1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15
gve_tx_put_doorbell(struct gve_priv * priv,struct gve_queue_resources * q_resources,u32 val)16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 struct gve_queue_resources *q_resources,
18 u32 val)
19 {
20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22
gve_xdp_tx_flush(struct gve_priv * priv,u32 xdp_qid)23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 struct gve_tx_ring *tx = &priv->tx[tx_qid];
27
28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30
31 /* gvnic can only transmit from a Registered Segment.
32 * We copy skb payloads into the registered segment before writing Tx
33 * descriptors and ringing the Tx doorbell.
34 *
35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36 * free allocations in the order they were allocated.
37 */
38
gve_tx_fifo_init(struct gve_priv * priv,struct gve_tx_fifo * fifo)39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 PAGE_KERNEL);
43 if (unlikely(!fifo->base)) {
44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 fifo->qpl->id);
46 return -ENOMEM;
47 }
48
49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 atomic_set(&fifo->available, fifo->size);
51 fifo->head = 0;
52 return 0;
53 }
54
gve_tx_fifo_release(struct gve_priv * priv,struct gve_tx_fifo * fifo)55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 WARN(atomic_read(&fifo->available) != fifo->size,
58 "Releasing non-empty fifo");
59
60 vunmap(fifo->base);
61 }
62
gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo * fifo,size_t bytes)63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 size_t bytes)
65 {
66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68
gve_tx_fifo_can_alloc(struct gve_tx_fifo * fifo,size_t bytes)69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75 * @fifo: FIFO to allocate from
76 * @bytes: Allocation size
77 * @iov: Scatter-gather elements to fill with allocation fragment base/len
78 *
79 * Returns number of valid elements in iov[] or negative on error.
80 *
81 * Allocations from a given FIFO must be externally synchronized but concurrent
82 * allocation and frees are allowed.
83 */
gve_tx_alloc_fifo(struct gve_tx_fifo * fifo,size_t bytes,struct gve_tx_iovec iov[2])84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 struct gve_tx_iovec iov[2])
86 {
87 size_t overflow, padding;
88 u32 aligned_head;
89 int nfrags = 0;
90
91 if (!bytes)
92 return 0;
93
94 /* This check happens before we know how much padding is needed to
95 * align to a cacheline boundary for the payload, but that is fine,
96 * because the FIFO head always start aligned, and the FIFO's boundaries
97 * are aligned, so if there is space for the data, there is space for
98 * the padding to the next alignment.
99 */
100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 "Reached %s when there's not enough space in the fifo", __func__);
102
103 nfrags++;
104
105 iov[0].iov_offset = fifo->head;
106 iov[0].iov_len = bytes;
107 fifo->head += bytes;
108
109 if (fifo->head > fifo->size) {
110 /* If the allocation did not fit in the tail fragment of the
111 * FIFO, also use the head fragment.
112 */
113 nfrags++;
114 overflow = fifo->head - fifo->size;
115 iov[0].iov_len -= overflow;
116 iov[1].iov_offset = 0; /* Start of fifo*/
117 iov[1].iov_len = overflow;
118
119 fifo->head = overflow;
120 }
121
122 /* Re-align to a cacheline boundary */
123 aligned_head = L1_CACHE_ALIGN(fifo->head);
124 padding = aligned_head - fifo->head;
125 iov[nfrags - 1].iov_padding = padding;
126 atomic_sub(bytes + padding, &fifo->available);
127 fifo->head = aligned_head;
128
129 if (fifo->head == fifo->size)
130 fifo->head = 0;
131
132 return nfrags;
133 }
134
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136 * @fifo: FIFO to return fragments to
137 * @bytes: Bytes to free
138 */
gve_tx_free_fifo(struct gve_tx_fifo * fifo,size_t bytes)139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 atomic_add(bytes, &fifo->available);
142 }
143
gve_tx_clear_buffer_state(struct gve_tx_buffer_state * info)144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 size_t space_freed = 0;
147 int i;
148
149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 info->iov[i].iov_len = 0;
152 info->iov[i].iov_padding = 0;
153 }
154 return space_freed;
155 }
156
gve_clean_xdp_done(struct gve_priv * priv,struct gve_tx_ring * tx,u32 to_do)157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 u32 to_do)
159 {
160 struct gve_tx_buffer_state *info;
161 u64 pkts = 0, bytes = 0;
162 size_t space_freed = 0;
163 u32 xsk_complete = 0;
164 u32 idx;
165 int i;
166
167 for (i = 0; i < to_do; i++) {
168 idx = tx->done & tx->mask;
169 info = &tx->info[idx];
170 tx->done++;
171
172 if (unlikely(!info->xdp.size))
173 continue;
174
175 bytes += info->xdp.size;
176 pkts++;
177 xsk_complete += info->xdp.is_xsk;
178
179 info->xdp.size = 0;
180 if (info->xdp_frame) {
181 xdp_return_frame(info->xdp_frame);
182 info->xdp_frame = NULL;
183 }
184 space_freed += gve_tx_clear_buffer_state(info);
185 }
186
187 gve_tx_free_fifo(&tx->tx_fifo, space_freed);
188 if (xsk_complete > 0 && tx->xsk_pool)
189 xsk_tx_completed(tx->xsk_pool, xsk_complete);
190 u64_stats_update_begin(&tx->statss);
191 tx->bytes_done += bytes;
192 tx->pkt_done += pkts;
193 u64_stats_update_end(&tx->statss);
194 return pkts;
195 }
196
197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
198 u32 to_do, bool try_to_wake);
199
gve_tx_free_ring(struct gve_priv * priv,int idx)200 static void gve_tx_free_ring(struct gve_priv *priv, int idx)
201 {
202 struct gve_tx_ring *tx = &priv->tx[idx];
203 struct device *hdev = &priv->pdev->dev;
204 size_t bytes;
205 u32 slots;
206
207 gve_tx_remove_from_block(priv, idx);
208 slots = tx->mask + 1;
209 if (tx->q_num < priv->tx_cfg.num_queues) {
210 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
211 netdev_tx_reset_queue(tx->netdev_txq);
212 } else {
213 gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt);
214 }
215
216 dma_free_coherent(hdev, sizeof(*tx->q_resources),
217 tx->q_resources, tx->q_resources_bus);
218 tx->q_resources = NULL;
219
220 if (!tx->raw_addressing) {
221 gve_tx_fifo_release(priv, &tx->tx_fifo);
222 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
223 tx->tx_fifo.qpl = NULL;
224 }
225
226 bytes = sizeof(*tx->desc) * slots;
227 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
228 tx->desc = NULL;
229
230 vfree(tx->info);
231 tx->info = NULL;
232
233 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
234 }
235
gve_tx_alloc_ring(struct gve_priv * priv,int idx)236 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
237 {
238 struct gve_tx_ring *tx = &priv->tx[idx];
239 struct device *hdev = &priv->pdev->dev;
240 u32 slots = priv->tx_desc_cnt;
241 size_t bytes;
242
243 /* Make sure everything is zeroed to start */
244 memset(tx, 0, sizeof(*tx));
245 spin_lock_init(&tx->clean_lock);
246 spin_lock_init(&tx->xdp_lock);
247 tx->q_num = idx;
248
249 tx->mask = slots - 1;
250
251 /* alloc metadata */
252 tx->info = vcalloc(slots, sizeof(*tx->info));
253 if (!tx->info)
254 return -ENOMEM;
255
256 /* alloc tx queue */
257 bytes = sizeof(*tx->desc) * slots;
258 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
259 if (!tx->desc)
260 goto abort_with_info;
261
262 tx->raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
263 tx->dev = &priv->pdev->dev;
264 if (!tx->raw_addressing) {
265 tx->tx_fifo.qpl = gve_assign_tx_qpl(priv, idx);
266 if (!tx->tx_fifo.qpl)
267 goto abort_with_desc;
268 /* map Tx FIFO */
269 if (gve_tx_fifo_init(priv, &tx->tx_fifo))
270 goto abort_with_qpl;
271 }
272
273 tx->q_resources =
274 dma_alloc_coherent(hdev,
275 sizeof(*tx->q_resources),
276 &tx->q_resources_bus,
277 GFP_KERNEL);
278 if (!tx->q_resources)
279 goto abort_with_fifo;
280
281 netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
282 (unsigned long)tx->bus);
283 if (idx < priv->tx_cfg.num_queues)
284 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
285 gve_tx_add_to_block(priv, idx);
286
287 return 0;
288
289 abort_with_fifo:
290 if (!tx->raw_addressing)
291 gve_tx_fifo_release(priv, &tx->tx_fifo);
292 abort_with_qpl:
293 if (!tx->raw_addressing)
294 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
295 abort_with_desc:
296 dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
297 tx->desc = NULL;
298 abort_with_info:
299 vfree(tx->info);
300 tx->info = NULL;
301 return -ENOMEM;
302 }
303
gve_tx_alloc_rings(struct gve_priv * priv,int start_id,int num_rings)304 int gve_tx_alloc_rings(struct gve_priv *priv, int start_id, int num_rings)
305 {
306 int err = 0;
307 int i;
308
309 for (i = start_id; i < start_id + num_rings; i++) {
310 err = gve_tx_alloc_ring(priv, i);
311 if (err) {
312 netif_err(priv, drv, priv->dev,
313 "Failed to alloc tx ring=%d: err=%d\n",
314 i, err);
315 break;
316 }
317 }
318 /* Unallocate if there was an error */
319 if (err) {
320 int j;
321
322 for (j = start_id; j < i; j++)
323 gve_tx_free_ring(priv, j);
324 }
325 return err;
326 }
327
gve_tx_free_rings_gqi(struct gve_priv * priv,int start_id,int num_rings)328 void gve_tx_free_rings_gqi(struct gve_priv *priv, int start_id, int num_rings)
329 {
330 int i;
331
332 for (i = start_id; i < start_id + num_rings; i++)
333 gve_tx_free_ring(priv, i);
334 }
335
336 /* gve_tx_avail - Calculates the number of slots available in the ring
337 * @tx: tx ring to check
338 *
339 * Returns the number of slots available
340 *
341 * The capacity of the queue is mask + 1. We don't need to reserve an entry.
342 **/
gve_tx_avail(struct gve_tx_ring * tx)343 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
344 {
345 return tx->mask + 1 - (tx->req - tx->done);
346 }
347
gve_skb_fifo_bytes_required(struct gve_tx_ring * tx,struct sk_buff * skb)348 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
349 struct sk_buff *skb)
350 {
351 int pad_bytes, align_hdr_pad;
352 int bytes;
353 int hlen;
354
355 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
356 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
357
358 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
359 hlen);
360 /* We need to take into account the header alignment padding. */
361 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
362 bytes = align_hdr_pad + pad_bytes + skb->len;
363
364 return bytes;
365 }
366
367 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
368 * 1 for each skb frag
369 * 1 for the skb linear portion
370 * 1 for when tcp hdr needs to be in separate descriptor
371 * 1 if the payload wraps to the beginning of the FIFO
372 * 1 for metadata descriptor
373 */
374 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4)
gve_tx_unmap_buf(struct device * dev,struct gve_tx_buffer_state * info)375 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
376 {
377 if (info->skb) {
378 dma_unmap_single(dev, dma_unmap_addr(info, dma),
379 dma_unmap_len(info, len),
380 DMA_TO_DEVICE);
381 dma_unmap_len_set(info, len, 0);
382 } else {
383 dma_unmap_page(dev, dma_unmap_addr(info, dma),
384 dma_unmap_len(info, len),
385 DMA_TO_DEVICE);
386 dma_unmap_len_set(info, len, 0);
387 }
388 }
389
390 /* Check if sufficient resources (descriptor ring space, FIFO space) are
391 * available to transmit the given number of bytes.
392 */
gve_can_tx(struct gve_tx_ring * tx,int bytes_required)393 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
394 {
395 bool can_alloc = true;
396
397 if (!tx->raw_addressing)
398 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
399
400 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
401 }
402
403 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
404
405 /* Stops the queue if the skb cannot be transmitted. */
gve_maybe_stop_tx(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)406 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
407 struct sk_buff *skb)
408 {
409 int bytes_required = 0;
410 u32 nic_done;
411 u32 to_do;
412 int ret;
413
414 if (!tx->raw_addressing)
415 bytes_required = gve_skb_fifo_bytes_required(tx, skb);
416
417 if (likely(gve_can_tx(tx, bytes_required)))
418 return 0;
419
420 ret = -EBUSY;
421 spin_lock(&tx->clean_lock);
422 nic_done = gve_tx_load_event_counter(priv, tx);
423 to_do = nic_done - tx->done;
424
425 /* Only try to clean if there is hope for TX */
426 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
427 if (to_do > 0) {
428 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
429 gve_clean_tx_done(priv, tx, to_do, false);
430 }
431 if (likely(gve_can_tx(tx, bytes_required)))
432 ret = 0;
433 }
434 if (ret) {
435 /* No space, so stop the queue */
436 tx->stop_queue++;
437 netif_tx_stop_queue(tx->netdev_txq);
438 }
439 spin_unlock(&tx->clean_lock);
440
441 return ret;
442 }
443
gve_tx_fill_pkt_desc(union gve_tx_desc * pkt_desc,u16 csum_offset,u8 ip_summed,bool is_gso,int l4_hdr_offset,u32 desc_cnt,u16 hlen,u64 addr,u16 pkt_len)444 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
445 u16 csum_offset, u8 ip_summed, bool is_gso,
446 int l4_hdr_offset, u32 desc_cnt,
447 u16 hlen, u64 addr, u16 pkt_len)
448 {
449 /* l4_hdr_offset and csum_offset are in units of 16-bit words */
450 if (is_gso) {
451 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
452 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
453 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
454 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
455 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
456 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
457 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
458 } else {
459 pkt_desc->pkt.type_flags = GVE_TXD_STD;
460 pkt_desc->pkt.l4_csum_offset = 0;
461 pkt_desc->pkt.l4_hdr_offset = 0;
462 }
463 pkt_desc->pkt.desc_cnt = desc_cnt;
464 pkt_desc->pkt.len = cpu_to_be16(pkt_len);
465 pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
466 pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
467 }
468
gve_tx_fill_mtd_desc(union gve_tx_desc * mtd_desc,struct sk_buff * skb)469 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
470 struct sk_buff *skb)
471 {
472 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
473
474 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
475 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
476 GVE_MTD_PATH_HASH_L4;
477 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
478 mtd_desc->mtd.reserved0 = 0;
479 mtd_desc->mtd.reserved1 = 0;
480 }
481
gve_tx_fill_seg_desc(union gve_tx_desc * seg_desc,u16 l3_offset,u16 gso_size,bool is_gso_v6,bool is_gso,u16 len,u64 addr)482 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
483 u16 l3_offset, u16 gso_size,
484 bool is_gso_v6, bool is_gso,
485 u16 len, u64 addr)
486 {
487 seg_desc->seg.type_flags = GVE_TXD_SEG;
488 if (is_gso) {
489 if (is_gso_v6)
490 seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
491 seg_desc->seg.l3_offset = l3_offset >> 1;
492 seg_desc->seg.mss = cpu_to_be16(gso_size);
493 }
494 seg_desc->seg.seg_len = cpu_to_be16(len);
495 seg_desc->seg.seg_addr = cpu_to_be64(addr);
496 }
497
gve_dma_sync_for_device(struct device * dev,dma_addr_t * page_buses,u64 iov_offset,u64 iov_len)498 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
499 u64 iov_offset, u64 iov_len)
500 {
501 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
502 u64 first_page = iov_offset / PAGE_SIZE;
503 u64 page;
504
505 for (page = first_page; page <= last_page; page++)
506 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
507 }
508
gve_tx_add_skb_copy(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)509 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
510 {
511 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
512 union gve_tx_desc *pkt_desc, *seg_desc;
513 struct gve_tx_buffer_state *info;
514 int mtd_desc_nr = !!skb->l4_hash;
515 bool is_gso = skb_is_gso(skb);
516 u32 idx = tx->req & tx->mask;
517 int payload_iov = 2;
518 int copy_offset;
519 u32 next_idx;
520 int i;
521
522 info = &tx->info[idx];
523 pkt_desc = &tx->desc[idx];
524
525 l4_hdr_offset = skb_checksum_start_offset(skb);
526 /* If the skb is gso, then we want the tcp header alone in the first segment
527 * otherwise we want the minimum required by the gVNIC spec.
528 */
529 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
530 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
531
532 info->skb = skb;
533 /* We don't want to split the header, so if necessary, pad to the end
534 * of the fifo and then put the header at the beginning of the fifo.
535 */
536 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
537 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
538 &info->iov[0]);
539 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
540 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
541 &info->iov[payload_iov]);
542
543 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
544 is_gso, l4_hdr_offset,
545 1 + mtd_desc_nr + payload_nfrags, hlen,
546 info->iov[hdr_nfrags - 1].iov_offset, skb->len);
547
548 skb_copy_bits(skb, 0,
549 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
550 hlen);
551 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
552 info->iov[hdr_nfrags - 1].iov_offset,
553 info->iov[hdr_nfrags - 1].iov_len);
554 copy_offset = hlen;
555
556 if (mtd_desc_nr) {
557 next_idx = (tx->req + 1) & tx->mask;
558 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
559 }
560
561 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
562 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
563 seg_desc = &tx->desc[next_idx];
564
565 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
566 skb_shinfo(skb)->gso_size,
567 skb_is_gso_v6(skb), is_gso,
568 info->iov[i].iov_len,
569 info->iov[i].iov_offset);
570
571 skb_copy_bits(skb, copy_offset,
572 tx->tx_fifo.base + info->iov[i].iov_offset,
573 info->iov[i].iov_len);
574 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
575 info->iov[i].iov_offset,
576 info->iov[i].iov_len);
577 copy_offset += info->iov[i].iov_len;
578 }
579
580 return 1 + mtd_desc_nr + payload_nfrags;
581 }
582
gve_tx_add_skb_no_copy(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)583 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
584 struct sk_buff *skb)
585 {
586 const struct skb_shared_info *shinfo = skb_shinfo(skb);
587 int hlen, num_descriptors, l4_hdr_offset;
588 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
589 struct gve_tx_buffer_state *info;
590 int mtd_desc_nr = !!skb->l4_hash;
591 bool is_gso = skb_is_gso(skb);
592 u32 idx = tx->req & tx->mask;
593 u64 addr;
594 u32 len;
595 int i;
596
597 info = &tx->info[idx];
598 pkt_desc = &tx->desc[idx];
599
600 l4_hdr_offset = skb_checksum_start_offset(skb);
601 /* If the skb is gso, then we want only up to the tcp header in the first segment
602 * to efficiently replicate on each segment otherwise we want the linear portion
603 * of the skb (which will contain the checksum because skb->csum_start and
604 * skb->csum_offset are given relative to skb->head) in the first segment.
605 */
606 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
607 len = skb_headlen(skb);
608
609 info->skb = skb;
610
611 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
612 if (unlikely(dma_mapping_error(tx->dev, addr))) {
613 tx->dma_mapping_error++;
614 goto drop;
615 }
616 dma_unmap_len_set(info, len, len);
617 dma_unmap_addr_set(info, dma, addr);
618
619 num_descriptors = 1 + shinfo->nr_frags;
620 if (hlen < len)
621 num_descriptors++;
622 if (mtd_desc_nr)
623 num_descriptors++;
624
625 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
626 is_gso, l4_hdr_offset,
627 num_descriptors, hlen, addr, skb->len);
628
629 if (mtd_desc_nr) {
630 idx = (idx + 1) & tx->mask;
631 mtd_desc = &tx->desc[idx];
632 gve_tx_fill_mtd_desc(mtd_desc, skb);
633 }
634
635 if (hlen < len) {
636 /* For gso the rest of the linear portion of the skb needs to
637 * be in its own descriptor.
638 */
639 len -= hlen;
640 addr += hlen;
641 idx = (idx + 1) & tx->mask;
642 seg_desc = &tx->desc[idx];
643 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
644 skb_shinfo(skb)->gso_size,
645 skb_is_gso_v6(skb), is_gso, len, addr);
646 }
647
648 for (i = 0; i < shinfo->nr_frags; i++) {
649 const skb_frag_t *frag = &shinfo->frags[i];
650
651 idx = (idx + 1) & tx->mask;
652 seg_desc = &tx->desc[idx];
653 len = skb_frag_size(frag);
654 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
655 if (unlikely(dma_mapping_error(tx->dev, addr))) {
656 tx->dma_mapping_error++;
657 goto unmap_drop;
658 }
659 tx->info[idx].skb = NULL;
660 dma_unmap_len_set(&tx->info[idx], len, len);
661 dma_unmap_addr_set(&tx->info[idx], dma, addr);
662
663 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
664 skb_shinfo(skb)->gso_size,
665 skb_is_gso_v6(skb), is_gso, len, addr);
666 }
667
668 return num_descriptors;
669
670 unmap_drop:
671 i += num_descriptors - shinfo->nr_frags;
672 while (i--) {
673 /* Skip metadata descriptor, if set */
674 if (i == 1 && mtd_desc_nr == 1)
675 continue;
676 idx--;
677 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
678 }
679 drop:
680 tx->dropped_pkt++;
681 return 0;
682 }
683
gve_tx(struct sk_buff * skb,struct net_device * dev)684 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
685 {
686 struct gve_priv *priv = netdev_priv(dev);
687 struct gve_tx_ring *tx;
688 int nsegs;
689
690 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
691 "skb queue index out of range");
692 tx = &priv->tx[skb_get_queue_mapping(skb)];
693 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
694 /* We need to ring the txq doorbell -- we have stopped the Tx
695 * queue for want of resources, but prior calls to gve_tx()
696 * may have added descriptors without ringing the doorbell.
697 */
698
699 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
700 return NETDEV_TX_BUSY;
701 }
702 if (tx->raw_addressing)
703 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
704 else
705 nsegs = gve_tx_add_skb_copy(priv, tx, skb);
706
707 /* If the packet is getting sent, we need to update the skb */
708 if (nsegs) {
709 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
710 skb_tx_timestamp(skb);
711 tx->req += nsegs;
712 } else {
713 dev_kfree_skb_any(skb);
714 }
715
716 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
717 return NETDEV_TX_OK;
718
719 /* Give packets to NIC. Even if this packet failed to send the doorbell
720 * might need to be rung because of xmit_more.
721 */
722 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
723 return NETDEV_TX_OK;
724 }
725
gve_tx_fill_xdp(struct gve_priv * priv,struct gve_tx_ring * tx,void * data,int len,void * frame_p,bool is_xsk)726 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
727 void *data, int len, void *frame_p, bool is_xsk)
728 {
729 int pad, nfrags, ndescs, iovi, offset;
730 struct gve_tx_buffer_state *info;
731 u32 reqi = tx->req;
732
733 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
734 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
735 pad = 0;
736 info = &tx->info[reqi & tx->mask];
737 info->xdp_frame = frame_p;
738 info->xdp.size = len;
739 info->xdp.is_xsk = is_xsk;
740
741 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
742 &info->iov[0]);
743 iovi = pad > 0;
744 ndescs = nfrags - iovi;
745 offset = 0;
746
747 while (iovi < nfrags) {
748 if (!offset)
749 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
750 CHECKSUM_NONE, false, 0, ndescs,
751 info->iov[iovi].iov_len,
752 info->iov[iovi].iov_offset, len);
753 else
754 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
755 0, 0, false, false,
756 info->iov[iovi].iov_len,
757 info->iov[iovi].iov_offset);
758
759 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
760 data + offset, info->iov[iovi].iov_len);
761 gve_dma_sync_for_device(&priv->pdev->dev,
762 tx->tx_fifo.qpl->page_buses,
763 info->iov[iovi].iov_offset,
764 info->iov[iovi].iov_len);
765 offset += info->iov[iovi].iov_len;
766 iovi++;
767 reqi++;
768 }
769
770 return ndescs;
771 }
772
gve_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)773 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
774 u32 flags)
775 {
776 struct gve_priv *priv = netdev_priv(dev);
777 struct gve_tx_ring *tx;
778 int i, err = 0, qid;
779
780 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK) || !priv->xdp_prog)
781 return -EINVAL;
782
783 if (!gve_get_napi_enabled(priv))
784 return -ENETDOWN;
785
786 qid = gve_xdp_tx_queue_id(priv,
787 smp_processor_id() % priv->num_xdp_queues);
788
789 tx = &priv->tx[qid];
790
791 spin_lock(&tx->xdp_lock);
792 for (i = 0; i < n; i++) {
793 err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
794 frames[i]->len, frames[i]);
795 if (err)
796 break;
797 }
798
799 if (flags & XDP_XMIT_FLUSH)
800 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
801
802 spin_unlock(&tx->xdp_lock);
803
804 u64_stats_update_begin(&tx->statss);
805 tx->xdp_xmit += n;
806 tx->xdp_xmit_errors += n - i;
807 u64_stats_update_end(&tx->statss);
808
809 return i ? i : err;
810 }
811
gve_xdp_xmit_one(struct gve_priv * priv,struct gve_tx_ring * tx,void * data,int len,void * frame_p)812 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
813 void *data, int len, void *frame_p)
814 {
815 int nsegs;
816
817 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
818 return -EBUSY;
819
820 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
821 tx->req += nsegs;
822
823 return 0;
824 }
825
826 #define GVE_TX_START_THRESH PAGE_SIZE
827
gve_clean_tx_done(struct gve_priv * priv,struct gve_tx_ring * tx,u32 to_do,bool try_to_wake)828 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
829 u32 to_do, bool try_to_wake)
830 {
831 struct gve_tx_buffer_state *info;
832 u64 pkts = 0, bytes = 0;
833 size_t space_freed = 0;
834 struct sk_buff *skb;
835 u32 idx;
836 int j;
837
838 for (j = 0; j < to_do; j++) {
839 idx = tx->done & tx->mask;
840 netif_info(priv, tx_done, priv->dev,
841 "[%d] %s: idx=%d (req=%u done=%u)\n",
842 tx->q_num, __func__, idx, tx->req, tx->done);
843 info = &tx->info[idx];
844 skb = info->skb;
845
846 /* Unmap the buffer */
847 if (tx->raw_addressing)
848 gve_tx_unmap_buf(tx->dev, info);
849 tx->done++;
850 /* Mark as free */
851 if (skb) {
852 info->skb = NULL;
853 bytes += skb->len;
854 pkts++;
855 dev_consume_skb_any(skb);
856 if (tx->raw_addressing)
857 continue;
858 space_freed += gve_tx_clear_buffer_state(info);
859 }
860 }
861
862 if (!tx->raw_addressing)
863 gve_tx_free_fifo(&tx->tx_fifo, space_freed);
864 u64_stats_update_begin(&tx->statss);
865 tx->bytes_done += bytes;
866 tx->pkt_done += pkts;
867 u64_stats_update_end(&tx->statss);
868 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
869
870 /* start the queue if we've stopped it */
871 #ifndef CONFIG_BQL
872 /* Make sure that the doorbells are synced */
873 smp_mb();
874 #endif
875 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
876 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
877 tx->wake_queue++;
878 netif_tx_wake_queue(tx->netdev_txq);
879 }
880
881 return pkts;
882 }
883
gve_tx_load_event_counter(struct gve_priv * priv,struct gve_tx_ring * tx)884 u32 gve_tx_load_event_counter(struct gve_priv *priv,
885 struct gve_tx_ring *tx)
886 {
887 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
888 __be32 counter = READ_ONCE(priv->counter_array[counter_index]);
889
890 return be32_to_cpu(counter);
891 }
892
gve_xsk_tx(struct gve_priv * priv,struct gve_tx_ring * tx,int budget)893 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
894 int budget)
895 {
896 struct xdp_desc desc;
897 int sent = 0, nsegs;
898 void *data;
899
900 spin_lock(&tx->xdp_lock);
901 while (sent < budget) {
902 if (!gve_can_tx(tx, GVE_TX_START_THRESH))
903 goto out;
904
905 if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
906 tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
907 goto out;
908 }
909
910 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
911 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
912 tx->req += nsegs;
913 sent++;
914 }
915 out:
916 if (sent > 0) {
917 gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
918 xsk_tx_release(tx->xsk_pool);
919 }
920 spin_unlock(&tx->xdp_lock);
921 return sent;
922 }
923
gve_xdp_poll(struct gve_notify_block * block,int budget)924 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
925 {
926 struct gve_priv *priv = block->priv;
927 struct gve_tx_ring *tx = block->tx;
928 u32 nic_done;
929 bool repoll;
930 u32 to_do;
931
932 /* Find out how much work there is to be done */
933 nic_done = gve_tx_load_event_counter(priv, tx);
934 to_do = min_t(u32, (nic_done - tx->done), budget);
935 gve_clean_xdp_done(priv, tx, to_do);
936 repoll = nic_done != tx->done;
937
938 if (tx->xsk_pool) {
939 int sent = gve_xsk_tx(priv, tx, budget);
940
941 u64_stats_update_begin(&tx->statss);
942 tx->xdp_xsk_sent += sent;
943 u64_stats_update_end(&tx->statss);
944 repoll |= (sent == budget);
945 if (xsk_uses_need_wakeup(tx->xsk_pool))
946 xsk_set_tx_need_wakeup(tx->xsk_pool);
947 }
948
949 /* If we still have work we want to repoll */
950 return repoll;
951 }
952
gve_tx_poll(struct gve_notify_block * block,int budget)953 bool gve_tx_poll(struct gve_notify_block *block, int budget)
954 {
955 struct gve_priv *priv = block->priv;
956 struct gve_tx_ring *tx = block->tx;
957 u32 nic_done;
958 u32 to_do;
959
960 /* If budget is 0, do all the work */
961 if (budget == 0)
962 budget = INT_MAX;
963
964 /* In TX path, it may try to clean completed pkts in order to xmit,
965 * to avoid cleaning conflict, use spin_lock(), it yields better
966 * concurrency between xmit/clean than netif's lock.
967 */
968 spin_lock(&tx->clean_lock);
969 /* Find out how much work there is to be done */
970 nic_done = gve_tx_load_event_counter(priv, tx);
971 to_do = min_t(u32, (nic_done - tx->done), budget);
972 gve_clean_tx_done(priv, tx, to_do, true);
973 spin_unlock(&tx->clean_lock);
974 /* If we still have work we want to repoll */
975 return nic_done != tx->done;
976 }
977
gve_tx_clean_pending(struct gve_priv * priv,struct gve_tx_ring * tx)978 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
979 {
980 u32 nic_done = gve_tx_load_event_counter(priv, tx);
981
982 return nic_done != tx->done;
983 }
984