xref: /openbmc/linux/arch/s390/kernel/perf_cpum_cf.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for s390x - CPU-measurement Counter Facility
4  *
5  *  Copyright IBM Corp. 2012, 2023
6  *  Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
7  *	       Thomas Richter <tmricht@linux.ibm.com>
8  */
9 #define KMSG_COMPONENT	"cpum_cf"
10 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/percpu.h>
15 #include <linux/notifier.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/miscdevice.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/cpu_mf.h>
22 #include <asm/hwctrset.h>
23 #include <asm/debug.h>
24 
25 enum cpumf_ctr_set {
26 	CPUMF_CTR_SET_BASIC   = 0,    /* Basic Counter Set */
27 	CPUMF_CTR_SET_USER    = 1,    /* Problem-State Counter Set */
28 	CPUMF_CTR_SET_CRYPTO  = 2,    /* Crypto-Activity Counter Set */
29 	CPUMF_CTR_SET_EXT     = 3,    /* Extended Counter Set */
30 	CPUMF_CTR_SET_MT_DIAG = 4,    /* MT-diagnostic Counter Set */
31 
32 	/* Maximum number of counter sets */
33 	CPUMF_CTR_SET_MAX,
34 };
35 
36 #define CPUMF_LCCTL_ENABLE_SHIFT    16
37 #define CPUMF_LCCTL_ACTCTL_SHIFT     0
38 
ctr_set_enable(u64 * state,u64 ctrsets)39 static inline void ctr_set_enable(u64 *state, u64 ctrsets)
40 {
41 	*state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
42 }
43 
ctr_set_disable(u64 * state,u64 ctrsets)44 static inline void ctr_set_disable(u64 *state, u64 ctrsets)
45 {
46 	*state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
47 }
48 
ctr_set_start(u64 * state,u64 ctrsets)49 static inline void ctr_set_start(u64 *state, u64 ctrsets)
50 {
51 	*state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
52 }
53 
ctr_set_stop(u64 * state,u64 ctrsets)54 static inline void ctr_set_stop(u64 *state, u64 ctrsets)
55 {
56 	*state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
57 }
58 
ctr_stcctm(enum cpumf_ctr_set set,u64 range,u64 * dest)59 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
60 {
61 	switch (set) {
62 	case CPUMF_CTR_SET_BASIC:
63 		return stcctm(BASIC, range, dest);
64 	case CPUMF_CTR_SET_USER:
65 		return stcctm(PROBLEM_STATE, range, dest);
66 	case CPUMF_CTR_SET_CRYPTO:
67 		return stcctm(CRYPTO_ACTIVITY, range, dest);
68 	case CPUMF_CTR_SET_EXT:
69 		return stcctm(EXTENDED, range, dest);
70 	case CPUMF_CTR_SET_MT_DIAG:
71 		return stcctm(MT_DIAG_CLEARING, range, dest);
72 	case CPUMF_CTR_SET_MAX:
73 		return 3;
74 	}
75 	return 3;
76 }
77 
78 struct cpu_cf_events {
79 	refcount_t refcnt;		/* Reference count */
80 	atomic_t		ctr_set[CPUMF_CTR_SET_MAX];
81 	u64			state;		/* For perf_event_open SVC */
82 	u64			dev_state;	/* For /dev/hwctr */
83 	unsigned int		flags;
84 	size_t used;			/* Bytes used in data */
85 	size_t usedss;			/* Bytes used in start/stop */
86 	unsigned char start[PAGE_SIZE];	/* Counter set at event add */
87 	unsigned char stop[PAGE_SIZE];	/* Counter set at event delete */
88 	unsigned char data[PAGE_SIZE];	/* Counter set at /dev/hwctr */
89 	unsigned int sets;		/* # Counter set saved in memory */
90 };
91 
92 static unsigned int cfdiag_cpu_speed;	/* CPU speed for CF_DIAG trailer */
93 static debug_info_t *cf_dbg;
94 
95 /*
96  * The CPU Measurement query counter information instruction contains
97  * information which varies per machine generation, but is constant and
98  * does not change when running on a particular machine, such as counter
99  * first and second version number. This is needed to determine the size
100  * of counter sets. Extract this information at device driver initialization.
101  */
102 static struct cpumf_ctr_info	cpumf_ctr_info;
103 
104 struct cpu_cf_ptr {
105 	struct cpu_cf_events *cpucf;
106 };
107 
108 static struct cpu_cf_root {		/* Anchor to per CPU data */
109 	refcount_t refcnt;		/* Overall active events */
110 	struct cpu_cf_ptr __percpu *cfptr;
111 } cpu_cf_root;
112 
113 /*
114  * Serialize event initialization and event removal. Both are called from
115  * user space in task context with perf_event_open() and close()
116  * system calls.
117  *
118  * This mutex serializes functions cpum_cf_alloc_cpu() called at event
119  * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
120  * called at event removal via call back function hw_perf_event_destroy()
121  * when the event is deleted. They are serialized to enforce correct
122  * bookkeeping of pointer and reference counts anchored by
123  * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
124  * per CPU pointers stored in cpu_cf_root::cfptr.
125  */
126 static DEFINE_MUTEX(pmc_reserve_mutex);
127 
128 /*
129  * Get pointer to per-cpu structure.
130  *
131  * Function get_cpu_cfhw() is called from
132  * - cfset_copy_all(): This function is protected by cpus_read_lock(), so
133  *   CPU hot plug remove can not happen. Event removal requires a close()
134  *   first.
135  *
136  * Function this_cpu_cfhw() is called from perf common code functions:
137  * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
138  *   All functions execute with interrupts disabled on that particular CPU.
139  * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
140  *
141  * Therefore it is safe to access the CPU specific pointer to the event.
142  */
get_cpu_cfhw(int cpu)143 static struct cpu_cf_events *get_cpu_cfhw(int cpu)
144 {
145 	struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
146 
147 	if (p) {
148 		struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
149 
150 		return q->cpucf;
151 	}
152 	return NULL;
153 }
154 
this_cpu_cfhw(void)155 static struct cpu_cf_events *this_cpu_cfhw(void)
156 {
157 	return get_cpu_cfhw(smp_processor_id());
158 }
159 
160 /* Disable counter sets on dedicated CPU */
cpum_cf_reset_cpu(void * flags)161 static void cpum_cf_reset_cpu(void *flags)
162 {
163 	lcctl(0);
164 }
165 
166 /* Free per CPU data when the last event is removed. */
cpum_cf_free_root(void)167 static void cpum_cf_free_root(void)
168 {
169 	if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
170 		return;
171 	free_percpu(cpu_cf_root.cfptr);
172 	cpu_cf_root.cfptr = NULL;
173 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
174 	on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
175 	debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n",
176 			    __func__, refcount_read(&cpu_cf_root.refcnt),
177 			    !cpu_cf_root.cfptr);
178 }
179 
180 /*
181  * On initialization of first event also allocate per CPU data dynamically.
182  * Start with an array of pointers, the array size is the maximum number of
183  * CPUs possible, which might be larger than the number of CPUs currently
184  * online.
185  */
cpum_cf_alloc_root(void)186 static int cpum_cf_alloc_root(void)
187 {
188 	int rc = 0;
189 
190 	if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
191 		return rc;
192 
193 	/* The memory is already zeroed. */
194 	cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
195 	if (cpu_cf_root.cfptr) {
196 		refcount_set(&cpu_cf_root.refcnt, 1);
197 		on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
198 		irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
199 	} else {
200 		rc = -ENOMEM;
201 	}
202 
203 	return rc;
204 }
205 
206 /* Free CPU counter data structure for a PMU */
cpum_cf_free_cpu(int cpu)207 static void cpum_cf_free_cpu(int cpu)
208 {
209 	struct cpu_cf_events *cpuhw;
210 	struct cpu_cf_ptr *p;
211 
212 	mutex_lock(&pmc_reserve_mutex);
213 	/*
214 	 * When invoked via CPU hotplug handler, there might be no events
215 	 * installed or that particular CPU might not have an
216 	 * event installed. This anchor pointer can be NULL!
217 	 */
218 	if (!cpu_cf_root.cfptr)
219 		goto out;
220 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
221 	cpuhw = p->cpucf;
222 	/*
223 	 * Might be zero when called from CPU hotplug handler and no event
224 	 * installed on that CPU, but on different CPUs.
225 	 */
226 	if (!cpuhw)
227 		goto out;
228 
229 	if (refcount_dec_and_test(&cpuhw->refcnt)) {
230 		kfree(cpuhw);
231 		p->cpucf = NULL;
232 	}
233 	cpum_cf_free_root();
234 out:
235 	mutex_unlock(&pmc_reserve_mutex);
236 }
237 
238 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
cpum_cf_alloc_cpu(int cpu)239 static int cpum_cf_alloc_cpu(int cpu)
240 {
241 	struct cpu_cf_events *cpuhw;
242 	struct cpu_cf_ptr *p;
243 	int rc;
244 
245 	mutex_lock(&pmc_reserve_mutex);
246 	rc = cpum_cf_alloc_root();
247 	if (rc)
248 		goto unlock;
249 	p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
250 	cpuhw = p->cpucf;
251 
252 	if (!cpuhw) {
253 		cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
254 		if (cpuhw) {
255 			p->cpucf = cpuhw;
256 			refcount_set(&cpuhw->refcnt, 1);
257 		} else {
258 			rc = -ENOMEM;
259 		}
260 	} else {
261 		refcount_inc(&cpuhw->refcnt);
262 	}
263 	if (rc) {
264 		/*
265 		 * Error in allocation of event, decrement anchor. Since
266 		 * cpu_cf_event in not created, its destroy() function is not
267 		 * invoked. Adjust the reference counter for the anchor.
268 		 */
269 		cpum_cf_free_root();
270 	}
271 unlock:
272 	mutex_unlock(&pmc_reserve_mutex);
273 	return rc;
274 }
275 
276 /*
277  * Create/delete per CPU data structures for /dev/hwctr interface and events
278  * created by perf_event_open().
279  * If cpu is -1, track task on all available CPUs. This requires
280  * allocation of hardware data structures for all CPUs. This setup handles
281  * perf_event_open() with task context and /dev/hwctr interface.
282  * If cpu is non-zero install event on this CPU only. This setup handles
283  * perf_event_open() with CPU context.
284  */
cpum_cf_alloc(int cpu)285 static int cpum_cf_alloc(int cpu)
286 {
287 	cpumask_var_t mask;
288 	int rc;
289 
290 	if (cpu == -1) {
291 		if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
292 			return -ENOMEM;
293 		for_each_online_cpu(cpu) {
294 			rc = cpum_cf_alloc_cpu(cpu);
295 			if (rc) {
296 				for_each_cpu(cpu, mask)
297 					cpum_cf_free_cpu(cpu);
298 				break;
299 			}
300 			cpumask_set_cpu(cpu, mask);
301 		}
302 		free_cpumask_var(mask);
303 	} else {
304 		rc = cpum_cf_alloc_cpu(cpu);
305 	}
306 	return rc;
307 }
308 
cpum_cf_free(int cpu)309 static void cpum_cf_free(int cpu)
310 {
311 	if (cpu == -1) {
312 		for_each_online_cpu(cpu)
313 			cpum_cf_free_cpu(cpu);
314 	} else {
315 		cpum_cf_free_cpu(cpu);
316 	}
317 }
318 
319 #define	CF_DIAG_CTRSET_DEF		0xfeef	/* Counter set header mark */
320 						/* interval in seconds */
321 
322 /* Counter sets are stored as data stream in a page sized memory buffer and
323  * exported to user space via raw data attached to the event sample data.
324  * Each counter set starts with an eight byte header consisting of:
325  * - a two byte eye catcher (0xfeef)
326  * - a one byte counter set number
327  * - a two byte counter set size (indicates the number of counters in this set)
328  * - a three byte reserved value (must be zero) to make the header the same
329  *   size as a counter value.
330  * All counter values are eight byte in size.
331  *
332  * All counter sets are followed by a 64 byte trailer.
333  * The trailer consists of a:
334  * - flag field indicating valid fields when corresponding bit set
335  * - the counter facility first and second version number
336  * - the CPU speed if nonzero
337  * - the time stamp the counter sets have been collected
338  * - the time of day (TOD) base value
339  * - the machine type.
340  *
341  * The counter sets are saved when the process is prepared to be executed on a
342  * CPU and saved again when the process is going to be removed from a CPU.
343  * The difference of both counter sets are calculated and stored in the event
344  * sample data area.
345  */
346 struct cf_ctrset_entry {	/* CPU-M CF counter set entry (8 byte) */
347 	unsigned int def:16;	/* 0-15  Data Entry Format */
348 	unsigned int set:16;	/* 16-31 Counter set identifier */
349 	unsigned int ctr:16;	/* 32-47 Number of stored counters */
350 	unsigned int res1:16;	/* 48-63 Reserved */
351 };
352 
353 struct cf_trailer_entry {	/* CPU-M CF_DIAG trailer (64 byte) */
354 	/* 0 - 7 */
355 	union {
356 		struct {
357 			unsigned int clock_base:1;	/* TOD clock base set */
358 			unsigned int speed:1;		/* CPU speed set */
359 			/* Measurement alerts */
360 			unsigned int mtda:1;	/* Loss of MT ctr. data alert */
361 			unsigned int caca:1;	/* Counter auth. change alert */
362 			unsigned int lcda:1;	/* Loss of counter data alert */
363 		};
364 		unsigned long flags;	/* 0-63    All indicators */
365 	};
366 	/* 8 - 15 */
367 	unsigned int cfvn:16;			/* 64-79   Ctr First Version */
368 	unsigned int csvn:16;			/* 80-95   Ctr Second Version */
369 	unsigned int cpu_speed:32;		/* 96-127  CPU speed */
370 	/* 16 - 23 */
371 	unsigned long timestamp;		/* 128-191 Timestamp (TOD) */
372 	/* 24 - 55 */
373 	union {
374 		struct {
375 			unsigned long progusage1;
376 			unsigned long progusage2;
377 			unsigned long progusage3;
378 			unsigned long tod_base;
379 		};
380 		unsigned long progusage[4];
381 	};
382 	/* 56 - 63 */
383 	unsigned int mach_type:16;		/* Machine type */
384 	unsigned int res1:16;			/* Reserved */
385 	unsigned int res2:32;			/* Reserved */
386 };
387 
388 /* Create the trailer data at the end of a page. */
cfdiag_trailer(struct cf_trailer_entry * te)389 static void cfdiag_trailer(struct cf_trailer_entry *te)
390 {
391 	struct cpuid cpuid;
392 
393 	te->cfvn = cpumf_ctr_info.cfvn;		/* Counter version numbers */
394 	te->csvn = cpumf_ctr_info.csvn;
395 
396 	get_cpu_id(&cpuid);			/* Machine type */
397 	te->mach_type = cpuid.machine;
398 	te->cpu_speed = cfdiag_cpu_speed;
399 	if (te->cpu_speed)
400 		te->speed = 1;
401 	te->clock_base = 1;			/* Save clock base */
402 	te->tod_base = tod_clock_base.tod;
403 	te->timestamp = get_tod_clock_fast();
404 }
405 
406 /*
407  * The number of counters per counter set varies between machine generations,
408  * but is constant when running on a particular machine generation.
409  * Determine each counter set size at device driver initialization and
410  * retrieve it later.
411  */
412 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)413 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
414 {
415 	size_t ctrset_size = 0;
416 
417 	switch (ctrset) {
418 	case CPUMF_CTR_SET_BASIC:
419 		if (cpumf_ctr_info.cfvn >= 1)
420 			ctrset_size = 6;
421 		break;
422 	case CPUMF_CTR_SET_USER:
423 		if (cpumf_ctr_info.cfvn == 1)
424 			ctrset_size = 6;
425 		else if (cpumf_ctr_info.cfvn >= 3)
426 			ctrset_size = 2;
427 		break;
428 	case CPUMF_CTR_SET_CRYPTO:
429 		if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
430 			ctrset_size = 16;
431 		else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
432 			ctrset_size = 20;
433 		break;
434 	case CPUMF_CTR_SET_EXT:
435 		if (cpumf_ctr_info.csvn == 1)
436 			ctrset_size = 32;
437 		else if (cpumf_ctr_info.csvn == 2)
438 			ctrset_size = 48;
439 		else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
440 			ctrset_size = 128;
441 		else if (cpumf_ctr_info.csvn == 6 || cpumf_ctr_info.csvn == 7)
442 			ctrset_size = 160;
443 		break;
444 	case CPUMF_CTR_SET_MT_DIAG:
445 		if (cpumf_ctr_info.csvn > 3)
446 			ctrset_size = 48;
447 		break;
448 	case CPUMF_CTR_SET_MAX:
449 		break;
450 	}
451 	cpumf_ctr_setsizes[ctrset] = ctrset_size;
452 }
453 
454 /*
455  * Return the maximum possible counter set size (in number of 8 byte counters)
456  * depending on type and model number.
457  */
cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)458 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
459 {
460 	return cpumf_ctr_setsizes[ctrset];
461 }
462 
463 /* Read a counter set. The counter set number determines the counter set and
464  * the CPUM-CF first and second version number determine the number of
465  * available counters in each counter set.
466  * Each counter set starts with header containing the counter set number and
467  * the number of eight byte counters.
468  *
469  * The functions returns the number of bytes occupied by this counter set
470  * including the header.
471  * If there is no counter in the counter set, this counter set is useless and
472  * zero is returned on this case.
473  *
474  * Note that the counter sets may not be enabled or active and the stcctm
475  * instruction might return error 3. Depending on error_ok value this is ok,
476  * for example when called from cpumf_pmu_start() call back function.
477  */
cfdiag_getctrset(struct cf_ctrset_entry * ctrdata,int ctrset,size_t room,bool error_ok)478 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
479 			       size_t room, bool error_ok)
480 {
481 	size_t ctrset_size, need = 0;
482 	int rc = 3;				/* Assume write failure */
483 
484 	ctrdata->def = CF_DIAG_CTRSET_DEF;
485 	ctrdata->set = ctrset;
486 	ctrdata->res1 = 0;
487 	ctrset_size = cpum_cf_read_setsize(ctrset);
488 
489 	if (ctrset_size) {			/* Save data */
490 		need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
491 		if (need <= room) {
492 			rc = ctr_stcctm(ctrset, ctrset_size,
493 					(u64 *)(ctrdata + 1));
494 		}
495 		if (rc != 3 || error_ok)
496 			ctrdata->ctr = ctrset_size;
497 		else
498 			need = 0;
499 	}
500 
501 	return need;
502 }
503 
504 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
505 	[CPUMF_CTR_SET_BASIC]	= 0x02,
506 	[CPUMF_CTR_SET_USER]	= 0x04,
507 	[CPUMF_CTR_SET_CRYPTO]	= 0x08,
508 	[CPUMF_CTR_SET_EXT]	= 0x01,
509 	[CPUMF_CTR_SET_MT_DIAG] = 0x20,
510 };
511 
512 /* Read out all counter sets and save them in the provided data buffer.
513  * The last 64 byte host an artificial trailer entry.
514  */
cfdiag_getctr(void * data,size_t sz,unsigned long auth,bool error_ok)515 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
516 			    bool error_ok)
517 {
518 	struct cf_trailer_entry *trailer;
519 	size_t offset = 0, done;
520 	int i;
521 
522 	memset(data, 0, sz);
523 	sz -= sizeof(*trailer);		/* Always room for trailer */
524 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
525 		struct cf_ctrset_entry *ctrdata = data + offset;
526 
527 		if (!(auth & cpumf_ctr_ctl[i]))
528 			continue;	/* Counter set not authorized */
529 
530 		done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
531 		offset += done;
532 	}
533 	trailer = data + offset;
534 	cfdiag_trailer(trailer);
535 	return offset + sizeof(*trailer);
536 }
537 
538 /* Calculate the difference for each counter in a counter set. */
cfdiag_diffctrset(u64 * pstart,u64 * pstop,int counters)539 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
540 {
541 	for (; --counters >= 0; ++pstart, ++pstop)
542 		if (*pstop >= *pstart)
543 			*pstop -= *pstart;
544 		else
545 			*pstop = *pstart - *pstop + 1;
546 }
547 
548 /* Scan the counter sets and calculate the difference of each counter
549  * in each set. The result is the increment of each counter during the
550  * period the counter set has been activated.
551  *
552  * Return true on success.
553  */
cfdiag_diffctr(struct cpu_cf_events * cpuhw,unsigned long auth)554 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
555 {
556 	struct cf_trailer_entry *trailer_start, *trailer_stop;
557 	struct cf_ctrset_entry *ctrstart, *ctrstop;
558 	size_t offset = 0;
559 	int i;
560 
561 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
562 		ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
563 		ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
564 
565 		/* Counter set not authorized */
566 		if (!(auth & cpumf_ctr_ctl[i]))
567 			continue;
568 		/* Counter set size zero was not saved */
569 		if (!cpum_cf_read_setsize(i))
570 			continue;
571 
572 		if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
573 			pr_err_once("cpum_cf_diag counter set compare error "
574 				    "in set %i\n", ctrstart->set);
575 			return 0;
576 		}
577 		if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
578 			cfdiag_diffctrset((u64 *)(ctrstart + 1),
579 					  (u64 *)(ctrstop + 1), ctrstart->ctr);
580 			offset += ctrstart->ctr * sizeof(u64) +
581 							sizeof(*ctrstart);
582 		}
583 	}
584 
585 	/* Save time_stamp from start of event in stop's trailer */
586 	trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
587 	trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
588 	trailer_stop->progusage[0] = trailer_start->timestamp;
589 
590 	return 1;
591 }
592 
get_counter_set(u64 event)593 static enum cpumf_ctr_set get_counter_set(u64 event)
594 {
595 	int set = CPUMF_CTR_SET_MAX;
596 
597 	if (event < 32)
598 		set = CPUMF_CTR_SET_BASIC;
599 	else if (event < 64)
600 		set = CPUMF_CTR_SET_USER;
601 	else if (event < 128)
602 		set = CPUMF_CTR_SET_CRYPTO;
603 	else if (event < 288)
604 		set = CPUMF_CTR_SET_EXT;
605 	else if (event >= 448 && event < 496)
606 		set = CPUMF_CTR_SET_MT_DIAG;
607 
608 	return set;
609 }
610 
validate_ctr_version(const u64 config,enum cpumf_ctr_set set)611 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
612 {
613 	u16 mtdiag_ctl;
614 	int err = 0;
615 
616 	/* check required version for counter sets */
617 	switch (set) {
618 	case CPUMF_CTR_SET_BASIC:
619 	case CPUMF_CTR_SET_USER:
620 		if (cpumf_ctr_info.cfvn < 1)
621 			err = -EOPNOTSUPP;
622 		break;
623 	case CPUMF_CTR_SET_CRYPTO:
624 		if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
625 		     config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
626 			err = -EOPNOTSUPP;
627 		break;
628 	case CPUMF_CTR_SET_EXT:
629 		if (cpumf_ctr_info.csvn < 1)
630 			err = -EOPNOTSUPP;
631 		if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
632 		    (cpumf_ctr_info.csvn == 2 && config > 175) ||
633 		    (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
634 		     config > 255) ||
635 		    (cpumf_ctr_info.csvn >= 6 && config > 287))
636 			err = -EOPNOTSUPP;
637 		break;
638 	case CPUMF_CTR_SET_MT_DIAG:
639 		if (cpumf_ctr_info.csvn <= 3)
640 			err = -EOPNOTSUPP;
641 		/*
642 		 * MT-diagnostic counters are read-only.  The counter set
643 		 * is automatically enabled and activated on all CPUs with
644 		 * multithreading (SMT).  Deactivation of multithreading
645 		 * also disables the counter set.  State changes are ignored
646 		 * by lcctl().	Because Linux controls SMT enablement through
647 		 * a kernel parameter only, the counter set is either disabled
648 		 * or enabled and active.
649 		 *
650 		 * Thus, the counters can only be used if SMT is on and the
651 		 * counter set is enabled and active.
652 		 */
653 		mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
654 		if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
655 		      (cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
656 		      (cpumf_ctr_info.act_ctl & mtdiag_ctl)))
657 			err = -EOPNOTSUPP;
658 		break;
659 	case CPUMF_CTR_SET_MAX:
660 		err = -EOPNOTSUPP;
661 	}
662 
663 	return err;
664 }
665 
666 /*
667  * Change the CPUMF state to active.
668  * Enable and activate the CPU-counter sets according
669  * to the per-cpu control state.
670  */
cpumf_pmu_enable(struct pmu * pmu)671 static void cpumf_pmu_enable(struct pmu *pmu)
672 {
673 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
674 	int err;
675 
676 	if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
677 		return;
678 
679 	err = lcctl(cpuhw->state | cpuhw->dev_state);
680 	if (err)
681 		pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
682 	else
683 		cpuhw->flags |= PMU_F_ENABLED;
684 }
685 
686 /*
687  * Change the CPUMF state to inactive.
688  * Disable and enable (inactive) the CPU-counter sets according
689  * to the per-cpu control state.
690  */
cpumf_pmu_disable(struct pmu * pmu)691 static void cpumf_pmu_disable(struct pmu *pmu)
692 {
693 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
694 	u64 inactive;
695 	int err;
696 
697 	if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
698 		return;
699 
700 	inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
701 	inactive |= cpuhw->dev_state;
702 	err = lcctl(inactive);
703 	if (err)
704 		pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
705 	else
706 		cpuhw->flags &= ~PMU_F_ENABLED;
707 }
708 
709 /* Release the PMU if event is the last perf event */
hw_perf_event_destroy(struct perf_event * event)710 static void hw_perf_event_destroy(struct perf_event *event)
711 {
712 	cpum_cf_free(event->cpu);
713 }
714 
715 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
716 static const int cpumf_generic_events_basic[] = {
717 	[PERF_COUNT_HW_CPU_CYCLES]	    = 0,
718 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 1,
719 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
720 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
721 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
722 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
723 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
724 };
725 /* CPUMF <-> perf event mappings for userspace (problem-state set) */
726 static const int cpumf_generic_events_user[] = {
727 	[PERF_COUNT_HW_CPU_CYCLES]	    = 32,
728 	[PERF_COUNT_HW_INSTRUCTIONS]	    = 33,
729 	[PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
730 	[PERF_COUNT_HW_CACHE_MISSES]	    = -1,
731 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
732 	[PERF_COUNT_HW_BRANCH_MISSES]	    = -1,
733 	[PERF_COUNT_HW_BUS_CYCLES]	    = -1,
734 };
735 
is_userspace_event(u64 ev)736 static int is_userspace_event(u64 ev)
737 {
738 	return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
739 	       cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
740 }
741 
__hw_perf_event_init(struct perf_event * event,unsigned int type)742 static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
743 {
744 	struct perf_event_attr *attr = &event->attr;
745 	struct hw_perf_event *hwc = &event->hw;
746 	enum cpumf_ctr_set set;
747 	u64 ev;
748 
749 	switch (type) {
750 	case PERF_TYPE_RAW:
751 		/* Raw events are used to access counters directly,
752 		 * hence do not permit excludes */
753 		if (attr->exclude_kernel || attr->exclude_user ||
754 		    attr->exclude_hv)
755 			return -EOPNOTSUPP;
756 		ev = attr->config;
757 		break;
758 
759 	case PERF_TYPE_HARDWARE:
760 		if (is_sampling_event(event))	/* No sampling support */
761 			return -ENOENT;
762 		ev = attr->config;
763 		if (!attr->exclude_user && attr->exclude_kernel) {
764 			/*
765 			 * Count user space (problem-state) only
766 			 * Handle events 32 and 33 as 0:u and 1:u
767 			 */
768 			if (!is_userspace_event(ev)) {
769 				if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
770 					return -EOPNOTSUPP;
771 				ev = cpumf_generic_events_user[ev];
772 			}
773 		} else if (!attr->exclude_kernel && attr->exclude_user) {
774 			/* No support for kernel space counters only */
775 			return -EOPNOTSUPP;
776 		} else {
777 			/* Count user and kernel space, incl. events 32 + 33 */
778 			if (!is_userspace_event(ev)) {
779 				if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
780 					return -EOPNOTSUPP;
781 				ev = cpumf_generic_events_basic[ev];
782 			}
783 		}
784 		break;
785 
786 	default:
787 		return -ENOENT;
788 	}
789 
790 	if (ev == -1)
791 		return -ENOENT;
792 
793 	if (ev > PERF_CPUM_CF_MAX_CTR)
794 		return -ENOENT;
795 
796 	/* Obtain the counter set to which the specified counter belongs */
797 	set = get_counter_set(ev);
798 	switch (set) {
799 	case CPUMF_CTR_SET_BASIC:
800 	case CPUMF_CTR_SET_USER:
801 	case CPUMF_CTR_SET_CRYPTO:
802 	case CPUMF_CTR_SET_EXT:
803 	case CPUMF_CTR_SET_MT_DIAG:
804 		/*
805 		 * Use the hardware perf event structure to store the
806 		 * counter number in the 'config' member and the counter
807 		 * set number in the 'config_base' as bit mask.
808 		 * It is later used to enable/disable the counter(s).
809 		 */
810 		hwc->config = ev;
811 		hwc->config_base = cpumf_ctr_ctl[set];
812 		break;
813 	case CPUMF_CTR_SET_MAX:
814 		/* The counter could not be associated to a counter set */
815 		return -EINVAL;
816 	}
817 
818 	/* Initialize for using the CPU-measurement counter facility */
819 	if (cpum_cf_alloc(event->cpu))
820 		return -ENOMEM;
821 	event->destroy = hw_perf_event_destroy;
822 
823 	/*
824 	 * Finally, validate version and authorization of the counter set.
825 	 * If the particular CPU counter set is not authorized,
826 	 * return with -ENOENT in order to fall back to other
827 	 * PMUs that might suffice the event request.
828 	 */
829 	if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
830 		return -ENOENT;
831 	return validate_ctr_version(hwc->config, set);
832 }
833 
834 /* Events CPU_CYLCES and INSTRUCTIONS can be submitted with two different
835  * attribute::type values:
836  * - PERF_TYPE_HARDWARE:
837  * - pmu->type:
838  * Handle both type of invocations identical. They address the same hardware.
839  * The result is different when event modifiers exclude_kernel and/or
840  * exclude_user are also set.
841  */
cpumf_pmu_event_type(struct perf_event * event)842 static int cpumf_pmu_event_type(struct perf_event *event)
843 {
844 	u64 ev = event->attr.config;
845 
846 	if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
847 	    cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
848 	    cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
849 	    cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
850 		return PERF_TYPE_HARDWARE;
851 	return PERF_TYPE_RAW;
852 }
853 
cpumf_pmu_event_init(struct perf_event * event)854 static int cpumf_pmu_event_init(struct perf_event *event)
855 {
856 	unsigned int type = event->attr.type;
857 	int err;
858 
859 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
860 		err = __hw_perf_event_init(event, type);
861 	else if (event->pmu->type == type)
862 		/* Registered as unknown PMU */
863 		err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
864 	else
865 		return -ENOENT;
866 
867 	if (unlikely(err) && event->destroy)
868 		event->destroy(event);
869 
870 	return err;
871 }
872 
hw_perf_event_reset(struct perf_event * event)873 static int hw_perf_event_reset(struct perf_event *event)
874 {
875 	u64 prev, new;
876 	int err;
877 
878 	do {
879 		prev = local64_read(&event->hw.prev_count);
880 		err = ecctr(event->hw.config, &new);
881 		if (err) {
882 			if (err != 3)
883 				break;
884 			/* The counter is not (yet) available. This
885 			 * might happen if the counter set to which
886 			 * this counter belongs is in the disabled
887 			 * state.
888 			 */
889 			new = 0;
890 		}
891 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
892 
893 	return err;
894 }
895 
hw_perf_event_update(struct perf_event * event)896 static void hw_perf_event_update(struct perf_event *event)
897 {
898 	u64 prev, new, delta;
899 	int err;
900 
901 	do {
902 		prev = local64_read(&event->hw.prev_count);
903 		err = ecctr(event->hw.config, &new);
904 		if (err)
905 			return;
906 	} while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
907 
908 	delta = (prev <= new) ? new - prev
909 			      : (-1ULL - prev) + new + 1;	 /* overflow */
910 	local64_add(delta, &event->count);
911 }
912 
cpumf_pmu_read(struct perf_event * event)913 static void cpumf_pmu_read(struct perf_event *event)
914 {
915 	if (event->hw.state & PERF_HES_STOPPED)
916 		return;
917 
918 	hw_perf_event_update(event);
919 }
920 
cpumf_pmu_start(struct perf_event * event,int flags)921 static void cpumf_pmu_start(struct perf_event *event, int flags)
922 {
923 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
924 	struct hw_perf_event *hwc = &event->hw;
925 	int i;
926 
927 	if (!(hwc->state & PERF_HES_STOPPED))
928 		return;
929 
930 	hwc->state = 0;
931 
932 	/* (Re-)enable and activate the counter set */
933 	ctr_set_enable(&cpuhw->state, hwc->config_base);
934 	ctr_set_start(&cpuhw->state, hwc->config_base);
935 
936 	/* The counter set to which this counter belongs can be already active.
937 	 * Because all counters in a set are active, the event->hw.prev_count
938 	 * needs to be synchronized.  At this point, the counter set can be in
939 	 * the inactive or disabled state.
940 	 */
941 	if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
942 		cpuhw->usedss = cfdiag_getctr(cpuhw->start,
943 					      sizeof(cpuhw->start),
944 					      hwc->config_base, true);
945 	} else {
946 		hw_perf_event_reset(event);
947 	}
948 
949 	/* Increment refcount for counter sets */
950 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
951 		if ((hwc->config_base & cpumf_ctr_ctl[i]))
952 			atomic_inc(&cpuhw->ctr_set[i]);
953 }
954 
955 /* Create perf event sample with the counter sets as raw data.	The sample
956  * is then pushed to the event subsystem and the function checks for
957  * possible event overflows. If an event overflow occurs, the PMU is
958  * stopped.
959  *
960  * Return non-zero if an event overflow occurred.
961  */
cfdiag_push_sample(struct perf_event * event,struct cpu_cf_events * cpuhw)962 static int cfdiag_push_sample(struct perf_event *event,
963 			      struct cpu_cf_events *cpuhw)
964 {
965 	struct perf_sample_data data;
966 	struct perf_raw_record raw;
967 	struct pt_regs regs;
968 	int overflow;
969 
970 	/* Setup perf sample */
971 	perf_sample_data_init(&data, 0, event->hw.last_period);
972 	memset(&regs, 0, sizeof(regs));
973 	memset(&raw, 0, sizeof(raw));
974 
975 	if (event->attr.sample_type & PERF_SAMPLE_CPU)
976 		data.cpu_entry.cpu = event->cpu;
977 	if (event->attr.sample_type & PERF_SAMPLE_RAW) {
978 		raw.frag.size = cpuhw->usedss;
979 		raw.frag.data = cpuhw->stop;
980 		perf_sample_save_raw_data(&data, &raw);
981 	}
982 
983 	overflow = perf_event_overflow(event, &data, &regs);
984 	if (overflow)
985 		event->pmu->stop(event, 0);
986 
987 	perf_event_update_userpage(event);
988 	return overflow;
989 }
990 
cpumf_pmu_stop(struct perf_event * event,int flags)991 static void cpumf_pmu_stop(struct perf_event *event, int flags)
992 {
993 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
994 	struct hw_perf_event *hwc = &event->hw;
995 	int i;
996 
997 	if (!(hwc->state & PERF_HES_STOPPED)) {
998 		/* Decrement reference count for this counter set and if this
999 		 * is the last used counter in the set, clear activation
1000 		 * control and set the counter set state to inactive.
1001 		 */
1002 		for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1003 			if (!(hwc->config_base & cpumf_ctr_ctl[i]))
1004 				continue;
1005 			if (!atomic_dec_return(&cpuhw->ctr_set[i]))
1006 				ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
1007 		}
1008 		hwc->state |= PERF_HES_STOPPED;
1009 	}
1010 
1011 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1012 		if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
1013 			local64_inc(&event->count);
1014 			cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
1015 						      sizeof(cpuhw->stop),
1016 						      event->hw.config_base,
1017 						      false);
1018 			if (cfdiag_diffctr(cpuhw, event->hw.config_base))
1019 				cfdiag_push_sample(event, cpuhw);
1020 		} else {
1021 			hw_perf_event_update(event);
1022 		}
1023 		hwc->state |= PERF_HES_UPTODATE;
1024 	}
1025 }
1026 
cpumf_pmu_add(struct perf_event * event,int flags)1027 static int cpumf_pmu_add(struct perf_event *event, int flags)
1028 {
1029 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1030 
1031 	ctr_set_enable(&cpuhw->state, event->hw.config_base);
1032 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1033 
1034 	if (flags & PERF_EF_START)
1035 		cpumf_pmu_start(event, PERF_EF_RELOAD);
1036 
1037 	return 0;
1038 }
1039 
cpumf_pmu_del(struct perf_event * event,int flags)1040 static void cpumf_pmu_del(struct perf_event *event, int flags)
1041 {
1042 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1043 	int i;
1044 
1045 	cpumf_pmu_stop(event, PERF_EF_UPDATE);
1046 
1047 	/* Check if any counter in the counter set is still used.  If not used,
1048 	 * change the counter set to the disabled state.  This also clears the
1049 	 * content of all counters in the set.
1050 	 *
1051 	 * When a new perf event has been added but not yet started, this can
1052 	 * clear enable control and resets all counters in a set.  Therefore,
1053 	 * cpumf_pmu_start() always has to reenable a counter set.
1054 	 */
1055 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
1056 		if (!atomic_read(&cpuhw->ctr_set[i]))
1057 			ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
1058 }
1059 
1060 /* Performance monitoring unit for s390x */
1061 static struct pmu cpumf_pmu = {
1062 	.task_ctx_nr  = perf_sw_context,
1063 	.capabilities = PERF_PMU_CAP_NO_INTERRUPT,
1064 	.pmu_enable   = cpumf_pmu_enable,
1065 	.pmu_disable  = cpumf_pmu_disable,
1066 	.event_init   = cpumf_pmu_event_init,
1067 	.add	      = cpumf_pmu_add,
1068 	.del	      = cpumf_pmu_del,
1069 	.start	      = cpumf_pmu_start,
1070 	.stop	      = cpumf_pmu_stop,
1071 	.read	      = cpumf_pmu_read,
1072 };
1073 
1074 static struct cfset_session {		/* CPUs and counter set bit mask */
1075 	struct list_head head;		/* Head of list of active processes */
1076 } cfset_session = {
1077 	.head = LIST_HEAD_INIT(cfset_session.head)
1078 };
1079 
1080 static refcount_t cfset_opencnt = REFCOUNT_INIT(0);	/* Access count */
1081 /*
1082  * Synchronize access to device /dev/hwc. This mutex protects against
1083  * concurrent access to functions cfset_open() and cfset_release().
1084  * Same for CPU hotplug add and remove events triggering
1085  * cpum_cf_online_cpu() and cpum_cf_offline_cpu().
1086  * It also serializes concurrent device ioctl access from multiple
1087  * processes accessing /dev/hwc.
1088  *
1089  * The mutex protects concurrent access to the /dev/hwctr session management
1090  * struct cfset_session and reference counting variable cfset_opencnt.
1091  */
1092 static DEFINE_MUTEX(cfset_ctrset_mutex);
1093 
1094 /*
1095  * CPU hotplug handles only /dev/hwctr device.
1096  * For perf_event_open() the CPU hotplug handling is done on kernel common
1097  * code:
1098  * - CPU add: Nothing is done since a file descriptor can not be created
1099  *   and returned to the user.
1100  * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
1101  *   pmu_delete(). The event itself is removed when the file descriptor is
1102  *   closed.
1103  */
1104 static int cfset_online_cpu(unsigned int cpu);
1105 
cpum_cf_online_cpu(unsigned int cpu)1106 static int cpum_cf_online_cpu(unsigned int cpu)
1107 {
1108 	int rc = 0;
1109 
1110 	/*
1111 	 * Ignore notification for perf_event_open().
1112 	 * Handle only /dev/hwctr device sessions.
1113 	 */
1114 	mutex_lock(&cfset_ctrset_mutex);
1115 	if (refcount_read(&cfset_opencnt)) {
1116 		rc = cpum_cf_alloc_cpu(cpu);
1117 		if (!rc)
1118 			cfset_online_cpu(cpu);
1119 	}
1120 	mutex_unlock(&cfset_ctrset_mutex);
1121 	return rc;
1122 }
1123 
1124 static int cfset_offline_cpu(unsigned int cpu);
1125 
cpum_cf_offline_cpu(unsigned int cpu)1126 static int cpum_cf_offline_cpu(unsigned int cpu)
1127 {
1128 	/*
1129 	 * During task exit processing of grouped perf events triggered by CPU
1130 	 * hotplug processing, pmu_disable() is called as part of perf context
1131 	 * removal process. Therefore do not trigger event removal now for
1132 	 * perf_event_open() created events. Perf common code triggers event
1133 	 * destruction when the event file descriptor is closed.
1134 	 *
1135 	 * Handle only /dev/hwctr device sessions.
1136 	 */
1137 	mutex_lock(&cfset_ctrset_mutex);
1138 	if (refcount_read(&cfset_opencnt)) {
1139 		cfset_offline_cpu(cpu);
1140 		cpum_cf_free_cpu(cpu);
1141 	}
1142 	mutex_unlock(&cfset_ctrset_mutex);
1143 	return 0;
1144 }
1145 
1146 /* Return true if store counter set multiple instruction is available */
stccm_avail(void)1147 static inline int stccm_avail(void)
1148 {
1149 	return test_facility(142);
1150 }
1151 
1152 /* CPU-measurement alerts for the counter facility */
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1153 static void cpumf_measurement_alert(struct ext_code ext_code,
1154 				    unsigned int alert, unsigned long unused)
1155 {
1156 	struct cpu_cf_events *cpuhw;
1157 
1158 	if (!(alert & CPU_MF_INT_CF_MASK))
1159 		return;
1160 
1161 	inc_irq_stat(IRQEXT_CMC);
1162 
1163 	/*
1164 	 * Measurement alerts are shared and might happen when the PMU
1165 	 * is not reserved.  Ignore these alerts in this case.
1166 	 */
1167 	cpuhw = this_cpu_cfhw();
1168 	if (!cpuhw)
1169 		return;
1170 
1171 	/* counter authorization change alert */
1172 	if (alert & CPU_MF_INT_CF_CACA)
1173 		qctri(&cpumf_ctr_info);
1174 
1175 	/* loss of counter data alert */
1176 	if (alert & CPU_MF_INT_CF_LCDA)
1177 		pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
1178 
1179 	/* loss of MT counter data alert */
1180 	if (alert & CPU_MF_INT_CF_MTDA)
1181 		pr_warn("CPU[%i] MT counter data was lost\n",
1182 			smp_processor_id());
1183 }
1184 
1185 static int cfset_init(void);
cpumf_pmu_init(void)1186 static int __init cpumf_pmu_init(void)
1187 {
1188 	int rc;
1189 
1190 	/* Extract counter measurement facility information */
1191 	if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
1192 		return -ENODEV;
1193 
1194 	/* Determine and store counter set sizes for later reference */
1195 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1196 		cpum_cf_make_setsize(rc);
1197 
1198 	/*
1199 	 * Clear bit 15 of cr0 to unauthorize problem-state to
1200 	 * extract measurement counters
1201 	 */
1202 	ctl_clear_bit(0, 48);
1203 
1204 	/* register handler for measurement-alert interruptions */
1205 	rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1206 				   cpumf_measurement_alert);
1207 	if (rc) {
1208 		pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
1209 		return rc;
1210 	}
1211 
1212 	/* Setup s390dbf facility */
1213 	cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
1214 	if (!cf_dbg) {
1215 		pr_err("Registration of s390dbf(cpum_cf) failed\n");
1216 		rc = -ENOMEM;
1217 		goto out1;
1218 	}
1219 	debug_register_view(cf_dbg, &debug_sprintf_view);
1220 
1221 	cpumf_pmu.attr_groups = cpumf_cf_event_group();
1222 	rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
1223 	if (rc) {
1224 		pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
1225 		goto out2;
1226 	} else if (stccm_avail()) {	/* Setup counter set device */
1227 		cfset_init();
1228 	}
1229 
1230 	rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
1231 			       "perf/s390/cf:online",
1232 			       cpum_cf_online_cpu, cpum_cf_offline_cpu);
1233 	return rc;
1234 
1235 out2:
1236 	debug_unregister_view(cf_dbg, &debug_sprintf_view);
1237 	debug_unregister(cf_dbg);
1238 out1:
1239 	unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
1240 	return rc;
1241 }
1242 
1243 /* Support for the CPU Measurement Facility counter set extraction using
1244  * device /dev/hwctr. This allows user space programs to extract complete
1245  * counter set via normal file operations.
1246  */
1247 
1248 struct cfset_call_on_cpu_parm {		/* Parm struct for smp_call_on_cpu */
1249 	unsigned int sets;		/* Counter set bit mask */
1250 	atomic_t cpus_ack;		/* # CPUs successfully executed func */
1251 };
1252 
1253 struct cfset_request {			/* CPUs and counter set bit mask */
1254 	unsigned long ctrset;		/* Bit mask of counter set to read */
1255 	cpumask_t mask;			/* CPU mask to read from */
1256 	struct list_head node;		/* Chain to cfset_session.head */
1257 };
1258 
cfset_session_init(void)1259 static void cfset_session_init(void)
1260 {
1261 	INIT_LIST_HEAD(&cfset_session.head);
1262 }
1263 
1264 /* Remove current request from global bookkeeping. Maintain a counter set bit
1265  * mask on a per CPU basis.
1266  * Done in process context under mutex protection.
1267  */
cfset_session_del(struct cfset_request * p)1268 static void cfset_session_del(struct cfset_request *p)
1269 {
1270 	list_del(&p->node);
1271 }
1272 
1273 /* Add current request to global bookkeeping. Maintain a counter set bit mask
1274  * on a per CPU basis.
1275  * Done in process context under mutex protection.
1276  */
cfset_session_add(struct cfset_request * p)1277 static void cfset_session_add(struct cfset_request *p)
1278 {
1279 	list_add(&p->node, &cfset_session.head);
1280 }
1281 
1282 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
1283  * path is currently used.
1284  * The cpu_cf_events::dev_state is used to denote counter sets in use by this
1285  * interface. It is always or'ed in. If this interface is not active, its
1286  * value is zero and no additional counter sets will be included.
1287  *
1288  * The cpu_cf_events::state is used by the perf_event_open SVC and remains
1289  * unchanged.
1290  *
1291  * perf_pmu_enable() and perf_pmu_enable() and its call backs
1292  * cpumf_pmu_enable() and  cpumf_pmu_disable() are called by the
1293  * performance measurement subsystem to enable per process
1294  * CPU Measurement counter facility.
1295  * The XXX_enable() and XXX_disable functions are used to turn off
1296  * x86 performance monitoring interrupt (PMI) during scheduling.
1297  * s390 uses these calls to temporarily stop and resume the active CPU
1298  * counters sets during scheduling.
1299  *
1300  * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
1301  * device access.  The perf_event_open() SVC interface makes a lot of effort
1302  * to only run the counters while the calling process is actively scheduled
1303  * to run.
1304  * When /dev/hwctr interface is also used at the same time, the counter sets
1305  * will keep running, even when the process is scheduled off a CPU.
1306  * However this is not a problem and does not lead to wrong counter values
1307  * for the perf_event_open() SVC. The current counter value will be recorded
1308  * during schedule-in. At schedule-out time the current counter value is
1309  * extracted again and the delta is calculated and added to the event.
1310  */
1311 /* Stop all counter sets via ioctl interface */
cfset_ioctl_off(void * parm)1312 static void cfset_ioctl_off(void *parm)
1313 {
1314 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1315 	struct cfset_call_on_cpu_parm *p = parm;
1316 	int rc;
1317 
1318 	/* Check if any counter set used by /dev/hwctr */
1319 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1320 		if ((p->sets & cpumf_ctr_ctl[rc])) {
1321 			if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
1322 				ctr_set_disable(&cpuhw->dev_state,
1323 						cpumf_ctr_ctl[rc]);
1324 				ctr_set_stop(&cpuhw->dev_state,
1325 					     cpumf_ctr_ctl[rc]);
1326 			}
1327 		}
1328 	/* Keep perf_event_open counter sets */
1329 	rc = lcctl(cpuhw->dev_state | cpuhw->state);
1330 	if (rc)
1331 		pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
1332 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1333 	if (!cpuhw->dev_state)
1334 		cpuhw->flags &= ~PMU_F_IN_USE;
1335 }
1336 
1337 /* Start counter sets on particular CPU */
cfset_ioctl_on(void * parm)1338 static void cfset_ioctl_on(void *parm)
1339 {
1340 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1341 	struct cfset_call_on_cpu_parm *p = parm;
1342 	int rc;
1343 
1344 	cpuhw->flags |= PMU_F_IN_USE;
1345 	ctr_set_enable(&cpuhw->dev_state, p->sets);
1346 	ctr_set_start(&cpuhw->dev_state, p->sets);
1347 	for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1348 		if ((p->sets & cpumf_ctr_ctl[rc]))
1349 			atomic_inc(&cpuhw->ctr_set[rc]);
1350 	rc = lcctl(cpuhw->dev_state | cpuhw->state);	/* Start counter sets */
1351 	if (!rc)
1352 		atomic_inc(&p->cpus_ack);
1353 	else
1354 		pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
1355 		       cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
1356 }
1357 
cfset_release_cpu(void * p)1358 static void cfset_release_cpu(void *p)
1359 {
1360 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1361 	int rc;
1362 
1363 	cpuhw->dev_state = 0;
1364 	rc = lcctl(cpuhw->state);	/* Keep perf_event_open counter sets */
1365 	if (rc)
1366 		pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
1367 		       cpuhw->state, S390_HWCTR_DEVICE, rc);
1368 }
1369 
1370 /* This modifies the process CPU mask to adopt it to the currently online
1371  * CPUs. Offline CPUs can not be addresses. This call terminates the access
1372  * and is usually followed by close() or a new iotcl(..., START, ...) which
1373  * creates a new request structure.
1374  */
cfset_all_stop(struct cfset_request * req)1375 static void cfset_all_stop(struct cfset_request *req)
1376 {
1377 	struct cfset_call_on_cpu_parm p = {
1378 		.sets = req->ctrset,
1379 	};
1380 
1381 	cpumask_and(&req->mask, &req->mask, cpu_online_mask);
1382 	on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
1383 }
1384 
1385 /* Release function is also called when application gets terminated without
1386  * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
1387  */
cfset_release(struct inode * inode,struct file * file)1388 static int cfset_release(struct inode *inode, struct file *file)
1389 {
1390 	mutex_lock(&cfset_ctrset_mutex);
1391 	/* Open followed by close/exit has no private_data */
1392 	if (file->private_data) {
1393 		cfset_all_stop(file->private_data);
1394 		cfset_session_del(file->private_data);
1395 		kfree(file->private_data);
1396 		file->private_data = NULL;
1397 	}
1398 	if (refcount_dec_and_test(&cfset_opencnt)) {	/* Last close */
1399 		on_each_cpu(cfset_release_cpu, NULL, 1);
1400 		cpum_cf_free(-1);
1401 	}
1402 	mutex_unlock(&cfset_ctrset_mutex);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Open via /dev/hwctr device. Allocate all per CPU resources on the first
1408  * open of the device. The last close releases all per CPU resources.
1409  * Parallel perf_event_open system calls also use per CPU resources.
1410  * These invocations are handled via reference counting on the per CPU data
1411  * structures.
1412  */
cfset_open(struct inode * inode,struct file * file)1413 static int cfset_open(struct inode *inode, struct file *file)
1414 {
1415 	int rc = 0;
1416 
1417 	if (!perfmon_capable())
1418 		return -EPERM;
1419 	file->private_data = NULL;
1420 
1421 	mutex_lock(&cfset_ctrset_mutex);
1422 	if (!refcount_inc_not_zero(&cfset_opencnt)) {	/* First open */
1423 		rc = cpum_cf_alloc(-1);
1424 		if (!rc) {
1425 			cfset_session_init();
1426 			refcount_set(&cfset_opencnt, 1);
1427 		}
1428 	}
1429 	mutex_unlock(&cfset_ctrset_mutex);
1430 
1431 	/* nonseekable_open() never fails */
1432 	return rc ?: nonseekable_open(inode, file);
1433 }
1434 
cfset_all_start(struct cfset_request * req)1435 static int cfset_all_start(struct cfset_request *req)
1436 {
1437 	struct cfset_call_on_cpu_parm p = {
1438 		.sets = req->ctrset,
1439 		.cpus_ack = ATOMIC_INIT(0),
1440 	};
1441 	cpumask_var_t mask;
1442 	int rc = 0;
1443 
1444 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1445 		return -ENOMEM;
1446 	cpumask_and(mask, &req->mask, cpu_online_mask);
1447 	on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
1448 	if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
1449 		on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
1450 		rc = -EIO;
1451 	}
1452 	free_cpumask_var(mask);
1453 	return rc;
1454 }
1455 
1456 /* Return the maximum required space for all possible CPUs in case one
1457  * CPU will be onlined during the START, READ, STOP cycles.
1458  * To find out the size of the counter sets, any one CPU will do. They
1459  * all have the same counter sets.
1460  */
cfset_needspace(unsigned int sets)1461 static size_t cfset_needspace(unsigned int sets)
1462 {
1463 	size_t bytes = 0;
1464 	int i;
1465 
1466 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1467 		if (!(sets & cpumf_ctr_ctl[i]))
1468 			continue;
1469 		bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
1470 			 sizeof(((struct s390_ctrset_setdata *)0)->set) +
1471 			 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
1472 	}
1473 	bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
1474 		(bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
1475 		     sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
1476 	return bytes;
1477 }
1478 
cfset_all_copy(unsigned long arg,cpumask_t * mask)1479 static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
1480 {
1481 	struct s390_ctrset_read __user *ctrset_read;
1482 	unsigned int cpu, cpus, rc = 0;
1483 	void __user *uptr;
1484 
1485 	ctrset_read = (struct s390_ctrset_read __user *)arg;
1486 	uptr = ctrset_read->data;
1487 	for_each_cpu(cpu, mask) {
1488 		struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
1489 		struct s390_ctrset_cpudata __user *ctrset_cpudata;
1490 
1491 		ctrset_cpudata = uptr;
1492 		rc  = put_user(cpu, &ctrset_cpudata->cpu_nr);
1493 		rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
1494 		rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
1495 				   cpuhw->used);
1496 		if (rc) {
1497 			rc = -EFAULT;
1498 			goto out;
1499 		}
1500 		uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
1501 		cond_resched();
1502 	}
1503 	cpus = cpumask_weight(mask);
1504 	if (put_user(cpus, &ctrset_read->no_cpus))
1505 		rc = -EFAULT;
1506 out:
1507 	return rc;
1508 }
1509 
cfset_cpuset_read(struct s390_ctrset_setdata * p,int ctrset,int ctrset_size,size_t room)1510 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
1511 				int ctrset_size, size_t room)
1512 {
1513 	size_t need = 0;
1514 	int rc = -1;
1515 
1516 	need = sizeof(*p) + sizeof(u64) * ctrset_size;
1517 	if (need <= room) {
1518 		p->set = cpumf_ctr_ctl[ctrset];
1519 		p->no_cnts = ctrset_size;
1520 		rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
1521 		if (rc == 3)		/* Nothing stored */
1522 			need = 0;
1523 	}
1524 	return need;
1525 }
1526 
1527 /* Read all counter sets. */
cfset_cpu_read(void * parm)1528 static void cfset_cpu_read(void *parm)
1529 {
1530 	struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1531 	struct cfset_call_on_cpu_parm *p = parm;
1532 	int set, set_size;
1533 	size_t space;
1534 
1535 	/* No data saved yet */
1536 	cpuhw->used = 0;
1537 	cpuhw->sets = 0;
1538 	memset(cpuhw->data, 0, sizeof(cpuhw->data));
1539 
1540 	/* Scan the counter sets */
1541 	for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
1542 		struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
1543 						 cpuhw->used;
1544 
1545 		if (!(p->sets & cpumf_ctr_ctl[set]))
1546 			continue;	/* Counter set not in list */
1547 		set_size = cpum_cf_read_setsize(set);
1548 		space = sizeof(cpuhw->data) - cpuhw->used;
1549 		space = cfset_cpuset_read(sp, set, set_size, space);
1550 		if (space) {
1551 			cpuhw->used += space;
1552 			cpuhw->sets += 1;
1553 		}
1554 	}
1555 }
1556 
cfset_all_read(unsigned long arg,struct cfset_request * req)1557 static int cfset_all_read(unsigned long arg, struct cfset_request *req)
1558 {
1559 	struct cfset_call_on_cpu_parm p;
1560 	cpumask_var_t mask;
1561 	int rc;
1562 
1563 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1564 		return -ENOMEM;
1565 
1566 	p.sets = req->ctrset;
1567 	cpumask_and(mask, &req->mask, cpu_online_mask);
1568 	on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
1569 	rc = cfset_all_copy(arg, mask);
1570 	free_cpumask_var(mask);
1571 	return rc;
1572 }
1573 
cfset_ioctl_read(unsigned long arg,struct cfset_request * req)1574 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
1575 {
1576 	int ret = -ENODATA;
1577 
1578 	if (req && req->ctrset)
1579 		ret = cfset_all_read(arg, req);
1580 	return ret;
1581 }
1582 
cfset_ioctl_stop(struct file * file)1583 static long cfset_ioctl_stop(struct file *file)
1584 {
1585 	struct cfset_request *req = file->private_data;
1586 	int ret = -ENXIO;
1587 
1588 	if (req) {
1589 		cfset_all_stop(req);
1590 		cfset_session_del(req);
1591 		kfree(req);
1592 		file->private_data = NULL;
1593 		ret = 0;
1594 	}
1595 	return ret;
1596 }
1597 
cfset_ioctl_start(unsigned long arg,struct file * file)1598 static long cfset_ioctl_start(unsigned long arg, struct file *file)
1599 {
1600 	struct s390_ctrset_start __user *ustart;
1601 	struct s390_ctrset_start start;
1602 	struct cfset_request *preq;
1603 	void __user *umask;
1604 	unsigned int len;
1605 	int ret = 0;
1606 	size_t need;
1607 
1608 	if (file->private_data)
1609 		return -EBUSY;
1610 	ustart = (struct s390_ctrset_start __user *)arg;
1611 	if (copy_from_user(&start, ustart, sizeof(start)))
1612 		return -EFAULT;
1613 	if (start.version != S390_HWCTR_START_VERSION)
1614 		return -EINVAL;
1615 	if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
1616 				   cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
1617 				   cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
1618 				   cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
1619 				   cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
1620 		return -EINVAL;		/* Invalid counter set */
1621 	if (!start.counter_sets)
1622 		return -EINVAL;		/* No counter set at all? */
1623 
1624 	preq = kzalloc(sizeof(*preq), GFP_KERNEL);
1625 	if (!preq)
1626 		return -ENOMEM;
1627 	cpumask_clear(&preq->mask);
1628 	len = min_t(u64, start.cpumask_len, cpumask_size());
1629 	umask = (void __user *)start.cpumask;
1630 	if (copy_from_user(&preq->mask, umask, len)) {
1631 		kfree(preq);
1632 		return -EFAULT;
1633 	}
1634 	if (cpumask_empty(&preq->mask)) {
1635 		kfree(preq);
1636 		return -EINVAL;
1637 	}
1638 	need = cfset_needspace(start.counter_sets);
1639 	if (put_user(need, &ustart->data_bytes)) {
1640 		kfree(preq);
1641 		return -EFAULT;
1642 	}
1643 	preq->ctrset = start.counter_sets;
1644 	ret = cfset_all_start(preq);
1645 	if (!ret) {
1646 		cfset_session_add(preq);
1647 		file->private_data = preq;
1648 	} else {
1649 		kfree(preq);
1650 	}
1651 	return ret;
1652 }
1653 
1654 /* Entry point to the /dev/hwctr device interface.
1655  * The ioctl system call supports three subcommands:
1656  * S390_HWCTR_START: Start the specified counter sets on a CPU list. The
1657  *    counter set keeps running until explicitly stopped. Returns the number
1658  *    of bytes needed to store the counter values. If another S390_HWCTR_START
1659  *    ioctl subcommand is called without a previous S390_HWCTR_STOP stop
1660  *    command on the same file descriptor, -EBUSY is returned.
1661  * S390_HWCTR_READ: Read the counter set values from specified CPU list given
1662  *    with the S390_HWCTR_START command.
1663  * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
1664  *    previous S390_HWCTR_START subcommand.
1665  */
cfset_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1666 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1667 {
1668 	int ret;
1669 
1670 	cpus_read_lock();
1671 	mutex_lock(&cfset_ctrset_mutex);
1672 	switch (cmd) {
1673 	case S390_HWCTR_START:
1674 		ret = cfset_ioctl_start(arg, file);
1675 		break;
1676 	case S390_HWCTR_STOP:
1677 		ret = cfset_ioctl_stop(file);
1678 		break;
1679 	case S390_HWCTR_READ:
1680 		ret = cfset_ioctl_read(arg, file->private_data);
1681 		break;
1682 	default:
1683 		ret = -ENOTTY;
1684 		break;
1685 	}
1686 	mutex_unlock(&cfset_ctrset_mutex);
1687 	cpus_read_unlock();
1688 	return ret;
1689 }
1690 
1691 static const struct file_operations cfset_fops = {
1692 	.owner = THIS_MODULE,
1693 	.open = cfset_open,
1694 	.release = cfset_release,
1695 	.unlocked_ioctl	= cfset_ioctl,
1696 	.compat_ioctl = cfset_ioctl,
1697 	.llseek = no_llseek
1698 };
1699 
1700 static struct miscdevice cfset_dev = {
1701 	.name	= S390_HWCTR_DEVICE,
1702 	.minor	= MISC_DYNAMIC_MINOR,
1703 	.fops	= &cfset_fops,
1704 	.mode	= 0666,
1705 };
1706 
1707 /* Hotplug add of a CPU. Scan through all active processes and add
1708  * that CPU to the list of CPUs supplied with ioctl(..., START, ...).
1709  */
cfset_online_cpu(unsigned int cpu)1710 static int cfset_online_cpu(unsigned int cpu)
1711 {
1712 	struct cfset_call_on_cpu_parm p;
1713 	struct cfset_request *rp;
1714 
1715 	if (!list_empty(&cfset_session.head)) {
1716 		list_for_each_entry(rp, &cfset_session.head, node) {
1717 			p.sets = rp->ctrset;
1718 			cfset_ioctl_on(&p);
1719 			cpumask_set_cpu(cpu, &rp->mask);
1720 		}
1721 	}
1722 	return 0;
1723 }
1724 
1725 /* Hotplug remove of a CPU. Scan through all active processes and clear
1726  * that CPU from the list of CPUs supplied with ioctl(..., START, ...).
1727  * Adjust reference counts.
1728  */
cfset_offline_cpu(unsigned int cpu)1729 static int cfset_offline_cpu(unsigned int cpu)
1730 {
1731 	struct cfset_call_on_cpu_parm p;
1732 	struct cfset_request *rp;
1733 
1734 	if (!list_empty(&cfset_session.head)) {
1735 		list_for_each_entry(rp, &cfset_session.head, node) {
1736 			p.sets = rp->ctrset;
1737 			cfset_ioctl_off(&p);
1738 			cpumask_clear_cpu(cpu, &rp->mask);
1739 		}
1740 	}
1741 	return 0;
1742 }
1743 
cfdiag_read(struct perf_event * event)1744 static void cfdiag_read(struct perf_event *event)
1745 {
1746 }
1747 
get_authctrsets(void)1748 static int get_authctrsets(void)
1749 {
1750 	unsigned long auth = 0;
1751 	enum cpumf_ctr_set i;
1752 
1753 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1754 		if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
1755 			auth |= cpumf_ctr_ctl[i];
1756 	}
1757 	return auth;
1758 }
1759 
1760 /* Setup the event. Test for authorized counter sets and only include counter
1761  * sets which are authorized at the time of the setup. Including unauthorized
1762  * counter sets result in specification exception (and panic).
1763  */
cfdiag_event_init2(struct perf_event * event)1764 static int cfdiag_event_init2(struct perf_event *event)
1765 {
1766 	struct perf_event_attr *attr = &event->attr;
1767 	int err = 0;
1768 
1769 	/* Set sample_period to indicate sampling */
1770 	event->hw.config = attr->config;
1771 	event->hw.sample_period = attr->sample_period;
1772 	local64_set(&event->hw.period_left, event->hw.sample_period);
1773 	local64_set(&event->count, 0);
1774 	event->hw.last_period = event->hw.sample_period;
1775 
1776 	/* Add all authorized counter sets to config_base. The
1777 	 * the hardware init function is either called per-cpu or just once
1778 	 * for all CPUS (event->cpu == -1).  This depends on the whether
1779 	 * counting is started for all CPUs or on a per workload base where
1780 	 * the perf event moves from one CPU to another CPU.
1781 	 * Checking the authorization on any CPU is fine as the hardware
1782 	 * applies the same authorization settings to all CPUs.
1783 	 */
1784 	event->hw.config_base = get_authctrsets();
1785 
1786 	/* No authorized counter sets, nothing to count/sample */
1787 	if (!event->hw.config_base)
1788 		err = -EINVAL;
1789 
1790 	return err;
1791 }
1792 
cfdiag_event_init(struct perf_event * event)1793 static int cfdiag_event_init(struct perf_event *event)
1794 {
1795 	struct perf_event_attr *attr = &event->attr;
1796 	int err = -ENOENT;
1797 
1798 	if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
1799 	    event->attr.type != event->pmu->type)
1800 		goto out;
1801 
1802 	/* Raw events are used to access counters directly,
1803 	 * hence do not permit excludes.
1804 	 * This event is useless without PERF_SAMPLE_RAW to return counter set
1805 	 * values as raw data.
1806 	 */
1807 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
1808 	    !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
1809 		err = -EOPNOTSUPP;
1810 		goto out;
1811 	}
1812 
1813 	/* Initialize for using the CPU-measurement counter facility */
1814 	if (cpum_cf_alloc(event->cpu))
1815 		return -ENOMEM;
1816 	event->destroy = hw_perf_event_destroy;
1817 
1818 	err = cfdiag_event_init2(event);
1819 	if (unlikely(err))
1820 		event->destroy(event);
1821 out:
1822 	return err;
1823 }
1824 
1825 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
1826  * to collect the complete counter sets for a scheduled process. Target
1827  * are complete counter sets attached as raw data to the artificial event.
1828  * This results in complete counter sets available when a process is
1829  * scheduled. Contains the delta of every counter while the process was
1830  * running.
1831  */
1832 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
1833 
1834 static struct attribute *cfdiag_events_attr[] = {
1835 	CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
1836 	NULL,
1837 };
1838 
1839 PMU_FORMAT_ATTR(event, "config:0-63");
1840 
1841 static struct attribute *cfdiag_format_attr[] = {
1842 	&format_attr_event.attr,
1843 	NULL,
1844 };
1845 
1846 static struct attribute_group cfdiag_events_group = {
1847 	.name = "events",
1848 	.attrs = cfdiag_events_attr,
1849 };
1850 static struct attribute_group cfdiag_format_group = {
1851 	.name = "format",
1852 	.attrs = cfdiag_format_attr,
1853 };
1854 static const struct attribute_group *cfdiag_attr_groups[] = {
1855 	&cfdiag_events_group,
1856 	&cfdiag_format_group,
1857 	NULL,
1858 };
1859 
1860 /* Performance monitoring unit for event CF_DIAG. Since this event
1861  * is also started and stopped via the perf_event_open() system call, use
1862  * the same event enable/disable call back functions. They do not
1863  * have a pointer to the perf_event strcture as first parameter.
1864  *
1865  * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
1866  * Reuse them and distinguish the event (always first parameter) via
1867  * 'config' member.
1868  */
1869 static struct pmu cf_diag = {
1870 	.task_ctx_nr  = perf_sw_context,
1871 	.event_init   = cfdiag_event_init,
1872 	.pmu_enable   = cpumf_pmu_enable,
1873 	.pmu_disable  = cpumf_pmu_disable,
1874 	.add	      = cpumf_pmu_add,
1875 	.del	      = cpumf_pmu_del,
1876 	.start	      = cpumf_pmu_start,
1877 	.stop	      = cpumf_pmu_stop,
1878 	.read	      = cfdiag_read,
1879 
1880 	.attr_groups  = cfdiag_attr_groups
1881 };
1882 
1883 /* Calculate memory needed to store all counter sets together with header and
1884  * trailer data. This is independent of the counter set authorization which
1885  * can vary depending on the configuration.
1886  */
cfdiag_maxsize(struct cpumf_ctr_info * info)1887 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
1888 {
1889 	size_t max_size = sizeof(struct cf_trailer_entry);
1890 	enum cpumf_ctr_set i;
1891 
1892 	for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1893 		size_t size = cpum_cf_read_setsize(i);
1894 
1895 		if (size)
1896 			max_size += size * sizeof(u64) +
1897 				    sizeof(struct cf_ctrset_entry);
1898 	}
1899 	return max_size;
1900 }
1901 
1902 /* Get the CPU speed, try sampling facility first and CPU attributes second. */
cfdiag_get_cpu_speed(void)1903 static void cfdiag_get_cpu_speed(void)
1904 {
1905 	unsigned long mhz;
1906 
1907 	if (cpum_sf_avail()) {			/* Sampling facility first */
1908 		struct hws_qsi_info_block si;
1909 
1910 		memset(&si, 0, sizeof(si));
1911 		if (!qsi(&si)) {
1912 			cfdiag_cpu_speed = si.cpu_speed;
1913 			return;
1914 		}
1915 	}
1916 
1917 	/* Fallback: CPU speed extract static part. Used in case
1918 	 * CPU Measurement Sampling Facility is turned off.
1919 	 */
1920 	mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
1921 	if (mhz != -1UL)
1922 		cfdiag_cpu_speed = mhz & 0xffffffff;
1923 }
1924 
cfset_init(void)1925 static int cfset_init(void)
1926 {
1927 	size_t need;
1928 	int rc;
1929 
1930 	cfdiag_get_cpu_speed();
1931 	/* Make sure the counter set data fits into predefined buffer. */
1932 	need = cfdiag_maxsize(&cpumf_ctr_info);
1933 	if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
1934 		pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
1935 		       need);
1936 		return -ENOMEM;
1937 	}
1938 
1939 	rc = misc_register(&cfset_dev);
1940 	if (rc) {
1941 		pr_err("Registration of /dev/%s failed rc=%i\n",
1942 		       cfset_dev.name, rc);
1943 		goto out;
1944 	}
1945 
1946 	rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
1947 	if (rc) {
1948 		misc_deregister(&cfset_dev);
1949 		pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
1950 		       rc);
1951 	}
1952 out:
1953 	return rc;
1954 }
1955 
1956 device_initcall(cpumf_pmu_init);
1957