xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/cleanup.h>
12 #include <linux/kernel.h>
13 #include <linux/jiffies.h>
14 #include <linux/mman.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kthread.h>
21 #include <linux/completion.h>
22 #include <linux/count_zeros.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/memory.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/page_reporting.h>
28 
29 #include <linux/hyperv.h>
30 #include <asm/hyperv-tlfs.h>
31 
32 #include <asm/mshyperv.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include "hv_trace_balloon.h"
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 
67 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 
71 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73 
74 
75 
76 /*
77  * Message Types
78  */
79 
80 enum dm_message_type {
81 	/*
82 	 * Version 0.3
83 	 */
84 	DM_ERROR			= 0,
85 	DM_VERSION_REQUEST		= 1,
86 	DM_VERSION_RESPONSE		= 2,
87 	DM_CAPABILITIES_REPORT		= 3,
88 	DM_CAPABILITIES_RESPONSE	= 4,
89 	DM_STATUS_REPORT		= 5,
90 	DM_BALLOON_REQUEST		= 6,
91 	DM_BALLOON_RESPONSE		= 7,
92 	DM_UNBALLOON_REQUEST		= 8,
93 	DM_UNBALLOON_RESPONSE		= 9,
94 	DM_MEM_HOT_ADD_REQUEST		= 10,
95 	DM_MEM_HOT_ADD_RESPONSE		= 11,
96 	DM_VERSION_03_MAX		= 11,
97 	/*
98 	 * Version 1.0.
99 	 */
100 	DM_INFO_MESSAGE			= 12,
101 	DM_VERSION_1_MAX		= 12
102 };
103 
104 
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109 
110 union dm_version {
111 	struct {
112 		__u16 minor_version;
113 		__u16 major_version;
114 	};
115 	__u32 version;
116 } __packed;
117 
118 
119 union dm_caps {
120 	struct {
121 		__u64 balloon:1;
122 		__u64 hot_add:1;
123 		/*
124 		 * To support guests that may have alignment
125 		 * limitations on hot-add, the guest can specify
126 		 * its alignment requirements; a value of n
127 		 * represents an alignment of 2^n in mega bytes.
128 		 */
129 		__u64 hot_add_alignment:4;
130 		__u64 reservedz:58;
131 	} cap_bits;
132 	__u64 caps;
133 } __packed;
134 
135 union dm_mem_page_range {
136 	struct  {
137 		/*
138 		 * The PFN number of the first page in the range.
139 		 * 40 bits is the architectural limit of a PFN
140 		 * number for AMD64.
141 		 */
142 		__u64 start_page:40;
143 		/*
144 		 * The number of pages in the range.
145 		 */
146 		__u64 page_cnt:24;
147 	} finfo;
148 	__u64  page_range;
149 } __packed;
150 
151 
152 
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160 
161 struct dm_header {
162 	__u16 type;
163 	__u16 size;
164 	__u32 trans_id;
165 } __packed;
166 
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171 
172 struct dm_message {
173 	struct dm_header hdr;
174 	__u8 data[]; /* enclosed message */
175 } __packed;
176 
177 
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181 
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191 
192 struct dm_version_request {
193 	struct dm_header hdr;
194 	union dm_version version;
195 	__u32 is_last_attempt:1;
196 	__u32 reservedz:31;
197 } __packed;
198 
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209 
210 struct dm_version_response {
211 	struct dm_header hdr;
212 	__u64 is_accepted:1;
213 	__u64 reservedz:63;
214 } __packed;
215 
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220 
221 struct dm_capabilities {
222 	struct dm_header hdr;
223 	union dm_caps caps;
224 	__u64 min_page_cnt;
225 	__u64 max_page_number;
226 } __packed;
227 
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237 
238 struct dm_capabilities_resp_msg {
239 	struct dm_header hdr;
240 	__u64 is_accepted:1;
241 	__u64 reservedz:63;
242 } __packed;
243 
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *		   in the system in pages.
253  * zero_free: The number of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *	    calculated as File Cache Page Fault Count - Page Read Count.
257  *	    This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263 
264 struct dm_status {
265 	struct dm_header hdr;
266 	__u64 num_avail;
267 	__u64 num_committed;
268 	__u64 page_file_size;
269 	__u64 zero_free;
270 	__u32 page_file_writes;
271 	__u32 io_diff;
272 } __packed;
273 
274 
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282 
283 struct dm_balloon {
284 	struct dm_header hdr;
285 	__u32 num_pages;
286 	__u32 reservedz;
287 } __packed;
288 
289 
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303 
304 struct dm_balloon_response {
305 	struct dm_header hdr;
306 	__u32 reservedz;
307 	__u32 more_pages:1;
308 	__u32 range_count:31;
309 	union dm_mem_page_range range_array[];
310 } __packed;
311 
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326 
327 struct dm_unballoon_request {
328 	struct dm_header hdr;
329 	__u32 more_pages:1;
330 	__u32 reservedz:31;
331 	__u32 range_count;
332 	union dm_mem_page_range range_array[];
333 } __packed;
334 
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340 
341 struct dm_unballoon_response {
342 	struct dm_header hdr;
343 } __packed;
344 
345 
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  */
352 
353 struct dm_hot_add {
354 	struct dm_header hdr;
355 	union dm_mem_page_range range;
356 } __packed;
357 
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377 
378 struct dm_hot_add_response {
379 	struct dm_header hdr;
380 	__u32 page_count;
381 	__u32 result;
382 } __packed;
383 
384 /*
385  * Types of information sent from host to the guest.
386  */
387 
388 enum dm_info_type {
389 	INFO_TYPE_MAX_PAGE_CNT = 0,
390 	MAX_INFO_TYPE
391 };
392 
393 
394 /*
395  * Header for the information message.
396  */
397 
398 struct dm_info_header {
399 	enum dm_info_type type;
400 	__u32 data_size;
401 } __packed;
402 
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411 
412 struct dm_info_msg {
413 	struct dm_header hdr;
414 	__u32 reserved;
415 	__u32 info_size;
416 	__u8  info[];
417 };
418 
419 /*
420  * End protocol definitions.
421  */
422 
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_start_pfn:covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434 
435 struct hv_hotadd_state {
436 	struct list_head list;
437 	unsigned long start_pfn;
438 	unsigned long covered_start_pfn;
439 	unsigned long covered_end_pfn;
440 	unsigned long ha_end_pfn;
441 	unsigned long end_pfn;
442 	/*
443 	 * A list of gaps.
444 	 */
445 	struct list_head gap_list;
446 };
447 
448 struct hv_hotadd_gap {
449 	struct list_head list;
450 	unsigned long start_pfn;
451 	unsigned long end_pfn;
452 };
453 
454 struct balloon_state {
455 	__u32 num_pages;
456 	struct work_struct wrk;
457 };
458 
459 struct hot_add_wrk {
460 	union dm_mem_page_range ha_page_range;
461 	union dm_mem_page_range ha_region_range;
462 	struct work_struct wrk;
463 };
464 
465 static bool allow_hibernation;
466 static bool hot_add = true;
467 static bool do_hot_add;
468 /*
469  * Delay reporting memory pressure by
470  * the specified number of seconds.
471  */
472 static uint pressure_report_delay = 45;
473 extern unsigned int page_reporting_order;
474 #define HV_MAX_FAILURES	2
475 
476 /*
477  * The last time we posted a pressure report to host.
478  */
479 static unsigned long last_post_time;
480 
481 static int hv_hypercall_multi_failure;
482 
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485 
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
489 
490 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
491 
492 /*
493  * Driver specific state.
494  */
495 
496 enum hv_dm_state {
497 	DM_INITIALIZING = 0,
498 	DM_INITIALIZED,
499 	DM_BALLOON_UP,
500 	DM_BALLOON_DOWN,
501 	DM_HOT_ADD,
502 	DM_INIT_ERROR
503 };
504 
505 
506 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
507 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
508 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
509 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
510 
511 struct hv_dynmem_device {
512 	struct hv_device *dev;
513 	enum hv_dm_state state;
514 	struct completion host_event;
515 	struct completion config_event;
516 
517 	/*
518 	 * Number of pages we have currently ballooned out.
519 	 */
520 	unsigned int num_pages_ballooned;
521 	unsigned int num_pages_onlined;
522 	unsigned int num_pages_added;
523 
524 	/*
525 	 * State to manage the ballooning (up) operation.
526 	 */
527 	struct balloon_state balloon_wrk;
528 
529 	/*
530 	 * State to execute the "hot-add" operation.
531 	 */
532 	struct hot_add_wrk ha_wrk;
533 
534 	/*
535 	 * This state tracks if the host has specified a hot-add
536 	 * region.
537 	 */
538 	bool host_specified_ha_region;
539 
540 	/*
541 	 * State to synchronize hot-add.
542 	 */
543 	struct completion  ol_waitevent;
544 	/*
545 	 * This thread handles hot-add
546 	 * requests from the host as well as notifying
547 	 * the host with regards to memory pressure in
548 	 * the guest.
549 	 */
550 	struct task_struct *thread;
551 
552 	/*
553 	 * Protects ha_region_list, num_pages_onlined counter and individual
554 	 * regions from ha_region_list.
555 	 */
556 	spinlock_t ha_lock;
557 
558 	/*
559 	 * A list of hot-add regions.
560 	 */
561 	struct list_head ha_region_list;
562 
563 	/*
564 	 * We start with the highest version we can support
565 	 * and downgrade based on the host; we save here the
566 	 * next version to try.
567 	 */
568 	__u32 next_version;
569 
570 	/*
571 	 * The negotiated version agreed by host.
572 	 */
573 	__u32 version;
574 
575 	struct page_reporting_dev_info pr_dev_info;
576 
577 	/*
578 	 * Maximum number of pages that can be hot_add-ed
579 	 */
580 	__u64 max_dynamic_page_count;
581 };
582 
583 static struct hv_dynmem_device dm_device;
584 
585 static void post_status(struct hv_dynmem_device *dm);
586 
587 static void enable_page_reporting(void);
588 
589 static void disable_page_reporting(void);
590 
591 #ifdef CONFIG_MEMORY_HOTPLUG
has_pfn_is_backed(struct hv_hotadd_state * has,unsigned long pfn)592 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
593 				     unsigned long pfn)
594 {
595 	struct hv_hotadd_gap *gap;
596 
597 	/* The page is not backed. */
598 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
599 		return false;
600 
601 	/* Check for gaps. */
602 	list_for_each_entry(gap, &has->gap_list, list) {
603 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
604 			return false;
605 	}
606 
607 	return true;
608 }
609 
hv_page_offline_check(unsigned long start_pfn,unsigned long nr_pages)610 static unsigned long hv_page_offline_check(unsigned long start_pfn,
611 					   unsigned long nr_pages)
612 {
613 	unsigned long pfn = start_pfn, count = 0;
614 	struct hv_hotadd_state *has;
615 	bool found;
616 
617 	while (pfn < start_pfn + nr_pages) {
618 		/*
619 		 * Search for HAS which covers the pfn and when we find one
620 		 * count how many consequitive PFNs are covered.
621 		 */
622 		found = false;
623 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
624 			while ((pfn >= has->start_pfn) &&
625 			       (pfn < has->end_pfn) &&
626 			       (pfn < start_pfn + nr_pages)) {
627 				found = true;
628 				if (has_pfn_is_backed(has, pfn))
629 					count++;
630 				pfn++;
631 			}
632 		}
633 
634 		/*
635 		 * This PFN is not in any HAS (e.g. we're offlining a region
636 		 * which was present at boot), no need to account for it. Go
637 		 * to the next one.
638 		 */
639 		if (!found)
640 			pfn++;
641 	}
642 
643 	return count;
644 }
645 
hv_memory_notifier(struct notifier_block * nb,unsigned long val,void * v)646 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
647 			      void *v)
648 {
649 	struct memory_notify *mem = (struct memory_notify *)v;
650 	unsigned long pfn_count;
651 
652 	switch (val) {
653 	case MEM_ONLINE:
654 	case MEM_CANCEL_ONLINE:
655 		complete(&dm_device.ol_waitevent);
656 		break;
657 
658 	case MEM_OFFLINE:
659 		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
660 			pfn_count = hv_page_offline_check(mem->start_pfn,
661 							  mem->nr_pages);
662 			if (pfn_count <= dm_device.num_pages_onlined) {
663 				dm_device.num_pages_onlined -= pfn_count;
664 			} else {
665 				/*
666 				 * We're offlining more pages than we
667 				 * managed to online. This is
668 				 * unexpected. In any case don't let
669 				 * num_pages_onlined wrap around zero.
670 				 */
671 				WARN_ON_ONCE(1);
672 				dm_device.num_pages_onlined = 0;
673 			}
674 		}
675 		break;
676 	case MEM_GOING_ONLINE:
677 	case MEM_GOING_OFFLINE:
678 	case MEM_CANCEL_OFFLINE:
679 		break;
680 	}
681 	return NOTIFY_OK;
682 }
683 
684 static struct notifier_block hv_memory_nb = {
685 	.notifier_call = hv_memory_notifier,
686 	.priority = 0
687 };
688 
689 /* Check if the particular page is backed and can be onlined and online it. */
hv_page_online_one(struct hv_hotadd_state * has,struct page * pg)690 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
691 {
692 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
693 		if (!PageOffline(pg))
694 			__SetPageOffline(pg);
695 		return;
696 	}
697 	if (PageOffline(pg))
698 		__ClearPageOffline(pg);
699 
700 	/* This frame is currently backed; online the page. */
701 	generic_online_page(pg, 0);
702 
703 	lockdep_assert_held(&dm_device.ha_lock);
704 	dm_device.num_pages_onlined++;
705 }
706 
hv_bring_pgs_online(struct hv_hotadd_state * has,unsigned long start_pfn,unsigned long size)707 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
708 				unsigned long start_pfn, unsigned long size)
709 {
710 	int i;
711 
712 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
713 	for (i = 0; i < size; i++)
714 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
715 }
716 
hv_mem_hot_add(unsigned long start,unsigned long size,unsigned long pfn_count,struct hv_hotadd_state * has)717 static void hv_mem_hot_add(unsigned long start, unsigned long size,
718 				unsigned long pfn_count,
719 				struct hv_hotadd_state *has)
720 {
721 	int ret = 0;
722 	int i, nid;
723 	unsigned long start_pfn;
724 	unsigned long processed_pfn;
725 	unsigned long total_pfn = pfn_count;
726 
727 	for (i = 0; i < (size/HA_CHUNK); i++) {
728 		start_pfn = start + (i * HA_CHUNK);
729 
730 		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
731 			has->ha_end_pfn +=  HA_CHUNK;
732 
733 			if (total_pfn > HA_CHUNK) {
734 				processed_pfn = HA_CHUNK;
735 				total_pfn -= HA_CHUNK;
736 			} else {
737 				processed_pfn = total_pfn;
738 				total_pfn = 0;
739 			}
740 
741 			has->covered_end_pfn +=  processed_pfn;
742 		}
743 
744 		reinit_completion(&dm_device.ol_waitevent);
745 
746 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
747 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
748 				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
749 
750 		if (ret) {
751 			pr_err("hot_add memory failed error is %d\n", ret);
752 			if (ret == -EEXIST) {
753 				/*
754 				 * This error indicates that the error
755 				 * is not a transient failure. This is the
756 				 * case where the guest's physical address map
757 				 * precludes hot adding memory. Stop all further
758 				 * memory hot-add.
759 				 */
760 				do_hot_add = false;
761 			}
762 			scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
763 				has->ha_end_pfn -= HA_CHUNK;
764 				has->covered_end_pfn -=  processed_pfn;
765 			}
766 			break;
767 		}
768 
769 		/*
770 		 * Wait for memory to get onlined. If the kernel onlined the
771 		 * memory when adding it, this will return directly. Otherwise,
772 		 * it will wait for user space to online the memory. This helps
773 		 * to avoid adding memory faster than it is getting onlined. As
774 		 * adding succeeded, it is ok to proceed even if the memory was
775 		 * not onlined in time.
776 		 */
777 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
778 		post_status(&dm_device);
779 	}
780 }
781 
hv_online_page(struct page * pg,unsigned int order)782 static void hv_online_page(struct page *pg, unsigned int order)
783 {
784 	struct hv_hotadd_state *has;
785 	unsigned long pfn = page_to_pfn(pg);
786 
787 	guard(spinlock_irqsave)(&dm_device.ha_lock);
788 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
789 		/* The page belongs to a different HAS. */
790 		if ((pfn < has->start_pfn) ||
791 				(pfn + (1UL << order) > has->end_pfn))
792 			continue;
793 
794 		hv_bring_pgs_online(has, pfn, 1UL << order);
795 		break;
796 	}
797 }
798 
pfn_covered(unsigned long start_pfn,unsigned long pfn_cnt)799 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
800 {
801 	struct hv_hotadd_state *has;
802 	struct hv_hotadd_gap *gap;
803 	unsigned long residual, new_inc;
804 	int ret = 0;
805 
806 	guard(spinlock_irqsave)(&dm_device.ha_lock);
807 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
808 		/*
809 		 * If the pfn range we are dealing with is not in the current
810 		 * "hot add block", move on.
811 		 */
812 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
813 			continue;
814 
815 		/*
816 		 * If the current start pfn is not where the covered_end
817 		 * is, create a gap and update covered_end_pfn.
818 		 */
819 		if (has->covered_end_pfn != start_pfn) {
820 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
821 			if (!gap) {
822 				ret = -ENOMEM;
823 				break;
824 			}
825 
826 			INIT_LIST_HEAD(&gap->list);
827 			gap->start_pfn = has->covered_end_pfn;
828 			gap->end_pfn = start_pfn;
829 			list_add_tail(&gap->list, &has->gap_list);
830 
831 			has->covered_end_pfn = start_pfn;
832 		}
833 
834 		/*
835 		 * If the current hot add-request extends beyond
836 		 * our current limit; extend it.
837 		 */
838 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
839 			residual = (start_pfn + pfn_cnt - has->end_pfn);
840 			/*
841 			 * Extend the region by multiples of HA_CHUNK.
842 			 */
843 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
844 			if (residual % HA_CHUNK)
845 				new_inc += HA_CHUNK;
846 
847 			has->end_pfn += new_inc;
848 		}
849 
850 		ret = 1;
851 		break;
852 	}
853 
854 	return ret;
855 }
856 
handle_pg_range(unsigned long pg_start,unsigned long pg_count)857 static unsigned long handle_pg_range(unsigned long pg_start,
858 					unsigned long pg_count)
859 {
860 	unsigned long start_pfn = pg_start;
861 	unsigned long pfn_cnt = pg_count;
862 	unsigned long size;
863 	struct hv_hotadd_state *has;
864 	unsigned long pgs_ol = 0;
865 	unsigned long old_covered_state;
866 	unsigned long res = 0, flags;
867 
868 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
869 		pg_start);
870 
871 	spin_lock_irqsave(&dm_device.ha_lock, flags);
872 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
873 		/*
874 		 * If the pfn range we are dealing with is not in the current
875 		 * "hot add block", move on.
876 		 */
877 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
878 			continue;
879 
880 		old_covered_state = has->covered_end_pfn;
881 
882 		if (start_pfn < has->ha_end_pfn) {
883 			/*
884 			 * This is the case where we are backing pages
885 			 * in an already hot added region. Bring
886 			 * these pages online first.
887 			 */
888 			pgs_ol = has->ha_end_pfn - start_pfn;
889 			if (pgs_ol > pfn_cnt)
890 				pgs_ol = pfn_cnt;
891 
892 			has->covered_end_pfn +=  pgs_ol;
893 			pfn_cnt -= pgs_ol;
894 			/*
895 			 * Check if the corresponding memory block is already
896 			 * online. It is possible to observe struct pages still
897 			 * being uninitialized here so check section instead.
898 			 * In case the section is online we need to bring the
899 			 * rest of pfns (which were not backed previously)
900 			 * online too.
901 			 */
902 			if (start_pfn > has->start_pfn &&
903 			    online_section_nr(pfn_to_section_nr(start_pfn)))
904 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
905 
906 		}
907 
908 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
909 			/*
910 			 * We have some residual hot add range
911 			 * that needs to be hot added; hot add
912 			 * it now. Hot add a multiple of
913 			 * HA_CHUNK that fully covers the pages
914 			 * we have.
915 			 */
916 			size = (has->end_pfn - has->ha_end_pfn);
917 			if (pfn_cnt <= size) {
918 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
919 				if (pfn_cnt % HA_CHUNK)
920 					size += HA_CHUNK;
921 			} else {
922 				pfn_cnt = size;
923 			}
924 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
925 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
926 			spin_lock_irqsave(&dm_device.ha_lock, flags);
927 		}
928 		/*
929 		 * If we managed to online any pages that were given to us,
930 		 * we declare success.
931 		 */
932 		res = has->covered_end_pfn - old_covered_state;
933 		break;
934 	}
935 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
936 
937 	return res;
938 }
939 
process_hot_add(unsigned long pg_start,unsigned long pfn_cnt,unsigned long rg_start,unsigned long rg_size)940 static unsigned long process_hot_add(unsigned long pg_start,
941 					unsigned long pfn_cnt,
942 					unsigned long rg_start,
943 					unsigned long rg_size)
944 {
945 	struct hv_hotadd_state *ha_region = NULL;
946 	int covered;
947 
948 	if (pfn_cnt == 0)
949 		return 0;
950 
951 	if (!dm_device.host_specified_ha_region) {
952 		covered = pfn_covered(pg_start, pfn_cnt);
953 		if (covered < 0)
954 			return 0;
955 
956 		if (covered)
957 			goto do_pg_range;
958 	}
959 
960 	/*
961 	 * If the host has specified a hot-add range; deal with it first.
962 	 */
963 
964 	if (rg_size != 0) {
965 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
966 		if (!ha_region)
967 			return 0;
968 
969 		INIT_LIST_HEAD(&ha_region->list);
970 		INIT_LIST_HEAD(&ha_region->gap_list);
971 
972 		ha_region->start_pfn = rg_start;
973 		ha_region->ha_end_pfn = rg_start;
974 		ha_region->covered_start_pfn = pg_start;
975 		ha_region->covered_end_pfn = pg_start;
976 		ha_region->end_pfn = rg_start + rg_size;
977 
978 		scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
979 			list_add_tail(&ha_region->list, &dm_device.ha_region_list);
980 		}
981 	}
982 
983 do_pg_range:
984 	/*
985 	 * Process the page range specified; bringing them
986 	 * online if possible.
987 	 */
988 	return handle_pg_range(pg_start, pfn_cnt);
989 }
990 
991 #endif
992 
hot_add_req(struct work_struct * dummy)993 static void hot_add_req(struct work_struct *dummy)
994 {
995 	struct dm_hot_add_response resp;
996 #ifdef CONFIG_MEMORY_HOTPLUG
997 	unsigned long pg_start, pfn_cnt;
998 	unsigned long rg_start, rg_sz;
999 #endif
1000 	struct hv_dynmem_device *dm = &dm_device;
1001 
1002 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
1003 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1004 	resp.hdr.size = sizeof(struct dm_hot_add_response);
1005 
1006 #ifdef CONFIG_MEMORY_HOTPLUG
1007 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1008 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1009 
1010 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1011 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1012 
1013 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1014 		unsigned long region_size;
1015 		unsigned long region_start;
1016 
1017 		/*
1018 		 * The host has not specified the hot-add region.
1019 		 * Based on the hot-add page range being specified,
1020 		 * compute a hot-add region that can cover the pages
1021 		 * that need to be hot-added while ensuring the alignment
1022 		 * and size requirements of Linux as it relates to hot-add.
1023 		 */
1024 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1025 		if (pfn_cnt % HA_CHUNK)
1026 			region_size += HA_CHUNK;
1027 
1028 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1029 
1030 		rg_start = region_start;
1031 		rg_sz = region_size;
1032 	}
1033 
1034 	if (do_hot_add)
1035 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1036 						rg_start, rg_sz);
1037 
1038 	dm->num_pages_added += resp.page_count;
1039 #endif
1040 	/*
1041 	 * The result field of the response structure has the
1042 	 * following semantics:
1043 	 *
1044 	 * 1. If all or some pages hot-added: Guest should return success.
1045 	 *
1046 	 * 2. If no pages could be hot-added:
1047 	 *
1048 	 * If the guest returns success, then the host
1049 	 * will not attempt any further hot-add operations. This
1050 	 * signifies a permanent failure.
1051 	 *
1052 	 * If the guest returns failure, then this failure will be
1053 	 * treated as a transient failure and the host may retry the
1054 	 * hot-add operation after some delay.
1055 	 */
1056 	if (resp.page_count > 0)
1057 		resp.result = 1;
1058 	else if (!do_hot_add)
1059 		resp.result = 1;
1060 	else
1061 		resp.result = 0;
1062 
1063 	if (!do_hot_add || resp.page_count == 0) {
1064 		if (!allow_hibernation)
1065 			pr_err("Memory hot add failed\n");
1066 		else
1067 			pr_info("Ignore hot-add request!\n");
1068 	}
1069 
1070 	dm->state = DM_INITIALIZED;
1071 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1072 	vmbus_sendpacket(dm->dev->channel, &resp,
1073 			sizeof(struct dm_hot_add_response),
1074 			(unsigned long)NULL,
1075 			VM_PKT_DATA_INBAND, 0);
1076 }
1077 
process_info(struct hv_dynmem_device * dm,struct dm_info_msg * msg)1078 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1079 {
1080 	struct dm_info_header *info_hdr;
1081 
1082 	info_hdr = (struct dm_info_header *)msg->info;
1083 
1084 	switch (info_hdr->type) {
1085 	case INFO_TYPE_MAX_PAGE_CNT:
1086 		if (info_hdr->data_size == sizeof(__u64)) {
1087 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1088 
1089 			pr_info("Max. dynamic memory size: %llu MB\n",
1090 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1091 			dm->max_dynamic_page_count = *max_page_count;
1092 		}
1093 
1094 		break;
1095 	default:
1096 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1097 	}
1098 }
1099 
compute_balloon_floor(void)1100 static unsigned long compute_balloon_floor(void)
1101 {
1102 	unsigned long min_pages;
1103 	unsigned long nr_pages = totalram_pages();
1104 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1105 	/* Simple continuous piecewiese linear function:
1106 	 *  max MiB -> min MiB  gradient
1107 	 *       0         0
1108 	 *      16        16
1109 	 *      32        24
1110 	 *     128        72    (1/2)
1111 	 *     512       168    (1/4)
1112 	 *    2048       360    (1/8)
1113 	 *    8192       744    (1/16)
1114 	 *   32768      1512	(1/32)
1115 	 */
1116 	if (nr_pages < MB2PAGES(128))
1117 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1118 	else if (nr_pages < MB2PAGES(512))
1119 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1120 	else if (nr_pages < MB2PAGES(2048))
1121 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1122 	else if (nr_pages < MB2PAGES(8192))
1123 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1124 	else
1125 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1126 #undef MB2PAGES
1127 	return min_pages;
1128 }
1129 
1130 /*
1131  * Compute total committed memory pages
1132  */
1133 
get_pages_committed(struct hv_dynmem_device * dm)1134 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1135 {
1136 	return vm_memory_committed() +
1137 		dm->num_pages_ballooned +
1138 		(dm->num_pages_added > dm->num_pages_onlined ?
1139 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1140 		compute_balloon_floor();
1141 }
1142 
1143 /*
1144  * Post our status as it relates memory pressure to the
1145  * host. Host expects the guests to post this status
1146  * periodically at 1 second intervals.
1147  *
1148  * The metrics specified in this protocol are very Windows
1149  * specific and so we cook up numbers here to convey our memory
1150  * pressure.
1151  */
1152 
post_status(struct hv_dynmem_device * dm)1153 static void post_status(struct hv_dynmem_device *dm)
1154 {
1155 	struct dm_status status;
1156 	unsigned long now = jiffies;
1157 	unsigned long last_post = last_post_time;
1158 	unsigned long num_pages_avail, num_pages_committed;
1159 
1160 	if (pressure_report_delay > 0) {
1161 		--pressure_report_delay;
1162 		return;
1163 	}
1164 
1165 	if (!time_after(now, (last_post_time + HZ)))
1166 		return;
1167 
1168 	memset(&status, 0, sizeof(struct dm_status));
1169 	status.hdr.type = DM_STATUS_REPORT;
1170 	status.hdr.size = sizeof(struct dm_status);
1171 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1172 
1173 	/*
1174 	 * The host expects the guest to report free and committed memory.
1175 	 * Furthermore, the host expects the pressure information to include
1176 	 * the ballooned out pages. For a given amount of memory that we are
1177 	 * managing we need to compute a floor below which we should not
1178 	 * balloon. Compute this and add it to the pressure report.
1179 	 * We also need to report all offline pages (num_pages_added -
1180 	 * num_pages_onlined) as committed to the host, otherwise it can try
1181 	 * asking us to balloon them out.
1182 	 */
1183 	num_pages_avail = si_mem_available();
1184 	num_pages_committed = get_pages_committed(dm);
1185 
1186 	trace_balloon_status(num_pages_avail, num_pages_committed,
1187 			     vm_memory_committed(), dm->num_pages_ballooned,
1188 			     dm->num_pages_added, dm->num_pages_onlined);
1189 
1190 	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1191 	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1192 	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1193 
1194 	/*
1195 	 * If our transaction ID is no longer current, just don't
1196 	 * send the status. This can happen if we were interrupted
1197 	 * after we picked our transaction ID.
1198 	 */
1199 	if (status.hdr.trans_id != atomic_read(&trans_id))
1200 		return;
1201 
1202 	/*
1203 	 * If the last post time that we sampled has changed,
1204 	 * we have raced, don't post the status.
1205 	 */
1206 	if (last_post != last_post_time)
1207 		return;
1208 
1209 	last_post_time = jiffies;
1210 	vmbus_sendpacket(dm->dev->channel, &status,
1211 				sizeof(struct dm_status),
1212 				(unsigned long)NULL,
1213 				VM_PKT_DATA_INBAND, 0);
1214 
1215 }
1216 
free_balloon_pages(struct hv_dynmem_device * dm,union dm_mem_page_range * range_array)1217 static void free_balloon_pages(struct hv_dynmem_device *dm,
1218 			 union dm_mem_page_range *range_array)
1219 {
1220 	int num_pages = range_array->finfo.page_cnt;
1221 	__u64 start_frame = range_array->finfo.start_page;
1222 	struct page *pg;
1223 	int i;
1224 
1225 	for (i = 0; i < num_pages; i++) {
1226 		pg = pfn_to_page(i + start_frame);
1227 		__ClearPageOffline(pg);
1228 		__free_page(pg);
1229 		dm->num_pages_ballooned--;
1230 		adjust_managed_page_count(pg, 1);
1231 	}
1232 }
1233 
1234 
1235 
alloc_balloon_pages(struct hv_dynmem_device * dm,unsigned int num_pages,struct dm_balloon_response * bl_resp,int alloc_unit)1236 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1237 					unsigned int num_pages,
1238 					struct dm_balloon_response *bl_resp,
1239 					int alloc_unit)
1240 {
1241 	unsigned int i, j;
1242 	struct page *pg;
1243 
1244 	for (i = 0; i < num_pages / alloc_unit; i++) {
1245 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1246 			HV_HYP_PAGE_SIZE)
1247 			return i * alloc_unit;
1248 
1249 		/*
1250 		 * We execute this code in a thread context. Furthermore,
1251 		 * we don't want the kernel to try too hard.
1252 		 */
1253 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1254 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1255 				get_order(alloc_unit << PAGE_SHIFT));
1256 
1257 		if (!pg)
1258 			return i * alloc_unit;
1259 
1260 		dm->num_pages_ballooned += alloc_unit;
1261 
1262 		/*
1263 		 * If we allocatted 2M pages; split them so we
1264 		 * can free them in any order we get.
1265 		 */
1266 
1267 		if (alloc_unit != 1)
1268 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1269 
1270 		/* mark all pages offline */
1271 		for (j = 0; j < alloc_unit; j++) {
1272 			__SetPageOffline(pg + j);
1273 			adjust_managed_page_count(pg + j, -1);
1274 		}
1275 
1276 		bl_resp->range_count++;
1277 		bl_resp->range_array[i].finfo.start_page =
1278 			page_to_pfn(pg);
1279 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1280 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1281 
1282 	}
1283 
1284 	return i * alloc_unit;
1285 }
1286 
balloon_up(struct work_struct * dummy)1287 static void balloon_up(struct work_struct *dummy)
1288 {
1289 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1290 	unsigned int num_ballooned = 0;
1291 	struct dm_balloon_response *bl_resp;
1292 	int alloc_unit;
1293 	int ret;
1294 	bool done = false;
1295 	int i;
1296 	long avail_pages;
1297 	unsigned long floor;
1298 
1299 	/*
1300 	 * We will attempt 2M allocations. However, if we fail to
1301 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1302 	 */
1303 	alloc_unit = PAGES_IN_2M;
1304 
1305 	avail_pages = si_mem_available();
1306 	floor = compute_balloon_floor();
1307 
1308 	/* Refuse to balloon below the floor. */
1309 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1310 		pr_info("Balloon request will be partially fulfilled. %s\n",
1311 			avail_pages < num_pages ? "Not enough memory." :
1312 			"Balloon floor reached.");
1313 
1314 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1315 	}
1316 
1317 	while (!done) {
1318 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1319 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1320 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1321 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1322 		bl_resp->more_pages = 1;
1323 
1324 		num_pages -= num_ballooned;
1325 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1326 						    bl_resp, alloc_unit);
1327 
1328 		if (alloc_unit != 1 && num_ballooned == 0) {
1329 			alloc_unit = 1;
1330 			continue;
1331 		}
1332 
1333 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1334 			pr_debug("Ballooned %u out of %u requested pages.\n",
1335 				num_pages, dm_device.balloon_wrk.num_pages);
1336 
1337 			bl_resp->more_pages = 0;
1338 			done = true;
1339 			dm_device.state = DM_INITIALIZED;
1340 		}
1341 
1342 		/*
1343 		 * We are pushing a lot of data through the channel;
1344 		 * deal with transient failures caused because of the
1345 		 * lack of space in the ring buffer.
1346 		 */
1347 
1348 		do {
1349 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1350 			ret = vmbus_sendpacket(dm_device.dev->channel,
1351 						bl_resp,
1352 						bl_resp->hdr.size,
1353 						(unsigned long)NULL,
1354 						VM_PKT_DATA_INBAND, 0);
1355 
1356 			if (ret == -EAGAIN)
1357 				msleep(20);
1358 			post_status(&dm_device);
1359 		} while (ret == -EAGAIN);
1360 
1361 		if (ret) {
1362 			/*
1363 			 * Free up the memory we allocatted.
1364 			 */
1365 			pr_err("Balloon response failed\n");
1366 
1367 			for (i = 0; i < bl_resp->range_count; i++)
1368 				free_balloon_pages(&dm_device,
1369 						 &bl_resp->range_array[i]);
1370 
1371 			done = true;
1372 		}
1373 	}
1374 
1375 }
1376 
balloon_down(struct hv_dynmem_device * dm,struct dm_unballoon_request * req)1377 static void balloon_down(struct hv_dynmem_device *dm,
1378 			struct dm_unballoon_request *req)
1379 {
1380 	union dm_mem_page_range *range_array = req->range_array;
1381 	int range_count = req->range_count;
1382 	struct dm_unballoon_response resp;
1383 	int i;
1384 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1385 
1386 	for (i = 0; i < range_count; i++) {
1387 		free_balloon_pages(dm, &range_array[i]);
1388 		complete(&dm_device.config_event);
1389 	}
1390 
1391 	pr_debug("Freed %u ballooned pages.\n",
1392 		prev_pages_ballooned - dm->num_pages_ballooned);
1393 
1394 	if (req->more_pages == 1)
1395 		return;
1396 
1397 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1398 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1399 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1400 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1401 
1402 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1403 				sizeof(struct dm_unballoon_response),
1404 				(unsigned long)NULL,
1405 				VM_PKT_DATA_INBAND, 0);
1406 
1407 	dm->state = DM_INITIALIZED;
1408 }
1409 
1410 static void balloon_onchannelcallback(void *context);
1411 
dm_thread_func(void * dm_dev)1412 static int dm_thread_func(void *dm_dev)
1413 {
1414 	struct hv_dynmem_device *dm = dm_dev;
1415 
1416 	while (!kthread_should_stop()) {
1417 		wait_for_completion_interruptible_timeout(
1418 						&dm_device.config_event, 1*HZ);
1419 		/*
1420 		 * The host expects us to post information on the memory
1421 		 * pressure every second.
1422 		 */
1423 		reinit_completion(&dm_device.config_event);
1424 		post_status(dm);
1425 		/*
1426 		 * disable free page reporting if multiple hypercall
1427 		 * failure flag set. It is not done in the page_reporting
1428 		 * callback context as that causes a deadlock between
1429 		 * page_reporting_process() and page_reporting_unregister()
1430 		 */
1431 		if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1432 			pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1433 			disable_page_reporting();
1434 			/* Reset the flag after disabling reporting */
1435 			hv_hypercall_multi_failure = 0;
1436 		}
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 
version_resp(struct hv_dynmem_device * dm,struct dm_version_response * vresp)1443 static void version_resp(struct hv_dynmem_device *dm,
1444 			struct dm_version_response *vresp)
1445 {
1446 	struct dm_version_request version_req;
1447 	int ret;
1448 
1449 	if (vresp->is_accepted) {
1450 		/*
1451 		 * We are done; wakeup the
1452 		 * context waiting for version
1453 		 * negotiation.
1454 		 */
1455 		complete(&dm->host_event);
1456 		return;
1457 	}
1458 	/*
1459 	 * If there are more versions to try, continue
1460 	 * with negotiations; if not
1461 	 * shutdown the service since we are not able
1462 	 * to negotiate a suitable version number
1463 	 * with the host.
1464 	 */
1465 	if (dm->next_version == 0)
1466 		goto version_error;
1467 
1468 	memset(&version_req, 0, sizeof(struct dm_version_request));
1469 	version_req.hdr.type = DM_VERSION_REQUEST;
1470 	version_req.hdr.size = sizeof(struct dm_version_request);
1471 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1472 	version_req.version.version = dm->next_version;
1473 	dm->version = version_req.version.version;
1474 
1475 	/*
1476 	 * Set the next version to try in case current version fails.
1477 	 * Win7 protocol ought to be the last one to try.
1478 	 */
1479 	switch (version_req.version.version) {
1480 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1481 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1482 		version_req.is_last_attempt = 0;
1483 		break;
1484 	default:
1485 		dm->next_version = 0;
1486 		version_req.is_last_attempt = 1;
1487 	}
1488 
1489 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1490 				sizeof(struct dm_version_request),
1491 				(unsigned long)NULL,
1492 				VM_PKT_DATA_INBAND, 0);
1493 
1494 	if (ret)
1495 		goto version_error;
1496 
1497 	return;
1498 
1499 version_error:
1500 	dm->state = DM_INIT_ERROR;
1501 	complete(&dm->host_event);
1502 }
1503 
cap_resp(struct hv_dynmem_device * dm,struct dm_capabilities_resp_msg * cap_resp)1504 static void cap_resp(struct hv_dynmem_device *dm,
1505 			struct dm_capabilities_resp_msg *cap_resp)
1506 {
1507 	if (!cap_resp->is_accepted) {
1508 		pr_err("Capabilities not accepted by host\n");
1509 		dm->state = DM_INIT_ERROR;
1510 	}
1511 	complete(&dm->host_event);
1512 }
1513 
balloon_onchannelcallback(void * context)1514 static void balloon_onchannelcallback(void *context)
1515 {
1516 	struct hv_device *dev = context;
1517 	u32 recvlen;
1518 	u64 requestid;
1519 	struct dm_message *dm_msg;
1520 	struct dm_header *dm_hdr;
1521 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1522 	struct dm_balloon *bal_msg;
1523 	struct dm_hot_add *ha_msg;
1524 	union dm_mem_page_range *ha_pg_range;
1525 	union dm_mem_page_range *ha_region;
1526 
1527 	memset(recv_buffer, 0, sizeof(recv_buffer));
1528 	vmbus_recvpacket(dev->channel, recv_buffer,
1529 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1530 
1531 	if (recvlen > 0) {
1532 		dm_msg = (struct dm_message *)recv_buffer;
1533 		dm_hdr = &dm_msg->hdr;
1534 
1535 		switch (dm_hdr->type) {
1536 		case DM_VERSION_RESPONSE:
1537 			version_resp(dm,
1538 				 (struct dm_version_response *)dm_msg);
1539 			break;
1540 
1541 		case DM_CAPABILITIES_RESPONSE:
1542 			cap_resp(dm,
1543 				 (struct dm_capabilities_resp_msg *)dm_msg);
1544 			break;
1545 
1546 		case DM_BALLOON_REQUEST:
1547 			if (allow_hibernation) {
1548 				pr_info("Ignore balloon-up request!\n");
1549 				break;
1550 			}
1551 
1552 			if (dm->state == DM_BALLOON_UP)
1553 				pr_warn("Currently ballooning\n");
1554 			bal_msg = (struct dm_balloon *)recv_buffer;
1555 			dm->state = DM_BALLOON_UP;
1556 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1557 			schedule_work(&dm_device.balloon_wrk.wrk);
1558 			break;
1559 
1560 		case DM_UNBALLOON_REQUEST:
1561 			if (allow_hibernation) {
1562 				pr_info("Ignore balloon-down request!\n");
1563 				break;
1564 			}
1565 
1566 			dm->state = DM_BALLOON_DOWN;
1567 			balloon_down(dm,
1568 				 (struct dm_unballoon_request *)recv_buffer);
1569 			break;
1570 
1571 		case DM_MEM_HOT_ADD_REQUEST:
1572 			if (dm->state == DM_HOT_ADD)
1573 				pr_warn("Currently hot-adding\n");
1574 			dm->state = DM_HOT_ADD;
1575 			ha_msg = (struct dm_hot_add *)recv_buffer;
1576 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1577 				/*
1578 				 * This is a normal hot-add request specifying
1579 				 * hot-add memory.
1580 				 */
1581 				dm->host_specified_ha_region = false;
1582 				ha_pg_range = &ha_msg->range;
1583 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1584 				dm->ha_wrk.ha_region_range.page_range = 0;
1585 			} else {
1586 				/*
1587 				 * Host is specifying that we first hot-add
1588 				 * a region and then partially populate this
1589 				 * region.
1590 				 */
1591 				dm->host_specified_ha_region = true;
1592 				ha_pg_range = &ha_msg->range;
1593 				ha_region = &ha_pg_range[1];
1594 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1595 				dm->ha_wrk.ha_region_range = *ha_region;
1596 			}
1597 			schedule_work(&dm_device.ha_wrk.wrk);
1598 			break;
1599 
1600 		case DM_INFO_MESSAGE:
1601 			process_info(dm, (struct dm_info_msg *)dm_msg);
1602 			break;
1603 
1604 		default:
1605 			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1606 
1607 		}
1608 	}
1609 
1610 }
1611 
1612 #define HV_LARGE_REPORTING_ORDER	9
1613 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1614 		HV_LARGE_REPORTING_ORDER)
hv_free_page_report(struct page_reporting_dev_info * pr_dev_info,struct scatterlist * sgl,unsigned int nents)1615 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1616 		    struct scatterlist *sgl, unsigned int nents)
1617 {
1618 	unsigned long flags;
1619 	struct hv_memory_hint *hint;
1620 	int i, order;
1621 	u64 status;
1622 	struct scatterlist *sg;
1623 
1624 	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1625 	WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1626 	local_irq_save(flags);
1627 	hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
1628 	if (!hint) {
1629 		local_irq_restore(flags);
1630 		return -ENOSPC;
1631 	}
1632 
1633 	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1634 	hint->reserved = 0;
1635 	for_each_sg(sgl, sg, nents, i) {
1636 		union hv_gpa_page_range *range;
1637 
1638 		range = &hint->ranges[i];
1639 		range->address_space = 0;
1640 		order = get_order(sg->length);
1641 		/*
1642 		 * Hyper-V expects the additional_pages field in the units
1643 		 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1644 		 * This is dictated by the values of the fields page.largesize
1645 		 * and page_size.
1646 		 * This code however, only uses 4Kbytes and 2Mbytes units
1647 		 * and not 1Gbytes unit.
1648 		 */
1649 
1650 		/* page reporting for pages 2MB or higher */
1651 		if (order >= HV_LARGE_REPORTING_ORDER ) {
1652 			range->page.largepage = 1;
1653 			range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1654 			range->base_large_pfn = page_to_hvpfn(
1655 					sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1656 			range->page.additional_pages =
1657 				(sg->length / HV_LARGE_REPORTING_LEN) - 1;
1658 		} else {
1659 			/* Page reporting for pages below 2MB */
1660 			range->page.basepfn = page_to_hvpfn(sg_page(sg));
1661 			range->page.largepage = false;
1662 			range->page.additional_pages =
1663 				(sg->length / HV_HYP_PAGE_SIZE) - 1;
1664 		}
1665 
1666 	}
1667 
1668 	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1669 				     hint, NULL);
1670 	local_irq_restore(flags);
1671 	if (!hv_result_success(status)) {
1672 
1673 		pr_err("Cold memory discard hypercall failed with status %llx\n",
1674 				status);
1675 		if (hv_hypercall_multi_failure > 0)
1676 			hv_hypercall_multi_failure++;
1677 
1678 		if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1679 			pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1680 			pr_err("Defaulting to page_reporting_order %d\n",
1681 					pageblock_order);
1682 			page_reporting_order = pageblock_order;
1683 			hv_hypercall_multi_failure++;
1684 			return -EINVAL;
1685 		}
1686 
1687 		return -EINVAL;
1688 	}
1689 
1690 	return 0;
1691 }
1692 
enable_page_reporting(void)1693 static void enable_page_reporting(void)
1694 {
1695 	int ret;
1696 
1697 	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1698 		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1699 		return;
1700 	}
1701 
1702 	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1703 	dm_device.pr_dev_info.report = hv_free_page_report;
1704 	/*
1705 	 * We let the page_reporting_order parameter decide the order
1706 	 * in the page_reporting code
1707 	 */
1708 	dm_device.pr_dev_info.order = 0;
1709 	ret = page_reporting_register(&dm_device.pr_dev_info);
1710 	if (ret < 0) {
1711 		dm_device.pr_dev_info.report = NULL;
1712 		pr_err("Failed to enable cold memory discard: %d\n", ret);
1713 	} else {
1714 		pr_info("Cold memory discard hint enabled with order %d\n",
1715 				page_reporting_order);
1716 	}
1717 }
1718 
disable_page_reporting(void)1719 static void disable_page_reporting(void)
1720 {
1721 	if (dm_device.pr_dev_info.report) {
1722 		page_reporting_unregister(&dm_device.pr_dev_info);
1723 		dm_device.pr_dev_info.report = NULL;
1724 	}
1725 }
1726 
ballooning_enabled(void)1727 static int ballooning_enabled(void)
1728 {
1729 	/*
1730 	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1731 	 * since currently it's unclear to us whether an unballoon request can
1732 	 * make sure all page ranges are guest page size aligned.
1733 	 */
1734 	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1735 		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1736 		return 0;
1737 	}
1738 
1739 	return 1;
1740 }
1741 
hot_add_enabled(void)1742 static int hot_add_enabled(void)
1743 {
1744 	/*
1745 	 * Disable hot add on ARM64, because we currently rely on
1746 	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1747 	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1748 	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1749 	 * add_memory().
1750 	 */
1751 	if (IS_ENABLED(CONFIG_ARM64)) {
1752 		pr_info("Memory hot add disabled on ARM64\n");
1753 		return 0;
1754 	}
1755 
1756 	return 1;
1757 }
1758 
balloon_connect_vsp(struct hv_device * dev)1759 static int balloon_connect_vsp(struct hv_device *dev)
1760 {
1761 	struct dm_version_request version_req;
1762 	struct dm_capabilities cap_msg;
1763 	unsigned long t;
1764 	int ret;
1765 
1766 	/*
1767 	 * max_pkt_size should be large enough for one vmbus packet header plus
1768 	 * our receive buffer size. Hyper-V sends messages up to
1769 	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1770 	 */
1771 	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1772 
1773 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1774 			 balloon_onchannelcallback, dev);
1775 	if (ret)
1776 		return ret;
1777 
1778 	/*
1779 	 * Initiate the hand shake with the host and negotiate
1780 	 * a version that the host can support. We start with the
1781 	 * highest version number and go down if the host cannot
1782 	 * support it.
1783 	 */
1784 	memset(&version_req, 0, sizeof(struct dm_version_request));
1785 	version_req.hdr.type = DM_VERSION_REQUEST;
1786 	version_req.hdr.size = sizeof(struct dm_version_request);
1787 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1788 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1789 	version_req.is_last_attempt = 0;
1790 	dm_device.version = version_req.version.version;
1791 
1792 	ret = vmbus_sendpacket(dev->channel, &version_req,
1793 			       sizeof(struct dm_version_request),
1794 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1795 	if (ret)
1796 		goto out;
1797 
1798 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1799 	if (t == 0) {
1800 		ret = -ETIMEDOUT;
1801 		goto out;
1802 	}
1803 
1804 	/*
1805 	 * If we could not negotiate a compatible version with the host
1806 	 * fail the probe function.
1807 	 */
1808 	if (dm_device.state == DM_INIT_ERROR) {
1809 		ret = -EPROTO;
1810 		goto out;
1811 	}
1812 
1813 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1814 		DYNMEM_MAJOR_VERSION(dm_device.version),
1815 		DYNMEM_MINOR_VERSION(dm_device.version));
1816 
1817 	/*
1818 	 * Now submit our capabilities to the host.
1819 	 */
1820 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1821 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1822 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1823 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1824 
1825 	/*
1826 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1827 	 * currently still requires the bits to be set, so we have to add code
1828 	 * to fail the host's hot-add and balloon up/down requests, if any.
1829 	 */
1830 	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1831 	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1832 
1833 	/*
1834 	 * Specify our alignment requirements as it relates
1835 	 * memory hot-add. Specify 128MB alignment.
1836 	 */
1837 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1838 
1839 	/*
1840 	 * Currently the host does not use these
1841 	 * values and we set them to what is done in the
1842 	 * Windows driver.
1843 	 */
1844 	cap_msg.min_page_cnt = 0;
1845 	cap_msg.max_page_number = -1;
1846 
1847 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1848 			       sizeof(struct dm_capabilities),
1849 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1850 	if (ret)
1851 		goto out;
1852 
1853 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1854 	if (t == 0) {
1855 		ret = -ETIMEDOUT;
1856 		goto out;
1857 	}
1858 
1859 	/*
1860 	 * If the host does not like our capabilities,
1861 	 * fail the probe function.
1862 	 */
1863 	if (dm_device.state == DM_INIT_ERROR) {
1864 		ret = -EPROTO;
1865 		goto out;
1866 	}
1867 
1868 	return 0;
1869 out:
1870 	vmbus_close(dev->channel);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * DEBUGFS Interface
1876  */
1877 #ifdef CONFIG_DEBUG_FS
1878 
1879 /**
1880  * hv_balloon_debug_show - shows statistics of balloon operations.
1881  * @f: pointer to the &struct seq_file.
1882  * @offset: ignored.
1883  *
1884  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1885  *
1886  * Return: zero on success or an error code.
1887  */
hv_balloon_debug_show(struct seq_file * f,void * offset)1888 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1889 {
1890 	struct hv_dynmem_device *dm = f->private;
1891 	char *sname;
1892 
1893 	seq_printf(f, "%-22s: %u.%u\n", "host_version",
1894 				DYNMEM_MAJOR_VERSION(dm->version),
1895 				DYNMEM_MINOR_VERSION(dm->version));
1896 
1897 	seq_printf(f, "%-22s:", "capabilities");
1898 	if (ballooning_enabled())
1899 		seq_puts(f, " enabled");
1900 
1901 	if (hot_add_enabled())
1902 		seq_puts(f, " hot_add");
1903 
1904 	seq_puts(f, "\n");
1905 
1906 	seq_printf(f, "%-22s: %u", "state", dm->state);
1907 	switch (dm->state) {
1908 	case DM_INITIALIZING:
1909 			sname = "Initializing";
1910 			break;
1911 	case DM_INITIALIZED:
1912 			sname = "Initialized";
1913 			break;
1914 	case DM_BALLOON_UP:
1915 			sname = "Balloon Up";
1916 			break;
1917 	case DM_BALLOON_DOWN:
1918 			sname = "Balloon Down";
1919 			break;
1920 	case DM_HOT_ADD:
1921 			sname = "Hot Add";
1922 			break;
1923 	case DM_INIT_ERROR:
1924 			sname = "Error";
1925 			break;
1926 	default:
1927 			sname = "Unknown";
1928 	}
1929 	seq_printf(f, " (%s)\n", sname);
1930 
1931 	/* HV Page Size */
1932 	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1933 
1934 	/* Pages added with hot_add */
1935 	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1936 
1937 	/* pages that are "onlined"/used from pages_added */
1938 	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1939 
1940 	/* pages we have given back to host */
1941 	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1942 
1943 	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1944 				get_pages_committed(dm));
1945 
1946 	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1947 				dm->max_dynamic_page_count);
1948 
1949 	return 0;
1950 }
1951 
1952 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1953 
hv_balloon_debugfs_init(struct hv_dynmem_device * b)1954 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1955 {
1956 	debugfs_create_file("hv-balloon", 0444, NULL, b,
1957 			&hv_balloon_debug_fops);
1958 }
1959 
hv_balloon_debugfs_exit(struct hv_dynmem_device * b)1960 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1961 {
1962 	debugfs_lookup_and_remove("hv-balloon", NULL);
1963 }
1964 
1965 #else
1966 
hv_balloon_debugfs_init(struct hv_dynmem_device * b)1967 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1968 {
1969 }
1970 
hv_balloon_debugfs_exit(struct hv_dynmem_device * b)1971 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1972 {
1973 }
1974 
1975 #endif	/* CONFIG_DEBUG_FS */
1976 
balloon_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)1977 static int balloon_probe(struct hv_device *dev,
1978 			 const struct hv_vmbus_device_id *dev_id)
1979 {
1980 	int ret;
1981 
1982 	allow_hibernation = hv_is_hibernation_supported();
1983 	if (allow_hibernation)
1984 		hot_add = false;
1985 
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987 	do_hot_add = hot_add;
1988 #else
1989 	do_hot_add = false;
1990 #endif
1991 	dm_device.dev = dev;
1992 	dm_device.state = DM_INITIALIZING;
1993 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1994 	init_completion(&dm_device.host_event);
1995 	init_completion(&dm_device.config_event);
1996 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1997 	spin_lock_init(&dm_device.ha_lock);
1998 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1999 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2000 	dm_device.host_specified_ha_region = false;
2001 
2002 #ifdef CONFIG_MEMORY_HOTPLUG
2003 	set_online_page_callback(&hv_online_page);
2004 	init_completion(&dm_device.ol_waitevent);
2005 	register_memory_notifier(&hv_memory_nb);
2006 #endif
2007 
2008 	hv_set_drvdata(dev, &dm_device);
2009 
2010 	ret = balloon_connect_vsp(dev);
2011 	if (ret != 0)
2012 		goto connect_error;
2013 
2014 	enable_page_reporting();
2015 	dm_device.state = DM_INITIALIZED;
2016 
2017 	dm_device.thread =
2018 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2019 	if (IS_ERR(dm_device.thread)) {
2020 		ret = PTR_ERR(dm_device.thread);
2021 		goto probe_error;
2022 	}
2023 
2024 	hv_balloon_debugfs_init(&dm_device);
2025 
2026 	return 0;
2027 
2028 probe_error:
2029 	dm_device.state = DM_INIT_ERROR;
2030 	dm_device.thread  = NULL;
2031 	disable_page_reporting();
2032 	vmbus_close(dev->channel);
2033 connect_error:
2034 #ifdef CONFIG_MEMORY_HOTPLUG
2035 	unregister_memory_notifier(&hv_memory_nb);
2036 	restore_online_page_callback(&hv_online_page);
2037 #endif
2038 	return ret;
2039 }
2040 
balloon_remove(struct hv_device * dev)2041 static void balloon_remove(struct hv_device *dev)
2042 {
2043 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2044 	struct hv_hotadd_state *has, *tmp;
2045 	struct hv_hotadd_gap *gap, *tmp_gap;
2046 
2047 	if (dm->num_pages_ballooned != 0)
2048 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2049 
2050 	hv_balloon_debugfs_exit(dm);
2051 
2052 	cancel_work_sync(&dm->balloon_wrk.wrk);
2053 	cancel_work_sync(&dm->ha_wrk.wrk);
2054 
2055 	kthread_stop(dm->thread);
2056 
2057 	/*
2058 	 * This is to handle the case when balloon_resume()
2059 	 * call has failed and some cleanup has been done as
2060 	 * a part of the error handling.
2061 	 */
2062 	if (dm_device.state != DM_INIT_ERROR) {
2063 		disable_page_reporting();
2064 		vmbus_close(dev->channel);
2065 #ifdef CONFIG_MEMORY_HOTPLUG
2066 		unregister_memory_notifier(&hv_memory_nb);
2067 		restore_online_page_callback(&hv_online_page);
2068 #endif
2069 	}
2070 
2071 	guard(spinlock_irqsave)(&dm_device.ha_lock);
2072 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2073 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2074 			list_del(&gap->list);
2075 			kfree(gap);
2076 		}
2077 		list_del(&has->list);
2078 		kfree(has);
2079 	}
2080 }
2081 
balloon_suspend(struct hv_device * hv_dev)2082 static int balloon_suspend(struct hv_device *hv_dev)
2083 {
2084 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2085 
2086 	tasklet_disable(&hv_dev->channel->callback_event);
2087 
2088 	cancel_work_sync(&dm->balloon_wrk.wrk);
2089 	cancel_work_sync(&dm->ha_wrk.wrk);
2090 
2091 	if (dm->thread) {
2092 		kthread_stop(dm->thread);
2093 		dm->thread = NULL;
2094 		vmbus_close(hv_dev->channel);
2095 	}
2096 
2097 	tasklet_enable(&hv_dev->channel->callback_event);
2098 
2099 	return 0;
2100 
2101 }
2102 
balloon_resume(struct hv_device * dev)2103 static int balloon_resume(struct hv_device *dev)
2104 {
2105 	int ret;
2106 
2107 	dm_device.state = DM_INITIALIZING;
2108 
2109 	ret = balloon_connect_vsp(dev);
2110 
2111 	if (ret != 0)
2112 		goto out;
2113 
2114 	dm_device.thread =
2115 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2116 	if (IS_ERR(dm_device.thread)) {
2117 		ret = PTR_ERR(dm_device.thread);
2118 		dm_device.thread = NULL;
2119 		goto close_channel;
2120 	}
2121 
2122 	dm_device.state = DM_INITIALIZED;
2123 	return 0;
2124 close_channel:
2125 	vmbus_close(dev->channel);
2126 out:
2127 	dm_device.state = DM_INIT_ERROR;
2128 	disable_page_reporting();
2129 #ifdef CONFIG_MEMORY_HOTPLUG
2130 	unregister_memory_notifier(&hv_memory_nb);
2131 	restore_online_page_callback(&hv_online_page);
2132 #endif
2133 	return ret;
2134 }
2135 
2136 static const struct hv_vmbus_device_id id_table[] = {
2137 	/* Dynamic Memory Class ID */
2138 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
2139 	{ HV_DM_GUID, },
2140 	{ },
2141 };
2142 
2143 MODULE_DEVICE_TABLE(vmbus, id_table);
2144 
2145 static  struct hv_driver balloon_drv = {
2146 	.name = "hv_balloon",
2147 	.id_table = id_table,
2148 	.probe =  balloon_probe,
2149 	.remove =  balloon_remove,
2150 	.suspend = balloon_suspend,
2151 	.resume = balloon_resume,
2152 	.driver = {
2153 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2154 	},
2155 };
2156 
init_balloon_drv(void)2157 static int __init init_balloon_drv(void)
2158 {
2159 
2160 	return vmbus_driver_register(&balloon_drv);
2161 }
2162 
2163 module_init(init_balloon_drv);
2164 
2165 MODULE_DESCRIPTION("Hyper-V Balloon");
2166 MODULE_LICENSE("GPL");
2167