xref: /openbmc/linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision 86d6a628a281a17b8341ece99997c1251bb41a41)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/stringify.h>
19 
20 #include "../kvm_util.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 
25 #define NMI_VECTOR		0x02
26 
27 #define X86_EFLAGS_FIXED	 (1u << 1)
28 
29 #define X86_CR4_VME		(1ul << 0)
30 #define X86_CR4_PVI		(1ul << 1)
31 #define X86_CR4_TSD		(1ul << 2)
32 #define X86_CR4_DE		(1ul << 3)
33 #define X86_CR4_PSE		(1ul << 4)
34 #define X86_CR4_PAE		(1ul << 5)
35 #define X86_CR4_MCE		(1ul << 6)
36 #define X86_CR4_PGE		(1ul << 7)
37 #define X86_CR4_PCE		(1ul << 8)
38 #define X86_CR4_OSFXSR		(1ul << 9)
39 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
40 #define X86_CR4_UMIP		(1ul << 11)
41 #define X86_CR4_LA57		(1ul << 12)
42 #define X86_CR4_VMXE		(1ul << 13)
43 #define X86_CR4_SMXE		(1ul << 14)
44 #define X86_CR4_FSGSBASE	(1ul << 16)
45 #define X86_CR4_PCIDE		(1ul << 17)
46 #define X86_CR4_OSXSAVE		(1ul << 18)
47 #define X86_CR4_SMEP		(1ul << 20)
48 #define X86_CR4_SMAP		(1ul << 21)
49 #define X86_CR4_PKE		(1ul << 22)
50 
51 struct xstate_header {
52 	u64				xstate_bv;
53 	u64				xcomp_bv;
54 	u64				reserved[6];
55 } __attribute__((packed));
56 
57 struct xstate {
58 	u8				i387[512];
59 	struct xstate_header		header;
60 	u8				extended_state_area[0];
61 } __attribute__ ((packed, aligned (64)));
62 
63 #define XFEATURE_MASK_FP		BIT_ULL(0)
64 #define XFEATURE_MASK_SSE		BIT_ULL(1)
65 #define XFEATURE_MASK_YMM		BIT_ULL(2)
66 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
67 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
68 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
69 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
70 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
71 #define XFEATURE_MASK_PT		BIT_ULL(8)
72 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
73 #define XFEATURE_MASK_PASID		BIT_ULL(10)
74 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
75 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
76 #define XFEATURE_MASK_LBR		BIT_ULL(15)
77 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
78 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
79 
80 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
81 					 XFEATURE_MASK_ZMM_Hi256 | \
82 					 XFEATURE_MASK_Hi16_ZMM)
83 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
84 					 XFEATURE_MASK_XTILE_CFG)
85 
86 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
87 enum cpuid_output_regs {
88 	KVM_CPUID_EAX,
89 	KVM_CPUID_EBX,
90 	KVM_CPUID_ECX,
91 	KVM_CPUID_EDX
92 };
93 
94 /*
95  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
96  * passed by value with no overhead.
97  */
98 struct kvm_x86_cpu_feature {
99 	u32	function;
100 	u16	index;
101 	u8	reg;
102 	u8	bit;
103 };
104 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
105 ({										\
106 	struct kvm_x86_cpu_feature feature = {					\
107 		.function = fn,							\
108 		.index = idx,							\
109 		.reg = KVM_CPUID_##gpr,						\
110 		.bit = __bit,							\
111 	};									\
112 										\
113 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
114 			  (fn & 0xc0000000) == 0x40000000 ||			\
115 			  (fn & 0xc0000000) == 0x80000000 ||			\
116 			  (fn & 0xc0000000) == 0xc0000000);			\
117 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
118 	feature;								\
119 })
120 
121 /*
122  * Basic Leafs, a.k.a. Intel defined
123  */
124 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
125 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
126 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
127 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
128 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
129 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
130 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
131 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
132 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
133 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
134 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
135 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
136 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
137 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
138 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
139 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
140 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
141 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
142 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
143 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
144 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
145 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
146 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
147 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
148 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
149 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
150 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
151 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
152 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
153 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
154 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
155 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
156 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
157 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
158 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
159 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
160 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
161 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
162 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
163 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
164 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
165 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
166 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
167 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
168 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
169 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
170 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
171 
172 /*
173  * Extended Leafs, a.k.a. AMD defined
174  */
175 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
176 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
177 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
178 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
179 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
180 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
181 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
182 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
183 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
184 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
185 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
186 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
187 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
188 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
189 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
190 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
191 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
192 
193 /*
194  * KVM defined paravirt features.
195  */
196 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
197 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
198 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
199 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
200 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
201 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
202 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
203 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
204 /* Bit 8 apparently isn't used?!?! */
205 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
206 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
207 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
208 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
209 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
210 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
211 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
212 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
213 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
214 
215 /*
216  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
217  * value/property as opposed to a single-bit feature.  Again, pack the info
218  * into a 64-bit value to pass by value with no overhead.
219  */
220 struct kvm_x86_cpu_property {
221 	u32	function;
222 	u8	index;
223 	u8	reg;
224 	u8	lo_bit;
225 	u8	hi_bit;
226 };
227 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
228 ({										\
229 	struct kvm_x86_cpu_property property = {				\
230 		.function = fn,							\
231 		.index = idx,							\
232 		.reg = KVM_CPUID_##gpr,						\
233 		.lo_bit = low_bit,						\
234 		.hi_bit = high_bit,						\
235 	};									\
236 										\
237 	kvm_static_assert(low_bit < high_bit);					\
238 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
239 			  (fn & 0xc0000000) == 0x40000000 ||			\
240 			  (fn & 0xc0000000) == 0x80000000 ||			\
241 			  (fn & 0xc0000000) == 0xc0000000);			\
242 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
243 	property;								\
244 })
245 
246 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
247 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
248 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
249 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
250 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
251 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
252 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
253 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
254 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
255 
256 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
257 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
258 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
259 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
260 
261 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
262 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
263 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
264 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
265 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
266 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
267 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
268 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
269 
270 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
271 
272 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
273 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
274 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
275 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
276 
277 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
278 
279 /*
280  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
281  * that indicates the feature is _not_ supported, and a property that states
282  * the length of the bit mask of unsupported features.  A feature is supported
283  * if the size of the bit mask is larger than the "unavailable" bit, and said
284  * bit is not set.
285  *
286  * Wrap the "unavailable" feature to simplify checking whether or not a given
287  * architectural event is supported.
288  */
289 struct kvm_x86_pmu_feature {
290 	struct kvm_x86_cpu_feature anti_feature;
291 };
292 #define	KVM_X86_PMU_FEATURE(name, __bit)					\
293 ({										\
294 	struct kvm_x86_pmu_feature feature = {					\
295 		.anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),	\
296 	};									\
297 										\
298 	feature;								\
299 })
300 
301 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED	KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
302 
x86_family(unsigned int eax)303 static inline unsigned int x86_family(unsigned int eax)
304 {
305 	unsigned int x86;
306 
307 	x86 = (eax >> 8) & 0xf;
308 
309 	if (x86 == 0xf)
310 		x86 += (eax >> 20) & 0xff;
311 
312 	return x86;
313 }
314 
x86_model(unsigned int eax)315 static inline unsigned int x86_model(unsigned int eax)
316 {
317 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
318 }
319 
320 /* Page table bitfield declarations */
321 #define PTE_PRESENT_MASK        BIT_ULL(0)
322 #define PTE_WRITABLE_MASK       BIT_ULL(1)
323 #define PTE_USER_MASK           BIT_ULL(2)
324 #define PTE_ACCESSED_MASK       BIT_ULL(5)
325 #define PTE_DIRTY_MASK          BIT_ULL(6)
326 #define PTE_LARGE_MASK          BIT_ULL(7)
327 #define PTE_GLOBAL_MASK         BIT_ULL(8)
328 #define PTE_NX_MASK             BIT_ULL(63)
329 
330 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
331 
332 #define PAGE_SHIFT		12
333 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
334 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
335 
336 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
337 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
338 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
339 
340 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
341 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
342 
343 /* General Registers in 64-Bit Mode */
344 struct gpr64_regs {
345 	u64 rax;
346 	u64 rcx;
347 	u64 rdx;
348 	u64 rbx;
349 	u64 rsp;
350 	u64 rbp;
351 	u64 rsi;
352 	u64 rdi;
353 	u64 r8;
354 	u64 r9;
355 	u64 r10;
356 	u64 r11;
357 	u64 r12;
358 	u64 r13;
359 	u64 r14;
360 	u64 r15;
361 };
362 
363 struct desc64 {
364 	uint16_t limit0;
365 	uint16_t base0;
366 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
367 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
368 	uint32_t base3;
369 	uint32_t zero1;
370 } __attribute__((packed));
371 
372 struct desc_ptr {
373 	uint16_t size;
374 	uint64_t address;
375 } __attribute__((packed));
376 
377 struct kvm_x86_state {
378 	struct kvm_xsave *xsave;
379 	struct kvm_vcpu_events events;
380 	struct kvm_mp_state mp_state;
381 	struct kvm_regs regs;
382 	struct kvm_xcrs xcrs;
383 	struct kvm_sregs sregs;
384 	struct kvm_debugregs debugregs;
385 	union {
386 		struct kvm_nested_state nested;
387 		char nested_[16384];
388 	};
389 	struct kvm_msrs msrs;
390 };
391 
get_desc64_base(const struct desc64 * desc)392 static inline uint64_t get_desc64_base(const struct desc64 *desc)
393 {
394 	return ((uint64_t)desc->base3 << 32) |
395 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
396 }
397 
rdtsc(void)398 static inline uint64_t rdtsc(void)
399 {
400 	uint32_t eax, edx;
401 	uint64_t tsc_val;
402 	/*
403 	 * The lfence is to wait (on Intel CPUs) until all previous
404 	 * instructions have been executed. If software requires RDTSC to be
405 	 * executed prior to execution of any subsequent instruction, it can
406 	 * execute LFENCE immediately after RDTSC
407 	 */
408 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
409 	tsc_val = ((uint64_t)edx) << 32 | eax;
410 	return tsc_val;
411 }
412 
rdtscp(uint32_t * aux)413 static inline uint64_t rdtscp(uint32_t *aux)
414 {
415 	uint32_t eax, edx;
416 
417 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
418 	return ((uint64_t)edx) << 32 | eax;
419 }
420 
rdmsr(uint32_t msr)421 static inline uint64_t rdmsr(uint32_t msr)
422 {
423 	uint32_t a, d;
424 
425 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
426 
427 	return a | ((uint64_t) d << 32);
428 }
429 
wrmsr(uint32_t msr,uint64_t value)430 static inline void wrmsr(uint32_t msr, uint64_t value)
431 {
432 	uint32_t a = value;
433 	uint32_t d = value >> 32;
434 
435 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
436 }
437 
438 
inw(uint16_t port)439 static inline uint16_t inw(uint16_t port)
440 {
441 	uint16_t tmp;
442 
443 	__asm__ __volatile__("in %%dx, %%ax"
444 		: /* output */ "=a" (tmp)
445 		: /* input */ "d" (port));
446 
447 	return tmp;
448 }
449 
get_es(void)450 static inline uint16_t get_es(void)
451 {
452 	uint16_t es;
453 
454 	__asm__ __volatile__("mov %%es, %[es]"
455 			     : /* output */ [es]"=rm"(es));
456 	return es;
457 }
458 
get_cs(void)459 static inline uint16_t get_cs(void)
460 {
461 	uint16_t cs;
462 
463 	__asm__ __volatile__("mov %%cs, %[cs]"
464 			     : /* output */ [cs]"=rm"(cs));
465 	return cs;
466 }
467 
get_ss(void)468 static inline uint16_t get_ss(void)
469 {
470 	uint16_t ss;
471 
472 	__asm__ __volatile__("mov %%ss, %[ss]"
473 			     : /* output */ [ss]"=rm"(ss));
474 	return ss;
475 }
476 
get_ds(void)477 static inline uint16_t get_ds(void)
478 {
479 	uint16_t ds;
480 
481 	__asm__ __volatile__("mov %%ds, %[ds]"
482 			     : /* output */ [ds]"=rm"(ds));
483 	return ds;
484 }
485 
get_fs(void)486 static inline uint16_t get_fs(void)
487 {
488 	uint16_t fs;
489 
490 	__asm__ __volatile__("mov %%fs, %[fs]"
491 			     : /* output */ [fs]"=rm"(fs));
492 	return fs;
493 }
494 
get_gs(void)495 static inline uint16_t get_gs(void)
496 {
497 	uint16_t gs;
498 
499 	__asm__ __volatile__("mov %%gs, %[gs]"
500 			     : /* output */ [gs]"=rm"(gs));
501 	return gs;
502 }
503 
get_tr(void)504 static inline uint16_t get_tr(void)
505 {
506 	uint16_t tr;
507 
508 	__asm__ __volatile__("str %[tr]"
509 			     : /* output */ [tr]"=rm"(tr));
510 	return tr;
511 }
512 
get_cr0(void)513 static inline uint64_t get_cr0(void)
514 {
515 	uint64_t cr0;
516 
517 	__asm__ __volatile__("mov %%cr0, %[cr0]"
518 			     : /* output */ [cr0]"=r"(cr0));
519 	return cr0;
520 }
521 
get_cr3(void)522 static inline uint64_t get_cr3(void)
523 {
524 	uint64_t cr3;
525 
526 	__asm__ __volatile__("mov %%cr3, %[cr3]"
527 			     : /* output */ [cr3]"=r"(cr3));
528 	return cr3;
529 }
530 
get_cr4(void)531 static inline uint64_t get_cr4(void)
532 {
533 	uint64_t cr4;
534 
535 	__asm__ __volatile__("mov %%cr4, %[cr4]"
536 			     : /* output */ [cr4]"=r"(cr4));
537 	return cr4;
538 }
539 
set_cr4(uint64_t val)540 static inline void set_cr4(uint64_t val)
541 {
542 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
543 }
544 
xgetbv(u32 index)545 static inline u64 xgetbv(u32 index)
546 {
547 	u32 eax, edx;
548 
549 	__asm__ __volatile__("xgetbv;"
550 		     : "=a" (eax), "=d" (edx)
551 		     : "c" (index));
552 	return eax | ((u64)edx << 32);
553 }
554 
xsetbv(u32 index,u64 value)555 static inline void xsetbv(u32 index, u64 value)
556 {
557 	u32 eax = value;
558 	u32 edx = value >> 32;
559 
560 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
561 }
562 
wrpkru(u32 pkru)563 static inline void wrpkru(u32 pkru)
564 {
565 	/* Note, ECX and EDX are architecturally required to be '0'. */
566 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
567 		     : : "a" (pkru), "c"(0), "d"(0));
568 }
569 
get_gdt(void)570 static inline struct desc_ptr get_gdt(void)
571 {
572 	struct desc_ptr gdt;
573 	__asm__ __volatile__("sgdt %[gdt]"
574 			     : /* output */ [gdt]"=m"(gdt));
575 	return gdt;
576 }
577 
get_idt(void)578 static inline struct desc_ptr get_idt(void)
579 {
580 	struct desc_ptr idt;
581 	__asm__ __volatile__("sidt %[idt]"
582 			     : /* output */ [idt]"=m"(idt));
583 	return idt;
584 }
585 
outl(uint16_t port,uint32_t value)586 static inline void outl(uint16_t port, uint32_t value)
587 {
588 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
589 }
590 
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)591 static inline void __cpuid(uint32_t function, uint32_t index,
592 			   uint32_t *eax, uint32_t *ebx,
593 			   uint32_t *ecx, uint32_t *edx)
594 {
595 	*eax = function;
596 	*ecx = index;
597 
598 	asm volatile("cpuid"
599 	    : "=a" (*eax),
600 	      "=b" (*ebx),
601 	      "=c" (*ecx),
602 	      "=d" (*edx)
603 	    : "0" (*eax), "2" (*ecx)
604 	    : "memory");
605 }
606 
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)607 static inline void cpuid(uint32_t function,
608 			 uint32_t *eax, uint32_t *ebx,
609 			 uint32_t *ecx, uint32_t *edx)
610 {
611 	return __cpuid(function, 0, eax, ebx, ecx, edx);
612 }
613 
this_cpu_fms(void)614 static inline uint32_t this_cpu_fms(void)
615 {
616 	uint32_t eax, ebx, ecx, edx;
617 
618 	cpuid(1, &eax, &ebx, &ecx, &edx);
619 	return eax;
620 }
621 
this_cpu_family(void)622 static inline uint32_t this_cpu_family(void)
623 {
624 	return x86_family(this_cpu_fms());
625 }
626 
this_cpu_model(void)627 static inline uint32_t this_cpu_model(void)
628 {
629 	return x86_model(this_cpu_fms());
630 }
631 
this_cpu_vendor_string_is(const char * vendor)632 static inline bool this_cpu_vendor_string_is(const char *vendor)
633 {
634 	const uint32_t *chunk = (const uint32_t *)vendor;
635 	uint32_t eax, ebx, ecx, edx;
636 
637 	cpuid(0, &eax, &ebx, &ecx, &edx);
638 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
639 }
640 
this_cpu_is_intel(void)641 static inline bool this_cpu_is_intel(void)
642 {
643 	return this_cpu_vendor_string_is("GenuineIntel");
644 }
645 
646 /*
647  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
648  */
this_cpu_is_amd(void)649 static inline bool this_cpu_is_amd(void)
650 {
651 	return this_cpu_vendor_string_is("AuthenticAMD");
652 }
653 
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)654 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
655 				      uint8_t reg, uint8_t lo, uint8_t hi)
656 {
657 	uint32_t gprs[4];
658 
659 	__cpuid(function, index,
660 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
661 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
662 
663 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
664 }
665 
this_cpu_has(struct kvm_x86_cpu_feature feature)666 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
667 {
668 	return __this_cpu_has(feature.function, feature.index,
669 			      feature.reg, feature.bit, feature.bit);
670 }
671 
this_cpu_property(struct kvm_x86_cpu_property property)672 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
673 {
674 	return __this_cpu_has(property.function, property.index,
675 			      property.reg, property.lo_bit, property.hi_bit);
676 }
677 
this_cpu_has_p(struct kvm_x86_cpu_property property)678 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
679 {
680 	uint32_t max_leaf;
681 
682 	switch (property.function & 0xc0000000) {
683 	case 0:
684 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
685 		break;
686 	case 0x40000000:
687 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
688 		break;
689 	case 0x80000000:
690 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
691 		break;
692 	case 0xc0000000:
693 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
694 	}
695 	return max_leaf >= property.function;
696 }
697 
this_pmu_has(struct kvm_x86_pmu_feature feature)698 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
699 {
700 	uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
701 
702 	return nr_bits > feature.anti_feature.bit &&
703 	       !this_cpu_has(feature.anti_feature);
704 }
705 
this_cpu_supported_xcr0(void)706 static __always_inline uint64_t this_cpu_supported_xcr0(void)
707 {
708 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
709 		return 0;
710 
711 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
712 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
713 }
714 
715 typedef u32		__attribute__((vector_size(16))) sse128_t;
716 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
717 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
718 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
719 
read_sse_reg(int reg,sse128_t * data)720 static inline void read_sse_reg(int reg, sse128_t *data)
721 {
722 	switch (reg) {
723 	case 0:
724 		asm("movdqa %%xmm0, %0" : "=m"(*data));
725 		break;
726 	case 1:
727 		asm("movdqa %%xmm1, %0" : "=m"(*data));
728 		break;
729 	case 2:
730 		asm("movdqa %%xmm2, %0" : "=m"(*data));
731 		break;
732 	case 3:
733 		asm("movdqa %%xmm3, %0" : "=m"(*data));
734 		break;
735 	case 4:
736 		asm("movdqa %%xmm4, %0" : "=m"(*data));
737 		break;
738 	case 5:
739 		asm("movdqa %%xmm5, %0" : "=m"(*data));
740 		break;
741 	case 6:
742 		asm("movdqa %%xmm6, %0" : "=m"(*data));
743 		break;
744 	case 7:
745 		asm("movdqa %%xmm7, %0" : "=m"(*data));
746 		break;
747 	default:
748 		BUG();
749 	}
750 }
751 
write_sse_reg(int reg,const sse128_t * data)752 static inline void write_sse_reg(int reg, const sse128_t *data)
753 {
754 	switch (reg) {
755 	case 0:
756 		asm("movdqa %0, %%xmm0" : : "m"(*data));
757 		break;
758 	case 1:
759 		asm("movdqa %0, %%xmm1" : : "m"(*data));
760 		break;
761 	case 2:
762 		asm("movdqa %0, %%xmm2" : : "m"(*data));
763 		break;
764 	case 3:
765 		asm("movdqa %0, %%xmm3" : : "m"(*data));
766 		break;
767 	case 4:
768 		asm("movdqa %0, %%xmm4" : : "m"(*data));
769 		break;
770 	case 5:
771 		asm("movdqa %0, %%xmm5" : : "m"(*data));
772 		break;
773 	case 6:
774 		asm("movdqa %0, %%xmm6" : : "m"(*data));
775 		break;
776 	case 7:
777 		asm("movdqa %0, %%xmm7" : : "m"(*data));
778 		break;
779 	default:
780 		BUG();
781 	}
782 }
783 
cpu_relax(void)784 static inline void cpu_relax(void)
785 {
786 	asm volatile("rep; nop" ::: "memory");
787 }
788 
789 #define ud2()			\
790 	__asm__ __volatile__(	\
791 		"ud2\n"	\
792 		)
793 
794 #define hlt()			\
795 	__asm__ __volatile__(	\
796 		"hlt\n"	\
797 		)
798 
799 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
800 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
801 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
802 
803 const struct kvm_msr_list *kvm_get_msr_index_list(void);
804 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
805 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
806 uint64_t kvm_get_feature_msr(uint64_t msr_index);
807 
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)808 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
809 				 struct kvm_msrs *msrs)
810 {
811 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
812 
813 	TEST_ASSERT(r == msrs->nmsrs,
814 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
815 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
816 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)817 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
818 {
819 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
820 
821 	TEST_ASSERT(r == msrs->nmsrs,
822 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
823 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
824 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)825 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
826 				      struct kvm_debugregs *debugregs)
827 {
828 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
829 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)830 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
831 				      struct kvm_debugregs *debugregs)
832 {
833 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
834 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)835 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
836 				  struct kvm_xsave *xsave)
837 {
838 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
839 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)840 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
841 				   struct kvm_xsave *xsave)
842 {
843 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
844 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)845 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
846 				  struct kvm_xsave *xsave)
847 {
848 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
849 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)850 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
851 				 struct kvm_xcrs *xcrs)
852 {
853 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
854 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)855 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
856 {
857 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
858 }
859 
860 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
861 					       uint32_t function, uint32_t index);
862 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
863 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
864 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
865 
kvm_cpu_fms(void)866 static inline uint32_t kvm_cpu_fms(void)
867 {
868 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
869 }
870 
kvm_cpu_family(void)871 static inline uint32_t kvm_cpu_family(void)
872 {
873 	return x86_family(kvm_cpu_fms());
874 }
875 
kvm_cpu_model(void)876 static inline uint32_t kvm_cpu_model(void)
877 {
878 	return x86_model(kvm_cpu_fms());
879 }
880 
881 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
882 		   struct kvm_x86_cpu_feature feature);
883 
kvm_cpu_has(struct kvm_x86_cpu_feature feature)884 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
885 {
886 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
887 }
888 
889 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
890 			    struct kvm_x86_cpu_property property);
891 
kvm_cpu_property(struct kvm_x86_cpu_property property)892 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
893 {
894 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
895 }
896 
kvm_cpu_has_p(struct kvm_x86_cpu_property property)897 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
898 {
899 	uint32_t max_leaf;
900 
901 	switch (property.function & 0xc0000000) {
902 	case 0:
903 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
904 		break;
905 	case 0x40000000:
906 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
907 		break;
908 	case 0x80000000:
909 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
910 		break;
911 	case 0xc0000000:
912 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
913 	}
914 	return max_leaf >= property.function;
915 }
916 
kvm_pmu_has(struct kvm_x86_pmu_feature feature)917 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
918 {
919 	uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
920 
921 	return nr_bits > feature.anti_feature.bit &&
922 	       !kvm_cpu_has(feature.anti_feature);
923 }
924 
kvm_cpu_supported_xcr0(void)925 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
926 {
927 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
928 		return 0;
929 
930 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
931 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
932 }
933 
kvm_cpuid2_size(int nr_entries)934 static inline size_t kvm_cpuid2_size(int nr_entries)
935 {
936 	return sizeof(struct kvm_cpuid2) +
937 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
938 }
939 
940 /*
941  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
942  * entries sized to hold @nr_entries.  The caller is responsible for freeing
943  * the struct.
944  */
allocate_kvm_cpuid2(int nr_entries)945 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
946 {
947 	struct kvm_cpuid2 *cpuid;
948 
949 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
950 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
951 
952 	cpuid->nent = nr_entries;
953 
954 	return cpuid;
955 }
956 
957 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
958 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
959 
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)960 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
961 							      uint32_t function,
962 							      uint32_t index)
963 {
964 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
965 							  function, index);
966 }
967 
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)968 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
969 							    uint32_t function)
970 {
971 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
972 }
973 
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)974 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
975 {
976 	int r;
977 
978 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
979 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
980 	if (r)
981 		return r;
982 
983 	/* On success, refresh the cache to pick up adjustments made by KVM. */
984 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
985 	return 0;
986 }
987 
vcpu_set_cpuid(struct kvm_vcpu * vcpu)988 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
989 {
990 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
991 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
992 
993 	/* Refresh the cache to pick up adjustments made by KVM. */
994 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
995 }
996 
997 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
998 
999 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1000 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1001 				     struct kvm_x86_cpu_feature feature,
1002 				     bool set);
1003 
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1004 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1005 					  struct kvm_x86_cpu_feature feature)
1006 {
1007 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1008 
1009 }
1010 
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1011 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1012 					    struct kvm_x86_cpu_feature feature)
1013 {
1014 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1015 }
1016 
1017 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1018 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1019 
1020 /*
1021  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1022  * Note, the caller provides the stringified name so that the name of macro is
1023  * printed, not the value the macro resolves to (due to macro expansion).
1024  */
1025 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1026 do {										\
1027 	if (__builtin_constant_p(msr)) {					\
1028 		TEST_ASSERT(cond, fmt, str, args);				\
1029 	} else if (!(cond)) {							\
1030 		char buf[16];							\
1031 										\
1032 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1033 		TEST_ASSERT(cond, fmt, buf, args);				\
1034 	}									\
1035 } while (0)
1036 
1037 /*
1038  * Returns true if KVM should return the last written value when reading an MSR
1039  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1040  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1041  * out MSRs that are not durable _and_ that a selftest wants to write.
1042  */
is_durable_msr(uint32_t msr)1043 static inline bool is_durable_msr(uint32_t msr)
1044 {
1045 	return msr != MSR_IA32_TSC;
1046 }
1047 
1048 #define vcpu_set_msr(vcpu, msr, val)							\
1049 do {											\
1050 	uint64_t r, v = val;								\
1051 											\
1052 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1053 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1054 	if (!is_durable_msr(msr))							\
1055 		break;									\
1056 	r = vcpu_get_msr(vcpu, msr);							\
1057 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1058 } while (0)
1059 
1060 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1061 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1062 
1063 struct ex_regs {
1064 	uint64_t rax, rcx, rdx, rbx;
1065 	uint64_t rbp, rsi, rdi;
1066 	uint64_t r8, r9, r10, r11;
1067 	uint64_t r12, r13, r14, r15;
1068 	uint64_t vector;
1069 	uint64_t error_code;
1070 	uint64_t rip;
1071 	uint64_t cs;
1072 	uint64_t rflags;
1073 };
1074 
1075 struct idt_entry {
1076 	uint16_t offset0;
1077 	uint16_t selector;
1078 	uint16_t ist : 3;
1079 	uint16_t : 5;
1080 	uint16_t type : 4;
1081 	uint16_t : 1;
1082 	uint16_t dpl : 2;
1083 	uint16_t p : 1;
1084 	uint16_t offset1;
1085 	uint32_t offset2; uint32_t reserved;
1086 };
1087 
1088 void vm_init_descriptor_tables(struct kvm_vm *vm);
1089 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1090 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1091 			void (*handler)(struct ex_regs *));
1092 
1093 /* If a toddler were to say "abracadabra". */
1094 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1095 
1096 /*
1097  * KVM selftest exception fixup uses registers to coordinate with the exception
1098  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1099  * per-CPU data.  Using only registers avoids having to map memory into the
1100  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1101  * for recursive faults when accessing memory in the handler.  The downside to
1102  * using registers is that it restricts what registers can be used by the actual
1103  * instruction.  But, selftests are 64-bit only, making register* pressure a
1104  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1105  * by the callee, and except for r11 are not implicit parameters to any
1106  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1107  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1108  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1109  *
1110  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1111  * is guaranteed to be non-zero on fault.
1112  *
1113  * REGISTER INPUTS:
1114  * r9  = MAGIC
1115  * r10 = RIP
1116  * r11 = new RIP on fault
1117  *
1118  * REGISTER OUTPUTS:
1119  * r9  = exception vector (non-zero)
1120  * r10 = error code
1121  */
1122 #define KVM_ASM_SAFE(insn)					\
1123 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1124 	"lea 1f(%%rip), %%r10\n\t"				\
1125 	"lea 2f(%%rip), %%r11\n\t"				\
1126 	"1: " insn "\n\t"					\
1127 	"xor %%r9, %%r9\n\t"					\
1128 	"2:\n\t"						\
1129 	"mov  %%r9b, %[vector]\n\t"				\
1130 	"mov  %%r10, %[error_code]\n\t"
1131 
1132 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1133 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1134 
1135 #define kvm_asm_safe(insn, inputs...)					\
1136 ({									\
1137 	uint64_t ign_error_code;					\
1138 	uint8_t vector;							\
1139 									\
1140 	asm volatile(KVM_ASM_SAFE(insn)					\
1141 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1142 		     : inputs						\
1143 		     : KVM_ASM_SAFE_CLOBBERS);				\
1144 	vector;								\
1145 })
1146 
1147 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1148 ({									\
1149 	uint8_t vector;							\
1150 									\
1151 	asm volatile(KVM_ASM_SAFE(insn)					\
1152 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1153 		     : inputs						\
1154 		     : KVM_ASM_SAFE_CLOBBERS);				\
1155 	vector;								\
1156 })
1157 
rdmsr_safe(uint32_t msr,uint64_t * val)1158 static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1159 {
1160 	uint64_t error_code;
1161 	uint8_t vector;
1162 	uint32_t a, d;
1163 
1164 	asm volatile(KVM_ASM_SAFE("rdmsr")
1165 		     : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1166 		     : "c"(msr)
1167 		     : KVM_ASM_SAFE_CLOBBERS);
1168 
1169 	*val = (uint64_t)a | ((uint64_t)d << 32);
1170 	return vector;
1171 }
1172 
wrmsr_safe(uint32_t msr,uint64_t val)1173 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1174 {
1175 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1176 }
1177 
xsetbv_safe(uint32_t index,uint64_t value)1178 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1179 {
1180 	u32 eax = value;
1181 	u32 edx = value >> 32;
1182 
1183 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1184 }
1185 
1186 bool kvm_is_tdp_enabled(void);
1187 
1188 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1189 				    int *level);
1190 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1191 
1192 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1193 		       uint64_t a3);
1194 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1195 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1196 
1197 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1198 
1199 #define vm_xsave_require_permission(xfeature)	\
1200 	__vm_xsave_require_permission(xfeature, #xfeature)
1201 
1202 enum pg_level {
1203 	PG_LEVEL_NONE,
1204 	PG_LEVEL_4K,
1205 	PG_LEVEL_2M,
1206 	PG_LEVEL_1G,
1207 	PG_LEVEL_512G,
1208 	PG_LEVEL_NUM
1209 };
1210 
1211 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1212 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1213 
1214 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1215 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1216 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1217 
1218 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1219 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1220 		    uint64_t nr_bytes, int level);
1221 
1222 /*
1223  * Basic CPU control in CR0
1224  */
1225 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1226 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1227 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1228 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1229 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1230 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1231 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1232 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1233 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1234 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1235 #define X86_CR0_PG          (1UL<<31) /* Paging */
1236 
1237 #define PFERR_PRESENT_BIT 0
1238 #define PFERR_WRITE_BIT 1
1239 #define PFERR_USER_BIT 2
1240 #define PFERR_RSVD_BIT 3
1241 #define PFERR_FETCH_BIT 4
1242 #define PFERR_PK_BIT 5
1243 #define PFERR_SGX_BIT 15
1244 #define PFERR_GUEST_FINAL_BIT 32
1245 #define PFERR_GUEST_PAGE_BIT 33
1246 #define PFERR_IMPLICIT_ACCESS_BIT 48
1247 
1248 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1249 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1250 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1251 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1252 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1253 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1254 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1255 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1256 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1257 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1258 
1259 #endif /* SELFTEST_KVM_PROCESSOR_H */
1260