1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
3 *
4 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
5 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
6 *
7 * Author: Harald Welte <hwelte@sysmocom.de>
8 * Pablo Neira Ayuso <pablo@netfilter.org>
9 * Andreas Schultz <aschultz@travelping.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/skbuff.h>
16 #include <linux/udp.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/net.h>
21 #include <linux/file.h>
22 #include <linux/gtp.h>
23
24 #include <net/net_namespace.h>
25 #include <net/protocol.h>
26 #include <net/ip.h>
27 #include <net/udp.h>
28 #include <net/udp_tunnel.h>
29 #include <net/icmp.h>
30 #include <net/xfrm.h>
31 #include <net/genetlink.h>
32 #include <net/netns/generic.h>
33 #include <net/gtp.h>
34
35 /* An active session for the subscriber. */
36 struct pdp_ctx {
37 struct hlist_node hlist_tid;
38 struct hlist_node hlist_addr;
39
40 union {
41 struct {
42 u64 tid;
43 u16 flow;
44 } v0;
45 struct {
46 u32 i_tei;
47 u32 o_tei;
48 } v1;
49 } u;
50 u8 gtp_version;
51 u16 af;
52
53 struct in_addr ms_addr_ip4;
54 struct in_addr peer_addr_ip4;
55
56 struct sock *sk;
57 struct net_device *dev;
58
59 atomic_t tx_seq;
60 struct rcu_head rcu_head;
61 };
62
63 /* One instance of the GTP device. */
64 struct gtp_dev {
65 struct list_head list;
66
67 struct sock *sk0;
68 struct sock *sk1u;
69 u8 sk_created;
70
71 struct net_device *dev;
72 struct net *net;
73
74 unsigned int role;
75 unsigned int hash_size;
76 struct hlist_head *tid_hash;
77 struct hlist_head *addr_hash;
78
79 u8 restart_count;
80 };
81
82 struct echo_info {
83 struct in_addr ms_addr_ip4;
84 struct in_addr peer_addr_ip4;
85 u8 gtp_version;
86 };
87
88 static unsigned int gtp_net_id __read_mostly;
89
90 struct gtp_net {
91 struct list_head gtp_dev_list;
92 };
93
94 static u32 gtp_h_initval;
95
96 static struct genl_family gtp_genl_family;
97
98 enum gtp_multicast_groups {
99 GTP_GENL_MCGRP,
100 };
101
102 static const struct genl_multicast_group gtp_genl_mcgrps[] = {
103 [GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
104 };
105
106 static void pdp_context_delete(struct pdp_ctx *pctx);
107
gtp0_hashfn(u64 tid)108 static inline u32 gtp0_hashfn(u64 tid)
109 {
110 u32 *tid32 = (u32 *) &tid;
111 return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
112 }
113
gtp1u_hashfn(u32 tid)114 static inline u32 gtp1u_hashfn(u32 tid)
115 {
116 return jhash_1word(tid, gtp_h_initval);
117 }
118
ipv4_hashfn(__be32 ip)119 static inline u32 ipv4_hashfn(__be32 ip)
120 {
121 return jhash_1word((__force u32)ip, gtp_h_initval);
122 }
123
124 /* Resolve a PDP context structure based on the 64bit TID. */
gtp0_pdp_find(struct gtp_dev * gtp,u64 tid)125 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
126 {
127 struct hlist_head *head;
128 struct pdp_ctx *pdp;
129
130 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
131
132 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
133 if (pdp->gtp_version == GTP_V0 &&
134 pdp->u.v0.tid == tid)
135 return pdp;
136 }
137 return NULL;
138 }
139
140 /* Resolve a PDP context structure based on the 32bit TEI. */
gtp1_pdp_find(struct gtp_dev * gtp,u32 tid)141 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
142 {
143 struct hlist_head *head;
144 struct pdp_ctx *pdp;
145
146 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
147
148 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
149 if (pdp->gtp_version == GTP_V1 &&
150 pdp->u.v1.i_tei == tid)
151 return pdp;
152 }
153 return NULL;
154 }
155
156 /* Resolve a PDP context based on IPv4 address of MS. */
ipv4_pdp_find(struct gtp_dev * gtp,__be32 ms_addr)157 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
158 {
159 struct hlist_head *head;
160 struct pdp_ctx *pdp;
161
162 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
163
164 hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
165 if (pdp->af == AF_INET &&
166 pdp->ms_addr_ip4.s_addr == ms_addr)
167 return pdp;
168 }
169
170 return NULL;
171 }
172
gtp_check_ms_ipv4(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)173 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
174 unsigned int hdrlen, unsigned int role)
175 {
176 struct iphdr *iph;
177
178 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
179 return false;
180
181 iph = (struct iphdr *)(skb->data + hdrlen);
182
183 if (role == GTP_ROLE_SGSN)
184 return iph->daddr == pctx->ms_addr_ip4.s_addr;
185 else
186 return iph->saddr == pctx->ms_addr_ip4.s_addr;
187 }
188
189 /* Check if the inner IP address in this packet is assigned to any
190 * existing mobile subscriber.
191 */
gtp_check_ms(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)192 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
193 unsigned int hdrlen, unsigned int role)
194 {
195 switch (ntohs(skb->protocol)) {
196 case ETH_P_IP:
197 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
198 }
199 return false;
200 }
201
gtp_rx(struct pdp_ctx * pctx,struct sk_buff * skb,unsigned int hdrlen,unsigned int role)202 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
203 unsigned int hdrlen, unsigned int role)
204 {
205 if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
206 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
207 return 1;
208 }
209
210 /* Get rid of the GTP + UDP headers. */
211 if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
212 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) {
213 pctx->dev->stats.rx_length_errors++;
214 goto err;
215 }
216
217 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
218
219 /* Now that the UDP and the GTP header have been removed, set up the
220 * new network header. This is required by the upper layer to
221 * calculate the transport header.
222 */
223 skb_reset_network_header(skb);
224 skb_reset_mac_header(skb);
225
226 skb->dev = pctx->dev;
227
228 dev_sw_netstats_rx_add(pctx->dev, skb->len);
229
230 __netif_rx(skb);
231 return 0;
232
233 err:
234 pctx->dev->stats.rx_dropped++;
235 return -1;
236 }
237
ip4_route_output_gtp(struct flowi4 * fl4,const struct sock * sk,__be32 daddr,__be32 saddr)238 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
239 const struct sock *sk,
240 __be32 daddr, __be32 saddr)
241 {
242 memset(fl4, 0, sizeof(*fl4));
243 fl4->flowi4_oif = sk->sk_bound_dev_if;
244 fl4->daddr = daddr;
245 fl4->saddr = saddr;
246 fl4->flowi4_tos = ip_sock_rt_tos(sk);
247 fl4->flowi4_scope = ip_sock_rt_scope(sk);
248 fl4->flowi4_proto = sk->sk_protocol;
249
250 return ip_route_output_key(sock_net(sk), fl4);
251 }
252
253 /* GSM TS 09.60. 7.3
254 * In all Path Management messages:
255 * - TID: is not used and shall be set to 0.
256 * - Flow Label is not used and shall be set to 0
257 * In signalling messages:
258 * - number: this field is not yet used in signalling messages.
259 * It shall be set to 255 by the sender and shall be ignored
260 * by the receiver
261 * Returns true if the echo req was correct, false otherwise.
262 */
gtp0_validate_echo_hdr(struct gtp0_header * gtp0)263 static bool gtp0_validate_echo_hdr(struct gtp0_header *gtp0)
264 {
265 return !(gtp0->tid || (gtp0->flags ^ 0x1e) ||
266 gtp0->number != 0xff || gtp0->flow);
267 }
268
269 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
gtp0_build_echo_msg(struct gtp0_header * hdr,__u8 msg_type)270 static void gtp0_build_echo_msg(struct gtp0_header *hdr, __u8 msg_type)
271 {
272 int len_pkt, len_hdr;
273
274 hdr->flags = 0x1e; /* v0, GTP-non-prime. */
275 hdr->type = msg_type;
276 /* GSM TS 09.60. 7.3 In all Path Management Flow Label and TID
277 * are not used and shall be set to 0.
278 */
279 hdr->flow = 0;
280 hdr->tid = 0;
281 hdr->number = 0xff;
282 hdr->spare[0] = 0xff;
283 hdr->spare[1] = 0xff;
284 hdr->spare[2] = 0xff;
285
286 len_pkt = sizeof(struct gtp0_packet);
287 len_hdr = sizeof(struct gtp0_header);
288
289 if (msg_type == GTP_ECHO_RSP)
290 hdr->length = htons(len_pkt - len_hdr);
291 else
292 hdr->length = 0;
293 }
294
gtp0_send_echo_resp(struct gtp_dev * gtp,struct sk_buff * skb)295 static int gtp0_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
296 {
297 struct gtp0_packet *gtp_pkt;
298 struct gtp0_header *gtp0;
299 struct rtable *rt;
300 struct flowi4 fl4;
301 struct iphdr *iph;
302 __be16 seq;
303
304 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
305
306 if (!gtp0_validate_echo_hdr(gtp0))
307 return -1;
308
309 seq = gtp0->seq;
310
311 /* pull GTP and UDP headers */
312 skb_pull_data(skb, sizeof(struct gtp0_header) + sizeof(struct udphdr));
313
314 gtp_pkt = skb_push(skb, sizeof(struct gtp0_packet));
315 memset(gtp_pkt, 0, sizeof(struct gtp0_packet));
316
317 gtp0_build_echo_msg(>p_pkt->gtp0_h, GTP_ECHO_RSP);
318
319 /* GSM TS 09.60. 7.3 The Sequence Number in a signalling response
320 * message shall be copied from the signalling request message
321 * that the GSN is replying to.
322 */
323 gtp_pkt->gtp0_h.seq = seq;
324
325 gtp_pkt->ie.tag = GTPIE_RECOVERY;
326 gtp_pkt->ie.val = gtp->restart_count;
327
328 iph = ip_hdr(skb);
329
330 /* find route to the sender,
331 * src address becomes dst address and vice versa.
332 */
333 rt = ip4_route_output_gtp(&fl4, gtp->sk0, iph->saddr, iph->daddr);
334 if (IS_ERR(rt)) {
335 netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
336 &iph->saddr);
337 return -1;
338 }
339
340 udp_tunnel_xmit_skb(rt, gtp->sk0, skb,
341 fl4.saddr, fl4.daddr,
342 iph->tos,
343 ip4_dst_hoplimit(&rt->dst),
344 0,
345 htons(GTP0_PORT), htons(GTP0_PORT),
346 !net_eq(sock_net(gtp->sk1u),
347 dev_net(gtp->dev)),
348 false);
349 return 0;
350 }
351
gtp_genl_fill_echo(struct sk_buff * skb,u32 snd_portid,u32 snd_seq,int flags,u32 type,struct echo_info echo)352 static int gtp_genl_fill_echo(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
353 int flags, u32 type, struct echo_info echo)
354 {
355 void *genlh;
356
357 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, flags,
358 type);
359 if (!genlh)
360 goto failure;
361
362 if (nla_put_u32(skb, GTPA_VERSION, echo.gtp_version) ||
363 nla_put_be32(skb, GTPA_PEER_ADDRESS, echo.peer_addr_ip4.s_addr) ||
364 nla_put_be32(skb, GTPA_MS_ADDRESS, echo.ms_addr_ip4.s_addr))
365 goto failure;
366
367 genlmsg_end(skb, genlh);
368 return 0;
369
370 failure:
371 genlmsg_cancel(skb, genlh);
372 return -EMSGSIZE;
373 }
374
gtp0_handle_echo_resp(struct gtp_dev * gtp,struct sk_buff * skb)375 static int gtp0_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
376 {
377 struct gtp0_header *gtp0;
378 struct echo_info echo;
379 struct sk_buff *msg;
380 struct iphdr *iph;
381 int ret;
382
383 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
384
385 if (!gtp0_validate_echo_hdr(gtp0))
386 return -1;
387
388 iph = ip_hdr(skb);
389 echo.ms_addr_ip4.s_addr = iph->daddr;
390 echo.peer_addr_ip4.s_addr = iph->saddr;
391 echo.gtp_version = GTP_V0;
392
393 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
394 if (!msg)
395 return -ENOMEM;
396
397 ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
398 if (ret < 0) {
399 nlmsg_free(msg);
400 return ret;
401 }
402
403 return genlmsg_multicast_netns(>p_genl_family, dev_net(gtp->dev),
404 msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
405 }
406
407 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
gtp0_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)408 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
409 {
410 unsigned int hdrlen = sizeof(struct udphdr) +
411 sizeof(struct gtp0_header);
412 struct gtp0_header *gtp0;
413 struct pdp_ctx *pctx;
414
415 if (!pskb_may_pull(skb, hdrlen))
416 return -1;
417
418 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
419
420 if ((gtp0->flags >> 5) != GTP_V0)
421 return 1;
422
423 /* If the sockets were created in kernel, it means that
424 * there is no daemon running in userspace which would
425 * handle echo request.
426 */
427 if (gtp0->type == GTP_ECHO_REQ && gtp->sk_created)
428 return gtp0_send_echo_resp(gtp, skb);
429
430 if (gtp0->type == GTP_ECHO_RSP && gtp->sk_created)
431 return gtp0_handle_echo_resp(gtp, skb);
432
433 if (gtp0->type != GTP_TPDU)
434 return 1;
435
436 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
437 if (!pctx) {
438 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
439 return 1;
440 }
441
442 return gtp_rx(pctx, skb, hdrlen, gtp->role);
443 }
444
445 /* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
gtp1u_build_echo_msg(struct gtp1_header_long * hdr,__u8 msg_type)446 static void gtp1u_build_echo_msg(struct gtp1_header_long *hdr, __u8 msg_type)
447 {
448 int len_pkt, len_hdr;
449
450 /* S flag must be set to 1 */
451 hdr->flags = 0x32; /* v1, GTP-non-prime. */
452 hdr->type = msg_type;
453 /* 3GPP TS 29.281 5.1 - TEID has to be set to 0 */
454 hdr->tid = 0;
455
456 /* seq, npdu and next should be counted to the length of the GTP packet
457 * that's why szie of gtp1_header should be subtracted,
458 * not size of gtp1_header_long.
459 */
460
461 len_hdr = sizeof(struct gtp1_header);
462
463 if (msg_type == GTP_ECHO_RSP) {
464 len_pkt = sizeof(struct gtp1u_packet);
465 hdr->length = htons(len_pkt - len_hdr);
466 } else {
467 /* GTP_ECHO_REQ does not carry GTP Information Element,
468 * the why gtp1_header_long is used here.
469 */
470 len_pkt = sizeof(struct gtp1_header_long);
471 hdr->length = htons(len_pkt - len_hdr);
472 }
473 }
474
gtp1u_send_echo_resp(struct gtp_dev * gtp,struct sk_buff * skb)475 static int gtp1u_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
476 {
477 struct gtp1_header_long *gtp1u;
478 struct gtp1u_packet *gtp_pkt;
479 struct rtable *rt;
480 struct flowi4 fl4;
481 struct iphdr *iph;
482
483 gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
484
485 /* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
486 * Error Indication and Supported Extension Headers Notification
487 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
488 */
489 if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
490 return -1;
491
492 /* pull GTP and UDP headers */
493 skb_pull_data(skb,
494 sizeof(struct gtp1_header_long) + sizeof(struct udphdr));
495
496 gtp_pkt = skb_push(skb, sizeof(struct gtp1u_packet));
497 memset(gtp_pkt, 0, sizeof(struct gtp1u_packet));
498
499 gtp1u_build_echo_msg(>p_pkt->gtp1u_h, GTP_ECHO_RSP);
500
501 /* 3GPP TS 29.281 7.7.2 - The Restart Counter value in the
502 * Recovery information element shall not be used, i.e. it shall
503 * be set to zero by the sender and shall be ignored by the receiver.
504 * The Recovery information element is mandatory due to backwards
505 * compatibility reasons.
506 */
507 gtp_pkt->ie.tag = GTPIE_RECOVERY;
508 gtp_pkt->ie.val = 0;
509
510 iph = ip_hdr(skb);
511
512 /* find route to the sender,
513 * src address becomes dst address and vice versa.
514 */
515 rt = ip4_route_output_gtp(&fl4, gtp->sk1u, iph->saddr, iph->daddr);
516 if (IS_ERR(rt)) {
517 netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
518 &iph->saddr);
519 return -1;
520 }
521
522 udp_tunnel_xmit_skb(rt, gtp->sk1u, skb,
523 fl4.saddr, fl4.daddr,
524 iph->tos,
525 ip4_dst_hoplimit(&rt->dst),
526 0,
527 htons(GTP1U_PORT), htons(GTP1U_PORT),
528 !net_eq(sock_net(gtp->sk1u),
529 dev_net(gtp->dev)),
530 false);
531 return 0;
532 }
533
gtp1u_handle_echo_resp(struct gtp_dev * gtp,struct sk_buff * skb)534 static int gtp1u_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
535 {
536 struct gtp1_header_long *gtp1u;
537 struct echo_info echo;
538 struct sk_buff *msg;
539 struct iphdr *iph;
540 int ret;
541
542 gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
543
544 /* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
545 * Error Indication and Supported Extension Headers Notification
546 * messages, the S flag shall be set to 1 and TEID shall be set to 0.
547 */
548 if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
549 return -1;
550
551 iph = ip_hdr(skb);
552 echo.ms_addr_ip4.s_addr = iph->daddr;
553 echo.peer_addr_ip4.s_addr = iph->saddr;
554 echo.gtp_version = GTP_V1;
555
556 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
557 if (!msg)
558 return -ENOMEM;
559
560 ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
561 if (ret < 0) {
562 nlmsg_free(msg);
563 return ret;
564 }
565
566 return genlmsg_multicast_netns(>p_genl_family, dev_net(gtp->dev),
567 msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
568 }
569
gtp1u_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)570 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
571 {
572 unsigned int hdrlen = sizeof(struct udphdr) +
573 sizeof(struct gtp1_header);
574 struct gtp1_header *gtp1;
575 struct pdp_ctx *pctx;
576
577 if (!pskb_may_pull(skb, hdrlen))
578 return -1;
579
580 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
581
582 if ((gtp1->flags >> 5) != GTP_V1)
583 return 1;
584
585 /* If the sockets were created in kernel, it means that
586 * there is no daemon running in userspace which would
587 * handle echo request.
588 */
589 if (gtp1->type == GTP_ECHO_REQ && gtp->sk_created)
590 return gtp1u_send_echo_resp(gtp, skb);
591
592 if (gtp1->type == GTP_ECHO_RSP && gtp->sk_created)
593 return gtp1u_handle_echo_resp(gtp, skb);
594
595 if (gtp1->type != GTP_TPDU)
596 return 1;
597
598 /* From 29.060: "This field shall be present if and only if any one or
599 * more of the S, PN and E flags are set.".
600 *
601 * If any of the bit is set, then the remaining ones also have to be
602 * set.
603 */
604 if (gtp1->flags & GTP1_F_MASK)
605 hdrlen += 4;
606
607 /* Make sure the header is larger enough, including extensions. */
608 if (!pskb_may_pull(skb, hdrlen))
609 return -1;
610
611 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
612
613 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
614 if (!pctx) {
615 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
616 return 1;
617 }
618
619 return gtp_rx(pctx, skb, hdrlen, gtp->role);
620 }
621
__gtp_encap_destroy(struct sock * sk)622 static void __gtp_encap_destroy(struct sock *sk)
623 {
624 struct gtp_dev *gtp;
625
626 lock_sock(sk);
627 gtp = sk->sk_user_data;
628 if (gtp) {
629 if (gtp->sk0 == sk)
630 gtp->sk0 = NULL;
631 else
632 gtp->sk1u = NULL;
633 WRITE_ONCE(udp_sk(sk)->encap_type, 0);
634 rcu_assign_sk_user_data(sk, NULL);
635 release_sock(sk);
636 sock_put(sk);
637 return;
638 }
639 release_sock(sk);
640 }
641
gtp_encap_destroy(struct sock * sk)642 static void gtp_encap_destroy(struct sock *sk)
643 {
644 rtnl_lock();
645 __gtp_encap_destroy(sk);
646 rtnl_unlock();
647 }
648
gtp_encap_disable_sock(struct sock * sk)649 static void gtp_encap_disable_sock(struct sock *sk)
650 {
651 if (!sk)
652 return;
653
654 __gtp_encap_destroy(sk);
655 }
656
gtp_encap_disable(struct gtp_dev * gtp)657 static void gtp_encap_disable(struct gtp_dev *gtp)
658 {
659 if (gtp->sk_created) {
660 udp_tunnel_sock_release(gtp->sk0->sk_socket);
661 udp_tunnel_sock_release(gtp->sk1u->sk_socket);
662 gtp->sk_created = false;
663 gtp->sk0 = NULL;
664 gtp->sk1u = NULL;
665 } else {
666 gtp_encap_disable_sock(gtp->sk0);
667 gtp_encap_disable_sock(gtp->sk1u);
668 }
669 }
670
671 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
672 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
673 */
gtp_encap_recv(struct sock * sk,struct sk_buff * skb)674 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
675 {
676 struct gtp_dev *gtp;
677 int ret = 0;
678
679 gtp = rcu_dereference_sk_user_data(sk);
680 if (!gtp)
681 return 1;
682
683 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
684
685 switch (READ_ONCE(udp_sk(sk)->encap_type)) {
686 case UDP_ENCAP_GTP0:
687 netdev_dbg(gtp->dev, "received GTP0 packet\n");
688 ret = gtp0_udp_encap_recv(gtp, skb);
689 break;
690 case UDP_ENCAP_GTP1U:
691 netdev_dbg(gtp->dev, "received GTP1U packet\n");
692 ret = gtp1u_udp_encap_recv(gtp, skb);
693 break;
694 default:
695 ret = -1; /* Shouldn't happen. */
696 }
697
698 switch (ret) {
699 case 1:
700 netdev_dbg(gtp->dev, "pass up to the process\n");
701 break;
702 case 0:
703 break;
704 case -1:
705 netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
706 kfree_skb(skb);
707 ret = 0;
708 break;
709 }
710
711 return ret;
712 }
713
gtp_dev_init(struct net_device * dev)714 static int gtp_dev_init(struct net_device *dev)
715 {
716 struct gtp_dev *gtp = netdev_priv(dev);
717
718 gtp->dev = dev;
719
720 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
721 if (!dev->tstats)
722 return -ENOMEM;
723
724 return 0;
725 }
726
gtp_dev_uninit(struct net_device * dev)727 static void gtp_dev_uninit(struct net_device *dev)
728 {
729 struct gtp_dev *gtp = netdev_priv(dev);
730
731 gtp_encap_disable(gtp);
732 free_percpu(dev->tstats);
733 }
734
gtp0_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)735 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
736 {
737 int payload_len = skb->len;
738 struct gtp0_header *gtp0;
739
740 gtp0 = skb_push(skb, sizeof(*gtp0));
741
742 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
743 gtp0->type = GTP_TPDU;
744 gtp0->length = htons(payload_len);
745 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
746 gtp0->flow = htons(pctx->u.v0.flow);
747 gtp0->number = 0xff;
748 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
749 gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
750 }
751
gtp1_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)752 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
753 {
754 int payload_len = skb->len;
755 struct gtp1_header *gtp1;
756
757 gtp1 = skb_push(skb, sizeof(*gtp1));
758
759 /* Bits 8 7 6 5 4 3 2 1
760 * +--+--+--+--+--+--+--+--+
761 * |version |PT| 0| E| S|PN|
762 * +--+--+--+--+--+--+--+--+
763 * 0 0 1 1 1 0 0 0
764 */
765 gtp1->flags = 0x30; /* v1, GTP-non-prime. */
766 gtp1->type = GTP_TPDU;
767 gtp1->length = htons(payload_len);
768 gtp1->tid = htonl(pctx->u.v1.o_tei);
769
770 /* TODO: Support for extension header, sequence number and N-PDU.
771 * Update the length field if any of them is available.
772 */
773 }
774
775 struct gtp_pktinfo {
776 struct sock *sk;
777 struct iphdr *iph;
778 struct flowi4 fl4;
779 struct rtable *rt;
780 struct pdp_ctx *pctx;
781 struct net_device *dev;
782 __be16 gtph_port;
783 };
784
gtp_push_header(struct sk_buff * skb,struct gtp_pktinfo * pktinfo)785 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
786 {
787 switch (pktinfo->pctx->gtp_version) {
788 case GTP_V0:
789 pktinfo->gtph_port = htons(GTP0_PORT);
790 gtp0_push_header(skb, pktinfo->pctx);
791 break;
792 case GTP_V1:
793 pktinfo->gtph_port = htons(GTP1U_PORT);
794 gtp1_push_header(skb, pktinfo->pctx);
795 break;
796 }
797 }
798
gtp_set_pktinfo_ipv4(struct gtp_pktinfo * pktinfo,struct sock * sk,struct iphdr * iph,struct pdp_ctx * pctx,struct rtable * rt,struct flowi4 * fl4,struct net_device * dev)799 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
800 struct sock *sk, struct iphdr *iph,
801 struct pdp_ctx *pctx, struct rtable *rt,
802 struct flowi4 *fl4,
803 struct net_device *dev)
804 {
805 pktinfo->sk = sk;
806 pktinfo->iph = iph;
807 pktinfo->pctx = pctx;
808 pktinfo->rt = rt;
809 pktinfo->fl4 = *fl4;
810 pktinfo->dev = dev;
811 }
812
gtp_build_skb_ip4(struct sk_buff * skb,struct net_device * dev,struct gtp_pktinfo * pktinfo)813 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
814 struct gtp_pktinfo *pktinfo)
815 {
816 struct gtp_dev *gtp = netdev_priv(dev);
817 struct pdp_ctx *pctx;
818 struct rtable *rt;
819 struct flowi4 fl4;
820 struct iphdr *iph;
821 __be16 df;
822 int mtu;
823
824 /* Read the IP destination address and resolve the PDP context.
825 * Prepend PDP header with TEI/TID from PDP ctx.
826 */
827 iph = ip_hdr(skb);
828 if (gtp->role == GTP_ROLE_SGSN)
829 pctx = ipv4_pdp_find(gtp, iph->saddr);
830 else
831 pctx = ipv4_pdp_find(gtp, iph->daddr);
832
833 if (!pctx) {
834 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
835 &iph->daddr);
836 return -ENOENT;
837 }
838 netdev_dbg(dev, "found PDP context %p\n", pctx);
839
840 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr,
841 inet_sk(pctx->sk)->inet_saddr);
842 if (IS_ERR(rt)) {
843 netdev_dbg(dev, "no route to SSGN %pI4\n",
844 &pctx->peer_addr_ip4.s_addr);
845 dev->stats.tx_carrier_errors++;
846 goto err;
847 }
848
849 if (rt->dst.dev == dev) {
850 netdev_dbg(dev, "circular route to SSGN %pI4\n",
851 &pctx->peer_addr_ip4.s_addr);
852 dev->stats.collisions++;
853 goto err_rt;
854 }
855
856 /* This is similar to tnl_update_pmtu(). */
857 df = iph->frag_off;
858 if (df) {
859 mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
860 sizeof(struct iphdr) - sizeof(struct udphdr);
861 switch (pctx->gtp_version) {
862 case GTP_V0:
863 mtu -= sizeof(struct gtp0_header);
864 break;
865 case GTP_V1:
866 mtu -= sizeof(struct gtp1_header);
867 break;
868 }
869 } else {
870 mtu = dst_mtu(&rt->dst);
871 }
872
873 skb_dst_update_pmtu_no_confirm(skb, mtu);
874
875 if (iph->frag_off & htons(IP_DF) &&
876 ((!skb_is_gso(skb) && skb->len > mtu) ||
877 (skb_is_gso(skb) && !skb_gso_validate_network_len(skb, mtu)))) {
878 netdev_dbg(dev, "packet too big, fragmentation needed\n");
879 icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
880 htonl(mtu));
881 goto err_rt;
882 }
883
884 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
885 gtp_push_header(skb, pktinfo);
886
887 return 0;
888 err_rt:
889 ip_rt_put(rt);
890 err:
891 return -EBADMSG;
892 }
893
gtp_dev_xmit(struct sk_buff * skb,struct net_device * dev)894 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
895 {
896 unsigned int proto = ntohs(skb->protocol);
897 struct gtp_pktinfo pktinfo;
898 int err;
899
900 /* Ensure there is sufficient headroom. */
901 if (skb_cow_head(skb, dev->needed_headroom))
902 goto tx_err;
903
904 if (!pskb_inet_may_pull(skb))
905 goto tx_err;
906
907 skb_reset_inner_headers(skb);
908
909 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
910 rcu_read_lock();
911 switch (proto) {
912 case ETH_P_IP:
913 err = gtp_build_skb_ip4(skb, dev, &pktinfo);
914 break;
915 default:
916 err = -EOPNOTSUPP;
917 break;
918 }
919 rcu_read_unlock();
920
921 if (err < 0)
922 goto tx_err;
923
924 switch (proto) {
925 case ETH_P_IP:
926 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
927 &pktinfo.iph->saddr, &pktinfo.iph->daddr);
928 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
929 pktinfo.fl4.saddr, pktinfo.fl4.daddr,
930 pktinfo.iph->tos,
931 ip4_dst_hoplimit(&pktinfo.rt->dst),
932 0,
933 pktinfo.gtph_port, pktinfo.gtph_port,
934 !net_eq(sock_net(pktinfo.pctx->sk),
935 dev_net(dev)),
936 false);
937 break;
938 }
939
940 return NETDEV_TX_OK;
941 tx_err:
942 dev->stats.tx_errors++;
943 dev_kfree_skb(skb);
944 return NETDEV_TX_OK;
945 }
946
947 static const struct net_device_ops gtp_netdev_ops = {
948 .ndo_init = gtp_dev_init,
949 .ndo_uninit = gtp_dev_uninit,
950 .ndo_start_xmit = gtp_dev_xmit,
951 .ndo_get_stats64 = dev_get_tstats64,
952 };
953
954 static const struct device_type gtp_type = {
955 .name = "gtp",
956 };
957
gtp_link_setup(struct net_device * dev)958 static void gtp_link_setup(struct net_device *dev)
959 {
960 unsigned int max_gtp_header_len = sizeof(struct iphdr) +
961 sizeof(struct udphdr) +
962 sizeof(struct gtp0_header);
963
964 dev->netdev_ops = >p_netdev_ops;
965 dev->needs_free_netdev = true;
966 SET_NETDEV_DEVTYPE(dev, >p_type);
967
968 dev->hard_header_len = 0;
969 dev->addr_len = 0;
970 dev->mtu = ETH_DATA_LEN - max_gtp_header_len;
971
972 /* Zero header length. */
973 dev->type = ARPHRD_NONE;
974 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
975
976 dev->priv_flags |= IFF_NO_QUEUE;
977 dev->features |= NETIF_F_LLTX;
978 netif_keep_dst(dev);
979
980 dev->needed_headroom = LL_MAX_HEADER + max_gtp_header_len;
981 }
982
983 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
984 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
985
gtp_destructor(struct net_device * dev)986 static void gtp_destructor(struct net_device *dev)
987 {
988 struct gtp_dev *gtp = netdev_priv(dev);
989
990 kfree(gtp->addr_hash);
991 kfree(gtp->tid_hash);
992 }
993
gtp_create_sock(int type,struct gtp_dev * gtp)994 static struct sock *gtp_create_sock(int type, struct gtp_dev *gtp)
995 {
996 struct udp_tunnel_sock_cfg tuncfg = {};
997 struct udp_port_cfg udp_conf = {
998 .local_ip.s_addr = htonl(INADDR_ANY),
999 .family = AF_INET,
1000 };
1001 struct net *net = gtp->net;
1002 struct socket *sock;
1003 int err;
1004
1005 if (type == UDP_ENCAP_GTP0)
1006 udp_conf.local_udp_port = htons(GTP0_PORT);
1007 else if (type == UDP_ENCAP_GTP1U)
1008 udp_conf.local_udp_port = htons(GTP1U_PORT);
1009 else
1010 return ERR_PTR(-EINVAL);
1011
1012 err = udp_sock_create(net, &udp_conf, &sock);
1013 if (err)
1014 return ERR_PTR(err);
1015
1016 tuncfg.sk_user_data = gtp;
1017 tuncfg.encap_type = type;
1018 tuncfg.encap_rcv = gtp_encap_recv;
1019 tuncfg.encap_destroy = NULL;
1020
1021 setup_udp_tunnel_sock(net, sock, &tuncfg);
1022
1023 return sock->sk;
1024 }
1025
gtp_create_sockets(struct gtp_dev * gtp,struct nlattr * data[])1026 static int gtp_create_sockets(struct gtp_dev *gtp, struct nlattr *data[])
1027 {
1028 struct sock *sk1u = NULL;
1029 struct sock *sk0 = NULL;
1030
1031 sk0 = gtp_create_sock(UDP_ENCAP_GTP0, gtp);
1032 if (IS_ERR(sk0))
1033 return PTR_ERR(sk0);
1034
1035 sk1u = gtp_create_sock(UDP_ENCAP_GTP1U, gtp);
1036 if (IS_ERR(sk1u)) {
1037 udp_tunnel_sock_release(sk0->sk_socket);
1038 return PTR_ERR(sk1u);
1039 }
1040
1041 gtp->sk_created = true;
1042 gtp->sk0 = sk0;
1043 gtp->sk1u = sk1u;
1044
1045 return 0;
1046 }
1047
gtp_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1048 static int gtp_newlink(struct net *src_net, struct net_device *dev,
1049 struct nlattr *tb[], struct nlattr *data[],
1050 struct netlink_ext_ack *extack)
1051 {
1052 unsigned int role = GTP_ROLE_GGSN;
1053 struct gtp_dev *gtp;
1054 struct gtp_net *gn;
1055 int hashsize, err;
1056
1057 gtp = netdev_priv(dev);
1058
1059 if (!data[IFLA_GTP_PDP_HASHSIZE]) {
1060 hashsize = 1024;
1061 } else {
1062 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
1063 if (!hashsize)
1064 hashsize = 1024;
1065 }
1066
1067 if (data[IFLA_GTP_ROLE]) {
1068 role = nla_get_u32(data[IFLA_GTP_ROLE]);
1069 if (role > GTP_ROLE_SGSN)
1070 return -EINVAL;
1071 }
1072 gtp->role = role;
1073
1074 if (!data[IFLA_GTP_RESTART_COUNT])
1075 gtp->restart_count = 0;
1076 else
1077 gtp->restart_count = nla_get_u8(data[IFLA_GTP_RESTART_COUNT]);
1078
1079 gtp->net = src_net;
1080
1081 err = gtp_hashtable_new(gtp, hashsize);
1082 if (err < 0)
1083 return err;
1084
1085 if (data[IFLA_GTP_CREATE_SOCKETS])
1086 err = gtp_create_sockets(gtp, data);
1087 else
1088 err = gtp_encap_enable(gtp, data);
1089 if (err < 0)
1090 goto out_hashtable;
1091
1092 err = register_netdevice(dev);
1093 if (err < 0) {
1094 netdev_dbg(dev, "failed to register new netdev %d\n", err);
1095 goto out_encap;
1096 }
1097
1098 gn = net_generic(src_net, gtp_net_id);
1099 list_add(>p->list, &gn->gtp_dev_list);
1100 dev->priv_destructor = gtp_destructor;
1101
1102 netdev_dbg(dev, "registered new GTP interface\n");
1103
1104 return 0;
1105
1106 out_encap:
1107 gtp_encap_disable(gtp);
1108 out_hashtable:
1109 kfree(gtp->addr_hash);
1110 kfree(gtp->tid_hash);
1111 return err;
1112 }
1113
gtp_dellink(struct net_device * dev,struct list_head * head)1114 static void gtp_dellink(struct net_device *dev, struct list_head *head)
1115 {
1116 struct gtp_dev *gtp = netdev_priv(dev);
1117 struct hlist_node *next;
1118 struct pdp_ctx *pctx;
1119 int i;
1120
1121 for (i = 0; i < gtp->hash_size; i++)
1122 hlist_for_each_entry_safe(pctx, next, >p->tid_hash[i], hlist_tid)
1123 pdp_context_delete(pctx);
1124
1125 list_del(>p->list);
1126 unregister_netdevice_queue(dev, head);
1127 }
1128
1129 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
1130 [IFLA_GTP_FD0] = { .type = NLA_U32 },
1131 [IFLA_GTP_FD1] = { .type = NLA_U32 },
1132 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
1133 [IFLA_GTP_ROLE] = { .type = NLA_U32 },
1134 [IFLA_GTP_CREATE_SOCKETS] = { .type = NLA_U8 },
1135 [IFLA_GTP_RESTART_COUNT] = { .type = NLA_U8 },
1136 };
1137
gtp_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1138 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
1139 struct netlink_ext_ack *extack)
1140 {
1141 if (!data)
1142 return -EINVAL;
1143
1144 return 0;
1145 }
1146
gtp_get_size(const struct net_device * dev)1147 static size_t gtp_get_size(const struct net_device *dev)
1148 {
1149 return nla_total_size(sizeof(__u32)) + /* IFLA_GTP_PDP_HASHSIZE */
1150 nla_total_size(sizeof(__u32)) + /* IFLA_GTP_ROLE */
1151 nla_total_size(sizeof(__u8)); /* IFLA_GTP_RESTART_COUNT */
1152 }
1153
gtp_fill_info(struct sk_buff * skb,const struct net_device * dev)1154 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
1155 {
1156 struct gtp_dev *gtp = netdev_priv(dev);
1157
1158 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
1159 goto nla_put_failure;
1160 if (nla_put_u32(skb, IFLA_GTP_ROLE, gtp->role))
1161 goto nla_put_failure;
1162 if (nla_put_u8(skb, IFLA_GTP_RESTART_COUNT, gtp->restart_count))
1163 goto nla_put_failure;
1164
1165 return 0;
1166
1167 nla_put_failure:
1168 return -EMSGSIZE;
1169 }
1170
1171 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
1172 .kind = "gtp",
1173 .maxtype = IFLA_GTP_MAX,
1174 .policy = gtp_policy,
1175 .priv_size = sizeof(struct gtp_dev),
1176 .setup = gtp_link_setup,
1177 .validate = gtp_validate,
1178 .newlink = gtp_newlink,
1179 .dellink = gtp_dellink,
1180 .get_size = gtp_get_size,
1181 .fill_info = gtp_fill_info,
1182 };
1183
gtp_hashtable_new(struct gtp_dev * gtp,int hsize)1184 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
1185 {
1186 int i;
1187
1188 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1189 GFP_KERNEL | __GFP_NOWARN);
1190 if (gtp->addr_hash == NULL)
1191 return -ENOMEM;
1192
1193 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
1194 GFP_KERNEL | __GFP_NOWARN);
1195 if (gtp->tid_hash == NULL)
1196 goto err1;
1197
1198 gtp->hash_size = hsize;
1199
1200 for (i = 0; i < hsize; i++) {
1201 INIT_HLIST_HEAD(>p->addr_hash[i]);
1202 INIT_HLIST_HEAD(>p->tid_hash[i]);
1203 }
1204 return 0;
1205 err1:
1206 kfree(gtp->addr_hash);
1207 return -ENOMEM;
1208 }
1209
gtp_encap_enable_socket(int fd,int type,struct gtp_dev * gtp)1210 static struct sock *gtp_encap_enable_socket(int fd, int type,
1211 struct gtp_dev *gtp)
1212 {
1213 struct udp_tunnel_sock_cfg tuncfg = {NULL};
1214 struct socket *sock;
1215 struct sock *sk;
1216 int err;
1217
1218 pr_debug("enable gtp on %d, %d\n", fd, type);
1219
1220 sock = sockfd_lookup(fd, &err);
1221 if (!sock) {
1222 pr_debug("gtp socket fd=%d not found\n", fd);
1223 return ERR_PTR(err);
1224 }
1225
1226 sk = sock->sk;
1227 if (sk->sk_protocol != IPPROTO_UDP ||
1228 sk->sk_type != SOCK_DGRAM ||
1229 (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
1230 pr_debug("socket fd=%d not UDP\n", fd);
1231 sk = ERR_PTR(-EINVAL);
1232 goto out_sock;
1233 }
1234
1235 lock_sock(sk);
1236 if (sk->sk_user_data) {
1237 sk = ERR_PTR(-EBUSY);
1238 goto out_rel_sock;
1239 }
1240
1241 sock_hold(sk);
1242
1243 tuncfg.sk_user_data = gtp;
1244 tuncfg.encap_type = type;
1245 tuncfg.encap_rcv = gtp_encap_recv;
1246 tuncfg.encap_destroy = gtp_encap_destroy;
1247
1248 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
1249
1250 out_rel_sock:
1251 release_sock(sock->sk);
1252 out_sock:
1253 sockfd_put(sock);
1254 return sk;
1255 }
1256
gtp_encap_enable(struct gtp_dev * gtp,struct nlattr * data[])1257 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
1258 {
1259 struct sock *sk1u = NULL;
1260 struct sock *sk0 = NULL;
1261
1262 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
1263 return -EINVAL;
1264
1265 if (data[IFLA_GTP_FD0]) {
1266 int fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
1267
1268 if (fd0 >= 0) {
1269 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
1270 if (IS_ERR(sk0))
1271 return PTR_ERR(sk0);
1272 }
1273 }
1274
1275 if (data[IFLA_GTP_FD1]) {
1276 int fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
1277
1278 if (fd1 >= 0) {
1279 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
1280 if (IS_ERR(sk1u)) {
1281 gtp_encap_disable_sock(sk0);
1282 return PTR_ERR(sk1u);
1283 }
1284 }
1285 }
1286
1287 gtp->sk0 = sk0;
1288 gtp->sk1u = sk1u;
1289
1290 return 0;
1291 }
1292
gtp_find_dev(struct net * src_net,struct nlattr * nla[])1293 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
1294 {
1295 struct gtp_dev *gtp = NULL;
1296 struct net_device *dev;
1297 struct net *net;
1298
1299 /* Examine the link attributes and figure out which network namespace
1300 * we are talking about.
1301 */
1302 if (nla[GTPA_NET_NS_FD])
1303 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
1304 else
1305 net = get_net(src_net);
1306
1307 if (IS_ERR(net))
1308 return NULL;
1309
1310 /* Check if there's an existing gtpX device to configure */
1311 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
1312 if (dev && dev->netdev_ops == >p_netdev_ops)
1313 gtp = netdev_priv(dev);
1314
1315 put_net(net);
1316 return gtp;
1317 }
1318
ipv4_pdp_fill(struct pdp_ctx * pctx,struct genl_info * info)1319 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
1320 {
1321 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
1322 pctx->af = AF_INET;
1323 pctx->peer_addr_ip4.s_addr =
1324 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1325 pctx->ms_addr_ip4.s_addr =
1326 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1327
1328 switch (pctx->gtp_version) {
1329 case GTP_V0:
1330 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
1331 * label needs to be the same for uplink and downlink packets,
1332 * so let's annotate this.
1333 */
1334 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
1335 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
1336 break;
1337 case GTP_V1:
1338 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
1339 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
1340 break;
1341 default:
1342 break;
1343 }
1344 }
1345
gtp_pdp_add(struct gtp_dev * gtp,struct sock * sk,struct genl_info * info)1346 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
1347 struct genl_info *info)
1348 {
1349 struct pdp_ctx *pctx, *pctx_tid = NULL;
1350 struct net_device *dev = gtp->dev;
1351 u32 hash_ms, hash_tid = 0;
1352 unsigned int version;
1353 bool found = false;
1354 __be32 ms_addr;
1355
1356 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1357 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
1358 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1359
1360 pctx = ipv4_pdp_find(gtp, ms_addr);
1361 if (pctx)
1362 found = true;
1363 if (version == GTP_V0)
1364 pctx_tid = gtp0_pdp_find(gtp,
1365 nla_get_u64(info->attrs[GTPA_TID]));
1366 else if (version == GTP_V1)
1367 pctx_tid = gtp1_pdp_find(gtp,
1368 nla_get_u32(info->attrs[GTPA_I_TEI]));
1369 if (pctx_tid)
1370 found = true;
1371
1372 if (found) {
1373 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
1374 return ERR_PTR(-EEXIST);
1375 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
1376 return ERR_PTR(-EOPNOTSUPP);
1377
1378 if (pctx && pctx_tid)
1379 return ERR_PTR(-EEXIST);
1380 if (!pctx)
1381 pctx = pctx_tid;
1382
1383 ipv4_pdp_fill(pctx, info);
1384
1385 if (pctx->gtp_version == GTP_V0)
1386 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
1387 pctx->u.v0.tid, pctx);
1388 else if (pctx->gtp_version == GTP_V1)
1389 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
1390 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1391
1392 return pctx;
1393
1394 }
1395
1396 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
1397 if (pctx == NULL)
1398 return ERR_PTR(-ENOMEM);
1399
1400 sock_hold(sk);
1401 pctx->sk = sk;
1402 pctx->dev = gtp->dev;
1403 ipv4_pdp_fill(pctx, info);
1404 atomic_set(&pctx->tx_seq, 0);
1405
1406 switch (pctx->gtp_version) {
1407 case GTP_V0:
1408 /* TS 09.60: "The flow label identifies unambiguously a GTP
1409 * flow.". We use the tid for this instead, I cannot find a
1410 * situation in which this doesn't unambiguosly identify the
1411 * PDP context.
1412 */
1413 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
1414 break;
1415 case GTP_V1:
1416 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
1417 break;
1418 }
1419
1420 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]);
1421 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]);
1422
1423 switch (pctx->gtp_version) {
1424 case GTP_V0:
1425 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1426 pctx->u.v0.tid, &pctx->peer_addr_ip4,
1427 &pctx->ms_addr_ip4, pctx);
1428 break;
1429 case GTP_V1:
1430 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1431 pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1432 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1433 break;
1434 }
1435
1436 return pctx;
1437 }
1438
pdp_context_free(struct rcu_head * head)1439 static void pdp_context_free(struct rcu_head *head)
1440 {
1441 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1442
1443 sock_put(pctx->sk);
1444 kfree(pctx);
1445 }
1446
pdp_context_delete(struct pdp_ctx * pctx)1447 static void pdp_context_delete(struct pdp_ctx *pctx)
1448 {
1449 hlist_del_rcu(&pctx->hlist_tid);
1450 hlist_del_rcu(&pctx->hlist_addr);
1451 call_rcu(&pctx->rcu_head, pdp_context_free);
1452 }
1453
1454 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
1455
gtp_genl_new_pdp(struct sk_buff * skb,struct genl_info * info)1456 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1457 {
1458 unsigned int version;
1459 struct pdp_ctx *pctx;
1460 struct gtp_dev *gtp;
1461 struct sock *sk;
1462 int err;
1463
1464 if (!info->attrs[GTPA_VERSION] ||
1465 !info->attrs[GTPA_LINK] ||
1466 !info->attrs[GTPA_PEER_ADDRESS] ||
1467 !info->attrs[GTPA_MS_ADDRESS])
1468 return -EINVAL;
1469
1470 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1471
1472 switch (version) {
1473 case GTP_V0:
1474 if (!info->attrs[GTPA_TID] ||
1475 !info->attrs[GTPA_FLOW])
1476 return -EINVAL;
1477 break;
1478 case GTP_V1:
1479 if (!info->attrs[GTPA_I_TEI] ||
1480 !info->attrs[GTPA_O_TEI])
1481 return -EINVAL;
1482 break;
1483
1484 default:
1485 return -EINVAL;
1486 }
1487
1488 rtnl_lock();
1489
1490 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1491 if (!gtp) {
1492 err = -ENODEV;
1493 goto out_unlock;
1494 }
1495
1496 if (version == GTP_V0)
1497 sk = gtp->sk0;
1498 else if (version == GTP_V1)
1499 sk = gtp->sk1u;
1500 else
1501 sk = NULL;
1502
1503 if (!sk) {
1504 err = -ENODEV;
1505 goto out_unlock;
1506 }
1507
1508 pctx = gtp_pdp_add(gtp, sk, info);
1509 if (IS_ERR(pctx)) {
1510 err = PTR_ERR(pctx);
1511 } else {
1512 gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
1513 err = 0;
1514 }
1515
1516 out_unlock:
1517 rtnl_unlock();
1518 return err;
1519 }
1520
gtp_find_pdp_by_link(struct net * net,struct nlattr * nla[])1521 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1522 struct nlattr *nla[])
1523 {
1524 struct gtp_dev *gtp;
1525
1526 gtp = gtp_find_dev(net, nla);
1527 if (!gtp)
1528 return ERR_PTR(-ENODEV);
1529
1530 if (nla[GTPA_MS_ADDRESS]) {
1531 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1532
1533 return ipv4_pdp_find(gtp, ip);
1534 } else if (nla[GTPA_VERSION]) {
1535 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1536
1537 if (gtp_version == GTP_V0 && nla[GTPA_TID])
1538 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1539 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1540 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1541 }
1542
1543 return ERR_PTR(-EINVAL);
1544 }
1545
gtp_find_pdp(struct net * net,struct nlattr * nla[])1546 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1547 {
1548 struct pdp_ctx *pctx;
1549
1550 if (nla[GTPA_LINK])
1551 pctx = gtp_find_pdp_by_link(net, nla);
1552 else
1553 pctx = ERR_PTR(-EINVAL);
1554
1555 if (!pctx)
1556 pctx = ERR_PTR(-ENOENT);
1557
1558 return pctx;
1559 }
1560
gtp_genl_del_pdp(struct sk_buff * skb,struct genl_info * info)1561 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1562 {
1563 struct pdp_ctx *pctx;
1564 int err = 0;
1565
1566 if (!info->attrs[GTPA_VERSION])
1567 return -EINVAL;
1568
1569 rcu_read_lock();
1570
1571 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1572 if (IS_ERR(pctx)) {
1573 err = PTR_ERR(pctx);
1574 goto out_unlock;
1575 }
1576
1577 if (pctx->gtp_version == GTP_V0)
1578 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1579 pctx->u.v0.tid, pctx);
1580 else if (pctx->gtp_version == GTP_V1)
1581 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1582 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1583
1584 gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
1585 pdp_context_delete(pctx);
1586
1587 out_unlock:
1588 rcu_read_unlock();
1589 return err;
1590 }
1591
gtp_genl_fill_info(struct sk_buff * skb,u32 snd_portid,u32 snd_seq,int flags,u32 type,struct pdp_ctx * pctx)1592 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1593 int flags, u32 type, struct pdp_ctx *pctx)
1594 {
1595 void *genlh;
1596
1597 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, flags,
1598 type);
1599 if (genlh == NULL)
1600 goto nlmsg_failure;
1601
1602 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1603 nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
1604 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1605 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1606 goto nla_put_failure;
1607
1608 switch (pctx->gtp_version) {
1609 case GTP_V0:
1610 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1611 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1612 goto nla_put_failure;
1613 break;
1614 case GTP_V1:
1615 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1616 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1617 goto nla_put_failure;
1618 break;
1619 }
1620 genlmsg_end(skb, genlh);
1621 return 0;
1622
1623 nlmsg_failure:
1624 nla_put_failure:
1625 genlmsg_cancel(skb, genlh);
1626 return -EMSGSIZE;
1627 }
1628
gtp_tunnel_notify(struct pdp_ctx * pctx,u8 cmd,gfp_t allocation)1629 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
1630 {
1631 struct sk_buff *msg;
1632 int ret;
1633
1634 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
1635 if (!msg)
1636 return -ENOMEM;
1637
1638 ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
1639 if (ret < 0) {
1640 nlmsg_free(msg);
1641 return ret;
1642 }
1643
1644 ret = genlmsg_multicast_netns(>p_genl_family, dev_net(pctx->dev), msg,
1645 0, GTP_GENL_MCGRP, GFP_ATOMIC);
1646 return ret;
1647 }
1648
gtp_genl_get_pdp(struct sk_buff * skb,struct genl_info * info)1649 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1650 {
1651 struct pdp_ctx *pctx = NULL;
1652 struct sk_buff *skb2;
1653 int err;
1654
1655 if (!info->attrs[GTPA_VERSION])
1656 return -EINVAL;
1657
1658 rcu_read_lock();
1659
1660 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1661 if (IS_ERR(pctx)) {
1662 err = PTR_ERR(pctx);
1663 goto err_unlock;
1664 }
1665
1666 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1667 if (skb2 == NULL) {
1668 err = -ENOMEM;
1669 goto err_unlock;
1670 }
1671
1672 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
1673 0, info->nlhdr->nlmsg_type, pctx);
1674 if (err < 0)
1675 goto err_unlock_free;
1676
1677 rcu_read_unlock();
1678 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1679
1680 err_unlock_free:
1681 kfree_skb(skb2);
1682 err_unlock:
1683 rcu_read_unlock();
1684 return err;
1685 }
1686
gtp_genl_dump_pdp(struct sk_buff * skb,struct netlink_callback * cb)1687 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1688 struct netlink_callback *cb)
1689 {
1690 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1691 int i, j, bucket = cb->args[0], skip = cb->args[1];
1692 struct net *net = sock_net(skb->sk);
1693 struct net_device *dev;
1694 struct pdp_ctx *pctx;
1695
1696 if (cb->args[4])
1697 return 0;
1698
1699 rcu_read_lock();
1700 for_each_netdev_rcu(net, dev) {
1701 if (dev->rtnl_link_ops != >p_link_ops)
1702 continue;
1703
1704 gtp = netdev_priv(dev);
1705
1706 if (last_gtp && last_gtp != gtp)
1707 continue;
1708 else
1709 last_gtp = NULL;
1710
1711 for (i = bucket; i < gtp->hash_size; i++) {
1712 j = 0;
1713 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i],
1714 hlist_tid) {
1715 if (j >= skip &&
1716 gtp_genl_fill_info(skb,
1717 NETLINK_CB(cb->skb).portid,
1718 cb->nlh->nlmsg_seq,
1719 NLM_F_MULTI,
1720 cb->nlh->nlmsg_type, pctx)) {
1721 cb->args[0] = i;
1722 cb->args[1] = j;
1723 cb->args[2] = (unsigned long)gtp;
1724 goto out;
1725 }
1726 j++;
1727 }
1728 skip = 0;
1729 }
1730 bucket = 0;
1731 }
1732 cb->args[4] = 1;
1733 out:
1734 rcu_read_unlock();
1735 return skb->len;
1736 }
1737
gtp_genl_send_echo_req(struct sk_buff * skb,struct genl_info * info)1738 static int gtp_genl_send_echo_req(struct sk_buff *skb, struct genl_info *info)
1739 {
1740 struct sk_buff *skb_to_send;
1741 __be32 src_ip, dst_ip;
1742 unsigned int version;
1743 struct gtp_dev *gtp;
1744 struct flowi4 fl4;
1745 struct rtable *rt;
1746 struct sock *sk;
1747 __be16 port;
1748 int len;
1749
1750 if (!info->attrs[GTPA_VERSION] ||
1751 !info->attrs[GTPA_LINK] ||
1752 !info->attrs[GTPA_PEER_ADDRESS] ||
1753 !info->attrs[GTPA_MS_ADDRESS])
1754 return -EINVAL;
1755
1756 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1757 dst_ip = nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
1758 src_ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
1759
1760 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1761 if (!gtp)
1762 return -ENODEV;
1763
1764 if (!gtp->sk_created)
1765 return -EOPNOTSUPP;
1766 if (!(gtp->dev->flags & IFF_UP))
1767 return -ENETDOWN;
1768
1769 if (version == GTP_V0) {
1770 struct gtp0_header *gtp0_h;
1771
1772 len = LL_RESERVED_SPACE(gtp->dev) + sizeof(struct gtp0_header) +
1773 sizeof(struct iphdr) + sizeof(struct udphdr);
1774
1775 skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1776 if (!skb_to_send)
1777 return -ENOMEM;
1778
1779 sk = gtp->sk0;
1780 port = htons(GTP0_PORT);
1781
1782 gtp0_h = skb_push(skb_to_send, sizeof(struct gtp0_header));
1783 memset(gtp0_h, 0, sizeof(struct gtp0_header));
1784 gtp0_build_echo_msg(gtp0_h, GTP_ECHO_REQ);
1785 } else if (version == GTP_V1) {
1786 struct gtp1_header_long *gtp1u_h;
1787
1788 len = LL_RESERVED_SPACE(gtp->dev) +
1789 sizeof(struct gtp1_header_long) +
1790 sizeof(struct iphdr) + sizeof(struct udphdr);
1791
1792 skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
1793 if (!skb_to_send)
1794 return -ENOMEM;
1795
1796 sk = gtp->sk1u;
1797 port = htons(GTP1U_PORT);
1798
1799 gtp1u_h = skb_push(skb_to_send,
1800 sizeof(struct gtp1_header_long));
1801 memset(gtp1u_h, 0, sizeof(struct gtp1_header_long));
1802 gtp1u_build_echo_msg(gtp1u_h, GTP_ECHO_REQ);
1803 } else {
1804 return -ENODEV;
1805 }
1806
1807 rt = ip4_route_output_gtp(&fl4, sk, dst_ip, src_ip);
1808 if (IS_ERR(rt)) {
1809 netdev_dbg(gtp->dev, "no route for echo request to %pI4\n",
1810 &dst_ip);
1811 kfree_skb(skb_to_send);
1812 return -ENODEV;
1813 }
1814
1815 udp_tunnel_xmit_skb(rt, sk, skb_to_send,
1816 fl4.saddr, fl4.daddr,
1817 fl4.flowi4_tos,
1818 ip4_dst_hoplimit(&rt->dst),
1819 0,
1820 port, port,
1821 !net_eq(sock_net(sk),
1822 dev_net(gtp->dev)),
1823 false);
1824 return 0;
1825 }
1826
1827 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1828 [GTPA_LINK] = { .type = NLA_U32, },
1829 [GTPA_VERSION] = { .type = NLA_U32, },
1830 [GTPA_TID] = { .type = NLA_U64, },
1831 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
1832 [GTPA_MS_ADDRESS] = { .type = NLA_U32, },
1833 [GTPA_FLOW] = { .type = NLA_U16, },
1834 [GTPA_NET_NS_FD] = { .type = NLA_U32, },
1835 [GTPA_I_TEI] = { .type = NLA_U32, },
1836 [GTPA_O_TEI] = { .type = NLA_U32, },
1837 };
1838
1839 static const struct genl_small_ops gtp_genl_ops[] = {
1840 {
1841 .cmd = GTP_CMD_NEWPDP,
1842 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1843 .doit = gtp_genl_new_pdp,
1844 .flags = GENL_ADMIN_PERM,
1845 },
1846 {
1847 .cmd = GTP_CMD_DELPDP,
1848 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1849 .doit = gtp_genl_del_pdp,
1850 .flags = GENL_ADMIN_PERM,
1851 },
1852 {
1853 .cmd = GTP_CMD_GETPDP,
1854 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1855 .doit = gtp_genl_get_pdp,
1856 .dumpit = gtp_genl_dump_pdp,
1857 .flags = GENL_ADMIN_PERM,
1858 },
1859 {
1860 .cmd = GTP_CMD_ECHOREQ,
1861 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1862 .doit = gtp_genl_send_echo_req,
1863 .flags = GENL_ADMIN_PERM,
1864 },
1865 };
1866
1867 static struct genl_family gtp_genl_family __ro_after_init = {
1868 .name = "gtp",
1869 .version = 0,
1870 .hdrsize = 0,
1871 .maxattr = GTPA_MAX,
1872 .policy = gtp_genl_policy,
1873 .netnsok = true,
1874 .module = THIS_MODULE,
1875 .small_ops = gtp_genl_ops,
1876 .n_small_ops = ARRAY_SIZE(gtp_genl_ops),
1877 .resv_start_op = GTP_CMD_ECHOREQ + 1,
1878 .mcgrps = gtp_genl_mcgrps,
1879 .n_mcgrps = ARRAY_SIZE(gtp_genl_mcgrps),
1880 };
1881
gtp_net_init(struct net * net)1882 static int __net_init gtp_net_init(struct net *net)
1883 {
1884 struct gtp_net *gn = net_generic(net, gtp_net_id);
1885
1886 INIT_LIST_HEAD(&gn->gtp_dev_list);
1887 return 0;
1888 }
1889
gtp_net_exit_batch_rtnl(struct list_head * net_list,struct list_head * dev_to_kill)1890 static void __net_exit gtp_net_exit_batch_rtnl(struct list_head *net_list,
1891 struct list_head *dev_to_kill)
1892 {
1893 struct net *net;
1894
1895 list_for_each_entry(net, net_list, exit_list) {
1896 struct gtp_net *gn = net_generic(net, gtp_net_id);
1897 struct gtp_dev *gtp, *gtp_next;
1898 struct net_device *dev;
1899
1900 for_each_netdev(net, dev)
1901 if (dev->rtnl_link_ops == >p_link_ops)
1902 gtp_dellink(dev, dev_to_kill);
1903
1904 list_for_each_entry_safe(gtp, gtp_next, &gn->gtp_dev_list, list)
1905 gtp_dellink(gtp->dev, dev_to_kill);
1906 }
1907 }
1908
1909 static struct pernet_operations gtp_net_ops = {
1910 .init = gtp_net_init,
1911 .exit_batch_rtnl = gtp_net_exit_batch_rtnl,
1912 .id = >p_net_id,
1913 .size = sizeof(struct gtp_net),
1914 };
1915
gtp_init(void)1916 static int __init gtp_init(void)
1917 {
1918 int err;
1919
1920 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval));
1921
1922 err = register_pernet_subsys(>p_net_ops);
1923 if (err < 0)
1924 goto error_out;
1925
1926 err = rtnl_link_register(>p_link_ops);
1927 if (err < 0)
1928 goto unreg_pernet_subsys;
1929
1930 err = genl_register_family(>p_genl_family);
1931 if (err < 0)
1932 goto unreg_rtnl_link;
1933
1934 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1935 sizeof(struct pdp_ctx));
1936 return 0;
1937
1938 unreg_rtnl_link:
1939 rtnl_link_unregister(>p_link_ops);
1940 unreg_pernet_subsys:
1941 unregister_pernet_subsys(>p_net_ops);
1942 error_out:
1943 pr_err("error loading GTP module loaded\n");
1944 return err;
1945 }
1946 late_initcall(gtp_init);
1947
gtp_fini(void)1948 static void __exit gtp_fini(void)
1949 {
1950 genl_unregister_family(>p_genl_family);
1951 rtnl_link_unregister(>p_link_ops);
1952 unregister_pernet_subsys(>p_net_ops);
1953
1954 pr_info("GTP module unloaded\n");
1955 }
1956 module_exit(gtp_fini);
1957
1958 MODULE_LICENSE("GPL");
1959 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1960 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1961 MODULE_ALIAS_RTNL_LINK("gtp");
1962 MODULE_ALIAS_GENL_FAMILY("gtp");
1963