xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision d08e538de8cfe9e3de4de60a6663996ce9048cc8)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
uimm_scaled(DisasContext * s,int x)58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
scale_by_log2_tag_granule(DisasContext * s,int x)66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
a64_translate_init(void)90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
get_a64_user_mem_index(DisasContext * s,bool unpriv)118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
set_btype_raw(int val)148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
set_btype(DisasContext * s,int val)154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
reset_btype(DisasContext * s)162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
gen_pc_plus_diff(DisasContext * s,TCGv_i64 dest,target_long diff)170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
gen_a64_update_pc(DisasContext * s,target_long diff)180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
gen_top_byte_ignore(DisasContext * s,TCGv_i64 dst,TCGv_i64 src,int tbi)199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
gen_a64_set_pc(DisasContext * s,TCGv_i64 src)230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
clean_data_tbi(DisasContext * s,TCGv_i64 addr)252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
gen_address_with_allocation_tag0(TCGv_i64 dst,TCGv_i64 src)264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
gen_probe_access(DisasContext * s,TCGv_i64 ptr,MMUAccessType acc,int log2_size)269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
gen_mte_check1_mmuidx(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop,bool is_unpriv,int core_idx)284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
gen_mte_check1(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop)308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
gen_mte_checkN(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,int total_size,MemOp single_mop)318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
check_lse2_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
check_atomic_align(DisasContext * s,int rn,MemOp mop)377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
check_ordered_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
a64_test_cc(DisasCompare64 * c64,int cc)428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
gen_rebuild_hflags(DisasContext * s)443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
gen_exception_internal(int excp)448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
gen_exception_internal_insn(DisasContext * s,int excp)454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
gen_exception_bkpt_insn(DisasContext * s,uint32_t syndrome)461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
gen_step_complete_exception(DisasContext * s)468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
use_goto_tb(DisasContext * s,uint64_t dest)484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
gen_goto_tb(DisasContext * s,int n,int64_t diff)492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
cpu_reg(DisasContext * s,int reg)538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
cpu_reg_sp(DisasContext * s,int reg)550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
read_cpu_reg(DisasContext * s,int reg,int sf)559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
read_cpu_reg_sp(DisasContext * s,int reg,int sf)574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
fp_reg_offset(DisasContext * s,int regno,MemOp size)590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
fp_reg_hi_offset(DisasContext * s,int regno)596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
read_fp_dreg(DisasContext * s,int reg)607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
read_fp_sreg(DisasContext * s,int reg)615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
read_fp_hreg(DisasContext * s,int reg)623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
clear_vec_high(DisasContext * s,bool is_q,int rd)634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
write_fp_dreg(DisasContext * s,int reg,TCGv_i64 v)643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
write_fp_sreg(DisasContext * s,int reg,TCGv_i32 v)651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
gen_gvec_fn2(DisasContext * s,bool is_q,int rd,int rn,GVecGen2Fn * gvec_fn,int vece)660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
gen_gvec_fn2i(DisasContext * s,bool is_q,int rd,int rn,int64_t imm,GVecGen2iFn * gvec_fn,int vece)670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
gen_gvec_fn3(DisasContext * s,bool is_q,int rd,int rn,int rm,GVecGen3Fn * gvec_fn,int vece)678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
gen_gvec_fn4(DisasContext * s,bool is_q,int rd,int rn,int rm,int rx,GVecGen4Fn * gvec_fn,int vece)686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
gen_gvec_op2_ool(DisasContext * s,bool is_q,int rd,int rn,int data,gen_helper_gvec_2 * fn)695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
gen_gvec_op3_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int data,gen_helper_gvec_3 * fn)704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
gen_gvec_op3_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,bool is_fp16,int data,gen_helper_gvec_3_ptr * fn)716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
gen_gvec_op4_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,int data,gen_helper_gvec_4 * fn)728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand operation using an out-of-line helper that takes
740  * a pointer to the CPU env.
741  */
gen_gvec_op4_env(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,int data,gen_helper_gvec_4_ptr * fn)742 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn,
743                              int rm, int ra, int data,
744                              gen_helper_gvec_4_ptr *fn)
745 {
746     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
747                        vec_full_reg_offset(s, rn),
748                        vec_full_reg_offset(s, rm),
749                        vec_full_reg_offset(s, ra),
750                        tcg_env,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /*
755  * Expand a 4-operand + fpstatus pointer + simd data value operation using
756  * an out-of-line helper.
757  */
gen_gvec_op4_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,bool is_fp16,int data,gen_helper_gvec_4_ptr * fn)758 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
759                               int rm, int ra, bool is_fp16, int data,
760                               gen_helper_gvec_4_ptr *fn)
761 {
762     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
763     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
764                        vec_full_reg_offset(s, rn),
765                        vec_full_reg_offset(s, rm),
766                        vec_full_reg_offset(s, ra), fpst,
767                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
768 }
769 
770 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
771  * than the 32 bit equivalent.
772  */
gen_set_NZ64(TCGv_i64 result)773 static inline void gen_set_NZ64(TCGv_i64 result)
774 {
775     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
776     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
777 }
778 
779 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
gen_logic_CC(int sf,TCGv_i64 result)780 static inline void gen_logic_CC(int sf, TCGv_i64 result)
781 {
782     if (sf) {
783         gen_set_NZ64(result);
784     } else {
785         tcg_gen_extrl_i64_i32(cpu_ZF, result);
786         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
787     }
788     tcg_gen_movi_i32(cpu_CF, 0);
789     tcg_gen_movi_i32(cpu_VF, 0);
790 }
791 
792 /* dest = T0 + T1; compute C, N, V and Z flags */
gen_add64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)793 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
794 {
795     TCGv_i64 result, flag, tmp;
796     result = tcg_temp_new_i64();
797     flag = tcg_temp_new_i64();
798     tmp = tcg_temp_new_i64();
799 
800     tcg_gen_movi_i64(tmp, 0);
801     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
802 
803     tcg_gen_extrl_i64_i32(cpu_CF, flag);
804 
805     gen_set_NZ64(result);
806 
807     tcg_gen_xor_i64(flag, result, t0);
808     tcg_gen_xor_i64(tmp, t0, t1);
809     tcg_gen_andc_i64(flag, flag, tmp);
810     tcg_gen_extrh_i64_i32(cpu_VF, flag);
811 
812     tcg_gen_mov_i64(dest, result);
813 }
814 
gen_add32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)815 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
816 {
817     TCGv_i32 t0_32 = tcg_temp_new_i32();
818     TCGv_i32 t1_32 = tcg_temp_new_i32();
819     TCGv_i32 tmp = tcg_temp_new_i32();
820 
821     tcg_gen_movi_i32(tmp, 0);
822     tcg_gen_extrl_i64_i32(t0_32, t0);
823     tcg_gen_extrl_i64_i32(t1_32, t1);
824     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
825     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
826     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
827     tcg_gen_xor_i32(tmp, t0_32, t1_32);
828     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
829     tcg_gen_extu_i32_i64(dest, cpu_NF);
830 }
831 
gen_add_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)832 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
833 {
834     if (sf) {
835         gen_add64_CC(dest, t0, t1);
836     } else {
837         gen_add32_CC(dest, t0, t1);
838     }
839 }
840 
841 /* dest = T0 - T1; compute C, N, V and Z flags */
gen_sub64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)842 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
843 {
844     /* 64 bit arithmetic */
845     TCGv_i64 result, flag, tmp;
846 
847     result = tcg_temp_new_i64();
848     flag = tcg_temp_new_i64();
849     tcg_gen_sub_i64(result, t0, t1);
850 
851     gen_set_NZ64(result);
852 
853     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
854     tcg_gen_extrl_i64_i32(cpu_CF, flag);
855 
856     tcg_gen_xor_i64(flag, result, t0);
857     tmp = tcg_temp_new_i64();
858     tcg_gen_xor_i64(tmp, t0, t1);
859     tcg_gen_and_i64(flag, flag, tmp);
860     tcg_gen_extrh_i64_i32(cpu_VF, flag);
861     tcg_gen_mov_i64(dest, result);
862 }
863 
gen_sub32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)864 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
865 {
866     /* 32 bit arithmetic */
867     TCGv_i32 t0_32 = tcg_temp_new_i32();
868     TCGv_i32 t1_32 = tcg_temp_new_i32();
869     TCGv_i32 tmp;
870 
871     tcg_gen_extrl_i64_i32(t0_32, t0);
872     tcg_gen_extrl_i64_i32(t1_32, t1);
873     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
874     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
875     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
876     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
877     tmp = tcg_temp_new_i32();
878     tcg_gen_xor_i32(tmp, t0_32, t1_32);
879     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
880     tcg_gen_extu_i32_i64(dest, cpu_NF);
881 }
882 
gen_sub_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)883 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
884 {
885     if (sf) {
886         gen_sub64_CC(dest, t0, t1);
887     } else {
888         gen_sub32_CC(dest, t0, t1);
889     }
890 }
891 
892 /* dest = T0 + T1 + CF; do not compute flags. */
gen_adc(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)893 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
894 {
895     TCGv_i64 flag = tcg_temp_new_i64();
896     tcg_gen_extu_i32_i64(flag, cpu_CF);
897     tcg_gen_add_i64(dest, t0, t1);
898     tcg_gen_add_i64(dest, dest, flag);
899 
900     if (!sf) {
901         tcg_gen_ext32u_i64(dest, dest);
902     }
903 }
904 
905 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
gen_adc_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)906 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
907 {
908     if (sf) {
909         TCGv_i64 result = tcg_temp_new_i64();
910         TCGv_i64 cf_64 = tcg_temp_new_i64();
911         TCGv_i64 vf_64 = tcg_temp_new_i64();
912         TCGv_i64 tmp = tcg_temp_new_i64();
913         TCGv_i64 zero = tcg_constant_i64(0);
914 
915         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
916         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
917         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
918         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
919         gen_set_NZ64(result);
920 
921         tcg_gen_xor_i64(vf_64, result, t0);
922         tcg_gen_xor_i64(tmp, t0, t1);
923         tcg_gen_andc_i64(vf_64, vf_64, tmp);
924         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
925 
926         tcg_gen_mov_i64(dest, result);
927     } else {
928         TCGv_i32 t0_32 = tcg_temp_new_i32();
929         TCGv_i32 t1_32 = tcg_temp_new_i32();
930         TCGv_i32 tmp = tcg_temp_new_i32();
931         TCGv_i32 zero = tcg_constant_i32(0);
932 
933         tcg_gen_extrl_i64_i32(t0_32, t0);
934         tcg_gen_extrl_i64_i32(t1_32, t1);
935         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
936         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
937 
938         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
939         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
940         tcg_gen_xor_i32(tmp, t0_32, t1_32);
941         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
942         tcg_gen_extu_i32_i64(dest, cpu_NF);
943     }
944 }
945 
946 /*
947  * Load/Store generators
948  */
949 
950 /*
951  * Store from GPR register to memory.
952  */
do_gpr_st_memidx(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)953 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
954                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
955                              bool iss_valid,
956                              unsigned int iss_srt,
957                              bool iss_sf, bool iss_ar)
958 {
959     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
960 
961     if (iss_valid) {
962         uint32_t syn;
963 
964         syn = syn_data_abort_with_iss(0,
965                                       (memop & MO_SIZE),
966                                       false,
967                                       iss_srt,
968                                       iss_sf,
969                                       iss_ar,
970                                       0, 0, 0, 0, 0, false);
971         disas_set_insn_syndrome(s, syn);
972     }
973 }
974 
do_gpr_st(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)975 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
976                       TCGv_i64 tcg_addr, MemOp memop,
977                       bool iss_valid,
978                       unsigned int iss_srt,
979                       bool iss_sf, bool iss_ar)
980 {
981     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
982                      iss_valid, iss_srt, iss_sf, iss_ar);
983 }
984 
985 /*
986  * Load from memory to GPR register
987  */
do_gpr_ld_memidx(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)988 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
989                              MemOp memop, bool extend, int memidx,
990                              bool iss_valid, unsigned int iss_srt,
991                              bool iss_sf, bool iss_ar)
992 {
993     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
994 
995     if (extend && (memop & MO_SIGN)) {
996         g_assert((memop & MO_SIZE) <= MO_32);
997         tcg_gen_ext32u_i64(dest, dest);
998     }
999 
1000     if (iss_valid) {
1001         uint32_t syn;
1002 
1003         syn = syn_data_abort_with_iss(0,
1004                                       (memop & MO_SIZE),
1005                                       (memop & MO_SIGN) != 0,
1006                                       iss_srt,
1007                                       iss_sf,
1008                                       iss_ar,
1009                                       0, 0, 0, 0, 0, false);
1010         disas_set_insn_syndrome(s, syn);
1011     }
1012 }
1013 
do_gpr_ld(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)1014 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1015                       MemOp memop, bool extend,
1016                       bool iss_valid, unsigned int iss_srt,
1017                       bool iss_sf, bool iss_ar)
1018 {
1019     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1020                      iss_valid, iss_srt, iss_sf, iss_ar);
1021 }
1022 
1023 /*
1024  * Store from FP register to memory
1025  */
do_fp_st(DisasContext * s,int srcidx,TCGv_i64 tcg_addr,MemOp mop)1026 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1027 {
1028     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1029     TCGv_i64 tmplo = tcg_temp_new_i64();
1030 
1031     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1032 
1033     if ((mop & MO_SIZE) < MO_128) {
1034         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1035     } else {
1036         TCGv_i64 tmphi = tcg_temp_new_i64();
1037         TCGv_i128 t16 = tcg_temp_new_i128();
1038 
1039         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1040         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1041 
1042         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1043     }
1044 }
1045 
1046 /*
1047  * Load from memory to FP register
1048  */
do_fp_ld(DisasContext * s,int destidx,TCGv_i64 tcg_addr,MemOp mop)1049 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1050 {
1051     /* This always zero-extends and writes to a full 128 bit wide vector */
1052     TCGv_i64 tmplo = tcg_temp_new_i64();
1053     TCGv_i64 tmphi = NULL;
1054 
1055     if ((mop & MO_SIZE) < MO_128) {
1056         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1057     } else {
1058         TCGv_i128 t16 = tcg_temp_new_i128();
1059 
1060         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1061 
1062         tmphi = tcg_temp_new_i64();
1063         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1064     }
1065 
1066     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1067 
1068     if (tmphi) {
1069         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1070     }
1071     clear_vec_high(s, tmphi != NULL, destidx);
1072 }
1073 
1074 /*
1075  * Vector load/store helpers.
1076  *
1077  * The principal difference between this and a FP load is that we don't
1078  * zero extend as we are filling a partial chunk of the vector register.
1079  * These functions don't support 128 bit loads/stores, which would be
1080  * normal load/store operations.
1081  *
1082  * The _i32 versions are useful when operating on 32 bit quantities
1083  * (eg for floating point single or using Neon helper functions).
1084  */
1085 
1086 /* Get value of an element within a vector register */
read_vec_element(DisasContext * s,TCGv_i64 tcg_dest,int srcidx,int element,MemOp memop)1087 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1088                              int element, MemOp memop)
1089 {
1090     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1091     switch ((unsigned)memop) {
1092     case MO_8:
1093         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_16:
1096         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_32:
1099         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_8|MO_SIGN:
1102         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_16|MO_SIGN:
1105         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_32|MO_SIGN:
1108         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1109         break;
1110     case MO_64:
1111     case MO_64|MO_SIGN:
1112         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1113         break;
1114     default:
1115         g_assert_not_reached();
1116     }
1117 }
1118 
read_vec_element_i32(DisasContext * s,TCGv_i32 tcg_dest,int srcidx,int element,MemOp memop)1119 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1120                                  int element, MemOp memop)
1121 {
1122     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1123     switch (memop) {
1124     case MO_8:
1125         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_16:
1128         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_8|MO_SIGN:
1131         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_16|MO_SIGN:
1134         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1135         break;
1136     case MO_32:
1137     case MO_32|MO_SIGN:
1138         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1139         break;
1140     default:
1141         g_assert_not_reached();
1142     }
1143 }
1144 
1145 /* Set value of an element within a vector register */
write_vec_element(DisasContext * s,TCGv_i64 tcg_src,int destidx,int element,MemOp memop)1146 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1147                               int element, MemOp memop)
1148 {
1149     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1150     switch (memop) {
1151     case MO_8:
1152         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_16:
1155         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_32:
1158         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_64:
1161         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1162         break;
1163     default:
1164         g_assert_not_reached();
1165     }
1166 }
1167 
write_vec_element_i32(DisasContext * s,TCGv_i32 tcg_src,int destidx,int element,MemOp memop)1168 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1169                                   int destidx, int element, MemOp memop)
1170 {
1171     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1172     switch (memop) {
1173     case MO_8:
1174         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_16:
1177         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     case MO_32:
1180         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1181         break;
1182     default:
1183         g_assert_not_reached();
1184     }
1185 }
1186 
1187 /* Store from vector register to memory */
do_vec_st(DisasContext * s,int srcidx,int element,TCGv_i64 tcg_addr,MemOp mop)1188 static void do_vec_st(DisasContext *s, int srcidx, int element,
1189                       TCGv_i64 tcg_addr, MemOp mop)
1190 {
1191     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1192 
1193     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1194     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1195 }
1196 
1197 /* Load from memory to vector register */
do_vec_ld(DisasContext * s,int destidx,int element,TCGv_i64 tcg_addr,MemOp mop)1198 static void do_vec_ld(DisasContext *s, int destidx, int element,
1199                       TCGv_i64 tcg_addr, MemOp mop)
1200 {
1201     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1202 
1203     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1204     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1205 }
1206 
1207 /* Check that FP/Neon access is enabled. If it is, return
1208  * true. If not, emit code to generate an appropriate exception,
1209  * and return false; the caller should not emit any code for
1210  * the instruction. Note that this check must happen after all
1211  * unallocated-encoding checks (otherwise the syndrome information
1212  * for the resulting exception will be incorrect).
1213  */
fp_access_check_only(DisasContext * s)1214 static bool fp_access_check_only(DisasContext *s)
1215 {
1216     if (s->fp_excp_el) {
1217         assert(!s->fp_access_checked);
1218         s->fp_access_checked = -1;
1219 
1220         gen_exception_insn_el(s, 0, EXCP_UDEF,
1221                               syn_fp_access_trap(1, 0xe, false, 0),
1222                               s->fp_excp_el);
1223         return false;
1224     }
1225     s->fp_access_checked = 1;
1226     return true;
1227 }
1228 
fp_access_check(DisasContext * s)1229 static bool fp_access_check(DisasContext *s)
1230 {
1231     if (!fp_access_check_only(s)) {
1232         return false;
1233     }
1234     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1235         gen_exception_insn(s, 0, EXCP_UDEF,
1236                            syn_smetrap(SME_ET_Streaming, false));
1237         return false;
1238     }
1239     return true;
1240 }
1241 
1242 /*
1243  * Check that SVE access is enabled.  If it is, return true.
1244  * If not, emit code to generate an appropriate exception and return false.
1245  * This function corresponds to CheckSVEEnabled().
1246  */
sve_access_check(DisasContext * s)1247 bool sve_access_check(DisasContext *s)
1248 {
1249     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1250         bool ret;
1251 
1252         assert(dc_isar_feature(aa64_sme, s));
1253         ret = sme_sm_enabled_check(s);
1254         s->sve_access_checked = (ret ? 1 : -1);
1255         return ret;
1256     }
1257     if (s->sve_excp_el) {
1258         /* Assert that we only raise one exception per instruction. */
1259         assert(!s->sve_access_checked);
1260         gen_exception_insn_el(s, 0, EXCP_UDEF,
1261                               syn_sve_access_trap(), s->sve_excp_el);
1262         s->sve_access_checked = -1;
1263         return false;
1264     }
1265     s->sve_access_checked = 1;
1266     return fp_access_check(s);
1267 }
1268 
1269 /*
1270  * Check that SME access is enabled, raise an exception if not.
1271  * Note that this function corresponds to CheckSMEAccess and is
1272  * only used directly for cpregs.
1273  */
sme_access_check(DisasContext * s)1274 static bool sme_access_check(DisasContext *s)
1275 {
1276     if (s->sme_excp_el) {
1277         gen_exception_insn_el(s, 0, EXCP_UDEF,
1278                               syn_smetrap(SME_ET_AccessTrap, false),
1279                               s->sme_excp_el);
1280         return false;
1281     }
1282     return true;
1283 }
1284 
1285 /* This function corresponds to CheckSMEEnabled. */
sme_enabled_check(DisasContext * s)1286 bool sme_enabled_check(DisasContext *s)
1287 {
1288     /*
1289      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1290      * to be zero when fp_excp_el has priority.  This is because we need
1291      * sme_excp_el by itself for cpregs access checks.
1292      */
1293     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1294         bool ret = sme_access_check(s);
1295         s->fp_access_checked = (ret ? 1 : -1);
1296         return ret;
1297     }
1298     return fp_access_check_only(s);
1299 }
1300 
1301 /* Common subroutine for CheckSMEAnd*Enabled. */
sme_enabled_check_with_svcr(DisasContext * s,unsigned req)1302 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1303 {
1304     if (!sme_enabled_check(s)) {
1305         return false;
1306     }
1307     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1308         gen_exception_insn(s, 0, EXCP_UDEF,
1309                            syn_smetrap(SME_ET_NotStreaming, false));
1310         return false;
1311     }
1312     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1313         gen_exception_insn(s, 0, EXCP_UDEF,
1314                            syn_smetrap(SME_ET_InactiveZA, false));
1315         return false;
1316     }
1317     return true;
1318 }
1319 
1320 /*
1321  * Expanders for AdvSIMD translation functions.
1322  */
1323 
do_gvec_op2_ool(DisasContext * s,arg_qrr_e * a,int data,gen_helper_gvec_2 * fn)1324 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1325                             gen_helper_gvec_2 *fn)
1326 {
1327     if (!a->q && a->esz == MO_64) {
1328         return false;
1329     }
1330     if (fp_access_check(s)) {
1331         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1332     }
1333     return true;
1334 }
1335 
do_gvec_op3_ool(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3 * fn)1336 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1337                             gen_helper_gvec_3 *fn)
1338 {
1339     if (!a->q && a->esz == MO_64) {
1340         return false;
1341     }
1342     if (fp_access_check(s)) {
1343         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1344     }
1345     return true;
1346 }
1347 
do_gvec_fn3(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1348 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1349 {
1350     if (!a->q && a->esz == MO_64) {
1351         return false;
1352     }
1353     if (fp_access_check(s)) {
1354         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1355     }
1356     return true;
1357 }
1358 
do_gvec_fn3_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1359 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1360 {
1361     if (a->esz == MO_64) {
1362         return false;
1363     }
1364     if (fp_access_check(s)) {
1365         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1366     }
1367     return true;
1368 }
1369 
do_gvec_fn3_no8_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1370 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1371 {
1372     if (a->esz == MO_8) {
1373         return false;
1374     }
1375     return do_gvec_fn3_no64(s, a, fn);
1376 }
1377 
do_gvec_fn4(DisasContext * s,arg_qrrrr_e * a,GVecGen4Fn * fn)1378 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1379 {
1380     if (!a->q && a->esz == MO_64) {
1381         return false;
1382     }
1383     if (fp_access_check(s)) {
1384         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1385     }
1386     return true;
1387 }
1388 
1389 /*
1390  * This utility function is for doing register extension with an
1391  * optional shift. You will likely want to pass a temporary for the
1392  * destination register. See DecodeRegExtend() in the ARM ARM.
1393  */
ext_and_shift_reg(TCGv_i64 tcg_out,TCGv_i64 tcg_in,int option,unsigned int shift)1394 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1395                               int option, unsigned int shift)
1396 {
1397     int extsize = extract32(option, 0, 2);
1398     bool is_signed = extract32(option, 2, 1);
1399 
1400     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1401     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1402 }
1403 
gen_check_sp_alignment(DisasContext * s)1404 static inline void gen_check_sp_alignment(DisasContext *s)
1405 {
1406     /* The AArch64 architecture mandates that (if enabled via PSTATE
1407      * or SCTLR bits) there is a check that SP is 16-aligned on every
1408      * SP-relative load or store (with an exception generated if it is not).
1409      * In line with general QEMU practice regarding misaligned accesses,
1410      * we omit these checks for the sake of guest program performance.
1411      * This function is provided as a hook so we can more easily add these
1412      * checks in future (possibly as a "favour catching guest program bugs
1413      * over speed" user selectable option).
1414      */
1415 }
1416 
1417 /*
1418  * This provides a simple table based table lookup decoder. It is
1419  * intended to be used when the relevant bits for decode are too
1420  * awkwardly placed and switch/if based logic would be confusing and
1421  * deeply nested. Since it's a linear search through the table, tables
1422  * should be kept small.
1423  *
1424  * It returns the first handler where insn & mask == pattern, or
1425  * NULL if there is no match.
1426  * The table is terminated by an empty mask (i.e. 0)
1427  */
lookup_disas_fn(const AArch64DecodeTable * table,uint32_t insn)1428 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1429                                                uint32_t insn)
1430 {
1431     const AArch64DecodeTable *tptr = table;
1432 
1433     while (tptr->mask) {
1434         if ((insn & tptr->mask) == tptr->pattern) {
1435             return tptr->disas_fn;
1436         }
1437         tptr++;
1438     }
1439     return NULL;
1440 }
1441 
1442 /*
1443  * The instruction disassembly implemented here matches
1444  * the instruction encoding classifications in chapter C4
1445  * of the ARM Architecture Reference Manual (DDI0487B_a);
1446  * classification names and decode diagrams here should generally
1447  * match up with those in the manual.
1448  */
1449 
trans_B(DisasContext * s,arg_i * a)1450 static bool trans_B(DisasContext *s, arg_i *a)
1451 {
1452     reset_btype(s);
1453     gen_goto_tb(s, 0, a->imm);
1454     return true;
1455 }
1456 
trans_BL(DisasContext * s,arg_i * a)1457 static bool trans_BL(DisasContext *s, arg_i *a)
1458 {
1459     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1460     reset_btype(s);
1461     gen_goto_tb(s, 0, a->imm);
1462     return true;
1463 }
1464 
1465 
trans_CBZ(DisasContext * s,arg_cbz * a)1466 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1472     reset_btype(s);
1473 
1474     match = gen_disas_label(s);
1475     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1476                         tcg_cmp, 0, match.label);
1477     gen_goto_tb(s, 0, 4);
1478     set_disas_label(s, match);
1479     gen_goto_tb(s, 1, a->imm);
1480     return true;
1481 }
1482 
trans_TBZ(DisasContext * s,arg_tbz * a)1483 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1484 {
1485     DisasLabel match;
1486     TCGv_i64 tcg_cmp;
1487 
1488     tcg_cmp = tcg_temp_new_i64();
1489     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1490 
1491     reset_btype(s);
1492 
1493     match = gen_disas_label(s);
1494     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1495                         tcg_cmp, 0, match.label);
1496     gen_goto_tb(s, 0, 4);
1497     set_disas_label(s, match);
1498     gen_goto_tb(s, 1, a->imm);
1499     return true;
1500 }
1501 
trans_B_cond(DisasContext * s,arg_B_cond * a)1502 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1503 {
1504     /* BC.cond is only present with FEAT_HBC */
1505     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1506         return false;
1507     }
1508     reset_btype(s);
1509     if (a->cond < 0x0e) {
1510         /* genuinely conditional branches */
1511         DisasLabel match = gen_disas_label(s);
1512         arm_gen_test_cc(a->cond, match.label);
1513         gen_goto_tb(s, 0, 4);
1514         set_disas_label(s, match);
1515         gen_goto_tb(s, 1, a->imm);
1516     } else {
1517         /* 0xe and 0xf are both "always" conditions */
1518         gen_goto_tb(s, 0, a->imm);
1519     }
1520     return true;
1521 }
1522 
set_btype_for_br(DisasContext * s,int rn)1523 static void set_btype_for_br(DisasContext *s, int rn)
1524 {
1525     if (dc_isar_feature(aa64_bti, s)) {
1526         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1527         if (rn == 16 || rn == 17) {
1528             set_btype(s, 1);
1529         } else {
1530             TCGv_i64 pc = tcg_temp_new_i64();
1531             gen_pc_plus_diff(s, pc, 0);
1532             gen_helper_guarded_page_br(tcg_env, pc);
1533             s->btype = -1;
1534         }
1535     }
1536 }
1537 
set_btype_for_blr(DisasContext * s)1538 static void set_btype_for_blr(DisasContext *s)
1539 {
1540     if (dc_isar_feature(aa64_bti, s)) {
1541         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1542         set_btype(s, 2);
1543     }
1544 }
1545 
trans_BR(DisasContext * s,arg_r * a)1546 static bool trans_BR(DisasContext *s, arg_r *a)
1547 {
1548     set_btype_for_br(s, a->rn);
1549     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1550     s->base.is_jmp = DISAS_JUMP;
1551     return true;
1552 }
1553 
trans_BLR(DisasContext * s,arg_r * a)1554 static bool trans_BLR(DisasContext *s, arg_r *a)
1555 {
1556     TCGv_i64 dst = cpu_reg(s, a->rn);
1557     TCGv_i64 lr = cpu_reg(s, 30);
1558     if (dst == lr) {
1559         TCGv_i64 tmp = tcg_temp_new_i64();
1560         tcg_gen_mov_i64(tmp, dst);
1561         dst = tmp;
1562     }
1563     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1564     gen_a64_set_pc(s, dst);
1565     set_btype_for_blr(s);
1566     s->base.is_jmp = DISAS_JUMP;
1567     return true;
1568 }
1569 
trans_RET(DisasContext * s,arg_r * a)1570 static bool trans_RET(DisasContext *s, arg_r *a)
1571 {
1572     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1573     s->base.is_jmp = DISAS_JUMP;
1574     return true;
1575 }
1576 
auth_branch_target(DisasContext * s,TCGv_i64 dst,TCGv_i64 modifier,bool use_key_a)1577 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1578                                    TCGv_i64 modifier, bool use_key_a)
1579 {
1580     TCGv_i64 truedst;
1581     /*
1582      * Return the branch target for a BRAA/RETA/etc, which is either
1583      * just the destination dst, or that value with the pauth check
1584      * done and the code removed from the high bits.
1585      */
1586     if (!s->pauth_active) {
1587         return dst;
1588     }
1589 
1590     truedst = tcg_temp_new_i64();
1591     if (use_key_a) {
1592         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1593     } else {
1594         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1595     }
1596     return truedst;
1597 }
1598 
trans_BRAZ(DisasContext * s,arg_braz * a)1599 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1600 {
1601     TCGv_i64 dst;
1602 
1603     if (!dc_isar_feature(aa64_pauth, s)) {
1604         return false;
1605     }
1606 
1607     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1608     set_btype_for_br(s, a->rn);
1609     gen_a64_set_pc(s, dst);
1610     s->base.is_jmp = DISAS_JUMP;
1611     return true;
1612 }
1613 
trans_BLRAZ(DisasContext * s,arg_braz * a)1614 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1615 {
1616     TCGv_i64 dst, lr;
1617 
1618     if (!dc_isar_feature(aa64_pauth, s)) {
1619         return false;
1620     }
1621 
1622     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1623     lr = cpu_reg(s, 30);
1624     if (dst == lr) {
1625         TCGv_i64 tmp = tcg_temp_new_i64();
1626         tcg_gen_mov_i64(tmp, dst);
1627         dst = tmp;
1628     }
1629     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_blr(s);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
trans_RETA(DisasContext * s,arg_reta * a)1636 static bool trans_RETA(DisasContext *s, arg_reta *a)
1637 {
1638     TCGv_i64 dst;
1639 
1640     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1641     gen_a64_set_pc(s, dst);
1642     s->base.is_jmp = DISAS_JUMP;
1643     return true;
1644 }
1645 
trans_BRA(DisasContext * s,arg_bra * a)1646 static bool trans_BRA(DisasContext *s, arg_bra *a)
1647 {
1648     TCGv_i64 dst;
1649 
1650     if (!dc_isar_feature(aa64_pauth, s)) {
1651         return false;
1652     }
1653     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1654     gen_a64_set_pc(s, dst);
1655     set_btype_for_br(s, a->rn);
1656     s->base.is_jmp = DISAS_JUMP;
1657     return true;
1658 }
1659 
trans_BLRA(DisasContext * s,arg_bra * a)1660 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1661 {
1662     TCGv_i64 dst, lr;
1663 
1664     if (!dc_isar_feature(aa64_pauth, s)) {
1665         return false;
1666     }
1667     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1668     lr = cpu_reg(s, 30);
1669     if (dst == lr) {
1670         TCGv_i64 tmp = tcg_temp_new_i64();
1671         tcg_gen_mov_i64(tmp, dst);
1672         dst = tmp;
1673     }
1674     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1675     gen_a64_set_pc(s, dst);
1676     set_btype_for_blr(s);
1677     s->base.is_jmp = DISAS_JUMP;
1678     return true;
1679 }
1680 
trans_ERET(DisasContext * s,arg_ERET * a)1681 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1682 {
1683     TCGv_i64 dst;
1684 
1685     if (s->current_el == 0) {
1686         return false;
1687     }
1688     if (s->trap_eret) {
1689         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1690         return true;
1691     }
1692     dst = tcg_temp_new_i64();
1693     tcg_gen_ld_i64(dst, tcg_env,
1694                    offsetof(CPUARMState, elr_el[s->current_el]));
1695 
1696     translator_io_start(&s->base);
1697 
1698     gen_helper_exception_return(tcg_env, dst);
1699     /* Must exit loop to check un-masked IRQs */
1700     s->base.is_jmp = DISAS_EXIT;
1701     return true;
1702 }
1703 
trans_ERETA(DisasContext * s,arg_reta * a)1704 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1705 {
1706     TCGv_i64 dst;
1707 
1708     if (!dc_isar_feature(aa64_pauth, s)) {
1709         return false;
1710     }
1711     if (s->current_el == 0) {
1712         return false;
1713     }
1714     /* The FGT trap takes precedence over an auth trap. */
1715     if (s->trap_eret) {
1716         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1717         return true;
1718     }
1719     dst = tcg_temp_new_i64();
1720     tcg_gen_ld_i64(dst, tcg_env,
1721                    offsetof(CPUARMState, elr_el[s->current_el]));
1722 
1723     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1724 
1725     translator_io_start(&s->base);
1726 
1727     gen_helper_exception_return(tcg_env, dst);
1728     /* Must exit loop to check un-masked IRQs */
1729     s->base.is_jmp = DISAS_EXIT;
1730     return true;
1731 }
1732 
trans_NOP(DisasContext * s,arg_NOP * a)1733 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1734 {
1735     return true;
1736 }
1737 
trans_YIELD(DisasContext * s,arg_YIELD * a)1738 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1739 {
1740     /*
1741      * When running in MTTCG we don't generate jumps to the yield and
1742      * WFE helpers as it won't affect the scheduling of other vCPUs.
1743      * If we wanted to more completely model WFE/SEV so we don't busy
1744      * spin unnecessarily we would need to do something more involved.
1745      */
1746     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1747         s->base.is_jmp = DISAS_YIELD;
1748     }
1749     return true;
1750 }
1751 
trans_WFI(DisasContext * s,arg_WFI * a)1752 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1753 {
1754     s->base.is_jmp = DISAS_WFI;
1755     return true;
1756 }
1757 
trans_WFE(DisasContext * s,arg_WFI * a)1758 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1759 {
1760     /*
1761      * When running in MTTCG we don't generate jumps to the yield and
1762      * WFE helpers as it won't affect the scheduling of other vCPUs.
1763      * If we wanted to more completely model WFE/SEV so we don't busy
1764      * spin unnecessarily we would need to do something more involved.
1765      */
1766     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1767         s->base.is_jmp = DISAS_WFE;
1768     }
1769     return true;
1770 }
1771 
trans_WFIT(DisasContext * s,arg_WFIT * a)1772 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * Because we need to pass the register value to the helper,
1780      * it's easier to emit the code now, unlike trans_WFI which
1781      * defers it to aarch64_tr_tb_stop(). That means we need to
1782      * check ss_active so that single-stepping a WFIT doesn't halt.
1783      */
1784     if (s->ss_active) {
1785         /* Act like a NOP under architectural singlestep */
1786         return true;
1787     }
1788 
1789     gen_a64_update_pc(s, 4);
1790     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1791     /* Go back to the main loop to check for interrupts */
1792     s->base.is_jmp = DISAS_EXIT;
1793     return true;
1794 }
1795 
trans_WFET(DisasContext * s,arg_WFET * a)1796 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1797 {
1798     if (!dc_isar_feature(aa64_wfxt, s)) {
1799         return false;
1800     }
1801 
1802     /*
1803      * We rely here on our WFE implementation being a NOP, so we
1804      * don't need to do anything different to handle the WFET timeout
1805      * from what trans_WFE does.
1806      */
1807     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1808         s->base.is_jmp = DISAS_WFE;
1809     }
1810     return true;
1811 }
1812 
trans_XPACLRI(DisasContext * s,arg_XPACLRI * a)1813 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1817     }
1818     return true;
1819 }
1820 
trans_PACIA1716(DisasContext * s,arg_PACIA1716 * a)1821 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
trans_PACIB1716(DisasContext * s,arg_PACIB1716 * a)1829 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1830 {
1831     if (s->pauth_active) {
1832         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1833     }
1834     return true;
1835 }
1836 
trans_AUTIA1716(DisasContext * s,arg_AUTIA1716 * a)1837 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1838 {
1839     if (s->pauth_active) {
1840         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1841     }
1842     return true;
1843 }
1844 
trans_AUTIB1716(DisasContext * s,arg_AUTIB1716 * a)1845 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1846 {
1847     if (s->pauth_active) {
1848         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1849     }
1850     return true;
1851 }
1852 
trans_ESB(DisasContext * s,arg_ESB * a)1853 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1854 {
1855     /* Without RAS, we must implement this as NOP. */
1856     if (dc_isar_feature(aa64_ras, s)) {
1857         /*
1858          * QEMU does not have a source of physical SErrors,
1859          * so we are only concerned with virtual SErrors.
1860          * The pseudocode in the ARM for this case is
1861          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1862          *      AArch64.vESBOperation();
1863          * Most of the condition can be evaluated at translation time.
1864          * Test for EL2 present, and defer test for SEL2 to runtime.
1865          */
1866         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1867             gen_helper_vesb(tcg_env);
1868         }
1869     }
1870     return true;
1871 }
1872 
trans_PACIAZ(DisasContext * s,arg_PACIAZ * a)1873 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1877     }
1878     return true;
1879 }
1880 
trans_PACIASP(DisasContext * s,arg_PACIASP * a)1881 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1885     }
1886     return true;
1887 }
1888 
trans_PACIBZ(DisasContext * s,arg_PACIBZ * a)1889 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1893     }
1894     return true;
1895 }
1896 
trans_PACIBSP(DisasContext * s,arg_PACIBSP * a)1897 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1901     }
1902     return true;
1903 }
1904 
trans_AUTIAZ(DisasContext * s,arg_AUTIAZ * a)1905 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1909     }
1910     return true;
1911 }
1912 
trans_AUTIASP(DisasContext * s,arg_AUTIASP * a)1913 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1914 {
1915     if (s->pauth_active) {
1916         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1917     }
1918     return true;
1919 }
1920 
trans_AUTIBZ(DisasContext * s,arg_AUTIBZ * a)1921 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1922 {
1923     if (s->pauth_active) {
1924         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1925     }
1926     return true;
1927 }
1928 
trans_AUTIBSP(DisasContext * s,arg_AUTIBSP * a)1929 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1930 {
1931     if (s->pauth_active) {
1932         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1933     }
1934     return true;
1935 }
1936 
trans_CLREX(DisasContext * s,arg_CLREX * a)1937 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1938 {
1939     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1940     return true;
1941 }
1942 
trans_DSB_DMB(DisasContext * s,arg_DSB_DMB * a)1943 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1944 {
1945     /* We handle DSB and DMB the same way */
1946     TCGBar bar;
1947 
1948     switch (a->types) {
1949     case 1: /* MBReqTypes_Reads */
1950         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1951         break;
1952     case 2: /* MBReqTypes_Writes */
1953         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1954         break;
1955     default: /* MBReqTypes_All */
1956         bar = TCG_BAR_SC | TCG_MO_ALL;
1957         break;
1958     }
1959     tcg_gen_mb(bar);
1960     return true;
1961 }
1962 
trans_ISB(DisasContext * s,arg_ISB * a)1963 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1964 {
1965     /*
1966      * We need to break the TB after this insn to execute
1967      * self-modifying code correctly and also to take
1968      * any pending interrupts immediately.
1969      */
1970     reset_btype(s);
1971     gen_goto_tb(s, 0, 4);
1972     return true;
1973 }
1974 
trans_SB(DisasContext * s,arg_SB * a)1975 static bool trans_SB(DisasContext *s, arg_SB *a)
1976 {
1977     if (!dc_isar_feature(aa64_sb, s)) {
1978         return false;
1979     }
1980     /*
1981      * TODO: There is no speculation barrier opcode for TCG;
1982      * MB and end the TB instead.
1983      */
1984     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1985     gen_goto_tb(s, 0, 4);
1986     return true;
1987 }
1988 
trans_CFINV(DisasContext * s,arg_CFINV * a)1989 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1990 {
1991     if (!dc_isar_feature(aa64_condm_4, s)) {
1992         return false;
1993     }
1994     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1995     return true;
1996 }
1997 
trans_XAFLAG(DisasContext * s,arg_XAFLAG * a)1998 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1999 {
2000     TCGv_i32 z;
2001 
2002     if (!dc_isar_feature(aa64_condm_5, s)) {
2003         return false;
2004     }
2005 
2006     z = tcg_temp_new_i32();
2007 
2008     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
2009 
2010     /*
2011      * (!C & !Z) << 31
2012      * (!(C | Z)) << 31
2013      * ~((C | Z) << 31)
2014      * ~-(C | Z)
2015      * (C | Z) - 1
2016      */
2017     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2018     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2019 
2020     /* !(Z & C) */
2021     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2022     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2023 
2024     /* (!C & Z) << 31 -> -(Z & ~C) */
2025     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2026     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2027 
2028     /* C | Z */
2029     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2030 
2031     return true;
2032 }
2033 
trans_AXFLAG(DisasContext * s,arg_AXFLAG * a)2034 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2035 {
2036     if (!dc_isar_feature(aa64_condm_5, s)) {
2037         return false;
2038     }
2039 
2040     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2041     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2042 
2043     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2044     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2045 
2046     tcg_gen_movi_i32(cpu_NF, 0);
2047     tcg_gen_movi_i32(cpu_VF, 0);
2048 
2049     return true;
2050 }
2051 
trans_MSR_i_UAO(DisasContext * s,arg_i * a)2052 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2053 {
2054     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2055         return false;
2056     }
2057     if (a->imm & 1) {
2058         set_pstate_bits(PSTATE_UAO);
2059     } else {
2060         clear_pstate_bits(PSTATE_UAO);
2061     }
2062     gen_rebuild_hflags(s);
2063     s->base.is_jmp = DISAS_TOO_MANY;
2064     return true;
2065 }
2066 
trans_MSR_i_PAN(DisasContext * s,arg_i * a)2067 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2068 {
2069     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2070         return false;
2071     }
2072     if (a->imm & 1) {
2073         set_pstate_bits(PSTATE_PAN);
2074     } else {
2075         clear_pstate_bits(PSTATE_PAN);
2076     }
2077     gen_rebuild_hflags(s);
2078     s->base.is_jmp = DISAS_TOO_MANY;
2079     return true;
2080 }
2081 
trans_MSR_i_SPSEL(DisasContext * s,arg_i * a)2082 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2083 {
2084     if (s->current_el == 0) {
2085         return false;
2086     }
2087     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2088     s->base.is_jmp = DISAS_TOO_MANY;
2089     return true;
2090 }
2091 
trans_MSR_i_SBSS(DisasContext * s,arg_i * a)2092 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2093 {
2094     if (!dc_isar_feature(aa64_ssbs, s)) {
2095         return false;
2096     }
2097     if (a->imm & 1) {
2098         set_pstate_bits(PSTATE_SSBS);
2099     } else {
2100         clear_pstate_bits(PSTATE_SSBS);
2101     }
2102     /* Don't need to rebuild hflags since SSBS is a nop */
2103     s->base.is_jmp = DISAS_TOO_MANY;
2104     return true;
2105 }
2106 
trans_MSR_i_DIT(DisasContext * s,arg_i * a)2107 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2108 {
2109     if (!dc_isar_feature(aa64_dit, s)) {
2110         return false;
2111     }
2112     if (a->imm & 1) {
2113         set_pstate_bits(PSTATE_DIT);
2114     } else {
2115         clear_pstate_bits(PSTATE_DIT);
2116     }
2117     /* There's no need to rebuild hflags because DIT is a nop */
2118     s->base.is_jmp = DISAS_TOO_MANY;
2119     return true;
2120 }
2121 
trans_MSR_i_TCO(DisasContext * s,arg_i * a)2122 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2123 {
2124     if (dc_isar_feature(aa64_mte, s)) {
2125         /* Full MTE is enabled -- set the TCO bit as directed. */
2126         if (a->imm & 1) {
2127             set_pstate_bits(PSTATE_TCO);
2128         } else {
2129             clear_pstate_bits(PSTATE_TCO);
2130         }
2131         gen_rebuild_hflags(s);
2132         /* Many factors, including TCO, go into MTE_ACTIVE. */
2133         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2134         return true;
2135     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2136         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2137         return true;
2138     } else {
2139         /* Insn not present */
2140         return false;
2141     }
2142 }
2143 
trans_MSR_i_DAIFSET(DisasContext * s,arg_i * a)2144 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2145 {
2146     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2147     s->base.is_jmp = DISAS_TOO_MANY;
2148     return true;
2149 }
2150 
trans_MSR_i_DAIFCLEAR(DisasContext * s,arg_i * a)2151 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2152 {
2153     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2154     /* Exit the cpu loop to re-evaluate pending IRQs. */
2155     s->base.is_jmp = DISAS_UPDATE_EXIT;
2156     return true;
2157 }
2158 
trans_MSR_i_ALLINT(DisasContext * s,arg_i * a)2159 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2160 {
2161     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2162         return false;
2163     }
2164 
2165     if (a->imm == 0) {
2166         clear_pstate_bits(PSTATE_ALLINT);
2167     } else if (s->current_el > 1) {
2168         set_pstate_bits(PSTATE_ALLINT);
2169     } else {
2170         gen_helper_msr_set_allint_el1(tcg_env);
2171     }
2172 
2173     /* Exit the cpu loop to re-evaluate pending IRQs. */
2174     s->base.is_jmp = DISAS_UPDATE_EXIT;
2175     return true;
2176 }
2177 
trans_MSR_i_SVCR(DisasContext * s,arg_MSR_i_SVCR * a)2178 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2179 {
2180     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2181         return false;
2182     }
2183     if (sme_access_check(s)) {
2184         int old = s->pstate_sm | (s->pstate_za << 1);
2185         int new = a->imm * 3;
2186 
2187         if ((old ^ new) & a->mask) {
2188             /* At least one bit changes. */
2189             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2190                                 tcg_constant_i32(a->mask));
2191             s->base.is_jmp = DISAS_TOO_MANY;
2192         }
2193     }
2194     return true;
2195 }
2196 
gen_get_nzcv(TCGv_i64 tcg_rt)2197 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2198 {
2199     TCGv_i32 tmp = tcg_temp_new_i32();
2200     TCGv_i32 nzcv = tcg_temp_new_i32();
2201 
2202     /* build bit 31, N */
2203     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2204     /* build bit 30, Z */
2205     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2206     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2207     /* build bit 29, C */
2208     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2209     /* build bit 28, V */
2210     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2211     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2212     /* generate result */
2213     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2214 }
2215 
gen_set_nzcv(TCGv_i64 tcg_rt)2216 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2217 {
2218     TCGv_i32 nzcv = tcg_temp_new_i32();
2219 
2220     /* take NZCV from R[t] */
2221     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2222 
2223     /* bit 31, N */
2224     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2225     /* bit 30, Z */
2226     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2227     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2228     /* bit 29, C */
2229     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2230     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2231     /* bit 28, V */
2232     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2233     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2234 }
2235 
gen_sysreg_undef(DisasContext * s,bool isread,uint8_t op0,uint8_t op1,uint8_t op2,uint8_t crn,uint8_t crm,uint8_t rt)2236 static void gen_sysreg_undef(DisasContext *s, bool isread,
2237                              uint8_t op0, uint8_t op1, uint8_t op2,
2238                              uint8_t crn, uint8_t crm, uint8_t rt)
2239 {
2240     /*
2241      * Generate code to emit an UNDEF with correct syndrome
2242      * information for a failed system register access.
2243      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2244      * but if FEAT_IDST is implemented then read accesses to registers
2245      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2246      * syndrome.
2247      */
2248     uint32_t syndrome;
2249 
2250     if (isread && dc_isar_feature(aa64_ids, s) &&
2251         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2252         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2253     } else {
2254         syndrome = syn_uncategorized();
2255     }
2256     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2257 }
2258 
2259 /* MRS - move from system register
2260  * MSR (register) - move to system register
2261  * SYS
2262  * SYSL
2263  * These are all essentially the same insn in 'read' and 'write'
2264  * versions, with varying op0 fields.
2265  */
handle_sys(DisasContext * s,bool isread,unsigned int op0,unsigned int op1,unsigned int op2,unsigned int crn,unsigned int crm,unsigned int rt)2266 static void handle_sys(DisasContext *s, bool isread,
2267                        unsigned int op0, unsigned int op1, unsigned int op2,
2268                        unsigned int crn, unsigned int crm, unsigned int rt)
2269 {
2270     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2271                                       crn, crm, op0, op1, op2);
2272     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2273     bool need_exit_tb = false;
2274     bool nv_trap_to_el2 = false;
2275     bool nv_redirect_reg = false;
2276     bool skip_fp_access_checks = false;
2277     bool nv2_mem_redirect = false;
2278     TCGv_ptr tcg_ri = NULL;
2279     TCGv_i64 tcg_rt;
2280     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2281 
2282     if (crn == 11 || crn == 15) {
2283         /*
2284          * Check for TIDCP trap, which must take precedence over
2285          * the UNDEF for "no such register" etc.
2286          */
2287         switch (s->current_el) {
2288         case 0:
2289             if (dc_isar_feature(aa64_tidcp1, s)) {
2290                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2291             }
2292             break;
2293         case 1:
2294             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2295             break;
2296         }
2297     }
2298 
2299     if (!ri) {
2300         /* Unknown register; this might be a guest error or a QEMU
2301          * unimplemented feature.
2302          */
2303         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2304                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2305                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2306         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2307         return;
2308     }
2309 
2310     if (s->nv2 && ri->nv2_redirect_offset) {
2311         /*
2312          * Some registers always redirect to memory; some only do so if
2313          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2314          * pairs which share an offset; see the table in R_CSRPQ).
2315          */
2316         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2317             nv2_mem_redirect = s->nv1;
2318         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2319             nv2_mem_redirect = !s->nv1;
2320         } else {
2321             nv2_mem_redirect = true;
2322         }
2323     }
2324 
2325     /* Check access permissions */
2326     if (!cp_access_ok(s->current_el, ri, isread)) {
2327         /*
2328          * FEAT_NV/NV2 handling does not do the usual FP access checks
2329          * for registers only accessible at EL2 (though it *does* do them
2330          * for registers accessible at EL1).
2331          */
2332         skip_fp_access_checks = true;
2333         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2334             /*
2335              * This is one of the few EL2 registers which should redirect
2336              * to the equivalent EL1 register. We do that after running
2337              * the EL2 register's accessfn.
2338              */
2339             nv_redirect_reg = true;
2340             assert(!nv2_mem_redirect);
2341         } else if (nv2_mem_redirect) {
2342             /*
2343              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2344              * UNDEF to EL1.
2345              */
2346         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2347             /*
2348              * This register / instruction exists and is an EL2 register, so
2349              * we must trap to EL2 if accessed in nested virtualization EL1
2350              * instead of UNDEFing. We'll do that after the usual access checks.
2351              * (This makes a difference only for a couple of registers like
2352              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2353              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2354              * an accessfn which does nothing when called from EL1, because
2355              * the trap-to-EL3 controls which would apply to that register
2356              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2357              */
2358             nv_trap_to_el2 = true;
2359         } else {
2360             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2361             return;
2362         }
2363     }
2364 
2365     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2366         /* Emit code to perform further access permissions checks at
2367          * runtime; this may result in an exception.
2368          */
2369         gen_a64_update_pc(s, 0);
2370         tcg_ri = tcg_temp_new_ptr();
2371         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2372                                        tcg_constant_i32(key),
2373                                        tcg_constant_i32(syndrome),
2374                                        tcg_constant_i32(isread));
2375     } else if (ri->type & ARM_CP_RAISES_EXC) {
2376         /*
2377          * The readfn or writefn might raise an exception;
2378          * synchronize the CPU state in case it does.
2379          */
2380         gen_a64_update_pc(s, 0);
2381     }
2382 
2383     if (!skip_fp_access_checks) {
2384         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2385             return;
2386         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2387             return;
2388         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2389             return;
2390         }
2391     }
2392 
2393     if (nv_trap_to_el2) {
2394         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2395         return;
2396     }
2397 
2398     if (nv_redirect_reg) {
2399         /*
2400          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2401          * Conveniently in all cases the encoding of the EL1 register is
2402          * identical to the EL2 register except that opc1 is 0.
2403          * Get the reginfo for the EL1 register to use for the actual access.
2404          * We don't use the EL1 register's access function, and
2405          * fine-grained-traps on EL1 also do not apply here.
2406          */
2407         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2408                                  crn, crm, op0, 0, op2);
2409         ri = get_arm_cp_reginfo(s->cp_regs, key);
2410         assert(ri);
2411         assert(cp_access_ok(s->current_el, ri, isread));
2412         /*
2413          * We might not have done an update_pc earlier, so check we don't
2414          * need it. We could support this in future if necessary.
2415          */
2416         assert(!(ri->type & ARM_CP_RAISES_EXC));
2417     }
2418 
2419     if (nv2_mem_redirect) {
2420         /*
2421          * This system register is being redirected into an EL2 memory access.
2422          * This means it is not an IO operation, doesn't change hflags,
2423          * and need not end the TB, because it has no side effects.
2424          *
2425          * The access is 64-bit single copy atomic, guaranteed aligned because
2426          * of the definition of VCNR_EL2. Its endianness depends on
2427          * SCTLR_EL2.EE, not on the data endianness of EL1.
2428          * It is done under either the EL2 translation regime or the EL2&0
2429          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2430          * PSTATE.PAN is 0.
2431          */
2432         TCGv_i64 ptr = tcg_temp_new_i64();
2433         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2434         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2435         int memidx = arm_to_core_mmu_idx(armmemidx);
2436         uint32_t syn;
2437 
2438         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2439 
2440         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2441         tcg_gen_addi_i64(ptr, ptr,
2442                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2443         tcg_rt = cpu_reg(s, rt);
2444 
2445         syn = syn_data_abort_vncr(0, !isread, 0);
2446         disas_set_insn_syndrome(s, syn);
2447         if (isread) {
2448             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2449         } else {
2450             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2451         }
2452         return;
2453     }
2454 
2455     /* Handle special cases first */
2456     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2457     case 0:
2458         break;
2459     case ARM_CP_NOP:
2460         return;
2461     case ARM_CP_NZCV:
2462         tcg_rt = cpu_reg(s, rt);
2463         if (isread) {
2464             gen_get_nzcv(tcg_rt);
2465         } else {
2466             gen_set_nzcv(tcg_rt);
2467         }
2468         return;
2469     case ARM_CP_CURRENTEL:
2470     {
2471         /*
2472          * Reads as current EL value from pstate, which is
2473          * guaranteed to be constant by the tb flags.
2474          * For nested virt we should report EL2.
2475          */
2476         int el = s->nv ? 2 : s->current_el;
2477         tcg_rt = cpu_reg(s, rt);
2478         tcg_gen_movi_i64(tcg_rt, el << 2);
2479         return;
2480     }
2481     case ARM_CP_DC_ZVA:
2482         /* Writes clear the aligned block of memory which rt points into. */
2483         if (s->mte_active[0]) {
2484             int desc = 0;
2485 
2486             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2487             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2488             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2489 
2490             tcg_rt = tcg_temp_new_i64();
2491             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2492                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2493         } else {
2494             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2495         }
2496         gen_helper_dc_zva(tcg_env, tcg_rt);
2497         return;
2498     case ARM_CP_DC_GVA:
2499         {
2500             TCGv_i64 clean_addr, tag;
2501 
2502             /*
2503              * DC_GVA, like DC_ZVA, requires that we supply the original
2504              * pointer for an invalid page.  Probe that address first.
2505              */
2506             tcg_rt = cpu_reg(s, rt);
2507             clean_addr = clean_data_tbi(s, tcg_rt);
2508             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2509 
2510             if (s->ata[0]) {
2511                 /* Extract the tag from the register to match STZGM.  */
2512                 tag = tcg_temp_new_i64();
2513                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2514                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2515             }
2516         }
2517         return;
2518     case ARM_CP_DC_GZVA:
2519         {
2520             TCGv_i64 clean_addr, tag;
2521 
2522             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2523             tcg_rt = cpu_reg(s, rt);
2524             clean_addr = clean_data_tbi(s, tcg_rt);
2525             gen_helper_dc_zva(tcg_env, clean_addr);
2526 
2527             if (s->ata[0]) {
2528                 /* Extract the tag from the register to match STZGM.  */
2529                 tag = tcg_temp_new_i64();
2530                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2531                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2532             }
2533         }
2534         return;
2535     default:
2536         g_assert_not_reached();
2537     }
2538 
2539     if (ri->type & ARM_CP_IO) {
2540         /* I/O operations must end the TB here (whether read or write) */
2541         need_exit_tb = translator_io_start(&s->base);
2542     }
2543 
2544     tcg_rt = cpu_reg(s, rt);
2545 
2546     if (isread) {
2547         if (ri->type & ARM_CP_CONST) {
2548             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2549         } else if (ri->readfn) {
2550             if (!tcg_ri) {
2551                 tcg_ri = gen_lookup_cp_reg(key);
2552             }
2553             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2554         } else {
2555             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2556         }
2557     } else {
2558         if (ri->type & ARM_CP_CONST) {
2559             /* If not forbidden by access permissions, treat as WI */
2560             return;
2561         } else if (ri->writefn) {
2562             if (!tcg_ri) {
2563                 tcg_ri = gen_lookup_cp_reg(key);
2564             }
2565             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2566         } else {
2567             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2568         }
2569     }
2570 
2571     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2572         /*
2573          * A write to any coprocessor register that ends a TB
2574          * must rebuild the hflags for the next TB.
2575          */
2576         gen_rebuild_hflags(s);
2577         /*
2578          * We default to ending the TB on a coprocessor register write,
2579          * but allow this to be suppressed by the register definition
2580          * (usually only necessary to work around guest bugs).
2581          */
2582         need_exit_tb = true;
2583     }
2584     if (need_exit_tb) {
2585         s->base.is_jmp = DISAS_UPDATE_EXIT;
2586     }
2587 }
2588 
trans_SYS(DisasContext * s,arg_SYS * a)2589 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2590 {
2591     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2592     return true;
2593 }
2594 
trans_SVC(DisasContext * s,arg_i * a)2595 static bool trans_SVC(DisasContext *s, arg_i *a)
2596 {
2597     /*
2598      * For SVC, HVC and SMC we advance the single-step state
2599      * machine before taking the exception. This is architecturally
2600      * mandated, to ensure that single-stepping a system call
2601      * instruction works properly.
2602      */
2603     uint32_t syndrome = syn_aa64_svc(a->imm);
2604     if (s->fgt_svc) {
2605         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2606         return true;
2607     }
2608     gen_ss_advance(s);
2609     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2610     return true;
2611 }
2612 
trans_HVC(DisasContext * s,arg_i * a)2613 static bool trans_HVC(DisasContext *s, arg_i *a)
2614 {
2615     int target_el = s->current_el == 3 ? 3 : 2;
2616 
2617     if (s->current_el == 0) {
2618         unallocated_encoding(s);
2619         return true;
2620     }
2621     /*
2622      * The pre HVC helper handles cases when HVC gets trapped
2623      * as an undefined insn by runtime configuration.
2624      */
2625     gen_a64_update_pc(s, 0);
2626     gen_helper_pre_hvc(tcg_env);
2627     /* Architecture requires ss advance before we do the actual work */
2628     gen_ss_advance(s);
2629     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2630     return true;
2631 }
2632 
trans_SMC(DisasContext * s,arg_i * a)2633 static bool trans_SMC(DisasContext *s, arg_i *a)
2634 {
2635     if (s->current_el == 0) {
2636         unallocated_encoding(s);
2637         return true;
2638     }
2639     gen_a64_update_pc(s, 0);
2640     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2641     /* Architecture requires ss advance before we do the actual work */
2642     gen_ss_advance(s);
2643     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2644     return true;
2645 }
2646 
trans_BRK(DisasContext * s,arg_i * a)2647 static bool trans_BRK(DisasContext *s, arg_i *a)
2648 {
2649     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2650     return true;
2651 }
2652 
trans_HLT(DisasContext * s,arg_i * a)2653 static bool trans_HLT(DisasContext *s, arg_i *a)
2654 {
2655     /*
2656      * HLT. This has two purposes.
2657      * Architecturally, it is an external halting debug instruction.
2658      * Since QEMU doesn't implement external debug, we treat this as
2659      * it is required for halting debug disabled: it will UNDEF.
2660      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2661      */
2662     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2663         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2664     } else {
2665         unallocated_encoding(s);
2666     }
2667     return true;
2668 }
2669 
2670 /*
2671  * Load/Store exclusive instructions are implemented by remembering
2672  * the value/address loaded, and seeing if these are the same
2673  * when the store is performed. This is not actually the architecturally
2674  * mandated semantics, but it works for typical guest code sequences
2675  * and avoids having to monitor regular stores.
2676  *
2677  * The store exclusive uses the atomic cmpxchg primitives to avoid
2678  * races in multi-threaded linux-user and when MTTCG softmmu is
2679  * enabled.
2680  */
gen_load_exclusive(DisasContext * s,int rt,int rt2,int rn,int size,bool is_pair)2681 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2682                                int size, bool is_pair)
2683 {
2684     int idx = get_mem_index(s);
2685     TCGv_i64 dirty_addr, clean_addr;
2686     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2687 
2688     s->is_ldex = true;
2689     dirty_addr = cpu_reg_sp(s, rn);
2690     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2691 
2692     g_assert(size <= 3);
2693     if (is_pair) {
2694         g_assert(size >= 2);
2695         if (size == 2) {
2696             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697             if (s->be_data == MO_LE) {
2698                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2699                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2700             } else {
2701                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2702                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2703             }
2704         } else {
2705             TCGv_i128 t16 = tcg_temp_new_i128();
2706 
2707             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2708 
2709             if (s->be_data == MO_LE) {
2710                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2711                                       cpu_exclusive_high, t16);
2712             } else {
2713                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2714                                       cpu_exclusive_val, t16);
2715             }
2716             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2717             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2718         }
2719     } else {
2720         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2721         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2722     }
2723     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2724 }
2725 
gen_store_exclusive(DisasContext * s,int rd,int rt,int rt2,int rn,int size,int is_pair)2726 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2727                                 int rn, int size, int is_pair)
2728 {
2729     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2730      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2731      *     [addr] = {Rt};
2732      *     if (is_pair) {
2733      *         [addr + datasize] = {Rt2};
2734      *     }
2735      *     {Rd} = 0;
2736      * } else {
2737      *     {Rd} = 1;
2738      * }
2739      * env->exclusive_addr = -1;
2740      */
2741     TCGLabel *fail_label = gen_new_label();
2742     TCGLabel *done_label = gen_new_label();
2743     TCGv_i64 tmp, clean_addr;
2744     MemOp memop;
2745 
2746     /*
2747      * FIXME: We are out of spec here.  We have recorded only the address
2748      * from load_exclusive, not the entire range, and we assume that the
2749      * size of the access on both sides match.  The architecture allows the
2750      * store to be smaller than the load, so long as the stored bytes are
2751      * within the range recorded by the load.
2752      */
2753 
2754     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2755     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2756     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2757 
2758     /*
2759      * The write, and any associated faults, only happen if the virtual
2760      * and physical addresses pass the exclusive monitor check.  These
2761      * faults are exceedingly unlikely, because normally the guest uses
2762      * the exact same address register for the load_exclusive, and we
2763      * would have recognized these faults there.
2764      *
2765      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2766      * unaligned 4-byte write within the range of an aligned 8-byte load.
2767      * With LSE2, the store would need to cross a 16-byte boundary when the
2768      * load did not, which would mean the store is outside the range
2769      * recorded for the monitor, which would have failed a corrected monitor
2770      * check above.  For now, we assume no size change and retain the
2771      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2772      *
2773      * It is possible to trigger an MTE fault, by performing the load with
2774      * a virtual address with a valid tag and performing the store with the
2775      * same virtual address and a different invalid tag.
2776      */
2777     memop = size + is_pair;
2778     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2779         memop |= MO_ALIGN;
2780     }
2781     memop = finalize_memop(s, memop);
2782     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2783 
2784     tmp = tcg_temp_new_i64();
2785     if (is_pair) {
2786         if (size == 2) {
2787             if (s->be_data == MO_LE) {
2788                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2789             } else {
2790                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2791             }
2792             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2793                                        cpu_exclusive_val, tmp,
2794                                        get_mem_index(s), memop);
2795             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2796         } else {
2797             TCGv_i128 t16 = tcg_temp_new_i128();
2798             TCGv_i128 c16 = tcg_temp_new_i128();
2799             TCGv_i64 a, b;
2800 
2801             if (s->be_data == MO_LE) {
2802                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2803                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2804                                         cpu_exclusive_high);
2805             } else {
2806                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2807                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2808                                         cpu_exclusive_val);
2809             }
2810 
2811             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2812                                         get_mem_index(s), memop);
2813 
2814             a = tcg_temp_new_i64();
2815             b = tcg_temp_new_i64();
2816             if (s->be_data == MO_LE) {
2817                 tcg_gen_extr_i128_i64(a, b, t16);
2818             } else {
2819                 tcg_gen_extr_i128_i64(b, a, t16);
2820             }
2821 
2822             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2823             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2824             tcg_gen_or_i64(tmp, a, b);
2825 
2826             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2827         }
2828     } else {
2829         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2830                                    cpu_reg(s, rt), get_mem_index(s), memop);
2831         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2832     }
2833     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2834     tcg_gen_br(done_label);
2835 
2836     gen_set_label(fail_label);
2837     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2838     gen_set_label(done_label);
2839     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2840 }
2841 
gen_compare_and_swap(DisasContext * s,int rs,int rt,int rn,int size)2842 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2843                                  int rn, int size)
2844 {
2845     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2846     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2847     int memidx = get_mem_index(s);
2848     TCGv_i64 clean_addr;
2849     MemOp memop;
2850 
2851     if (rn == 31) {
2852         gen_check_sp_alignment(s);
2853     }
2854     memop = check_atomic_align(s, rn, size);
2855     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2856     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2857                                memidx, memop);
2858 }
2859 
gen_compare_and_swap_pair(DisasContext * s,int rs,int rt,int rn,int size)2860 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2861                                       int rn, int size)
2862 {
2863     TCGv_i64 s1 = cpu_reg(s, rs);
2864     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2865     TCGv_i64 t1 = cpu_reg(s, rt);
2866     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2867     TCGv_i64 clean_addr;
2868     int memidx = get_mem_index(s);
2869     MemOp memop;
2870 
2871     if (rn == 31) {
2872         gen_check_sp_alignment(s);
2873     }
2874 
2875     /* This is a single atomic access, despite the "pair". */
2876     memop = check_atomic_align(s, rn, size + 1);
2877     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2878 
2879     if (size == 2) {
2880         TCGv_i64 cmp = tcg_temp_new_i64();
2881         TCGv_i64 val = tcg_temp_new_i64();
2882 
2883         if (s->be_data == MO_LE) {
2884             tcg_gen_concat32_i64(val, t1, t2);
2885             tcg_gen_concat32_i64(cmp, s1, s2);
2886         } else {
2887             tcg_gen_concat32_i64(val, t2, t1);
2888             tcg_gen_concat32_i64(cmp, s2, s1);
2889         }
2890 
2891         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2892 
2893         if (s->be_data == MO_LE) {
2894             tcg_gen_extr32_i64(s1, s2, cmp);
2895         } else {
2896             tcg_gen_extr32_i64(s2, s1, cmp);
2897         }
2898     } else {
2899         TCGv_i128 cmp = tcg_temp_new_i128();
2900         TCGv_i128 val = tcg_temp_new_i128();
2901 
2902         if (s->be_data == MO_LE) {
2903             tcg_gen_concat_i64_i128(val, t1, t2);
2904             tcg_gen_concat_i64_i128(cmp, s1, s2);
2905         } else {
2906             tcg_gen_concat_i64_i128(val, t2, t1);
2907             tcg_gen_concat_i64_i128(cmp, s2, s1);
2908         }
2909 
2910         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2911 
2912         if (s->be_data == MO_LE) {
2913             tcg_gen_extr_i128_i64(s1, s2, cmp);
2914         } else {
2915             tcg_gen_extr_i128_i64(s2, s1, cmp);
2916         }
2917     }
2918 }
2919 
2920 /*
2921  * Compute the ISS.SF bit for syndrome information if an exception
2922  * is taken on a load or store. This indicates whether the instruction
2923  * is accessing a 32-bit or 64-bit register. This logic is derived
2924  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2925  */
ldst_iss_sf(int size,bool sign,bool ext)2926 static bool ldst_iss_sf(int size, bool sign, bool ext)
2927 {
2928 
2929     if (sign) {
2930         /*
2931          * Signed loads are 64 bit results if we are not going to
2932          * do a zero-extend from 32 to 64 after the load.
2933          * (For a store, sign and ext are always false.)
2934          */
2935         return !ext;
2936     } else {
2937         /* Unsigned loads/stores work at the specified size */
2938         return size == MO_64;
2939     }
2940 }
2941 
trans_STXR(DisasContext * s,arg_stxr * a)2942 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2943 {
2944     if (a->rn == 31) {
2945         gen_check_sp_alignment(s);
2946     }
2947     if (a->lasr) {
2948         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2949     }
2950     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2951     return true;
2952 }
2953 
trans_LDXR(DisasContext * s,arg_stxr * a)2954 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2955 {
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2960     if (a->lasr) {
2961         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2962     }
2963     return true;
2964 }
2965 
trans_STLR(DisasContext * s,arg_stlr * a)2966 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2967 {
2968     TCGv_i64 clean_addr;
2969     MemOp memop;
2970     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2971 
2972     /*
2973      * StoreLORelease is the same as Store-Release for QEMU, but
2974      * needs the feature-test.
2975      */
2976     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2977         return false;
2978     }
2979     /* Generate ISS for non-exclusive accesses including LASR.  */
2980     if (a->rn == 31) {
2981         gen_check_sp_alignment(s);
2982     }
2983     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2984     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2985     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2986                                 true, a->rn != 31, memop);
2987     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2988               iss_sf, a->lasr);
2989     return true;
2990 }
2991 
trans_LDAR(DisasContext * s,arg_stlr * a)2992 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2993 {
2994     TCGv_i64 clean_addr;
2995     MemOp memop;
2996     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2997 
2998     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2999     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3000         return false;
3001     }
3002     /* Generate ISS for non-exclusive accesses including LASR.  */
3003     if (a->rn == 31) {
3004         gen_check_sp_alignment(s);
3005     }
3006     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
3007     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3008                                 false, a->rn != 31, memop);
3009     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
3010               a->rt, iss_sf, a->lasr);
3011     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3012     return true;
3013 }
3014 
trans_STXP(DisasContext * s,arg_stxr * a)3015 static bool trans_STXP(DisasContext *s, arg_stxr *a)
3016 {
3017     if (a->rn == 31) {
3018         gen_check_sp_alignment(s);
3019     }
3020     if (a->lasr) {
3021         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3022     }
3023     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3024     return true;
3025 }
3026 
trans_LDXP(DisasContext * s,arg_stxr * a)3027 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3028 {
3029     if (a->rn == 31) {
3030         gen_check_sp_alignment(s);
3031     }
3032     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3033     if (a->lasr) {
3034         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3035     }
3036     return true;
3037 }
3038 
trans_CASP(DisasContext * s,arg_CASP * a)3039 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3040 {
3041     if (!dc_isar_feature(aa64_atomics, s)) {
3042         return false;
3043     }
3044     if (((a->rt | a->rs) & 1) != 0) {
3045         return false;
3046     }
3047 
3048     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3049     return true;
3050 }
3051 
trans_CAS(DisasContext * s,arg_CAS * a)3052 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3053 {
3054     if (!dc_isar_feature(aa64_atomics, s)) {
3055         return false;
3056     }
3057     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3058     return true;
3059 }
3060 
trans_LD_lit(DisasContext * s,arg_ldlit * a)3061 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3062 {
3063     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3064     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3065     TCGv_i64 clean_addr = tcg_temp_new_i64();
3066     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3067 
3068     gen_pc_plus_diff(s, clean_addr, a->imm);
3069     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3070               false, true, a->rt, iss_sf, false);
3071     return true;
3072 }
3073 
trans_LD_lit_v(DisasContext * s,arg_ldlit * a)3074 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3075 {
3076     /* Load register (literal), vector version */
3077     TCGv_i64 clean_addr;
3078     MemOp memop;
3079 
3080     if (!fp_access_check(s)) {
3081         return true;
3082     }
3083     memop = finalize_memop_asimd(s, a->sz);
3084     clean_addr = tcg_temp_new_i64();
3085     gen_pc_plus_diff(s, clean_addr, a->imm);
3086     do_fp_ld(s, a->rt, clean_addr, memop);
3087     return true;
3088 }
3089 
op_addr_ldstpair_pre(DisasContext * s,arg_ldstpair * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3090 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3091                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3092                                  uint64_t offset, bool is_store, MemOp mop)
3093 {
3094     if (a->rn == 31) {
3095         gen_check_sp_alignment(s);
3096     }
3097 
3098     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3099     if (!a->p) {
3100         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3101     }
3102 
3103     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3104                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3105 }
3106 
op_addr_ldstpair_post(DisasContext * s,arg_ldstpair * a,TCGv_i64 dirty_addr,uint64_t offset)3107 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3108                                   TCGv_i64 dirty_addr, uint64_t offset)
3109 {
3110     if (a->w) {
3111         if (a->p) {
3112             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3113         }
3114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3115     }
3116 }
3117 
trans_STP(DisasContext * s,arg_ldstpair * a)3118 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3119 {
3120     uint64_t offset = a->imm << a->sz;
3121     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3122     MemOp mop = finalize_memop(s, a->sz);
3123 
3124     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3125     tcg_rt = cpu_reg(s, a->rt);
3126     tcg_rt2 = cpu_reg(s, a->rt2);
3127     /*
3128      * We built mop above for the single logical access -- rebuild it
3129      * now for the paired operation.
3130      *
3131      * With LSE2, non-sign-extending pairs are treated atomically if
3132      * aligned, and if unaligned one of the pair will be completely
3133      * within a 16-byte block and that element will be atomic.
3134      * Otherwise each element is separately atomic.
3135      * In all cases, issue one operation with the correct atomicity.
3136      */
3137     mop = a->sz + 1;
3138     if (s->align_mem) {
3139         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3140     }
3141     mop = finalize_memop_pair(s, mop);
3142     if (a->sz == 2) {
3143         TCGv_i64 tmp = tcg_temp_new_i64();
3144 
3145         if (s->be_data == MO_LE) {
3146             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3147         } else {
3148             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3149         }
3150         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3151     } else {
3152         TCGv_i128 tmp = tcg_temp_new_i128();
3153 
3154         if (s->be_data == MO_LE) {
3155             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3156         } else {
3157             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3158         }
3159         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3160     }
3161     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3162     return true;
3163 }
3164 
trans_LDP(DisasContext * s,arg_ldstpair * a)3165 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3166 {
3167     uint64_t offset = a->imm << a->sz;
3168     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3169     MemOp mop = finalize_memop(s, a->sz);
3170 
3171     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3172     tcg_rt = cpu_reg(s, a->rt);
3173     tcg_rt2 = cpu_reg(s, a->rt2);
3174 
3175     /*
3176      * We built mop above for the single logical access -- rebuild it
3177      * now for the paired operation.
3178      *
3179      * With LSE2, non-sign-extending pairs are treated atomically if
3180      * aligned, and if unaligned one of the pair will be completely
3181      * within a 16-byte block and that element will be atomic.
3182      * Otherwise each element is separately atomic.
3183      * In all cases, issue one operation with the correct atomicity.
3184      *
3185      * This treats sign-extending loads like zero-extending loads,
3186      * since that reuses the most code below.
3187      */
3188     mop = a->sz + 1;
3189     if (s->align_mem) {
3190         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3191     }
3192     mop = finalize_memop_pair(s, mop);
3193     if (a->sz == 2) {
3194         int o2 = s->be_data == MO_LE ? 32 : 0;
3195         int o1 = o2 ^ 32;
3196 
3197         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3198         if (a->sign) {
3199             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3200             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3201         } else {
3202             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3203             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3204         }
3205     } else {
3206         TCGv_i128 tmp = tcg_temp_new_i128();
3207 
3208         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3209         if (s->be_data == MO_LE) {
3210             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3211         } else {
3212             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3213         }
3214     }
3215     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3216     return true;
3217 }
3218 
trans_STP_v(DisasContext * s,arg_ldstpair * a)3219 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3220 {
3221     uint64_t offset = a->imm << a->sz;
3222     TCGv_i64 clean_addr, dirty_addr;
3223     MemOp mop;
3224 
3225     if (!fp_access_check(s)) {
3226         return true;
3227     }
3228 
3229     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3230     mop = finalize_memop_asimd(s, a->sz);
3231     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3232     do_fp_st(s, a->rt, clean_addr, mop);
3233     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3234     do_fp_st(s, a->rt2, clean_addr, mop);
3235     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3236     return true;
3237 }
3238 
trans_LDP_v(DisasContext * s,arg_ldstpair * a)3239 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3240 {
3241     uint64_t offset = a->imm << a->sz;
3242     TCGv_i64 clean_addr, dirty_addr;
3243     MemOp mop;
3244 
3245     if (!fp_access_check(s)) {
3246         return true;
3247     }
3248 
3249     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3250     mop = finalize_memop_asimd(s, a->sz);
3251     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3252     do_fp_ld(s, a->rt, clean_addr, mop);
3253     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3254     do_fp_ld(s, a->rt2, clean_addr, mop);
3255     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3256     return true;
3257 }
3258 
trans_STGP(DisasContext * s,arg_ldstpair * a)3259 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3260 {
3261     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3262     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3263     MemOp mop;
3264     TCGv_i128 tmp;
3265 
3266     /* STGP only comes in one size. */
3267     tcg_debug_assert(a->sz == MO_64);
3268 
3269     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3270         return false;
3271     }
3272 
3273     if (a->rn == 31) {
3274         gen_check_sp_alignment(s);
3275     }
3276 
3277     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3278     if (!a->p) {
3279         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3280     }
3281 
3282     clean_addr = clean_data_tbi(s, dirty_addr);
3283     tcg_rt = cpu_reg(s, a->rt);
3284     tcg_rt2 = cpu_reg(s, a->rt2);
3285 
3286     /*
3287      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3288      * and one tag operation.  We implement it as one single aligned 16-byte
3289      * memory operation for convenience.  Note that the alignment ensures
3290      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3291      */
3292     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3293 
3294     tmp = tcg_temp_new_i128();
3295     if (s->be_data == MO_LE) {
3296         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3297     } else {
3298         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3299     }
3300     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3301 
3302     /* Perform the tag store, if tag access enabled. */
3303     if (s->ata[0]) {
3304         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3305             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3306         } else {
3307             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3308         }
3309     }
3310 
3311     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3312     return true;
3313 }
3314 
op_addr_ldst_imm_pre(DisasContext * s,arg_ldst_imm * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3315 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3316                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3317                                  uint64_t offset, bool is_store, MemOp mop)
3318 {
3319     int memidx;
3320 
3321     if (a->rn == 31) {
3322         gen_check_sp_alignment(s);
3323     }
3324 
3325     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3326     if (!a->p) {
3327         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3328     }
3329     memidx = get_a64_user_mem_index(s, a->unpriv);
3330     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3331                                         a->w || a->rn != 31,
3332                                         mop, a->unpriv, memidx);
3333 }
3334 
op_addr_ldst_imm_post(DisasContext * s,arg_ldst_imm * a,TCGv_i64 dirty_addr,uint64_t offset)3335 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3336                                   TCGv_i64 dirty_addr, uint64_t offset)
3337 {
3338     if (a->w) {
3339         if (a->p) {
3340             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3341         }
3342         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3343     }
3344 }
3345 
trans_STR_i(DisasContext * s,arg_ldst_imm * a)3346 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3347 {
3348     bool iss_sf, iss_valid = !a->w;
3349     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3350     int memidx = get_a64_user_mem_index(s, a->unpriv);
3351     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3352 
3353     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3354 
3355     tcg_rt = cpu_reg(s, a->rt);
3356     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3357 
3358     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3359                      iss_valid, a->rt, iss_sf, false);
3360     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3361     return true;
3362 }
3363 
trans_LDR_i(DisasContext * s,arg_ldst_imm * a)3364 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3365 {
3366     bool iss_sf, iss_valid = !a->w;
3367     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3368     int memidx = get_a64_user_mem_index(s, a->unpriv);
3369     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370 
3371     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3372 
3373     tcg_rt = cpu_reg(s, a->rt);
3374     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3375 
3376     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3377                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3378     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3379     return true;
3380 }
3381 
trans_STR_v_i(DisasContext * s,arg_ldst_imm * a)3382 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3383 {
3384     TCGv_i64 clean_addr, dirty_addr;
3385     MemOp mop;
3386 
3387     if (!fp_access_check(s)) {
3388         return true;
3389     }
3390     mop = finalize_memop_asimd(s, a->sz);
3391     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3392     do_fp_st(s, a->rt, clean_addr, mop);
3393     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3394     return true;
3395 }
3396 
trans_LDR_v_i(DisasContext * s,arg_ldst_imm * a)3397 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3398 {
3399     TCGv_i64 clean_addr, dirty_addr;
3400     MemOp mop;
3401 
3402     if (!fp_access_check(s)) {
3403         return true;
3404     }
3405     mop = finalize_memop_asimd(s, a->sz);
3406     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3407     do_fp_ld(s, a->rt, clean_addr, mop);
3408     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3409     return true;
3410 }
3411 
op_addr_ldst_pre(DisasContext * s,arg_ldst * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,bool is_store,MemOp memop)3412 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3413                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3414                              bool is_store, MemOp memop)
3415 {
3416     TCGv_i64 tcg_rm;
3417 
3418     if (a->rn == 31) {
3419         gen_check_sp_alignment(s);
3420     }
3421     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3422 
3423     tcg_rm = read_cpu_reg(s, a->rm, 1);
3424     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3425 
3426     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3427     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3428 }
3429 
trans_LDR(DisasContext * s,arg_ldst * a)3430 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3431 {
3432     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3433     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3434     MemOp memop;
3435 
3436     if (extract32(a->opt, 1, 1) == 0) {
3437         return false;
3438     }
3439 
3440     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3441     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3442     tcg_rt = cpu_reg(s, a->rt);
3443     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3444               a->ext, true, a->rt, iss_sf, false);
3445     return true;
3446 }
3447 
trans_STR(DisasContext * s,arg_ldst * a)3448 static bool trans_STR(DisasContext *s, arg_ldst *a)
3449 {
3450     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3451     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3452     MemOp memop;
3453 
3454     if (extract32(a->opt, 1, 1) == 0) {
3455         return false;
3456     }
3457 
3458     memop = finalize_memop(s, a->sz);
3459     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3460     tcg_rt = cpu_reg(s, a->rt);
3461     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3462     return true;
3463 }
3464 
trans_LDR_v(DisasContext * s,arg_ldst * a)3465 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3466 {
3467     TCGv_i64 clean_addr, dirty_addr;
3468     MemOp memop;
3469 
3470     if (extract32(a->opt, 1, 1) == 0) {
3471         return false;
3472     }
3473 
3474     if (!fp_access_check(s)) {
3475         return true;
3476     }
3477 
3478     memop = finalize_memop_asimd(s, a->sz);
3479     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3480     do_fp_ld(s, a->rt, clean_addr, memop);
3481     return true;
3482 }
3483 
trans_STR_v(DisasContext * s,arg_ldst * a)3484 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3485 {
3486     TCGv_i64 clean_addr, dirty_addr;
3487     MemOp memop;
3488 
3489     if (extract32(a->opt, 1, 1) == 0) {
3490         return false;
3491     }
3492 
3493     if (!fp_access_check(s)) {
3494         return true;
3495     }
3496 
3497     memop = finalize_memop_asimd(s, a->sz);
3498     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3499     do_fp_st(s, a->rt, clean_addr, memop);
3500     return true;
3501 }
3502 
3503 
do_atomic_ld(DisasContext * s,arg_atomic * a,AtomicThreeOpFn * fn,int sign,bool invert)3504 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3505                          int sign, bool invert)
3506 {
3507     MemOp mop = a->sz | sign;
3508     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3509 
3510     if (a->rn == 31) {
3511         gen_check_sp_alignment(s);
3512     }
3513     mop = check_atomic_align(s, a->rn, mop);
3514     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3515                                 a->rn != 31, mop);
3516     tcg_rs = read_cpu_reg(s, a->rs, true);
3517     tcg_rt = cpu_reg(s, a->rt);
3518     if (invert) {
3519         tcg_gen_not_i64(tcg_rs, tcg_rs);
3520     }
3521     /*
3522      * The tcg atomic primitives are all full barriers.  Therefore we
3523      * can ignore the Acquire and Release bits of this instruction.
3524      */
3525     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3526 
3527     if (mop & MO_SIGN) {
3528         switch (a->sz) {
3529         case MO_8:
3530             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3531             break;
3532         case MO_16:
3533             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3534             break;
3535         case MO_32:
3536             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3537             break;
3538         case MO_64:
3539             break;
3540         default:
3541             g_assert_not_reached();
3542         }
3543     }
3544     return true;
3545 }
3546 
3547 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3548 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3549 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3550 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
TRANS_FEAT(LDSMAX,aa64_atomics,do_atomic_ld,a,tcg_gen_atomic_fetch_smax_i64,MO_SIGN,false)3551 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3552 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3553 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3554 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3555 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3556 
3557 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3558 {
3559     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3560     TCGv_i64 clean_addr;
3561     MemOp mop;
3562 
3563     if (!dc_isar_feature(aa64_atomics, s) ||
3564         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3565         return false;
3566     }
3567     if (a->rn == 31) {
3568         gen_check_sp_alignment(s);
3569     }
3570     mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3571     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3572                                 a->rn != 31, mop);
3573     /*
3574      * LDAPR* are a special case because they are a simple load, not a
3575      * fetch-and-do-something op.
3576      * The architectural consistency requirements here are weaker than
3577      * full load-acquire (we only need "load-acquire processor consistent"),
3578      * but we choose to implement them as full LDAQ.
3579      */
3580     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3581               true, a->rt, iss_sf, true);
3582     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3583     return true;
3584 }
3585 
trans_LDRA(DisasContext * s,arg_LDRA * a)3586 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3587 {
3588     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3589     MemOp memop;
3590 
3591     /* Load with pointer authentication */
3592     if (!dc_isar_feature(aa64_pauth, s)) {
3593         return false;
3594     }
3595 
3596     if (a->rn == 31) {
3597         gen_check_sp_alignment(s);
3598     }
3599     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3600 
3601     if (s->pauth_active) {
3602         if (!a->m) {
3603             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3604                                       tcg_constant_i64(0));
3605         } else {
3606             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3607                                       tcg_constant_i64(0));
3608         }
3609     }
3610 
3611     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3612 
3613     memop = finalize_memop(s, MO_64);
3614 
3615     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3616     clean_addr = gen_mte_check1(s, dirty_addr, false,
3617                                 a->w || a->rn != 31, memop);
3618 
3619     tcg_rt = cpu_reg(s, a->rt);
3620     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3621               /* extend */ false, /* iss_valid */ !a->w,
3622               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3623 
3624     if (a->w) {
3625         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3626     }
3627     return true;
3628 }
3629 
trans_LDAPR_i(DisasContext * s,arg_ldapr_stlr_i * a)3630 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3631 {
3632     TCGv_i64 clean_addr, dirty_addr;
3633     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3634     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3635 
3636     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3637         return false;
3638     }
3639 
3640     if (a->rn == 31) {
3641         gen_check_sp_alignment(s);
3642     }
3643 
3644     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3645     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3646     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3647     clean_addr = clean_data_tbi(s, dirty_addr);
3648 
3649     /*
3650      * Load-AcquirePC semantics; we implement as the slightly more
3651      * restrictive Load-Acquire.
3652      */
3653     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3654               a->rt, iss_sf, true);
3655     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3656     return true;
3657 }
3658 
trans_STLR_i(DisasContext * s,arg_ldapr_stlr_i * a)3659 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3660 {
3661     TCGv_i64 clean_addr, dirty_addr;
3662     MemOp mop = a->sz;
3663     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3664 
3665     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3666         return false;
3667     }
3668 
3669     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3670 
3671     if (a->rn == 31) {
3672         gen_check_sp_alignment(s);
3673     }
3674 
3675     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3676     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3677     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3678     clean_addr = clean_data_tbi(s, dirty_addr);
3679 
3680     /* Store-Release semantics */
3681     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3682     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3683     return true;
3684 }
3685 
trans_LD_mult(DisasContext * s,arg_ldst_mult * a)3686 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3687 {
3688     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3689     MemOp endian, align, mop;
3690 
3691     int total;    /* total bytes */
3692     int elements; /* elements per vector */
3693     int r;
3694     int size = a->sz;
3695 
3696     if (!a->p && a->rm != 0) {
3697         /* For non-postindexed accesses the Rm field must be 0 */
3698         return false;
3699     }
3700     if (size == 3 && !a->q && a->selem != 1) {
3701         return false;
3702     }
3703     if (!fp_access_check(s)) {
3704         return true;
3705     }
3706 
3707     if (a->rn == 31) {
3708         gen_check_sp_alignment(s);
3709     }
3710 
3711     /* For our purposes, bytes are always little-endian.  */
3712     endian = s->be_data;
3713     if (size == 0) {
3714         endian = MO_LE;
3715     }
3716 
3717     total = a->rpt * a->selem * (a->q ? 16 : 8);
3718     tcg_rn = cpu_reg_sp(s, a->rn);
3719 
3720     /*
3721      * Issue the MTE check vs the logical repeat count, before we
3722      * promote consecutive little-endian elements below.
3723      */
3724     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3725                                 finalize_memop_asimd(s, size));
3726 
3727     /*
3728      * Consecutive little-endian elements from a single register
3729      * can be promoted to a larger little-endian operation.
3730      */
3731     align = MO_ALIGN;
3732     if (a->selem == 1 && endian == MO_LE) {
3733         align = pow2_align(size);
3734         size = 3;
3735     }
3736     if (!s->align_mem) {
3737         align = 0;
3738     }
3739     mop = endian | size | align;
3740 
3741     elements = (a->q ? 16 : 8) >> size;
3742     tcg_ebytes = tcg_constant_i64(1 << size);
3743     for (r = 0; r < a->rpt; r++) {
3744         int e;
3745         for (e = 0; e < elements; e++) {
3746             int xs;
3747             for (xs = 0; xs < a->selem; xs++) {
3748                 int tt = (a->rt + r + xs) % 32;
3749                 do_vec_ld(s, tt, e, clean_addr, mop);
3750                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3751             }
3752         }
3753     }
3754 
3755     /*
3756      * For non-quad operations, setting a slice of the low 64 bits of
3757      * the register clears the high 64 bits (in the ARM ARM pseudocode
3758      * this is implicit in the fact that 'rval' is a 64 bit wide
3759      * variable).  For quad operations, we might still need to zero
3760      * the high bits of SVE.
3761      */
3762     for (r = 0; r < a->rpt * a->selem; r++) {
3763         int tt = (a->rt + r) % 32;
3764         clear_vec_high(s, a->q, tt);
3765     }
3766 
3767     if (a->p) {
3768         if (a->rm == 31) {
3769             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3770         } else {
3771             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3772         }
3773     }
3774     return true;
3775 }
3776 
trans_ST_mult(DisasContext * s,arg_ldst_mult * a)3777 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3778 {
3779     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3780     MemOp endian, align, mop;
3781 
3782     int total;    /* total bytes */
3783     int elements; /* elements per vector */
3784     int r;
3785     int size = a->sz;
3786 
3787     if (!a->p && a->rm != 0) {
3788         /* For non-postindexed accesses the Rm field must be 0 */
3789         return false;
3790     }
3791     if (size == 3 && !a->q && a->selem != 1) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     /* For our purposes, bytes are always little-endian.  */
3803     endian = s->be_data;
3804     if (size == 0) {
3805         endian = MO_LE;
3806     }
3807 
3808     total = a->rpt * a->selem * (a->q ? 16 : 8);
3809     tcg_rn = cpu_reg_sp(s, a->rn);
3810 
3811     /*
3812      * Issue the MTE check vs the logical repeat count, before we
3813      * promote consecutive little-endian elements below.
3814      */
3815     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3816                                 finalize_memop_asimd(s, size));
3817 
3818     /*
3819      * Consecutive little-endian elements from a single register
3820      * can be promoted to a larger little-endian operation.
3821      */
3822     align = MO_ALIGN;
3823     if (a->selem == 1 && endian == MO_LE) {
3824         align = pow2_align(size);
3825         size = 3;
3826     }
3827     if (!s->align_mem) {
3828         align = 0;
3829     }
3830     mop = endian | size | align;
3831 
3832     elements = (a->q ? 16 : 8) >> size;
3833     tcg_ebytes = tcg_constant_i64(1 << size);
3834     for (r = 0; r < a->rpt; r++) {
3835         int e;
3836         for (e = 0; e < elements; e++) {
3837             int xs;
3838             for (xs = 0; xs < a->selem; xs++) {
3839                 int tt = (a->rt + r + xs) % 32;
3840                 do_vec_st(s, tt, e, clean_addr, mop);
3841                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3842             }
3843         }
3844     }
3845 
3846     if (a->p) {
3847         if (a->rm == 31) {
3848             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3849         } else {
3850             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3851         }
3852     }
3853     return true;
3854 }
3855 
trans_ST_single(DisasContext * s,arg_ldst_single * a)3856 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3857 {
3858     int xs, total, rt;
3859     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3860     MemOp mop;
3861 
3862     if (!a->p && a->rm != 0) {
3863         return false;
3864     }
3865     if (!fp_access_check(s)) {
3866         return true;
3867     }
3868 
3869     if (a->rn == 31) {
3870         gen_check_sp_alignment(s);
3871     }
3872 
3873     total = a->selem << a->scale;
3874     tcg_rn = cpu_reg_sp(s, a->rn);
3875 
3876     mop = finalize_memop_asimd(s, a->scale);
3877     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3878                                 total, mop);
3879 
3880     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3881     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3882         do_vec_st(s, rt, a->index, clean_addr, mop);
3883         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3884     }
3885 
3886     if (a->p) {
3887         if (a->rm == 31) {
3888             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3889         } else {
3890             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3891         }
3892     }
3893     return true;
3894 }
3895 
trans_LD_single(DisasContext * s,arg_ldst_single * a)3896 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3897 {
3898     int xs, total, rt;
3899     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3900     MemOp mop;
3901 
3902     if (!a->p && a->rm != 0) {
3903         return false;
3904     }
3905     if (!fp_access_check(s)) {
3906         return true;
3907     }
3908 
3909     if (a->rn == 31) {
3910         gen_check_sp_alignment(s);
3911     }
3912 
3913     total = a->selem << a->scale;
3914     tcg_rn = cpu_reg_sp(s, a->rn);
3915 
3916     mop = finalize_memop_asimd(s, a->scale);
3917     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3918                                 total, mop);
3919 
3920     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3921     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3922         do_vec_ld(s, rt, a->index, clean_addr, mop);
3923         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3924     }
3925 
3926     if (a->p) {
3927         if (a->rm == 31) {
3928             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3929         } else {
3930             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3931         }
3932     }
3933     return true;
3934 }
3935 
trans_LD_single_repl(DisasContext * s,arg_LD_single_repl * a)3936 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3937 {
3938     int xs, total, rt;
3939     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3940     MemOp mop;
3941 
3942     if (!a->p && a->rm != 0) {
3943         return false;
3944     }
3945     if (!fp_access_check(s)) {
3946         return true;
3947     }
3948 
3949     if (a->rn == 31) {
3950         gen_check_sp_alignment(s);
3951     }
3952 
3953     total = a->selem << a->scale;
3954     tcg_rn = cpu_reg_sp(s, a->rn);
3955 
3956     mop = finalize_memop_asimd(s, a->scale);
3957     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3958                                 total, mop);
3959 
3960     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3961     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3962         /* Load and replicate to all elements */
3963         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3964 
3965         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3966         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3967                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3968         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3969     }
3970 
3971     if (a->p) {
3972         if (a->rm == 31) {
3973             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3974         } else {
3975             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3976         }
3977     }
3978     return true;
3979 }
3980 
trans_STZGM(DisasContext * s,arg_ldst_tag * a)3981 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3982 {
3983     TCGv_i64 addr, clean_addr, tcg_rt;
3984     int size = 4 << s->dcz_blocksize;
3985 
3986     if (!dc_isar_feature(aa64_mte, s)) {
3987         return false;
3988     }
3989     if (s->current_el == 0) {
3990         return false;
3991     }
3992 
3993     if (a->rn == 31) {
3994         gen_check_sp_alignment(s);
3995     }
3996 
3997     addr = read_cpu_reg_sp(s, a->rn, true);
3998     tcg_gen_addi_i64(addr, addr, a->imm);
3999     tcg_rt = cpu_reg(s, a->rt);
4000 
4001     if (s->ata[0]) {
4002         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
4003     }
4004     /*
4005      * The non-tags portion of STZGM is mostly like DC_ZVA,
4006      * except the alignment happens before the access.
4007      */
4008     clean_addr = clean_data_tbi(s, addr);
4009     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4010     gen_helper_dc_zva(tcg_env, clean_addr);
4011     return true;
4012 }
4013 
trans_STGM(DisasContext * s,arg_ldst_tag * a)4014 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
4015 {
4016     TCGv_i64 addr, clean_addr, tcg_rt;
4017 
4018     if (!dc_isar_feature(aa64_mte, s)) {
4019         return false;
4020     }
4021     if (s->current_el == 0) {
4022         return false;
4023     }
4024 
4025     if (a->rn == 31) {
4026         gen_check_sp_alignment(s);
4027     }
4028 
4029     addr = read_cpu_reg_sp(s, a->rn, true);
4030     tcg_gen_addi_i64(addr, addr, a->imm);
4031     tcg_rt = cpu_reg(s, a->rt);
4032 
4033     if (s->ata[0]) {
4034         gen_helper_stgm(tcg_env, addr, tcg_rt);
4035     } else {
4036         MMUAccessType acc = MMU_DATA_STORE;
4037         int size = 4 << s->gm_blocksize;
4038 
4039         clean_addr = clean_data_tbi(s, addr);
4040         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4041         gen_probe_access(s, clean_addr, acc, size);
4042     }
4043     return true;
4044 }
4045 
trans_LDGM(DisasContext * s,arg_ldst_tag * a)4046 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4047 {
4048     TCGv_i64 addr, clean_addr, tcg_rt;
4049 
4050     if (!dc_isar_feature(aa64_mte, s)) {
4051         return false;
4052     }
4053     if (s->current_el == 0) {
4054         return false;
4055     }
4056 
4057     if (a->rn == 31) {
4058         gen_check_sp_alignment(s);
4059     }
4060 
4061     addr = read_cpu_reg_sp(s, a->rn, true);
4062     tcg_gen_addi_i64(addr, addr, a->imm);
4063     tcg_rt = cpu_reg(s, a->rt);
4064 
4065     if (s->ata[0]) {
4066         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4067     } else {
4068         MMUAccessType acc = MMU_DATA_LOAD;
4069         int size = 4 << s->gm_blocksize;
4070 
4071         clean_addr = clean_data_tbi(s, addr);
4072         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4073         gen_probe_access(s, clean_addr, acc, size);
4074         /* The result tags are zeros.  */
4075         tcg_gen_movi_i64(tcg_rt, 0);
4076     }
4077     return true;
4078 }
4079 
trans_LDG(DisasContext * s,arg_ldst_tag * a)4080 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4081 {
4082     TCGv_i64 addr, clean_addr, tcg_rt;
4083 
4084     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4085         return false;
4086     }
4087 
4088     if (a->rn == 31) {
4089         gen_check_sp_alignment(s);
4090     }
4091 
4092     addr = read_cpu_reg_sp(s, a->rn, true);
4093     if (!a->p) {
4094         /* pre-index or signed offset */
4095         tcg_gen_addi_i64(addr, addr, a->imm);
4096     }
4097 
4098     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4099     tcg_rt = cpu_reg(s, a->rt);
4100     if (s->ata[0]) {
4101         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4102     } else {
4103         /*
4104          * Tag access disabled: we must check for aborts on the load
4105          * load from [rn+offset], and then insert a 0 tag into rt.
4106          */
4107         clean_addr = clean_data_tbi(s, addr);
4108         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4109         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4110     }
4111 
4112     if (a->w) {
4113         /* pre-index or post-index */
4114         if (a->p) {
4115             /* post-index */
4116             tcg_gen_addi_i64(addr, addr, a->imm);
4117         }
4118         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4119     }
4120     return true;
4121 }
4122 
do_STG(DisasContext * s,arg_ldst_tag * a,bool is_zero,bool is_pair)4123 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4124 {
4125     TCGv_i64 addr, tcg_rt;
4126 
4127     if (a->rn == 31) {
4128         gen_check_sp_alignment(s);
4129     }
4130 
4131     addr = read_cpu_reg_sp(s, a->rn, true);
4132     if (!a->p) {
4133         /* pre-index or signed offset */
4134         tcg_gen_addi_i64(addr, addr, a->imm);
4135     }
4136     tcg_rt = cpu_reg_sp(s, a->rt);
4137     if (!s->ata[0]) {
4138         /*
4139          * For STG and ST2G, we need to check alignment and probe memory.
4140          * TODO: For STZG and STZ2G, we could rely on the stores below,
4141          * at least for system mode; user-only won't enforce alignment.
4142          */
4143         if (is_pair) {
4144             gen_helper_st2g_stub(tcg_env, addr);
4145         } else {
4146             gen_helper_stg_stub(tcg_env, addr);
4147         }
4148     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4149         if (is_pair) {
4150             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4151         } else {
4152             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4153         }
4154     } else {
4155         if (is_pair) {
4156             gen_helper_st2g(tcg_env, addr, tcg_rt);
4157         } else {
4158             gen_helper_stg(tcg_env, addr, tcg_rt);
4159         }
4160     }
4161 
4162     if (is_zero) {
4163         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4164         TCGv_i64 zero64 = tcg_constant_i64(0);
4165         TCGv_i128 zero128 = tcg_temp_new_i128();
4166         int mem_index = get_mem_index(s);
4167         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4168 
4169         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4170 
4171         /* This is 1 or 2 atomic 16-byte operations. */
4172         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4173         if (is_pair) {
4174             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4175             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4176         }
4177     }
4178 
4179     if (a->w) {
4180         /* pre-index or post-index */
4181         if (a->p) {
4182             /* post-index */
4183             tcg_gen_addi_i64(addr, addr, a->imm);
4184         }
4185         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4186     }
4187     return true;
4188 }
4189 
4190 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4191 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4192 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4193 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4194 
4195 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4196 
do_SET(DisasContext * s,arg_set * a,bool is_epilogue,bool is_setg,SetFn fn)4197 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4198                    bool is_setg, SetFn fn)
4199 {
4200     int memidx;
4201     uint32_t syndrome, desc = 0;
4202 
4203     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4204         return false;
4205     }
4206 
4207     /*
4208      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4209      * us to pull this check before the CheckMOPSEnabled() test
4210      * (which we do in the helper function)
4211      */
4212     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4213         a->rd == 31 || a->rn == 31) {
4214         return false;
4215     }
4216 
4217     memidx = get_a64_user_mem_index(s, a->unpriv);
4218 
4219     /*
4220      * We pass option_a == true, matching our implementation;
4221      * we pass wrong_option == false: helper function may set that bit.
4222      */
4223     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4224                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4225 
4226     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4227         /* We may need to do MTE tag checking, so assemble the descriptor */
4228         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4229         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4230         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4231         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4232     }
4233     /* The helper function always needs the memidx even with MTE disabled */
4234     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4235 
4236     /*
4237      * The helper needs the register numbers, but since they're in
4238      * the syndrome anyway, we let it extract them from there rather
4239      * than passing in an extra three integer arguments.
4240      */
4241     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4242     return true;
4243 }
4244 
4245 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4246 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4247 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4248 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4249 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4250 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4251 
4252 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4253 
do_CPY(DisasContext * s,arg_cpy * a,bool is_epilogue,CpyFn fn)4254 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4255 {
4256     int rmemidx, wmemidx;
4257     uint32_t syndrome, rdesc = 0, wdesc = 0;
4258     bool wunpriv = extract32(a->options, 0, 1);
4259     bool runpriv = extract32(a->options, 1, 1);
4260 
4261     /*
4262      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4263      * us to pull this check before the CheckMOPSEnabled() test
4264      * (which we do in the helper function)
4265      */
4266     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4267         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4268         return false;
4269     }
4270 
4271     rmemidx = get_a64_user_mem_index(s, runpriv);
4272     wmemidx = get_a64_user_mem_index(s, wunpriv);
4273 
4274     /*
4275      * We pass option_a == true, matching our implementation;
4276      * we pass wrong_option == false: helper function may set that bit.
4277      */
4278     syndrome = syn_mop(false, false, a->options, is_epilogue,
4279                        false, true, a->rd, a->rs, a->rn);
4280 
4281     /* If we need to do MTE tag checking, assemble the descriptors */
4282     if (s->mte_active[runpriv]) {
4283         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4284         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4285     }
4286     if (s->mte_active[wunpriv]) {
4287         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4288         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4289         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4290     }
4291     /* The helper function needs these parts of the descriptor regardless */
4292     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4293     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4294 
4295     /*
4296      * The helper needs the register numbers, but since they're in
4297      * the syndrome anyway, we let it extract them from there rather
4298      * than passing in an extra three integer arguments.
4299      */
4300     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4301        tcg_constant_i32(rdesc));
4302     return true;
4303 }
4304 
4305 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4306 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4307 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4308 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4309 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4310 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4311 
4312 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4313 
gen_rri(DisasContext * s,arg_rri_sf * a,bool rd_sp,bool rn_sp,ArithTwoOp * fn)4314 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4315                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4316 {
4317     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4318     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4319     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4320 
4321     fn(tcg_rd, tcg_rn, tcg_imm);
4322     if (!a->sf) {
4323         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4324     }
4325     return true;
4326 }
4327 
4328 /*
4329  * PC-rel. addressing
4330  */
4331 
trans_ADR(DisasContext * s,arg_ri * a)4332 static bool trans_ADR(DisasContext *s, arg_ri *a)
4333 {
4334     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4335     return true;
4336 }
4337 
trans_ADRP(DisasContext * s,arg_ri * a)4338 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4339 {
4340     int64_t offset = (int64_t)a->imm << 12;
4341 
4342     /* The page offset is ok for CF_PCREL. */
4343     offset -= s->pc_curr & 0xfff;
4344     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4345     return true;
4346 }
4347 
4348 /*
4349  * Add/subtract (immediate)
4350  */
4351 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4352 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4353 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4354 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4355 
4356 /*
4357  * Add/subtract (immediate, with tags)
4358  */
4359 
gen_add_sub_imm_with_tags(DisasContext * s,arg_rri_tag * a,bool sub_op)4360 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4361                                       bool sub_op)
4362 {
4363     TCGv_i64 tcg_rn, tcg_rd;
4364     int imm;
4365 
4366     imm = a->uimm6 << LOG2_TAG_GRANULE;
4367     if (sub_op) {
4368         imm = -imm;
4369     }
4370 
4371     tcg_rn = cpu_reg_sp(s, a->rn);
4372     tcg_rd = cpu_reg_sp(s, a->rd);
4373 
4374     if (s->ata[0]) {
4375         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4376                            tcg_constant_i32(imm),
4377                            tcg_constant_i32(a->uimm4));
4378     } else {
4379         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4380         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4381     }
4382     return true;
4383 }
4384 
TRANS_FEAT(ADDG_i,aa64_mte_insn_reg,gen_add_sub_imm_with_tags,a,false)4385 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4386 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4387 
4388 /* The input should be a value in the bottom e bits (with higher
4389  * bits zero); returns that value replicated into every element
4390  * of size e in a 64 bit integer.
4391  */
4392 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4393 {
4394     assert(e != 0);
4395     while (e < 64) {
4396         mask |= mask << e;
4397         e *= 2;
4398     }
4399     return mask;
4400 }
4401 
4402 /*
4403  * Logical (immediate)
4404  */
4405 
4406 /*
4407  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4408  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4409  * value (ie should cause a guest UNDEF exception), and true if they are
4410  * valid, in which case the decoded bit pattern is written to result.
4411  */
logic_imm_decode_wmask(uint64_t * result,unsigned int immn,unsigned int imms,unsigned int immr)4412 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4413                             unsigned int imms, unsigned int immr)
4414 {
4415     uint64_t mask;
4416     unsigned e, levels, s, r;
4417     int len;
4418 
4419     assert(immn < 2 && imms < 64 && immr < 64);
4420 
4421     /* The bit patterns we create here are 64 bit patterns which
4422      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4423      * 64 bits each. Each element contains the same value: a run
4424      * of between 1 and e-1 non-zero bits, rotated within the
4425      * element by between 0 and e-1 bits.
4426      *
4427      * The element size and run length are encoded into immn (1 bit)
4428      * and imms (6 bits) as follows:
4429      * 64 bit elements: immn = 1, imms = <length of run - 1>
4430      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4431      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4432      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4433      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4434      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4435      * Notice that immn = 0, imms = 11111x is the only combination
4436      * not covered by one of the above options; this is reserved.
4437      * Further, <length of run - 1> all-ones is a reserved pattern.
4438      *
4439      * In all cases the rotation is by immr % e (and immr is 6 bits).
4440      */
4441 
4442     /* First determine the element size */
4443     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4444     if (len < 1) {
4445         /* This is the immn == 0, imms == 0x11111x case */
4446         return false;
4447     }
4448     e = 1 << len;
4449 
4450     levels = e - 1;
4451     s = imms & levels;
4452     r = immr & levels;
4453 
4454     if (s == levels) {
4455         /* <length of run - 1> mustn't be all-ones. */
4456         return false;
4457     }
4458 
4459     /* Create the value of one element: s+1 set bits rotated
4460      * by r within the element (which is e bits wide)...
4461      */
4462     mask = MAKE_64BIT_MASK(0, s + 1);
4463     if (r) {
4464         mask = (mask >> r) | (mask << (e - r));
4465         mask &= MAKE_64BIT_MASK(0, e);
4466     }
4467     /* ...then replicate the element over the whole 64 bit value */
4468     mask = bitfield_replicate(mask, e);
4469     *result = mask;
4470     return true;
4471 }
4472 
gen_rri_log(DisasContext * s,arg_rri_log * a,bool set_cc,void (* fn)(TCGv_i64,TCGv_i64,int64_t))4473 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4474                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4475 {
4476     TCGv_i64 tcg_rd, tcg_rn;
4477     uint64_t imm;
4478 
4479     /* Some immediate field values are reserved. */
4480     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4481                                 extract32(a->dbm, 0, 6),
4482                                 extract32(a->dbm, 6, 6))) {
4483         return false;
4484     }
4485     if (!a->sf) {
4486         imm &= 0xffffffffull;
4487     }
4488 
4489     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4490     tcg_rn = cpu_reg(s, a->rn);
4491 
4492     fn(tcg_rd, tcg_rn, imm);
4493     if (set_cc) {
4494         gen_logic_CC(a->sf, tcg_rd);
4495     }
4496     if (!a->sf) {
4497         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4498     }
4499     return true;
4500 }
4501 
TRANS(AND_i,gen_rri_log,a,false,tcg_gen_andi_i64)4502 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4503 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4504 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4505 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4506 
4507 /*
4508  * Move wide (immediate)
4509  */
4510 
4511 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4512 {
4513     int pos = a->hw << 4;
4514     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4515     return true;
4516 }
4517 
trans_MOVN(DisasContext * s,arg_movw * a)4518 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4519 {
4520     int pos = a->hw << 4;
4521     uint64_t imm = a->imm;
4522 
4523     imm = ~(imm << pos);
4524     if (!a->sf) {
4525         imm = (uint32_t)imm;
4526     }
4527     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4528     return true;
4529 }
4530 
trans_MOVK(DisasContext * s,arg_movw * a)4531 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4532 {
4533     int pos = a->hw << 4;
4534     TCGv_i64 tcg_rd, tcg_im;
4535 
4536     tcg_rd = cpu_reg(s, a->rd);
4537     tcg_im = tcg_constant_i64(a->imm);
4538     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4539     if (!a->sf) {
4540         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4541     }
4542     return true;
4543 }
4544 
4545 /*
4546  * Bitfield
4547  */
4548 
trans_SBFM(DisasContext * s,arg_SBFM * a)4549 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4550 {
4551     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4552     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4553     unsigned int bitsize = a->sf ? 64 : 32;
4554     unsigned int ri = a->immr;
4555     unsigned int si = a->imms;
4556     unsigned int pos, len;
4557 
4558     if (si >= ri) {
4559         /* Wd<s-r:0> = Wn<s:r> */
4560         len = (si - ri) + 1;
4561         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4562         if (!a->sf) {
4563             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4564         }
4565     } else {
4566         /* Wd<32+s-r,32-r> = Wn<s:0> */
4567         len = si + 1;
4568         pos = (bitsize - ri) & (bitsize - 1);
4569 
4570         if (len < ri) {
4571             /*
4572              * Sign extend the destination field from len to fill the
4573              * balance of the word.  Let the deposit below insert all
4574              * of those sign bits.
4575              */
4576             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4577             len = ri;
4578         }
4579 
4580         /*
4581          * We start with zero, and we haven't modified any bits outside
4582          * bitsize, therefore no final zero-extension is unneeded for !sf.
4583          */
4584         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4585     }
4586     return true;
4587 }
4588 
trans_UBFM(DisasContext * s,arg_UBFM * a)4589 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4590 {
4591     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4592     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4593     unsigned int bitsize = a->sf ? 64 : 32;
4594     unsigned int ri = a->immr;
4595     unsigned int si = a->imms;
4596     unsigned int pos, len;
4597 
4598     tcg_rd = cpu_reg(s, a->rd);
4599     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4600 
4601     if (si >= ri) {
4602         /* Wd<s-r:0> = Wn<s:r> */
4603         len = (si - ri) + 1;
4604         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4605     } else {
4606         /* Wd<32+s-r,32-r> = Wn<s:0> */
4607         len = si + 1;
4608         pos = (bitsize - ri) & (bitsize - 1);
4609         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4610     }
4611     return true;
4612 }
4613 
trans_BFM(DisasContext * s,arg_BFM * a)4614 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4615 {
4616     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4617     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4618     unsigned int bitsize = a->sf ? 64 : 32;
4619     unsigned int ri = a->immr;
4620     unsigned int si = a->imms;
4621     unsigned int pos, len;
4622 
4623     tcg_rd = cpu_reg(s, a->rd);
4624     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4625 
4626     if (si >= ri) {
4627         /* Wd<s-r:0> = Wn<s:r> */
4628         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4629         len = (si - ri) + 1;
4630         pos = 0;
4631     } else {
4632         /* Wd<32+s-r,32-r> = Wn<s:0> */
4633         len = si + 1;
4634         pos = (bitsize - ri) & (bitsize - 1);
4635     }
4636 
4637     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4638     if (!a->sf) {
4639         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4640     }
4641     return true;
4642 }
4643 
trans_EXTR(DisasContext * s,arg_extract * a)4644 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4645 {
4646     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4647 
4648     tcg_rd = cpu_reg(s, a->rd);
4649 
4650     if (unlikely(a->imm == 0)) {
4651         /*
4652          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4653          * so an extract from bit 0 is a special case.
4654          */
4655         if (a->sf) {
4656             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4657         } else {
4658             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4659         }
4660     } else {
4661         tcg_rm = cpu_reg(s, a->rm);
4662         tcg_rn = cpu_reg(s, a->rn);
4663 
4664         if (a->sf) {
4665             /* Specialization to ROR happens in EXTRACT2.  */
4666             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4667         } else {
4668             TCGv_i32 t0 = tcg_temp_new_i32();
4669 
4670             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4671             if (a->rm == a->rn) {
4672                 tcg_gen_rotri_i32(t0, t0, a->imm);
4673             } else {
4674                 TCGv_i32 t1 = tcg_temp_new_i32();
4675                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4676                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4677             }
4678             tcg_gen_extu_i32_i64(tcg_rd, t0);
4679         }
4680     }
4681     return true;
4682 }
4683 
trans_TBL_TBX(DisasContext * s,arg_TBL_TBX * a)4684 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a)
4685 {
4686     if (fp_access_check(s)) {
4687         int len = (a->len + 1) * 16;
4688 
4689         tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
4690                            vec_full_reg_offset(s, a->rm), tcg_env,
4691                            a->q ? 16 : 8, vec_full_reg_size(s),
4692                            (len << 6) | (a->tbx << 5) | a->rn,
4693                            gen_helper_simd_tblx);
4694     }
4695     return true;
4696 }
4697 
4698 typedef int simd_permute_idx_fn(int i, int part, int elements);
4699 
do_simd_permute(DisasContext * s,arg_qrrr_e * a,simd_permute_idx_fn * fn,int part)4700 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a,
4701                             simd_permute_idx_fn *fn, int part)
4702 {
4703     MemOp esz = a->esz;
4704     int datasize = a->q ? 16 : 8;
4705     int elements = datasize >> esz;
4706     TCGv_i64 tcg_res[2], tcg_ele;
4707 
4708     if (esz == MO_64 && !a->q) {
4709         return false;
4710     }
4711     if (!fp_access_check(s)) {
4712         return true;
4713     }
4714 
4715     tcg_res[0] = tcg_temp_new_i64();
4716     tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL;
4717     tcg_ele = tcg_temp_new_i64();
4718 
4719     for (int i = 0; i < elements; i++) {
4720         int o, w, idx;
4721 
4722         idx = fn(i, part, elements);
4723         read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn),
4724                          idx & (elements - 1), esz);
4725 
4726         w = (i << (esz + 3)) / 64;
4727         o = (i << (esz + 3)) % 64;
4728         if (o == 0) {
4729             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
4730         } else {
4731             tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz);
4732         }
4733     }
4734 
4735     for (int i = a->q; i >= 0; --i) {
4736         write_vec_element(s, tcg_res[i], a->rd, i, MO_64);
4737     }
4738     clear_vec_high(s, a->q, a->rd);
4739     return true;
4740 }
4741 
permute_load_uzp(int i,int part,int elements)4742 static int permute_load_uzp(int i, int part, int elements)
4743 {
4744     return 2 * i + part;
4745 }
4746 
4747 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0)
4748 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1)
4749 
permute_load_trn(int i,int part,int elements)4750 static int permute_load_trn(int i, int part, int elements)
4751 {
4752     return (i & 1) * elements + (i & ~1) + part;
4753 }
4754 
4755 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0)
4756 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1)
4757 
permute_load_zip(int i,int part,int elements)4758 static int permute_load_zip(int i, int part, int elements)
4759 {
4760     return (i & 1) * elements + ((part * elements + i) >> 1);
4761 }
4762 
4763 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0)
4764 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1)
4765 
4766 /*
4767  * Cryptographic AES, SHA, SHA512
4768  */
4769 
4770 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4771 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4772 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4773 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4774 
4775 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4776 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4777 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4778 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4779 
4780 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4781 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4782 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4783 
4784 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4785 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4786 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4787 
4788 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4789 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4790 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
TRANS_FEAT(RAX1,aa64_sha3,do_gvec_fn3,a,gen_gvec_rax1)4791 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4792 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4793 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4794 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4795 
4796 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4797 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4798 
4799 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4800 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4801 
4802 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4803 {
4804     if (!dc_isar_feature(aa64_sm3, s)) {
4805         return false;
4806     }
4807     if (fp_access_check(s)) {
4808         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4809         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4810         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4811         TCGv_i32 tcg_res = tcg_temp_new_i32();
4812         unsigned vsz, dofs;
4813 
4814         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4815         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4816         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4817 
4818         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4819         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4820         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4821         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4822 
4823         /* Clear the whole register first, then store bits [127:96]. */
4824         vsz = vec_full_reg_size(s);
4825         dofs = vec_full_reg_offset(s, a->rd);
4826         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4827         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4828     }
4829     return true;
4830 }
4831 
do_crypto3i(DisasContext * s,arg_crypto3i * a,gen_helper_gvec_3 * fn)4832 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4833 {
4834     if (fp_access_check(s)) {
4835         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4836     }
4837     return true;
4838 }
TRANS_FEAT(SM3TT1A,aa64_sm3,do_crypto3i,a,gen_helper_crypto_sm3tt1a)4839 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4840 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4841 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4842 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4843 
4844 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4845 {
4846     if (!dc_isar_feature(aa64_sha3, s)) {
4847         return false;
4848     }
4849     if (fp_access_check(s)) {
4850         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4851                      vec_full_reg_offset(s, a->rn),
4852                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4853                      vec_full_reg_size(s));
4854     }
4855     return true;
4856 }
4857 
4858 /*
4859  * Advanced SIMD copy
4860  */
4861 
decode_esz_idx(int imm,MemOp * pesz,unsigned * pidx)4862 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4863 {
4864     unsigned esz = ctz32(imm);
4865     if (esz <= MO_64) {
4866         *pesz = esz;
4867         *pidx = imm >> (esz + 1);
4868         return true;
4869     }
4870     return false;
4871 }
4872 
trans_DUP_element_s(DisasContext * s,arg_DUP_element_s * a)4873 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4874 {
4875     MemOp esz;
4876     unsigned idx;
4877 
4878     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4879         return false;
4880     }
4881     if (fp_access_check(s)) {
4882         /*
4883          * This instruction just extracts the specified element and
4884          * zero-extends it into the bottom of the destination register.
4885          */
4886         TCGv_i64 tmp = tcg_temp_new_i64();
4887         read_vec_element(s, tmp, a->rn, idx, esz);
4888         write_fp_dreg(s, a->rd, tmp);
4889     }
4890     return true;
4891 }
4892 
trans_DUP_element_v(DisasContext * s,arg_DUP_element_v * a)4893 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4894 {
4895     MemOp esz;
4896     unsigned idx;
4897 
4898     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4899         return false;
4900     }
4901     if (esz == MO_64 && !a->q) {
4902         return false;
4903     }
4904     if (fp_access_check(s)) {
4905         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4906                              vec_reg_offset(s, a->rn, idx, esz),
4907                              a->q ? 16 : 8, vec_full_reg_size(s));
4908     }
4909     return true;
4910 }
4911 
trans_DUP_general(DisasContext * s,arg_DUP_general * a)4912 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4913 {
4914     MemOp esz;
4915     unsigned idx;
4916 
4917     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4918         return false;
4919     }
4920     if (esz == MO_64 && !a->q) {
4921         return false;
4922     }
4923     if (fp_access_check(s)) {
4924         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4925                              a->q ? 16 : 8, vec_full_reg_size(s),
4926                              cpu_reg(s, a->rn));
4927     }
4928     return true;
4929 }
4930 
do_smov_umov(DisasContext * s,arg_SMOV * a,MemOp is_signed)4931 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4932 {
4933     MemOp esz;
4934     unsigned idx;
4935 
4936     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4937         return false;
4938     }
4939     if (is_signed) {
4940         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4941             return false;
4942         }
4943     } else {
4944         if (esz == MO_64 ? !a->q : a->q) {
4945             return false;
4946         }
4947     }
4948     if (fp_access_check(s)) {
4949         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4950         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4951         if (is_signed && !a->q) {
4952             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4953         }
4954     }
4955     return true;
4956 }
4957 
TRANS(SMOV,do_smov_umov,a,MO_SIGN)4958 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4959 TRANS(UMOV, do_smov_umov, a, 0)
4960 
4961 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4962 {
4963     MemOp esz;
4964     unsigned idx;
4965 
4966     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4967         return false;
4968     }
4969     if (fp_access_check(s)) {
4970         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4971         clear_vec_high(s, true, a->rd);
4972     }
4973     return true;
4974 }
4975 
trans_INS_element(DisasContext * s,arg_INS_element * a)4976 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4977 {
4978     MemOp esz;
4979     unsigned didx, sidx;
4980 
4981     if (!decode_esz_idx(a->di, &esz, &didx)) {
4982         return false;
4983     }
4984     sidx = a->si >> esz;
4985     if (fp_access_check(s)) {
4986         TCGv_i64 tmp = tcg_temp_new_i64();
4987 
4988         read_vec_element(s, tmp, a->rn, sidx, esz);
4989         write_vec_element(s, tmp, a->rd, didx, esz);
4990 
4991         /* INS is considered a 128-bit write for SVE. */
4992         clear_vec_high(s, true, a->rd);
4993     }
4994     return true;
4995 }
4996 
4997 /*
4998  * Advanced SIMD three same
4999  */
5000 
5001 typedef struct FPScalar {
5002     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5003     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5004     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
5005 } FPScalar;
5006 
do_fp3_scalar(DisasContext * s,arg_rrr_e * a,const FPScalar * f)5007 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
5008 {
5009     switch (a->esz) {
5010     case MO_64:
5011         if (fp_access_check(s)) {
5012             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5013             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5014             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5015             write_fp_dreg(s, a->rd, t0);
5016         }
5017         break;
5018     case MO_32:
5019         if (fp_access_check(s)) {
5020             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5021             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
5022             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5023             write_fp_sreg(s, a->rd, t0);
5024         }
5025         break;
5026     case MO_16:
5027         if (!dc_isar_feature(aa64_fp16, s)) {
5028             return false;
5029         }
5030         if (fp_access_check(s)) {
5031             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5032             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
5033             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5034             write_fp_sreg(s, a->rd, t0);
5035         }
5036         break;
5037     default:
5038         return false;
5039     }
5040     return true;
5041 }
5042 
5043 static const FPScalar f_scalar_fadd = {
5044     gen_helper_vfp_addh,
5045     gen_helper_vfp_adds,
5046     gen_helper_vfp_addd,
5047 };
5048 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
5049 
5050 static const FPScalar f_scalar_fsub = {
5051     gen_helper_vfp_subh,
5052     gen_helper_vfp_subs,
5053     gen_helper_vfp_subd,
5054 };
5055 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
5056 
5057 static const FPScalar f_scalar_fdiv = {
5058     gen_helper_vfp_divh,
5059     gen_helper_vfp_divs,
5060     gen_helper_vfp_divd,
5061 };
5062 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
5063 
5064 static const FPScalar f_scalar_fmul = {
5065     gen_helper_vfp_mulh,
5066     gen_helper_vfp_muls,
5067     gen_helper_vfp_muld,
5068 };
5069 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
5070 
5071 static const FPScalar f_scalar_fmax = {
5072     gen_helper_advsimd_maxh,
5073     gen_helper_vfp_maxs,
5074     gen_helper_vfp_maxd,
5075 };
5076 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
5077 
5078 static const FPScalar f_scalar_fmin = {
5079     gen_helper_advsimd_minh,
5080     gen_helper_vfp_mins,
5081     gen_helper_vfp_mind,
5082 };
5083 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
5084 
5085 static const FPScalar f_scalar_fmaxnm = {
5086     gen_helper_advsimd_maxnumh,
5087     gen_helper_vfp_maxnums,
5088     gen_helper_vfp_maxnumd,
5089 };
5090 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
5091 
5092 static const FPScalar f_scalar_fminnm = {
5093     gen_helper_advsimd_minnumh,
5094     gen_helper_vfp_minnums,
5095     gen_helper_vfp_minnumd,
5096 };
5097 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
5098 
5099 static const FPScalar f_scalar_fmulx = {
5100     gen_helper_advsimd_mulxh,
5101     gen_helper_vfp_mulxs,
5102     gen_helper_vfp_mulxd,
5103 };
5104 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
5105 
gen_fnmul_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5106 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5107 {
5108     gen_helper_vfp_mulh(d, n, m, s);
5109     gen_vfp_negh(d, d);
5110 }
5111 
gen_fnmul_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5112 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5113 {
5114     gen_helper_vfp_muls(d, n, m, s);
5115     gen_vfp_negs(d, d);
5116 }
5117 
gen_fnmul_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5118 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5119 {
5120     gen_helper_vfp_muld(d, n, m, s);
5121     gen_vfp_negd(d, d);
5122 }
5123 
5124 static const FPScalar f_scalar_fnmul = {
5125     gen_fnmul_h,
5126     gen_fnmul_s,
5127     gen_fnmul_d,
5128 };
5129 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5130 
5131 static const FPScalar f_scalar_fcmeq = {
5132     gen_helper_advsimd_ceq_f16,
5133     gen_helper_neon_ceq_f32,
5134     gen_helper_neon_ceq_f64,
5135 };
5136 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5137 
5138 static const FPScalar f_scalar_fcmge = {
5139     gen_helper_advsimd_cge_f16,
5140     gen_helper_neon_cge_f32,
5141     gen_helper_neon_cge_f64,
5142 };
5143 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5144 
5145 static const FPScalar f_scalar_fcmgt = {
5146     gen_helper_advsimd_cgt_f16,
5147     gen_helper_neon_cgt_f32,
5148     gen_helper_neon_cgt_f64,
5149 };
5150 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5151 
5152 static const FPScalar f_scalar_facge = {
5153     gen_helper_advsimd_acge_f16,
5154     gen_helper_neon_acge_f32,
5155     gen_helper_neon_acge_f64,
5156 };
5157 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5158 
5159 static const FPScalar f_scalar_facgt = {
5160     gen_helper_advsimd_acgt_f16,
5161     gen_helper_neon_acgt_f32,
5162     gen_helper_neon_acgt_f64,
5163 };
5164 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5165 
gen_fabd_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5166 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5167 {
5168     gen_helper_vfp_subh(d, n, m, s);
5169     gen_vfp_absh(d, d);
5170 }
5171 
gen_fabd_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5172 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5173 {
5174     gen_helper_vfp_subs(d, n, m, s);
5175     gen_vfp_abss(d, d);
5176 }
5177 
gen_fabd_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5178 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5179 {
5180     gen_helper_vfp_subd(d, n, m, s);
5181     gen_vfp_absd(d, d);
5182 }
5183 
5184 static const FPScalar f_scalar_fabd = {
5185     gen_fabd_h,
5186     gen_fabd_s,
5187     gen_fabd_d,
5188 };
5189 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5190 
5191 static const FPScalar f_scalar_frecps = {
5192     gen_helper_recpsf_f16,
5193     gen_helper_recpsf_f32,
5194     gen_helper_recpsf_f64,
5195 };
5196 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5197 
5198 static const FPScalar f_scalar_frsqrts = {
5199     gen_helper_rsqrtsf_f16,
5200     gen_helper_rsqrtsf_f32,
5201     gen_helper_rsqrtsf_f64,
5202 };
5203 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5204 
do_satacc_s(DisasContext * s,arg_rrr_e * a,MemOp sgn_n,MemOp sgn_m,void (* gen_bhs)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64,MemOp),void (* gen_d)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64))5205 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5206                 MemOp sgn_n, MemOp sgn_m,
5207                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5208                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5209 {
5210     TCGv_i64 t0, t1, t2, qc;
5211     MemOp esz = a->esz;
5212 
5213     if (!fp_access_check(s)) {
5214         return true;
5215     }
5216 
5217     t0 = tcg_temp_new_i64();
5218     t1 = tcg_temp_new_i64();
5219     t2 = tcg_temp_new_i64();
5220     qc = tcg_temp_new_i64();
5221     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5222     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5223     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5224 
5225     if (esz == MO_64) {
5226         gen_d(t0, qc, t1, t2);
5227     } else {
5228         gen_bhs(t0, qc, t1, t2, esz);
5229         tcg_gen_ext_i64(t0, t0, esz);
5230     }
5231 
5232     write_fp_dreg(s, a->rd, t0);
5233     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5234     return true;
5235 }
5236 
TRANS(SQADD_s,do_satacc_s,a,MO_SIGN,MO_SIGN,gen_sqadd_bhs,gen_sqadd_d)5237 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5238 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5239 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5240 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5241 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5242 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5243 
5244 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5245                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5246 {
5247     if (fp_access_check(s)) {
5248         TCGv_i64 t0 = tcg_temp_new_i64();
5249         TCGv_i64 t1 = tcg_temp_new_i64();
5250 
5251         read_vec_element(s, t0, a->rn, 0, MO_64);
5252         read_vec_element(s, t1, a->rm, 0, MO_64);
5253         fn(t0, t0, t1);
5254         write_fp_dreg(s, a->rd, t0);
5255     }
5256     return true;
5257 }
5258 
5259 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5260 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5261 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5262 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5263 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5264 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5265 
5266 typedef struct ENVScalar2 {
5267     NeonGenTwoOpEnvFn *gen_bhs[3];
5268     NeonGenTwo64OpEnvFn *gen_d;
5269 } ENVScalar2;
5270 
do_env_scalar2(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5271 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5272 {
5273     if (!fp_access_check(s)) {
5274         return true;
5275     }
5276     if (a->esz == MO_64) {
5277         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5278         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5279         f->gen_d(t0, tcg_env, t0, t1);
5280         write_fp_dreg(s, a->rd, t0);
5281     } else {
5282         TCGv_i32 t0 = tcg_temp_new_i32();
5283         TCGv_i32 t1 = tcg_temp_new_i32();
5284 
5285         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5286         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5287         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5288         write_fp_sreg(s, a->rd, t0);
5289     }
5290     return true;
5291 }
5292 
5293 static const ENVScalar2 f_scalar_sqshl = {
5294     { gen_helper_neon_qshl_s8,
5295       gen_helper_neon_qshl_s16,
5296       gen_helper_neon_qshl_s32 },
5297     gen_helper_neon_qshl_s64,
5298 };
5299 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5300 
5301 static const ENVScalar2 f_scalar_uqshl = {
5302     { gen_helper_neon_qshl_u8,
5303       gen_helper_neon_qshl_u16,
5304       gen_helper_neon_qshl_u32 },
5305     gen_helper_neon_qshl_u64,
5306 };
5307 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5308 
5309 static const ENVScalar2 f_scalar_sqrshl = {
5310     { gen_helper_neon_qrshl_s8,
5311       gen_helper_neon_qrshl_s16,
5312       gen_helper_neon_qrshl_s32 },
5313     gen_helper_neon_qrshl_s64,
5314 };
5315 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5316 
5317 static const ENVScalar2 f_scalar_uqrshl = {
5318     { gen_helper_neon_qrshl_u8,
5319       gen_helper_neon_qrshl_u16,
5320       gen_helper_neon_qrshl_u32 },
5321     gen_helper_neon_qrshl_u64,
5322 };
5323 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5324 
do_env_scalar2_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5325 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5326                               const ENVScalar2 *f)
5327 {
5328     if (a->esz == MO_16 || a->esz == MO_32) {
5329         return do_env_scalar2(s, a, f);
5330     }
5331     return false;
5332 }
5333 
5334 static const ENVScalar2 f_scalar_sqdmulh = {
5335     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5336 };
5337 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5338 
5339 static const ENVScalar2 f_scalar_sqrdmulh = {
5340     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5341 };
5342 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5343 
5344 typedef struct ENVScalar3 {
5345     NeonGenThreeOpEnvFn *gen_hs[2];
5346 } ENVScalar3;
5347 
do_env_scalar3_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar3 * f)5348 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5349                               const ENVScalar3 *f)
5350 {
5351     TCGv_i32 t0, t1, t2;
5352 
5353     if (a->esz != MO_16 && a->esz != MO_32) {
5354         return false;
5355     }
5356     if (!fp_access_check(s)) {
5357         return true;
5358     }
5359 
5360     t0 = tcg_temp_new_i32();
5361     t1 = tcg_temp_new_i32();
5362     t2 = tcg_temp_new_i32();
5363     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5364     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5365     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5366     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5367     write_fp_sreg(s, a->rd, t0);
5368     return true;
5369 }
5370 
5371 static const ENVScalar3 f_scalar_sqrdmlah = {
5372     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5373 };
5374 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5375 
5376 static const ENVScalar3 f_scalar_sqrdmlsh = {
5377     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5378 };
5379 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5380 
do_cmop_d(DisasContext * s,arg_rrr_e * a,TCGCond cond)5381 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5382 {
5383     if (fp_access_check(s)) {
5384         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5385         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5386         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5387         write_fp_dreg(s, a->rd, t0);
5388     }
5389     return true;
5390 }
5391 
TRANS(CMGT_s,do_cmop_d,a,TCG_COND_GT)5392 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5393 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5394 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5395 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5396 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5397 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5398 
5399 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5400                           gen_helper_gvec_3_ptr * const fns[3])
5401 {
5402     MemOp esz = a->esz;
5403 
5404     switch (esz) {
5405     case MO_64:
5406         if (!a->q) {
5407             return false;
5408         }
5409         break;
5410     case MO_32:
5411         break;
5412     case MO_16:
5413         if (!dc_isar_feature(aa64_fp16, s)) {
5414             return false;
5415         }
5416         break;
5417     default:
5418         return false;
5419     }
5420     if (fp_access_check(s)) {
5421         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5422                           esz == MO_16, data, fns[esz - 1]);
5423     }
5424     return true;
5425 }
5426 
5427 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5428     gen_helper_gvec_fadd_h,
5429     gen_helper_gvec_fadd_s,
5430     gen_helper_gvec_fadd_d,
5431 };
5432 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5433 
5434 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5435     gen_helper_gvec_fsub_h,
5436     gen_helper_gvec_fsub_s,
5437     gen_helper_gvec_fsub_d,
5438 };
5439 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5440 
5441 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5442     gen_helper_gvec_fdiv_h,
5443     gen_helper_gvec_fdiv_s,
5444     gen_helper_gvec_fdiv_d,
5445 };
5446 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5447 
5448 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5449     gen_helper_gvec_fmul_h,
5450     gen_helper_gvec_fmul_s,
5451     gen_helper_gvec_fmul_d,
5452 };
5453 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5454 
5455 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5456     gen_helper_gvec_fmax_h,
5457     gen_helper_gvec_fmax_s,
5458     gen_helper_gvec_fmax_d,
5459 };
5460 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5461 
5462 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5463     gen_helper_gvec_fmin_h,
5464     gen_helper_gvec_fmin_s,
5465     gen_helper_gvec_fmin_d,
5466 };
5467 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5468 
5469 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5470     gen_helper_gvec_fmaxnum_h,
5471     gen_helper_gvec_fmaxnum_s,
5472     gen_helper_gvec_fmaxnum_d,
5473 };
5474 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5475 
5476 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5477     gen_helper_gvec_fminnum_h,
5478     gen_helper_gvec_fminnum_s,
5479     gen_helper_gvec_fminnum_d,
5480 };
5481 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5482 
5483 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5484     gen_helper_gvec_fmulx_h,
5485     gen_helper_gvec_fmulx_s,
5486     gen_helper_gvec_fmulx_d,
5487 };
5488 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5489 
5490 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5491     gen_helper_gvec_vfma_h,
5492     gen_helper_gvec_vfma_s,
5493     gen_helper_gvec_vfma_d,
5494 };
5495 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5496 
5497 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5498     gen_helper_gvec_vfms_h,
5499     gen_helper_gvec_vfms_s,
5500     gen_helper_gvec_vfms_d,
5501 };
5502 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5503 
5504 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5505     gen_helper_gvec_fceq_h,
5506     gen_helper_gvec_fceq_s,
5507     gen_helper_gvec_fceq_d,
5508 };
5509 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5510 
5511 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5512     gen_helper_gvec_fcge_h,
5513     gen_helper_gvec_fcge_s,
5514     gen_helper_gvec_fcge_d,
5515 };
5516 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5517 
5518 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5519     gen_helper_gvec_fcgt_h,
5520     gen_helper_gvec_fcgt_s,
5521     gen_helper_gvec_fcgt_d,
5522 };
5523 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5524 
5525 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5526     gen_helper_gvec_facge_h,
5527     gen_helper_gvec_facge_s,
5528     gen_helper_gvec_facge_d,
5529 };
5530 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5531 
5532 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5533     gen_helper_gvec_facgt_h,
5534     gen_helper_gvec_facgt_s,
5535     gen_helper_gvec_facgt_d,
5536 };
5537 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5538 
5539 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5540     gen_helper_gvec_fabd_h,
5541     gen_helper_gvec_fabd_s,
5542     gen_helper_gvec_fabd_d,
5543 };
5544 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5545 
5546 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5547     gen_helper_gvec_recps_h,
5548     gen_helper_gvec_recps_s,
5549     gen_helper_gvec_recps_d,
5550 };
5551 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5552 
5553 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5554     gen_helper_gvec_rsqrts_h,
5555     gen_helper_gvec_rsqrts_s,
5556     gen_helper_gvec_rsqrts_d,
5557 };
5558 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5559 
5560 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5561     gen_helper_gvec_faddp_h,
5562     gen_helper_gvec_faddp_s,
5563     gen_helper_gvec_faddp_d,
5564 };
5565 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5566 
5567 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5568     gen_helper_gvec_fmaxp_h,
5569     gen_helper_gvec_fmaxp_s,
5570     gen_helper_gvec_fmaxp_d,
5571 };
5572 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5573 
5574 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5575     gen_helper_gvec_fminp_h,
5576     gen_helper_gvec_fminp_s,
5577     gen_helper_gvec_fminp_d,
5578 };
5579 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5580 
5581 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5582     gen_helper_gvec_fmaxnump_h,
5583     gen_helper_gvec_fmaxnump_s,
5584     gen_helper_gvec_fmaxnump_d,
5585 };
5586 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5587 
5588 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5589     gen_helper_gvec_fminnump_h,
5590     gen_helper_gvec_fminnump_s,
5591     gen_helper_gvec_fminnump_d,
5592 };
5593 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5594 
do_fmlal(DisasContext * s,arg_qrrr_e * a,bool is_s,bool is_2)5595 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5596 {
5597     if (fp_access_check(s)) {
5598         int data = (is_2 << 1) | is_s;
5599         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5600                            vec_full_reg_offset(s, a->rn),
5601                            vec_full_reg_offset(s, a->rm), tcg_env,
5602                            a->q ? 16 : 8, vec_full_reg_size(s),
5603                            data, gen_helper_gvec_fmlal_a64);
5604     }
5605     return true;
5606 }
5607 
TRANS_FEAT(FMLAL_v,aa64_fhm,do_fmlal,a,false,false)5608 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5609 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5610 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5611 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5612 
5613 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5614 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5615 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5616 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5617 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5618 
5619 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5620 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5621 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5622 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5623 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5624 
5625 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5626 {
5627     if (fp_access_check(s)) {
5628         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5629     }
5630     return true;
5631 }
5632 
5633 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5634 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5635 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5636 
TRANS(SQADD_v,do_gvec_fn3,a,gen_gvec_sqadd_qc)5637 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5638 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5639 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5640 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5641 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5642 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5643 
5644 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5645 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5646 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5647 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5648 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5649 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5650 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5651 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5652 
5653 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5654 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5655 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5656 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5657 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5658 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5659 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5660 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5661 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5662 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5663 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5664 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5665 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5666 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5667 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5668 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5669 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5670 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5671 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5672 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5673 
5674 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5675 {
5676     if (a->esz == MO_64 && !a->q) {
5677         return false;
5678     }
5679     if (fp_access_check(s)) {
5680         tcg_gen_gvec_cmp(cond, a->esz,
5681                          vec_full_reg_offset(s, a->rd),
5682                          vec_full_reg_offset(s, a->rn),
5683                          vec_full_reg_offset(s, a->rm),
5684                          a->q ? 16 : 8, vec_full_reg_size(s));
5685     }
5686     return true;
5687 }
5688 
TRANS(CMGT_v,do_cmop_v,a,TCG_COND_GT)5689 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5690 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5691 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5692 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5693 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5694 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5695 
5696 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5697 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5698 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5699 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5700 
5701 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5702                           gen_helper_gvec_4 *fn)
5703 {
5704     if (fp_access_check(s)) {
5705         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5706     }
5707     return true;
5708 }
5709 
do_dot_vector_env(DisasContext * s,arg_qrrr_e * a,gen_helper_gvec_4_ptr * fn)5710 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a,
5711                               gen_helper_gvec_4_ptr *fn)
5712 {
5713     if (fp_access_check(s)) {
5714         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5715     }
5716     return true;
5717 }
5718 
TRANS_FEAT(SDOT_v,aa64_dp,do_dot_vector,a,gen_helper_gvec_sdot_b)5719 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5720 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5721 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5722 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot)
5723 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla)
5724 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5725 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5726 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5727 
5728 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5729 {
5730     if (!dc_isar_feature(aa64_bf16, s)) {
5731         return false;
5732     }
5733     if (fp_access_check(s)) {
5734         /* Q bit selects BFMLALB vs BFMLALT. */
5735         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5736                           gen_helper_gvec_bfmlal);
5737     }
5738     return true;
5739 }
5740 
5741 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5742     gen_helper_gvec_fcaddh,
5743     gen_helper_gvec_fcadds,
5744     gen_helper_gvec_fcaddd,
5745 };
5746 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5747 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5748 
trans_FCMLA_v(DisasContext * s,arg_FCMLA_v * a)5749 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
5750 {
5751     gen_helper_gvec_4_ptr *fn;
5752 
5753     if (!dc_isar_feature(aa64_fcma, s)) {
5754         return false;
5755     }
5756     switch (a->esz) {
5757     case MO_64:
5758         if (!a->q) {
5759             return false;
5760         }
5761         fn = gen_helper_gvec_fcmlad;
5762         break;
5763     case MO_32:
5764         fn = gen_helper_gvec_fcmlas;
5765         break;
5766     case MO_16:
5767         if (!dc_isar_feature(aa64_fp16, s)) {
5768             return false;
5769         }
5770         fn = gen_helper_gvec_fcmlah;
5771         break;
5772     default:
5773         return false;
5774     }
5775     if (fp_access_check(s)) {
5776         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5777                           a->esz == MO_16, a->rot, fn);
5778     }
5779     return true;
5780 }
5781 
5782 /*
5783  * Widening vector x vector/indexed.
5784  *
5785  * These read from the top or bottom half of a 128-bit vector.
5786  * After widening, optionally accumulate with a 128-bit vector.
5787  * Implement these inline, as the number of elements are limited
5788  * and the related SVE and SME operations on larger vectors use
5789  * even/odd elements instead of top/bottom half.
5790  *
5791  * If idx >= 0, operand 2 is indexed, otherwise vector.
5792  * If acc, operand 0 is loaded with rd.
5793  */
5794 
5795 /* For low half, iterating up. */
do_3op_widening(DisasContext * s,MemOp memop,int top,int rd,int rn,int rm,int idx,NeonGenTwo64OpFn * fn,bool acc)5796 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
5797                             int rd, int rn, int rm, int idx,
5798                             NeonGenTwo64OpFn *fn, bool acc)
5799 {
5800     TCGv_i64 tcg_op0 = tcg_temp_new_i64();
5801     TCGv_i64 tcg_op1 = tcg_temp_new_i64();
5802     TCGv_i64 tcg_op2 = tcg_temp_new_i64();
5803     MemOp esz = memop & MO_SIZE;
5804     int half = 8 >> esz;
5805     int top_swap, top_half;
5806 
5807     /* There are no 64x64->128 bit operations. */
5808     if (esz >= MO_64) {
5809         return false;
5810     }
5811     if (!fp_access_check(s)) {
5812         return true;
5813     }
5814 
5815     if (idx >= 0) {
5816         read_vec_element(s, tcg_op2, rm, idx, memop);
5817     }
5818 
5819     /*
5820      * For top half inputs, iterate forward; backward for bottom half.
5821      * This means the store to the destination will not occur until
5822      * overlapping input inputs are consumed.
5823      * Use top_swap to conditionally invert the forward iteration index.
5824      */
5825     top_swap = top ? 0 : half - 1;
5826     top_half = top ? half : 0;
5827 
5828     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5829         int elt = elt_fwd ^ top_swap;
5830 
5831         read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
5832         if (idx < 0) {
5833             read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
5834         }
5835         if (acc) {
5836             read_vec_element(s, tcg_op0, rd, elt, memop + 1);
5837         }
5838         fn(tcg_op0, tcg_op1, tcg_op2);
5839         write_vec_element(s, tcg_op0, rd, elt, esz + 1);
5840     }
5841     clear_vec_high(s, 1, rd);
5842     return true;
5843 }
5844 
gen_muladd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5845 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5846 {
5847     TCGv_i64 t = tcg_temp_new_i64();
5848     tcg_gen_mul_i64(t, n, m);
5849     tcg_gen_add_i64(d, d, t);
5850 }
5851 
gen_mulsub_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5852 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5853 {
5854     TCGv_i64 t = tcg_temp_new_i64();
5855     tcg_gen_mul_i64(t, n, m);
5856     tcg_gen_sub_i64(d, d, t);
5857 }
5858 
5859 TRANS(SMULL_v, do_3op_widening,
5860       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5861       tcg_gen_mul_i64, false)
5862 TRANS(UMULL_v, do_3op_widening,
5863       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5864       tcg_gen_mul_i64, false)
5865 TRANS(SMLAL_v, do_3op_widening,
5866       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5867       gen_muladd_i64, true)
5868 TRANS(UMLAL_v, do_3op_widening,
5869       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5870       gen_muladd_i64, true)
5871 TRANS(SMLSL_v, do_3op_widening,
5872       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5873       gen_mulsub_i64, true)
5874 TRANS(UMLSL_v, do_3op_widening,
5875       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5876       gen_mulsub_i64, true)
5877 
5878 TRANS(SMULL_vi, do_3op_widening,
5879       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5880       tcg_gen_mul_i64, false)
5881 TRANS(UMULL_vi, do_3op_widening,
5882       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5883       tcg_gen_mul_i64, false)
5884 TRANS(SMLAL_vi, do_3op_widening,
5885       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5886       gen_muladd_i64, true)
5887 TRANS(UMLAL_vi, do_3op_widening,
5888       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5889       gen_muladd_i64, true)
5890 TRANS(SMLSL_vi, do_3op_widening,
5891       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5892       gen_mulsub_i64, true)
5893 TRANS(UMLSL_vi, do_3op_widening,
5894       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5895       gen_mulsub_i64, true)
5896 
gen_sabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5897 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5898 {
5899     TCGv_i64 t1 = tcg_temp_new_i64();
5900     TCGv_i64 t2 = tcg_temp_new_i64();
5901 
5902     tcg_gen_sub_i64(t1, n, m);
5903     tcg_gen_sub_i64(t2, m, n);
5904     tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
5905 }
5906 
gen_uabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5907 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5908 {
5909     TCGv_i64 t1 = tcg_temp_new_i64();
5910     TCGv_i64 t2 = tcg_temp_new_i64();
5911 
5912     tcg_gen_sub_i64(t1, n, m);
5913     tcg_gen_sub_i64(t2, m, n);
5914     tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
5915 }
5916 
gen_saba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5917 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5918 {
5919     TCGv_i64 t = tcg_temp_new_i64();
5920     gen_sabd_i64(t, n, m);
5921     tcg_gen_add_i64(d, d, t);
5922 }
5923 
gen_uaba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5924 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5925 {
5926     TCGv_i64 t = tcg_temp_new_i64();
5927     gen_uabd_i64(t, n, m);
5928     tcg_gen_add_i64(d, d, t);
5929 }
5930 
5931 TRANS(SADDL_v, do_3op_widening,
5932       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5933       tcg_gen_add_i64, false)
5934 TRANS(UADDL_v, do_3op_widening,
5935       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5936       tcg_gen_add_i64, false)
5937 TRANS(SSUBL_v, do_3op_widening,
5938       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5939       tcg_gen_sub_i64, false)
5940 TRANS(USUBL_v, do_3op_widening,
5941       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5942       tcg_gen_sub_i64, false)
5943 TRANS(SABDL_v, do_3op_widening,
5944       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5945       gen_sabd_i64, false)
5946 TRANS(UABDL_v, do_3op_widening,
5947       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5948       gen_uabd_i64, false)
5949 TRANS(SABAL_v, do_3op_widening,
5950       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5951       gen_saba_i64, true)
5952 TRANS(UABAL_v, do_3op_widening,
5953       a->esz, a->q, a->rd, a->rn, a->rm, -1,
5954       gen_uaba_i64, true)
5955 
gen_sqdmull_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5956 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5957 {
5958     tcg_gen_mul_i64(d, n, m);
5959     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
5960 }
5961 
gen_sqdmull_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5962 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5963 {
5964     tcg_gen_mul_i64(d, n, m);
5965     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
5966 }
5967 
gen_sqdmlal_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5968 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5969 {
5970     TCGv_i64 t = tcg_temp_new_i64();
5971 
5972     tcg_gen_mul_i64(t, n, m);
5973     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5974     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5975 }
5976 
gen_sqdmlal_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5977 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5978 {
5979     TCGv_i64 t = tcg_temp_new_i64();
5980 
5981     tcg_gen_mul_i64(t, n, m);
5982     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5983     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5984 }
5985 
gen_sqdmlsl_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5986 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5987 {
5988     TCGv_i64 t = tcg_temp_new_i64();
5989 
5990     tcg_gen_mul_i64(t, n, m);
5991     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5992     tcg_gen_neg_i64(t, t);
5993     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5994 }
5995 
gen_sqdmlsl_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5996 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5997 {
5998     TCGv_i64 t = tcg_temp_new_i64();
5999 
6000     tcg_gen_mul_i64(t, n, m);
6001     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6002     tcg_gen_neg_i64(t, t);
6003     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6004 }
6005 
6006 TRANS(SQDMULL_v, do_3op_widening,
6007       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6008       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6009 TRANS(SQDMLAL_v, do_3op_widening,
6010       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6011       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6012 TRANS(SQDMLSL_v, do_3op_widening,
6013       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6014       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6015 
6016 TRANS(SQDMULL_vi, do_3op_widening,
6017       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6018       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6019 TRANS(SQDMLAL_vi, do_3op_widening,
6020       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6021       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6022 TRANS(SQDMLSL_vi, do_3op_widening,
6023       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6024       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6025 
do_addsub_wide(DisasContext * s,arg_qrrr_e * a,MemOp sign,bool sub)6026 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
6027                            MemOp sign, bool sub)
6028 {
6029     TCGv_i64 tcg_op0, tcg_op1;
6030     MemOp esz = a->esz;
6031     int half = 8 >> esz;
6032     bool top = a->q;
6033     int top_swap = top ? 0 : half - 1;
6034     int top_half = top ? half : 0;
6035 
6036     /* There are no 64x64->128 bit operations. */
6037     if (esz >= MO_64) {
6038         return false;
6039     }
6040     if (!fp_access_check(s)) {
6041         return true;
6042     }
6043     tcg_op0 = tcg_temp_new_i64();
6044     tcg_op1 = tcg_temp_new_i64();
6045 
6046     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6047         int elt = elt_fwd ^ top_swap;
6048 
6049         read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
6050         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6051         if (sub) {
6052             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6053         } else {
6054             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6055         }
6056         write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
6057     }
6058     clear_vec_high(s, 1, a->rd);
6059     return true;
6060 }
6061 
TRANS(SADDW,do_addsub_wide,a,MO_SIGN,false)6062 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
6063 TRANS(UADDW, do_addsub_wide, a, 0, false)
6064 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
6065 TRANS(USUBW, do_addsub_wide, a, 0, true)
6066 
6067 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
6068                                  bool sub, bool round)
6069 {
6070     TCGv_i64 tcg_op0, tcg_op1;
6071     MemOp esz = a->esz;
6072     int half = 8 >> esz;
6073     bool top = a->q;
6074     int ebits = 8 << esz;
6075     uint64_t rbit = 1ull << (ebits - 1);
6076     int top_swap, top_half;
6077 
6078     /* There are no 128x128->64 bit operations. */
6079     if (esz >= MO_64) {
6080         return false;
6081     }
6082     if (!fp_access_check(s)) {
6083         return true;
6084     }
6085     tcg_op0 = tcg_temp_new_i64();
6086     tcg_op1 = tcg_temp_new_i64();
6087 
6088     /*
6089      * For top half inputs, iterate backward; forward for bottom half.
6090      * This means the store to the destination will not occur until
6091      * overlapping input inputs are consumed.
6092      */
6093     top_swap = top ? half - 1 : 0;
6094     top_half = top ? half : 0;
6095 
6096     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6097         int elt = elt_fwd ^ top_swap;
6098 
6099         read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
6100         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6101         if (sub) {
6102             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6103         } else {
6104             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6105         }
6106         if (round) {
6107             tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6108         }
6109         tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6110         write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6111     }
6112     clear_vec_high(s, top, a->rd);
6113     return true;
6114 }
6115 
TRANS(ADDHN,do_addsub_highnarrow,a,false,false)6116 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6117 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6118 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6119 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6120 
6121 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6122 {
6123     if (fp_access_check(s)) {
6124         /* The Q field specifies lo/hi half input for these insns.  */
6125         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6126     }
6127     return true;
6128 }
6129 
TRANS(PMULL_p8,do_pmull,a,gen_helper_neon_pmull_h)6130 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6131 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6132 
6133 /*
6134  * Advanced SIMD scalar/vector x indexed element
6135  */
6136 
6137 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6138 {
6139     switch (a->esz) {
6140     case MO_64:
6141         if (fp_access_check(s)) {
6142             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6143             TCGv_i64 t1 = tcg_temp_new_i64();
6144 
6145             read_vec_element(s, t1, a->rm, a->idx, MO_64);
6146             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6147             write_fp_dreg(s, a->rd, t0);
6148         }
6149         break;
6150     case MO_32:
6151         if (fp_access_check(s)) {
6152             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6153             TCGv_i32 t1 = tcg_temp_new_i32();
6154 
6155             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6156             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6157             write_fp_sreg(s, a->rd, t0);
6158         }
6159         break;
6160     case MO_16:
6161         if (!dc_isar_feature(aa64_fp16, s)) {
6162             return false;
6163         }
6164         if (fp_access_check(s)) {
6165             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6166             TCGv_i32 t1 = tcg_temp_new_i32();
6167 
6168             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6169             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6170             write_fp_sreg(s, a->rd, t0);
6171         }
6172         break;
6173     default:
6174         g_assert_not_reached();
6175     }
6176     return true;
6177 }
6178 
6179 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6180 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6181 
do_fmla_scalar_idx(DisasContext * s,arg_rrx_e * a,bool neg)6182 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6183 {
6184     switch (a->esz) {
6185     case MO_64:
6186         if (fp_access_check(s)) {
6187             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6188             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6189             TCGv_i64 t2 = tcg_temp_new_i64();
6190 
6191             read_vec_element(s, t2, a->rm, a->idx, MO_64);
6192             if (neg) {
6193                 gen_vfp_negd(t1, t1);
6194             }
6195             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6196             write_fp_dreg(s, a->rd, t0);
6197         }
6198         break;
6199     case MO_32:
6200         if (fp_access_check(s)) {
6201             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6202             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6203             TCGv_i32 t2 = tcg_temp_new_i32();
6204 
6205             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6206             if (neg) {
6207                 gen_vfp_negs(t1, t1);
6208             }
6209             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6210             write_fp_sreg(s, a->rd, t0);
6211         }
6212         break;
6213     case MO_16:
6214         if (!dc_isar_feature(aa64_fp16, s)) {
6215             return false;
6216         }
6217         if (fp_access_check(s)) {
6218             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6219             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6220             TCGv_i32 t2 = tcg_temp_new_i32();
6221 
6222             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6223             if (neg) {
6224                 gen_vfp_negh(t1, t1);
6225             }
6226             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6227                                        fpstatus_ptr(FPST_FPCR_F16));
6228             write_fp_sreg(s, a->rd, t0);
6229         }
6230         break;
6231     default:
6232         g_assert_not_reached();
6233     }
6234     return true;
6235 }
6236 
TRANS(FMLA_si,do_fmla_scalar_idx,a,false)6237 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6238 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6239 
6240 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6241                                   const ENVScalar2 *f)
6242 {
6243     if (a->esz < MO_16 || a->esz > MO_32) {
6244         return false;
6245     }
6246     if (fp_access_check(s)) {
6247         TCGv_i32 t0 = tcg_temp_new_i32();
6248         TCGv_i32 t1 = tcg_temp_new_i32();
6249 
6250         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6251         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6252         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6253         write_fp_sreg(s, a->rd, t0);
6254     }
6255     return true;
6256 }
6257 
6258 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6259 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6260 
do_env_scalar3_idx_hs(DisasContext * s,arg_rrx_e * a,const ENVScalar3 * f)6261 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6262                                   const ENVScalar3 *f)
6263 {
6264     if (a->esz < MO_16 || a->esz > MO_32) {
6265         return false;
6266     }
6267     if (fp_access_check(s)) {
6268         TCGv_i32 t0 = tcg_temp_new_i32();
6269         TCGv_i32 t1 = tcg_temp_new_i32();
6270         TCGv_i32 t2 = tcg_temp_new_i32();
6271 
6272         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6273         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6274         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6275         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6276         write_fp_sreg(s, a->rd, t0);
6277     }
6278     return true;
6279 }
6280 
6281 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6282 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6283 
do_scalar_muladd_widening_idx(DisasContext * s,arg_rrx_e * a,NeonGenTwo64OpFn * fn,bool acc)6284 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6285                                           NeonGenTwo64OpFn *fn, bool acc)
6286 {
6287     if (fp_access_check(s)) {
6288         TCGv_i64 t0 = tcg_temp_new_i64();
6289         TCGv_i64 t1 = tcg_temp_new_i64();
6290         TCGv_i64 t2 = tcg_temp_new_i64();
6291         unsigned vsz, dofs;
6292 
6293         if (acc) {
6294             read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6295         }
6296         read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6297         read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6298         fn(t0, t1, t2);
6299 
6300         /* Clear the whole register first, then store scalar. */
6301         vsz = vec_full_reg_size(s);
6302         dofs = vec_full_reg_offset(s, a->rd);
6303         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
6304         write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6305     }
6306     return true;
6307 }
6308 
6309 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6310       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6311 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6312       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6313 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6314       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6315 
do_fp3_vector_idx(DisasContext * s,arg_qrrx_e * a,gen_helper_gvec_3_ptr * const fns[3])6316 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6317                               gen_helper_gvec_3_ptr * const fns[3])
6318 {
6319     MemOp esz = a->esz;
6320 
6321     switch (esz) {
6322     case MO_64:
6323         if (!a->q) {
6324             return false;
6325         }
6326         break;
6327     case MO_32:
6328         break;
6329     case MO_16:
6330         if (!dc_isar_feature(aa64_fp16, s)) {
6331             return false;
6332         }
6333         break;
6334     default:
6335         g_assert_not_reached();
6336     }
6337     if (fp_access_check(s)) {
6338         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6339                           esz == MO_16, a->idx, fns[esz - 1]);
6340     }
6341     return true;
6342 }
6343 
6344 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6345     gen_helper_gvec_fmul_idx_h,
6346     gen_helper_gvec_fmul_idx_s,
6347     gen_helper_gvec_fmul_idx_d,
6348 };
6349 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6350 
6351 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6352     gen_helper_gvec_fmulx_idx_h,
6353     gen_helper_gvec_fmulx_idx_s,
6354     gen_helper_gvec_fmulx_idx_d,
6355 };
TRANS(FMULX_vi,do_fp3_vector_idx,a,f_vector_idx_fmulx)6356 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6357 
6358 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6359 {
6360     static gen_helper_gvec_4_ptr * const fns[3] = {
6361         gen_helper_gvec_fmla_idx_h,
6362         gen_helper_gvec_fmla_idx_s,
6363         gen_helper_gvec_fmla_idx_d,
6364     };
6365     MemOp esz = a->esz;
6366 
6367     switch (esz) {
6368     case MO_64:
6369         if (!a->q) {
6370             return false;
6371         }
6372         break;
6373     case MO_32:
6374         break;
6375     case MO_16:
6376         if (!dc_isar_feature(aa64_fp16, s)) {
6377             return false;
6378         }
6379         break;
6380     default:
6381         g_assert_not_reached();
6382     }
6383     if (fp_access_check(s)) {
6384         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6385                           esz == MO_16, (a->idx << 1) | neg,
6386                           fns[esz - 1]);
6387     }
6388     return true;
6389 }
6390 
TRANS(FMLA_vi,do_fmla_vector_idx,a,false)6391 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6392 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6393 
6394 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6395 {
6396     if (fp_access_check(s)) {
6397         int data = (a->idx << 2) | (is_2 << 1) | is_s;
6398         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6399                            vec_full_reg_offset(s, a->rn),
6400                            vec_full_reg_offset(s, a->rm), tcg_env,
6401                            a->q ? 16 : 8, vec_full_reg_size(s),
6402                            data, gen_helper_gvec_fmlal_idx_a64);
6403     }
6404     return true;
6405 }
6406 
TRANS_FEAT(FMLAL_vi,aa64_fhm,do_fmlal_idx,a,false,false)6407 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6408 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6409 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6410 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6411 
6412 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6413                                gen_helper_gvec_3 * const fns[2])
6414 {
6415     assert(a->esz == MO_16 || a->esz == MO_32);
6416     if (fp_access_check(s)) {
6417         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6418     }
6419     return true;
6420 }
6421 
6422 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6423     gen_helper_gvec_mul_idx_h,
6424     gen_helper_gvec_mul_idx_s,
6425 };
TRANS(MUL_vi,do_int3_vector_idx,a,f_vector_idx_mul)6426 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6427 
6428 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6429 {
6430     static gen_helper_gvec_4 * const fns[2][2] = {
6431         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6432         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6433     };
6434 
6435     assert(a->esz == MO_16 || a->esz == MO_32);
6436     if (fp_access_check(s)) {
6437         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6438                          a->idx, fns[a->esz - 1][sub]);
6439     }
6440     return true;
6441 }
6442 
TRANS(MLA_vi,do_mla_vector_idx,a,false)6443 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6444 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6445 
6446 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6447                                   gen_helper_gvec_4 * const fns[2])
6448 {
6449     assert(a->esz == MO_16 || a->esz == MO_32);
6450     if (fp_access_check(s)) {
6451         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6452                            vec_full_reg_offset(s, a->rn),
6453                            vec_full_reg_offset(s, a->rm),
6454                            offsetof(CPUARMState, vfp.qc),
6455                            a->q ? 16 : 8, vec_full_reg_size(s),
6456                            a->idx, fns[a->esz - 1]);
6457     }
6458     return true;
6459 }
6460 
6461 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6462     gen_helper_neon_sqdmulh_idx_h,
6463     gen_helper_neon_sqdmulh_idx_s,
6464 };
6465 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6466 
6467 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6468     gen_helper_neon_sqrdmulh_idx_h,
6469     gen_helper_neon_sqrdmulh_idx_s,
6470 };
6471 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6472 
6473 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6474     gen_helper_neon_sqrdmlah_idx_h,
6475     gen_helper_neon_sqrdmlah_idx_s,
6476 };
6477 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6478            f_vector_idx_sqrdmlah)
6479 
6480 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6481     gen_helper_neon_sqrdmlsh_idx_h,
6482     gen_helper_neon_sqrdmlsh_idx_s,
6483 };
TRANS_FEAT(SQRDMLSH_vi,aa64_rdm,do_int3_qc_vector_idx,a,f_vector_idx_sqrdmlsh)6484 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6485            f_vector_idx_sqrdmlsh)
6486 
6487 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6488                               gen_helper_gvec_4 *fn)
6489 {
6490     if (fp_access_check(s)) {
6491         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6492     }
6493     return true;
6494 }
6495 
do_dot_vector_idx_env(DisasContext * s,arg_qrrx_e * a,gen_helper_gvec_4_ptr * fn)6496 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a,
6497                                   gen_helper_gvec_4_ptr *fn)
6498 {
6499     if (fp_access_check(s)) {
6500         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6501     }
6502     return true;
6503 }
6504 
TRANS_FEAT(SDOT_vi,aa64_dp,do_dot_vector_idx,a,gen_helper_gvec_sdot_idx_b)6505 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6506 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6507 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6508            gen_helper_gvec_sudot_idx_b)
6509 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6510            gen_helper_gvec_usdot_idx_b)
6511 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a,
6512            gen_helper_gvec_bfdot_idx)
6513 
6514 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6515 {
6516     if (!dc_isar_feature(aa64_bf16, s)) {
6517         return false;
6518     }
6519     if (fp_access_check(s)) {
6520         /* Q bit selects BFMLALB vs BFMLALT. */
6521         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
6522                           (a->idx << 1) | a->q,
6523                           gen_helper_gvec_bfmlal_idx);
6524     }
6525     return true;
6526 }
6527 
trans_FCMLA_vi(DisasContext * s,arg_FCMLA_vi * a)6528 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6529 {
6530     gen_helper_gvec_4_ptr *fn;
6531 
6532     if (!dc_isar_feature(aa64_fcma, s)) {
6533         return false;
6534     }
6535     switch (a->esz) {
6536     case MO_16:
6537         if (!dc_isar_feature(aa64_fp16, s)) {
6538             return false;
6539         }
6540         fn = gen_helper_gvec_fcmlah_idx;
6541         break;
6542     case MO_32:
6543         fn = gen_helper_gvec_fcmlas_idx;
6544         break;
6545     default:
6546         g_assert_not_reached();
6547     }
6548     if (fp_access_check(s)) {
6549         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6550                           a->esz == MO_16, (a->idx << 2) | a->rot, fn);
6551     }
6552     return true;
6553 }
6554 
6555 /*
6556  * Advanced SIMD scalar pairwise
6557  */
6558 
do_fp3_scalar_pair(DisasContext * s,arg_rr_e * a,const FPScalar * f)6559 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6560 {
6561     switch (a->esz) {
6562     case MO_64:
6563         if (fp_access_check(s)) {
6564             TCGv_i64 t0 = tcg_temp_new_i64();
6565             TCGv_i64 t1 = tcg_temp_new_i64();
6566 
6567             read_vec_element(s, t0, a->rn, 0, MO_64);
6568             read_vec_element(s, t1, a->rn, 1, MO_64);
6569             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6570             write_fp_dreg(s, a->rd, t0);
6571         }
6572         break;
6573     case MO_32:
6574         if (fp_access_check(s)) {
6575             TCGv_i32 t0 = tcg_temp_new_i32();
6576             TCGv_i32 t1 = tcg_temp_new_i32();
6577 
6578             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6579             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6580             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6581             write_fp_sreg(s, a->rd, t0);
6582         }
6583         break;
6584     case MO_16:
6585         if (!dc_isar_feature(aa64_fp16, s)) {
6586             return false;
6587         }
6588         if (fp_access_check(s)) {
6589             TCGv_i32 t0 = tcg_temp_new_i32();
6590             TCGv_i32 t1 = tcg_temp_new_i32();
6591 
6592             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6593             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6594             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6595             write_fp_sreg(s, a->rd, t0);
6596         }
6597         break;
6598     default:
6599         g_assert_not_reached();
6600     }
6601     return true;
6602 }
6603 
6604 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6605 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6606 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6607 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6608 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6609 
trans_ADDP_s(DisasContext * s,arg_rr_e * a)6610 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6611 {
6612     if (fp_access_check(s)) {
6613         TCGv_i64 t0 = tcg_temp_new_i64();
6614         TCGv_i64 t1 = tcg_temp_new_i64();
6615 
6616         read_vec_element(s, t0, a->rn, 0, MO_64);
6617         read_vec_element(s, t1, a->rn, 1, MO_64);
6618         tcg_gen_add_i64(t0, t0, t1);
6619         write_fp_dreg(s, a->rd, t0);
6620     }
6621     return true;
6622 }
6623 
6624 /*
6625  * Floating-point conditional select
6626  */
6627 
trans_FCSEL(DisasContext * s,arg_FCSEL * a)6628 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6629 {
6630     TCGv_i64 t_true, t_false;
6631     DisasCompare64 c;
6632 
6633     switch (a->esz) {
6634     case MO_32:
6635     case MO_64:
6636         break;
6637     case MO_16:
6638         if (!dc_isar_feature(aa64_fp16, s)) {
6639             return false;
6640         }
6641         break;
6642     default:
6643         return false;
6644     }
6645 
6646     if (!fp_access_check(s)) {
6647         return true;
6648     }
6649 
6650     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6651     t_true = tcg_temp_new_i64();
6652     t_false = tcg_temp_new_i64();
6653     read_vec_element(s, t_true, a->rn, 0, a->esz);
6654     read_vec_element(s, t_false, a->rm, 0, a->esz);
6655 
6656     a64_test_cc(&c, a->cond);
6657     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6658                         t_true, t_false);
6659 
6660     /*
6661      * Note that sregs & hregs write back zeros to the high bits,
6662      * and we've already done the zero-extension.
6663      */
6664     write_fp_dreg(s, a->rd, t_true);
6665     return true;
6666 }
6667 
6668 /*
6669  * Advanced SIMD Extract
6670  */
6671 
trans_EXT_d(DisasContext * s,arg_EXT_d * a)6672 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a)
6673 {
6674     if (fp_access_check(s)) {
6675         TCGv_i64 lo = read_fp_dreg(s, a->rn);
6676         if (a->imm != 0) {
6677             TCGv_i64 hi = read_fp_dreg(s, a->rm);
6678             tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8);
6679         }
6680         write_fp_dreg(s, a->rd, lo);
6681     }
6682     return true;
6683 }
6684 
trans_EXT_q(DisasContext * s,arg_EXT_q * a)6685 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a)
6686 {
6687     TCGv_i64 lo, hi;
6688     int pos = (a->imm & 7) * 8;
6689     int elt = a->imm >> 3;
6690 
6691     if (!fp_access_check(s)) {
6692         return true;
6693     }
6694 
6695     lo = tcg_temp_new_i64();
6696     hi = tcg_temp_new_i64();
6697 
6698     read_vec_element(s, lo, a->rn, elt, MO_64);
6699     elt++;
6700     read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64);
6701     elt++;
6702 
6703     if (pos != 0) {
6704         TCGv_i64 hh = tcg_temp_new_i64();
6705         tcg_gen_extract2_i64(lo, lo, hi, pos);
6706         read_vec_element(s, hh, a->rm, elt & 1, MO_64);
6707         tcg_gen_extract2_i64(hi, hi, hh, pos);
6708     }
6709 
6710     write_vec_element(s, lo, a->rd, 0, MO_64);
6711     write_vec_element(s, hi, a->rd, 1, MO_64);
6712     clear_vec_high(s, true, a->rd);
6713     return true;
6714 }
6715 
6716 /*
6717  * Floating-point data-processing (3 source)
6718  */
6719 
do_fmadd(DisasContext * s,arg_rrrr_e * a,bool neg_a,bool neg_n)6720 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6721 {
6722     TCGv_ptr fpst;
6723 
6724     /*
6725      * These are fused multiply-add.  Note that doing the negations here
6726      * as separate steps is correct: an input NaN should come out with
6727      * its sign bit flipped if it is a negated-input.
6728      */
6729     switch (a->esz) {
6730     case MO_64:
6731         if (fp_access_check(s)) {
6732             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6733             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6734             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6735 
6736             if (neg_a) {
6737                 gen_vfp_negd(ta, ta);
6738             }
6739             if (neg_n) {
6740                 gen_vfp_negd(tn, tn);
6741             }
6742             fpst = fpstatus_ptr(FPST_FPCR);
6743             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6744             write_fp_dreg(s, a->rd, ta);
6745         }
6746         break;
6747 
6748     case MO_32:
6749         if (fp_access_check(s)) {
6750             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6751             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6752             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6753 
6754             if (neg_a) {
6755                 gen_vfp_negs(ta, ta);
6756             }
6757             if (neg_n) {
6758                 gen_vfp_negs(tn, tn);
6759             }
6760             fpst = fpstatus_ptr(FPST_FPCR);
6761             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6762             write_fp_sreg(s, a->rd, ta);
6763         }
6764         break;
6765 
6766     case MO_16:
6767         if (!dc_isar_feature(aa64_fp16, s)) {
6768             return false;
6769         }
6770         if (fp_access_check(s)) {
6771             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6772             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6773             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6774 
6775             if (neg_a) {
6776                 gen_vfp_negh(ta, ta);
6777             }
6778             if (neg_n) {
6779                 gen_vfp_negh(tn, tn);
6780             }
6781             fpst = fpstatus_ptr(FPST_FPCR_F16);
6782             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6783             write_fp_sreg(s, a->rd, ta);
6784         }
6785         break;
6786 
6787     default:
6788         return false;
6789     }
6790     return true;
6791 }
6792 
TRANS(FMADD,do_fmadd,a,false,false)6793 TRANS(FMADD, do_fmadd, a, false, false)
6794 TRANS(FNMADD, do_fmadd, a, true, true)
6795 TRANS(FMSUB, do_fmadd, a, false, true)
6796 TRANS(FNMSUB, do_fmadd, a, true, false)
6797 
6798 /*
6799  * Advanced SIMD Across Lanes
6800  */
6801 
6802 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen,
6803                              MemOp src_sign, NeonGenTwo64OpFn *fn)
6804 {
6805     TCGv_i64 tcg_res, tcg_elt;
6806     MemOp src_mop = a->esz | src_sign;
6807     int elements = (a->q ? 16 : 8) >> a->esz;
6808 
6809     /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */
6810     if (elements < 4) {
6811         return false;
6812     }
6813     if (!fp_access_check(s)) {
6814         return true;
6815     }
6816 
6817     tcg_res = tcg_temp_new_i64();
6818     tcg_elt = tcg_temp_new_i64();
6819 
6820     read_vec_element(s, tcg_res, a->rn, 0, src_mop);
6821     for (int i = 1; i < elements; i++) {
6822         read_vec_element(s, tcg_elt, a->rn, i, src_mop);
6823         fn(tcg_res, tcg_res, tcg_elt);
6824     }
6825 
6826     tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen);
6827     write_fp_dreg(s, a->rd, tcg_res);
6828     return true;
6829 }
6830 
6831 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64)
TRANS(SADDLV,do_int_reduction,a,true,MO_SIGN,tcg_gen_add_i64)6832 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64)
6833 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64)
6834 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64)
6835 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64)
6836 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64)
6837 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64)
6838 
6839 /*
6840  * do_fp_reduction helper
6841  *
6842  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6843  * important for correct NaN propagation that we do these
6844  * operations in exactly the order specified by the pseudocode.
6845  *
6846  * This is a recursive function.
6847  */
6848 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz,
6849                                 int ebase, int ecount, TCGv_ptr fpst,
6850                                 NeonGenTwoSingleOpFn *fn)
6851 {
6852     if (ecount == 1) {
6853         TCGv_i32 tcg_elem = tcg_temp_new_i32();
6854         read_vec_element_i32(s, tcg_elem, rn, ebase, esz);
6855         return tcg_elem;
6856     } else {
6857         int half = ecount >> 1;
6858         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6859 
6860         tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn);
6861         tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn);
6862         tcg_res = tcg_temp_new_i32();
6863 
6864         fn(tcg_res, tcg_lo, tcg_hi, fpst);
6865         return tcg_res;
6866     }
6867 }
6868 
do_fp_reduction(DisasContext * s,arg_qrr_e * a,NeonGenTwoSingleOpFn * fn)6869 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a,
6870                               NeonGenTwoSingleOpFn *fn)
6871 {
6872     if (fp_access_check(s)) {
6873         MemOp esz = a->esz;
6874         int elts = (a->q ? 16 : 8) >> esz;
6875         TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6876         TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst, fn);
6877         write_fp_sreg(s, a->rd, res);
6878     }
6879     return true;
6880 }
6881 
TRANS_FEAT(FMAXNMV_h,aa64_fp16,do_fp_reduction,a,gen_helper_advsimd_maxnumh)6882 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a, gen_helper_advsimd_maxnumh)
6883 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a, gen_helper_advsimd_minnumh)
6884 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a, gen_helper_advsimd_maxh)
6885 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a, gen_helper_advsimd_minh)
6886 
6887 TRANS(FMAXNMV_s, do_fp_reduction, a, gen_helper_vfp_maxnums)
6888 TRANS(FMINNMV_s, do_fp_reduction, a, gen_helper_vfp_minnums)
6889 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs)
6890 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins)
6891 
6892 /*
6893  * Floating-point Immediate
6894  */
6895 
6896 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a)
6897 {
6898     switch (a->esz) {
6899     case MO_32:
6900     case MO_64:
6901         break;
6902     case MO_16:
6903         if (!dc_isar_feature(aa64_fp16, s)) {
6904             return false;
6905         }
6906         break;
6907     default:
6908         return false;
6909     }
6910     if (fp_access_check(s)) {
6911         uint64_t imm = vfp_expand_imm(a->esz, a->imm);
6912         write_fp_dreg(s, a->rd, tcg_constant_i64(imm));
6913     }
6914     return true;
6915 }
6916 
6917 /*
6918  * Advanced SIMD Modified Immediate
6919  */
6920 
trans_FMOVI_v_h(DisasContext * s,arg_FMOVI_v_h * a)6921 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a)
6922 {
6923     if (!dc_isar_feature(aa64_fp16, s)) {
6924         return false;
6925     }
6926     if (fp_access_check(s)) {
6927         tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd),
6928                              a->q ? 16 : 8, vec_full_reg_size(s),
6929                              vfp_expand_imm(MO_16, a->abcdefgh));
6930     }
6931     return true;
6932 }
6933 
gen_movi(unsigned vece,uint32_t dofs,uint32_t aofs,int64_t c,uint32_t oprsz,uint32_t maxsz)6934 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs,
6935                      int64_t c, uint32_t oprsz, uint32_t maxsz)
6936 {
6937     tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c);
6938 }
6939 
trans_Vimm(DisasContext * s,arg_Vimm * a)6940 static bool trans_Vimm(DisasContext *s, arg_Vimm *a)
6941 {
6942     GVecGen2iFn *fn;
6943 
6944     /* Handle decode of cmode/op here between ORR/BIC/MOVI */
6945     if ((a->cmode & 1) && a->cmode < 12) {
6946         /* For op=1, the imm will be inverted, so BIC becomes AND. */
6947         fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori;
6948     } else {
6949         /* There is one unallocated cmode/op combination in this space */
6950         if (a->cmode == 15 && a->op == 1 && a->q == 0) {
6951             return false;
6952         }
6953         fn = gen_movi;
6954     }
6955 
6956     if (fp_access_check(s)) {
6957         uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op);
6958         gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64);
6959     }
6960     return true;
6961 }
6962 
6963 /*
6964  * Advanced SIMD Shift by Immediate
6965  */
6966 
do_vec_shift_imm(DisasContext * s,arg_qrri_e * a,GVecGen2iFn * fn)6967 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn)
6968 {
6969     if (fp_access_check(s)) {
6970         gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz);
6971     }
6972     return true;
6973 }
6974 
6975 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr)
6976 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr)
6977 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra)
6978 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra)
6979 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr)
6980 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr)
6981 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra)
6982 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra)
6983 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri)
6984 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli)
6985 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli);
TRANS(SQSHL_vi,do_vec_shift_imm,a,gen_neon_sqshli)6986 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli)
6987 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli)
6988 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui)
6989 
6990 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u)
6991 {
6992     TCGv_i64 tcg_rn, tcg_rd;
6993     int esz = a->esz;
6994     int esize;
6995 
6996     if (!fp_access_check(s)) {
6997         return true;
6998     }
6999 
7000     /*
7001      * For the LL variants the store is larger than the load,
7002      * so if rd == rn we would overwrite parts of our input.
7003      * So load everything right now and use shifts in the main loop.
7004      */
7005     tcg_rd = tcg_temp_new_i64();
7006     tcg_rn = tcg_temp_new_i64();
7007     read_vec_element(s, tcg_rn, a->rn, a->q, MO_64);
7008 
7009     esize = 8 << esz;
7010     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7011         if (is_u) {
7012             tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize);
7013         } else {
7014             tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize);
7015         }
7016         tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm);
7017         write_vec_element(s, tcg_rd, a->rd, i, esz + 1);
7018     }
7019     clear_vec_high(s, true, a->rd);
7020     return true;
7021 }
7022 
TRANS(SSHLL_v,do_vec_shift_imm_wide,a,false)7023 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false)
7024 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true)
7025 
7026 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7027 {
7028     assert(shift >= 0 && shift <= 64);
7029     tcg_gen_sari_i64(dst, src, MIN(shift, 63));
7030 }
7031 
gen_ushr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7032 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7033 {
7034     assert(shift >= 0 && shift <= 64);
7035     if (shift == 64) {
7036         tcg_gen_movi_i64(dst, 0);
7037     } else {
7038         tcg_gen_shri_i64(dst, src, shift);
7039     }
7040 }
7041 
gen_ssra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7042 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7043 {
7044     gen_sshr_d(src, src, shift);
7045     tcg_gen_add_i64(dst, dst, src);
7046 }
7047 
gen_usra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7048 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7049 {
7050     gen_ushr_d(src, src, shift);
7051     tcg_gen_add_i64(dst, dst, src);
7052 }
7053 
gen_srshr_bhs(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7054 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7055 {
7056     assert(shift >= 0 && shift <= 32);
7057     if (shift) {
7058         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7059         tcg_gen_add_i64(dst, src, rnd);
7060         tcg_gen_sari_i64(dst, dst, shift);
7061     } else {
7062         tcg_gen_mov_i64(dst, src);
7063     }
7064 }
7065 
gen_urshr_bhs(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7066 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7067 {
7068     assert(shift >= 0 && shift <= 32);
7069     if (shift) {
7070         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7071         tcg_gen_add_i64(dst, src, rnd);
7072         tcg_gen_shri_i64(dst, dst, shift);
7073     } else {
7074         tcg_gen_mov_i64(dst, src);
7075     }
7076 }
7077 
gen_srshr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7078 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7079 {
7080     assert(shift >= 0 && shift <= 64);
7081     if (shift == 0) {
7082         tcg_gen_mov_i64(dst, src);
7083     } else if (shift == 64) {
7084         /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */
7085         tcg_gen_movi_i64(dst, 0);
7086     } else {
7087         TCGv_i64 rnd = tcg_temp_new_i64();
7088         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7089         tcg_gen_sari_i64(dst, src, shift);
7090         tcg_gen_add_i64(dst, dst, rnd);
7091     }
7092 }
7093 
gen_urshr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7094 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7095 {
7096     assert(shift >= 0 && shift <= 64);
7097     if (shift == 0) {
7098         tcg_gen_mov_i64(dst, src);
7099     } else if (shift == 64) {
7100         /* Rounding will propagate bit 63 into bit 64. */
7101         tcg_gen_shri_i64(dst, src, 63);
7102     } else {
7103         TCGv_i64 rnd = tcg_temp_new_i64();
7104         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7105         tcg_gen_shri_i64(dst, src, shift);
7106         tcg_gen_add_i64(dst, dst, rnd);
7107     }
7108 }
7109 
gen_srsra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7110 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7111 {
7112     gen_srshr_d(src, src, shift);
7113     tcg_gen_add_i64(dst, dst, src);
7114 }
7115 
gen_ursra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7116 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7117 {
7118     gen_urshr_d(src, src, shift);
7119     tcg_gen_add_i64(dst, dst, src);
7120 }
7121 
gen_sri_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7122 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7123 {
7124     /* If shift is 64, dst is unchanged. */
7125     if (shift != 64) {
7126         tcg_gen_shri_i64(src, src, shift);
7127         tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift);
7128     }
7129 }
7130 
gen_sli_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7131 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7132 {
7133     tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift);
7134 }
7135 
do_vec_shift_imm_narrow(DisasContext * s,arg_qrri_e * a,WideShiftImmFn * const fns[3],MemOp sign)7136 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a,
7137                                     WideShiftImmFn * const fns[3], MemOp sign)
7138 {
7139     TCGv_i64 tcg_rn, tcg_rd;
7140     int esz = a->esz;
7141     int esize;
7142     WideShiftImmFn *fn;
7143 
7144     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7145 
7146     if (!fp_access_check(s)) {
7147         return true;
7148     }
7149 
7150     tcg_rn = tcg_temp_new_i64();
7151     tcg_rd = tcg_temp_new_i64();
7152     tcg_gen_movi_i64(tcg_rd, 0);
7153 
7154     fn = fns[esz];
7155     esize = 8 << esz;
7156     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7157         read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign);
7158         fn(tcg_rn, tcg_rn, a->imm);
7159         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize);
7160     }
7161 
7162     write_vec_element(s, tcg_rd, a->rd, a->q, MO_64);
7163     clear_vec_high(s, a->q, a->rd);
7164     return true;
7165 }
7166 
gen_sqshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7167 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7168 {
7169     tcg_gen_sari_i64(d, s, i);
7170     tcg_gen_ext16u_i64(d, d);
7171     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7172 }
7173 
gen_sqshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7174 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7175 {
7176     tcg_gen_sari_i64(d, s, i);
7177     tcg_gen_ext32u_i64(d, d);
7178     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7179 }
7180 
gen_sqshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7181 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7182 {
7183     gen_sshr_d(d, s, i);
7184     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7185 }
7186 
gen_uqshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7187 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7188 {
7189     tcg_gen_shri_i64(d, s, i);
7190     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7191 }
7192 
gen_uqshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7193 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7194 {
7195     tcg_gen_shri_i64(d, s, i);
7196     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7197 }
7198 
gen_uqshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7199 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7200 {
7201     gen_ushr_d(d, s, i);
7202     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7203 }
7204 
gen_sqshrun_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7205 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7206 {
7207     tcg_gen_sari_i64(d, s, i);
7208     tcg_gen_ext16u_i64(d, d);
7209     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7210 }
7211 
gen_sqshrun_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7212 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7213 {
7214     tcg_gen_sari_i64(d, s, i);
7215     tcg_gen_ext32u_i64(d, d);
7216     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7217 }
7218 
gen_sqshrun_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7219 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7220 {
7221     gen_sshr_d(d, s, i);
7222     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7223 }
7224 
gen_sqrshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7225 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7226 {
7227     gen_srshr_bhs(d, s, i);
7228     tcg_gen_ext16u_i64(d, d);
7229     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7230 }
7231 
gen_sqrshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7232 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7233 {
7234     gen_srshr_bhs(d, s, i);
7235     tcg_gen_ext32u_i64(d, d);
7236     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7237 }
7238 
gen_sqrshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7239 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7240 {
7241     gen_srshr_d(d, s, i);
7242     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7243 }
7244 
gen_uqrshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7245 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7246 {
7247     gen_urshr_bhs(d, s, i);
7248     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7249 }
7250 
gen_uqrshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7251 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7252 {
7253     gen_urshr_bhs(d, s, i);
7254     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7255 }
7256 
gen_uqrshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7257 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7258 {
7259     gen_urshr_d(d, s, i);
7260     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7261 }
7262 
gen_sqrshrun_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7263 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7264 {
7265     gen_srshr_bhs(d, s, i);
7266     tcg_gen_ext16u_i64(d, d);
7267     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7268 }
7269 
gen_sqrshrun_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7270 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7271 {
7272     gen_srshr_bhs(d, s, i);
7273     tcg_gen_ext32u_i64(d, d);
7274     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7275 }
7276 
gen_sqrshrun_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7277 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7278 {
7279     gen_srshr_d(d, s, i);
7280     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7281 }
7282 
7283 static WideShiftImmFn * const shrn_fns[] = {
7284     tcg_gen_shri_i64,
7285     tcg_gen_shri_i64,
7286     gen_ushr_d,
7287 };
7288 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0)
7289 
7290 static WideShiftImmFn * const rshrn_fns[] = {
7291     gen_urshr_bhs,
7292     gen_urshr_bhs,
7293     gen_urshr_d,
7294 };
7295 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0)
7296 
7297 static WideShiftImmFn * const sqshrn_fns[] = {
7298     gen_sqshrn_b,
7299     gen_sqshrn_h,
7300     gen_sqshrn_s,
7301 };
7302 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN)
7303 
7304 static WideShiftImmFn * const uqshrn_fns[] = {
7305     gen_uqshrn_b,
7306     gen_uqshrn_h,
7307     gen_uqshrn_s,
7308 };
7309 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0)
7310 
7311 static WideShiftImmFn * const sqshrun_fns[] = {
7312     gen_sqshrun_b,
7313     gen_sqshrun_h,
7314     gen_sqshrun_s,
7315 };
7316 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN)
7317 
7318 static WideShiftImmFn * const sqrshrn_fns[] = {
7319     gen_sqrshrn_b,
7320     gen_sqrshrn_h,
7321     gen_sqrshrn_s,
7322 };
7323 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN)
7324 
7325 static WideShiftImmFn * const uqrshrn_fns[] = {
7326     gen_uqrshrn_b,
7327     gen_uqrshrn_h,
7328     gen_uqrshrn_s,
7329 };
7330 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0)
7331 
7332 static WideShiftImmFn * const sqrshrun_fns[] = {
7333     gen_sqrshrun_b,
7334     gen_sqrshrun_h,
7335     gen_sqrshrun_s,
7336 };
TRANS(SQRSHRUN_v,do_vec_shift_imm_narrow,a,sqrshrun_fns,MO_SIGN)7337 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN)
7338 
7339 /*
7340  * Advanced SIMD Scalar Shift by Immediate
7341  */
7342 
7343 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a,
7344                                 WideShiftImmFn *fn, bool accumulate,
7345                                 MemOp sign)
7346 {
7347     if (fp_access_check(s)) {
7348         TCGv_i64 rd = tcg_temp_new_i64();
7349         TCGv_i64 rn = tcg_temp_new_i64();
7350 
7351         read_vec_element(s, rn, a->rn, 0, a->esz | sign);
7352         if (accumulate) {
7353             read_vec_element(s, rd, a->rd, 0, a->esz | sign);
7354         }
7355         fn(rd, rn, a->imm);
7356         write_fp_dreg(s, a->rd, rd);
7357     }
7358     return true;
7359 }
7360 
7361 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0)
7362 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0)
7363 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0)
7364 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0)
7365 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0)
7366 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0)
7367 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0)
7368 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0)
7369 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0)
7370 
7371 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0)
7372 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0)
7373 
trunc_i64_env_imm(TCGv_i64 d,TCGv_i64 s,int64_t i,NeonGenTwoOpEnvFn * fn)7374 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i,
7375                               NeonGenTwoOpEnvFn *fn)
7376 {
7377     TCGv_i32 t = tcg_temp_new_i32();
7378     tcg_gen_extrl_i64_i32(t, s);
7379     fn(t, tcg_env, t, tcg_constant_i32(i));
7380     tcg_gen_extu_i32_i64(d, t);
7381 }
7382 
gen_sqshli_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7383 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7384 {
7385     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8);
7386 }
7387 
gen_sqshli_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7388 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7389 {
7390     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16);
7391 }
7392 
gen_sqshli_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7393 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7394 {
7395     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32);
7396 }
7397 
gen_sqshli_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7398 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7399 {
7400     gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i));
7401 }
7402 
gen_uqshli_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7403 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7404 {
7405     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8);
7406 }
7407 
gen_uqshli_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7408 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7409 {
7410     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16);
7411 }
7412 
gen_uqshli_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7413 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7414 {
7415     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32);
7416 }
7417 
gen_uqshli_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7418 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7419 {
7420     gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i));
7421 }
7422 
gen_sqshlui_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7423 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7424 {
7425     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8);
7426 }
7427 
gen_sqshlui_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7428 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7429 {
7430     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16);
7431 }
7432 
gen_sqshlui_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7433 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7434 {
7435     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32);
7436 }
7437 
gen_sqshlui_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7438 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7439 {
7440     gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i));
7441 }
7442 
7443 static WideShiftImmFn * const f_scalar_sqshli[] = {
7444     gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d
7445 };
7446 
7447 static WideShiftImmFn * const f_scalar_uqshli[] = {
7448     gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d
7449 };
7450 
7451 static WideShiftImmFn * const f_scalar_sqshlui[] = {
7452     gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d
7453 };
7454 
7455 /* Note that the helpers sign-extend their inputs, so don't do it here. */
7456 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0)
7457 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0)
7458 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0)
7459 
do_scalar_shift_imm_narrow(DisasContext * s,arg_rri_e * a,WideShiftImmFn * const fns[3],MemOp sign,bool zext)7460 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a,
7461                                        WideShiftImmFn * const fns[3],
7462                                        MemOp sign, bool zext)
7463 {
7464     MemOp esz = a->esz;
7465 
7466     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7467 
7468     if (fp_access_check(s)) {
7469         TCGv_i64 rd = tcg_temp_new_i64();
7470         TCGv_i64 rn = tcg_temp_new_i64();
7471 
7472         read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign);
7473         fns[esz](rd, rn, a->imm);
7474         if (zext) {
7475             tcg_gen_ext_i64(rd, rd, esz);
7476         }
7477         write_fp_dreg(s, a->rd, rd);
7478     }
7479     return true;
7480 }
7481 
TRANS(SQSHRN_si,do_scalar_shift_imm_narrow,a,sqshrn_fns,MO_SIGN,true)7482 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true)
7483 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true)
7484 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false)
7485 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false)
7486 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false)
7487 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false)
7488 
7489 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
7490  * Note that it is the caller's responsibility to ensure that the
7491  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
7492  * mandated semantics for out of range shifts.
7493  */
7494 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
7495                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
7496 {
7497     switch (shift_type) {
7498     case A64_SHIFT_TYPE_LSL:
7499         tcg_gen_shl_i64(dst, src, shift_amount);
7500         break;
7501     case A64_SHIFT_TYPE_LSR:
7502         tcg_gen_shr_i64(dst, src, shift_amount);
7503         break;
7504     case A64_SHIFT_TYPE_ASR:
7505         if (!sf) {
7506             tcg_gen_ext32s_i64(dst, src);
7507         }
7508         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
7509         break;
7510     case A64_SHIFT_TYPE_ROR:
7511         if (sf) {
7512             tcg_gen_rotr_i64(dst, src, shift_amount);
7513         } else {
7514             TCGv_i32 t0, t1;
7515             t0 = tcg_temp_new_i32();
7516             t1 = tcg_temp_new_i32();
7517             tcg_gen_extrl_i64_i32(t0, src);
7518             tcg_gen_extrl_i64_i32(t1, shift_amount);
7519             tcg_gen_rotr_i32(t0, t0, t1);
7520             tcg_gen_extu_i32_i64(dst, t0);
7521         }
7522         break;
7523     default:
7524         assert(FALSE); /* all shift types should be handled */
7525         break;
7526     }
7527 
7528     if (!sf) { /* zero extend final result */
7529         tcg_gen_ext32u_i64(dst, dst);
7530     }
7531 }
7532 
7533 /* Shift a TCGv src by immediate, put result in dst.
7534  * The shift amount must be in range (this should always be true as the
7535  * relevant instructions will UNDEF on bad shift immediates).
7536  */
shift_reg_imm(TCGv_i64 dst,TCGv_i64 src,int sf,enum a64_shift_type shift_type,unsigned int shift_i)7537 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
7538                           enum a64_shift_type shift_type, unsigned int shift_i)
7539 {
7540     assert(shift_i < (sf ? 64 : 32));
7541 
7542     if (shift_i == 0) {
7543         tcg_gen_mov_i64(dst, src);
7544     } else {
7545         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
7546     }
7547 }
7548 
7549 /* Logical (shifted register)
7550  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
7551  * +----+-----+-----------+-------+---+------+--------+------+------+
7552  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
7553  * +----+-----+-----------+-------+---+------+--------+------+------+
7554  */
disas_logic_reg(DisasContext * s,uint32_t insn)7555 static void disas_logic_reg(DisasContext *s, uint32_t insn)
7556 {
7557     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
7558     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
7559 
7560     sf = extract32(insn, 31, 1);
7561     opc = extract32(insn, 29, 2);
7562     shift_type = extract32(insn, 22, 2);
7563     invert = extract32(insn, 21, 1);
7564     rm = extract32(insn, 16, 5);
7565     shift_amount = extract32(insn, 10, 6);
7566     rn = extract32(insn, 5, 5);
7567     rd = extract32(insn, 0, 5);
7568 
7569     if (!sf && (shift_amount & (1 << 5))) {
7570         unallocated_encoding(s);
7571         return;
7572     }
7573 
7574     tcg_rd = cpu_reg(s, rd);
7575 
7576     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
7577         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
7578          * register-register MOV and MVN, so it is worth special casing.
7579          */
7580         tcg_rm = cpu_reg(s, rm);
7581         if (invert) {
7582             tcg_gen_not_i64(tcg_rd, tcg_rm);
7583             if (!sf) {
7584                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7585             }
7586         } else {
7587             if (sf) {
7588                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
7589             } else {
7590                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
7591             }
7592         }
7593         return;
7594     }
7595 
7596     tcg_rm = read_cpu_reg(s, rm, sf);
7597 
7598     if (shift_amount) {
7599         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
7600     }
7601 
7602     tcg_rn = cpu_reg(s, rn);
7603 
7604     switch (opc | (invert << 2)) {
7605     case 0: /* AND */
7606     case 3: /* ANDS */
7607         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7608         break;
7609     case 1: /* ORR */
7610         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
7611         break;
7612     case 2: /* EOR */
7613         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
7614         break;
7615     case 4: /* BIC */
7616     case 7: /* BICS */
7617         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
7618         break;
7619     case 5: /* ORN */
7620         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
7621         break;
7622     case 6: /* EON */
7623         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
7624         break;
7625     default:
7626         assert(FALSE);
7627         break;
7628     }
7629 
7630     if (!sf) {
7631         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7632     }
7633 
7634     if (opc == 3) {
7635         gen_logic_CC(sf, tcg_rd);
7636     }
7637 }
7638 
7639 /*
7640  * Add/subtract (extended register)
7641  *
7642  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
7643  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
7644  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
7645  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
7646  *
7647  *  sf: 0 -> 32bit, 1 -> 64bit
7648  *  op: 0 -> add  , 1 -> sub
7649  *   S: 1 -> set flags
7650  * opt: 00
7651  * option: extension type (see DecodeRegExtend)
7652  * imm3: optional shift to Rm
7653  *
7654  * Rd = Rn + LSL(extend(Rm), amount)
7655  */
disas_add_sub_ext_reg(DisasContext * s,uint32_t insn)7656 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
7657 {
7658     int rd = extract32(insn, 0, 5);
7659     int rn = extract32(insn, 5, 5);
7660     int imm3 = extract32(insn, 10, 3);
7661     int option = extract32(insn, 13, 3);
7662     int rm = extract32(insn, 16, 5);
7663     int opt = extract32(insn, 22, 2);
7664     bool setflags = extract32(insn, 29, 1);
7665     bool sub_op = extract32(insn, 30, 1);
7666     bool sf = extract32(insn, 31, 1);
7667 
7668     TCGv_i64 tcg_rm, tcg_rn; /* temps */
7669     TCGv_i64 tcg_rd;
7670     TCGv_i64 tcg_result;
7671 
7672     if (imm3 > 4 || opt != 0) {
7673         unallocated_encoding(s);
7674         return;
7675     }
7676 
7677     /* non-flag setting ops may use SP */
7678     if (!setflags) {
7679         tcg_rd = cpu_reg_sp(s, rd);
7680     } else {
7681         tcg_rd = cpu_reg(s, rd);
7682     }
7683     tcg_rn = read_cpu_reg_sp(s, rn, sf);
7684 
7685     tcg_rm = read_cpu_reg(s, rm, sf);
7686     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
7687 
7688     tcg_result = tcg_temp_new_i64();
7689 
7690     if (!setflags) {
7691         if (sub_op) {
7692             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
7693         } else {
7694             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
7695         }
7696     } else {
7697         if (sub_op) {
7698             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
7699         } else {
7700             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
7701         }
7702     }
7703 
7704     if (sf) {
7705         tcg_gen_mov_i64(tcg_rd, tcg_result);
7706     } else {
7707         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
7708     }
7709 }
7710 
7711 /*
7712  * Add/subtract (shifted register)
7713  *
7714  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
7715  * +--+--+--+-----------+-----+--+-------+---------+------+------+
7716  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
7717  * +--+--+--+-----------+-----+--+-------+---------+------+------+
7718  *
7719  *    sf: 0 -> 32bit, 1 -> 64bit
7720  *    op: 0 -> add  , 1 -> sub
7721  *     S: 1 -> set flags
7722  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
7723  *  imm6: Shift amount to apply to Rm before the add/sub
7724  */
disas_add_sub_reg(DisasContext * s,uint32_t insn)7725 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
7726 {
7727     int rd = extract32(insn, 0, 5);
7728     int rn = extract32(insn, 5, 5);
7729     int imm6 = extract32(insn, 10, 6);
7730     int rm = extract32(insn, 16, 5);
7731     int shift_type = extract32(insn, 22, 2);
7732     bool setflags = extract32(insn, 29, 1);
7733     bool sub_op = extract32(insn, 30, 1);
7734     bool sf = extract32(insn, 31, 1);
7735 
7736     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7737     TCGv_i64 tcg_rn, tcg_rm;
7738     TCGv_i64 tcg_result;
7739 
7740     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
7741         unallocated_encoding(s);
7742         return;
7743     }
7744 
7745     tcg_rn = read_cpu_reg(s, rn, sf);
7746     tcg_rm = read_cpu_reg(s, rm, sf);
7747 
7748     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
7749 
7750     tcg_result = tcg_temp_new_i64();
7751 
7752     if (!setflags) {
7753         if (sub_op) {
7754             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
7755         } else {
7756             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
7757         }
7758     } else {
7759         if (sub_op) {
7760             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
7761         } else {
7762             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
7763         }
7764     }
7765 
7766     if (sf) {
7767         tcg_gen_mov_i64(tcg_rd, tcg_result);
7768     } else {
7769         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
7770     }
7771 }
7772 
7773 /* Data-processing (3 source)
7774  *
7775  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
7776  *  +--+------+-----------+------+------+----+------+------+------+
7777  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7778  *  +--+------+-----------+------+------+----+------+------+------+
7779  */
disas_data_proc_3src(DisasContext * s,uint32_t insn)7780 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
7781 {
7782     int rd = extract32(insn, 0, 5);
7783     int rn = extract32(insn, 5, 5);
7784     int ra = extract32(insn, 10, 5);
7785     int rm = extract32(insn, 16, 5);
7786     int op_id = (extract32(insn, 29, 3) << 4) |
7787         (extract32(insn, 21, 3) << 1) |
7788         extract32(insn, 15, 1);
7789     bool sf = extract32(insn, 31, 1);
7790     bool is_sub = extract32(op_id, 0, 1);
7791     bool is_high = extract32(op_id, 2, 1);
7792     bool is_signed = false;
7793     TCGv_i64 tcg_op1;
7794     TCGv_i64 tcg_op2;
7795     TCGv_i64 tcg_tmp;
7796 
7797     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
7798     switch (op_id) {
7799     case 0x42: /* SMADDL */
7800     case 0x43: /* SMSUBL */
7801     case 0x44: /* SMULH */
7802         is_signed = true;
7803         break;
7804     case 0x0: /* MADD (32bit) */
7805     case 0x1: /* MSUB (32bit) */
7806     case 0x40: /* MADD (64bit) */
7807     case 0x41: /* MSUB (64bit) */
7808     case 0x4a: /* UMADDL */
7809     case 0x4b: /* UMSUBL */
7810     case 0x4c: /* UMULH */
7811         break;
7812     default:
7813         unallocated_encoding(s);
7814         return;
7815     }
7816 
7817     if (is_high) {
7818         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
7819         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7820         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7821         TCGv_i64 tcg_rm = cpu_reg(s, rm);
7822 
7823         if (is_signed) {
7824             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
7825         } else {
7826             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
7827         }
7828         return;
7829     }
7830 
7831     tcg_op1 = tcg_temp_new_i64();
7832     tcg_op2 = tcg_temp_new_i64();
7833     tcg_tmp = tcg_temp_new_i64();
7834 
7835     if (op_id < 0x42) {
7836         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
7837         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
7838     } else {
7839         if (is_signed) {
7840             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
7841             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
7842         } else {
7843             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
7844             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
7845         }
7846     }
7847 
7848     if (ra == 31 && !is_sub) {
7849         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
7850         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
7851     } else {
7852         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
7853         if (is_sub) {
7854             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
7855         } else {
7856             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
7857         }
7858     }
7859 
7860     if (!sf) {
7861         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
7862     }
7863 }
7864 
7865 /* Add/subtract (with carry)
7866  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
7867  * +--+--+--+------------------------+------+-------------+------+-----+
7868  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
7869  * +--+--+--+------------------------+------+-------------+------+-----+
7870  */
7871 
disas_adc_sbc(DisasContext * s,uint32_t insn)7872 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
7873 {
7874     unsigned int sf, op, setflags, rm, rn, rd;
7875     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
7876 
7877     sf = extract32(insn, 31, 1);
7878     op = extract32(insn, 30, 1);
7879     setflags = extract32(insn, 29, 1);
7880     rm = extract32(insn, 16, 5);
7881     rn = extract32(insn, 5, 5);
7882     rd = extract32(insn, 0, 5);
7883 
7884     tcg_rd = cpu_reg(s, rd);
7885     tcg_rn = cpu_reg(s, rn);
7886 
7887     if (op) {
7888         tcg_y = tcg_temp_new_i64();
7889         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
7890     } else {
7891         tcg_y = cpu_reg(s, rm);
7892     }
7893 
7894     if (setflags) {
7895         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
7896     } else {
7897         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
7898     }
7899 }
7900 
7901 /*
7902  * Rotate right into flags
7903  *  31 30 29                21       15          10      5  4      0
7904  * +--+--+--+-----------------+--------+-----------+------+--+------+
7905  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
7906  * +--+--+--+-----------------+--------+-----------+------+--+------+
7907  */
disas_rotate_right_into_flags(DisasContext * s,uint32_t insn)7908 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
7909 {
7910     int mask = extract32(insn, 0, 4);
7911     int o2 = extract32(insn, 4, 1);
7912     int rn = extract32(insn, 5, 5);
7913     int imm6 = extract32(insn, 15, 6);
7914     int sf_op_s = extract32(insn, 29, 3);
7915     TCGv_i64 tcg_rn;
7916     TCGv_i32 nzcv;
7917 
7918     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
7919         unallocated_encoding(s);
7920         return;
7921     }
7922 
7923     tcg_rn = read_cpu_reg(s, rn, 1);
7924     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
7925 
7926     nzcv = tcg_temp_new_i32();
7927     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
7928 
7929     if (mask & 8) { /* N */
7930         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
7931     }
7932     if (mask & 4) { /* Z */
7933         tcg_gen_not_i32(cpu_ZF, nzcv);
7934         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
7935     }
7936     if (mask & 2) { /* C */
7937         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
7938     }
7939     if (mask & 1) { /* V */
7940         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
7941     }
7942 }
7943 
7944 /*
7945  * Evaluate into flags
7946  *  31 30 29                21        15   14        10      5  4      0
7947  * +--+--+--+-----------------+---------+----+---------+------+--+------+
7948  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
7949  * +--+--+--+-----------------+---------+----+---------+------+--+------+
7950  */
disas_evaluate_into_flags(DisasContext * s,uint32_t insn)7951 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
7952 {
7953     int o3_mask = extract32(insn, 0, 5);
7954     int rn = extract32(insn, 5, 5);
7955     int o2 = extract32(insn, 15, 6);
7956     int sz = extract32(insn, 14, 1);
7957     int sf_op_s = extract32(insn, 29, 3);
7958     TCGv_i32 tmp;
7959     int shift;
7960 
7961     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
7962         !dc_isar_feature(aa64_condm_4, s)) {
7963         unallocated_encoding(s);
7964         return;
7965     }
7966     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
7967 
7968     tmp = tcg_temp_new_i32();
7969     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
7970     tcg_gen_shli_i32(cpu_NF, tmp, shift);
7971     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
7972     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
7973     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
7974 }
7975 
7976 /* Conditional compare (immediate / register)
7977  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
7978  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7979  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
7980  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7981  *        [1]                             y                [0]       [0]
7982  */
disas_cc(DisasContext * s,uint32_t insn)7983 static void disas_cc(DisasContext *s, uint32_t insn)
7984 {
7985     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
7986     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
7987     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
7988     DisasCompare c;
7989 
7990     if (!extract32(insn, 29, 1)) {
7991         unallocated_encoding(s);
7992         return;
7993     }
7994     if (insn & (1 << 10 | 1 << 4)) {
7995         unallocated_encoding(s);
7996         return;
7997     }
7998     sf = extract32(insn, 31, 1);
7999     op = extract32(insn, 30, 1);
8000     is_imm = extract32(insn, 11, 1);
8001     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
8002     cond = extract32(insn, 12, 4);
8003     rn = extract32(insn, 5, 5);
8004     nzcv = extract32(insn, 0, 4);
8005 
8006     /* Set T0 = !COND.  */
8007     tcg_t0 = tcg_temp_new_i32();
8008     arm_test_cc(&c, cond);
8009     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
8010 
8011     /* Load the arguments for the new comparison.  */
8012     if (is_imm) {
8013         tcg_y = tcg_temp_new_i64();
8014         tcg_gen_movi_i64(tcg_y, y);
8015     } else {
8016         tcg_y = cpu_reg(s, y);
8017     }
8018     tcg_rn = cpu_reg(s, rn);
8019 
8020     /* Set the flags for the new comparison.  */
8021     tcg_tmp = tcg_temp_new_i64();
8022     if (op) {
8023         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
8024     } else {
8025         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
8026     }
8027 
8028     /* If COND was false, force the flags to #nzcv.  Compute two masks
8029      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
8030      * For tcg hosts that support ANDC, we can make do with just T1.
8031      * In either case, allow the tcg optimizer to delete any unused mask.
8032      */
8033     tcg_t1 = tcg_temp_new_i32();
8034     tcg_t2 = tcg_temp_new_i32();
8035     tcg_gen_neg_i32(tcg_t1, tcg_t0);
8036     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
8037 
8038     if (nzcv & 8) { /* N */
8039         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
8040     } else {
8041         if (TCG_TARGET_HAS_andc_i32) {
8042             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
8043         } else {
8044             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
8045         }
8046     }
8047     if (nzcv & 4) { /* Z */
8048         if (TCG_TARGET_HAS_andc_i32) {
8049             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
8050         } else {
8051             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
8052         }
8053     } else {
8054         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
8055     }
8056     if (nzcv & 2) { /* C */
8057         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
8058     } else {
8059         if (TCG_TARGET_HAS_andc_i32) {
8060             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
8061         } else {
8062             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
8063         }
8064     }
8065     if (nzcv & 1) { /* V */
8066         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
8067     } else {
8068         if (TCG_TARGET_HAS_andc_i32) {
8069             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
8070         } else {
8071             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
8072         }
8073     }
8074 }
8075 
8076 /* Conditional select
8077  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
8078  * +----+----+---+-----------------+------+------+-----+------+------+
8079  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
8080  * +----+----+---+-----------------+------+------+-----+------+------+
8081  */
disas_cond_select(DisasContext * s,uint32_t insn)8082 static void disas_cond_select(DisasContext *s, uint32_t insn)
8083 {
8084     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
8085     TCGv_i64 tcg_rd, zero;
8086     DisasCompare64 c;
8087 
8088     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
8089         /* S == 1 or op2<1> == 1 */
8090         unallocated_encoding(s);
8091         return;
8092     }
8093     sf = extract32(insn, 31, 1);
8094     else_inv = extract32(insn, 30, 1);
8095     rm = extract32(insn, 16, 5);
8096     cond = extract32(insn, 12, 4);
8097     else_inc = extract32(insn, 10, 1);
8098     rn = extract32(insn, 5, 5);
8099     rd = extract32(insn, 0, 5);
8100 
8101     tcg_rd = cpu_reg(s, rd);
8102 
8103     a64_test_cc(&c, cond);
8104     zero = tcg_constant_i64(0);
8105 
8106     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
8107         /* CSET & CSETM.  */
8108         if (else_inv) {
8109             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
8110                                    tcg_rd, c.value, zero);
8111         } else {
8112             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
8113                                 tcg_rd, c.value, zero);
8114         }
8115     } else {
8116         TCGv_i64 t_true = cpu_reg(s, rn);
8117         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
8118         if (else_inv && else_inc) {
8119             tcg_gen_neg_i64(t_false, t_false);
8120         } else if (else_inv) {
8121             tcg_gen_not_i64(t_false, t_false);
8122         } else if (else_inc) {
8123             tcg_gen_addi_i64(t_false, t_false, 1);
8124         }
8125         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
8126     }
8127 
8128     if (!sf) {
8129         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8130     }
8131 }
8132 
handle_clz(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8133 static void handle_clz(DisasContext *s, unsigned int sf,
8134                        unsigned int rn, unsigned int rd)
8135 {
8136     TCGv_i64 tcg_rd, tcg_rn;
8137     tcg_rd = cpu_reg(s, rd);
8138     tcg_rn = cpu_reg(s, rn);
8139 
8140     if (sf) {
8141         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8142     } else {
8143         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
8144         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
8145         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
8146         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
8147     }
8148 }
8149 
handle_cls(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8150 static void handle_cls(DisasContext *s, unsigned int sf,
8151                        unsigned int rn, unsigned int rd)
8152 {
8153     TCGv_i64 tcg_rd, tcg_rn;
8154     tcg_rd = cpu_reg(s, rd);
8155     tcg_rn = cpu_reg(s, rn);
8156 
8157     if (sf) {
8158         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8159     } else {
8160         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
8161         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
8162         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
8163         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
8164     }
8165 }
8166 
handle_rbit(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8167 static void handle_rbit(DisasContext *s, unsigned int sf,
8168                         unsigned int rn, unsigned int rd)
8169 {
8170     TCGv_i64 tcg_rd, tcg_rn;
8171     tcg_rd = cpu_reg(s, rd);
8172     tcg_rn = cpu_reg(s, rn);
8173 
8174     if (sf) {
8175         gen_helper_rbit64(tcg_rd, tcg_rn);
8176     } else {
8177         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
8178         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
8179         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
8180         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
8181     }
8182 }
8183 
8184 /* REV with sf==1, opcode==3 ("REV64") */
handle_rev64(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8185 static void handle_rev64(DisasContext *s, unsigned int sf,
8186                          unsigned int rn, unsigned int rd)
8187 {
8188     if (!sf) {
8189         unallocated_encoding(s);
8190         return;
8191     }
8192     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
8193 }
8194 
8195 /* REV with sf==0, opcode==2
8196  * REV32 (sf==1, opcode==2)
8197  */
handle_rev32(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8198 static void handle_rev32(DisasContext *s, unsigned int sf,
8199                          unsigned int rn, unsigned int rd)
8200 {
8201     TCGv_i64 tcg_rd = cpu_reg(s, rd);
8202     TCGv_i64 tcg_rn = cpu_reg(s, rn);
8203 
8204     if (sf) {
8205         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
8206         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
8207     } else {
8208         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
8209     }
8210 }
8211 
8212 /* REV16 (opcode==1) */
handle_rev16(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)8213 static void handle_rev16(DisasContext *s, unsigned int sf,
8214                          unsigned int rn, unsigned int rd)
8215 {
8216     TCGv_i64 tcg_rd = cpu_reg(s, rd);
8217     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8218     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
8219     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
8220 
8221     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
8222     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
8223     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
8224     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
8225     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
8226 }
8227 
8228 /* Data-processing (1 source)
8229  *   31  30  29  28             21 20     16 15    10 9    5 4    0
8230  * +----+---+---+-----------------+---------+--------+------+------+
8231  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
8232  * +----+---+---+-----------------+---------+--------+------+------+
8233  */
disas_data_proc_1src(DisasContext * s,uint32_t insn)8234 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
8235 {
8236     unsigned int sf, opcode, opcode2, rn, rd;
8237     TCGv_i64 tcg_rd;
8238 
8239     if (extract32(insn, 29, 1)) {
8240         unallocated_encoding(s);
8241         return;
8242     }
8243 
8244     sf = extract32(insn, 31, 1);
8245     opcode = extract32(insn, 10, 6);
8246     opcode2 = extract32(insn, 16, 5);
8247     rn = extract32(insn, 5, 5);
8248     rd = extract32(insn, 0, 5);
8249 
8250 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
8251 
8252     switch (MAP(sf, opcode2, opcode)) {
8253     case MAP(0, 0x00, 0x00): /* RBIT */
8254     case MAP(1, 0x00, 0x00):
8255         handle_rbit(s, sf, rn, rd);
8256         break;
8257     case MAP(0, 0x00, 0x01): /* REV16 */
8258     case MAP(1, 0x00, 0x01):
8259         handle_rev16(s, sf, rn, rd);
8260         break;
8261     case MAP(0, 0x00, 0x02): /* REV/REV32 */
8262     case MAP(1, 0x00, 0x02):
8263         handle_rev32(s, sf, rn, rd);
8264         break;
8265     case MAP(1, 0x00, 0x03): /* REV64 */
8266         handle_rev64(s, sf, rn, rd);
8267         break;
8268     case MAP(0, 0x00, 0x04): /* CLZ */
8269     case MAP(1, 0x00, 0x04):
8270         handle_clz(s, sf, rn, rd);
8271         break;
8272     case MAP(0, 0x00, 0x05): /* CLS */
8273     case MAP(1, 0x00, 0x05):
8274         handle_cls(s, sf, rn, rd);
8275         break;
8276     case MAP(1, 0x01, 0x00): /* PACIA */
8277         if (s->pauth_active) {
8278             tcg_rd = cpu_reg(s, rd);
8279             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8280         } else if (!dc_isar_feature(aa64_pauth, s)) {
8281             goto do_unallocated;
8282         }
8283         break;
8284     case MAP(1, 0x01, 0x01): /* PACIB */
8285         if (s->pauth_active) {
8286             tcg_rd = cpu_reg(s, rd);
8287             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8288         } else if (!dc_isar_feature(aa64_pauth, s)) {
8289             goto do_unallocated;
8290         }
8291         break;
8292     case MAP(1, 0x01, 0x02): /* PACDA */
8293         if (s->pauth_active) {
8294             tcg_rd = cpu_reg(s, rd);
8295             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8296         } else if (!dc_isar_feature(aa64_pauth, s)) {
8297             goto do_unallocated;
8298         }
8299         break;
8300     case MAP(1, 0x01, 0x03): /* PACDB */
8301         if (s->pauth_active) {
8302             tcg_rd = cpu_reg(s, rd);
8303             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8304         } else if (!dc_isar_feature(aa64_pauth, s)) {
8305             goto do_unallocated;
8306         }
8307         break;
8308     case MAP(1, 0x01, 0x04): /* AUTIA */
8309         if (s->pauth_active) {
8310             tcg_rd = cpu_reg(s, rd);
8311             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8312         } else if (!dc_isar_feature(aa64_pauth, s)) {
8313             goto do_unallocated;
8314         }
8315         break;
8316     case MAP(1, 0x01, 0x05): /* AUTIB */
8317         if (s->pauth_active) {
8318             tcg_rd = cpu_reg(s, rd);
8319             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8320         } else if (!dc_isar_feature(aa64_pauth, s)) {
8321             goto do_unallocated;
8322         }
8323         break;
8324     case MAP(1, 0x01, 0x06): /* AUTDA */
8325         if (s->pauth_active) {
8326             tcg_rd = cpu_reg(s, rd);
8327             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8328         } else if (!dc_isar_feature(aa64_pauth, s)) {
8329             goto do_unallocated;
8330         }
8331         break;
8332     case MAP(1, 0x01, 0x07): /* AUTDB */
8333         if (s->pauth_active) {
8334             tcg_rd = cpu_reg(s, rd);
8335             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
8336         } else if (!dc_isar_feature(aa64_pauth, s)) {
8337             goto do_unallocated;
8338         }
8339         break;
8340     case MAP(1, 0x01, 0x08): /* PACIZA */
8341         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8342             goto do_unallocated;
8343         } else if (s->pauth_active) {
8344             tcg_rd = cpu_reg(s, rd);
8345             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8346         }
8347         break;
8348     case MAP(1, 0x01, 0x09): /* PACIZB */
8349         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8350             goto do_unallocated;
8351         } else if (s->pauth_active) {
8352             tcg_rd = cpu_reg(s, rd);
8353             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8354         }
8355         break;
8356     case MAP(1, 0x01, 0x0a): /* PACDZA */
8357         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8358             goto do_unallocated;
8359         } else if (s->pauth_active) {
8360             tcg_rd = cpu_reg(s, rd);
8361             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8362         }
8363         break;
8364     case MAP(1, 0x01, 0x0b): /* PACDZB */
8365         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8366             goto do_unallocated;
8367         } else if (s->pauth_active) {
8368             tcg_rd = cpu_reg(s, rd);
8369             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8370         }
8371         break;
8372     case MAP(1, 0x01, 0x0c): /* AUTIZA */
8373         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8374             goto do_unallocated;
8375         } else if (s->pauth_active) {
8376             tcg_rd = cpu_reg(s, rd);
8377             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8378         }
8379         break;
8380     case MAP(1, 0x01, 0x0d): /* AUTIZB */
8381         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8382             goto do_unallocated;
8383         } else if (s->pauth_active) {
8384             tcg_rd = cpu_reg(s, rd);
8385             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8386         }
8387         break;
8388     case MAP(1, 0x01, 0x0e): /* AUTDZA */
8389         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8390             goto do_unallocated;
8391         } else if (s->pauth_active) {
8392             tcg_rd = cpu_reg(s, rd);
8393             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8394         }
8395         break;
8396     case MAP(1, 0x01, 0x0f): /* AUTDZB */
8397         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8398             goto do_unallocated;
8399         } else if (s->pauth_active) {
8400             tcg_rd = cpu_reg(s, rd);
8401             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
8402         }
8403         break;
8404     case MAP(1, 0x01, 0x10): /* XPACI */
8405         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8406             goto do_unallocated;
8407         } else if (s->pauth_active) {
8408             tcg_rd = cpu_reg(s, rd);
8409             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
8410         }
8411         break;
8412     case MAP(1, 0x01, 0x11): /* XPACD */
8413         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
8414             goto do_unallocated;
8415         } else if (s->pauth_active) {
8416             tcg_rd = cpu_reg(s, rd);
8417             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
8418         }
8419         break;
8420     default:
8421     do_unallocated:
8422         unallocated_encoding(s);
8423         break;
8424     }
8425 
8426 #undef MAP
8427 }
8428 
handle_div(DisasContext * s,bool is_signed,unsigned int sf,unsigned int rm,unsigned int rn,unsigned int rd)8429 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
8430                        unsigned int rm, unsigned int rn, unsigned int rd)
8431 {
8432     TCGv_i64 tcg_n, tcg_m, tcg_rd;
8433     tcg_rd = cpu_reg(s, rd);
8434 
8435     if (!sf && is_signed) {
8436         tcg_n = tcg_temp_new_i64();
8437         tcg_m = tcg_temp_new_i64();
8438         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
8439         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
8440     } else {
8441         tcg_n = read_cpu_reg(s, rn, sf);
8442         tcg_m = read_cpu_reg(s, rm, sf);
8443     }
8444 
8445     if (is_signed) {
8446         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
8447     } else {
8448         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
8449     }
8450 
8451     if (!sf) { /* zero extend final result */
8452         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8453     }
8454 }
8455 
8456 /* LSLV, LSRV, ASRV, RORV */
handle_shift_reg(DisasContext * s,enum a64_shift_type shift_type,unsigned int sf,unsigned int rm,unsigned int rn,unsigned int rd)8457 static void handle_shift_reg(DisasContext *s,
8458                              enum a64_shift_type shift_type, unsigned int sf,
8459                              unsigned int rm, unsigned int rn, unsigned int rd)
8460 {
8461     TCGv_i64 tcg_shift = tcg_temp_new_i64();
8462     TCGv_i64 tcg_rd = cpu_reg(s, rd);
8463     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
8464 
8465     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
8466     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
8467 }
8468 
8469 /* CRC32[BHWX], CRC32C[BHWX] */
handle_crc32(DisasContext * s,unsigned int sf,unsigned int sz,bool crc32c,unsigned int rm,unsigned int rn,unsigned int rd)8470 static void handle_crc32(DisasContext *s,
8471                          unsigned int sf, unsigned int sz, bool crc32c,
8472                          unsigned int rm, unsigned int rn, unsigned int rd)
8473 {
8474     TCGv_i64 tcg_acc, tcg_val;
8475     TCGv_i32 tcg_bytes;
8476 
8477     if (!dc_isar_feature(aa64_crc32, s)
8478         || (sf == 1 && sz != 3)
8479         || (sf == 0 && sz == 3)) {
8480         unallocated_encoding(s);
8481         return;
8482     }
8483 
8484     if (sz == 3) {
8485         tcg_val = cpu_reg(s, rm);
8486     } else {
8487         uint64_t mask;
8488         switch (sz) {
8489         case 0:
8490             mask = 0xFF;
8491             break;
8492         case 1:
8493             mask = 0xFFFF;
8494             break;
8495         case 2:
8496             mask = 0xFFFFFFFF;
8497             break;
8498         default:
8499             g_assert_not_reached();
8500         }
8501         tcg_val = tcg_temp_new_i64();
8502         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
8503     }
8504 
8505     tcg_acc = cpu_reg(s, rn);
8506     tcg_bytes = tcg_constant_i32(1 << sz);
8507 
8508     if (crc32c) {
8509         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
8510     } else {
8511         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
8512     }
8513 }
8514 
8515 /* Data-processing (2 source)
8516  *   31   30  29 28             21 20  16 15    10 9    5 4    0
8517  * +----+---+---+-----------------+------+--------+------+------+
8518  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
8519  * +----+---+---+-----------------+------+--------+------+------+
8520  */
disas_data_proc_2src(DisasContext * s,uint32_t insn)8521 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
8522 {
8523     unsigned int sf, rm, opcode, rn, rd, setflag;
8524     sf = extract32(insn, 31, 1);
8525     setflag = extract32(insn, 29, 1);
8526     rm = extract32(insn, 16, 5);
8527     opcode = extract32(insn, 10, 6);
8528     rn = extract32(insn, 5, 5);
8529     rd = extract32(insn, 0, 5);
8530 
8531     if (setflag && opcode != 0) {
8532         unallocated_encoding(s);
8533         return;
8534     }
8535 
8536     switch (opcode) {
8537     case 0: /* SUBP(S) */
8538         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
8539             goto do_unallocated;
8540         } else {
8541             TCGv_i64 tcg_n, tcg_m, tcg_d;
8542 
8543             tcg_n = read_cpu_reg_sp(s, rn, true);
8544             tcg_m = read_cpu_reg_sp(s, rm, true);
8545             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
8546             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
8547             tcg_d = cpu_reg(s, rd);
8548 
8549             if (setflag) {
8550                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
8551             } else {
8552                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
8553             }
8554         }
8555         break;
8556     case 2: /* UDIV */
8557         handle_div(s, false, sf, rm, rn, rd);
8558         break;
8559     case 3: /* SDIV */
8560         handle_div(s, true, sf, rm, rn, rd);
8561         break;
8562     case 4: /* IRG */
8563         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
8564             goto do_unallocated;
8565         }
8566         if (s->ata[0]) {
8567             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
8568                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
8569         } else {
8570             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
8571                                              cpu_reg_sp(s, rn));
8572         }
8573         break;
8574     case 5: /* GMI */
8575         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
8576             goto do_unallocated;
8577         } else {
8578             TCGv_i64 t = tcg_temp_new_i64();
8579 
8580             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
8581             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
8582             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
8583         }
8584         break;
8585     case 8: /* LSLV */
8586         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
8587         break;
8588     case 9: /* LSRV */
8589         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
8590         break;
8591     case 10: /* ASRV */
8592         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
8593         break;
8594     case 11: /* RORV */
8595         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
8596         break;
8597     case 12: /* PACGA */
8598         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
8599             goto do_unallocated;
8600         }
8601         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
8602                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
8603         break;
8604     case 16:
8605     case 17:
8606     case 18:
8607     case 19:
8608     case 20:
8609     case 21:
8610     case 22:
8611     case 23: /* CRC32 */
8612     {
8613         int sz = extract32(opcode, 0, 2);
8614         bool crc32c = extract32(opcode, 2, 1);
8615         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
8616         break;
8617     }
8618     default:
8619     do_unallocated:
8620         unallocated_encoding(s);
8621         break;
8622     }
8623 }
8624 
8625 /*
8626  * Data processing - register
8627  *  31  30 29  28      25    21  20  16      10         0
8628  * +--+---+--+---+-------+-----+-------+-------+---------+
8629  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
8630  * +--+---+--+---+-------+-----+-------+-------+---------+
8631  */
disas_data_proc_reg(DisasContext * s,uint32_t insn)8632 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
8633 {
8634     int op0 = extract32(insn, 30, 1);
8635     int op1 = extract32(insn, 28, 1);
8636     int op2 = extract32(insn, 21, 4);
8637     int op3 = extract32(insn, 10, 6);
8638 
8639     if (!op1) {
8640         if (op2 & 8) {
8641             if (op2 & 1) {
8642                 /* Add/sub (extended register) */
8643                 disas_add_sub_ext_reg(s, insn);
8644             } else {
8645                 /* Add/sub (shifted register) */
8646                 disas_add_sub_reg(s, insn);
8647             }
8648         } else {
8649             /* Logical (shifted register) */
8650             disas_logic_reg(s, insn);
8651         }
8652         return;
8653     }
8654 
8655     switch (op2) {
8656     case 0x0:
8657         switch (op3) {
8658         case 0x00: /* Add/subtract (with carry) */
8659             disas_adc_sbc(s, insn);
8660             break;
8661 
8662         case 0x01: /* Rotate right into flags */
8663         case 0x21:
8664             disas_rotate_right_into_flags(s, insn);
8665             break;
8666 
8667         case 0x02: /* Evaluate into flags */
8668         case 0x12:
8669         case 0x22:
8670         case 0x32:
8671             disas_evaluate_into_flags(s, insn);
8672             break;
8673 
8674         default:
8675             goto do_unallocated;
8676         }
8677         break;
8678 
8679     case 0x2: /* Conditional compare */
8680         disas_cc(s, insn); /* both imm and reg forms */
8681         break;
8682 
8683     case 0x4: /* Conditional select */
8684         disas_cond_select(s, insn);
8685         break;
8686 
8687     case 0x6: /* Data-processing */
8688         if (op0) {    /* (1 source) */
8689             disas_data_proc_1src(s, insn);
8690         } else {      /* (2 source) */
8691             disas_data_proc_2src(s, insn);
8692         }
8693         break;
8694     case 0x8 ... 0xf: /* (3 source) */
8695         disas_data_proc_3src(s, insn);
8696         break;
8697 
8698     default:
8699     do_unallocated:
8700         unallocated_encoding(s);
8701         break;
8702     }
8703 }
8704 
handle_fp_compare(DisasContext * s,int size,unsigned int rn,unsigned int rm,bool cmp_with_zero,bool signal_all_nans)8705 static void handle_fp_compare(DisasContext *s, int size,
8706                               unsigned int rn, unsigned int rm,
8707                               bool cmp_with_zero, bool signal_all_nans)
8708 {
8709     TCGv_i64 tcg_flags = tcg_temp_new_i64();
8710     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8711 
8712     if (size == MO_64) {
8713         TCGv_i64 tcg_vn, tcg_vm;
8714 
8715         tcg_vn = read_fp_dreg(s, rn);
8716         if (cmp_with_zero) {
8717             tcg_vm = tcg_constant_i64(0);
8718         } else {
8719             tcg_vm = read_fp_dreg(s, rm);
8720         }
8721         if (signal_all_nans) {
8722             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8723         } else {
8724             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8725         }
8726     } else {
8727         TCGv_i32 tcg_vn = tcg_temp_new_i32();
8728         TCGv_i32 tcg_vm = tcg_temp_new_i32();
8729 
8730         read_vec_element_i32(s, tcg_vn, rn, 0, size);
8731         if (cmp_with_zero) {
8732             tcg_gen_movi_i32(tcg_vm, 0);
8733         } else {
8734             read_vec_element_i32(s, tcg_vm, rm, 0, size);
8735         }
8736 
8737         switch (size) {
8738         case MO_32:
8739             if (signal_all_nans) {
8740                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8741             } else {
8742                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8743             }
8744             break;
8745         case MO_16:
8746             if (signal_all_nans) {
8747                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8748             } else {
8749                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
8750             }
8751             break;
8752         default:
8753             g_assert_not_reached();
8754         }
8755     }
8756 
8757     gen_set_nzcv(tcg_flags);
8758 }
8759 
8760 /* Floating point compare
8761  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
8762  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
8763  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
8764  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
8765  */
disas_fp_compare(DisasContext * s,uint32_t insn)8766 static void disas_fp_compare(DisasContext *s, uint32_t insn)
8767 {
8768     unsigned int mos, type, rm, op, rn, opc, op2r;
8769     int size;
8770 
8771     mos = extract32(insn, 29, 3);
8772     type = extract32(insn, 22, 2);
8773     rm = extract32(insn, 16, 5);
8774     op = extract32(insn, 14, 2);
8775     rn = extract32(insn, 5, 5);
8776     opc = extract32(insn, 3, 2);
8777     op2r = extract32(insn, 0, 3);
8778 
8779     if (mos || op || op2r) {
8780         unallocated_encoding(s);
8781         return;
8782     }
8783 
8784     switch (type) {
8785     case 0:
8786         size = MO_32;
8787         break;
8788     case 1:
8789         size = MO_64;
8790         break;
8791     case 3:
8792         size = MO_16;
8793         if (dc_isar_feature(aa64_fp16, s)) {
8794             break;
8795         }
8796         /* fallthru */
8797     default:
8798         unallocated_encoding(s);
8799         return;
8800     }
8801 
8802     if (!fp_access_check(s)) {
8803         return;
8804     }
8805 
8806     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
8807 }
8808 
8809 /* Floating point conditional compare
8810  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
8811  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
8812  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
8813  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
8814  */
disas_fp_ccomp(DisasContext * s,uint32_t insn)8815 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
8816 {
8817     unsigned int mos, type, rm, cond, rn, op, nzcv;
8818     TCGLabel *label_continue = NULL;
8819     int size;
8820 
8821     mos = extract32(insn, 29, 3);
8822     type = extract32(insn, 22, 2);
8823     rm = extract32(insn, 16, 5);
8824     cond = extract32(insn, 12, 4);
8825     rn = extract32(insn, 5, 5);
8826     op = extract32(insn, 4, 1);
8827     nzcv = extract32(insn, 0, 4);
8828 
8829     if (mos) {
8830         unallocated_encoding(s);
8831         return;
8832     }
8833 
8834     switch (type) {
8835     case 0:
8836         size = MO_32;
8837         break;
8838     case 1:
8839         size = MO_64;
8840         break;
8841     case 3:
8842         size = MO_16;
8843         if (dc_isar_feature(aa64_fp16, s)) {
8844             break;
8845         }
8846         /* fallthru */
8847     default:
8848         unallocated_encoding(s);
8849         return;
8850     }
8851 
8852     if (!fp_access_check(s)) {
8853         return;
8854     }
8855 
8856     if (cond < 0x0e) { /* not always */
8857         TCGLabel *label_match = gen_new_label();
8858         label_continue = gen_new_label();
8859         arm_gen_test_cc(cond, label_match);
8860         /* nomatch: */
8861         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
8862         tcg_gen_br(label_continue);
8863         gen_set_label(label_match);
8864     }
8865 
8866     handle_fp_compare(s, size, rn, rm, false, op);
8867 
8868     if (cond < 0x0e) {
8869         gen_set_label(label_continue);
8870     }
8871 }
8872 
8873 /* Floating-point data-processing (1 source) - half precision */
handle_fp_1src_half(DisasContext * s,int opcode,int rd,int rn)8874 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
8875 {
8876     TCGv_ptr fpst = NULL;
8877     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
8878     TCGv_i32 tcg_res = tcg_temp_new_i32();
8879 
8880     switch (opcode) {
8881     case 0x0: /* FMOV */
8882         tcg_gen_mov_i32(tcg_res, tcg_op);
8883         break;
8884     case 0x1: /* FABS */
8885         gen_vfp_absh(tcg_res, tcg_op);
8886         break;
8887     case 0x2: /* FNEG */
8888         gen_vfp_negh(tcg_res, tcg_op);
8889         break;
8890     case 0x3: /* FSQRT */
8891         fpst = fpstatus_ptr(FPST_FPCR_F16);
8892         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
8893         break;
8894     case 0x8: /* FRINTN */
8895     case 0x9: /* FRINTP */
8896     case 0xa: /* FRINTM */
8897     case 0xb: /* FRINTZ */
8898     case 0xc: /* FRINTA */
8899     {
8900         TCGv_i32 tcg_rmode;
8901 
8902         fpst = fpstatus_ptr(FPST_FPCR_F16);
8903         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
8904         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8905         gen_restore_rmode(tcg_rmode, fpst);
8906         break;
8907     }
8908     case 0xe: /* FRINTX */
8909         fpst = fpstatus_ptr(FPST_FPCR_F16);
8910         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
8911         break;
8912     case 0xf: /* FRINTI */
8913         fpst = fpstatus_ptr(FPST_FPCR_F16);
8914         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8915         break;
8916     default:
8917         g_assert_not_reached();
8918     }
8919 
8920     write_fp_sreg(s, rd, tcg_res);
8921 }
8922 
8923 /* Floating-point data-processing (1 source) - single precision */
handle_fp_1src_single(DisasContext * s,int opcode,int rd,int rn)8924 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
8925 {
8926     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
8927     TCGv_i32 tcg_op, tcg_res;
8928     TCGv_ptr fpst;
8929     int rmode = -1;
8930 
8931     tcg_op = read_fp_sreg(s, rn);
8932     tcg_res = tcg_temp_new_i32();
8933 
8934     switch (opcode) {
8935     case 0x0: /* FMOV */
8936         tcg_gen_mov_i32(tcg_res, tcg_op);
8937         goto done;
8938     case 0x1: /* FABS */
8939         gen_vfp_abss(tcg_res, tcg_op);
8940         goto done;
8941     case 0x2: /* FNEG */
8942         gen_vfp_negs(tcg_res, tcg_op);
8943         goto done;
8944     case 0x3: /* FSQRT */
8945         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
8946         goto done;
8947     case 0x6: /* BFCVT */
8948         gen_fpst = gen_helper_bfcvt;
8949         break;
8950     case 0x8: /* FRINTN */
8951     case 0x9: /* FRINTP */
8952     case 0xa: /* FRINTM */
8953     case 0xb: /* FRINTZ */
8954     case 0xc: /* FRINTA */
8955         rmode = opcode & 7;
8956         gen_fpst = gen_helper_rints;
8957         break;
8958     case 0xe: /* FRINTX */
8959         gen_fpst = gen_helper_rints_exact;
8960         break;
8961     case 0xf: /* FRINTI */
8962         gen_fpst = gen_helper_rints;
8963         break;
8964     case 0x10: /* FRINT32Z */
8965         rmode = FPROUNDING_ZERO;
8966         gen_fpst = gen_helper_frint32_s;
8967         break;
8968     case 0x11: /* FRINT32X */
8969         gen_fpst = gen_helper_frint32_s;
8970         break;
8971     case 0x12: /* FRINT64Z */
8972         rmode = FPROUNDING_ZERO;
8973         gen_fpst = gen_helper_frint64_s;
8974         break;
8975     case 0x13: /* FRINT64X */
8976         gen_fpst = gen_helper_frint64_s;
8977         break;
8978     default:
8979         g_assert_not_reached();
8980     }
8981 
8982     fpst = fpstatus_ptr(FPST_FPCR);
8983     if (rmode >= 0) {
8984         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8985         gen_fpst(tcg_res, tcg_op, fpst);
8986         gen_restore_rmode(tcg_rmode, fpst);
8987     } else {
8988         gen_fpst(tcg_res, tcg_op, fpst);
8989     }
8990 
8991  done:
8992     write_fp_sreg(s, rd, tcg_res);
8993 }
8994 
8995 /* Floating-point data-processing (1 source) - double precision */
handle_fp_1src_double(DisasContext * s,int opcode,int rd,int rn)8996 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
8997 {
8998     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
8999     TCGv_i64 tcg_op, tcg_res;
9000     TCGv_ptr fpst;
9001     int rmode = -1;
9002 
9003     switch (opcode) {
9004     case 0x0: /* FMOV */
9005         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
9006         return;
9007     }
9008 
9009     tcg_op = read_fp_dreg(s, rn);
9010     tcg_res = tcg_temp_new_i64();
9011 
9012     switch (opcode) {
9013     case 0x1: /* FABS */
9014         gen_vfp_absd(tcg_res, tcg_op);
9015         goto done;
9016     case 0x2: /* FNEG */
9017         gen_vfp_negd(tcg_res, tcg_op);
9018         goto done;
9019     case 0x3: /* FSQRT */
9020         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
9021         goto done;
9022     case 0x8: /* FRINTN */
9023     case 0x9: /* FRINTP */
9024     case 0xa: /* FRINTM */
9025     case 0xb: /* FRINTZ */
9026     case 0xc: /* FRINTA */
9027         rmode = opcode & 7;
9028         gen_fpst = gen_helper_rintd;
9029         break;
9030     case 0xe: /* FRINTX */
9031         gen_fpst = gen_helper_rintd_exact;
9032         break;
9033     case 0xf: /* FRINTI */
9034         gen_fpst = gen_helper_rintd;
9035         break;
9036     case 0x10: /* FRINT32Z */
9037         rmode = FPROUNDING_ZERO;
9038         gen_fpst = gen_helper_frint32_d;
9039         break;
9040     case 0x11: /* FRINT32X */
9041         gen_fpst = gen_helper_frint32_d;
9042         break;
9043     case 0x12: /* FRINT64Z */
9044         rmode = FPROUNDING_ZERO;
9045         gen_fpst = gen_helper_frint64_d;
9046         break;
9047     case 0x13: /* FRINT64X */
9048         gen_fpst = gen_helper_frint64_d;
9049         break;
9050     default:
9051         g_assert_not_reached();
9052     }
9053 
9054     fpst = fpstatus_ptr(FPST_FPCR);
9055     if (rmode >= 0) {
9056         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
9057         gen_fpst(tcg_res, tcg_op, fpst);
9058         gen_restore_rmode(tcg_rmode, fpst);
9059     } else {
9060         gen_fpst(tcg_res, tcg_op, fpst);
9061     }
9062 
9063  done:
9064     write_fp_dreg(s, rd, tcg_res);
9065 }
9066 
handle_fp_fcvt(DisasContext * s,int opcode,int rd,int rn,int dtype,int ntype)9067 static void handle_fp_fcvt(DisasContext *s, int opcode,
9068                            int rd, int rn, int dtype, int ntype)
9069 {
9070     switch (ntype) {
9071     case 0x0:
9072     {
9073         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
9074         if (dtype == 1) {
9075             /* Single to double */
9076             TCGv_i64 tcg_rd = tcg_temp_new_i64();
9077             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
9078             write_fp_dreg(s, rd, tcg_rd);
9079         } else {
9080             /* Single to half */
9081             TCGv_i32 tcg_rd = tcg_temp_new_i32();
9082             TCGv_i32 ahp = get_ahp_flag();
9083             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9084 
9085             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
9086             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
9087             write_fp_sreg(s, rd, tcg_rd);
9088         }
9089         break;
9090     }
9091     case 0x1:
9092     {
9093         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9094         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9095         if (dtype == 0) {
9096             /* Double to single */
9097             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
9098         } else {
9099             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9100             TCGv_i32 ahp = get_ahp_flag();
9101             /* Double to half */
9102             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
9103             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
9104         }
9105         write_fp_sreg(s, rd, tcg_rd);
9106         break;
9107     }
9108     case 0x3:
9109     {
9110         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
9111         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
9112         TCGv_i32 tcg_ahp = get_ahp_flag();
9113         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
9114         if (dtype == 0) {
9115             /* Half to single */
9116             TCGv_i32 tcg_rd = tcg_temp_new_i32();
9117             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9118             write_fp_sreg(s, rd, tcg_rd);
9119         } else {
9120             /* Half to double */
9121             TCGv_i64 tcg_rd = tcg_temp_new_i64();
9122             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9123             write_fp_dreg(s, rd, tcg_rd);
9124         }
9125         break;
9126     }
9127     default:
9128         g_assert_not_reached();
9129     }
9130 }
9131 
9132 /* Floating point data-processing (1 source)
9133  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
9134  * +---+---+---+-----------+------+---+--------+-----------+------+------+
9135  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
9136  * +---+---+---+-----------+------+---+--------+-----------+------+------+
9137  */
disas_fp_1src(DisasContext * s,uint32_t insn)9138 static void disas_fp_1src(DisasContext *s, uint32_t insn)
9139 {
9140     int mos = extract32(insn, 29, 3);
9141     int type = extract32(insn, 22, 2);
9142     int opcode = extract32(insn, 15, 6);
9143     int rn = extract32(insn, 5, 5);
9144     int rd = extract32(insn, 0, 5);
9145 
9146     if (mos) {
9147         goto do_unallocated;
9148     }
9149 
9150     switch (opcode) {
9151     case 0x4: case 0x5: case 0x7:
9152     {
9153         /* FCVT between half, single and double precision */
9154         int dtype = extract32(opcode, 0, 2);
9155         if (type == 2 || dtype == type) {
9156             goto do_unallocated;
9157         }
9158         if (!fp_access_check(s)) {
9159             return;
9160         }
9161 
9162         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
9163         break;
9164     }
9165 
9166     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
9167         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
9168             goto do_unallocated;
9169         }
9170         /* fall through */
9171     case 0x0 ... 0x3:
9172     case 0x8 ... 0xc:
9173     case 0xe ... 0xf:
9174         /* 32-to-32 and 64-to-64 ops */
9175         switch (type) {
9176         case 0:
9177             if (!fp_access_check(s)) {
9178                 return;
9179             }
9180             handle_fp_1src_single(s, opcode, rd, rn);
9181             break;
9182         case 1:
9183             if (!fp_access_check(s)) {
9184                 return;
9185             }
9186             handle_fp_1src_double(s, opcode, rd, rn);
9187             break;
9188         case 3:
9189             if (!dc_isar_feature(aa64_fp16, s)) {
9190                 goto do_unallocated;
9191             }
9192 
9193             if (!fp_access_check(s)) {
9194                 return;
9195             }
9196             handle_fp_1src_half(s, opcode, rd, rn);
9197             break;
9198         default:
9199             goto do_unallocated;
9200         }
9201         break;
9202 
9203     case 0x6:
9204         switch (type) {
9205         case 1: /* BFCVT */
9206             if (!dc_isar_feature(aa64_bf16, s)) {
9207                 goto do_unallocated;
9208             }
9209             if (!fp_access_check(s)) {
9210                 return;
9211             }
9212             handle_fp_1src_single(s, opcode, rd, rn);
9213             break;
9214         default:
9215             goto do_unallocated;
9216         }
9217         break;
9218 
9219     default:
9220     do_unallocated:
9221         unallocated_encoding(s);
9222         break;
9223     }
9224 }
9225 
9226 /* Handle floating point <=> fixed point conversions. Note that we can
9227  * also deal with fp <=> integer conversions as a special case (scale == 64)
9228  * OPTME: consider handling that special case specially or at least skipping
9229  * the call to scalbn in the helpers for zero shifts.
9230  */
handle_fpfpcvt(DisasContext * s,int rd,int rn,int opcode,bool itof,int rmode,int scale,int sf,int type)9231 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
9232                            bool itof, int rmode, int scale, int sf, int type)
9233 {
9234     bool is_signed = !(opcode & 1);
9235     TCGv_ptr tcg_fpstatus;
9236     TCGv_i32 tcg_shift, tcg_single;
9237     TCGv_i64 tcg_double;
9238 
9239     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
9240 
9241     tcg_shift = tcg_constant_i32(64 - scale);
9242 
9243     if (itof) {
9244         TCGv_i64 tcg_int = cpu_reg(s, rn);
9245         if (!sf) {
9246             TCGv_i64 tcg_extend = tcg_temp_new_i64();
9247 
9248             if (is_signed) {
9249                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
9250             } else {
9251                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
9252             }
9253 
9254             tcg_int = tcg_extend;
9255         }
9256 
9257         switch (type) {
9258         case 1: /* float64 */
9259             tcg_double = tcg_temp_new_i64();
9260             if (is_signed) {
9261                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
9262                                      tcg_shift, tcg_fpstatus);
9263             } else {
9264                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
9265                                      tcg_shift, tcg_fpstatus);
9266             }
9267             write_fp_dreg(s, rd, tcg_double);
9268             break;
9269 
9270         case 0: /* float32 */
9271             tcg_single = tcg_temp_new_i32();
9272             if (is_signed) {
9273                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
9274                                      tcg_shift, tcg_fpstatus);
9275             } else {
9276                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
9277                                      tcg_shift, tcg_fpstatus);
9278             }
9279             write_fp_sreg(s, rd, tcg_single);
9280             break;
9281 
9282         case 3: /* float16 */
9283             tcg_single = tcg_temp_new_i32();
9284             if (is_signed) {
9285                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
9286                                      tcg_shift, tcg_fpstatus);
9287             } else {
9288                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
9289                                      tcg_shift, tcg_fpstatus);
9290             }
9291             write_fp_sreg(s, rd, tcg_single);
9292             break;
9293 
9294         default:
9295             g_assert_not_reached();
9296         }
9297     } else {
9298         TCGv_i64 tcg_int = cpu_reg(s, rd);
9299         TCGv_i32 tcg_rmode;
9300 
9301         if (extract32(opcode, 2, 1)) {
9302             /* There are too many rounding modes to all fit into rmode,
9303              * so FCVTA[US] is a special case.
9304              */
9305             rmode = FPROUNDING_TIEAWAY;
9306         }
9307 
9308         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9309 
9310         switch (type) {
9311         case 1: /* float64 */
9312             tcg_double = read_fp_dreg(s, rn);
9313             if (is_signed) {
9314                 if (!sf) {
9315                     gen_helper_vfp_tosld(tcg_int, tcg_double,
9316                                          tcg_shift, tcg_fpstatus);
9317                 } else {
9318                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
9319                                          tcg_shift, tcg_fpstatus);
9320                 }
9321             } else {
9322                 if (!sf) {
9323                     gen_helper_vfp_tould(tcg_int, tcg_double,
9324                                          tcg_shift, tcg_fpstatus);
9325                 } else {
9326                     gen_helper_vfp_touqd(tcg_int, tcg_double,
9327                                          tcg_shift, tcg_fpstatus);
9328                 }
9329             }
9330             if (!sf) {
9331                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
9332             }
9333             break;
9334 
9335         case 0: /* float32 */
9336             tcg_single = read_fp_sreg(s, rn);
9337             if (sf) {
9338                 if (is_signed) {
9339                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
9340                                          tcg_shift, tcg_fpstatus);
9341                 } else {
9342                     gen_helper_vfp_touqs(tcg_int, tcg_single,
9343                                          tcg_shift, tcg_fpstatus);
9344                 }
9345             } else {
9346                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
9347                 if (is_signed) {
9348                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
9349                                          tcg_shift, tcg_fpstatus);
9350                 } else {
9351                     gen_helper_vfp_touls(tcg_dest, tcg_single,
9352                                          tcg_shift, tcg_fpstatus);
9353                 }
9354                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
9355             }
9356             break;
9357 
9358         case 3: /* float16 */
9359             tcg_single = read_fp_sreg(s, rn);
9360             if (sf) {
9361                 if (is_signed) {
9362                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
9363                                          tcg_shift, tcg_fpstatus);
9364                 } else {
9365                     gen_helper_vfp_touqh(tcg_int, tcg_single,
9366                                          tcg_shift, tcg_fpstatus);
9367                 }
9368             } else {
9369                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
9370                 if (is_signed) {
9371                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
9372                                          tcg_shift, tcg_fpstatus);
9373                 } else {
9374                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
9375                                          tcg_shift, tcg_fpstatus);
9376                 }
9377                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
9378             }
9379             break;
9380 
9381         default:
9382             g_assert_not_reached();
9383         }
9384 
9385         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9386     }
9387 }
9388 
9389 /* Floating point <-> fixed point conversions
9390  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
9391  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
9392  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
9393  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
9394  */
disas_fp_fixed_conv(DisasContext * s,uint32_t insn)9395 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
9396 {
9397     int rd = extract32(insn, 0, 5);
9398     int rn = extract32(insn, 5, 5);
9399     int scale = extract32(insn, 10, 6);
9400     int opcode = extract32(insn, 16, 3);
9401     int rmode = extract32(insn, 19, 2);
9402     int type = extract32(insn, 22, 2);
9403     bool sbit = extract32(insn, 29, 1);
9404     bool sf = extract32(insn, 31, 1);
9405     bool itof;
9406 
9407     if (sbit || (!sf && scale < 32)) {
9408         unallocated_encoding(s);
9409         return;
9410     }
9411 
9412     switch (type) {
9413     case 0: /* float32 */
9414     case 1: /* float64 */
9415         break;
9416     case 3: /* float16 */
9417         if (dc_isar_feature(aa64_fp16, s)) {
9418             break;
9419         }
9420         /* fallthru */
9421     default:
9422         unallocated_encoding(s);
9423         return;
9424     }
9425 
9426     switch ((rmode << 3) | opcode) {
9427     case 0x2: /* SCVTF */
9428     case 0x3: /* UCVTF */
9429         itof = true;
9430         break;
9431     case 0x18: /* FCVTZS */
9432     case 0x19: /* FCVTZU */
9433         itof = false;
9434         break;
9435     default:
9436         unallocated_encoding(s);
9437         return;
9438     }
9439 
9440     if (!fp_access_check(s)) {
9441         return;
9442     }
9443 
9444     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
9445 }
9446 
handle_fmov(DisasContext * s,int rd,int rn,int type,bool itof)9447 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
9448 {
9449     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
9450      * without conversion.
9451      */
9452 
9453     if (itof) {
9454         TCGv_i64 tcg_rn = cpu_reg(s, rn);
9455         TCGv_i64 tmp;
9456 
9457         switch (type) {
9458         case 0:
9459             /* 32 bit */
9460             tmp = tcg_temp_new_i64();
9461             tcg_gen_ext32u_i64(tmp, tcg_rn);
9462             write_fp_dreg(s, rd, tmp);
9463             break;
9464         case 1:
9465             /* 64 bit */
9466             write_fp_dreg(s, rd, tcg_rn);
9467             break;
9468         case 2:
9469             /* 64 bit to top half. */
9470             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
9471             clear_vec_high(s, true, rd);
9472             break;
9473         case 3:
9474             /* 16 bit */
9475             tmp = tcg_temp_new_i64();
9476             tcg_gen_ext16u_i64(tmp, tcg_rn);
9477             write_fp_dreg(s, rd, tmp);
9478             break;
9479         default:
9480             g_assert_not_reached();
9481         }
9482     } else {
9483         TCGv_i64 tcg_rd = cpu_reg(s, rd);
9484 
9485         switch (type) {
9486         case 0:
9487             /* 32 bit */
9488             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
9489             break;
9490         case 1:
9491             /* 64 bit */
9492             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
9493             break;
9494         case 2:
9495             /* 64 bits from top half */
9496             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
9497             break;
9498         case 3:
9499             /* 16 bit */
9500             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
9501             break;
9502         default:
9503             g_assert_not_reached();
9504         }
9505     }
9506 }
9507 
handle_fjcvtzs(DisasContext * s,int rd,int rn)9508 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
9509 {
9510     TCGv_i64 t = read_fp_dreg(s, rn);
9511     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
9512 
9513     gen_helper_fjcvtzs(t, t, fpstatus);
9514 
9515     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
9516     tcg_gen_extrh_i64_i32(cpu_ZF, t);
9517     tcg_gen_movi_i32(cpu_CF, 0);
9518     tcg_gen_movi_i32(cpu_NF, 0);
9519     tcg_gen_movi_i32(cpu_VF, 0);
9520 }
9521 
9522 /* Floating point <-> integer conversions
9523  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
9524  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
9525  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
9526  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
9527  */
disas_fp_int_conv(DisasContext * s,uint32_t insn)9528 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
9529 {
9530     int rd = extract32(insn, 0, 5);
9531     int rn = extract32(insn, 5, 5);
9532     int opcode = extract32(insn, 16, 3);
9533     int rmode = extract32(insn, 19, 2);
9534     int type = extract32(insn, 22, 2);
9535     bool sbit = extract32(insn, 29, 1);
9536     bool sf = extract32(insn, 31, 1);
9537     bool itof = false;
9538 
9539     if (sbit) {
9540         goto do_unallocated;
9541     }
9542 
9543     switch (opcode) {
9544     case 2: /* SCVTF */
9545     case 3: /* UCVTF */
9546         itof = true;
9547         /* fallthru */
9548     case 4: /* FCVTAS */
9549     case 5: /* FCVTAU */
9550         if (rmode != 0) {
9551             goto do_unallocated;
9552         }
9553         /* fallthru */
9554     case 0: /* FCVT[NPMZ]S */
9555     case 1: /* FCVT[NPMZ]U */
9556         switch (type) {
9557         case 0: /* float32 */
9558         case 1: /* float64 */
9559             break;
9560         case 3: /* float16 */
9561             if (!dc_isar_feature(aa64_fp16, s)) {
9562                 goto do_unallocated;
9563             }
9564             break;
9565         default:
9566             goto do_unallocated;
9567         }
9568         if (!fp_access_check(s)) {
9569             return;
9570         }
9571         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
9572         break;
9573 
9574     default:
9575         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
9576         case 0b01100110: /* FMOV half <-> 32-bit int */
9577         case 0b01100111:
9578         case 0b11100110: /* FMOV half <-> 64-bit int */
9579         case 0b11100111:
9580             if (!dc_isar_feature(aa64_fp16, s)) {
9581                 goto do_unallocated;
9582             }
9583             /* fallthru */
9584         case 0b00000110: /* FMOV 32-bit */
9585         case 0b00000111:
9586         case 0b10100110: /* FMOV 64-bit */
9587         case 0b10100111:
9588         case 0b11001110: /* FMOV top half of 128-bit */
9589         case 0b11001111:
9590             if (!fp_access_check(s)) {
9591                 return;
9592             }
9593             itof = opcode & 1;
9594             handle_fmov(s, rd, rn, type, itof);
9595             break;
9596 
9597         case 0b00111110: /* FJCVTZS */
9598             if (!dc_isar_feature(aa64_jscvt, s)) {
9599                 goto do_unallocated;
9600             } else if (fp_access_check(s)) {
9601                 handle_fjcvtzs(s, rd, rn);
9602             }
9603             break;
9604 
9605         default:
9606         do_unallocated:
9607             unallocated_encoding(s);
9608             return;
9609         }
9610         break;
9611     }
9612 }
9613 
9614 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
9615  *   31  30  29 28     25 24                          0
9616  * +---+---+---+---------+-----------------------------+
9617  * |   | 0 |   | 1 1 1 1 |                             |
9618  * +---+---+---+---------+-----------------------------+
9619  */
disas_data_proc_fp(DisasContext * s,uint32_t insn)9620 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
9621 {
9622     if (extract32(insn, 24, 1)) {
9623         unallocated_encoding(s); /* in decodetree */
9624     } else if (extract32(insn, 21, 1) == 0) {
9625         /* Floating point to fixed point conversions */
9626         disas_fp_fixed_conv(s, insn);
9627     } else {
9628         switch (extract32(insn, 10, 2)) {
9629         case 1:
9630             /* Floating point conditional compare */
9631             disas_fp_ccomp(s, insn);
9632             break;
9633         case 2:
9634             /* Floating point data-processing (2 source) */
9635             unallocated_encoding(s); /* in decodetree */
9636             break;
9637         case 3:
9638             /* Floating point conditional select */
9639             unallocated_encoding(s); /* in decodetree */
9640             break;
9641         case 0:
9642             switch (ctz32(extract32(insn, 12, 4))) {
9643             case 0: /* [15:12] == xxx1 */
9644                 /* Floating point immediate */
9645                 unallocated_encoding(s); /* in decodetree */
9646                 break;
9647             case 1: /* [15:12] == xx10 */
9648                 /* Floating point compare */
9649                 disas_fp_compare(s, insn);
9650                 break;
9651             case 2: /* [15:12] == x100 */
9652                 /* Floating point data-processing (1 source) */
9653                 disas_fp_1src(s, insn);
9654                 break;
9655             case 3: /* [15:12] == 1000 */
9656                 unallocated_encoding(s);
9657                 break;
9658             default: /* [15:12] == 0000 */
9659                 /* Floating point <-> integer conversions */
9660                 disas_fp_int_conv(s, insn);
9661                 break;
9662             }
9663             break;
9664         }
9665     }
9666 }
9667 
9668 /* Common vector code for handling integer to FP conversion */
handle_simd_intfp_conv(DisasContext * s,int rd,int rn,int elements,int is_signed,int fracbits,int size)9669 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9670                                    int elements, int is_signed,
9671                                    int fracbits, int size)
9672 {
9673     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9674     TCGv_i32 tcg_shift = NULL;
9675 
9676     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9677     int pass;
9678 
9679     if (fracbits || size == MO_64) {
9680         tcg_shift = tcg_constant_i32(fracbits);
9681     }
9682 
9683     if (size == MO_64) {
9684         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9685         TCGv_i64 tcg_double = tcg_temp_new_i64();
9686 
9687         for (pass = 0; pass < elements; pass++) {
9688             read_vec_element(s, tcg_int64, rn, pass, mop);
9689 
9690             if (is_signed) {
9691                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9692                                      tcg_shift, tcg_fpst);
9693             } else {
9694                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9695                                      tcg_shift, tcg_fpst);
9696             }
9697             if (elements == 1) {
9698                 write_fp_dreg(s, rd, tcg_double);
9699             } else {
9700                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9701             }
9702         }
9703     } else {
9704         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9705         TCGv_i32 tcg_float = tcg_temp_new_i32();
9706 
9707         for (pass = 0; pass < elements; pass++) {
9708             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9709 
9710             switch (size) {
9711             case MO_32:
9712                 if (fracbits) {
9713                     if (is_signed) {
9714                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9715                                              tcg_shift, tcg_fpst);
9716                     } else {
9717                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9718                                              tcg_shift, tcg_fpst);
9719                     }
9720                 } else {
9721                     if (is_signed) {
9722                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9723                     } else {
9724                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9725                     }
9726                 }
9727                 break;
9728             case MO_16:
9729                 if (fracbits) {
9730                     if (is_signed) {
9731                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9732                                              tcg_shift, tcg_fpst);
9733                     } else {
9734                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9735                                              tcg_shift, tcg_fpst);
9736                     }
9737                 } else {
9738                     if (is_signed) {
9739                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9740                     } else {
9741                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9742                     }
9743                 }
9744                 break;
9745             default:
9746                 g_assert_not_reached();
9747             }
9748 
9749             if (elements == 1) {
9750                 write_fp_sreg(s, rd, tcg_float);
9751             } else {
9752                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9753             }
9754         }
9755     }
9756 
9757     clear_vec_high(s, elements << size == 16, rd);
9758 }
9759 
9760 /* UCVTF/SCVTF - Integer to FP conversion */
handle_simd_shift_intfp_conv(DisasContext * s,bool is_scalar,bool is_q,bool is_u,int immh,int immb,int opcode,int rn,int rd)9761 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9762                                          bool is_q, bool is_u,
9763                                          int immh, int immb, int opcode,
9764                                          int rn, int rd)
9765 {
9766     int size, elements, fracbits;
9767     int immhb = immh << 3 | immb;
9768 
9769     if (immh & 8) {
9770         size = MO_64;
9771         if (!is_scalar && !is_q) {
9772             unallocated_encoding(s);
9773             return;
9774         }
9775     } else if (immh & 4) {
9776         size = MO_32;
9777     } else if (immh & 2) {
9778         size = MO_16;
9779         if (!dc_isar_feature(aa64_fp16, s)) {
9780             unallocated_encoding(s);
9781             return;
9782         }
9783     } else {
9784         /* immh == 0 would be a failure of the decode logic */
9785         g_assert(immh == 1);
9786         unallocated_encoding(s);
9787         return;
9788     }
9789 
9790     if (is_scalar) {
9791         elements = 1;
9792     } else {
9793         elements = (8 << is_q) >> size;
9794     }
9795     fracbits = (16 << size) - immhb;
9796 
9797     if (!fp_access_check(s)) {
9798         return;
9799     }
9800 
9801     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9802 }
9803 
9804 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
handle_simd_shift_fpint_conv(DisasContext * s,bool is_scalar,bool is_q,bool is_u,int immh,int immb,int rn,int rd)9805 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9806                                          bool is_q, bool is_u,
9807                                          int immh, int immb, int rn, int rd)
9808 {
9809     int immhb = immh << 3 | immb;
9810     int pass, size, fracbits;
9811     TCGv_ptr tcg_fpstatus;
9812     TCGv_i32 tcg_rmode, tcg_shift;
9813 
9814     if (immh & 0x8) {
9815         size = MO_64;
9816         if (!is_scalar && !is_q) {
9817             unallocated_encoding(s);
9818             return;
9819         }
9820     } else if (immh & 0x4) {
9821         size = MO_32;
9822     } else if (immh & 0x2) {
9823         size = MO_16;
9824         if (!dc_isar_feature(aa64_fp16, s)) {
9825             unallocated_encoding(s);
9826             return;
9827         }
9828     } else {
9829         /* Should have split out AdvSIMD modified immediate earlier.  */
9830         assert(immh == 1);
9831         unallocated_encoding(s);
9832         return;
9833     }
9834 
9835     if (!fp_access_check(s)) {
9836         return;
9837     }
9838 
9839     assert(!(is_scalar && is_q));
9840 
9841     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9842     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9843     fracbits = (16 << size) - immhb;
9844     tcg_shift = tcg_constant_i32(fracbits);
9845 
9846     if (size == MO_64) {
9847         int maxpass = is_scalar ? 1 : 2;
9848 
9849         for (pass = 0; pass < maxpass; pass++) {
9850             TCGv_i64 tcg_op = tcg_temp_new_i64();
9851 
9852             read_vec_element(s, tcg_op, rn, pass, MO_64);
9853             if (is_u) {
9854                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9855             } else {
9856                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9857             }
9858             write_vec_element(s, tcg_op, rd, pass, MO_64);
9859         }
9860         clear_vec_high(s, is_q, rd);
9861     } else {
9862         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9863         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9864 
9865         switch (size) {
9866         case MO_16:
9867             if (is_u) {
9868                 fn = gen_helper_vfp_touhh;
9869             } else {
9870                 fn = gen_helper_vfp_toshh;
9871             }
9872             break;
9873         case MO_32:
9874             if (is_u) {
9875                 fn = gen_helper_vfp_touls;
9876             } else {
9877                 fn = gen_helper_vfp_tosls;
9878             }
9879             break;
9880         default:
9881             g_assert_not_reached();
9882         }
9883 
9884         for (pass = 0; pass < maxpass; pass++) {
9885             TCGv_i32 tcg_op = tcg_temp_new_i32();
9886 
9887             read_vec_element_i32(s, tcg_op, rn, pass, size);
9888             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9889             if (is_scalar) {
9890                 if (size == MO_16 && !is_u) {
9891                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9892                 }
9893                 write_fp_sreg(s, rd, tcg_op);
9894             } else {
9895                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9896             }
9897         }
9898         if (!is_scalar) {
9899             clear_vec_high(s, is_q, rd);
9900         }
9901     }
9902 
9903     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9904 }
9905 
9906 /* AdvSIMD scalar shift by immediate
9907  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9908  * +-----+---+-------------+------+------+--------+---+------+------+
9909  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9910  * +-----+---+-------------+------+------+--------+---+------+------+
9911  *
9912  * This is the scalar version so it works on a fixed sized registers
9913  */
disas_simd_scalar_shift_imm(DisasContext * s,uint32_t insn)9914 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9915 {
9916     int rd = extract32(insn, 0, 5);
9917     int rn = extract32(insn, 5, 5);
9918     int opcode = extract32(insn, 11, 5);
9919     int immb = extract32(insn, 16, 3);
9920     int immh = extract32(insn, 19, 4);
9921     bool is_u = extract32(insn, 29, 1);
9922 
9923     if (immh == 0) {
9924         unallocated_encoding(s);
9925         return;
9926     }
9927 
9928     switch (opcode) {
9929     case 0x1c: /* SCVTF, UCVTF */
9930         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9931                                      opcode, rn, rd);
9932         break;
9933     case 0x1f: /* FCVTZS, FCVTZU */
9934         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9935         break;
9936     default:
9937     case 0x00: /* SSHR / USHR */
9938     case 0x02: /* SSRA / USRA */
9939     case 0x04: /* SRSHR / URSHR */
9940     case 0x06: /* SRSRA / URSRA */
9941     case 0x08: /* SRI */
9942     case 0x0a: /* SHL / SLI */
9943     case 0x0c: /* SQSHLU */
9944     case 0x0e: /* SQSHL, UQSHL */
9945     case 0x10: /* SQSHRUN */
9946     case 0x11: /* SQRSHRUN */
9947     case 0x12: /* SQSHRN, UQSHRN */
9948     case 0x13: /* SQRSHRN, UQRSHRN */
9949         unallocated_encoding(s);
9950         break;
9951     }
9952 }
9953 
handle_2misc_64(DisasContext * s,int opcode,bool u,TCGv_i64 tcg_rd,TCGv_i64 tcg_rn,TCGv_i32 tcg_rmode,TCGv_ptr tcg_fpstatus)9954 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9955                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9956                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9957 {
9958     /* Handle 64->64 opcodes which are shared between the scalar and
9959      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9960      * is valid in either group and also the double-precision fp ops.
9961      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9962      * requires them.
9963      */
9964     TCGCond cond;
9965 
9966     switch (opcode) {
9967     case 0x4: /* CLS, CLZ */
9968         if (u) {
9969             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9970         } else {
9971             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9972         }
9973         break;
9974     case 0x5: /* NOT */
9975         /* This opcode is shared with CNT and RBIT but we have earlier
9976          * enforced that size == 3 if and only if this is the NOT insn.
9977          */
9978         tcg_gen_not_i64(tcg_rd, tcg_rn);
9979         break;
9980     case 0x7: /* SQABS, SQNEG */
9981         if (u) {
9982             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9983         } else {
9984             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9985         }
9986         break;
9987     case 0xa: /* CMLT */
9988         cond = TCG_COND_LT;
9989     do_cmop:
9990         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9991         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9992         break;
9993     case 0x8: /* CMGT, CMGE */
9994         cond = u ? TCG_COND_GE : TCG_COND_GT;
9995         goto do_cmop;
9996     case 0x9: /* CMEQ, CMLE */
9997         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9998         goto do_cmop;
9999     case 0xb: /* ABS, NEG */
10000         if (u) {
10001             tcg_gen_neg_i64(tcg_rd, tcg_rn);
10002         } else {
10003             tcg_gen_abs_i64(tcg_rd, tcg_rn);
10004         }
10005         break;
10006     case 0x2f: /* FABS */
10007         gen_vfp_absd(tcg_rd, tcg_rn);
10008         break;
10009     case 0x6f: /* FNEG */
10010         gen_vfp_negd(tcg_rd, tcg_rn);
10011         break;
10012     case 0x7f: /* FSQRT */
10013         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
10014         break;
10015     case 0x1a: /* FCVTNS */
10016     case 0x1b: /* FCVTMS */
10017     case 0x1c: /* FCVTAS */
10018     case 0x3a: /* FCVTPS */
10019     case 0x3b: /* FCVTZS */
10020         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10021         break;
10022     case 0x5a: /* FCVTNU */
10023     case 0x5b: /* FCVTMU */
10024     case 0x5c: /* FCVTAU */
10025     case 0x7a: /* FCVTPU */
10026     case 0x7b: /* FCVTZU */
10027         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10028         break;
10029     case 0x18: /* FRINTN */
10030     case 0x19: /* FRINTM */
10031     case 0x38: /* FRINTP */
10032     case 0x39: /* FRINTZ */
10033     case 0x58: /* FRINTA */
10034     case 0x79: /* FRINTI */
10035         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10036         break;
10037     case 0x59: /* FRINTX */
10038         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10039         break;
10040     case 0x1e: /* FRINT32Z */
10041     case 0x5e: /* FRINT32X */
10042         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10043         break;
10044     case 0x1f: /* FRINT64Z */
10045     case 0x5f: /* FRINT64X */
10046         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10047         break;
10048     default:
10049         g_assert_not_reached();
10050     }
10051 }
10052 
handle_2misc_fcmp_zero(DisasContext * s,int opcode,bool is_scalar,bool is_u,bool is_q,int size,int rn,int rd)10053 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10054                                    bool is_scalar, bool is_u, bool is_q,
10055                                    int size, int rn, int rd)
10056 {
10057     bool is_double = (size == MO_64);
10058     TCGv_ptr fpst;
10059 
10060     if (!fp_access_check(s)) {
10061         return;
10062     }
10063 
10064     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10065 
10066     if (is_double) {
10067         TCGv_i64 tcg_op = tcg_temp_new_i64();
10068         TCGv_i64 tcg_zero = tcg_constant_i64(0);
10069         TCGv_i64 tcg_res = tcg_temp_new_i64();
10070         NeonGenTwoDoubleOpFn *genfn;
10071         bool swap = false;
10072         int pass;
10073 
10074         switch (opcode) {
10075         case 0x2e: /* FCMLT (zero) */
10076             swap = true;
10077             /* fallthrough */
10078         case 0x2c: /* FCMGT (zero) */
10079             genfn = gen_helper_neon_cgt_f64;
10080             break;
10081         case 0x2d: /* FCMEQ (zero) */
10082             genfn = gen_helper_neon_ceq_f64;
10083             break;
10084         case 0x6d: /* FCMLE (zero) */
10085             swap = true;
10086             /* fall through */
10087         case 0x6c: /* FCMGE (zero) */
10088             genfn = gen_helper_neon_cge_f64;
10089             break;
10090         default:
10091             g_assert_not_reached();
10092         }
10093 
10094         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10095             read_vec_element(s, tcg_op, rn, pass, MO_64);
10096             if (swap) {
10097                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10098             } else {
10099                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10100             }
10101             write_vec_element(s, tcg_res, rd, pass, MO_64);
10102         }
10103 
10104         clear_vec_high(s, !is_scalar, rd);
10105     } else {
10106         TCGv_i32 tcg_op = tcg_temp_new_i32();
10107         TCGv_i32 tcg_zero = tcg_constant_i32(0);
10108         TCGv_i32 tcg_res = tcg_temp_new_i32();
10109         NeonGenTwoSingleOpFn *genfn;
10110         bool swap = false;
10111         int pass, maxpasses;
10112 
10113         if (size == MO_16) {
10114             switch (opcode) {
10115             case 0x2e: /* FCMLT (zero) */
10116                 swap = true;
10117                 /* fall through */
10118             case 0x2c: /* FCMGT (zero) */
10119                 genfn = gen_helper_advsimd_cgt_f16;
10120                 break;
10121             case 0x2d: /* FCMEQ (zero) */
10122                 genfn = gen_helper_advsimd_ceq_f16;
10123                 break;
10124             case 0x6d: /* FCMLE (zero) */
10125                 swap = true;
10126                 /* fall through */
10127             case 0x6c: /* FCMGE (zero) */
10128                 genfn = gen_helper_advsimd_cge_f16;
10129                 break;
10130             default:
10131                 g_assert_not_reached();
10132             }
10133         } else {
10134             switch (opcode) {
10135             case 0x2e: /* FCMLT (zero) */
10136                 swap = true;
10137                 /* fall through */
10138             case 0x2c: /* FCMGT (zero) */
10139                 genfn = gen_helper_neon_cgt_f32;
10140                 break;
10141             case 0x2d: /* FCMEQ (zero) */
10142                 genfn = gen_helper_neon_ceq_f32;
10143                 break;
10144             case 0x6d: /* FCMLE (zero) */
10145                 swap = true;
10146                 /* fall through */
10147             case 0x6c: /* FCMGE (zero) */
10148                 genfn = gen_helper_neon_cge_f32;
10149                 break;
10150             default:
10151                 g_assert_not_reached();
10152             }
10153         }
10154 
10155         if (is_scalar) {
10156             maxpasses = 1;
10157         } else {
10158             int vector_size = 8 << is_q;
10159             maxpasses = vector_size >> size;
10160         }
10161 
10162         for (pass = 0; pass < maxpasses; pass++) {
10163             read_vec_element_i32(s, tcg_op, rn, pass, size);
10164             if (swap) {
10165                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10166             } else {
10167                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10168             }
10169             if (is_scalar) {
10170                 write_fp_sreg(s, rd, tcg_res);
10171             } else {
10172                 write_vec_element_i32(s, tcg_res, rd, pass, size);
10173             }
10174         }
10175 
10176         if (!is_scalar) {
10177             clear_vec_high(s, is_q, rd);
10178         }
10179     }
10180 }
10181 
handle_2misc_reciprocal(DisasContext * s,int opcode,bool is_scalar,bool is_u,bool is_q,int size,int rn,int rd)10182 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10183                                     bool is_scalar, bool is_u, bool is_q,
10184                                     int size, int rn, int rd)
10185 {
10186     bool is_double = (size == 3);
10187     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10188 
10189     if (is_double) {
10190         TCGv_i64 tcg_op = tcg_temp_new_i64();
10191         TCGv_i64 tcg_res = tcg_temp_new_i64();
10192         int pass;
10193 
10194         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10195             read_vec_element(s, tcg_op, rn, pass, MO_64);
10196             switch (opcode) {
10197             case 0x3d: /* FRECPE */
10198                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10199                 break;
10200             case 0x3f: /* FRECPX */
10201                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10202                 break;
10203             case 0x7d: /* FRSQRTE */
10204                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10205                 break;
10206             default:
10207                 g_assert_not_reached();
10208             }
10209             write_vec_element(s, tcg_res, rd, pass, MO_64);
10210         }
10211         clear_vec_high(s, !is_scalar, rd);
10212     } else {
10213         TCGv_i32 tcg_op = tcg_temp_new_i32();
10214         TCGv_i32 tcg_res = tcg_temp_new_i32();
10215         int pass, maxpasses;
10216 
10217         if (is_scalar) {
10218             maxpasses = 1;
10219         } else {
10220             maxpasses = is_q ? 4 : 2;
10221         }
10222 
10223         for (pass = 0; pass < maxpasses; pass++) {
10224             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10225 
10226             switch (opcode) {
10227             case 0x3c: /* URECPE */
10228                 gen_helper_recpe_u32(tcg_res, tcg_op);
10229                 break;
10230             case 0x3d: /* FRECPE */
10231                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10232                 break;
10233             case 0x3f: /* FRECPX */
10234                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10235                 break;
10236             case 0x7d: /* FRSQRTE */
10237                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10238                 break;
10239             default:
10240                 g_assert_not_reached();
10241             }
10242 
10243             if (is_scalar) {
10244                 write_fp_sreg(s, rd, tcg_res);
10245             } else {
10246                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10247             }
10248         }
10249         if (!is_scalar) {
10250             clear_vec_high(s, is_q, rd);
10251         }
10252     }
10253 }
10254 
handle_2misc_narrow(DisasContext * s,bool scalar,int opcode,bool u,bool is_q,int size,int rn,int rd)10255 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10256                                 int opcode, bool u, bool is_q,
10257                                 int size, int rn, int rd)
10258 {
10259     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10260      * in the source becomes a size element in the destination).
10261      */
10262     int pass;
10263     TCGv_i64 tcg_res[2];
10264     int destelt = is_q ? 2 : 0;
10265     int passes = scalar ? 1 : 2;
10266 
10267     if (scalar) {
10268         tcg_res[1] = tcg_constant_i64(0);
10269     }
10270 
10271     for (pass = 0; pass < passes; pass++) {
10272         TCGv_i64 tcg_op = tcg_temp_new_i64();
10273         NeonGenOne64OpFn *genfn = NULL;
10274         NeonGenOne64OpEnvFn *genenvfn = NULL;
10275 
10276         if (scalar) {
10277             read_vec_element(s, tcg_op, rn, pass, size + 1);
10278         } else {
10279             read_vec_element(s, tcg_op, rn, pass, MO_64);
10280         }
10281         tcg_res[pass] = tcg_temp_new_i64();
10282 
10283         switch (opcode) {
10284         case 0x12: /* XTN, SQXTUN */
10285         {
10286             static NeonGenOne64OpFn * const xtnfns[3] = {
10287                 gen_helper_neon_narrow_u8,
10288                 gen_helper_neon_narrow_u16,
10289                 tcg_gen_ext32u_i64,
10290             };
10291             static NeonGenOne64OpEnvFn * const sqxtunfns[3] = {
10292                 gen_helper_neon_unarrow_sat8,
10293                 gen_helper_neon_unarrow_sat16,
10294                 gen_helper_neon_unarrow_sat32,
10295             };
10296             if (u) {
10297                 genenvfn = sqxtunfns[size];
10298             } else {
10299                 genfn = xtnfns[size];
10300             }
10301             break;
10302         }
10303         case 0x14: /* SQXTN, UQXTN */
10304         {
10305             static NeonGenOne64OpEnvFn * const fns[3][2] = {
10306                 { gen_helper_neon_narrow_sat_s8,
10307                   gen_helper_neon_narrow_sat_u8 },
10308                 { gen_helper_neon_narrow_sat_s16,
10309                   gen_helper_neon_narrow_sat_u16 },
10310                 { gen_helper_neon_narrow_sat_s32,
10311                   gen_helper_neon_narrow_sat_u32 },
10312             };
10313             genenvfn = fns[size][u];
10314             break;
10315         }
10316         case 0x16: /* FCVTN, FCVTN2 */
10317             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10318             if (size == 2) {
10319                 TCGv_i32 tmp = tcg_temp_new_i32();
10320                 gen_helper_vfp_fcvtsd(tmp, tcg_op, tcg_env);
10321                 tcg_gen_extu_i32_i64(tcg_res[pass], tmp);
10322             } else {
10323                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10324                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10325                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10326                 TCGv_i32 ahp = get_ahp_flag();
10327 
10328                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10329                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10330                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10331                 tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16);
10332                 tcg_gen_extu_i32_i64(tcg_res[pass], tcg_lo);
10333             }
10334             break;
10335         case 0x36: /* BFCVTN, BFCVTN2 */
10336             {
10337                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10338                 TCGv_i32 tmp = tcg_temp_new_i32();
10339                 gen_helper_bfcvt_pair(tmp, tcg_op, fpst);
10340                 tcg_gen_extu_i32_i64(tcg_res[pass], tmp);
10341             }
10342             break;
10343         case 0x56:  /* FCVTXN, FCVTXN2 */
10344             {
10345                 /*
10346                  * 64 bit to 32 bit float conversion
10347                  * with von Neumann rounding (round to odd)
10348                  */
10349                 TCGv_i32 tmp = tcg_temp_new_i32();
10350                 assert(size == 2);
10351                 gen_helper_fcvtx_f64_to_f32(tmp, tcg_op, tcg_env);
10352                 tcg_gen_extu_i32_i64(tcg_res[pass], tmp);
10353             }
10354             break;
10355         default:
10356             g_assert_not_reached();
10357         }
10358 
10359         if (genfn) {
10360             genfn(tcg_res[pass], tcg_op);
10361         } else if (genenvfn) {
10362             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10363         }
10364     }
10365 
10366     for (pass = 0; pass < 2; pass++) {
10367         write_vec_element(s, tcg_res[pass], rd, destelt + pass, MO_32);
10368     }
10369     clear_vec_high(s, is_q, rd);
10370 }
10371 
10372 /* AdvSIMD scalar two reg misc
10373  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10374  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10375  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10376  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10377  */
disas_simd_scalar_two_reg_misc(DisasContext * s,uint32_t insn)10378 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10379 {
10380     int rd = extract32(insn, 0, 5);
10381     int rn = extract32(insn, 5, 5);
10382     int opcode = extract32(insn, 12, 5);
10383     int size = extract32(insn, 22, 2);
10384     bool u = extract32(insn, 29, 1);
10385     bool is_fcvt = false;
10386     int rmode;
10387     TCGv_i32 tcg_rmode;
10388     TCGv_ptr tcg_fpstatus;
10389 
10390     switch (opcode) {
10391     case 0x7: /* SQABS / SQNEG */
10392         break;
10393     case 0xa: /* CMLT */
10394         if (u) {
10395             unallocated_encoding(s);
10396             return;
10397         }
10398         /* fall through */
10399     case 0x8: /* CMGT, CMGE */
10400     case 0x9: /* CMEQ, CMLE */
10401     case 0xb: /* ABS, NEG */
10402         if (size != 3) {
10403             unallocated_encoding(s);
10404             return;
10405         }
10406         break;
10407     case 0x12: /* SQXTUN */
10408         if (!u) {
10409             unallocated_encoding(s);
10410             return;
10411         }
10412         /* fall through */
10413     case 0x14: /* SQXTN, UQXTN */
10414         if (size == 3) {
10415             unallocated_encoding(s);
10416             return;
10417         }
10418         if (!fp_access_check(s)) {
10419             return;
10420         }
10421         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10422         return;
10423     case 0xc ... 0xf:
10424     case 0x16 ... 0x1d:
10425     case 0x1f:
10426         /* Floating point: U, size[1] and opcode indicate operation;
10427          * size[0] indicates single or double precision.
10428          */
10429         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10430         size = extract32(size, 0, 1) ? 3 : 2;
10431         switch (opcode) {
10432         case 0x2c: /* FCMGT (zero) */
10433         case 0x2d: /* FCMEQ (zero) */
10434         case 0x2e: /* FCMLT (zero) */
10435         case 0x6c: /* FCMGE (zero) */
10436         case 0x6d: /* FCMLE (zero) */
10437             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10438             return;
10439         case 0x1d: /* SCVTF */
10440         case 0x5d: /* UCVTF */
10441         {
10442             bool is_signed = (opcode == 0x1d);
10443             if (!fp_access_check(s)) {
10444                 return;
10445             }
10446             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10447             return;
10448         }
10449         case 0x3d: /* FRECPE */
10450         case 0x3f: /* FRECPX */
10451         case 0x7d: /* FRSQRTE */
10452             if (!fp_access_check(s)) {
10453                 return;
10454             }
10455             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10456             return;
10457         case 0x1a: /* FCVTNS */
10458         case 0x1b: /* FCVTMS */
10459         case 0x3a: /* FCVTPS */
10460         case 0x3b: /* FCVTZS */
10461         case 0x5a: /* FCVTNU */
10462         case 0x5b: /* FCVTMU */
10463         case 0x7a: /* FCVTPU */
10464         case 0x7b: /* FCVTZU */
10465             is_fcvt = true;
10466             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10467             break;
10468         case 0x1c: /* FCVTAS */
10469         case 0x5c: /* FCVTAU */
10470             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10471             is_fcvt = true;
10472             rmode = FPROUNDING_TIEAWAY;
10473             break;
10474         case 0x56: /* FCVTXN, FCVTXN2 */
10475             if (size == 2) {
10476                 unallocated_encoding(s);
10477                 return;
10478             }
10479             if (!fp_access_check(s)) {
10480                 return;
10481             }
10482             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10483             return;
10484         default:
10485             unallocated_encoding(s);
10486             return;
10487         }
10488         break;
10489     default:
10490     case 0x3: /* USQADD / SUQADD */
10491         unallocated_encoding(s);
10492         return;
10493     }
10494 
10495     if (!fp_access_check(s)) {
10496         return;
10497     }
10498 
10499     if (is_fcvt) {
10500         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10501         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10502     } else {
10503         tcg_fpstatus = NULL;
10504         tcg_rmode = NULL;
10505     }
10506 
10507     if (size == 3) {
10508         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10509         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10510 
10511         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10512         write_fp_dreg(s, rd, tcg_rd);
10513     } else {
10514         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10515         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10516 
10517         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10518 
10519         switch (opcode) {
10520         case 0x7: /* SQABS, SQNEG */
10521         {
10522             NeonGenOneOpEnvFn *genfn;
10523             static NeonGenOneOpEnvFn * const fns[3][2] = {
10524                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10525                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10526                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10527             };
10528             genfn = fns[size][u];
10529             genfn(tcg_rd, tcg_env, tcg_rn);
10530             break;
10531         }
10532         case 0x1a: /* FCVTNS */
10533         case 0x1b: /* FCVTMS */
10534         case 0x1c: /* FCVTAS */
10535         case 0x3a: /* FCVTPS */
10536         case 0x3b: /* FCVTZS */
10537             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10538                                  tcg_fpstatus);
10539             break;
10540         case 0x5a: /* FCVTNU */
10541         case 0x5b: /* FCVTMU */
10542         case 0x5c: /* FCVTAU */
10543         case 0x7a: /* FCVTPU */
10544         case 0x7b: /* FCVTZU */
10545             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10546                                  tcg_fpstatus);
10547             break;
10548         default:
10549             g_assert_not_reached();
10550         }
10551 
10552         write_fp_sreg(s, rd, tcg_rd);
10553     }
10554 
10555     if (is_fcvt) {
10556         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10557     }
10558 }
10559 
10560 /* AdvSIMD shift by immediate
10561  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10562  * +---+---+---+-------------+------+------+--------+---+------+------+
10563  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10564  * +---+---+---+-------------+------+------+--------+---+------+------+
10565  */
disas_simd_shift_imm(DisasContext * s,uint32_t insn)10566 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10567 {
10568     int rd = extract32(insn, 0, 5);
10569     int rn = extract32(insn, 5, 5);
10570     int opcode = extract32(insn, 11, 5);
10571     int immb = extract32(insn, 16, 3);
10572     int immh = extract32(insn, 19, 4);
10573     bool is_u = extract32(insn, 29, 1);
10574     bool is_q = extract32(insn, 30, 1);
10575 
10576     if (immh == 0) {
10577         unallocated_encoding(s);
10578         return;
10579     }
10580 
10581     switch (opcode) {
10582     case 0x1c: /* SCVTF / UCVTF */
10583         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10584                                      opcode, rn, rd);
10585         break;
10586     case 0x1f: /* FCVTZS/ FCVTZU */
10587         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10588         return;
10589     default:
10590     case 0x00: /* SSHR / USHR */
10591     case 0x02: /* SSRA / USRA (accumulate) */
10592     case 0x04: /* SRSHR / URSHR (rounding) */
10593     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10594     case 0x08: /* SRI */
10595     case 0x0a: /* SHL / SLI */
10596     case 0x0c: /* SQSHLU */
10597     case 0x0e: /* SQSHL, UQSHL */
10598     case 0x10: /* SHRN / SQSHRUN */
10599     case 0x11: /* RSHRN / SQRSHRUN */
10600     case 0x12: /* SQSHRN / UQSHRN */
10601     case 0x13: /* SQRSHRN / UQRSHRN */
10602     case 0x14: /* SSHLL / USHLL */
10603         unallocated_encoding(s);
10604         return;
10605     }
10606 }
10607 
handle_2misc_widening(DisasContext * s,int opcode,bool is_q,int size,int rn,int rd)10608 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10609                                   int size, int rn, int rd)
10610 {
10611     /* Handle 2-reg-misc ops which are widening (so each size element
10612      * in the source becomes a 2*size element in the destination.
10613      * The only instruction like this is FCVTL.
10614      */
10615     int pass;
10616 
10617     if (size == 3) {
10618         /* 32 -> 64 bit fp conversion */
10619         TCGv_i64 tcg_res[2];
10620         int srcelt = is_q ? 2 : 0;
10621 
10622         for (pass = 0; pass < 2; pass++) {
10623             TCGv_i32 tcg_op = tcg_temp_new_i32();
10624             tcg_res[pass] = tcg_temp_new_i64();
10625 
10626             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10627             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
10628         }
10629         for (pass = 0; pass < 2; pass++) {
10630             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10631         }
10632     } else {
10633         /* 16 -> 32 bit fp conversion */
10634         int srcelt = is_q ? 4 : 0;
10635         TCGv_i32 tcg_res[4];
10636         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10637         TCGv_i32 ahp = get_ahp_flag();
10638 
10639         for (pass = 0; pass < 4; pass++) {
10640             tcg_res[pass] = tcg_temp_new_i32();
10641 
10642             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10643             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10644                                            fpst, ahp);
10645         }
10646         for (pass = 0; pass < 4; pass++) {
10647             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10648         }
10649     }
10650 }
10651 
handle_rev(DisasContext * s,int opcode,bool u,bool is_q,int size,int rn,int rd)10652 static void handle_rev(DisasContext *s, int opcode, bool u,
10653                        bool is_q, int size, int rn, int rd)
10654 {
10655     int op = (opcode << 1) | u;
10656     int opsz = op + size;
10657     int grp_size = 3 - opsz;
10658     int dsize = is_q ? 128 : 64;
10659     int i;
10660 
10661     if (opsz >= 3) {
10662         unallocated_encoding(s);
10663         return;
10664     }
10665 
10666     if (!fp_access_check(s)) {
10667         return;
10668     }
10669 
10670     if (size == 0) {
10671         /* Special case bytes, use bswap op on each group of elements */
10672         int groups = dsize / (8 << grp_size);
10673 
10674         for (i = 0; i < groups; i++) {
10675             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
10676 
10677             read_vec_element(s, tcg_tmp, rn, i, grp_size);
10678             switch (grp_size) {
10679             case MO_16:
10680                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10681                 break;
10682             case MO_32:
10683                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10684                 break;
10685             case MO_64:
10686                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
10687                 break;
10688             default:
10689                 g_assert_not_reached();
10690             }
10691             write_vec_element(s, tcg_tmp, rd, i, grp_size);
10692         }
10693         clear_vec_high(s, is_q, rd);
10694     } else {
10695         int revmask = (1 << grp_size) - 1;
10696         int esize = 8 << size;
10697         int elements = dsize / esize;
10698         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10699         TCGv_i64 tcg_rd[2];
10700 
10701         for (i = 0; i < 2; i++) {
10702             tcg_rd[i] = tcg_temp_new_i64();
10703             tcg_gen_movi_i64(tcg_rd[i], 0);
10704         }
10705 
10706         for (i = 0; i < elements; i++) {
10707             int e_rev = (i & 0xf) ^ revmask;
10708             int w = (e_rev * esize) / 64;
10709             int o = (e_rev * esize) % 64;
10710 
10711             read_vec_element(s, tcg_rn, rn, i, size);
10712             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
10713         }
10714 
10715         for (i = 0; i < 2; i++) {
10716             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
10717         }
10718         clear_vec_high(s, true, rd);
10719     }
10720 }
10721 
handle_2misc_pairwise(DisasContext * s,int opcode,bool u,bool is_q,int size,int rn,int rd)10722 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
10723                                   bool is_q, int size, int rn, int rd)
10724 {
10725     /* Implement the pairwise operations from 2-misc:
10726      * SADDLP, UADDLP, SADALP, UADALP.
10727      * These all add pairs of elements in the input to produce a
10728      * double-width result element in the output (possibly accumulating).
10729      */
10730     bool accum = (opcode == 0x6);
10731     int maxpass = is_q ? 2 : 1;
10732     int pass;
10733     TCGv_i64 tcg_res[2];
10734 
10735     if (size == 2) {
10736         /* 32 + 32 -> 64 op */
10737         MemOp memop = size + (u ? 0 : MO_SIGN);
10738 
10739         for (pass = 0; pass < maxpass; pass++) {
10740             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10741             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10742 
10743             tcg_res[pass] = tcg_temp_new_i64();
10744 
10745             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
10746             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
10747             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10748             if (accum) {
10749                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
10750                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
10751             }
10752         }
10753     } else {
10754         for (pass = 0; pass < maxpass; pass++) {
10755             TCGv_i64 tcg_op = tcg_temp_new_i64();
10756             NeonGenOne64OpFn *genfn;
10757             static NeonGenOne64OpFn * const fns[2][2] = {
10758                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
10759                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
10760             };
10761 
10762             genfn = fns[size][u];
10763 
10764             tcg_res[pass] = tcg_temp_new_i64();
10765 
10766             read_vec_element(s, tcg_op, rn, pass, MO_64);
10767             genfn(tcg_res[pass], tcg_op);
10768 
10769             if (accum) {
10770                 read_vec_element(s, tcg_op, rd, pass, MO_64);
10771                 if (size == 0) {
10772                     gen_helper_neon_addl_u16(tcg_res[pass],
10773                                              tcg_res[pass], tcg_op);
10774                 } else {
10775                     gen_helper_neon_addl_u32(tcg_res[pass],
10776                                              tcg_res[pass], tcg_op);
10777                 }
10778             }
10779         }
10780     }
10781     if (!is_q) {
10782         tcg_res[1] = tcg_constant_i64(0);
10783     }
10784     for (pass = 0; pass < 2; pass++) {
10785         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10786     }
10787 }
10788 
handle_shll(DisasContext * s,bool is_q,int size,int rn,int rd)10789 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
10790 {
10791     /* Implement SHLL and SHLL2 */
10792     int pass;
10793     int part = is_q ? 2 : 0;
10794     TCGv_i64 tcg_res[2];
10795 
10796     for (pass = 0; pass < 2; pass++) {
10797         static NeonGenWidenFn * const widenfns[3] = {
10798             gen_helper_neon_widen_u8,
10799             gen_helper_neon_widen_u16,
10800             tcg_gen_extu_i32_i64,
10801         };
10802         NeonGenWidenFn *widenfn = widenfns[size];
10803         TCGv_i32 tcg_op = tcg_temp_new_i32();
10804 
10805         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
10806         tcg_res[pass] = tcg_temp_new_i64();
10807         widenfn(tcg_res[pass], tcg_op);
10808         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
10809     }
10810 
10811     for (pass = 0; pass < 2; pass++) {
10812         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10813     }
10814 }
10815 
10816 /* AdvSIMD two reg misc
10817  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10818  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
10819  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10820  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
10821  */
disas_simd_two_reg_misc(DisasContext * s,uint32_t insn)10822 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
10823 {
10824     int size = extract32(insn, 22, 2);
10825     int opcode = extract32(insn, 12, 5);
10826     bool u = extract32(insn, 29, 1);
10827     bool is_q = extract32(insn, 30, 1);
10828     int rn = extract32(insn, 5, 5);
10829     int rd = extract32(insn, 0, 5);
10830     bool need_fpstatus = false;
10831     int rmode = -1;
10832     TCGv_i32 tcg_rmode;
10833     TCGv_ptr tcg_fpstatus;
10834 
10835     switch (opcode) {
10836     case 0x0: /* REV64, REV32 */
10837     case 0x1: /* REV16 */
10838         handle_rev(s, opcode, u, is_q, size, rn, rd);
10839         return;
10840     case 0x5: /* CNT, NOT, RBIT */
10841         if (u && size == 0) {
10842             /* NOT */
10843             break;
10844         } else if (u && size == 1) {
10845             /* RBIT */
10846             break;
10847         } else if (!u && size == 0) {
10848             /* CNT */
10849             break;
10850         }
10851         unallocated_encoding(s);
10852         return;
10853     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
10854     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
10855         if (size == 3) {
10856             unallocated_encoding(s);
10857             return;
10858         }
10859         if (!fp_access_check(s)) {
10860             return;
10861         }
10862 
10863         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
10864         return;
10865     case 0x4: /* CLS, CLZ */
10866         if (size == 3) {
10867             unallocated_encoding(s);
10868             return;
10869         }
10870         break;
10871     case 0x2: /* SADDLP, UADDLP */
10872     case 0x6: /* SADALP, UADALP */
10873         if (size == 3) {
10874             unallocated_encoding(s);
10875             return;
10876         }
10877         if (!fp_access_check(s)) {
10878             return;
10879         }
10880         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
10881         return;
10882     case 0x13: /* SHLL, SHLL2 */
10883         if (u == 0 || size == 3) {
10884             unallocated_encoding(s);
10885             return;
10886         }
10887         if (!fp_access_check(s)) {
10888             return;
10889         }
10890         handle_shll(s, is_q, size, rn, rd);
10891         return;
10892     case 0xa: /* CMLT */
10893         if (u == 1) {
10894             unallocated_encoding(s);
10895             return;
10896         }
10897         /* fall through */
10898     case 0x8: /* CMGT, CMGE */
10899     case 0x9: /* CMEQ, CMLE */
10900     case 0xb: /* ABS, NEG */
10901         if (size == 3 && !is_q) {
10902             unallocated_encoding(s);
10903             return;
10904         }
10905         break;
10906     case 0x7: /* SQABS, SQNEG */
10907         if (size == 3 && !is_q) {
10908             unallocated_encoding(s);
10909             return;
10910         }
10911         break;
10912     case 0xc ... 0xf:
10913     case 0x16 ... 0x1f:
10914     {
10915         /* Floating point: U, size[1] and opcode indicate operation;
10916          * size[0] indicates single or double precision.
10917          */
10918         int is_double = extract32(size, 0, 1);
10919         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10920         size = is_double ? 3 : 2;
10921         switch (opcode) {
10922         case 0x2f: /* FABS */
10923         case 0x6f: /* FNEG */
10924             if (size == 3 && !is_q) {
10925                 unallocated_encoding(s);
10926                 return;
10927             }
10928             break;
10929         case 0x1d: /* SCVTF */
10930         case 0x5d: /* UCVTF */
10931         {
10932             bool is_signed = (opcode == 0x1d) ? true : false;
10933             int elements = is_double ? 2 : is_q ? 4 : 2;
10934             if (is_double && !is_q) {
10935                 unallocated_encoding(s);
10936                 return;
10937             }
10938             if (!fp_access_check(s)) {
10939                 return;
10940             }
10941             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10942             return;
10943         }
10944         case 0x2c: /* FCMGT (zero) */
10945         case 0x2d: /* FCMEQ (zero) */
10946         case 0x2e: /* FCMLT (zero) */
10947         case 0x6c: /* FCMGE (zero) */
10948         case 0x6d: /* FCMLE (zero) */
10949             if (size == 3 && !is_q) {
10950                 unallocated_encoding(s);
10951                 return;
10952             }
10953             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10954             return;
10955         case 0x7f: /* FSQRT */
10956             if (size == 3 && !is_q) {
10957                 unallocated_encoding(s);
10958                 return;
10959             }
10960             break;
10961         case 0x1a: /* FCVTNS */
10962         case 0x1b: /* FCVTMS */
10963         case 0x3a: /* FCVTPS */
10964         case 0x3b: /* FCVTZS */
10965         case 0x5a: /* FCVTNU */
10966         case 0x5b: /* FCVTMU */
10967         case 0x7a: /* FCVTPU */
10968         case 0x7b: /* FCVTZU */
10969             need_fpstatus = true;
10970             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10971             if (size == 3 && !is_q) {
10972                 unallocated_encoding(s);
10973                 return;
10974             }
10975             break;
10976         case 0x5c: /* FCVTAU */
10977         case 0x1c: /* FCVTAS */
10978             need_fpstatus = true;
10979             rmode = FPROUNDING_TIEAWAY;
10980             if (size == 3 && !is_q) {
10981                 unallocated_encoding(s);
10982                 return;
10983             }
10984             break;
10985         case 0x3c: /* URECPE */
10986             if (size == 3) {
10987                 unallocated_encoding(s);
10988                 return;
10989             }
10990             /* fall through */
10991         case 0x3d: /* FRECPE */
10992         case 0x7d: /* FRSQRTE */
10993             if (size == 3 && !is_q) {
10994                 unallocated_encoding(s);
10995                 return;
10996             }
10997             if (!fp_access_check(s)) {
10998                 return;
10999             }
11000             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11001             return;
11002         case 0x56: /* FCVTXN, FCVTXN2 */
11003             if (size == 2) {
11004                 unallocated_encoding(s);
11005                 return;
11006             }
11007             /* fall through */
11008         case 0x16: /* FCVTN, FCVTN2 */
11009             /* handle_2misc_narrow does a 2*size -> size operation, but these
11010              * instructions encode the source size rather than dest size.
11011              */
11012             if (!fp_access_check(s)) {
11013                 return;
11014             }
11015             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11016             return;
11017         case 0x36: /* BFCVTN, BFCVTN2 */
11018             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11019                 unallocated_encoding(s);
11020                 return;
11021             }
11022             if (!fp_access_check(s)) {
11023                 return;
11024             }
11025             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11026             return;
11027         case 0x17: /* FCVTL, FCVTL2 */
11028             if (!fp_access_check(s)) {
11029                 return;
11030             }
11031             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11032             return;
11033         case 0x18: /* FRINTN */
11034         case 0x19: /* FRINTM */
11035         case 0x38: /* FRINTP */
11036         case 0x39: /* FRINTZ */
11037             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11038             /* fall through */
11039         case 0x59: /* FRINTX */
11040         case 0x79: /* FRINTI */
11041             need_fpstatus = true;
11042             if (size == 3 && !is_q) {
11043                 unallocated_encoding(s);
11044                 return;
11045             }
11046             break;
11047         case 0x58: /* FRINTA */
11048             rmode = FPROUNDING_TIEAWAY;
11049             need_fpstatus = true;
11050             if (size == 3 && !is_q) {
11051                 unallocated_encoding(s);
11052                 return;
11053             }
11054             break;
11055         case 0x7c: /* URSQRTE */
11056             if (size == 3) {
11057                 unallocated_encoding(s);
11058                 return;
11059             }
11060             break;
11061         case 0x1e: /* FRINT32Z */
11062         case 0x1f: /* FRINT64Z */
11063             rmode = FPROUNDING_ZERO;
11064             /* fall through */
11065         case 0x5e: /* FRINT32X */
11066         case 0x5f: /* FRINT64X */
11067             need_fpstatus = true;
11068             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11069                 unallocated_encoding(s);
11070                 return;
11071             }
11072             break;
11073         default:
11074             unallocated_encoding(s);
11075             return;
11076         }
11077         break;
11078     }
11079     default:
11080     case 0x3: /* SUQADD, USQADD */
11081         unallocated_encoding(s);
11082         return;
11083     }
11084 
11085     if (!fp_access_check(s)) {
11086         return;
11087     }
11088 
11089     if (need_fpstatus || rmode >= 0) {
11090         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11091     } else {
11092         tcg_fpstatus = NULL;
11093     }
11094     if (rmode >= 0) {
11095         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11096     } else {
11097         tcg_rmode = NULL;
11098     }
11099 
11100     switch (opcode) {
11101     case 0x5:
11102         if (u && size == 0) { /* NOT */
11103             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11104             return;
11105         }
11106         break;
11107     case 0x8: /* CMGT, CMGE */
11108         if (u) {
11109             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11110         } else {
11111             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11112         }
11113         return;
11114     case 0x9: /* CMEQ, CMLE */
11115         if (u) {
11116             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11117         } else {
11118             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11119         }
11120         return;
11121     case 0xa: /* CMLT */
11122         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11123         return;
11124     case 0xb:
11125         if (u) { /* ABS, NEG */
11126             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11127         } else {
11128             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11129         }
11130         return;
11131     }
11132 
11133     if (size == 3) {
11134         /* All 64-bit element operations can be shared with scalar 2misc */
11135         int pass;
11136 
11137         /* Coverity claims (size == 3 && !is_q) has been eliminated
11138          * from all paths leading to here.
11139          */
11140         tcg_debug_assert(is_q);
11141         for (pass = 0; pass < 2; pass++) {
11142             TCGv_i64 tcg_op = tcg_temp_new_i64();
11143             TCGv_i64 tcg_res = tcg_temp_new_i64();
11144 
11145             read_vec_element(s, tcg_op, rn, pass, MO_64);
11146 
11147             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11148                             tcg_rmode, tcg_fpstatus);
11149 
11150             write_vec_element(s, tcg_res, rd, pass, MO_64);
11151         }
11152     } else {
11153         int pass;
11154 
11155         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11156             TCGv_i32 tcg_op = tcg_temp_new_i32();
11157             TCGv_i32 tcg_res = tcg_temp_new_i32();
11158 
11159             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11160 
11161             if (size == 2) {
11162                 /* Special cases for 32 bit elements */
11163                 switch (opcode) {
11164                 case 0x4: /* CLS */
11165                     if (u) {
11166                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11167                     } else {
11168                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11169                     }
11170                     break;
11171                 case 0x7: /* SQABS, SQNEG */
11172                     if (u) {
11173                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11174                     } else {
11175                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11176                     }
11177                     break;
11178                 case 0x2f: /* FABS */
11179                     gen_vfp_abss(tcg_res, tcg_op);
11180                     break;
11181                 case 0x6f: /* FNEG */
11182                     gen_vfp_negs(tcg_res, tcg_op);
11183                     break;
11184                 case 0x7f: /* FSQRT */
11185                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11186                     break;
11187                 case 0x1a: /* FCVTNS */
11188                 case 0x1b: /* FCVTMS */
11189                 case 0x1c: /* FCVTAS */
11190                 case 0x3a: /* FCVTPS */
11191                 case 0x3b: /* FCVTZS */
11192                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11193                                          tcg_constant_i32(0), tcg_fpstatus);
11194                     break;
11195                 case 0x5a: /* FCVTNU */
11196                 case 0x5b: /* FCVTMU */
11197                 case 0x5c: /* FCVTAU */
11198                 case 0x7a: /* FCVTPU */
11199                 case 0x7b: /* FCVTZU */
11200                     gen_helper_vfp_touls(tcg_res, tcg_op,
11201                                          tcg_constant_i32(0), tcg_fpstatus);
11202                     break;
11203                 case 0x18: /* FRINTN */
11204                 case 0x19: /* FRINTM */
11205                 case 0x38: /* FRINTP */
11206                 case 0x39: /* FRINTZ */
11207                 case 0x58: /* FRINTA */
11208                 case 0x79: /* FRINTI */
11209                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11210                     break;
11211                 case 0x59: /* FRINTX */
11212                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11213                     break;
11214                 case 0x7c: /* URSQRTE */
11215                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11216                     break;
11217                 case 0x1e: /* FRINT32Z */
11218                 case 0x5e: /* FRINT32X */
11219                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11220                     break;
11221                 case 0x1f: /* FRINT64Z */
11222                 case 0x5f: /* FRINT64X */
11223                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11224                     break;
11225                 default:
11226                     g_assert_not_reached();
11227                 }
11228             } else {
11229                 /* Use helpers for 8 and 16 bit elements */
11230                 switch (opcode) {
11231                 case 0x5: /* CNT, RBIT */
11232                     /* For these two insns size is part of the opcode specifier
11233                      * (handled earlier); they always operate on byte elements.
11234                      */
11235                     if (u) {
11236                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11237                     } else {
11238                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11239                     }
11240                     break;
11241                 case 0x7: /* SQABS, SQNEG */
11242                 {
11243                     NeonGenOneOpEnvFn *genfn;
11244                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11245                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11246                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11247                     };
11248                     genfn = fns[size][u];
11249                     genfn(tcg_res, tcg_env, tcg_op);
11250                     break;
11251                 }
11252                 case 0x4: /* CLS, CLZ */
11253                     if (u) {
11254                         if (size == 0) {
11255                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11256                         } else {
11257                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11258                         }
11259                     } else {
11260                         if (size == 0) {
11261                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11262                         } else {
11263                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11264                         }
11265                     }
11266                     break;
11267                 default:
11268                     g_assert_not_reached();
11269                 }
11270             }
11271 
11272             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11273         }
11274     }
11275     clear_vec_high(s, is_q, rd);
11276 
11277     if (tcg_rmode) {
11278         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11279     }
11280 }
11281 
11282 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11283  *
11284  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11285  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11286  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11287  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11288  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11289  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11290  *
11291  * This actually covers two groups where scalar access is governed by
11292  * bit 28. A bunch of the instructions (float to integral) only exist
11293  * in the vector form and are un-allocated for the scalar decode. Also
11294  * in the scalar decode Q is always 1.
11295  */
disas_simd_two_reg_misc_fp16(DisasContext * s,uint32_t insn)11296 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11297 {
11298     int fpop, opcode, a, u;
11299     int rn, rd;
11300     bool is_q;
11301     bool is_scalar;
11302     bool only_in_vector = false;
11303 
11304     int pass;
11305     TCGv_i32 tcg_rmode = NULL;
11306     TCGv_ptr tcg_fpstatus = NULL;
11307     bool need_fpst = true;
11308     int rmode = -1;
11309 
11310     if (!dc_isar_feature(aa64_fp16, s)) {
11311         unallocated_encoding(s);
11312         return;
11313     }
11314 
11315     rd = extract32(insn, 0, 5);
11316     rn = extract32(insn, 5, 5);
11317 
11318     a = extract32(insn, 23, 1);
11319     u = extract32(insn, 29, 1);
11320     is_scalar = extract32(insn, 28, 1);
11321     is_q = extract32(insn, 30, 1);
11322 
11323     opcode = extract32(insn, 12, 5);
11324     fpop = deposit32(opcode, 5, 1, a);
11325     fpop = deposit32(fpop, 6, 1, u);
11326 
11327     switch (fpop) {
11328     case 0x1d: /* SCVTF */
11329     case 0x5d: /* UCVTF */
11330     {
11331         int elements;
11332 
11333         if (is_scalar) {
11334             elements = 1;
11335         } else {
11336             elements = (is_q ? 8 : 4);
11337         }
11338 
11339         if (!fp_access_check(s)) {
11340             return;
11341         }
11342         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11343         return;
11344     }
11345     break;
11346     case 0x2c: /* FCMGT (zero) */
11347     case 0x2d: /* FCMEQ (zero) */
11348     case 0x2e: /* FCMLT (zero) */
11349     case 0x6c: /* FCMGE (zero) */
11350     case 0x6d: /* FCMLE (zero) */
11351         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11352         return;
11353     case 0x3d: /* FRECPE */
11354     case 0x3f: /* FRECPX */
11355         break;
11356     case 0x18: /* FRINTN */
11357         only_in_vector = true;
11358         rmode = FPROUNDING_TIEEVEN;
11359         break;
11360     case 0x19: /* FRINTM */
11361         only_in_vector = true;
11362         rmode = FPROUNDING_NEGINF;
11363         break;
11364     case 0x38: /* FRINTP */
11365         only_in_vector = true;
11366         rmode = FPROUNDING_POSINF;
11367         break;
11368     case 0x39: /* FRINTZ */
11369         only_in_vector = true;
11370         rmode = FPROUNDING_ZERO;
11371         break;
11372     case 0x58: /* FRINTA */
11373         only_in_vector = true;
11374         rmode = FPROUNDING_TIEAWAY;
11375         break;
11376     case 0x59: /* FRINTX */
11377     case 0x79: /* FRINTI */
11378         only_in_vector = true;
11379         /* current rounding mode */
11380         break;
11381     case 0x1a: /* FCVTNS */
11382         rmode = FPROUNDING_TIEEVEN;
11383         break;
11384     case 0x1b: /* FCVTMS */
11385         rmode = FPROUNDING_NEGINF;
11386         break;
11387     case 0x1c: /* FCVTAS */
11388         rmode = FPROUNDING_TIEAWAY;
11389         break;
11390     case 0x3a: /* FCVTPS */
11391         rmode = FPROUNDING_POSINF;
11392         break;
11393     case 0x3b: /* FCVTZS */
11394         rmode = FPROUNDING_ZERO;
11395         break;
11396     case 0x5a: /* FCVTNU */
11397         rmode = FPROUNDING_TIEEVEN;
11398         break;
11399     case 0x5b: /* FCVTMU */
11400         rmode = FPROUNDING_NEGINF;
11401         break;
11402     case 0x5c: /* FCVTAU */
11403         rmode = FPROUNDING_TIEAWAY;
11404         break;
11405     case 0x7a: /* FCVTPU */
11406         rmode = FPROUNDING_POSINF;
11407         break;
11408     case 0x7b: /* FCVTZU */
11409         rmode = FPROUNDING_ZERO;
11410         break;
11411     case 0x2f: /* FABS */
11412     case 0x6f: /* FNEG */
11413         need_fpst = false;
11414         break;
11415     case 0x7d: /* FRSQRTE */
11416     case 0x7f: /* FSQRT (vector) */
11417         break;
11418     default:
11419         unallocated_encoding(s);
11420         return;
11421     }
11422 
11423 
11424     /* Check additional constraints for the scalar encoding */
11425     if (is_scalar) {
11426         if (!is_q) {
11427             unallocated_encoding(s);
11428             return;
11429         }
11430         /* FRINTxx is only in the vector form */
11431         if (only_in_vector) {
11432             unallocated_encoding(s);
11433             return;
11434         }
11435     }
11436 
11437     if (!fp_access_check(s)) {
11438         return;
11439     }
11440 
11441     if (rmode >= 0 || need_fpst) {
11442         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11443     }
11444 
11445     if (rmode >= 0) {
11446         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11447     }
11448 
11449     if (is_scalar) {
11450         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11451         TCGv_i32 tcg_res = tcg_temp_new_i32();
11452 
11453         switch (fpop) {
11454         case 0x1a: /* FCVTNS */
11455         case 0x1b: /* FCVTMS */
11456         case 0x1c: /* FCVTAS */
11457         case 0x3a: /* FCVTPS */
11458         case 0x3b: /* FCVTZS */
11459             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11460             break;
11461         case 0x3d: /* FRECPE */
11462             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11463             break;
11464         case 0x3f: /* FRECPX */
11465             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11466             break;
11467         case 0x5a: /* FCVTNU */
11468         case 0x5b: /* FCVTMU */
11469         case 0x5c: /* FCVTAU */
11470         case 0x7a: /* FCVTPU */
11471         case 0x7b: /* FCVTZU */
11472             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11473             break;
11474         case 0x6f: /* FNEG */
11475             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11476             break;
11477         case 0x7d: /* FRSQRTE */
11478             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11479             break;
11480         default:
11481             g_assert_not_reached();
11482         }
11483 
11484         /* limit any sign extension going on */
11485         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11486         write_fp_sreg(s, rd, tcg_res);
11487     } else {
11488         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11489             TCGv_i32 tcg_op = tcg_temp_new_i32();
11490             TCGv_i32 tcg_res = tcg_temp_new_i32();
11491 
11492             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11493 
11494             switch (fpop) {
11495             case 0x1a: /* FCVTNS */
11496             case 0x1b: /* FCVTMS */
11497             case 0x1c: /* FCVTAS */
11498             case 0x3a: /* FCVTPS */
11499             case 0x3b: /* FCVTZS */
11500                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11501                 break;
11502             case 0x3d: /* FRECPE */
11503                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11504                 break;
11505             case 0x5a: /* FCVTNU */
11506             case 0x5b: /* FCVTMU */
11507             case 0x5c: /* FCVTAU */
11508             case 0x7a: /* FCVTPU */
11509             case 0x7b: /* FCVTZU */
11510                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11511                 break;
11512             case 0x18: /* FRINTN */
11513             case 0x19: /* FRINTM */
11514             case 0x38: /* FRINTP */
11515             case 0x39: /* FRINTZ */
11516             case 0x58: /* FRINTA */
11517             case 0x79: /* FRINTI */
11518                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11519                 break;
11520             case 0x59: /* FRINTX */
11521                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11522                 break;
11523             case 0x2f: /* FABS */
11524                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11525                 break;
11526             case 0x6f: /* FNEG */
11527                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11528                 break;
11529             case 0x7d: /* FRSQRTE */
11530                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11531                 break;
11532             case 0x7f: /* FSQRT */
11533                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11534                 break;
11535             default:
11536                 g_assert_not_reached();
11537             }
11538 
11539             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11540         }
11541 
11542         clear_vec_high(s, is_q, rd);
11543     }
11544 
11545     if (tcg_rmode) {
11546         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11547     }
11548 }
11549 
11550 /* C3.6 Data processing - SIMD, inc Crypto
11551  *
11552  * As the decode gets a little complex we are using a table based
11553  * approach for this part of the decode.
11554  */
11555 static const AArch64DecodeTable data_proc_simd[] = {
11556     /* pattern  ,  mask     ,  fn                        */
11557     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11558     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11559     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11560     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11561     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
11562     { 0x00000000, 0x00000000, NULL }
11563 };
11564 
disas_data_proc_simd(DisasContext * s,uint32_t insn)11565 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11566 {
11567     /* Note that this is called with all non-FP cases from
11568      * table C3-6 so it must UNDEF for entries not specifically
11569      * allocated to instructions in that table.
11570      */
11571     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11572     if (fn) {
11573         fn(s, insn);
11574     } else {
11575         unallocated_encoding(s);
11576     }
11577 }
11578 
11579 /* C3.6 Data processing - SIMD and floating point */
disas_data_proc_simd_fp(DisasContext * s,uint32_t insn)11580 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11581 {
11582     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11583         disas_data_proc_fp(s, insn);
11584     } else {
11585         /* SIMD, including crypto */
11586         disas_data_proc_simd(s, insn);
11587     }
11588 }
11589 
trans_OK(DisasContext * s,arg_OK * a)11590 static bool trans_OK(DisasContext *s, arg_OK *a)
11591 {
11592     return true;
11593 }
11594 
trans_FAIL(DisasContext * s,arg_OK * a)11595 static bool trans_FAIL(DisasContext *s, arg_OK *a)
11596 {
11597     s->is_nonstreaming = true;
11598     return true;
11599 }
11600 
11601 /**
11602  * btype_destination_ok:
11603  * @insn: The instruction at the branch destination
11604  * @bt: SCTLR_ELx.BT
11605  * @btype: PSTATE.BTYPE, and is non-zero
11606  *
11607  * On a guarded page, there are a limited number of insns
11608  * that may be present at the branch target:
11609  *   - branch target identifiers,
11610  *   - paciasp, pacibsp,
11611  *   - BRK insn
11612  *   - HLT insn
11613  * Anything else causes a Branch Target Exception.
11614  *
11615  * Return true if the branch is compatible, false to raise BTITRAP.
11616  */
btype_destination_ok(uint32_t insn,bool bt,int btype)11617 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
11618 {
11619     if ((insn & 0xfffff01fu) == 0xd503201fu) {
11620         /* HINT space */
11621         switch (extract32(insn, 5, 7)) {
11622         case 0b011001: /* PACIASP */
11623         case 0b011011: /* PACIBSP */
11624             /*
11625              * If SCTLR_ELx.BT, then PACI*SP are not compatible
11626              * with btype == 3.  Otherwise all btype are ok.
11627              */
11628             return !bt || btype != 3;
11629         case 0b100000: /* BTI */
11630             /* Not compatible with any btype.  */
11631             return false;
11632         case 0b100010: /* BTI c */
11633             /* Not compatible with btype == 3 */
11634             return btype != 3;
11635         case 0b100100: /* BTI j */
11636             /* Not compatible with btype == 2 */
11637             return btype != 2;
11638         case 0b100110: /* BTI jc */
11639             /* Compatible with any btype.  */
11640             return true;
11641         }
11642     } else {
11643         switch (insn & 0xffe0001fu) {
11644         case 0xd4200000u: /* BRK */
11645         case 0xd4400000u: /* HLT */
11646             /* Give priority to the breakpoint exception.  */
11647             return true;
11648         }
11649     }
11650     return false;
11651 }
11652 
11653 /* C3.1 A64 instruction index by encoding */
disas_a64_legacy(DisasContext * s,uint32_t insn)11654 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
11655 {
11656     switch (extract32(insn, 25, 4)) {
11657     case 0x5:
11658     case 0xd:      /* Data processing - register */
11659         disas_data_proc_reg(s, insn);
11660         break;
11661     case 0x7:
11662     case 0xf:      /* Data processing - SIMD and floating point */
11663         disas_data_proc_simd_fp(s, insn);
11664         break;
11665     default:
11666         unallocated_encoding(s);
11667         break;
11668     }
11669 }
11670 
aarch64_tr_init_disas_context(DisasContextBase * dcbase,CPUState * cpu)11671 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11672                                           CPUState *cpu)
11673 {
11674     DisasContext *dc = container_of(dcbase, DisasContext, base);
11675     CPUARMState *env = cpu_env(cpu);
11676     ARMCPU *arm_cpu = env_archcpu(env);
11677     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
11678     int bound, core_mmu_idx;
11679 
11680     dc->isar = &arm_cpu->isar;
11681     dc->condjmp = 0;
11682     dc->pc_save = dc->base.pc_first;
11683     dc->aarch64 = true;
11684     dc->thumb = false;
11685     dc->sctlr_b = 0;
11686     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
11687     dc->condexec_mask = 0;
11688     dc->condexec_cond = 0;
11689     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
11690     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
11691     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
11692     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
11693     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
11694     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11695 #if !defined(CONFIG_USER_ONLY)
11696     dc->user = (dc->current_el == 0);
11697 #endif
11698     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
11699     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
11700     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
11701     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
11702     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
11703     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
11704     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
11705     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
11706     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
11707     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
11708     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
11709     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
11710     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
11711     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
11712     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
11713     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
11714     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
11715     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
11716     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
11717     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
11718     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
11719     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
11720     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
11721     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
11722     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
11723     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
11724     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
11725     dc->vec_len = 0;
11726     dc->vec_stride = 0;
11727     dc->cp_regs = arm_cpu->cp_regs;
11728     dc->features = env->features;
11729     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
11730     dc->gm_blocksize = arm_cpu->gm_blocksize;
11731 
11732 #ifdef CONFIG_USER_ONLY
11733     /* In sve_probe_page, we assume TBI is enabled. */
11734     tcg_debug_assert(dc->tbid & 1);
11735 #endif
11736 
11737     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
11738 
11739     /* Single step state. The code-generation logic here is:
11740      *  SS_ACTIVE == 0:
11741      *   generate code with no special handling for single-stepping (except
11742      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11743      *   this happens anyway because those changes are all system register or
11744      *   PSTATE writes).
11745      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11746      *   emit code for one insn
11747      *   emit code to clear PSTATE.SS
11748      *   emit code to generate software step exception for completed step
11749      *   end TB (as usual for having generated an exception)
11750      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11751      *   emit code to generate a software step exception
11752      *   end the TB
11753      */
11754     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
11755     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
11756     dc->is_ldex = false;
11757 
11758     /* Bound the number of insns to execute to those left on the page.  */
11759     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
11760 
11761     /* If architectural single step active, limit to 1.  */
11762     if (dc->ss_active) {
11763         bound = 1;
11764     }
11765     dc->base.max_insns = MIN(dc->base.max_insns, bound);
11766 }
11767 
aarch64_tr_tb_start(DisasContextBase * db,CPUState * cpu)11768 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
11769 {
11770 }
11771 
aarch64_tr_insn_start(DisasContextBase * dcbase,CPUState * cpu)11772 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
11773 {
11774     DisasContext *dc = container_of(dcbase, DisasContext, base);
11775     target_ulong pc_arg = dc->base.pc_next;
11776 
11777     if (tb_cflags(dcbase->tb) & CF_PCREL) {
11778         pc_arg &= ~TARGET_PAGE_MASK;
11779     }
11780     tcg_gen_insn_start(pc_arg, 0, 0);
11781     dc->insn_start_updated = false;
11782 }
11783 
aarch64_tr_translate_insn(DisasContextBase * dcbase,CPUState * cpu)11784 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
11785 {
11786     DisasContext *s = container_of(dcbase, DisasContext, base);
11787     CPUARMState *env = cpu_env(cpu);
11788     uint64_t pc = s->base.pc_next;
11789     uint32_t insn;
11790 
11791     /* Singlestep exceptions have the highest priority. */
11792     if (s->ss_active && !s->pstate_ss) {
11793         /* Singlestep state is Active-pending.
11794          * If we're in this state at the start of a TB then either
11795          *  a) we just took an exception to an EL which is being debugged
11796          *     and this is the first insn in the exception handler
11797          *  b) debug exceptions were masked and we just unmasked them
11798          *     without changing EL (eg by clearing PSTATE.D)
11799          * In either case we're going to take a swstep exception in the
11800          * "did not step an insn" case, and so the syndrome ISV and EX
11801          * bits should be zero.
11802          */
11803         assert(s->base.num_insns == 1);
11804         gen_swstep_exception(s, 0, 0);
11805         s->base.is_jmp = DISAS_NORETURN;
11806         s->base.pc_next = pc + 4;
11807         return;
11808     }
11809 
11810     if (pc & 3) {
11811         /*
11812          * PC alignment fault.  This has priority over the instruction abort
11813          * that we would receive from a translation fault via arm_ldl_code.
11814          * This should only be possible after an indirect branch, at the
11815          * start of the TB.
11816          */
11817         assert(s->base.num_insns == 1);
11818         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
11819         s->base.is_jmp = DISAS_NORETURN;
11820         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
11821         return;
11822     }
11823 
11824     s->pc_curr = pc;
11825     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
11826     s->insn = insn;
11827     s->base.pc_next = pc + 4;
11828 
11829     s->fp_access_checked = 0;
11830     s->sve_access_checked = 0;
11831 
11832     if (s->pstate_il) {
11833         /*
11834          * Illegal execution state. This has priority over BTI
11835          * exceptions, but comes after instruction abort exceptions.
11836          */
11837         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
11838         return;
11839     }
11840 
11841     if (dc_isar_feature(aa64_bti, s)) {
11842         if (s->base.num_insns == 1) {
11843             /* First insn can have btype set to non-zero.  */
11844             tcg_debug_assert(s->btype >= 0);
11845 
11846             /*
11847              * Note that the Branch Target Exception has fairly high
11848              * priority -- below debugging exceptions but above most
11849              * everything else.  This allows us to handle this now
11850              * instead of waiting until the insn is otherwise decoded.
11851              *
11852              * We can check all but the guarded page check here;
11853              * defer the latter to a helper.
11854              */
11855             if (s->btype != 0
11856                 && !btype_destination_ok(insn, s->bt, s->btype)) {
11857                 gen_helper_guarded_page_check(tcg_env);
11858             }
11859         } else {
11860             /* Not the first insn: btype must be 0.  */
11861             tcg_debug_assert(s->btype == 0);
11862         }
11863     }
11864 
11865     s->is_nonstreaming = false;
11866     if (s->sme_trap_nonstreaming) {
11867         disas_sme_fa64(s, insn);
11868     }
11869 
11870     if (!disas_a64(s, insn) &&
11871         !disas_sme(s, insn) &&
11872         !disas_sve(s, insn)) {
11873         disas_a64_legacy(s, insn);
11874     }
11875 
11876     /*
11877      * After execution of most insns, btype is reset to 0.
11878      * Note that we set btype == -1 when the insn sets btype.
11879      */
11880     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
11881         reset_btype(s);
11882     }
11883 }
11884 
aarch64_tr_tb_stop(DisasContextBase * dcbase,CPUState * cpu)11885 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
11886 {
11887     DisasContext *dc = container_of(dcbase, DisasContext, base);
11888 
11889     if (unlikely(dc->ss_active)) {
11890         /* Note that this means single stepping WFI doesn't halt the CPU.
11891          * For conditional branch insns this is harmless unreachable code as
11892          * gen_goto_tb() has already handled emitting the debug exception
11893          * (and thus a tb-jump is not possible when singlestepping).
11894          */
11895         switch (dc->base.is_jmp) {
11896         default:
11897             gen_a64_update_pc(dc, 4);
11898             /* fall through */
11899         case DISAS_EXIT:
11900         case DISAS_JUMP:
11901             gen_step_complete_exception(dc);
11902             break;
11903         case DISAS_NORETURN:
11904             break;
11905         }
11906     } else {
11907         switch (dc->base.is_jmp) {
11908         case DISAS_NEXT:
11909         case DISAS_TOO_MANY:
11910             gen_goto_tb(dc, 1, 4);
11911             break;
11912         default:
11913         case DISAS_UPDATE_EXIT:
11914             gen_a64_update_pc(dc, 4);
11915             /* fall through */
11916         case DISAS_EXIT:
11917             tcg_gen_exit_tb(NULL, 0);
11918             break;
11919         case DISAS_UPDATE_NOCHAIN:
11920             gen_a64_update_pc(dc, 4);
11921             /* fall through */
11922         case DISAS_JUMP:
11923             tcg_gen_lookup_and_goto_ptr();
11924             break;
11925         case DISAS_NORETURN:
11926         case DISAS_SWI:
11927             break;
11928         case DISAS_WFE:
11929             gen_a64_update_pc(dc, 4);
11930             gen_helper_wfe(tcg_env);
11931             break;
11932         case DISAS_YIELD:
11933             gen_a64_update_pc(dc, 4);
11934             gen_helper_yield(tcg_env);
11935             break;
11936         case DISAS_WFI:
11937             /*
11938              * This is a special case because we don't want to just halt
11939              * the CPU if trying to debug across a WFI.
11940              */
11941             gen_a64_update_pc(dc, 4);
11942             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
11943             /*
11944              * The helper doesn't necessarily throw an exception, but we
11945              * must go back to the main loop to check for interrupts anyway.
11946              */
11947             tcg_gen_exit_tb(NULL, 0);
11948             break;
11949         }
11950     }
11951 }
11952 
11953 const TranslatorOps aarch64_translator_ops = {
11954     .init_disas_context = aarch64_tr_init_disas_context,
11955     .tb_start           = aarch64_tr_tb_start,
11956     .insn_start         = aarch64_tr_insn_start,
11957     .translate_insn     = aarch64_tr_translate_insn,
11958     .tb_stop            = aarch64_tr_tb_stop,
11959 };
11960