1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for NXP FXAS21002C Gyroscope - Core
4 *
5 * Copyright (C) 2019 Linaro Ltd.
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/pm.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/property.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15
16 #include <linux/iio/events.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/sysfs.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23
24 #include "fxas21002c.h"
25
26 #define FXAS21002C_CHIP_ID_1 0xD6
27 #define FXAS21002C_CHIP_ID_2 0xD7
28
29 enum fxas21002c_mode_state {
30 FXAS21002C_MODE_STANDBY,
31 FXAS21002C_MODE_READY,
32 FXAS21002C_MODE_ACTIVE,
33 };
34
35 #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62
36 #define FXAS21002C_READY_ACTIVE_TIME_MS 7
37
38 #define FXAS21002C_ODR_LIST_MAX 10
39
40 #define FXAS21002C_SCALE_FRACTIONAL 32
41 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000
42
43 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
44
45 static const struct reg_field fxas21002c_reg_fields[] = {
46 [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
47 [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
48 [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
49 [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
50 [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
51 [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
52 [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
53 [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
54 [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
55 [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
56 [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
57 [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
58 [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
59 [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
60 [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
61 [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
62 [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
63 [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
64 [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
65 [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
66 [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
67 [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
68 [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
69 [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
70 [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
71 [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
72 [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
73 [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
74 [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
75 [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
76 [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
77 [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
78 [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
79 [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
80 [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
81 [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
82 [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
83 [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
84 [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
85 [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
86 [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
87 [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
88 [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
89 [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
90 [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
91 [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
92 [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
93 [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
94 [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
95 [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
96 [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
97 [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
98 [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
99 [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
100 [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
101 [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
102 [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
103 [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
104 [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
105 [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
106 [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
107 [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
108 [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
109 };
110
111 static const int fxas21002c_odr_values[] = {
112 800, 400, 200, 100, 50, 25, 12, 12
113 };
114
115 /*
116 * These values are taken from the low-pass filter cutoff frequency calculated
117 * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
118 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz
119 */
120 static const int fxas21002c_lpf_values[] = {
121 32, 16, 8
122 };
123
124 /*
125 * These values are taken from the high-pass filter cutoff frequency calculated
126 * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
127 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
128 */
129 static const int fxas21002c_hpf_values[] = {
130 18750, 9625, 4875, 2475
131 };
132
133 static const int fxas21002c_range_values[] = {
134 4000, 2000, 1000, 500, 250
135 };
136
137 struct fxas21002c_data {
138 u8 chip_id;
139 enum fxas21002c_mode_state mode;
140 enum fxas21002c_mode_state prev_mode;
141
142 struct mutex lock; /* serialize data access */
143 struct regmap *regmap;
144 struct regmap_field *regmap_fields[F_MAX_FIELDS];
145 struct iio_trigger *dready_trig;
146 s64 timestamp;
147 int irq;
148
149 struct regulator *vdd;
150 struct regulator *vddio;
151
152 /*
153 * DMA (thus cache coherency maintenance) may require the
154 * transfer buffers live in their own cache lines.
155 */
156 s16 buffer[8] __aligned(IIO_DMA_MINALIGN);
157 };
158
159 enum fxas21002c_channel_index {
160 CHANNEL_SCAN_INDEX_X,
161 CHANNEL_SCAN_INDEX_Y,
162 CHANNEL_SCAN_INDEX_Z,
163 CHANNEL_SCAN_MAX,
164 };
165
fxas21002c_odr_hz_from_value(struct fxas21002c_data * data,u8 value)166 static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
167 {
168 int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
169
170 value = min_t(u8, value, odr_value_max);
171
172 return fxas21002c_odr_values[value];
173 }
174
fxas21002c_odr_value_from_hz(struct fxas21002c_data * data,unsigned int hz)175 static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
176 unsigned int hz)
177 {
178 int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
179 int i;
180
181 for (i = 0; i < odr_table_size; i++)
182 if (fxas21002c_odr_values[i] == hz)
183 return i;
184
185 return -EINVAL;
186 }
187
fxas21002c_lpf_bw_from_value(struct fxas21002c_data * data,u8 value)188 static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
189 {
190 int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
191
192 value = min_t(u8, value, lpf_value_max);
193
194 return fxas21002c_lpf_values[value];
195 }
196
fxas21002c_lpf_value_from_bw(struct fxas21002c_data * data,unsigned int hz)197 static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
198 unsigned int hz)
199 {
200 int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
201 int i;
202
203 for (i = 0; i < lpf_table_size; i++)
204 if (fxas21002c_lpf_values[i] == hz)
205 return i;
206
207 return -EINVAL;
208 }
209
fxas21002c_hpf_sel_from_value(struct fxas21002c_data * data,u8 value)210 static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
211 {
212 int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
213
214 value = min_t(u8, value, hpf_value_max);
215
216 return fxas21002c_hpf_values[value];
217 }
218
fxas21002c_hpf_value_from_sel(struct fxas21002c_data * data,unsigned int hz)219 static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
220 unsigned int hz)
221 {
222 int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
223 int i;
224
225 for (i = 0; i < hpf_table_size; i++)
226 if (fxas21002c_hpf_values[i] == hz)
227 return i;
228
229 return -EINVAL;
230 }
231
fxas21002c_range_fs_from_value(struct fxas21002c_data * data,u8 value)232 static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
233 u8 value)
234 {
235 int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
236 unsigned int fs_double;
237 int ret;
238
239 /* We need to check if FS_DOUBLE is enabled to offset the value */
240 ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
241 if (ret < 0)
242 return ret;
243
244 if (!fs_double)
245 value += 1;
246
247 value = min_t(u8, value, range_value_max);
248
249 return fxas21002c_range_values[value];
250 }
251
fxas21002c_range_value_from_fs(struct fxas21002c_data * data,unsigned int range)252 static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
253 unsigned int range)
254 {
255 int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
256 bool found = false;
257 int fs_double = 0;
258 int ret;
259 int i;
260
261 for (i = 0; i < range_table_size; i++)
262 if (fxas21002c_range_values[i] == range) {
263 found = true;
264 break;
265 }
266
267 if (!found)
268 return -EINVAL;
269
270 if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
271 fs_double = 1;
272
273 ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
274 if (ret < 0)
275 return ret;
276
277 return i;
278 }
279
fxas21002c_mode_get(struct fxas21002c_data * data)280 static int fxas21002c_mode_get(struct fxas21002c_data *data)
281 {
282 unsigned int active;
283 unsigned int ready;
284 int ret;
285
286 ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
287 if (ret < 0)
288 return ret;
289 if (active)
290 return FXAS21002C_MODE_ACTIVE;
291
292 ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
293 if (ret < 0)
294 return ret;
295 if (ready)
296 return FXAS21002C_MODE_READY;
297
298 return FXAS21002C_MODE_STANDBY;
299 }
300
fxas21002c_mode_set(struct fxas21002c_data * data,enum fxas21002c_mode_state mode)301 static int fxas21002c_mode_set(struct fxas21002c_data *data,
302 enum fxas21002c_mode_state mode)
303 {
304 int ret;
305
306 if (mode == data->mode)
307 return 0;
308
309 if (mode == FXAS21002C_MODE_READY)
310 ret = regmap_field_write(data->regmap_fields[F_READY], 1);
311 else
312 ret = regmap_field_write(data->regmap_fields[F_READY], 0);
313 if (ret < 0)
314 return ret;
315
316 if (mode == FXAS21002C_MODE_ACTIVE)
317 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
318 else
319 ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
320 if (ret < 0)
321 return ret;
322
323 /* if going to active wait the setup times */
324 if (mode == FXAS21002C_MODE_ACTIVE &&
325 data->mode == FXAS21002C_MODE_STANDBY)
326 msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
327
328 if (data->mode == FXAS21002C_MODE_READY)
329 msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
330
331 data->prev_mode = data->mode;
332 data->mode = mode;
333
334 return ret;
335 }
336
fxas21002c_write(struct fxas21002c_data * data,enum fxas21002c_fields field,int bits)337 static int fxas21002c_write(struct fxas21002c_data *data,
338 enum fxas21002c_fields field, int bits)
339 {
340 int actual_mode;
341 int ret;
342
343 mutex_lock(&data->lock);
344
345 actual_mode = fxas21002c_mode_get(data);
346 if (actual_mode < 0) {
347 ret = actual_mode;
348 goto out_unlock;
349 }
350
351 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
352 if (ret < 0)
353 goto out_unlock;
354
355 ret = regmap_field_write(data->regmap_fields[field], bits);
356 if (ret < 0)
357 goto out_unlock;
358
359 ret = fxas21002c_mode_set(data, data->prev_mode);
360
361 out_unlock:
362 mutex_unlock(&data->lock);
363
364 return ret;
365 }
366
fxas21002c_pm_get(struct fxas21002c_data * data)367 static int fxas21002c_pm_get(struct fxas21002c_data *data)
368 {
369 return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
370 }
371
fxas21002c_pm_put(struct fxas21002c_data * data)372 static int fxas21002c_pm_put(struct fxas21002c_data *data)
373 {
374 struct device *dev = regmap_get_device(data->regmap);
375
376 pm_runtime_mark_last_busy(dev);
377
378 return pm_runtime_put_autosuspend(dev);
379 }
380
fxas21002c_temp_get(struct fxas21002c_data * data,int * val)381 static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
382 {
383 struct device *dev = regmap_get_device(data->regmap);
384 unsigned int temp;
385 int ret;
386
387 mutex_lock(&data->lock);
388 ret = fxas21002c_pm_get(data);
389 if (ret < 0)
390 goto data_unlock;
391
392 ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
393 if (ret < 0) {
394 dev_err(dev, "failed to read temp: %d\n", ret);
395 fxas21002c_pm_put(data);
396 goto data_unlock;
397 }
398
399 *val = sign_extend32(temp, 7);
400
401 ret = fxas21002c_pm_put(data);
402 if (ret < 0)
403 goto data_unlock;
404
405 ret = IIO_VAL_INT;
406
407 data_unlock:
408 mutex_unlock(&data->lock);
409
410 return ret;
411 }
412
fxas21002c_axis_get(struct fxas21002c_data * data,int index,int * val)413 static int fxas21002c_axis_get(struct fxas21002c_data *data,
414 int index, int *val)
415 {
416 struct device *dev = regmap_get_device(data->regmap);
417 __be16 axis_be;
418 int ret;
419
420 mutex_lock(&data->lock);
421 ret = fxas21002c_pm_get(data);
422 if (ret < 0)
423 goto data_unlock;
424
425 ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
426 &axis_be, sizeof(axis_be));
427 if (ret < 0) {
428 dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
429 fxas21002c_pm_put(data);
430 goto data_unlock;
431 }
432
433 *val = sign_extend32(be16_to_cpu(axis_be), 15);
434
435 ret = fxas21002c_pm_put(data);
436 if (ret < 0)
437 goto data_unlock;
438
439 ret = IIO_VAL_INT;
440
441 data_unlock:
442 mutex_unlock(&data->lock);
443
444 return ret;
445 }
446
fxas21002c_odr_get(struct fxas21002c_data * data,int * odr)447 static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
448 {
449 unsigned int odr_bits;
450 int ret;
451
452 mutex_lock(&data->lock);
453 ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
454 if (ret < 0)
455 goto data_unlock;
456
457 *odr = fxas21002c_odr_hz_from_value(data, odr_bits);
458
459 ret = IIO_VAL_INT;
460
461 data_unlock:
462 mutex_unlock(&data->lock);
463
464 return ret;
465 }
466
fxas21002c_odr_set(struct fxas21002c_data * data,int odr)467 static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
468 {
469 int odr_bits;
470
471 odr_bits = fxas21002c_odr_value_from_hz(data, odr);
472 if (odr_bits < 0)
473 return odr_bits;
474
475 return fxas21002c_write(data, F_DR, odr_bits);
476 }
477
fxas21002c_lpf_get(struct fxas21002c_data * data,int * val2)478 static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
479 {
480 unsigned int bw_bits;
481 int ret;
482
483 mutex_lock(&data->lock);
484 ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
485 if (ret < 0)
486 goto data_unlock;
487
488 *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
489
490 ret = IIO_VAL_INT_PLUS_MICRO;
491
492 data_unlock:
493 mutex_unlock(&data->lock);
494
495 return ret;
496 }
497
fxas21002c_lpf_set(struct fxas21002c_data * data,int bw)498 static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
499 {
500 int bw_bits;
501 int odr;
502 int ret;
503
504 bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
505 if (bw_bits < 0)
506 return bw_bits;
507
508 /*
509 * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
510 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed
511 */
512 ret = fxas21002c_odr_get(data, &odr);
513 if (ret < 0)
514 return -EINVAL;
515
516 if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
517 return -EINVAL;
518
519 return fxas21002c_write(data, F_BW, bw_bits);
520 }
521
fxas21002c_hpf_get(struct fxas21002c_data * data,int * val2)522 static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
523 {
524 unsigned int sel_bits;
525 int ret;
526
527 mutex_lock(&data->lock);
528 ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
529 if (ret < 0)
530 goto data_unlock;
531
532 *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
533
534 ret = IIO_VAL_INT_PLUS_MICRO;
535
536 data_unlock:
537 mutex_unlock(&data->lock);
538
539 return ret;
540 }
541
fxas21002c_hpf_set(struct fxas21002c_data * data,int sel)542 static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
543 {
544 int sel_bits;
545
546 sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
547 if (sel_bits < 0)
548 return sel_bits;
549
550 return fxas21002c_write(data, F_SEL, sel_bits);
551 }
552
fxas21002c_scale_get(struct fxas21002c_data * data,int * val)553 static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
554 {
555 int fs_bits;
556 int scale;
557 int ret;
558
559 mutex_lock(&data->lock);
560 ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
561 if (ret < 0)
562 goto data_unlock;
563
564 scale = fxas21002c_range_fs_from_value(data, fs_bits);
565 if (scale < 0) {
566 ret = scale;
567 goto data_unlock;
568 }
569
570 *val = scale;
571
572 data_unlock:
573 mutex_unlock(&data->lock);
574
575 return ret;
576 }
577
fxas21002c_scale_set(struct fxas21002c_data * data,int range)578 static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
579 {
580 int fs_bits;
581
582 fs_bits = fxas21002c_range_value_from_fs(data, range);
583 if (fs_bits < 0)
584 return fs_bits;
585
586 return fxas21002c_write(data, F_FS, fs_bits);
587 }
588
fxas21002c_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)589 static int fxas21002c_read_raw(struct iio_dev *indio_dev,
590 struct iio_chan_spec const *chan, int *val,
591 int *val2, long mask)
592 {
593 struct fxas21002c_data *data = iio_priv(indio_dev);
594 int ret;
595
596 switch (mask) {
597 case IIO_CHAN_INFO_RAW:
598 switch (chan->type) {
599 case IIO_TEMP:
600 return fxas21002c_temp_get(data, val);
601 case IIO_ANGL_VEL:
602 return fxas21002c_axis_get(data, chan->scan_index, val);
603 default:
604 return -EINVAL;
605 }
606 case IIO_CHAN_INFO_SCALE:
607 switch (chan->type) {
608 case IIO_ANGL_VEL:
609 *val2 = FXAS21002C_SCALE_FRACTIONAL;
610 ret = fxas21002c_scale_get(data, val);
611 if (ret < 0)
612 return ret;
613
614 return IIO_VAL_FRACTIONAL;
615 default:
616 return -EINVAL;
617 }
618 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
619 *val = 0;
620 return fxas21002c_lpf_get(data, val2);
621 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
622 *val = 0;
623 return fxas21002c_hpf_get(data, val2);
624 case IIO_CHAN_INFO_SAMP_FREQ:
625 *val2 = 0;
626 return fxas21002c_odr_get(data, val);
627 default:
628 return -EINVAL;
629 }
630 }
631
fxas21002c_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)632 static int fxas21002c_write_raw(struct iio_dev *indio_dev,
633 struct iio_chan_spec const *chan, int val,
634 int val2, long mask)
635 {
636 struct fxas21002c_data *data = iio_priv(indio_dev);
637 int range;
638
639 switch (mask) {
640 case IIO_CHAN_INFO_SAMP_FREQ:
641 if (val2)
642 return -EINVAL;
643
644 return fxas21002c_odr_set(data, val);
645 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
646 if (val)
647 return -EINVAL;
648
649 val2 = val2 / 10000;
650 return fxas21002c_lpf_set(data, val2);
651 case IIO_CHAN_INFO_SCALE:
652 switch (chan->type) {
653 case IIO_ANGL_VEL:
654 range = (((val * 1000 + val2 / 1000) *
655 FXAS21002C_SCALE_FRACTIONAL) / 1000);
656 return fxas21002c_scale_set(data, range);
657 default:
658 return -EINVAL;
659 }
660 case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
661 return fxas21002c_hpf_set(data, val2);
662 default:
663 return -EINVAL;
664 }
665 }
666
667 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
668
669 static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
670 "0.32 0.16 0.08");
671
672 static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
673 "0.018750 0.009625 0.004875 0.002475");
674
675 static IIO_CONST_ATTR(in_anglvel_scale_available,
676 "125.0 62.5 31.25 15.625 7.8125");
677
678 static struct attribute *fxas21002c_attributes[] = {
679 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
680 &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
681 &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
682 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
683 NULL,
684 };
685
686 static const struct attribute_group fxas21002c_attrs_group = {
687 .attrs = fxas21002c_attributes,
688 };
689
690 #define FXAS21002C_CHANNEL(_axis) { \
691 .type = IIO_ANGL_VEL, \
692 .modified = 1, \
693 .channel2 = IIO_MOD_##_axis, \
694 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
695 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
696 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
697 BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \
698 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
699 .scan_index = CHANNEL_SCAN_INDEX_##_axis, \
700 .scan_type = { \
701 .sign = 's', \
702 .realbits = 16, \
703 .storagebits = 16, \
704 .endianness = IIO_BE, \
705 }, \
706 }
707
708 static const struct iio_chan_spec fxas21002c_channels[] = {
709 {
710 .type = IIO_TEMP,
711 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
712 .scan_index = -1,
713 },
714 FXAS21002C_CHANNEL(X),
715 FXAS21002C_CHANNEL(Y),
716 FXAS21002C_CHANNEL(Z),
717 };
718
719 static const struct iio_info fxas21002c_info = {
720 .attrs = &fxas21002c_attrs_group,
721 .read_raw = &fxas21002c_read_raw,
722 .write_raw = &fxas21002c_write_raw,
723 };
724
fxas21002c_trigger_handler(int irq,void * p)725 static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
726 {
727 struct iio_poll_func *pf = p;
728 struct iio_dev *indio_dev = pf->indio_dev;
729 struct fxas21002c_data *data = iio_priv(indio_dev);
730 int ret;
731
732 mutex_lock(&data->lock);
733 ret = fxas21002c_pm_get(data);
734 if (ret < 0)
735 goto out_unlock;
736
737 ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
738 data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
739 if (ret < 0)
740 goto out_pm_put;
741
742 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
743 data->timestamp);
744
745 out_pm_put:
746 fxas21002c_pm_put(data);
747
748 out_unlock:
749 mutex_unlock(&data->lock);
750
751 iio_trigger_notify_done(indio_dev->trig);
752
753 return IRQ_HANDLED;
754 }
755
fxas21002c_chip_init(struct fxas21002c_data * data)756 static int fxas21002c_chip_init(struct fxas21002c_data *data)
757 {
758 struct device *dev = regmap_get_device(data->regmap);
759 unsigned int chip_id;
760 int ret;
761
762 ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
763 if (ret < 0)
764 return ret;
765
766 if (chip_id != FXAS21002C_CHIP_ID_1 &&
767 chip_id != FXAS21002C_CHIP_ID_2) {
768 dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
769 return -EINVAL;
770 }
771
772 data->chip_id = chip_id;
773
774 ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
775 if (ret < 0)
776 return ret;
777
778 /* Set ODR to 200HZ as default */
779 ret = fxas21002c_odr_set(data, 200);
780 if (ret < 0)
781 dev_err(dev, "failed to set ODR: %d\n", ret);
782
783 return ret;
784 }
785
fxas21002c_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)786 static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
787 bool state)
788 {
789 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
790 struct fxas21002c_data *data = iio_priv(indio_dev);
791
792 return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
793 }
794
795 static const struct iio_trigger_ops fxas21002c_trigger_ops = {
796 .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
797 };
798
fxas21002c_data_rdy_handler(int irq,void * private)799 static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
800 {
801 struct iio_dev *indio_dev = private;
802 struct fxas21002c_data *data = iio_priv(indio_dev);
803
804 data->timestamp = iio_get_time_ns(indio_dev);
805
806 return IRQ_WAKE_THREAD;
807 }
808
fxas21002c_data_rdy_thread(int irq,void * private)809 static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
810 {
811 struct iio_dev *indio_dev = private;
812 struct fxas21002c_data *data = iio_priv(indio_dev);
813 unsigned int data_ready;
814 int ret;
815
816 ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
817 if (ret < 0)
818 return IRQ_NONE;
819
820 if (!data_ready)
821 return IRQ_NONE;
822
823 iio_trigger_poll_nested(data->dready_trig);
824
825 return IRQ_HANDLED;
826 }
827
fxas21002c_trigger_probe(struct fxas21002c_data * data)828 static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
829 {
830 struct device *dev = regmap_get_device(data->regmap);
831 struct iio_dev *indio_dev = dev_get_drvdata(dev);
832 unsigned long irq_trig;
833 bool irq_open_drain;
834 int irq1;
835 int ret;
836
837 if (!data->irq)
838 return 0;
839
840 irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
841 if (irq1 == data->irq) {
842 dev_info(dev, "using interrupt line INT1\n");
843 ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
844 1);
845 if (ret < 0)
846 return ret;
847 }
848
849 dev_info(dev, "using interrupt line INT2\n");
850
851 irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
852
853 data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
854 indio_dev->name,
855 iio_device_id(indio_dev));
856 if (!data->dready_trig)
857 return -ENOMEM;
858
859 irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
860
861 if (irq_trig == IRQF_TRIGGER_RISING) {
862 ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
863 if (ret < 0)
864 return ret;
865 }
866
867 if (irq_open_drain)
868 irq_trig |= IRQF_SHARED;
869
870 ret = devm_request_threaded_irq(dev, data->irq,
871 fxas21002c_data_rdy_handler,
872 fxas21002c_data_rdy_thread,
873 irq_trig, "fxas21002c_data_ready",
874 indio_dev);
875 if (ret < 0)
876 return ret;
877
878 data->dready_trig->ops = &fxas21002c_trigger_ops;
879 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
880
881 return devm_iio_trigger_register(dev, data->dready_trig);
882 }
883
fxas21002c_power_enable(struct fxas21002c_data * data)884 static int fxas21002c_power_enable(struct fxas21002c_data *data)
885 {
886 int ret;
887
888 ret = regulator_enable(data->vdd);
889 if (ret < 0)
890 return ret;
891
892 ret = regulator_enable(data->vddio);
893 if (ret < 0) {
894 regulator_disable(data->vdd);
895 return ret;
896 }
897
898 return 0;
899 }
900
fxas21002c_power_disable(struct fxas21002c_data * data)901 static void fxas21002c_power_disable(struct fxas21002c_data *data)
902 {
903 regulator_disable(data->vdd);
904 regulator_disable(data->vddio);
905 }
906
fxas21002c_power_disable_action(void * _data)907 static void fxas21002c_power_disable_action(void *_data)
908 {
909 struct fxas21002c_data *data = _data;
910
911 fxas21002c_power_disable(data);
912 }
913
fxas21002c_regulators_get(struct fxas21002c_data * data)914 static int fxas21002c_regulators_get(struct fxas21002c_data *data)
915 {
916 struct device *dev = regmap_get_device(data->regmap);
917
918 data->vdd = devm_regulator_get(dev->parent, "vdd");
919 if (IS_ERR(data->vdd))
920 return PTR_ERR(data->vdd);
921
922 data->vddio = devm_regulator_get(dev->parent, "vddio");
923
924 return PTR_ERR_OR_ZERO(data->vddio);
925 }
926
fxas21002c_core_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)927 int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
928 const char *name)
929 {
930 struct fxas21002c_data *data;
931 struct iio_dev *indio_dev;
932 struct regmap_field *f;
933 int i;
934 int ret;
935
936 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
937 if (!indio_dev)
938 return -ENOMEM;
939
940 data = iio_priv(indio_dev);
941 dev_set_drvdata(dev, indio_dev);
942 data->irq = irq;
943 data->regmap = regmap;
944
945 for (i = 0; i < F_MAX_FIELDS; i++) {
946 f = devm_regmap_field_alloc(dev, data->regmap,
947 fxas21002c_reg_fields[i]);
948 if (IS_ERR(f))
949 return PTR_ERR(f);
950
951 data->regmap_fields[i] = f;
952 }
953
954 mutex_init(&data->lock);
955
956 ret = fxas21002c_regulators_get(data);
957 if (ret < 0)
958 return ret;
959
960 ret = fxas21002c_power_enable(data);
961 if (ret < 0)
962 return ret;
963
964 ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
965 data);
966 if (ret < 0)
967 return ret;
968
969 ret = fxas21002c_chip_init(data);
970 if (ret < 0)
971 return ret;
972
973 indio_dev->channels = fxas21002c_channels;
974 indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
975 indio_dev->name = name;
976 indio_dev->modes = INDIO_DIRECT_MODE;
977 indio_dev->info = &fxas21002c_info;
978
979 ret = fxas21002c_trigger_probe(data);
980 if (ret < 0)
981 return ret;
982
983 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
984 fxas21002c_trigger_handler, NULL);
985 if (ret < 0)
986 return ret;
987
988 ret = pm_runtime_set_active(dev);
989 if (ret)
990 return ret;
991
992 pm_runtime_enable(dev);
993 pm_runtime_set_autosuspend_delay(dev, 2000);
994 pm_runtime_use_autosuspend(dev);
995
996 ret = iio_device_register(indio_dev);
997 if (ret < 0)
998 goto pm_disable;
999
1000 return 0;
1001
1002 pm_disable:
1003 pm_runtime_disable(dev);
1004 pm_runtime_set_suspended(dev);
1005
1006 return ret;
1007 }
1008 EXPORT_SYMBOL_NS_GPL(fxas21002c_core_probe, IIO_FXAS21002C);
1009
fxas21002c_core_remove(struct device * dev)1010 void fxas21002c_core_remove(struct device *dev)
1011 {
1012 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1013
1014 iio_device_unregister(indio_dev);
1015
1016 pm_runtime_disable(dev);
1017 pm_runtime_set_suspended(dev);
1018 }
1019 EXPORT_SYMBOL_NS_GPL(fxas21002c_core_remove, IIO_FXAS21002C);
1020
fxas21002c_suspend(struct device * dev)1021 static int fxas21002c_suspend(struct device *dev)
1022 {
1023 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1024
1025 fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
1026 fxas21002c_power_disable(data);
1027
1028 return 0;
1029 }
1030
fxas21002c_resume(struct device * dev)1031 static int fxas21002c_resume(struct device *dev)
1032 {
1033 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1034 int ret;
1035
1036 ret = fxas21002c_power_enable(data);
1037 if (ret < 0)
1038 return ret;
1039
1040 return fxas21002c_mode_set(data, data->prev_mode);
1041 }
1042
fxas21002c_runtime_suspend(struct device * dev)1043 static int fxas21002c_runtime_suspend(struct device *dev)
1044 {
1045 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1046
1047 return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
1048 }
1049
fxas21002c_runtime_resume(struct device * dev)1050 static int fxas21002c_runtime_resume(struct device *dev)
1051 {
1052 struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
1053
1054 return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
1055 }
1056
1057 EXPORT_NS_GPL_DEV_PM_OPS(fxas21002c_pm_ops, IIO_FXAS21002C) = {
1058 SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
1059 RUNTIME_PM_OPS(fxas21002c_runtime_suspend, fxas21002c_runtime_resume,
1060 NULL)
1061 };
1062
1063 MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
1064 MODULE_LICENSE("GPL v2");
1065 MODULE_DESCRIPTION("FXAS21002C Gyro driver");
1066