1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* for crc32 */
27
28 #include "hw/irq.h"
29 #include "hw/net/cadence_gem.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/registerfields.h"
32 #include "migration/vmstate.h"
33 #include "qapi/error.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "sysemu/dma.h"
37 #include "net/checksum.h"
38 #include "net/eth.h"
39
40 #define CADENCE_GEM_ERR_DEBUG 0
41 #define DB_PRINT(...) do {\
42 if (CADENCE_GEM_ERR_DEBUG) { \
43 qemu_log(": %s: ", __func__); \
44 qemu_log(__VA_ARGS__); \
45 } \
46 } while (0)
47
48 REG32(NWCTRL, 0x0) /* Network Control reg */
49 FIELD(NWCTRL, LOOPBACK , 0, 1)
50 FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1)
51 FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1)
52 FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1)
53 FIELD(NWCTRL, MAN_PORT_EN , 4, 1)
54 FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1)
55 FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1)
56 FIELD(NWCTRL, STATS_WRITE_EN, 7, 1)
57 FIELD(NWCTRL, BACK_PRESSURE, 8, 1)
58 FIELD(NWCTRL, TRANSMIT_START , 9, 1)
59 FIELD(NWCTRL, TRANSMIT_HALT, 10, 1)
60 FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1)
61 FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1)
62 FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1)
63 FIELD(NWCTRL, STATS_READ_SNAP, 14, 1)
64 FIELD(NWCTRL, STORE_RX_TS, 15, 1)
65 FIELD(NWCTRL, PFC_ENABLE, 16, 1)
66 FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1)
67 FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1)
68 FIELD(NWCTRL, TX_LPI_EN, 19, 1)
69 FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1)
70 FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1)
71 FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1)
72 FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1)
73 FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1)
74 FIELD(NWCTRL, PFC_CTRL , 25, 1)
75 FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1)
76 FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1)
77 FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1)
78 FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1)
79 FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1)
80
81 REG32(NWCFG, 0x4) /* Network Config reg */
82 FIELD(NWCFG, SPEED, 0, 1)
83 FIELD(NWCFG, FULL_DUPLEX, 1, 1)
84 FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1)
85 FIELD(NWCFG, JUMBO_FRAMES, 3, 1)
86 FIELD(NWCFG, PROMISC, 4, 1)
87 FIELD(NWCFG, NO_BROADCAST, 5, 1)
88 FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1)
89 FIELD(NWCFG, UNICAST_HASH_EN, 7, 1)
90 FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1)
91 FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1)
92 FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1)
93 FIELD(NWCFG, PCS_SELECT, 11, 1)
94 FIELD(NWCFG, RETRY_TEST, 12, 1)
95 FIELD(NWCFG, PAUSE_ENABLE, 13, 1)
96 FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2)
97 FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1)
98 FIELD(NWCFG, FCS_REMOVE, 17, 1)
99 FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3)
100 FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2)
101 FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1)
102 FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1)
103 FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1)
104 FIELD(NWCFG, IGNORE_RX_FCS, 26, 1)
105 FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1)
106 FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1)
107 FIELD(NWCFG, NSP_ACCEPT, 29, 1)
108 FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1)
109 FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1)
110
111 REG32(NWSTATUS, 0x8) /* Network Status reg */
112 REG32(USERIO, 0xc) /* User IO reg */
113
114 REG32(DMACFG, 0x10) /* DMA Control reg */
115 FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1)
116 FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1)
117 FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1)
118 FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1)
119 FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1)
120 FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1)
121 FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1)
122 FIELD(DMACFG, RX_BUF_SIZE, 16, 8)
123 FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1)
124 FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1)
125 FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1)
126 FIELD(DMACFG, TX_PBUF_SIZE, 10, 1)
127 FIELD(DMACFG, RX_PBUF_SIZE, 8, 2)
128 FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1)
129 FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1)
130 FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1)
131 FIELD(DMACFG, AMBA_BURST_LEN , 0, 5)
132 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
133
134 REG32(TXSTATUS, 0x14) /* TX Status reg */
135 FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1)
136 FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1)
137 FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1)
138 FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1)
139 FIELD(TXSTATUS, RESP_NOT_OK, 8, 1)
140 FIELD(TXSTATUS, LATE_COLLISION, 7, 1)
141 FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1)
142 FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1)
143 FIELD(TXSTATUS, AMBA_ERROR, 4, 1)
144 FIELD(TXSTATUS, TRANSMIT_GO, 3, 1)
145 FIELD(TXSTATUS, RETRY_LIMIT, 2, 1)
146 FIELD(TXSTATUS, COLLISION, 1, 1)
147 FIELD(TXSTATUS, USED_BIT_READ, 0, 1)
148
149 REG32(RXQBASE, 0x18) /* RX Q Base address reg */
150 REG32(TXQBASE, 0x1c) /* TX Q Base address reg */
151 REG32(RXSTATUS, 0x20) /* RX Status reg */
152 FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1)
153 FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1)
154 FIELD(RXSTATUS, RESP_NOT_OK, 3, 1)
155 FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1)
156 FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1)
157 FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1)
158
159 REG32(ISR, 0x24) /* Interrupt Status reg */
160 FIELD(ISR, TX_LOCKUP, 31, 1)
161 FIELD(ISR, RX_LOCKUP, 30, 1)
162 FIELD(ISR, TSU_TIMER, 29, 1)
163 FIELD(ISR, WOL, 28, 1)
164 FIELD(ISR, RECV_LPI, 27, 1)
165 FIELD(ISR, TSU_SEC_INCR, 26, 1)
166 FIELD(ISR, PTP_PDELAY_RESP_XMIT, 25, 1)
167 FIELD(ISR, PTP_PDELAY_REQ_XMIT, 24, 1)
168 FIELD(ISR, PTP_PDELAY_RESP_RECV, 23, 1)
169 FIELD(ISR, PTP_PDELAY_REQ_RECV, 22, 1)
170 FIELD(ISR, PTP_SYNC_XMIT, 21, 1)
171 FIELD(ISR, PTP_DELAY_REQ_XMIT, 20, 1)
172 FIELD(ISR, PTP_SYNC_RECV, 19, 1)
173 FIELD(ISR, PTP_DELAY_REQ_RECV, 18, 1)
174 FIELD(ISR, PCS_LP_PAGE_RECV, 17, 1)
175 FIELD(ISR, PCS_AN_COMPLETE, 16, 1)
176 FIELD(ISR, EXT_IRQ, 15, 1)
177 FIELD(ISR, PAUSE_FRAME_XMIT, 14, 1)
178 FIELD(ISR, PAUSE_TIME_ELAPSED, 13, 1)
179 FIELD(ISR, PAUSE_FRAME_RECV, 12, 1)
180 FIELD(ISR, RESP_NOT_OK, 11, 1)
181 FIELD(ISR, RECV_OVERRUN, 10, 1)
182 FIELD(ISR, LINK_CHANGE, 9, 1)
183 FIELD(ISR, USXGMII_INT, 8, 1)
184 FIELD(ISR, XMIT_COMPLETE, 7, 1)
185 FIELD(ISR, AMBA_ERROR, 6, 1)
186 FIELD(ISR, RETRY_EXCEEDED, 5, 1)
187 FIELD(ISR, XMIT_UNDER_RUN, 4, 1)
188 FIELD(ISR, TX_USED, 3, 1)
189 FIELD(ISR, RX_USED, 2, 1)
190 FIELD(ISR, RECV_COMPLETE, 1, 1)
191 FIELD(ISR, MGNT_FRAME_SENT, 0, 1)
192 REG32(IER, 0x28) /* Interrupt Enable reg */
193 REG32(IDR, 0x2c) /* Interrupt Disable reg */
194 REG32(IMR, 0x30) /* Interrupt Mask reg */
195
196 REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */
197 FIELD(PHYMNTNC, DATA, 0, 16)
198 FIELD(PHYMNTNC, REG_ADDR, 18, 5)
199 FIELD(PHYMNTNC, PHY_ADDR, 23, 5)
200 FIELD(PHYMNTNC, OP, 28, 2)
201 FIELD(PHYMNTNC, ST, 30, 2)
202 #define MDIO_OP_READ 0x2
203 #define MDIO_OP_WRITE 0x1
204
205 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */
206 REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */
207 REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */
208 REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */
209 REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */
210 REG32(HASHLO, 0x80) /* Hash Low address reg */
211 REG32(HASHHI, 0x84) /* Hash High address reg */
212 REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */
213 REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */
214 REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */
215 REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */
216 REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */
217 REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */
218 REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */
219 REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */
220 REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */
221 REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */
222 REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */
223 REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */
224 REG32(WOLAN, 0xb8) /* Wake on LAN reg */
225 REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */
226 REG32(SVLAN, 0xc0) /* Stacked VLAN reg */
227 REG32(MODID, 0xfc) /* Module ID reg */
228 REG32(OCTTXLO, 0x100) /* Octets transmitted Low reg */
229 REG32(OCTTXHI, 0x104) /* Octets transmitted High reg */
230 REG32(TXCNT, 0x108) /* Error-free Frames transmitted */
231 REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */
232 REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */
233 REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */
234 REG32(TX64CNT, 0x118) /* Error-free 64 TX */
235 REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */
236 REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */
237 REG32(TX256CNT, 0x124) /* Error-free 256-511 */
238 REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */
239 REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */
240 REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */
241 REG32(TXURUNCNT, 0x134) /* TX under run error counter */
242 REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */
243 REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */
244 REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */
245 REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */
246 REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */
247 REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */
248 REG32(OCTRXLO, 0x150) /* Octets Received register Low */
249 REG32(OCTRXHI, 0x154) /* Octets Received register High */
250 REG32(RXCNT, 0x158) /* Error-free Frames Received */
251 REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */
252 REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */
253 REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */
254 REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */
255 REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */
256 REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */
257 REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */
258 REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */
259 REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */
260 REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */
261 REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */
262 REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */
263 REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */
264 REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */
265 REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */
266 REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */
267 REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */
268 REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */
269 REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */
270 REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */
271 REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */
272 REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */
273
274 REG32(1588S, 0x1d0) /* 1588 Timer Seconds */
275 REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */
276 REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */
277 REG32(1588INC, 0x1dc) /* 1588 Timer Increment */
278 REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */
279 REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */
280 REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */
281 REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */
282 REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */
283 REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */
284 REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */
285 REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */
286
287 /* Design Configuration Registers */
288 REG32(DESCONF, 0x280)
289 REG32(DESCONF2, 0x284)
290 REG32(DESCONF3, 0x288)
291 REG32(DESCONF4, 0x28c)
292 REG32(DESCONF5, 0x290)
293 REG32(DESCONF6, 0x294)
294 FIELD(DESCONF6, DMA_ADDR_64B, 23, 1)
295 REG32(DESCONF7, 0x298)
296
297 REG32(INT_Q1_STATUS, 0x400)
298 REG32(INT_Q1_MASK, 0x640)
299
300 REG32(TRANSMIT_Q1_PTR, 0x440)
301 REG32(TRANSMIT_Q7_PTR, 0x458)
302
303 REG32(RECEIVE_Q1_PTR, 0x480)
304 REG32(RECEIVE_Q7_PTR, 0x498)
305
306 REG32(TBQPH, 0x4c8)
307 REG32(RBQPH, 0x4d4)
308
309 REG32(INT_Q1_ENABLE, 0x600)
310 REG32(INT_Q7_ENABLE, 0x618)
311
312 REG32(INT_Q1_DISABLE, 0x620)
313 REG32(INT_Q7_DISABLE, 0x638)
314
315 REG32(SCREENING_TYPE1_REG0, 0x500)
316 FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4)
317 FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8)
318 FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16)
319 FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1)
320 FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1)
321 FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1)
322
323 REG32(SCREENING_TYPE2_REG0, 0x540)
324 FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4)
325 FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3)
326 FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1)
327 FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3)
328 FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1)
329 FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5)
330 FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1)
331 FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5)
332 FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1)
333 FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5)
334 FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1)
335 FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1)
336
337 REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0)
338
339 REG32(TYPE2_COMPARE_0_WORD_0, 0x700)
340 FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16)
341 FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16)
342
343 REG32(TYPE2_COMPARE_0_WORD_1, 0x704)
344 FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7)
345 FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2)
346 FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1)
347 FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1)
348
349 /*****************************************/
350
351
352
353 /* Marvell PHY definitions */
354 #define BOARD_PHY_ADDRESS 0 /* PHY address we will emulate a device at */
355
356 #define PHY_REG_CONTROL 0
357 #define PHY_REG_STATUS 1
358 #define PHY_REG_PHYID1 2
359 #define PHY_REG_PHYID2 3
360 #define PHY_REG_ANEGADV 4
361 #define PHY_REG_LINKPABIL 5
362 #define PHY_REG_ANEGEXP 6
363 #define PHY_REG_NEXTP 7
364 #define PHY_REG_LINKPNEXTP 8
365 #define PHY_REG_100BTCTRL 9
366 #define PHY_REG_1000BTSTAT 10
367 #define PHY_REG_EXTSTAT 15
368 #define PHY_REG_PHYSPCFC_CTL 16
369 #define PHY_REG_PHYSPCFC_ST 17
370 #define PHY_REG_INT_EN 18
371 #define PHY_REG_INT_ST 19
372 #define PHY_REG_EXT_PHYSPCFC_CTL 20
373 #define PHY_REG_RXERR 21
374 #define PHY_REG_EACD 22
375 #define PHY_REG_LED 24
376 #define PHY_REG_LED_OVRD 25
377 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
378 #define PHY_REG_EXT_PHYSPCFC_ST 27
379 #define PHY_REG_CABLE_DIAG 28
380
381 #define PHY_REG_CONTROL_RST 0x8000
382 #define PHY_REG_CONTROL_LOOP 0x4000
383 #define PHY_REG_CONTROL_ANEG 0x1000
384 #define PHY_REG_CONTROL_ANRESTART 0x0200
385
386 #define PHY_REG_STATUS_LINK 0x0004
387 #define PHY_REG_STATUS_ANEGCMPL 0x0020
388
389 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
390 #define PHY_REG_INT_ST_LINKC 0x0400
391 #define PHY_REG_INT_ST_ENERGY 0x0010
392
393 /***********************************************************************/
394 #define GEM_RX_REJECT (-1)
395 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
396 #define GEM_RX_BROADCAST_ACCEPT (-3)
397 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
398 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
399
400 #define GEM_RX_SAR_ACCEPT 0
401
402 /***********************************************************************/
403
404 #define DESC_1_USED 0x80000000
405 #define DESC_1_LENGTH 0x00001FFF
406
407 #define DESC_1_TX_WRAP 0x40000000
408 #define DESC_1_TX_LAST 0x00008000
409
410 #define DESC_0_RX_WRAP 0x00000002
411 #define DESC_0_RX_OWNERSHIP 0x00000001
412
413 #define R_DESC_1_RX_SAR_SHIFT 25
414 #define R_DESC_1_RX_SAR_LENGTH 2
415 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
416 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
417 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
418 #define R_DESC_1_RX_BROADCAST (1 << 31)
419
420 #define DESC_1_RX_SOF 0x00004000
421 #define DESC_1_RX_EOF 0x00008000
422
423 #define GEM_MODID_VALUE 0x00020118
424
tx_desc_get_buffer(CadenceGEMState * s,uint32_t * desc)425 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
426 {
427 uint64_t ret = desc[0];
428
429 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
430 ret |= (uint64_t)desc[2] << 32;
431 }
432 return ret;
433 }
434
tx_desc_get_used(uint32_t * desc)435 static inline unsigned tx_desc_get_used(uint32_t *desc)
436 {
437 return (desc[1] & DESC_1_USED) ? 1 : 0;
438 }
439
tx_desc_set_used(uint32_t * desc)440 static inline void tx_desc_set_used(uint32_t *desc)
441 {
442 desc[1] |= DESC_1_USED;
443 }
444
tx_desc_get_wrap(uint32_t * desc)445 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
446 {
447 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
448 }
449
tx_desc_get_last(uint32_t * desc)450 static inline unsigned tx_desc_get_last(uint32_t *desc)
451 {
452 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
453 }
454
tx_desc_get_length(uint32_t * desc)455 static inline unsigned tx_desc_get_length(uint32_t *desc)
456 {
457 return desc[1] & DESC_1_LENGTH;
458 }
459
print_gem_tx_desc(uint32_t * desc,uint8_t queue)460 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
461 {
462 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
463 DB_PRINT("bufaddr: 0x%08x\n", *desc);
464 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
465 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
466 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
467 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
468 }
469
rx_desc_get_buffer(CadenceGEMState * s,uint32_t * desc)470 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
471 {
472 uint64_t ret = desc[0] & ~0x3UL;
473
474 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
475 ret |= (uint64_t)desc[2] << 32;
476 }
477 return ret;
478 }
479
gem_get_desc_len(CadenceGEMState * s,bool rx_n_tx)480 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
481 {
482 int ret = 2;
483
484 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
485 ret += 2;
486 }
487 if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK
488 : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) {
489 ret += 2;
490 }
491
492 assert(ret <= DESC_MAX_NUM_WORDS);
493 return ret;
494 }
495
rx_desc_get_wrap(uint32_t * desc)496 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
497 {
498 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
499 }
500
rx_desc_get_ownership(uint32_t * desc)501 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
502 {
503 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
504 }
505
rx_desc_set_ownership(uint32_t * desc)506 static inline void rx_desc_set_ownership(uint32_t *desc)
507 {
508 desc[0] |= DESC_0_RX_OWNERSHIP;
509 }
510
rx_desc_set_sof(uint32_t * desc)511 static inline void rx_desc_set_sof(uint32_t *desc)
512 {
513 desc[1] |= DESC_1_RX_SOF;
514 }
515
rx_desc_clear_control(uint32_t * desc)516 static inline void rx_desc_clear_control(uint32_t *desc)
517 {
518 desc[1] = 0;
519 }
520
rx_desc_set_eof(uint32_t * desc)521 static inline void rx_desc_set_eof(uint32_t *desc)
522 {
523 desc[1] |= DESC_1_RX_EOF;
524 }
525
rx_desc_set_length(uint32_t * desc,unsigned len)526 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
527 {
528 desc[1] &= ~DESC_1_LENGTH;
529 desc[1] |= len;
530 }
531
rx_desc_set_broadcast(uint32_t * desc)532 static inline void rx_desc_set_broadcast(uint32_t *desc)
533 {
534 desc[1] |= R_DESC_1_RX_BROADCAST;
535 }
536
rx_desc_set_unicast_hash(uint32_t * desc)537 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
538 {
539 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
540 }
541
rx_desc_set_multicast_hash(uint32_t * desc)542 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
543 {
544 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
545 }
546
rx_desc_set_sar(uint32_t * desc,int sar_idx)547 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
548 {
549 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
550 sar_idx);
551 desc[1] |= R_DESC_1_RX_SAR_MATCH;
552 }
553
554 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
555 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
556
gem_get_max_buf_len(CadenceGEMState * s,bool tx)557 static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
558 {
559 uint32_t size;
560 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) {
561 size = s->regs[R_JUMBO_MAX_LEN];
562 if (size > s->jumbo_max_len) {
563 size = s->jumbo_max_len;
564 qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
565 " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
566 }
567 } else if (tx) {
568 size = 1518;
569 } else {
570 size = FIELD_EX32(s->regs[R_NWCFG],
571 NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518;
572 }
573 return size;
574 }
575
gem_set_isr(CadenceGEMState * s,int q,uint32_t flag)576 static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
577 {
578 if (q == 0) {
579 s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]);
580 } else {
581 s->regs[R_INT_Q1_STATUS + q - 1] |= flag &
582 ~(s->regs[R_INT_Q1_MASK + q - 1]);
583 }
584 }
585
586 /*
587 * gem_init_register_masks:
588 * One time initialization.
589 * Set masks to identify which register bits have magical clear properties
590 */
gem_init_register_masks(CadenceGEMState * s)591 static void gem_init_register_masks(CadenceGEMState *s)
592 {
593 unsigned int i;
594 /* Mask of register bits which are read only */
595 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
596 s->regs_ro[R_NWCTRL] = 0xFFF80000;
597 s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF;
598 s->regs_ro[R_DMACFG] = 0x8E00F000;
599 s->regs_ro[R_TXSTATUS] = 0xFFFFFE08;
600 s->regs_ro[R_RXQBASE] = 0x00000003;
601 s->regs_ro[R_TXQBASE] = 0x00000003;
602 s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0;
603 s->regs_ro[R_ISR] = 0xFFFFFFFF;
604 s->regs_ro[R_IMR] = 0xFFFFFFFF;
605 s->regs_ro[R_MODID] = 0xFFFFFFFF;
606 for (i = 0; i < s->num_priority_queues; i++) {
607 s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF;
608 s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319;
609 s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319;
610 s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF;
611 }
612
613 /* Mask of register bits which are clear on read */
614 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
615 s->regs_rtc[R_ISR] = 0xFFFFFFFF;
616 for (i = 0; i < s->num_priority_queues; i++) {
617 s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6;
618 }
619
620 /* Mask of register bits which are write 1 to clear */
621 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
622 s->regs_w1c[R_TXSTATUS] = 0x000001F7;
623 s->regs_w1c[R_RXSTATUS] = 0x0000000F;
624
625 /* Mask of register bits which are write only */
626 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
627 s->regs_wo[R_NWCTRL] = 0x00073E60;
628 s->regs_wo[R_IER] = 0x07FFFFFF;
629 s->regs_wo[R_IDR] = 0x07FFFFFF;
630 for (i = 0; i < s->num_priority_queues; i++) {
631 s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6;
632 s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6;
633 }
634 }
635
636 /*
637 * phy_update_link:
638 * Make the emulated PHY link state match the QEMU "interface" state.
639 */
phy_update_link(CadenceGEMState * s)640 static void phy_update_link(CadenceGEMState *s)
641 {
642 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
643
644 /* Autonegotiation status mirrors link status. */
645 if (qemu_get_queue(s->nic)->link_down) {
646 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
647 PHY_REG_STATUS_LINK);
648 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
649 } else {
650 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
651 PHY_REG_STATUS_LINK);
652 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
653 PHY_REG_INT_ST_ANEGCMPL |
654 PHY_REG_INT_ST_ENERGY);
655 }
656 }
657
gem_can_receive(NetClientState * nc)658 static bool gem_can_receive(NetClientState *nc)
659 {
660 CadenceGEMState *s;
661 int i;
662
663 s = qemu_get_nic_opaque(nc);
664
665 /* Do nothing if receive is not enabled. */
666 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) {
667 if (s->can_rx_state != 1) {
668 s->can_rx_state = 1;
669 DB_PRINT("can't receive - no enable\n");
670 }
671 return false;
672 }
673
674 for (i = 0; i < s->num_priority_queues; i++) {
675 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
676 break;
677 }
678 };
679
680 if (i == s->num_priority_queues) {
681 if (s->can_rx_state != 2) {
682 s->can_rx_state = 2;
683 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
684 }
685 return false;
686 }
687
688 if (s->can_rx_state != 0) {
689 s->can_rx_state = 0;
690 DB_PRINT("can receive\n");
691 }
692 return true;
693 }
694
695 /*
696 * gem_update_int_status:
697 * Raise or lower interrupt based on current status.
698 */
gem_update_int_status(CadenceGEMState * s)699 static void gem_update_int_status(CadenceGEMState *s)
700 {
701 int i;
702
703 qemu_set_irq(s->irq[0], !!s->regs[R_ISR]);
704
705 for (i = 1; i < s->num_priority_queues; ++i) {
706 qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]);
707 }
708 }
709
710 /*
711 * gem_receive_updatestats:
712 * Increment receive statistics.
713 */
gem_receive_updatestats(CadenceGEMState * s,const uint8_t * packet,unsigned bytes)714 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
715 unsigned bytes)
716 {
717 uint64_t octets;
718
719 /* Total octets (bytes) received */
720 octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) |
721 s->regs[R_OCTRXHI];
722 octets += bytes;
723 s->regs[R_OCTRXLO] = octets >> 32;
724 s->regs[R_OCTRXHI] = octets;
725
726 /* Error-free Frames received */
727 s->regs[R_RXCNT]++;
728
729 /* Error-free Broadcast Frames counter */
730 if (!memcmp(packet, broadcast_addr, 6)) {
731 s->regs[R_RXBROADCNT]++;
732 }
733
734 /* Error-free Multicast Frames counter */
735 if (packet[0] == 0x01) {
736 s->regs[R_RXMULTICNT]++;
737 }
738
739 if (bytes <= 64) {
740 s->regs[R_RX64CNT]++;
741 } else if (bytes <= 127) {
742 s->regs[R_RX65CNT]++;
743 } else if (bytes <= 255) {
744 s->regs[R_RX128CNT]++;
745 } else if (bytes <= 511) {
746 s->regs[R_RX256CNT]++;
747 } else if (bytes <= 1023) {
748 s->regs[R_RX512CNT]++;
749 } else if (bytes <= 1518) {
750 s->regs[R_RX1024CNT]++;
751 } else {
752 s->regs[R_RX1519CNT]++;
753 }
754 }
755
756 /*
757 * Get the MAC Address bit from the specified position
758 */
get_bit(const uint8_t * mac,unsigned bit)759 static unsigned get_bit(const uint8_t *mac, unsigned bit)
760 {
761 unsigned byte;
762
763 byte = mac[bit / 8];
764 byte >>= (bit & 0x7);
765 byte &= 1;
766
767 return byte;
768 }
769
770 /*
771 * Calculate a GEM MAC Address hash index
772 */
calc_mac_hash(const uint8_t * mac)773 static unsigned calc_mac_hash(const uint8_t *mac)
774 {
775 int index_bit, mac_bit;
776 unsigned hash_index;
777
778 hash_index = 0;
779 mac_bit = 5;
780 for (index_bit = 5; index_bit >= 0; index_bit--) {
781 hash_index |= (get_bit(mac, mac_bit) ^
782 get_bit(mac, mac_bit + 6) ^
783 get_bit(mac, mac_bit + 12) ^
784 get_bit(mac, mac_bit + 18) ^
785 get_bit(mac, mac_bit + 24) ^
786 get_bit(mac, mac_bit + 30) ^
787 get_bit(mac, mac_bit + 36) ^
788 get_bit(mac, mac_bit + 42)) << index_bit;
789 mac_bit--;
790 }
791
792 return hash_index;
793 }
794
795 /*
796 * gem_mac_address_filter:
797 * Accept or reject this destination address?
798 * Returns:
799 * GEM_RX_REJECT: reject
800 * >= 0: Specific address accept (which matched SAR is returned)
801 * others for various other modes of accept:
802 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
803 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
804 */
gem_mac_address_filter(CadenceGEMState * s,const uint8_t * packet)805 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
806 {
807 uint8_t *gem_spaddr;
808 int i, is_mc;
809
810 /* Promiscuous mode? */
811 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) {
812 return GEM_RX_PROMISCUOUS_ACCEPT;
813 }
814
815 if (!memcmp(packet, broadcast_addr, 6)) {
816 /* Reject broadcast packets? */
817 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) {
818 return GEM_RX_REJECT;
819 }
820 return GEM_RX_BROADCAST_ACCEPT;
821 }
822
823 /* Accept packets -w- hash match? */
824 is_mc = is_multicast_ether_addr(packet);
825 if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) ||
826 (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) {
827 uint64_t buckets;
828 unsigned hash_index;
829
830 hash_index = calc_mac_hash(packet);
831 buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO];
832 if ((buckets >> hash_index) & 1) {
833 return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
834 : GEM_RX_UNICAST_HASH_ACCEPT;
835 }
836 }
837
838 /* Check all 4 specific addresses */
839 gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]);
840 for (i = 3; i >= 0; i--) {
841 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
842 return GEM_RX_SAR_ACCEPT + i;
843 }
844 }
845
846 /* No address match; reject the packet */
847 return GEM_RX_REJECT;
848 }
849
850 /* Figure out which queue the received data should be sent to */
get_queue_from_screen(CadenceGEMState * s,uint8_t * rxbuf_ptr,unsigned rxbufsize)851 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
852 unsigned rxbufsize)
853 {
854 uint32_t reg;
855 bool matched, mismatched;
856 int i, j;
857
858 for (i = 0; i < s->num_type1_screeners; i++) {
859 reg = s->regs[R_SCREENING_TYPE1_REG0 + i];
860 matched = false;
861 mismatched = false;
862
863 /* Screening is based on UDP Port */
864 if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) {
865 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
866 if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) {
867 matched = true;
868 } else {
869 mismatched = true;
870 }
871 }
872
873 /* Screening is based on DS/TC */
874 if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) {
875 uint8_t dscp = rxbuf_ptr[14 + 1];
876 if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) {
877 matched = true;
878 } else {
879 mismatched = true;
880 }
881 }
882
883 if (matched && !mismatched) {
884 return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM);
885 }
886 }
887
888 for (i = 0; i < s->num_type2_screeners; i++) {
889 reg = s->regs[R_SCREENING_TYPE2_REG0 + i];
890 matched = false;
891 mismatched = false;
892
893 if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) {
894 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
895 int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0,
896 ETHERTYPE_REG_INDEX);
897
898 if (et_idx > s->num_type2_screeners) {
899 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
900 "register index: %d\n", et_idx);
901 }
902 if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 +
903 et_idx]) {
904 matched = true;
905 } else {
906 mismatched = true;
907 }
908 }
909
910 /* Compare A, B, C */
911 for (j = 0; j < 3; j++) {
912 uint32_t cr0, cr1, mask, compare;
913 uint16_t rx_cmp;
914 int offset;
915 int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6,
916 R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH);
917
918 if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6,
919 R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) {
920 continue;
921 }
922
923 if (cr_idx > s->num_type2_screeners) {
924 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
925 "register index: %d\n", cr_idx);
926 }
927
928 cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
929 cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2];
930 offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE);
931
932 switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) {
933 case 3: /* Skip UDP header */
934 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
935 "unimplemented - assuming UDP\n");
936 offset += 8;
937 /* Fallthrough */
938 case 2: /* skip the IP header */
939 offset += 20;
940 /* Fallthrough */
941 case 1: /* Count from after the ethertype */
942 offset += 14;
943 break;
944 case 0:
945 /* Offset from start of frame */
946 break;
947 }
948
949 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
950 mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE);
951 compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE);
952
953 if ((rx_cmp & mask) == (compare & mask)) {
954 matched = true;
955 } else {
956 mismatched = true;
957 }
958 }
959
960 if (matched && !mismatched) {
961 return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM);
962 }
963 }
964
965 /* We made it here, assume it's queue 0 */
966 return 0;
967 }
968
gem_get_queue_base_addr(CadenceGEMState * s,bool tx,int q)969 static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
970 {
971 uint32_t base_addr = 0;
972
973 switch (q) {
974 case 0:
975 base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE];
976 break;
977 case 1 ... (MAX_PRIORITY_QUEUES - 1):
978 base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR :
979 R_RECEIVE_Q1_PTR) + q - 1];
980 break;
981 default:
982 g_assert_not_reached();
983 };
984
985 return base_addr;
986 }
987
gem_get_tx_queue_base_addr(CadenceGEMState * s,int q)988 static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
989 {
990 return gem_get_queue_base_addr(s, true, q);
991 }
992
gem_get_rx_queue_base_addr(CadenceGEMState * s,int q)993 static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
994 {
995 return gem_get_queue_base_addr(s, false, q);
996 }
997
gem_get_desc_addr(CadenceGEMState * s,bool tx,int q)998 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
999 {
1000 hwaddr desc_addr = 0;
1001
1002 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1003 desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH];
1004 }
1005 desc_addr <<= 32;
1006 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
1007 return desc_addr;
1008 }
1009
gem_get_tx_desc_addr(CadenceGEMState * s,int q)1010 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
1011 {
1012 return gem_get_desc_addr(s, true, q);
1013 }
1014
gem_get_rx_desc_addr(CadenceGEMState * s,int q)1015 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
1016 {
1017 return gem_get_desc_addr(s, false, q);
1018 }
1019
gem_get_rx_desc(CadenceGEMState * s,int q)1020 static void gem_get_rx_desc(CadenceGEMState *s, int q)
1021 {
1022 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
1023
1024 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
1025
1026 /* read current descriptor */
1027 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1028 s->rx_desc[q],
1029 sizeof(uint32_t) * gem_get_desc_len(s, true));
1030
1031 /* Descriptor owned by software ? */
1032 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
1033 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
1034 s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK;
1035 gem_set_isr(s, q, R_ISR_RX_USED_MASK);
1036 /* Handle interrupt consequences */
1037 gem_update_int_status(s);
1038 }
1039 }
1040
1041 /*
1042 * gem_receive:
1043 * Fit a packet handed to us by QEMU into the receive descriptor ring.
1044 */
gem_receive(NetClientState * nc,const uint8_t * buf,size_t size)1045 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1046 {
1047 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1048 unsigned rxbufsize, bytes_to_copy;
1049 unsigned rxbuf_offset;
1050 uint8_t *rxbuf_ptr;
1051 bool first_desc = true;
1052 int maf;
1053 int q = 0;
1054
1055 /* Is this destination MAC address "for us" ? */
1056 maf = gem_mac_address_filter(s, buf);
1057 if (maf == GEM_RX_REJECT) {
1058 return size; /* no, drop silently b/c it's not an error */
1059 }
1060
1061 /* Discard packets with receive length error enabled ? */
1062 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) {
1063 unsigned type_len;
1064
1065 /* Fish the ethertype / length field out of the RX packet */
1066 type_len = buf[12] << 8 | buf[13];
1067 /* It is a length field, not an ethertype */
1068 if (type_len < 0x600) {
1069 if (size < type_len) {
1070 /* discard */
1071 return -1;
1072 }
1073 }
1074 }
1075
1076 /*
1077 * Determine configured receive buffer offset (probably 0)
1078 */
1079 rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET);
1080
1081 /* The configure size of each receive buffer. Determines how many
1082 * buffers needed to hold this packet.
1083 */
1084 rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE);
1085 rxbufsize *= GEM_DMACFG_RBUFSZ_MUL;
1086
1087 bytes_to_copy = size;
1088
1089 /* Hardware allows a zero value here but warns against it. To avoid QEMU
1090 * indefinite loops we enforce a minimum value here
1091 */
1092 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
1093 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
1094 }
1095
1096 /* Pad to minimum length. Assume FCS field is stripped, logic
1097 * below will increment it to the real minimum of 64 when
1098 * not FCS stripping
1099 */
1100 if (size < 60) {
1101 size = 60;
1102 }
1103
1104 /* Strip of FCS field ? (usually yes) */
1105 if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) {
1106 rxbuf_ptr = (void *)buf;
1107 } else {
1108 uint32_t crc_val;
1109
1110 if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1111 size = MAX_FRAME_SIZE - sizeof(crc_val);
1112 }
1113 bytes_to_copy = size;
1114 /* The application wants the FCS field, which QEMU does not provide.
1115 * We must try and calculate one.
1116 */
1117
1118 memcpy(s->rx_packet, buf, size);
1119 memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1120 rxbuf_ptr = s->rx_packet;
1121 crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1122 memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1123
1124 bytes_to_copy += 4;
1125 size += 4;
1126 }
1127
1128 DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1129
1130 /* Find which queue we are targeting */
1131 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1132
1133 if (size > gem_get_max_buf_len(s, false)) {
1134 qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1135 gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1136 return -1;
1137 }
1138
1139 while (bytes_to_copy) {
1140 hwaddr desc_addr;
1141
1142 /* Do nothing if receive is not enabled. */
1143 if (!gem_can_receive(nc)) {
1144 return -1;
1145 }
1146
1147 DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1148 MIN(bytes_to_copy, rxbufsize),
1149 rx_desc_get_buffer(s, s->rx_desc[q]));
1150
1151 /* Copy packet data to emulated DMA buffer */
1152 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1153 rxbuf_offset,
1154 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1155 MIN(bytes_to_copy, rxbufsize));
1156 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1157 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1158
1159 rx_desc_clear_control(s->rx_desc[q]);
1160
1161 /* Update the descriptor. */
1162 if (first_desc) {
1163 rx_desc_set_sof(s->rx_desc[q]);
1164 first_desc = false;
1165 }
1166 if (bytes_to_copy == 0) {
1167 rx_desc_set_eof(s->rx_desc[q]);
1168 rx_desc_set_length(s->rx_desc[q], size);
1169 }
1170 rx_desc_set_ownership(s->rx_desc[q]);
1171
1172 switch (maf) {
1173 case GEM_RX_PROMISCUOUS_ACCEPT:
1174 break;
1175 case GEM_RX_BROADCAST_ACCEPT:
1176 rx_desc_set_broadcast(s->rx_desc[q]);
1177 break;
1178 case GEM_RX_UNICAST_HASH_ACCEPT:
1179 rx_desc_set_unicast_hash(s->rx_desc[q]);
1180 break;
1181 case GEM_RX_MULTICAST_HASH_ACCEPT:
1182 rx_desc_set_multicast_hash(s->rx_desc[q]);
1183 break;
1184 case GEM_RX_REJECT:
1185 abort();
1186 default: /* SAR */
1187 rx_desc_set_sar(s->rx_desc[q], maf);
1188 }
1189
1190 /* Descriptor write-back. */
1191 desc_addr = gem_get_rx_desc_addr(s, q);
1192 address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1193 s->rx_desc[q],
1194 sizeof(uint32_t) * gem_get_desc_len(s, true));
1195
1196 /* Next descriptor */
1197 if (rx_desc_get_wrap(s->rx_desc[q])) {
1198 DB_PRINT("wrapping RX descriptor list\n");
1199 s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1200 } else {
1201 DB_PRINT("incrementing RX descriptor list\n");
1202 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1203 }
1204
1205 gem_get_rx_desc(s, q);
1206 }
1207
1208 /* Count it */
1209 gem_receive_updatestats(s, buf, size);
1210
1211 s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK;
1212 gem_set_isr(s, q, R_ISR_RECV_COMPLETE_MASK);
1213
1214 /* Handle interrupt consequences */
1215 gem_update_int_status(s);
1216
1217 return size;
1218 }
1219
1220 /*
1221 * gem_transmit_updatestats:
1222 * Increment transmit statistics.
1223 */
gem_transmit_updatestats(CadenceGEMState * s,const uint8_t * packet,unsigned bytes)1224 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1225 unsigned bytes)
1226 {
1227 uint64_t octets;
1228
1229 /* Total octets (bytes) transmitted */
1230 octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) |
1231 s->regs[R_OCTTXHI];
1232 octets += bytes;
1233 s->regs[R_OCTTXLO] = octets >> 32;
1234 s->regs[R_OCTTXHI] = octets;
1235
1236 /* Error-free Frames transmitted */
1237 s->regs[R_TXCNT]++;
1238
1239 /* Error-free Broadcast Frames counter */
1240 if (!memcmp(packet, broadcast_addr, 6)) {
1241 s->regs[R_TXBCNT]++;
1242 }
1243
1244 /* Error-free Multicast Frames counter */
1245 if (packet[0] == 0x01) {
1246 s->regs[R_TXMCNT]++;
1247 }
1248
1249 if (bytes <= 64) {
1250 s->regs[R_TX64CNT]++;
1251 } else if (bytes <= 127) {
1252 s->regs[R_TX65CNT]++;
1253 } else if (bytes <= 255) {
1254 s->regs[R_TX128CNT]++;
1255 } else if (bytes <= 511) {
1256 s->regs[R_TX256CNT]++;
1257 } else if (bytes <= 1023) {
1258 s->regs[R_TX512CNT]++;
1259 } else if (bytes <= 1518) {
1260 s->regs[R_TX1024CNT]++;
1261 } else {
1262 s->regs[R_TX1519CNT]++;
1263 }
1264 }
1265
1266 /*
1267 * gem_transmit:
1268 * Fish packets out of the descriptor ring and feed them to QEMU
1269 */
gem_transmit(CadenceGEMState * s)1270 static void gem_transmit(CadenceGEMState *s)
1271 {
1272 uint32_t desc[DESC_MAX_NUM_WORDS];
1273 hwaddr packet_desc_addr;
1274 uint8_t *p;
1275 unsigned total_bytes;
1276 int q = 0;
1277
1278 /* Do nothing if transmit is not enabled. */
1279 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1280 return;
1281 }
1282
1283 DB_PRINT("\n");
1284
1285 /* The packet we will hand off to QEMU.
1286 * Packets scattered across multiple descriptors are gathered to this
1287 * one contiguous buffer first.
1288 */
1289 p = s->tx_packet;
1290 total_bytes = 0;
1291
1292 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1293 /* read current descriptor */
1294 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1295
1296 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1297 address_space_read(&s->dma_as, packet_desc_addr,
1298 MEMTXATTRS_UNSPECIFIED, desc,
1299 sizeof(uint32_t) * gem_get_desc_len(s, false));
1300 /* Handle all descriptors owned by hardware */
1301 while (tx_desc_get_used(desc) == 0) {
1302
1303 /* Do nothing if transmit is not enabled. */
1304 if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) {
1305 return;
1306 }
1307 print_gem_tx_desc(desc, q);
1308
1309 /* The real hardware would eat this (and possibly crash).
1310 * For QEMU let's lend a helping hand.
1311 */
1312 if ((tx_desc_get_buffer(s, desc) == 0) ||
1313 (tx_desc_get_length(desc) == 0)) {
1314 DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1315 packet_desc_addr);
1316 break;
1317 }
1318
1319 if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1320 (p - s->tx_packet)) {
1321 qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1322 HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1323 packet_desc_addr, tx_desc_get_length(desc),
1324 gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1325 gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK);
1326 break;
1327 }
1328
1329 /* Gather this fragment of the packet from "dma memory" to our
1330 * contig buffer.
1331 */
1332 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1333 MEMTXATTRS_UNSPECIFIED,
1334 p, tx_desc_get_length(desc));
1335 p += tx_desc_get_length(desc);
1336 total_bytes += tx_desc_get_length(desc);
1337
1338 /* Last descriptor for this packet; hand the whole thing off */
1339 if (tx_desc_get_last(desc)) {
1340 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1341 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1342
1343 /* Modify the 1st descriptor of this packet to be owned by
1344 * the processor.
1345 */
1346 address_space_read(&s->dma_as, desc_addr,
1347 MEMTXATTRS_UNSPECIFIED, desc_first,
1348 sizeof(desc_first));
1349 tx_desc_set_used(desc_first);
1350 address_space_write(&s->dma_as, desc_addr,
1351 MEMTXATTRS_UNSPECIFIED, desc_first,
1352 sizeof(desc_first));
1353 /* Advance the hardware current descriptor past this packet */
1354 if (tx_desc_get_wrap(desc)) {
1355 s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1356 } else {
1357 s->tx_desc_addr[q] = packet_desc_addr +
1358 4 * gem_get_desc_len(s, false);
1359 }
1360 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1361
1362 s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK;
1363 gem_set_isr(s, q, R_ISR_XMIT_COMPLETE_MASK);
1364
1365 /* Handle interrupt consequences */
1366 gem_update_int_status(s);
1367
1368 /* Is checksum offload enabled? */
1369 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) {
1370 net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1371 }
1372
1373 /* Update MAC statistics */
1374 gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1375
1376 /* Send the packet somewhere */
1377 if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL,
1378 LOOPBACK_LOCAL)) {
1379 qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1380 total_bytes);
1381 } else {
1382 qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1383 total_bytes);
1384 }
1385
1386 /* Prepare for next packet */
1387 p = s->tx_packet;
1388 total_bytes = 0;
1389 }
1390
1391 /* read next descriptor */
1392 if (tx_desc_get_wrap(desc)) {
1393 if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) {
1394 packet_desc_addr = s->regs[R_TBQPH];
1395 packet_desc_addr <<= 32;
1396 } else {
1397 packet_desc_addr = 0;
1398 }
1399 packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1400 } else {
1401 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1402 }
1403 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1404 address_space_read(&s->dma_as, packet_desc_addr,
1405 MEMTXATTRS_UNSPECIFIED, desc,
1406 sizeof(uint32_t) * gem_get_desc_len(s, false));
1407 }
1408
1409 if (tx_desc_get_used(desc)) {
1410 s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK;
1411 /* IRQ TXUSED is defined only for queue 0 */
1412 if (q == 0) {
1413 gem_set_isr(s, 0, R_ISR_TX_USED_MASK);
1414 }
1415 gem_update_int_status(s);
1416 }
1417 }
1418 }
1419
gem_phy_reset(CadenceGEMState * s)1420 static void gem_phy_reset(CadenceGEMState *s)
1421 {
1422 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1423 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1424 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1425 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1426 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1427 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1428 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1429 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1430 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1431 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1432 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1433 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1434 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1435 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1436 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1437 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1438 s->phy_regs[PHY_REG_LED] = 0x4100;
1439 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1440 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1441
1442 phy_update_link(s);
1443 }
1444
gem_reset(DeviceState * d)1445 static void gem_reset(DeviceState *d)
1446 {
1447 int i;
1448 CadenceGEMState *s = CADENCE_GEM(d);
1449 const uint8_t *a;
1450 uint32_t queues_mask = 0;
1451
1452 DB_PRINT("\n");
1453
1454 /* Set post reset register values */
1455 memset(&s->regs[0], 0, sizeof(s->regs));
1456 s->regs[R_NWCFG] = 0x00080000;
1457 s->regs[R_NWSTATUS] = 0x00000006;
1458 s->regs[R_DMACFG] = 0x00020784;
1459 s->regs[R_IMR] = 0x07ffffff;
1460 s->regs[R_TXPAUSE] = 0x0000ffff;
1461 s->regs[R_TXPARTIALSF] = 0x000003ff;
1462 s->regs[R_RXPARTIALSF] = 0x000003ff;
1463 s->regs[R_MODID] = s->revision;
1464 s->regs[R_DESCONF] = 0x02D00111;
1465 s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1466 s->regs[R_DESCONF5] = 0x002f2045;
1467 s->regs[R_DESCONF6] = R_DESCONF6_DMA_ADDR_64B_MASK;
1468 s->regs[R_INT_Q1_MASK] = 0x00000CE6;
1469 s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len;
1470
1471 if (s->num_priority_queues > 1) {
1472 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1473 s->regs[R_DESCONF6] |= queues_mask;
1474 }
1475
1476 /* Set MAC address */
1477 a = &s->conf.macaddr.a[0];
1478 s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1479 s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8);
1480
1481 for (i = 0; i < 4; i++) {
1482 s->sar_active[i] = false;
1483 }
1484
1485 gem_phy_reset(s);
1486
1487 gem_update_int_status(s);
1488 }
1489
gem_phy_read(CadenceGEMState * s,unsigned reg_num)1490 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1491 {
1492 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1493 return s->phy_regs[reg_num];
1494 }
1495
gem_phy_write(CadenceGEMState * s,unsigned reg_num,uint16_t val)1496 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1497 {
1498 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1499
1500 switch (reg_num) {
1501 case PHY_REG_CONTROL:
1502 if (val & PHY_REG_CONTROL_RST) {
1503 /* Phy reset */
1504 gem_phy_reset(s);
1505 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1506 s->phy_loop = 0;
1507 }
1508 if (val & PHY_REG_CONTROL_ANEG) {
1509 /* Complete autonegotiation immediately */
1510 val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1511 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1512 }
1513 if (val & PHY_REG_CONTROL_LOOP) {
1514 DB_PRINT("PHY placed in loopback\n");
1515 s->phy_loop = 1;
1516 } else {
1517 s->phy_loop = 0;
1518 }
1519 break;
1520 }
1521 s->phy_regs[reg_num] = val;
1522 }
1523
gem_handle_phy_access(CadenceGEMState * s)1524 static void gem_handle_phy_access(CadenceGEMState *s)
1525 {
1526 uint32_t val = s->regs[R_PHYMNTNC];
1527 uint32_t phy_addr, reg_num;
1528
1529 phy_addr = FIELD_EX32(val, PHYMNTNC, PHY_ADDR);
1530
1531 if (phy_addr != s->phy_addr) {
1532 /* no phy at this address */
1533 if (FIELD_EX32(val, PHYMNTNC, OP) == MDIO_OP_READ) {
1534 s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA, 0xffff);
1535 }
1536 return;
1537 }
1538
1539 reg_num = FIELD_EX32(val, PHYMNTNC, REG_ADDR);
1540
1541 switch (FIELD_EX32(val, PHYMNTNC, OP)) {
1542 case MDIO_OP_READ:
1543 s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA,
1544 gem_phy_read(s, reg_num));
1545 break;
1546
1547 case MDIO_OP_WRITE:
1548 gem_phy_write(s, reg_num, val);
1549 break;
1550
1551 default:
1552 break; /* only clause 22 operations are supported */
1553 }
1554 }
1555
1556 /*
1557 * gem_read32:
1558 * Read a GEM register.
1559 */
gem_read(void * opaque,hwaddr offset,unsigned size)1560 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1561 {
1562 CadenceGEMState *s;
1563 uint32_t retval;
1564 s = opaque;
1565
1566 offset >>= 2;
1567 retval = s->regs[offset];
1568
1569 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1570
1571 switch (offset) {
1572 case R_ISR:
1573 DB_PRINT("lowering irqs on ISR read\n");
1574 /* The interrupts get updated at the end of the function. */
1575 break;
1576 }
1577
1578 /* Squash read to clear bits */
1579 s->regs[offset] &= ~(s->regs_rtc[offset]);
1580
1581 /* Do not provide write only bits */
1582 retval &= ~(s->regs_wo[offset]);
1583
1584 DB_PRINT("0x%08x\n", retval);
1585 gem_update_int_status(s);
1586 return retval;
1587 }
1588
1589 /*
1590 * gem_write32:
1591 * Write a GEM register.
1592 */
gem_write(void * opaque,hwaddr offset,uint64_t val,unsigned size)1593 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1594 unsigned size)
1595 {
1596 CadenceGEMState *s = (CadenceGEMState *)opaque;
1597 uint32_t readonly;
1598 int i;
1599
1600 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1601 offset >>= 2;
1602
1603 /* Squash bits which are read only in write value */
1604 val &= ~(s->regs_ro[offset]);
1605 /* Preserve (only) bits which are read only and wtc in register */
1606 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1607
1608 /* Copy register write to backing store */
1609 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1610
1611 /* do w1c */
1612 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1613
1614 /* Handle register write side effects */
1615 switch (offset) {
1616 case R_NWCTRL:
1617 if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) {
1618 for (i = 0; i < s->num_priority_queues; ++i) {
1619 gem_get_rx_desc(s, i);
1620 }
1621 }
1622 if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) {
1623 gem_transmit(s);
1624 }
1625 if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) {
1626 /* Reset to start of Q when transmit disabled. */
1627 for (i = 0; i < s->num_priority_queues; i++) {
1628 s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1629 }
1630 }
1631 if (gem_can_receive(qemu_get_queue(s->nic))) {
1632 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1633 }
1634 break;
1635
1636 case R_TXSTATUS:
1637 gem_update_int_status(s);
1638 break;
1639 case R_RXQBASE:
1640 s->rx_desc_addr[0] = val;
1641 break;
1642 case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR:
1643 s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val;
1644 break;
1645 case R_TXQBASE:
1646 s->tx_desc_addr[0] = val;
1647 break;
1648 case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR:
1649 s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val;
1650 break;
1651 case R_RXSTATUS:
1652 gem_update_int_status(s);
1653 break;
1654 case R_IER:
1655 s->regs[R_IMR] &= ~val;
1656 gem_update_int_status(s);
1657 break;
1658 case R_JUMBO_MAX_LEN:
1659 s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1660 break;
1661 case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE:
1662 s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val;
1663 gem_update_int_status(s);
1664 break;
1665 case R_IDR:
1666 s->regs[R_IMR] |= val;
1667 gem_update_int_status(s);
1668 break;
1669 case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE:
1670 s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val;
1671 gem_update_int_status(s);
1672 break;
1673 case R_SPADDR1LO:
1674 case R_SPADDR2LO:
1675 case R_SPADDR3LO:
1676 case R_SPADDR4LO:
1677 s->sar_active[(offset - R_SPADDR1LO) / 2] = false;
1678 break;
1679 case R_SPADDR1HI:
1680 case R_SPADDR2HI:
1681 case R_SPADDR3HI:
1682 case R_SPADDR4HI:
1683 s->sar_active[(offset - R_SPADDR1HI) / 2] = true;
1684 break;
1685 case R_PHYMNTNC:
1686 gem_handle_phy_access(s);
1687 break;
1688 }
1689
1690 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1691 }
1692
1693 static const MemoryRegionOps gem_ops = {
1694 .read = gem_read,
1695 .write = gem_write,
1696 .endianness = DEVICE_LITTLE_ENDIAN,
1697 };
1698
gem_set_link(NetClientState * nc)1699 static void gem_set_link(NetClientState *nc)
1700 {
1701 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1702
1703 DB_PRINT("\n");
1704 phy_update_link(s);
1705 gem_update_int_status(s);
1706 }
1707
1708 static NetClientInfo net_gem_info = {
1709 .type = NET_CLIENT_DRIVER_NIC,
1710 .size = sizeof(NICState),
1711 .can_receive = gem_can_receive,
1712 .receive = gem_receive,
1713 .link_status_changed = gem_set_link,
1714 };
1715
gem_realize(DeviceState * dev,Error ** errp)1716 static void gem_realize(DeviceState *dev, Error **errp)
1717 {
1718 CadenceGEMState *s = CADENCE_GEM(dev);
1719 int i;
1720
1721 address_space_init(&s->dma_as,
1722 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1723
1724 if (s->num_priority_queues == 0 ||
1725 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1726 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1727 s->num_priority_queues);
1728 return;
1729 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1730 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1731 s->num_type1_screeners);
1732 return;
1733 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1734 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1735 s->num_type2_screeners);
1736 return;
1737 }
1738
1739 for (i = 0; i < s->num_priority_queues; ++i) {
1740 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1741 }
1742
1743 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1744
1745 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1746 object_get_typename(OBJECT(dev)), dev->id,
1747 &dev->mem_reentrancy_guard, s);
1748
1749 if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1750 error_setg(errp, "jumbo-max-len is greater than %d",
1751 MAX_FRAME_SIZE);
1752 return;
1753 }
1754 }
1755
gem_init(Object * obj)1756 static void gem_init(Object *obj)
1757 {
1758 CadenceGEMState *s = CADENCE_GEM(obj);
1759 DeviceState *dev = DEVICE(obj);
1760
1761 DB_PRINT("\n");
1762
1763 gem_init_register_masks(s);
1764 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1765 "enet", sizeof(s->regs));
1766
1767 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1768 }
1769
1770 static const VMStateDescription vmstate_cadence_gem = {
1771 .name = "cadence_gem",
1772 .version_id = 4,
1773 .minimum_version_id = 4,
1774 .fields = (const VMStateField[]) {
1775 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1776 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1777 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1778 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1779 MAX_PRIORITY_QUEUES),
1780 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1781 MAX_PRIORITY_QUEUES),
1782 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1783 VMSTATE_END_OF_LIST(),
1784 }
1785 };
1786
1787 static Property gem_properties[] = {
1788 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1789 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1790 GEM_MODID_VALUE),
1791 DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1792 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1793 num_priority_queues, 1),
1794 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1795 num_type1_screeners, 4),
1796 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1797 num_type2_screeners, 4),
1798 DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1799 jumbo_max_len, 10240),
1800 DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr,
1801 TYPE_MEMORY_REGION, MemoryRegion *),
1802 DEFINE_PROP_END_OF_LIST(),
1803 };
1804
gem_class_init(ObjectClass * klass,void * data)1805 static void gem_class_init(ObjectClass *klass, void *data)
1806 {
1807 DeviceClass *dc = DEVICE_CLASS(klass);
1808
1809 dc->realize = gem_realize;
1810 device_class_set_props(dc, gem_properties);
1811 dc->vmsd = &vmstate_cadence_gem;
1812 device_class_set_legacy_reset(dc, gem_reset);
1813 }
1814
1815 static const TypeInfo gem_info = {
1816 .name = TYPE_CADENCE_GEM,
1817 .parent = TYPE_SYS_BUS_DEVICE,
1818 .instance_size = sizeof(CadenceGEMState),
1819 .instance_init = gem_init,
1820 .class_init = gem_class_init,
1821 };
1822
gem_register_types(void)1823 static void gem_register_types(void)
1824 {
1825 type_register_static(&gem_info);
1826 }
1827
1828 type_init(gem_register_types)
1829