(regs))
829 		return;
830 
831 	cond_local_irq_enable(regs);
832 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
833 	cond_local_irq_disable(regs);
834 }
835 
DEFINE_IDTENTRY_RAW(exc_int3)836 DEFINE_IDTENTRY_RAW(exc_int3)
837 {
838 	/*
839 	 * poke_int3_handler() is completely self contained code; it does (and
840 	 * must) *NOT* call out to anything, lest it hits upon yet another
841 	 * INT3.
842 	 */
843 	if (poke_int3_handler(regs))
844 		return;
845 
846 	/*
847 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
848 	 * and therefore can trigger INT3, hence poke_int3_handler() must
849 	 * be done before. If the entry came from kernel mode, then use
850 	 * nmi_enter() because the INT3 could have been hit in any context
851 	 * including NMI.
852 	 */
853 	if (user_mode(regs)) {
854 		irqentry_enter_from_user_mode(regs);
855 		instrumentation_begin();
856 		do_int3_user(regs);
857 		instrumentation_end();
858 		irqentry_exit_to_user_mode(regs);
859 	} else {
860 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
861 
862 		instrumentation_begin();
863 		if (!do_int3(regs))
864 			die("int3", regs, 0);
865 		instrumentation_end();
866 		irqentry_nmi_exit(regs, irq_state);
867 	}
868 }
869 
870 #ifdef CONFIG_X86_64
871 /*
872  * Help handler running on a per-cpu (IST or entry trampoline) stack
873  * to switch to the normal thread stack if the interrupted code was in
874  * user mode. The actual stack switch is done in entry_64.S
875  */
sync_regs(struct pt_regs * eregs)876 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
877 {
878 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
879 	if (regs != eregs)
880 		*regs = *eregs;
881 	return regs;
882 }
883 
884 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)885 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
886 {
887 	unsigned long sp, *stack;
888 	struct stack_info info;
889 	struct pt_regs *regs_ret;
890 
891 	/*
892 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
893 	 * trust it and switch to the current kernel stack
894 	 */
895 	if (ip_within_syscall_gap(regs)) {
896 		sp = this_cpu_read(pcpu_hot.top_of_stack);
897 		goto sync;
898 	}
899 
900 	/*
901 	 * From here on the RSP value is trusted. Now check whether entry
902 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
903 	 * use the fall-back stack instead in this case.
904 	 */
905 	sp    = regs->sp;
906 	stack = (unsigned long *)sp;
907 
908 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
909 	    info.type > STACK_TYPE_EXCEPTION_LAST)
910 		sp = __this_cpu_ist_top_va(VC2);
911 
912 sync:
913 	/*
914 	 * Found a safe stack - switch to it as if the entry didn't happen via
915 	 * IST stack. The code below only copies pt_regs, the real switch happens
916 	 * in assembly code.
917 	 */
918 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
919 
920 	regs_ret = (struct pt_regs *)sp;
921 	*regs_ret = *regs;
922 
923 	return regs_ret;
924 }
925 #endif
926 
fixup_bad_iret(struct pt_regs * bad_regs)927 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
928 {
929 	struct pt_regs tmp, *new_stack;
930 
931 	/*
932 	 * This is called from entry_64.S early in handling a fault
933 	 * caused by a bad iret to user mode.  To handle the fault
934 	 * correctly, we want to move our stack frame to where it would
935 	 * be had we entered directly on the entry stack (rather than
936 	 * just below the IRET frame) and we want to pretend that the
937 	 * exception came from the IRET target.
938 	 */
939 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
940 
941 	/* Copy the IRET target to the temporary storage. */
942 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
943 
944 	/* Copy the remainder of the stack from the current stack. */
945 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
946 
947 	/* Update the entry stack */
948 	__memcpy(new_stack, &tmp, sizeof(tmp));
949 
950 	BUG_ON(!user_mode(new_stack));
951 	return new_stack;
952 }
953 #endif
954 
is_sysenter_singlestep(struct pt_regs * regs)955 static bool is_sysenter_singlestep(struct pt_regs *regs)
956 {
957 	/*
958 	 * We don't try for precision here.  If we're anywhere in the region of
959 	 * code that can be single-stepped in the SYSENTER entry path, then
960 	 * assume that this is a useless single-step trap due to SYSENTER
961 	 * being invoked with TF set.  (We don't know in advance exactly
962 	 * which instructions will be hit because BTF could plausibly
963 	 * be set.)
964 	 */
965 #ifdef CONFIG_X86_32
966 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
967 		(unsigned long)__end_SYSENTER_singlestep_region -
968 		(unsigned long)__begin_SYSENTER_singlestep_region;
969 #elif defined(CONFIG_IA32_EMULATION)
970 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
971 		(unsigned long)__end_entry_SYSENTER_compat -
972 		(unsigned long)entry_SYSENTER_compat;
973 #else
974 	return false;
975 #endif
976 }
977 
debug_read_clear_dr6(void)978 static __always_inline unsigned long debug_read_clear_dr6(void)
979 {
980 	unsigned long dr6;
981 
982 	/*
983 	 * The Intel SDM says:
984 	 *
985 	 *   Certain debug exceptions may clear bits 0-3. The remaining
986 	 *   contents of the DR6 register are never cleared by the
987 	 *   processor. To avoid confusion in identifying debug
988 	 *   exceptions, debug handlers should clear the register before
989 	 *   returning to the interrupted task.
990 	 *
991 	 * Keep it simple: clear DR6 immediately.
992 	 */
993 	get_debugreg(dr6, 6);
994 	set_debugreg(DR6_RESERVED, 6);
995 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
996 
997 	return dr6;
998 }
999 
1000 /*
1001  * Our handling of the processor debug registers is non-trivial.
1002  * We do not clear them on entry and exit from the kernel. Therefore
1003  * it is possible to get a watchpoint trap here from inside the kernel.
1004  * However, the code in ./ptrace.c has ensured that the user can
1005  * only set watchpoints on userspace addresses. Therefore the in-kernel
1006  * watchpoint trap can only occur in code which is reading/writing
1007  * from user space. Such code must not hold kernel locks (since it
1008  * can equally take a page fault), therefore it is safe to call
1009  * force_sig_info even though that claims and releases locks.
1010  *
1011  * Code in ./signal.c ensures that the debug control register
1012  * is restored before we deliver any signal, and therefore that
1013  * user code runs with the correct debug control register even though
1014  * we clear it here.
1015  *
1016  * Being careful here means that we don't have to be as careful in a
1017  * lot of more complicated places (task switching can be a bit lazy
1018  * about restoring all the debug state, and ptrace doesn't have to
1019  * find every occurrence of the TF bit that could be saved away even
1020  * by user code)
1021  *
1022  * May run on IST stack.
1023  */
1024 
notify_debug(struct pt_regs * regs,unsigned long * dr6)1025 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1026 {
1027 	/*
1028 	 * Notifiers will clear bits in @dr6 to indicate the event has been
1029 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
1030 	 *
1031 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1032 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1033 	 */
1034 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1035 		return true;
1036 
1037 	return false;
1038 }
1039 
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1040 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1041 					     unsigned long dr6)
1042 {
1043 	/*
1044 	 * Disable breakpoints during exception handling; recursive exceptions
1045 	 * are exceedingly 'fun'.
1046 	 *
1047 	 * Since this function is NOKPROBE, and that also applies to
1048 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1049 	 * HW_BREAKPOINT_W on our stack)
1050 	 *
1051 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1052 	 * includes the entry stack is excluded for everything.
1053 	 */
1054 	unsigned long dr7 = local_db_save();
1055 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1056 	instrumentation_begin();
1057 
1058 	/*
1059 	 * If something gets miswired and we end up here for a user mode
1060 	 * #DB, we will malfunction.
1061 	 */
1062 	WARN_ON_ONCE(user_mode(regs));
1063 
1064 	if (test_thread_flag(TIF_BLOCKSTEP)) {
1065 		/*
1066 		 * The SDM says "The processor clears the BTF flag when it
1067 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1068 		 * it for userspace, but we just took a kernel #DB, so re-set
1069 		 * BTF.
1070 		 */
1071 		unsigned long debugctl;
1072 
1073 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1074 		debugctl |= DEBUGCTLMSR_BTF;
1075 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1076 	}
1077 
1078 	/*
1079 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1080 	 * watchpoint at the same time then that will still be handled.
1081 	 */
1082 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1083 		dr6 &= ~DR_STEP;
1084 
1085 	/*
1086 	 * The kernel doesn't use INT1
1087 	 */
1088 	if (!dr6)
1089 		goto out;
1090 
1091 	if (notify_debug(regs, &dr6))
1092 		goto out;
1093 
1094 	/*
1095 	 * The kernel doesn't use TF single-step outside of:
1096 	 *
1097 	 *  - Kprobes, consumed through kprobe_debug_handler()
1098 	 *  - KGDB, consumed through notify_debug()
1099 	 *
1100 	 * So if we get here with DR_STEP set, something is wonky.
1101 	 *
1102 	 * A known way to trigger this is through QEMU's GDB stub,
1103 	 * which leaks #DB into the guest and causes IST recursion.
1104 	 */
1105 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1106 		regs->flags &= ~X86_EFLAGS_TF;
1107 out:
1108 	instrumentation_end();
1109 	irqentry_nmi_exit(regs, irq_state);
1110 
1111 	local_db_restore(dr7);
1112 }
1113 
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1114 static __always_inline void exc_debug_user(struct pt_regs *regs,
1115 					   unsigned long dr6)
1116 {
1117 	bool icebp;
1118 
1119 	/*
1120 	 * If something gets miswired and we end up here for a kernel mode
1121 	 * #DB, we will malfunction.
1122 	 */
1123 	WARN_ON_ONCE(!user_mode(regs));
1124 
1125 	/*
1126 	 * NB: We can't easily clear DR7 here because
1127 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1128 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1129 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1130 	 * Since we're not on the IST stack right now, everything will be
1131 	 * fine.
1132 	 */
1133 
1134 	irqentry_enter_from_user_mode(regs);
1135 	instrumentation_begin();
1136 
1137 	/*
1138 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1139 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1140 	 *
1141 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1142 	 * even if it is not the result of PTRACE_SINGLESTEP.
1143 	 */
1144 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1145 
1146 	/*
1147 	 * The SDM says "The processor clears the BTF flag when it
1148 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1149 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1150 	 */
1151 	clear_thread_flag(TIF_BLOCKSTEP);
1152 
1153 	/*
1154 	 * If dr6 has no reason to give us about the origin of this trap,
1155 	 * then it's very likely the result of an icebp/int01 trap.
1156 	 * User wants a sigtrap for that.
1157 	 */
1158 	icebp = !dr6;
1159 
1160 	if (notify_debug(regs, &dr6))
1161 		goto out;
1162 
1163 	/* It's safe to allow irq's after DR6 has been saved */
1164 	local_irq_enable();
1165 
1166 	if (v8086_mode(regs)) {
1167 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1168 		goto out_irq;
1169 	}
1170 
1171 	/* #DB for bus lock can only be triggered from userspace. */
1172 	if (dr6 & DR_BUS_LOCK)
1173 		handle_bus_lock(regs);
1174 
1175 	/* Add the virtual_dr6 bits for signals. */
1176 	dr6 |= current->thread.virtual_dr6;
1177 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1178 		send_sigtrap(regs, 0, get_si_code(dr6));
1179 
1180 out_irq:
1181 	local_irq_disable();
1182 out:
1183 	instrumentation_end();
1184 	irqentry_exit_to_user_mode(regs);
1185 }
1186 
1187 #ifdef CONFIG_X86_64
1188 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1189 DEFINE_IDTENTRY_DEBUG(exc_debug)
1190 {
1191 	exc_debug_kernel(regs, debug_read_clear_dr6());
1192 }
1193 
1194 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1195 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1196 {
1197 	exc_debug_user(regs, debug_read_clear_dr6());
1198 }
1199 #else
1200 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1201 DEFINE_IDTENTRY_RAW(exc_debug)
1202 {
1203 	unsigned long dr6 = debug_read_clear_dr6();
1204 
1205 	if (user_mode(regs))
1206 		exc_debug_user(regs, dr6);
1207 	else
1208 		exc_debug_kernel(regs, dr6);
1209 }
1210 #endif
1211 
1212 /*
1213  * Note that we play around with the 'TS' bit in an attempt to get
1214  * the correct behaviour even in the presence of the asynchronous
1215  * IRQ13 behaviour
1216  */
math_error(struct pt_regs * regs,int trapnr)1217 static void math_error(struct pt_regs *regs, int trapnr)
1218 {
1219 	struct task_struct *task = current;
1220 	struct fpu *fpu = &task->thread.fpu;
1221 	int si_code;
1222 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1223 						"simd exception";
1224 
1225 	cond_local_irq_enable(regs);
1226 
1227 	if (!user_mode(regs)) {
1228 		if (fixup_exception(regs, trapnr, 0, 0))
1229 			goto exit;
1230 
1231 		task->thread.error_code = 0;
1232 		task->thread.trap_nr = trapnr;
1233 
1234 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1235 			       SIGFPE) != NOTIFY_STOP)
1236 			die(str, regs, 0);
1237 		goto exit;
1238 	}
1239 
1240 	/*
1241 	 * Synchronize the FPU register state to the memory register state
1242 	 * if necessary. This allows the exception handler to inspect it.
1243 	 */
1244 	fpu_sync_fpstate(fpu);
1245 
1246 	task->thread.trap_nr	= trapnr;
1247 	task->thread.error_code = 0;
1248 
1249 	si_code = fpu__exception_code(fpu, trapnr);
1250 	/* Retry when we get spurious exceptions: */
1251 	if (!si_code)
1252 		goto exit;
1253 
1254 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1255 		goto exit;
1256 
1257 	force_sig_fault(SIGFPE, si_code,
1258 			(void __user *)uprobe_get_trap_addr(regs));
1259 exit:
1260 	cond_local_irq_disable(regs);
1261 }
1262 
DEFINE_IDTENTRY(exc_coprocessor_error)1263 DEFINE_IDTENTRY(exc_coprocessor_error)
1264 {
1265 	math_error(regs, X86_TRAP_MF);
1266 }
1267 
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1268 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1269 {
1270 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1271 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1272 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1273 			__exc_general_protection(regs, 0);
1274 			return;
1275 		}
1276 	}
1277 	math_error(regs, X86_TRAP_XF);
1278 }
1279 
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1280 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1281 {
1282 	/*
1283 	 * This addresses a Pentium Pro Erratum:
1284 	 *
1285 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1286 	 * Virtual Wire mode implemented through the local APIC, an
1287 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1288 	 * generated by the local APIC (Int 15).  This vector may be
1289 	 * generated upon receipt of a spurious interrupt (an interrupt
1290 	 * which is removed before the system receives the INTA sequence)
1291 	 * instead of the programmed 8259 spurious interrupt vector.
1292 	 *
1293 	 * IMPLICATION: The spurious interrupt vector programmed in the
1294 	 * 8259 is normally handled by an operating system's spurious
1295 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1296 	 * operating systems, which would crash if this erratum occurred.
1297 	 *
1298 	 * In theory this could be limited to 32bit, but the handler is not
1299 	 * hurting and who knows which other CPUs suffer from this.
1300 	 */
1301 }
1302 
handle_xfd_event(struct pt_regs * regs)1303 static bool handle_xfd_event(struct pt_regs *regs)
1304 {
1305 	u64 xfd_err;
1306 	int err;
1307 
1308 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1309 		return false;
1310 
1311 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1312 	if (!xfd_err)
1313 		return false;
1314 
1315 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1316 
1317 	/* Die if that happens in kernel space */
1318 	if (WARN_ON(!user_mode(regs)))
1319 		return false;
1320 
1321 	local_irq_enable();
1322 
1323 	err = xfd_enable_feature(xfd_err);
1324 
1325 	switch (err) {
1326 	case -EPERM:
1327 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1328 		break;
1329 	case -EFAULT:
1330 		force_sig(SIGSEGV);
1331 		break;
1332 	}
1333 
1334 	local_irq_disable();
1335 	return true;
1336 }
1337 
DEFINE_IDTENTRY(exc_device_not_available)1338 DEFINE_IDTENTRY(exc_device_not_available)
1339 {
1340 	unsigned long cr0 = read_cr0();
1341 
1342 	if (handle_xfd_event(regs))
1343 		return;
1344 
1345 #ifdef CONFIG_MATH_EMULATION
1346 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1347 		struct math_emu_info info = { };
1348 
1349 		cond_local_irq_enable(regs);
1350 
1351 		info.regs = regs;
1352 		math_emulate(&info);
1353 
1354 		cond_local_irq_disable(regs);
1355 		return;
1356 	}
1357 #endif
1358 
1359 	/* This should not happen. */
1360 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1361 		/* Try to fix it up and carry on. */
1362 		write_cr0(cr0 & ~X86_CR0_TS);
1363 	} else {
1364 		/*
1365 		 * Something terrible happened, and we're better off trying
1366 		 * to kill the task than getting stuck in a never-ending
1367 		 * loop of #NM faults.
1368 		 */
1369 		die("unexpected #NM exception", regs, 0);
1370 	}
1371 }
1372 
1373 #ifdef CONFIG_INTEL_TDX_GUEST
1374 
1375 #define VE_FAULT_STR "VE fault"
1376 
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1377 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1378 			   unsigned long address)
1379 {
1380 	if (user_mode(regs)) {
1381 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1382 		return;
1383 	}
1384 
1385 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1386 				    VE_FAULT_STR, address)) {
1387 		return;
1388 	}
1389 
1390 	die_addr(VE_FAULT_STR, regs, error_code, address);
1391 }
1392 
1393 /*
1394  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1395  * specific guest actions which may happen in either user space or the
1396  * kernel:
1397  *
1398  *  * Specific instructions (WBINVD, for example)
1399  *  * Specific MSR accesses
1400  *  * Specific CPUID leaf accesses
1401  *  * Access to specific guest physical addresses
1402  *
1403  * In the settings that Linux will run in, virtualization exceptions are
1404  * never generated on accesses to normal, TD-private memory that has been
1405  * accepted (by BIOS or with tdx_enc_status_changed()).
1406  *
1407  * Syscall entry code has a critical window where the kernel stack is not
1408  * yet set up. Any exception in this window leads to hard to debug issues
1409  * and can be exploited for privilege escalation. Exceptions in the NMI
1410  * entry code also cause issues. Returning from the exception handler with
1411  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1412  *
1413  * For these reasons, the kernel avoids #VEs during the syscall gap and
1414  * the NMI entry code. Entry code paths do not access TD-shared memory,
1415  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1416  * that might generate #VE. VMM can remove memory from TD at any point,
1417  * but access to unaccepted (or missing) private memory leads to VM
1418  * termination, not to #VE.
1419  *
1420  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1421  * handlers once the kernel is ready to deal with nested NMIs.
1422  *
1423  * During #VE delivery, all interrupts, including NMIs, are blocked until
1424  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1425  * the VE info.
1426  *
1427  * If a guest kernel action which would normally cause a #VE occurs in
1428  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1429  * exception) is delivered to the guest which will result in an oops.
1430  *
1431  * The entry code has been audited carefully for following these expectations.
1432  * Changes in the entry code have to be audited for correctness vs. this
1433  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1434  * privilege escalation or may lead to random crashes.
1435  */
DEFINE_IDTENTRY(exc_virtualization_exception)1436 DEFINE_IDTENTRY(exc_virtualization_exception)
1437 {
1438 	struct ve_info ve;
1439 
1440 	/*
1441 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1442 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1443 	 * info cannot be overwritten by a nested #VE.
1444 	 */
1445 	tdx_get_ve_info(&ve);
1446 
1447 	cond_local_irq_enable(regs);
1448 
1449 	/*
1450 	 * If tdx_handle_virt_exception() could not process
1451 	 * it successfully, treat it as #GP(0) and handle it.
1452 	 */
1453 	if (!tdx_handle_virt_exception(regs, &ve))
1454 		ve_raise_fault(regs, 0, ve.gla);
1455 
1456 	cond_local_irq_disable(regs);
1457 }
1458 
1459 #endif
1460 
1461 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1462 DEFINE_IDTENTRY_SW(iret_error)
1463 {
1464 	local_irq_enable();
1465 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1466 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1467 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1468 			ILL_BADSTK, (void __user *)NULL);
1469 	}
1470 	local_irq_disable();
1471 }
1472 #endif
1473 
trap_init(void)1474 void __init trap_init(void)
1475 {
1476 	/* Init cpu_entry_area before IST entries are set up */
1477 	setup_cpu_entry_areas();
1478 
1479 	/* Init GHCB memory pages when running as an SEV-ES guest */
1480 	sev_es_init_vc_handling();
1481 
1482 	/* Initialize TSS before setting up traps so ISTs work */
1483 	cpu_init_exception_handling();
1484 	/* Setup traps as cpu_init() might #GP */
1485 	idt_setup_traps();
1486 	cpu_init();
1487 }
1488