xref: /openbmc/linux/kernel/fork.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 #include <linux/tick.h>
103 
104 #include <asm/pgalloc.h>
105 #include <linux/uaccess.h>
106 #include <asm/mmu_context.h>
107 #include <asm/cacheflush.h>
108 #include <asm/tlbflush.h>
109 
110 #include <trace/events/sched.h>
111 
112 #define CREATE_TRACE_POINTS
113 #include <trace/events/task.h>
114 
115 /*
116  * Minimum number of threads to boot the kernel
117  */
118 #define MIN_THREADS 20
119 
120 /*
121  * Maximum number of threads
122  */
123 #define MAX_THREADS FUTEX_TID_MASK
124 
125 /*
126  * Protected counters by write_lock_irq(&tasklist_lock)
127  */
128 unsigned long total_forks;	/* Handle normal Linux uptimes. */
129 int nr_threads;			/* The idle threads do not count.. */
130 
131 static int max_threads;		/* tunable limit on nr_threads */
132 
133 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
134 
135 static const char * const resident_page_types[] = {
136 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141 
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143 
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
145 
146 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)147 int lockdep_tasklist_lock_is_held(void)
148 {
149 	return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153 
nr_processes(void)154 int nr_processes(void)
155 {
156 	int cpu;
157 	int total = 0;
158 
159 	for_each_possible_cpu(cpu)
160 		total += per_cpu(process_counts, cpu);
161 
162 	return total;
163 }
164 
arch_release_task_struct(struct task_struct * tsk)165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168 
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171 
alloc_task_struct_node(int node)172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176 
free_task_struct(struct task_struct * tsk)177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 	kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182 
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184 
185 /*
186  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187  * kmemcache based allocator.
188  */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190 
191 #  ifdef CONFIG_VMAP_STACK
192 /*
193  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194  * flush.  Try to minimize the number of calls by caching stacks.
195  */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198 
199 struct vm_stack {
200 	struct rcu_head rcu;
201 	struct vm_struct *stack_vm_area;
202 };
203 
try_release_thread_stack_to_cache(struct vm_struct * vm)204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < NR_CACHED_STACKS; i++) {
209 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 			continue;
211 		return true;
212 	}
213 	return false;
214 }
215 
thread_stack_free_rcu(struct rcu_head * rh)216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219 
220 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 		return;
222 
223 	vfree(vm_stack);
224 }
225 
thread_stack_delayed_free(struct task_struct * tsk)226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 	struct vm_stack *vm_stack = tsk->stack;
229 
230 	vm_stack->stack_vm_area = tsk->stack_vm_area;
231 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233 
free_vm_stack_cache(unsigned int cpu)234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 	int i;
238 
239 	for (i = 0; i < NR_CACHED_STACKS; i++) {
240 		struct vm_struct *vm_stack = cached_vm_stacks[i];
241 
242 		if (!vm_stack)
243 			continue;
244 
245 		vfree(vm_stack->addr);
246 		cached_vm_stacks[i] = NULL;
247 	}
248 
249 	return 0;
250 }
251 
memcg_charge_kernel_stack(struct vm_struct * vm)252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 	int i;
255 	int ret;
256 	int nr_charged = 0;
257 
258 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259 
260 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 		if (ret)
263 			goto err;
264 		nr_charged++;
265 	}
266 	return 0;
267 err:
268 	for (i = 0; i < nr_charged; i++)
269 		memcg_kmem_uncharge_page(vm->pages[i], 0);
270 	return ret;
271 }
272 
alloc_thread_stack_node(struct task_struct * tsk,int node)273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 	struct vm_struct *vm;
276 	void *stack;
277 	int i;
278 
279 	for (i = 0; i < NR_CACHED_STACKS; i++) {
280 		struct vm_struct *s;
281 
282 		s = this_cpu_xchg(cached_stacks[i], NULL);
283 
284 		if (!s)
285 			continue;
286 
287 		/* Reset stack metadata. */
288 		kasan_unpoison_range(s->addr, THREAD_SIZE);
289 
290 		stack = kasan_reset_tag(s->addr);
291 
292 		/* Clear stale pointers from reused stack. */
293 		memset(stack, 0, THREAD_SIZE);
294 
295 		if (memcg_charge_kernel_stack(s)) {
296 			vfree(s->addr);
297 			return -ENOMEM;
298 		}
299 
300 		tsk->stack_vm_area = s;
301 		tsk->stack = stack;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Allocated stacks are cached and later reused by new threads,
307 	 * so memcg accounting is performed manually on assigning/releasing
308 	 * stacks to tasks. Drop __GFP_ACCOUNT.
309 	 */
310 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 				     VMALLOC_START, VMALLOC_END,
312 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
313 				     PAGE_KERNEL,
314 				     0, node, __builtin_return_address(0));
315 	if (!stack)
316 		return -ENOMEM;
317 
318 	vm = find_vm_area(stack);
319 	if (memcg_charge_kernel_stack(vm)) {
320 		vfree(stack);
321 		return -ENOMEM;
322 	}
323 	/*
324 	 * We can't call find_vm_area() in interrupt context, and
325 	 * free_thread_stack() can be called in interrupt context,
326 	 * so cache the vm_struct.
327 	 */
328 	tsk->stack_vm_area = vm;
329 	stack = kasan_reset_tag(stack);
330 	tsk->stack = stack;
331 	return 0;
332 }
333 
free_thread_stack(struct task_struct * tsk)334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 		thread_stack_delayed_free(tsk);
338 
339 	tsk->stack = NULL;
340 	tsk->stack_vm_area = NULL;
341 }
342 
343 #  else /* !CONFIG_VMAP_STACK */
344 
thread_stack_free_rcu(struct rcu_head * rh)345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349 
thread_stack_delayed_free(struct task_struct * tsk)350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 	struct rcu_head *rh = tsk->stack;
353 
354 	call_rcu(rh, thread_stack_free_rcu);
355 }
356 
alloc_thread_stack_node(struct task_struct * tsk,int node)357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 					     THREAD_SIZE_ORDER);
361 
362 	if (likely(page)) {
363 		tsk->stack = kasan_reset_tag(page_address(page));
364 		return 0;
365 	}
366 	return -ENOMEM;
367 }
368 
free_thread_stack(struct task_struct * tsk)369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 	thread_stack_delayed_free(tsk);
372 	tsk->stack = NULL;
373 }
374 
375 #  endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377 
378 static struct kmem_cache *thread_stack_cache;
379 
thread_stack_free_rcu(struct rcu_head * rh)380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 	kmem_cache_free(thread_stack_cache, rh);
383 }
384 
thread_stack_delayed_free(struct task_struct * tsk)385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 	struct rcu_head *rh = tsk->stack;
388 
389 	call_rcu(rh, thread_stack_free_rcu);
390 }
391 
alloc_thread_stack_node(struct task_struct * tsk,int node)392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 	unsigned long *stack;
395 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 	stack = kasan_reset_tag(stack);
397 	tsk->stack = stack;
398 	return stack ? 0 : -ENOMEM;
399 }
400 
free_thread_stack(struct task_struct * tsk)401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 	thread_stack_delayed_free(tsk);
404 	tsk->stack = NULL;
405 }
406 
thread_stack_cache_init(void)407 void thread_stack_cache_init(void)
408 {
409 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 					THREAD_SIZE, THREAD_SIZE, 0, 0,
411 					THREAD_SIZE, NULL);
412 	BUG_ON(thread_stack_cache == NULL);
413 }
414 
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
417 
alloc_thread_stack_node(struct task_struct * tsk,int node)418 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
419 {
420 	unsigned long *stack;
421 
422 	stack = arch_alloc_thread_stack_node(tsk, node);
423 	tsk->stack = stack;
424 	return stack ? 0 : -ENOMEM;
425 }
426 
free_thread_stack(struct task_struct * tsk)427 static void free_thread_stack(struct task_struct *tsk)
428 {
429 	arch_free_thread_stack(tsk);
430 	tsk->stack = NULL;
431 }
432 
433 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
434 
435 /* SLAB cache for signal_struct structures (tsk->signal) */
436 static struct kmem_cache *signal_cachep;
437 
438 /* SLAB cache for sighand_struct structures (tsk->sighand) */
439 struct kmem_cache *sighand_cachep;
440 
441 /* SLAB cache for files_struct structures (tsk->files) */
442 struct kmem_cache *files_cachep;
443 
444 /* SLAB cache for fs_struct structures (tsk->fs) */
445 struct kmem_cache *fs_cachep;
446 
447 /* SLAB cache for vm_area_struct structures */
448 static struct kmem_cache *vm_area_cachep;
449 
450 /* SLAB cache for mm_struct structures (tsk->mm) */
451 static struct kmem_cache *mm_cachep;
452 
453 #ifdef CONFIG_PER_VMA_LOCK
454 
455 /* SLAB cache for vm_area_struct.lock */
456 static struct kmem_cache *vma_lock_cachep;
457 
vma_lock_alloc(struct vm_area_struct * vma)458 static bool vma_lock_alloc(struct vm_area_struct *vma)
459 {
460 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
461 	if (!vma->vm_lock)
462 		return false;
463 
464 	init_rwsem(&vma->vm_lock->lock);
465 	vma->vm_lock_seq = -1;
466 
467 	return true;
468 }
469 
vma_lock_free(struct vm_area_struct * vma)470 static inline void vma_lock_free(struct vm_area_struct *vma)
471 {
472 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
473 }
474 
475 #else /* CONFIG_PER_VMA_LOCK */
476 
vma_lock_alloc(struct vm_area_struct * vma)477 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma) {}
479 
480 #endif /* CONFIG_PER_VMA_LOCK */
481 
vm_area_alloc(struct mm_struct * mm)482 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
483 {
484 	struct vm_area_struct *vma;
485 
486 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 	if (!vma)
488 		return NULL;
489 
490 	vma_init(vma, mm);
491 	if (!vma_lock_alloc(vma)) {
492 		kmem_cache_free(vm_area_cachep, vma);
493 		return NULL;
494 	}
495 
496 	return vma;
497 }
498 
vm_area_dup(struct vm_area_struct * orig)499 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
500 {
501 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
502 
503 	if (!new)
504 		return NULL;
505 
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
507 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
508 	/*
509 	 * orig->shared.rb may be modified concurrently, but the clone
510 	 * will be reinitialized.
511 	 */
512 	data_race(memcpy(new, orig, sizeof(*new)));
513 	if (!vma_lock_alloc(new)) {
514 		kmem_cache_free(vm_area_cachep, new);
515 		return NULL;
516 	}
517 	INIT_LIST_HEAD(&new->anon_vma_chain);
518 	vma_numab_state_init(new);
519 	dup_anon_vma_name(orig, new);
520 
521 	return new;
522 }
523 
__vm_area_free(struct vm_area_struct * vma)524 void __vm_area_free(struct vm_area_struct *vma)
525 {
526 	vma_numab_state_free(vma);
527 	free_anon_vma_name(vma);
528 	vma_lock_free(vma);
529 	kmem_cache_free(vm_area_cachep, vma);
530 }
531 
532 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)533 static void vm_area_free_rcu_cb(struct rcu_head *head)
534 {
535 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
536 						  vm_rcu);
537 
538 	/* The vma should not be locked while being destroyed. */
539 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
540 	__vm_area_free(vma);
541 }
542 #endif
543 
vm_area_free(struct vm_area_struct * vma)544 void vm_area_free(struct vm_area_struct *vma)
545 {
546 #ifdef CONFIG_PER_VMA_LOCK
547 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
548 #else
549 	__vm_area_free(vma);
550 #endif
551 }
552 
account_kernel_stack(struct task_struct * tsk,int account)553 static void account_kernel_stack(struct task_struct *tsk, int account)
554 {
555 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
556 		struct vm_struct *vm = task_stack_vm_area(tsk);
557 		int i;
558 
559 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
560 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
561 					      account * (PAGE_SIZE / 1024));
562 	} else {
563 		void *stack = task_stack_page(tsk);
564 
565 		/* All stack pages are in the same node. */
566 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
567 				      account * (THREAD_SIZE / 1024));
568 	}
569 }
570 
exit_task_stack_account(struct task_struct * tsk)571 void exit_task_stack_account(struct task_struct *tsk)
572 {
573 	account_kernel_stack(tsk, -1);
574 
575 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
576 		struct vm_struct *vm;
577 		int i;
578 
579 		vm = task_stack_vm_area(tsk);
580 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
581 			memcg_kmem_uncharge_page(vm->pages[i], 0);
582 	}
583 }
584 
release_task_stack(struct task_struct * tsk)585 static void release_task_stack(struct task_struct *tsk)
586 {
587 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
588 		return;  /* Better to leak the stack than to free prematurely */
589 
590 	free_thread_stack(tsk);
591 }
592 
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)594 void put_task_stack(struct task_struct *tsk)
595 {
596 	if (refcount_dec_and_test(&tsk->stack_refcount))
597 		release_task_stack(tsk);
598 }
599 #endif
600 
free_task(struct task_struct * tsk)601 void free_task(struct task_struct *tsk)
602 {
603 #ifdef CONFIG_SECCOMP
604 	WARN_ON_ONCE(tsk->seccomp.filter);
605 #endif
606 	release_user_cpus_ptr(tsk);
607 	scs_release(tsk);
608 
609 #ifndef CONFIG_THREAD_INFO_IN_TASK
610 	/*
611 	 * The task is finally done with both the stack and thread_info,
612 	 * so free both.
613 	 */
614 	release_task_stack(tsk);
615 #else
616 	/*
617 	 * If the task had a separate stack allocation, it should be gone
618 	 * by now.
619 	 */
620 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
621 #endif
622 	rt_mutex_debug_task_free(tsk);
623 	ftrace_graph_exit_task(tsk);
624 	arch_release_task_struct(tsk);
625 	if (tsk->flags & PF_KTHREAD)
626 		free_kthread_struct(tsk);
627 	bpf_task_storage_free(tsk);
628 	free_task_struct(tsk);
629 }
630 EXPORT_SYMBOL(free_task);
631 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)632 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 	struct file *exe_file;
635 
636 	exe_file = get_mm_exe_file(oldmm);
637 	RCU_INIT_POINTER(mm->exe_file, exe_file);
638 	/*
639 	 * We depend on the oldmm having properly denied write access to the
640 	 * exe_file already.
641 	 */
642 	if (exe_file && deny_write_access(exe_file))
643 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
644 }
645 
646 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static __latent_entropy int dup_mmap(struct mm_struct *mm,
648 					struct mm_struct *oldmm)
649 {
650 	struct vm_area_struct *mpnt, *tmp;
651 	int retval;
652 	unsigned long charge = 0;
653 	LIST_HEAD(uf);
654 	VMA_ITERATOR(old_vmi, oldmm, 0);
655 	VMA_ITERATOR(vmi, mm, 0);
656 
657 	uprobe_start_dup_mmap();
658 	if (mmap_write_lock_killable(oldmm)) {
659 		retval = -EINTR;
660 		goto fail_uprobe_end;
661 	}
662 	flush_cache_dup_mm(oldmm);
663 	uprobe_dup_mmap(oldmm, mm);
664 	/*
665 	 * Not linked in yet - no deadlock potential:
666 	 */
667 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
668 
669 	/* No ordering required: file already has been exposed. */
670 	dup_mm_exe_file(mm, oldmm);
671 
672 	mm->total_vm = oldmm->total_vm;
673 	mm->data_vm = oldmm->data_vm;
674 	mm->exec_vm = oldmm->exec_vm;
675 	mm->stack_vm = oldmm->stack_vm;
676 
677 	retval = ksm_fork(mm, oldmm);
678 	if (retval)
679 		goto out;
680 	khugepaged_fork(mm, oldmm);
681 
682 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
683 	if (retval)
684 		goto out;
685 
686 	mt_clear_in_rcu(vmi.mas.tree);
687 	for_each_vma(old_vmi, mpnt) {
688 		struct file *file;
689 
690 		vma_start_write(mpnt);
691 		if (mpnt->vm_flags & VM_DONTCOPY) {
692 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
693 			continue;
694 		}
695 		charge = 0;
696 		/*
697 		 * Don't duplicate many vmas if we've been oom-killed (for
698 		 * example)
699 		 */
700 		if (fatal_signal_pending(current)) {
701 			retval = -EINTR;
702 			goto loop_out;
703 		}
704 		if (mpnt->vm_flags & VM_ACCOUNT) {
705 			unsigned long len = vma_pages(mpnt);
706 
707 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
708 				goto fail_nomem;
709 			charge = len;
710 		}
711 		tmp = vm_area_dup(mpnt);
712 		if (!tmp)
713 			goto fail_nomem;
714 
715 		/* track_pfn_copy() will later take care of copying internal state. */
716 		if (unlikely(tmp->vm_flags & VM_PFNMAP))
717 			untrack_pfn_clear(tmp);
718 
719 		retval = vma_dup_policy(mpnt, tmp);
720 		if (retval)
721 			goto fail_nomem_policy;
722 		tmp->vm_mm = mm;
723 		retval = dup_userfaultfd(tmp, &uf);
724 		if (retval)
725 			goto fail_nomem_anon_vma_fork;
726 		if (tmp->vm_flags & VM_WIPEONFORK) {
727 			/*
728 			 * VM_WIPEONFORK gets a clean slate in the child.
729 			 * Don't prepare anon_vma until fault since we don't
730 			 * copy page for current vma.
731 			 */
732 			tmp->anon_vma = NULL;
733 		} else if (anon_vma_fork(tmp, mpnt))
734 			goto fail_nomem_anon_vma_fork;
735 		vm_flags_clear(tmp, VM_LOCKED_MASK);
736 		file = tmp->vm_file;
737 		if (file) {
738 			struct address_space *mapping = file->f_mapping;
739 
740 			get_file(file);
741 			i_mmap_lock_write(mapping);
742 			if (tmp->vm_flags & VM_SHARED)
743 				mapping_allow_writable(mapping);
744 			flush_dcache_mmap_lock(mapping);
745 			/* insert tmp into the share list, just after mpnt */
746 			vma_interval_tree_insert_after(tmp, mpnt,
747 					&mapping->i_mmap);
748 			flush_dcache_mmap_unlock(mapping);
749 			i_mmap_unlock_write(mapping);
750 		}
751 
752 		/*
753 		 * Copy/update hugetlb private vma information.
754 		 */
755 		if (is_vm_hugetlb_page(tmp))
756 			hugetlb_dup_vma_private(tmp);
757 
758 		/* Link the vma into the MT */
759 		if (vma_iter_bulk_store(&vmi, tmp))
760 			goto fail_nomem_vmi_store;
761 
762 		mm->map_count++;
763 		if (!(tmp->vm_flags & VM_WIPEONFORK))
764 			retval = copy_page_range(tmp, mpnt);
765 
766 		if (tmp->vm_ops && tmp->vm_ops->open)
767 			tmp->vm_ops->open(tmp);
768 
769 		if (retval)
770 			goto loop_out;
771 	}
772 	/* a new mm has just been created */
773 	retval = arch_dup_mmap(oldmm, mm);
774 loop_out:
775 	vma_iter_free(&vmi);
776 	if (!retval)
777 		mt_set_in_rcu(vmi.mas.tree);
778 out:
779 	mmap_write_unlock(mm);
780 	flush_tlb_mm(oldmm);
781 	mmap_write_unlock(oldmm);
782 	dup_userfaultfd_complete(&uf);
783 fail_uprobe_end:
784 	uprobe_end_dup_mmap();
785 	return retval;
786 
787 fail_nomem_vmi_store:
788 	unlink_anon_vmas(tmp);
789 fail_nomem_anon_vma_fork:
790 	mpol_put(vma_policy(tmp));
791 fail_nomem_policy:
792 	vm_area_free(tmp);
793 fail_nomem:
794 	retval = -ENOMEM;
795 	vm_unacct_memory(charge);
796 	goto loop_out;
797 }
798 
mm_alloc_pgd(struct mm_struct * mm)799 static inline int mm_alloc_pgd(struct mm_struct *mm)
800 {
801 	mm->pgd = pgd_alloc(mm);
802 	if (unlikely(!mm->pgd))
803 		return -ENOMEM;
804 	return 0;
805 }
806 
mm_free_pgd(struct mm_struct * mm)807 static inline void mm_free_pgd(struct mm_struct *mm)
808 {
809 	pgd_free(mm, mm->pgd);
810 }
811 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
813 {
814 	mmap_write_lock(oldmm);
815 	dup_mm_exe_file(mm, oldmm);
816 	mmap_write_unlock(oldmm);
817 	return 0;
818 }
819 #define mm_alloc_pgd(mm)	(0)
820 #define mm_free_pgd(mm)
821 #endif /* CONFIG_MMU */
822 
check_mm(struct mm_struct * mm)823 static void check_mm(struct mm_struct *mm)
824 {
825 	int i;
826 
827 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
828 			 "Please make sure 'struct resident_page_types[]' is updated as well");
829 
830 	for (i = 0; i < NR_MM_COUNTERS; i++) {
831 		long x = percpu_counter_sum(&mm->rss_stat[i]);
832 
833 		if (unlikely(x))
834 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
835 				 mm, resident_page_types[i], x);
836 	}
837 
838 	if (mm_pgtables_bytes(mm))
839 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
840 				mm_pgtables_bytes(mm));
841 
842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
843 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
844 #endif
845 }
846 
847 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
848 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
849 
do_check_lazy_tlb(void * arg)850 static void do_check_lazy_tlb(void *arg)
851 {
852 	struct mm_struct *mm = arg;
853 
854 	WARN_ON_ONCE(current->active_mm == mm);
855 }
856 
do_shoot_lazy_tlb(void * arg)857 static void do_shoot_lazy_tlb(void *arg)
858 {
859 	struct mm_struct *mm = arg;
860 
861 	if (current->active_mm == mm) {
862 		WARN_ON_ONCE(current->mm);
863 		current->active_mm = &init_mm;
864 		switch_mm(mm, &init_mm, current);
865 	}
866 }
867 
cleanup_lazy_tlbs(struct mm_struct * mm)868 static void cleanup_lazy_tlbs(struct mm_struct *mm)
869 {
870 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
871 		/*
872 		 * In this case, lazy tlb mms are refounted and would not reach
873 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
874 		 */
875 		return;
876 	}
877 
878 	/*
879 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
880 	 * requires lazy mm users to switch to another mm when the refcount
881 	 * drops to zero, before the mm is freed. This requires IPIs here to
882 	 * switch kernel threads to init_mm.
883 	 *
884 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
885 	 * switch with the final userspace teardown TLB flush which leaves the
886 	 * mm lazy on this CPU but no others, reducing the need for additional
887 	 * IPIs here. There are cases where a final IPI is still required here,
888 	 * such as the final mmdrop being performed on a different CPU than the
889 	 * one exiting, or kernel threads using the mm when userspace exits.
890 	 *
891 	 * IPI overheads have not found to be expensive, but they could be
892 	 * reduced in a number of possible ways, for example (roughly
893 	 * increasing order of complexity):
894 	 * - The last lazy reference created by exit_mm() could instead switch
895 	 *   to init_mm, however it's probable this will run on the same CPU
896 	 *   immediately afterwards, so this may not reduce IPIs much.
897 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
898 	 * - CPUs store active_mm where it can be remotely checked without a
899 	 *   lock, to filter out false-positives in the cpumask.
900 	 * - After mm_users or mm_count reaches zero, switching away from the
901 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
902 	 *   with some batching or delaying of the final IPIs.
903 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
904 	 *   switching to avoid IPIs completely.
905 	 */
906 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
907 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
908 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
909 }
910 
911 /*
912  * Called when the last reference to the mm
913  * is dropped: either by a lazy thread or by
914  * mmput. Free the page directory and the mm.
915  */
__mmdrop(struct mm_struct * mm)916 void __mmdrop(struct mm_struct *mm)
917 {
918 	BUG_ON(mm == &init_mm);
919 	WARN_ON_ONCE(mm == current->mm);
920 
921 	/* Ensure no CPUs are using this as their lazy tlb mm */
922 	cleanup_lazy_tlbs(mm);
923 
924 	WARN_ON_ONCE(mm == current->active_mm);
925 	mm_free_pgd(mm);
926 	destroy_context(mm);
927 	mmu_notifier_subscriptions_destroy(mm);
928 	check_mm(mm);
929 	put_user_ns(mm->user_ns);
930 	mm_pasid_drop(mm);
931 	mm_destroy_cid(mm);
932 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
933 
934 	free_mm(mm);
935 }
936 EXPORT_SYMBOL_GPL(__mmdrop);
937 
mmdrop_async_fn(struct work_struct * work)938 static void mmdrop_async_fn(struct work_struct *work)
939 {
940 	struct mm_struct *mm;
941 
942 	mm = container_of(work, struct mm_struct, async_put_work);
943 	__mmdrop(mm);
944 }
945 
mmdrop_async(struct mm_struct * mm)946 static void mmdrop_async(struct mm_struct *mm)
947 {
948 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
949 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
950 		schedule_work(&mm->async_put_work);
951 	}
952 }
953 
free_signal_struct(struct signal_struct * sig)954 static inline void free_signal_struct(struct signal_struct *sig)
955 {
956 	taskstats_tgid_free(sig);
957 	sched_autogroup_exit(sig);
958 	/*
959 	 * __mmdrop is not safe to call from softirq context on x86 due to
960 	 * pgd_dtor so postpone it to the async context
961 	 */
962 	if (sig->oom_mm)
963 		mmdrop_async(sig->oom_mm);
964 	kmem_cache_free(signal_cachep, sig);
965 }
966 
put_signal_struct(struct signal_struct * sig)967 static inline void put_signal_struct(struct signal_struct *sig)
968 {
969 	if (refcount_dec_and_test(&sig->sigcnt))
970 		free_signal_struct(sig);
971 }
972 
__put_task_struct(struct task_struct * tsk)973 void __put_task_struct(struct task_struct *tsk)
974 {
975 	WARN_ON(!tsk->exit_state);
976 	WARN_ON(refcount_read(&tsk->usage));
977 	WARN_ON(tsk == current);
978 
979 	io_uring_free(tsk);
980 	cgroup_free(tsk);
981 	task_numa_free(tsk, true);
982 	security_task_free(tsk);
983 	exit_creds(tsk);
984 	delayacct_tsk_free(tsk);
985 	put_signal_struct(tsk->signal);
986 	sched_core_free(tsk);
987 	free_task(tsk);
988 }
989 EXPORT_SYMBOL_GPL(__put_task_struct);
990 
__put_task_struct_rcu_cb(struct rcu_head * rhp)991 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
992 {
993 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
994 
995 	__put_task_struct(task);
996 }
997 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
998 
arch_task_cache_init(void)999 void __init __weak arch_task_cache_init(void) { }
1000 
1001 /*
1002  * set_max_threads
1003  */
set_max_threads(unsigned int max_threads_suggested)1004 static void set_max_threads(unsigned int max_threads_suggested)
1005 {
1006 	u64 threads;
1007 	unsigned long nr_pages = totalram_pages();
1008 
1009 	/*
1010 	 * The number of threads shall be limited such that the thread
1011 	 * structures may only consume a small part of the available memory.
1012 	 */
1013 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1014 		threads = MAX_THREADS;
1015 	else
1016 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1017 				    (u64) THREAD_SIZE * 8UL);
1018 
1019 	if (threads > max_threads_suggested)
1020 		threads = max_threads_suggested;
1021 
1022 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1023 }
1024 
1025 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1026 /* Initialized by the architecture: */
1027 int arch_task_struct_size __read_mostly;
1028 #endif
1029 
1030 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1031 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1032 {
1033 	/* Fetch thread_struct whitelist for the architecture. */
1034 	arch_thread_struct_whitelist(offset, size);
1035 
1036 	/*
1037 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1038 	 * adjust offset to position of thread_struct in task_struct.
1039 	 */
1040 	if (unlikely(*size == 0))
1041 		*offset = 0;
1042 	else
1043 		*offset += offsetof(struct task_struct, thread);
1044 }
1045 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1046 
fork_init(void)1047 void __init fork_init(void)
1048 {
1049 	int i;
1050 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1051 #ifndef ARCH_MIN_TASKALIGN
1052 #define ARCH_MIN_TASKALIGN	0
1053 #endif
1054 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1055 	unsigned long useroffset, usersize;
1056 
1057 	/* create a slab on which task_structs can be allocated */
1058 	task_struct_whitelist(&useroffset, &usersize);
1059 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1060 			arch_task_struct_size, align,
1061 			SLAB_PANIC|SLAB_ACCOUNT,
1062 			useroffset, usersize, NULL);
1063 #endif
1064 
1065 	/* do the arch specific task caches init */
1066 	arch_task_cache_init();
1067 
1068 	set_max_threads(MAX_THREADS);
1069 
1070 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1071 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1072 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1073 		init_task.signal->rlim[RLIMIT_NPROC];
1074 
1075 	for (i = 0; i < UCOUNT_COUNTS; i++)
1076 		init_user_ns.ucount_max[i] = max_threads/2;
1077 
1078 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1079 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1080 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1081 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1082 
1083 #ifdef CONFIG_VMAP_STACK
1084 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1085 			  NULL, free_vm_stack_cache);
1086 #endif
1087 
1088 	scs_init();
1089 
1090 	lockdep_init_task(&init_task);
1091 	uprobes_init();
1092 }
1093 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1094 int __weak arch_dup_task_struct(struct task_struct *dst,
1095 					       struct task_struct *src)
1096 {
1097 	*dst = *src;
1098 	return 0;
1099 }
1100 
set_task_stack_end_magic(struct task_struct * tsk)1101 void set_task_stack_end_magic(struct task_struct *tsk)
1102 {
1103 	unsigned long *stackend;
1104 
1105 	stackend = end_of_stack(tsk);
1106 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1107 }
1108 
dup_task_struct(struct task_struct * orig,int node)1109 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1110 {
1111 	struct task_struct *tsk;
1112 	int err;
1113 
1114 	if (node == NUMA_NO_NODE)
1115 		node = tsk_fork_get_node(orig);
1116 	tsk = alloc_task_struct_node(node);
1117 	if (!tsk)
1118 		return NULL;
1119 
1120 	err = arch_dup_task_struct(tsk, orig);
1121 	if (err)
1122 		goto free_tsk;
1123 
1124 	err = alloc_thread_stack_node(tsk, node);
1125 	if (err)
1126 		goto free_tsk;
1127 
1128 #ifdef CONFIG_THREAD_INFO_IN_TASK
1129 	refcount_set(&tsk->stack_refcount, 1);
1130 #endif
1131 	account_kernel_stack(tsk, 1);
1132 
1133 	err = scs_prepare(tsk, node);
1134 	if (err)
1135 		goto free_stack;
1136 
1137 #ifdef CONFIG_SECCOMP
1138 	/*
1139 	 * We must handle setting up seccomp filters once we're under
1140 	 * the sighand lock in case orig has changed between now and
1141 	 * then. Until then, filter must be NULL to avoid messing up
1142 	 * the usage counts on the error path calling free_task.
1143 	 */
1144 	tsk->seccomp.filter = NULL;
1145 #endif
1146 
1147 	setup_thread_stack(tsk, orig);
1148 	clear_user_return_notifier(tsk);
1149 	clear_tsk_need_resched(tsk);
1150 	set_task_stack_end_magic(tsk);
1151 	clear_syscall_work_syscall_user_dispatch(tsk);
1152 
1153 #ifdef CONFIG_STACKPROTECTOR
1154 	tsk->stack_canary = get_random_canary();
1155 #endif
1156 	if (orig->cpus_ptr == &orig->cpus_mask)
1157 		tsk->cpus_ptr = &tsk->cpus_mask;
1158 	dup_user_cpus_ptr(tsk, orig, node);
1159 
1160 	/*
1161 	 * One for the user space visible state that goes away when reaped.
1162 	 * One for the scheduler.
1163 	 */
1164 	refcount_set(&tsk->rcu_users, 2);
1165 	/* One for the rcu users */
1166 	refcount_set(&tsk->usage, 1);
1167 #ifdef CONFIG_BLK_DEV_IO_TRACE
1168 	tsk->btrace_seq = 0;
1169 #endif
1170 	tsk->splice_pipe = NULL;
1171 	tsk->task_frag.page = NULL;
1172 	tsk->wake_q.next = NULL;
1173 	tsk->worker_private = NULL;
1174 
1175 	kcov_task_init(tsk);
1176 	kmsan_task_create(tsk);
1177 	kmap_local_fork(tsk);
1178 
1179 #ifdef CONFIG_FAULT_INJECTION
1180 	tsk->fail_nth = 0;
1181 #endif
1182 
1183 #ifdef CONFIG_BLK_CGROUP
1184 	tsk->throttle_disk = NULL;
1185 	tsk->use_memdelay = 0;
1186 #endif
1187 
1188 #ifdef CONFIG_IOMMU_SVA
1189 	tsk->pasid_activated = 0;
1190 #endif
1191 
1192 #ifdef CONFIG_MEMCG
1193 	tsk->active_memcg = NULL;
1194 #endif
1195 
1196 #ifdef CONFIG_CPU_SUP_INTEL
1197 	tsk->reported_split_lock = 0;
1198 #endif
1199 
1200 #ifdef CONFIG_SCHED_MM_CID
1201 	tsk->mm_cid = -1;
1202 	tsk->last_mm_cid = -1;
1203 	tsk->mm_cid_active = 0;
1204 	tsk->migrate_from_cpu = -1;
1205 #endif
1206 	return tsk;
1207 
1208 free_stack:
1209 	exit_task_stack_account(tsk);
1210 	free_thread_stack(tsk);
1211 free_tsk:
1212 	free_task_struct(tsk);
1213 	return NULL;
1214 }
1215 
1216 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1217 
1218 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1219 
coredump_filter_setup(char * s)1220 static int __init coredump_filter_setup(char *s)
1221 {
1222 	default_dump_filter =
1223 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1224 		MMF_DUMP_FILTER_MASK;
1225 	return 1;
1226 }
1227 
1228 __setup("coredump_filter=", coredump_filter_setup);
1229 
1230 #include <linux/init_task.h>
1231 
mm_init_aio(struct mm_struct * mm)1232 static void mm_init_aio(struct mm_struct *mm)
1233 {
1234 #ifdef CONFIG_AIO
1235 	spin_lock_init(&mm->ioctx_lock);
1236 	mm->ioctx_table = NULL;
1237 #endif
1238 }
1239 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1240 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1241 					   struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244 	if (mm->owner == p)
1245 		WRITE_ONCE(mm->owner, NULL);
1246 #endif
1247 }
1248 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1249 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1250 {
1251 #ifdef CONFIG_MEMCG
1252 	mm->owner = p;
1253 #endif
1254 }
1255 
mm_init_uprobes_state(struct mm_struct * mm)1256 static void mm_init_uprobes_state(struct mm_struct *mm)
1257 {
1258 #ifdef CONFIG_UPROBES
1259 	mm->uprobes_state.xol_area = NULL;
1260 #endif
1261 }
1262 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1263 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1264 	struct user_namespace *user_ns)
1265 {
1266 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1267 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1268 	atomic_set(&mm->mm_users, 1);
1269 	atomic_set(&mm->mm_count, 1);
1270 	seqcount_init(&mm->write_protect_seq);
1271 	mmap_init_lock(mm);
1272 	INIT_LIST_HEAD(&mm->mmlist);
1273 #ifdef CONFIG_PER_VMA_LOCK
1274 	mm->mm_lock_seq = 0;
1275 #endif
1276 	mm_pgtables_bytes_init(mm);
1277 	mm->map_count = 0;
1278 	mm->locked_vm = 0;
1279 	atomic64_set(&mm->pinned_vm, 0);
1280 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1281 	spin_lock_init(&mm->page_table_lock);
1282 	spin_lock_init(&mm->arg_lock);
1283 	mm_init_cpumask(mm);
1284 	mm_init_aio(mm);
1285 	mm_init_owner(mm, p);
1286 	mm_pasid_init(mm);
1287 	RCU_INIT_POINTER(mm->exe_file, NULL);
1288 	mmu_notifier_subscriptions_init(mm);
1289 	init_tlb_flush_pending(mm);
1290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1291 	mm->pmd_huge_pte = NULL;
1292 #endif
1293 	mm_init_uprobes_state(mm);
1294 	hugetlb_count_init(mm);
1295 
1296 	if (current->mm) {
1297 		mm->flags = mmf_init_flags(current->mm->flags);
1298 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1299 	} else {
1300 		mm->flags = default_dump_filter;
1301 		mm->def_flags = 0;
1302 	}
1303 
1304 	if (mm_alloc_pgd(mm))
1305 		goto fail_nopgd;
1306 
1307 	if (init_new_context(p, mm))
1308 		goto fail_nocontext;
1309 
1310 	if (mm_alloc_cid(mm))
1311 		goto fail_cid;
1312 
1313 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1314 				     NR_MM_COUNTERS))
1315 		goto fail_pcpu;
1316 
1317 	mm->user_ns = get_user_ns(user_ns);
1318 	lru_gen_init_mm(mm);
1319 	return mm;
1320 
1321 fail_pcpu:
1322 	mm_destroy_cid(mm);
1323 fail_cid:
1324 	destroy_context(mm);
1325 fail_nocontext:
1326 	mm_free_pgd(mm);
1327 fail_nopgd:
1328 	free_mm(mm);
1329 	return NULL;
1330 }
1331 
1332 /*
1333  * Allocate and initialize an mm_struct.
1334  */
mm_alloc(void)1335 struct mm_struct *mm_alloc(void)
1336 {
1337 	struct mm_struct *mm;
1338 
1339 	mm = allocate_mm();
1340 	if (!mm)
1341 		return NULL;
1342 
1343 	memset(mm, 0, sizeof(*mm));
1344 	return mm_init(mm, current, current_user_ns());
1345 }
1346 
__mmput(struct mm_struct * mm)1347 static inline void __mmput(struct mm_struct *mm)
1348 {
1349 	VM_BUG_ON(atomic_read(&mm->mm_users));
1350 
1351 	uprobe_clear_state(mm);
1352 	exit_aio(mm);
1353 	ksm_exit(mm);
1354 	khugepaged_exit(mm); /* must run before exit_mmap */
1355 	exit_mmap(mm);
1356 	mm_put_huge_zero_page(mm);
1357 	set_mm_exe_file(mm, NULL);
1358 	if (!list_empty(&mm->mmlist)) {
1359 		spin_lock(&mmlist_lock);
1360 		list_del(&mm->mmlist);
1361 		spin_unlock(&mmlist_lock);
1362 	}
1363 	if (mm->binfmt)
1364 		module_put(mm->binfmt->module);
1365 	lru_gen_del_mm(mm);
1366 	mmdrop(mm);
1367 }
1368 
1369 /*
1370  * Decrement the use count and release all resources for an mm.
1371  */
mmput(struct mm_struct * mm)1372 void mmput(struct mm_struct *mm)
1373 {
1374 	might_sleep();
1375 
1376 	if (atomic_dec_and_test(&mm->mm_users))
1377 		__mmput(mm);
1378 }
1379 EXPORT_SYMBOL_GPL(mmput);
1380 
1381 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1382 static void mmput_async_fn(struct work_struct *work)
1383 {
1384 	struct mm_struct *mm = container_of(work, struct mm_struct,
1385 					    async_put_work);
1386 
1387 	__mmput(mm);
1388 }
1389 
mmput_async(struct mm_struct * mm)1390 void mmput_async(struct mm_struct *mm)
1391 {
1392 	if (atomic_dec_and_test(&mm->mm_users)) {
1393 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1394 		schedule_work(&mm->async_put_work);
1395 	}
1396 }
1397 EXPORT_SYMBOL_GPL(mmput_async);
1398 #endif
1399 
1400 /**
1401  * set_mm_exe_file - change a reference to the mm's executable file
1402  *
1403  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1404  *
1405  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1406  * invocations: in mmput() nobody alive left, in execve it happens before
1407  * the new mm is made visible to anyone.
1408  *
1409  * Can only fail if new_exe_file != NULL.
1410  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1412 {
1413 	struct file *old_exe_file;
1414 
1415 	/*
1416 	 * It is safe to dereference the exe_file without RCU as
1417 	 * this function is only called if nobody else can access
1418 	 * this mm -- see comment above for justification.
1419 	 */
1420 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1421 
1422 	if (new_exe_file) {
1423 		/*
1424 		 * We expect the caller (i.e., sys_execve) to already denied
1425 		 * write access, so this is unlikely to fail.
1426 		 */
1427 		if (unlikely(deny_write_access(new_exe_file)))
1428 			return -EACCES;
1429 		get_file(new_exe_file);
1430 	}
1431 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1432 	if (old_exe_file) {
1433 		allow_write_access(old_exe_file);
1434 		fput(old_exe_file);
1435 	}
1436 	return 0;
1437 }
1438 
1439 /**
1440  * replace_mm_exe_file - replace a reference to the mm's executable file
1441  *
1442  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1443  *
1444  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1445  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1446 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1447 {
1448 	struct vm_area_struct *vma;
1449 	struct file *old_exe_file;
1450 	int ret = 0;
1451 
1452 	/* Forbid mm->exe_file change if old file still mapped. */
1453 	old_exe_file = get_mm_exe_file(mm);
1454 	if (old_exe_file) {
1455 		VMA_ITERATOR(vmi, mm, 0);
1456 		mmap_read_lock(mm);
1457 		for_each_vma(vmi, vma) {
1458 			if (!vma->vm_file)
1459 				continue;
1460 			if (path_equal(&vma->vm_file->f_path,
1461 				       &old_exe_file->f_path)) {
1462 				ret = -EBUSY;
1463 				break;
1464 			}
1465 		}
1466 		mmap_read_unlock(mm);
1467 		fput(old_exe_file);
1468 		if (ret)
1469 			return ret;
1470 	}
1471 
1472 	ret = deny_write_access(new_exe_file);
1473 	if (ret)
1474 		return -EACCES;
1475 	get_file(new_exe_file);
1476 
1477 	/* set the new file */
1478 	mmap_write_lock(mm);
1479 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1480 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1481 	mmap_write_unlock(mm);
1482 
1483 	if (old_exe_file) {
1484 		allow_write_access(old_exe_file);
1485 		fput(old_exe_file);
1486 	}
1487 	return 0;
1488 }
1489 
1490 /**
1491  * get_mm_exe_file - acquire a reference to the mm's executable file
1492  *
1493  * Returns %NULL if mm has no associated executable file.
1494  * User must release file via fput().
1495  */
get_mm_exe_file(struct mm_struct * mm)1496 struct file *get_mm_exe_file(struct mm_struct *mm)
1497 {
1498 	struct file *exe_file;
1499 
1500 	rcu_read_lock();
1501 	exe_file = rcu_dereference(mm->exe_file);
1502 	if (exe_file && !get_file_rcu(exe_file))
1503 		exe_file = NULL;
1504 	rcu_read_unlock();
1505 	return exe_file;
1506 }
1507 
1508 /**
1509  * get_task_exe_file - acquire a reference to the task's executable file
1510  *
1511  * Returns %NULL if task's mm (if any) has no associated executable file or
1512  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1513  * User must release file via fput().
1514  */
get_task_exe_file(struct task_struct * task)1515 struct file *get_task_exe_file(struct task_struct *task)
1516 {
1517 	struct file *exe_file = NULL;
1518 	struct mm_struct *mm;
1519 
1520 	task_lock(task);
1521 	mm = task->mm;
1522 	if (mm) {
1523 		if (!(task->flags & PF_KTHREAD))
1524 			exe_file = get_mm_exe_file(mm);
1525 	}
1526 	task_unlock(task);
1527 	return exe_file;
1528 }
1529 
1530 /**
1531  * get_task_mm - acquire a reference to the task's mm
1532  *
1533  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1534  * this kernel workthread has transiently adopted a user mm with use_mm,
1535  * to do its AIO) is not set and if so returns a reference to it, after
1536  * bumping up the use count.  User must release the mm via mmput()
1537  * after use.  Typically used by /proc and ptrace.
1538  */
get_task_mm(struct task_struct * task)1539 struct mm_struct *get_task_mm(struct task_struct *task)
1540 {
1541 	struct mm_struct *mm;
1542 
1543 	task_lock(task);
1544 	mm = task->mm;
1545 	if (mm) {
1546 		if (task->flags & PF_KTHREAD)
1547 			mm = NULL;
1548 		else
1549 			mmget(mm);
1550 	}
1551 	task_unlock(task);
1552 	return mm;
1553 }
1554 EXPORT_SYMBOL_GPL(get_task_mm);
1555 
mm_access(struct task_struct * task,unsigned int mode)1556 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1557 {
1558 	struct mm_struct *mm;
1559 	int err;
1560 
1561 	err =  down_read_killable(&task->signal->exec_update_lock);
1562 	if (err)
1563 		return ERR_PTR(err);
1564 
1565 	mm = get_task_mm(task);
1566 	if (mm && mm != current->mm &&
1567 			!ptrace_may_access(task, mode)) {
1568 		mmput(mm);
1569 		mm = ERR_PTR(-EACCES);
1570 	}
1571 	up_read(&task->signal->exec_update_lock);
1572 
1573 	return mm;
1574 }
1575 
complete_vfork_done(struct task_struct * tsk)1576 static void complete_vfork_done(struct task_struct *tsk)
1577 {
1578 	struct completion *vfork;
1579 
1580 	task_lock(tsk);
1581 	vfork = tsk->vfork_done;
1582 	if (likely(vfork)) {
1583 		tsk->vfork_done = NULL;
1584 		complete(vfork);
1585 	}
1586 	task_unlock(tsk);
1587 }
1588 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1589 static int wait_for_vfork_done(struct task_struct *child,
1590 				struct completion *vfork)
1591 {
1592 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1593 	int killed;
1594 
1595 	cgroup_enter_frozen();
1596 	killed = wait_for_completion_state(vfork, state);
1597 	cgroup_leave_frozen(false);
1598 
1599 	if (killed) {
1600 		task_lock(child);
1601 		child->vfork_done = NULL;
1602 		task_unlock(child);
1603 	}
1604 
1605 	put_task_struct(child);
1606 	return killed;
1607 }
1608 
1609 /* Please note the differences between mmput and mm_release.
1610  * mmput is called whenever we stop holding onto a mm_struct,
1611  * error success whatever.
1612  *
1613  * mm_release is called after a mm_struct has been removed
1614  * from the current process.
1615  *
1616  * This difference is important for error handling, when we
1617  * only half set up a mm_struct for a new process and need to restore
1618  * the old one.  Because we mmput the new mm_struct before
1619  * restoring the old one. . .
1620  * Eric Biederman 10 January 1998
1621  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1622 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1623 {
1624 	uprobe_free_utask(tsk);
1625 
1626 	/* Get rid of any cached register state */
1627 	deactivate_mm(tsk, mm);
1628 
1629 	/*
1630 	 * Signal userspace if we're not exiting with a core dump
1631 	 * because we want to leave the value intact for debugging
1632 	 * purposes.
1633 	 */
1634 	if (tsk->clear_child_tid) {
1635 		if (atomic_read(&mm->mm_users) > 1) {
1636 			/*
1637 			 * We don't check the error code - if userspace has
1638 			 * not set up a proper pointer then tough luck.
1639 			 */
1640 			put_user(0, tsk->clear_child_tid);
1641 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1642 					1, NULL, NULL, 0, 0);
1643 		}
1644 		tsk->clear_child_tid = NULL;
1645 	}
1646 
1647 	/*
1648 	 * All done, finally we can wake up parent and return this mm to him.
1649 	 * Also kthread_stop() uses this completion for synchronization.
1650 	 */
1651 	if (tsk->vfork_done)
1652 		complete_vfork_done(tsk);
1653 }
1654 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1655 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1656 {
1657 	futex_exit_release(tsk);
1658 	mm_release(tsk, mm);
1659 }
1660 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1661 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1662 {
1663 	futex_exec_release(tsk);
1664 	mm_release(tsk, mm);
1665 }
1666 
1667 /**
1668  * dup_mm() - duplicates an existing mm structure
1669  * @tsk: the task_struct with which the new mm will be associated.
1670  * @oldmm: the mm to duplicate.
1671  *
1672  * Allocates a new mm structure and duplicates the provided @oldmm structure
1673  * content into it.
1674  *
1675  * Return: the duplicated mm or NULL on failure.
1676  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1677 static struct mm_struct *dup_mm(struct task_struct *tsk,
1678 				struct mm_struct *oldmm)
1679 {
1680 	struct mm_struct *mm;
1681 	int err;
1682 
1683 	mm = allocate_mm();
1684 	if (!mm)
1685 		goto fail_nomem;
1686 
1687 	memcpy(mm, oldmm, sizeof(*mm));
1688 
1689 	if (!mm_init(mm, tsk, mm->user_ns))
1690 		goto fail_nomem;
1691 
1692 	err = dup_mmap(mm, oldmm);
1693 	if (err)
1694 		goto free_pt;
1695 
1696 	mm->hiwater_rss = get_mm_rss(mm);
1697 	mm->hiwater_vm = mm->total_vm;
1698 
1699 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700 		goto free_pt;
1701 
1702 	return mm;
1703 
1704 free_pt:
1705 	/* don't put binfmt in mmput, we haven't got module yet */
1706 	mm->binfmt = NULL;
1707 	mm_init_owner(mm, NULL);
1708 	mmput(mm);
1709 
1710 fail_nomem:
1711 	return NULL;
1712 }
1713 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1714 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1715 {
1716 	struct mm_struct *mm, *oldmm;
1717 
1718 	tsk->min_flt = tsk->maj_flt = 0;
1719 	tsk->nvcsw = tsk->nivcsw = 0;
1720 #ifdef CONFIG_DETECT_HUNG_TASK
1721 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1722 	tsk->last_switch_time = 0;
1723 #endif
1724 
1725 	tsk->mm = NULL;
1726 	tsk->active_mm = NULL;
1727 
1728 	/*
1729 	 * Are we cloning a kernel thread?
1730 	 *
1731 	 * We need to steal a active VM for that..
1732 	 */
1733 	oldmm = current->mm;
1734 	if (!oldmm)
1735 		return 0;
1736 
1737 	if (clone_flags & CLONE_VM) {
1738 		mmget(oldmm);
1739 		mm = oldmm;
1740 	} else {
1741 		mm = dup_mm(tsk, current->mm);
1742 		if (!mm)
1743 			return -ENOMEM;
1744 	}
1745 
1746 	tsk->mm = mm;
1747 	tsk->active_mm = mm;
1748 	sched_mm_cid_fork(tsk);
1749 	return 0;
1750 }
1751 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1752 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1753 {
1754 	struct fs_struct *fs = current->fs;
1755 	if (clone_flags & CLONE_FS) {
1756 		/* tsk->fs is already what we want */
1757 		spin_lock(&fs->lock);
1758 		if (fs->in_exec) {
1759 			spin_unlock(&fs->lock);
1760 			return -EAGAIN;
1761 		}
1762 		fs->users++;
1763 		spin_unlock(&fs->lock);
1764 		return 0;
1765 	}
1766 	tsk->fs = copy_fs_struct(fs);
1767 	if (!tsk->fs)
1768 		return -ENOMEM;
1769 	return 0;
1770 }
1771 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1773 		      int no_files)
1774 {
1775 	struct files_struct *oldf, *newf;
1776 
1777 	/*
1778 	 * A background process may not have any files ...
1779 	 */
1780 	oldf = current->files;
1781 	if (!oldf)
1782 		return 0;
1783 
1784 	if (no_files) {
1785 		tsk->files = NULL;
1786 		return 0;
1787 	}
1788 
1789 	if (clone_flags & CLONE_FILES) {
1790 		atomic_inc(&oldf->count);
1791 		return 0;
1792 	}
1793 
1794 	newf = dup_fd(oldf, NULL);
1795 	if (IS_ERR(newf))
1796 		return PTR_ERR(newf);
1797 
1798 	tsk->files = newf;
1799 	return 0;
1800 }
1801 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803 {
1804 	struct sighand_struct *sig;
1805 
1806 	if (clone_flags & CLONE_SIGHAND) {
1807 		refcount_inc(&current->sighand->count);
1808 		return 0;
1809 	}
1810 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811 	RCU_INIT_POINTER(tsk->sighand, sig);
1812 	if (!sig)
1813 		return -ENOMEM;
1814 
1815 	refcount_set(&sig->count, 1);
1816 	spin_lock_irq(&current->sighand->siglock);
1817 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818 	spin_unlock_irq(&current->sighand->siglock);
1819 
1820 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1822 		flush_signal_handlers(tsk, 0);
1823 
1824 	return 0;
1825 }
1826 
__cleanup_sighand(struct sighand_struct * sighand)1827 void __cleanup_sighand(struct sighand_struct *sighand)
1828 {
1829 	if (refcount_dec_and_test(&sighand->count)) {
1830 		signalfd_cleanup(sighand);
1831 		/*
1832 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833 		 * without an RCU grace period, see __lock_task_sighand().
1834 		 */
1835 		kmem_cache_free(sighand_cachep, sighand);
1836 	}
1837 }
1838 
1839 /*
1840  * Initialize POSIX timer handling for a thread group.
1841  */
posix_cpu_timers_init_group(struct signal_struct * sig)1842 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843 {
1844 	struct posix_cputimers *pct = &sig->posix_cputimers;
1845 	unsigned long cpu_limit;
1846 
1847 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848 	posix_cputimers_group_init(pct, cpu_limit);
1849 }
1850 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852 {
1853 	struct signal_struct *sig;
1854 
1855 	if (clone_flags & CLONE_THREAD)
1856 		return 0;
1857 
1858 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859 	tsk->signal = sig;
1860 	if (!sig)
1861 		return -ENOMEM;
1862 
1863 	sig->nr_threads = 1;
1864 	sig->quick_threads = 1;
1865 	atomic_set(&sig->live, 1);
1866 	refcount_set(&sig->sigcnt, 1);
1867 
1868 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871 
1872 	init_waitqueue_head(&sig->wait_chldexit);
1873 	sig->curr_target = tsk;
1874 	init_sigpending(&sig->shared_pending);
1875 	INIT_HLIST_HEAD(&sig->multiprocess);
1876 	seqlock_init(&sig->stats_lock);
1877 	prev_cputime_init(&sig->prev_cputime);
1878 
1879 #ifdef CONFIG_POSIX_TIMERS
1880 	INIT_LIST_HEAD(&sig->posix_timers);
1881 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882 	sig->real_timer.function = it_real_fn;
1883 #endif
1884 
1885 	task_lock(current->group_leader);
1886 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887 	task_unlock(current->group_leader);
1888 
1889 	posix_cpu_timers_init_group(sig);
1890 
1891 	tty_audit_fork(sig);
1892 	sched_autogroup_fork(sig);
1893 
1894 	sig->oom_score_adj = current->signal->oom_score_adj;
1895 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896 
1897 	mutex_init(&sig->cred_guard_mutex);
1898 	init_rwsem(&sig->exec_update_lock);
1899 
1900 	return 0;
1901 }
1902 
copy_seccomp(struct task_struct * p)1903 static void copy_seccomp(struct task_struct *p)
1904 {
1905 #ifdef CONFIG_SECCOMP
1906 	/*
1907 	 * Must be called with sighand->lock held, which is common to
1908 	 * all threads in the group. Holding cred_guard_mutex is not
1909 	 * needed because this new task is not yet running and cannot
1910 	 * be racing exec.
1911 	 */
1912 	assert_spin_locked(&current->sighand->siglock);
1913 
1914 	/* Ref-count the new filter user, and assign it. */
1915 	get_seccomp_filter(current);
1916 	p->seccomp = current->seccomp;
1917 
1918 	/*
1919 	 * Explicitly enable no_new_privs here in case it got set
1920 	 * between the task_struct being duplicated and holding the
1921 	 * sighand lock. The seccomp state and nnp must be in sync.
1922 	 */
1923 	if (task_no_new_privs(current))
1924 		task_set_no_new_privs(p);
1925 
1926 	/*
1927 	 * If the parent gained a seccomp mode after copying thread
1928 	 * flags and between before we held the sighand lock, we have
1929 	 * to manually enable the seccomp thread flag here.
1930 	 */
1931 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932 		set_task_syscall_work(p, SECCOMP);
1933 #endif
1934 }
1935 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937 {
1938 	current->clear_child_tid = tidptr;
1939 
1940 	return task_pid_vnr(current);
1941 }
1942 
rt_mutex_init_task(struct task_struct * p)1943 static void rt_mutex_init_task(struct task_struct *p)
1944 {
1945 	raw_spin_lock_init(&p->pi_lock);
1946 #ifdef CONFIG_RT_MUTEXES
1947 	p->pi_waiters = RB_ROOT_CACHED;
1948 	p->pi_top_task = NULL;
1949 	p->pi_blocked_on = NULL;
1950 #endif
1951 }
1952 
init_task_pid_links(struct task_struct * task)1953 static inline void init_task_pid_links(struct task_struct *task)
1954 {
1955 	enum pid_type type;
1956 
1957 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958 		INIT_HLIST_NODE(&task->pid_links[type]);
1959 }
1960 
1961 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963 {
1964 	if (type == PIDTYPE_PID)
1965 		task->thread_pid = pid;
1966 	else
1967 		task->signal->pids[type] = pid;
1968 }
1969 
rcu_copy_process(struct task_struct * p)1970 static inline void rcu_copy_process(struct task_struct *p)
1971 {
1972 #ifdef CONFIG_PREEMPT_RCU
1973 	p->rcu_read_lock_nesting = 0;
1974 	p->rcu_read_unlock_special.s = 0;
1975 	p->rcu_blocked_node = NULL;
1976 	INIT_LIST_HEAD(&p->rcu_node_entry);
1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1978 #ifdef CONFIG_TASKS_RCU
1979 	p->rcu_tasks_holdout = false;
1980 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981 	p->rcu_tasks_idle_cpu = -1;
1982 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1983 #endif /* #ifdef CONFIG_TASKS_RCU */
1984 #ifdef CONFIG_TASKS_TRACE_RCU
1985 	p->trc_reader_nesting = 0;
1986 	p->trc_reader_special.s = 0;
1987 	INIT_LIST_HEAD(&p->trc_holdout_list);
1988 	INIT_LIST_HEAD(&p->trc_blkd_node);
1989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1990 }
1991 
pidfd_pid(const struct file * file)1992 struct pid *pidfd_pid(const struct file *file)
1993 {
1994 	if (file->f_op == &pidfd_fops)
1995 		return file->private_data;
1996 
1997 	return ERR_PTR(-EBADF);
1998 }
1999 
pidfd_release(struct inode * inode,struct file * file)2000 static int pidfd_release(struct inode *inode, struct file *file)
2001 {
2002 	struct pid *pid = file->private_data;
2003 
2004 	file->private_data = NULL;
2005 	put_pid(pid);
2006 	return 0;
2007 }
2008 
2009 #ifdef CONFIG_PROC_FS
2010 /**
2011  * pidfd_show_fdinfo - print information about a pidfd
2012  * @m: proc fdinfo file
2013  * @f: file referencing a pidfd
2014  *
2015  * Pid:
2016  * This function will print the pid that a given pidfd refers to in the
2017  * pid namespace of the procfs instance.
2018  * If the pid namespace of the process is not a descendant of the pid
2019  * namespace of the procfs instance 0 will be shown as its pid. This is
2020  * similar to calling getppid() on a process whose parent is outside of
2021  * its pid namespace.
2022  *
2023  * NSpid:
2024  * If pid namespaces are supported then this function will also print
2025  * the pid of a given pidfd refers to for all descendant pid namespaces
2026  * starting from the current pid namespace of the instance, i.e. the
2027  * Pid field and the first entry in the NSpid field will be identical.
2028  * If the pid namespace of the process is not a descendant of the pid
2029  * namespace of the procfs instance 0 will be shown as its first NSpid
2030  * entry and no others will be shown.
2031  * Note that this differs from the Pid and NSpid fields in
2032  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2033  * the  pid namespace of the procfs instance. The difference becomes
2034  * obvious when sending around a pidfd between pid namespaces from a
2035  * different branch of the tree, i.e. where no ancestral relation is
2036  * present between the pid namespaces:
2037  * - create two new pid namespaces ns1 and ns2 in the initial pid
2038  *   namespace (also take care to create new mount namespaces in the
2039  *   new pid namespace and mount procfs)
2040  * - create a process with a pidfd in ns1
2041  * - send pidfd from ns1 to ns2
2042  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2043  *   have exactly one entry, which is 0
2044  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2045 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2046 {
2047 	struct pid *pid = f->private_data;
2048 	struct pid_namespace *ns;
2049 	pid_t nr = -1;
2050 
2051 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2052 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2053 		nr = pid_nr_ns(pid, ns);
2054 	}
2055 
2056 	seq_put_decimal_ll(m, "Pid:\t", nr);
2057 
2058 #ifdef CONFIG_PID_NS
2059 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2060 	if (nr > 0) {
2061 		int i;
2062 
2063 		/* If nr is non-zero it means that 'pid' is valid and that
2064 		 * ns, i.e. the pid namespace associated with the procfs
2065 		 * instance, is in the pid namespace hierarchy of pid.
2066 		 * Start at one below the already printed level.
2067 		 */
2068 		for (i = ns->level + 1; i <= pid->level; i++)
2069 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2070 	}
2071 #endif
2072 	seq_putc(m, '\n');
2073 }
2074 #endif
2075 
2076 /*
2077  * Poll support for process exit notification.
2078  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2079 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2080 {
2081 	struct pid *pid = file->private_data;
2082 	__poll_t poll_flags = 0;
2083 
2084 	poll_wait(file, &pid->wait_pidfd, pts);
2085 
2086 	/*
2087 	 * Inform pollers only when the whole thread group exits.
2088 	 * If the thread group leader exits before all other threads in the
2089 	 * group, then poll(2) should block, similar to the wait(2) family.
2090 	 */
2091 	if (thread_group_exited(pid))
2092 		poll_flags = EPOLLIN | EPOLLRDNORM;
2093 
2094 	return poll_flags;
2095 }
2096 
2097 const struct file_operations pidfd_fops = {
2098 	.release = pidfd_release,
2099 	.poll = pidfd_poll,
2100 #ifdef CONFIG_PROC_FS
2101 	.show_fdinfo = pidfd_show_fdinfo,
2102 #endif
2103 };
2104 
2105 /**
2106  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2107  * @pid:   the struct pid for which to create a pidfd
2108  * @flags: flags of the new @pidfd
2109  * @pidfd: the pidfd to return
2110  *
2111  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2112  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2113 
2114  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2115  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2116  * pidfd file are prepared.
2117  *
2118  * If this function returns successfully the caller is responsible to either
2119  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2120  * order to install the pidfd into its file descriptor table or they must use
2121  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2122  * respectively.
2123  *
2124  * This function is useful when a pidfd must already be reserved but there
2125  * might still be points of failure afterwards and the caller wants to ensure
2126  * that no pidfd is leaked into its file descriptor table.
2127  *
2128  * Return: On success, a reserved pidfd is returned from the function and a new
2129  *         pidfd file is returned in the last argument to the function. On
2130  *         error, a negative error code is returned from the function and the
2131  *         last argument remains unchanged.
2132  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2133 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2134 {
2135 	int pidfd;
2136 	struct file *pidfd_file;
2137 
2138 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2139 		return -EINVAL;
2140 
2141 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2142 	if (pidfd < 0)
2143 		return pidfd;
2144 
2145 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2146 					flags | O_RDWR | O_CLOEXEC);
2147 	if (IS_ERR(pidfd_file)) {
2148 		put_unused_fd(pidfd);
2149 		return PTR_ERR(pidfd_file);
2150 	}
2151 	get_pid(pid); /* held by pidfd_file now */
2152 	*ret = pidfd_file;
2153 	return pidfd;
2154 }
2155 
2156 /**
2157  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2158  * @pid:   the struct pid for which to create a pidfd
2159  * @flags: flags of the new @pidfd
2160  * @pidfd: the pidfd to return
2161  *
2162  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2163  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2164  *
2165  * The helper verifies that @pid is used as a thread group leader.
2166  *
2167  * If this function returns successfully the caller is responsible to either
2168  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2169  * order to install the pidfd into its file descriptor table or they must use
2170  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2171  * respectively.
2172  *
2173  * This function is useful when a pidfd must already be reserved but there
2174  * might still be points of failure afterwards and the caller wants to ensure
2175  * that no pidfd is leaked into its file descriptor table.
2176  *
2177  * Return: On success, a reserved pidfd is returned from the function and a new
2178  *         pidfd file is returned in the last argument to the function. On
2179  *         error, a negative error code is returned from the function and the
2180  *         last argument remains unchanged.
2181  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2182 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2183 {
2184 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2185 		return -EINVAL;
2186 
2187 	return __pidfd_prepare(pid, flags, ret);
2188 }
2189 
__delayed_free_task(struct rcu_head * rhp)2190 static void __delayed_free_task(struct rcu_head *rhp)
2191 {
2192 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2193 
2194 	free_task(tsk);
2195 }
2196 
delayed_free_task(struct task_struct * tsk)2197 static __always_inline void delayed_free_task(struct task_struct *tsk)
2198 {
2199 	if (IS_ENABLED(CONFIG_MEMCG))
2200 		call_rcu(&tsk->rcu, __delayed_free_task);
2201 	else
2202 		free_task(tsk);
2203 }
2204 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2205 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2206 {
2207 	/* Skip if kernel thread */
2208 	if (!tsk->mm)
2209 		return;
2210 
2211 	/* Skip if spawning a thread or using vfork */
2212 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2213 		return;
2214 
2215 	/* We need to synchronize with __set_oom_adj */
2216 	mutex_lock(&oom_adj_mutex);
2217 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2218 	/* Update the values in case they were changed after copy_signal */
2219 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2220 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2221 	mutex_unlock(&oom_adj_mutex);
2222 }
2223 
2224 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2225 static void rv_task_fork(struct task_struct *p)
2226 {
2227 	int i;
2228 
2229 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2230 		p->rv[i].da_mon.monitoring = false;
2231 }
2232 #else
2233 #define rv_task_fork(p) do {} while (0)
2234 #endif
2235 
2236 /*
2237  * This creates a new process as a copy of the old one,
2238  * but does not actually start it yet.
2239  *
2240  * It copies the registers, and all the appropriate
2241  * parts of the process environment (as per the clone
2242  * flags). The actual kick-off is left to the caller.
2243  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2244 __latent_entropy struct task_struct *copy_process(
2245 					struct pid *pid,
2246 					int trace,
2247 					int node,
2248 					struct kernel_clone_args *args)
2249 {
2250 	int pidfd = -1, retval;
2251 	struct task_struct *p;
2252 	struct multiprocess_signals delayed;
2253 	struct file *pidfile = NULL;
2254 	const u64 clone_flags = args->flags;
2255 	struct nsproxy *nsp = current->nsproxy;
2256 
2257 	/*
2258 	 * Don't allow sharing the root directory with processes in a different
2259 	 * namespace
2260 	 */
2261 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2262 		return ERR_PTR(-EINVAL);
2263 
2264 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2265 		return ERR_PTR(-EINVAL);
2266 
2267 	/*
2268 	 * Thread groups must share signals as well, and detached threads
2269 	 * can only be started up within the thread group.
2270 	 */
2271 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2272 		return ERR_PTR(-EINVAL);
2273 
2274 	/*
2275 	 * Shared signal handlers imply shared VM. By way of the above,
2276 	 * thread groups also imply shared VM. Blocking this case allows
2277 	 * for various simplifications in other code.
2278 	 */
2279 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2280 		return ERR_PTR(-EINVAL);
2281 
2282 	/*
2283 	 * Siblings of global init remain as zombies on exit since they are
2284 	 * not reaped by their parent (swapper). To solve this and to avoid
2285 	 * multi-rooted process trees, prevent global and container-inits
2286 	 * from creating siblings.
2287 	 */
2288 	if ((clone_flags & CLONE_PARENT) &&
2289 				current->signal->flags & SIGNAL_UNKILLABLE)
2290 		return ERR_PTR(-EINVAL);
2291 
2292 	/*
2293 	 * If the new process will be in a different pid or user namespace
2294 	 * do not allow it to share a thread group with the forking task.
2295 	 */
2296 	if (clone_flags & CLONE_THREAD) {
2297 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2298 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2299 			return ERR_PTR(-EINVAL);
2300 	}
2301 
2302 	if (clone_flags & CLONE_PIDFD) {
2303 		/*
2304 		 * - CLONE_DETACHED is blocked so that we can potentially
2305 		 *   reuse it later for CLONE_PIDFD.
2306 		 * - CLONE_THREAD is blocked until someone really needs it.
2307 		 */
2308 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2309 			return ERR_PTR(-EINVAL);
2310 	}
2311 
2312 	/*
2313 	 * Force any signals received before this point to be delivered
2314 	 * before the fork happens.  Collect up signals sent to multiple
2315 	 * processes that happen during the fork and delay them so that
2316 	 * they appear to happen after the fork.
2317 	 */
2318 	sigemptyset(&delayed.signal);
2319 	INIT_HLIST_NODE(&delayed.node);
2320 
2321 	spin_lock_irq(&current->sighand->siglock);
2322 	if (!(clone_flags & CLONE_THREAD))
2323 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2324 	recalc_sigpending();
2325 	spin_unlock_irq(&current->sighand->siglock);
2326 	retval = -ERESTARTNOINTR;
2327 	if (task_sigpending(current))
2328 		goto fork_out;
2329 
2330 	retval = -ENOMEM;
2331 	p = dup_task_struct(current, node);
2332 	if (!p)
2333 		goto fork_out;
2334 	p->flags &= ~PF_KTHREAD;
2335 	if (args->kthread)
2336 		p->flags |= PF_KTHREAD;
2337 	if (args->user_worker) {
2338 		/*
2339 		 * Mark us a user worker, and block any signal that isn't
2340 		 * fatal or STOP
2341 		 */
2342 		p->flags |= PF_USER_WORKER;
2343 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2344 	}
2345 	if (args->io_thread)
2346 		p->flags |= PF_IO_WORKER;
2347 
2348 	if (args->name)
2349 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2350 
2351 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2352 	/*
2353 	 * Clear TID on mm_release()?
2354 	 */
2355 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2356 
2357 	ftrace_graph_init_task(p);
2358 
2359 	rt_mutex_init_task(p);
2360 
2361 	lockdep_assert_irqs_enabled();
2362 #ifdef CONFIG_PROVE_LOCKING
2363 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2364 #endif
2365 	retval = copy_creds(p, clone_flags);
2366 	if (retval < 0)
2367 		goto bad_fork_free;
2368 
2369 	retval = -EAGAIN;
2370 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2371 		if (p->real_cred->user != INIT_USER &&
2372 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2373 			goto bad_fork_cleanup_count;
2374 	}
2375 	current->flags &= ~PF_NPROC_EXCEEDED;
2376 
2377 	/*
2378 	 * If multiple threads are within copy_process(), then this check
2379 	 * triggers too late. This doesn't hurt, the check is only there
2380 	 * to stop root fork bombs.
2381 	 */
2382 	retval = -EAGAIN;
2383 	if (data_race(nr_threads >= max_threads))
2384 		goto bad_fork_cleanup_count;
2385 
2386 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2387 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2388 	p->flags |= PF_FORKNOEXEC;
2389 	INIT_LIST_HEAD(&p->children);
2390 	INIT_LIST_HEAD(&p->sibling);
2391 	rcu_copy_process(p);
2392 	p->vfork_done = NULL;
2393 	spin_lock_init(&p->alloc_lock);
2394 
2395 	init_sigpending(&p->pending);
2396 
2397 	p->utime = p->stime = p->gtime = 0;
2398 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2399 	p->utimescaled = p->stimescaled = 0;
2400 #endif
2401 	prev_cputime_init(&p->prev_cputime);
2402 
2403 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2404 	seqcount_init(&p->vtime.seqcount);
2405 	p->vtime.starttime = 0;
2406 	p->vtime.state = VTIME_INACTIVE;
2407 #endif
2408 
2409 #ifdef CONFIG_IO_URING
2410 	p->io_uring = NULL;
2411 #endif
2412 
2413 #if defined(SPLIT_RSS_COUNTING)
2414 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2415 #endif
2416 
2417 	p->default_timer_slack_ns = current->timer_slack_ns;
2418 
2419 #ifdef CONFIG_PSI
2420 	p->psi_flags = 0;
2421 #endif
2422 
2423 	task_io_accounting_init(&p->ioac);
2424 	acct_clear_integrals(p);
2425 
2426 	posix_cputimers_init(&p->posix_cputimers);
2427 	tick_dep_init_task(p);
2428 
2429 	p->io_context = NULL;
2430 	audit_set_context(p, NULL);
2431 	cgroup_fork(p);
2432 	if (args->kthread) {
2433 		if (!set_kthread_struct(p))
2434 			goto bad_fork_cleanup_delayacct;
2435 	}
2436 #ifdef CONFIG_NUMA
2437 	p->mempolicy = mpol_dup(p->mempolicy);
2438 	if (IS_ERR(p->mempolicy)) {
2439 		retval = PTR_ERR(p->mempolicy);
2440 		p->mempolicy = NULL;
2441 		goto bad_fork_cleanup_delayacct;
2442 	}
2443 #endif
2444 #ifdef CONFIG_CPUSETS
2445 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2446 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2447 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2448 #endif
2449 #ifdef CONFIG_TRACE_IRQFLAGS
2450 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2451 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2452 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2453 	p->softirqs_enabled		= 1;
2454 	p->softirq_context		= 0;
2455 #endif
2456 
2457 	p->pagefault_disabled = 0;
2458 
2459 #ifdef CONFIG_LOCKDEP
2460 	lockdep_init_task(p);
2461 #endif
2462 
2463 #ifdef CONFIG_DEBUG_MUTEXES
2464 	p->blocked_on = NULL; /* not blocked yet */
2465 #endif
2466 #ifdef CONFIG_BCACHE
2467 	p->sequential_io	= 0;
2468 	p->sequential_io_avg	= 0;
2469 #endif
2470 #ifdef CONFIG_BPF_SYSCALL
2471 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2472 	p->bpf_ctx = NULL;
2473 #endif
2474 
2475 	/* Perform scheduler related setup. Assign this task to a CPU. */
2476 	retval = sched_fork(clone_flags, p);
2477 	if (retval)
2478 		goto bad_fork_cleanup_policy;
2479 
2480 	retval = perf_event_init_task(p, clone_flags);
2481 	if (retval)
2482 		goto bad_fork_cleanup_policy;
2483 	retval = audit_alloc(p);
2484 	if (retval)
2485 		goto bad_fork_cleanup_perf;
2486 	/* copy all the process information */
2487 	shm_init_task(p);
2488 	retval = security_task_alloc(p, clone_flags);
2489 	if (retval)
2490 		goto bad_fork_cleanup_audit;
2491 	retval = copy_semundo(clone_flags, p);
2492 	if (retval)
2493 		goto bad_fork_cleanup_security;
2494 	retval = copy_files(clone_flags, p, args->no_files);
2495 	if (retval)
2496 		goto bad_fork_cleanup_semundo;
2497 	retval = copy_fs(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_files;
2500 	retval = copy_sighand(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_fs;
2503 	retval = copy_signal(clone_flags, p);
2504 	if (retval)
2505 		goto bad_fork_cleanup_sighand;
2506 	retval = copy_mm(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_signal;
2509 	retval = copy_namespaces(clone_flags, p);
2510 	if (retval)
2511 		goto bad_fork_cleanup_mm;
2512 	retval = copy_io(clone_flags, p);
2513 	if (retval)
2514 		goto bad_fork_cleanup_namespaces;
2515 	retval = copy_thread(p, args);
2516 	if (retval)
2517 		goto bad_fork_cleanup_io;
2518 
2519 	stackleak_task_init(p);
2520 
2521 	if (pid != &init_struct_pid) {
2522 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2523 				args->set_tid_size);
2524 		if (IS_ERR(pid)) {
2525 			retval = PTR_ERR(pid);
2526 			goto bad_fork_cleanup_thread;
2527 		}
2528 	}
2529 
2530 	/*
2531 	 * This has to happen after we've potentially unshared the file
2532 	 * descriptor table (so that the pidfd doesn't leak into the child
2533 	 * if the fd table isn't shared).
2534 	 */
2535 	if (clone_flags & CLONE_PIDFD) {
2536 		/* Note that no task has been attached to @pid yet. */
2537 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2538 		if (retval < 0)
2539 			goto bad_fork_free_pid;
2540 		pidfd = retval;
2541 
2542 		retval = put_user(pidfd, args->pidfd);
2543 		if (retval)
2544 			goto bad_fork_put_pidfd;
2545 	}
2546 
2547 #ifdef CONFIG_BLOCK
2548 	p->plug = NULL;
2549 #endif
2550 	futex_init_task(p);
2551 
2552 	/*
2553 	 * sigaltstack should be cleared when sharing the same VM
2554 	 */
2555 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2556 		sas_ss_reset(p);
2557 
2558 	/*
2559 	 * Syscall tracing and stepping should be turned off in the
2560 	 * child regardless of CLONE_PTRACE.
2561 	 */
2562 	user_disable_single_step(p);
2563 	clear_task_syscall_work(p, SYSCALL_TRACE);
2564 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2565 	clear_task_syscall_work(p, SYSCALL_EMU);
2566 #endif
2567 	clear_tsk_latency_tracing(p);
2568 
2569 	/* ok, now we should be set up.. */
2570 	p->pid = pid_nr(pid);
2571 	if (clone_flags & CLONE_THREAD) {
2572 		p->group_leader = current->group_leader;
2573 		p->tgid = current->tgid;
2574 	} else {
2575 		p->group_leader = p;
2576 		p->tgid = p->pid;
2577 	}
2578 
2579 	p->nr_dirtied = 0;
2580 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2581 	p->dirty_paused_when = 0;
2582 
2583 	p->pdeath_signal = 0;
2584 	INIT_LIST_HEAD(&p->thread_group);
2585 	p->task_works = NULL;
2586 	clear_posix_cputimers_work(p);
2587 
2588 #ifdef CONFIG_KRETPROBES
2589 	p->kretprobe_instances.first = NULL;
2590 #endif
2591 #ifdef CONFIG_RETHOOK
2592 	p->rethooks.first = NULL;
2593 #endif
2594 
2595 	/*
2596 	 * Ensure that the cgroup subsystem policies allow the new process to be
2597 	 * forked. It should be noted that the new process's css_set can be changed
2598 	 * between here and cgroup_post_fork() if an organisation operation is in
2599 	 * progress.
2600 	 */
2601 	retval = cgroup_can_fork(p, args);
2602 	if (retval)
2603 		goto bad_fork_put_pidfd;
2604 
2605 	/*
2606 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2607 	 * the new task on the correct runqueue. All this *before* the task
2608 	 * becomes visible.
2609 	 *
2610 	 * This isn't part of ->can_fork() because while the re-cloning is
2611 	 * cgroup specific, it unconditionally needs to place the task on a
2612 	 * runqueue.
2613 	 */
2614 	sched_cgroup_fork(p, args);
2615 
2616 	/*
2617 	 * From this point on we must avoid any synchronous user-space
2618 	 * communication until we take the tasklist-lock. In particular, we do
2619 	 * not want user-space to be able to predict the process start-time by
2620 	 * stalling fork(2) after we recorded the start_time but before it is
2621 	 * visible to the system.
2622 	 */
2623 
2624 	p->start_time = ktime_get_ns();
2625 	p->start_boottime = ktime_get_boottime_ns();
2626 
2627 	/*
2628 	 * Make it visible to the rest of the system, but dont wake it up yet.
2629 	 * Need tasklist lock for parent etc handling!
2630 	 */
2631 	write_lock_irq(&tasklist_lock);
2632 
2633 	/* CLONE_PARENT re-uses the old parent */
2634 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2635 		p->real_parent = current->real_parent;
2636 		p->parent_exec_id = current->parent_exec_id;
2637 		if (clone_flags & CLONE_THREAD)
2638 			p->exit_signal = -1;
2639 		else
2640 			p->exit_signal = current->group_leader->exit_signal;
2641 	} else {
2642 		p->real_parent = current;
2643 		p->parent_exec_id = current->self_exec_id;
2644 		p->exit_signal = args->exit_signal;
2645 	}
2646 
2647 	klp_copy_process(p);
2648 
2649 	sched_core_fork(p);
2650 
2651 	spin_lock(&current->sighand->siglock);
2652 
2653 	rv_task_fork(p);
2654 
2655 	rseq_fork(p, clone_flags);
2656 
2657 	/* Don't start children in a dying pid namespace */
2658 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2659 		retval = -ENOMEM;
2660 		goto bad_fork_cancel_cgroup;
2661 	}
2662 
2663 	/* Let kill terminate clone/fork in the middle */
2664 	if (fatal_signal_pending(current)) {
2665 		retval = -EINTR;
2666 		goto bad_fork_cancel_cgroup;
2667 	}
2668 
2669 	/* No more failure paths after this point. */
2670 
2671 	/*
2672 	 * Copy seccomp details explicitly here, in case they were changed
2673 	 * before holding sighand lock.
2674 	 */
2675 	copy_seccomp(p);
2676 
2677 	init_task_pid_links(p);
2678 	if (likely(p->pid)) {
2679 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2680 
2681 		init_task_pid(p, PIDTYPE_PID, pid);
2682 		if (thread_group_leader(p)) {
2683 			init_task_pid(p, PIDTYPE_TGID, pid);
2684 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2685 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2686 
2687 			if (is_child_reaper(pid)) {
2688 				ns_of_pid(pid)->child_reaper = p;
2689 				p->signal->flags |= SIGNAL_UNKILLABLE;
2690 			}
2691 			p->signal->shared_pending.signal = delayed.signal;
2692 			p->signal->tty = tty_kref_get(current->signal->tty);
2693 			/*
2694 			 * Inherit has_child_subreaper flag under the same
2695 			 * tasklist_lock with adding child to the process tree
2696 			 * for propagate_has_child_subreaper optimization.
2697 			 */
2698 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2699 							 p->real_parent->signal->is_child_subreaper;
2700 			list_add_tail(&p->sibling, &p->real_parent->children);
2701 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2702 			attach_pid(p, PIDTYPE_TGID);
2703 			attach_pid(p, PIDTYPE_PGID);
2704 			attach_pid(p, PIDTYPE_SID);
2705 			__this_cpu_inc(process_counts);
2706 		} else {
2707 			current->signal->nr_threads++;
2708 			current->signal->quick_threads++;
2709 			atomic_inc(&current->signal->live);
2710 			refcount_inc(&current->signal->sigcnt);
2711 			task_join_group_stop(p);
2712 			list_add_tail_rcu(&p->thread_group,
2713 					  &p->group_leader->thread_group);
2714 			list_add_tail_rcu(&p->thread_node,
2715 					  &p->signal->thread_head);
2716 		}
2717 		attach_pid(p, PIDTYPE_PID);
2718 		nr_threads++;
2719 	}
2720 	total_forks++;
2721 	hlist_del_init(&delayed.node);
2722 	spin_unlock(&current->sighand->siglock);
2723 	syscall_tracepoint_update(p);
2724 	write_unlock_irq(&tasklist_lock);
2725 
2726 	if (pidfile)
2727 		fd_install(pidfd, pidfile);
2728 
2729 	proc_fork_connector(p);
2730 	sched_post_fork(p);
2731 	cgroup_post_fork(p, args);
2732 	perf_event_fork(p);
2733 
2734 	trace_task_newtask(p, clone_flags);
2735 	uprobe_copy_process(p, clone_flags);
2736 	user_events_fork(p, clone_flags);
2737 
2738 	copy_oom_score_adj(clone_flags, p);
2739 
2740 	return p;
2741 
2742 bad_fork_cancel_cgroup:
2743 	sched_core_free(p);
2744 	spin_unlock(&current->sighand->siglock);
2745 	write_unlock_irq(&tasklist_lock);
2746 	cgroup_cancel_fork(p, args);
2747 bad_fork_put_pidfd:
2748 	if (clone_flags & CLONE_PIDFD) {
2749 		fput(pidfile);
2750 		put_unused_fd(pidfd);
2751 	}
2752 bad_fork_free_pid:
2753 	if (pid != &init_struct_pid)
2754 		free_pid(pid);
2755 bad_fork_cleanup_thread:
2756 	exit_thread(p);
2757 bad_fork_cleanup_io:
2758 	if (p->io_context)
2759 		exit_io_context(p);
2760 bad_fork_cleanup_namespaces:
2761 	exit_task_namespaces(p);
2762 bad_fork_cleanup_mm:
2763 	if (p->mm) {
2764 		mm_clear_owner(p->mm, p);
2765 		mmput(p->mm);
2766 	}
2767 bad_fork_cleanup_signal:
2768 	if (!(clone_flags & CLONE_THREAD))
2769 		free_signal_struct(p->signal);
2770 bad_fork_cleanup_sighand:
2771 	__cleanup_sighand(p->sighand);
2772 bad_fork_cleanup_fs:
2773 	exit_fs(p); /* blocking */
2774 bad_fork_cleanup_files:
2775 	exit_files(p); /* blocking */
2776 bad_fork_cleanup_semundo:
2777 	exit_sem(p);
2778 bad_fork_cleanup_security:
2779 	security_task_free(p);
2780 bad_fork_cleanup_audit:
2781 	audit_free(p);
2782 bad_fork_cleanup_perf:
2783 	perf_event_free_task(p);
2784 bad_fork_cleanup_policy:
2785 	lockdep_free_task(p);
2786 #ifdef CONFIG_NUMA
2787 	mpol_put(p->mempolicy);
2788 #endif
2789 bad_fork_cleanup_delayacct:
2790 	delayacct_tsk_free(p);
2791 bad_fork_cleanup_count:
2792 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2793 	exit_creds(p);
2794 bad_fork_free:
2795 	WRITE_ONCE(p->__state, TASK_DEAD);
2796 	exit_task_stack_account(p);
2797 	put_task_stack(p);
2798 	delayed_free_task(p);
2799 fork_out:
2800 	spin_lock_irq(&current->sighand->siglock);
2801 	hlist_del_init(&delayed.node);
2802 	spin_unlock_irq(&current->sighand->siglock);
2803 	return ERR_PTR(retval);
2804 }
2805 
init_idle_pids(struct task_struct * idle)2806 static inline void init_idle_pids(struct task_struct *idle)
2807 {
2808 	enum pid_type type;
2809 
2810 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2811 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2812 		init_task_pid(idle, type, &init_struct_pid);
2813 	}
2814 }
2815 
idle_dummy(void * dummy)2816 static int idle_dummy(void *dummy)
2817 {
2818 	/* This function is never called */
2819 	return 0;
2820 }
2821 
fork_idle(int cpu)2822 struct task_struct * __init fork_idle(int cpu)
2823 {
2824 	struct task_struct *task;
2825 	struct kernel_clone_args args = {
2826 		.flags		= CLONE_VM,
2827 		.fn		= &idle_dummy,
2828 		.fn_arg		= NULL,
2829 		.kthread	= 1,
2830 		.idle		= 1,
2831 	};
2832 
2833 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2834 	if (!IS_ERR(task)) {
2835 		init_idle_pids(task);
2836 		init_idle(task, cpu);
2837 	}
2838 
2839 	return task;
2840 }
2841 
2842 /*
2843  * This is like kernel_clone(), but shaved down and tailored to just
2844  * creating io_uring workers. It returns a created task, or an error pointer.
2845  * The returned task is inactive, and the caller must fire it up through
2846  * wake_up_new_task(p). All signals are blocked in the created task.
2847  */
create_io_thread(int (* fn)(void *),void * arg,int node)2848 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2849 {
2850 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2851 				CLONE_IO;
2852 	struct kernel_clone_args args = {
2853 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2854 				    CLONE_UNTRACED) & ~CSIGNAL),
2855 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2856 		.fn		= fn,
2857 		.fn_arg		= arg,
2858 		.io_thread	= 1,
2859 		.user_worker	= 1,
2860 	};
2861 
2862 	return copy_process(NULL, 0, node, &args);
2863 }
2864 
2865 /*
2866  *  Ok, this is the main fork-routine.
2867  *
2868  * It copies the process, and if successful kick-starts
2869  * it and waits for it to finish using the VM if required.
2870  *
2871  * args->exit_signal is expected to be checked for sanity by the caller.
2872  */
kernel_clone(struct kernel_clone_args * args)2873 pid_t kernel_clone(struct kernel_clone_args *args)
2874 {
2875 	u64 clone_flags = args->flags;
2876 	struct completion vfork;
2877 	struct pid *pid;
2878 	struct task_struct *p;
2879 	int trace = 0;
2880 	pid_t nr;
2881 
2882 	/*
2883 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2884 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2885 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2886 	 * field in struct clone_args and it still doesn't make sense to have
2887 	 * them both point at the same memory location. Performing this check
2888 	 * here has the advantage that we don't need to have a separate helper
2889 	 * to check for legacy clone().
2890 	 */
2891 	if ((args->flags & CLONE_PIDFD) &&
2892 	    (args->flags & CLONE_PARENT_SETTID) &&
2893 	    (args->pidfd == args->parent_tid))
2894 		return -EINVAL;
2895 
2896 	/*
2897 	 * Determine whether and which event to report to ptracer.  When
2898 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2899 	 * requested, no event is reported; otherwise, report if the event
2900 	 * for the type of forking is enabled.
2901 	 */
2902 	if (!(clone_flags & CLONE_UNTRACED)) {
2903 		if (clone_flags & CLONE_VFORK)
2904 			trace = PTRACE_EVENT_VFORK;
2905 		else if (args->exit_signal != SIGCHLD)
2906 			trace = PTRACE_EVENT_CLONE;
2907 		else
2908 			trace = PTRACE_EVENT_FORK;
2909 
2910 		if (likely(!ptrace_event_enabled(current, trace)))
2911 			trace = 0;
2912 	}
2913 
2914 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2915 	add_latent_entropy();
2916 
2917 	if (IS_ERR(p))
2918 		return PTR_ERR(p);
2919 
2920 	/*
2921 	 * Do this prior waking up the new thread - the thread pointer
2922 	 * might get invalid after that point, if the thread exits quickly.
2923 	 */
2924 	trace_sched_process_fork(current, p);
2925 
2926 	pid = get_task_pid(p, PIDTYPE_PID);
2927 	nr = pid_vnr(pid);
2928 
2929 	if (clone_flags & CLONE_PARENT_SETTID)
2930 		put_user(nr, args->parent_tid);
2931 
2932 	if (clone_flags & CLONE_VFORK) {
2933 		p->vfork_done = &vfork;
2934 		init_completion(&vfork);
2935 		get_task_struct(p);
2936 	}
2937 
2938 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2939 		/* lock the task to synchronize with memcg migration */
2940 		task_lock(p);
2941 		lru_gen_add_mm(p->mm);
2942 		task_unlock(p);
2943 	}
2944 
2945 	wake_up_new_task(p);
2946 
2947 	/* forking complete and child started to run, tell ptracer */
2948 	if (unlikely(trace))
2949 		ptrace_event_pid(trace, pid);
2950 
2951 	if (clone_flags & CLONE_VFORK) {
2952 		if (!wait_for_vfork_done(p, &vfork))
2953 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2954 	}
2955 
2956 	put_pid(pid);
2957 	return nr;
2958 }
2959 
2960 /*
2961  * Create a kernel thread.
2962  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2963 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2964 		    unsigned long flags)
2965 {
2966 	struct kernel_clone_args args = {
2967 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2968 				    CLONE_UNTRACED) & ~CSIGNAL),
2969 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2970 		.fn		= fn,
2971 		.fn_arg		= arg,
2972 		.name		= name,
2973 		.kthread	= 1,
2974 	};
2975 
2976 	return kernel_clone(&args);
2977 }
2978 
2979 /*
2980  * Create a user mode thread.
2981  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2982 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2983 {
2984 	struct kernel_clone_args args = {
2985 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2986 				    CLONE_UNTRACED) & ~CSIGNAL),
2987 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2988 		.fn		= fn,
2989 		.fn_arg		= arg,
2990 	};
2991 
2992 	return kernel_clone(&args);
2993 }
2994 
2995 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2996 SYSCALL_DEFINE0(fork)
2997 {
2998 #ifdef CONFIG_MMU
2999 	struct kernel_clone_args args = {
3000 		.exit_signal = SIGCHLD,
3001 	};
3002 
3003 	return kernel_clone(&args);
3004 #else
3005 	/* can not support in nommu mode */
3006 	return -EINVAL;
3007 #endif
3008 }
3009 #endif
3010 
3011 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3012 SYSCALL_DEFINE0(vfork)
3013 {
3014 	struct kernel_clone_args args = {
3015 		.flags		= CLONE_VFORK | CLONE_VM,
3016 		.exit_signal	= SIGCHLD,
3017 	};
3018 
3019 	return kernel_clone(&args);
3020 }
3021 #endif
3022 
3023 #ifdef __ARCH_WANT_SYS_CLONE
3024 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3025 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3026 		 int __user *, parent_tidptr,
3027 		 unsigned long, tls,
3028 		 int __user *, child_tidptr)
3029 #elif defined(CONFIG_CLONE_BACKWARDS2)
3030 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3031 		 int __user *, parent_tidptr,
3032 		 int __user *, child_tidptr,
3033 		 unsigned long, tls)
3034 #elif defined(CONFIG_CLONE_BACKWARDS3)
3035 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3036 		int, stack_size,
3037 		int __user *, parent_tidptr,
3038 		int __user *, child_tidptr,
3039 		unsigned long, tls)
3040 #else
3041 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3042 		 int __user *, parent_tidptr,
3043 		 int __user *, child_tidptr,
3044 		 unsigned long, tls)
3045 #endif
3046 {
3047 	struct kernel_clone_args args = {
3048 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3049 		.pidfd		= parent_tidptr,
3050 		.child_tid	= child_tidptr,
3051 		.parent_tid	= parent_tidptr,
3052 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3053 		.stack		= newsp,
3054 		.tls		= tls,
3055 	};
3056 
3057 	return kernel_clone(&args);
3058 }
3059 #endif
3060 
3061 #ifdef __ARCH_WANT_SYS_CLONE3
3062 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3063 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3064 					      struct clone_args __user *uargs,
3065 					      size_t usize)
3066 {
3067 	int err;
3068 	struct clone_args args;
3069 	pid_t *kset_tid = kargs->set_tid;
3070 
3071 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3072 		     CLONE_ARGS_SIZE_VER0);
3073 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3074 		     CLONE_ARGS_SIZE_VER1);
3075 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3076 		     CLONE_ARGS_SIZE_VER2);
3077 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3078 
3079 	if (unlikely(usize > PAGE_SIZE))
3080 		return -E2BIG;
3081 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3082 		return -EINVAL;
3083 
3084 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3085 	if (err)
3086 		return err;
3087 
3088 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3089 		return -EINVAL;
3090 
3091 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3092 		return -EINVAL;
3093 
3094 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3095 		return -EINVAL;
3096 
3097 	/*
3098 	 * Verify that higher 32bits of exit_signal are unset and that
3099 	 * it is a valid signal
3100 	 */
3101 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3102 		     !valid_signal(args.exit_signal)))
3103 		return -EINVAL;
3104 
3105 	if ((args.flags & CLONE_INTO_CGROUP) &&
3106 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3107 		return -EINVAL;
3108 
3109 	*kargs = (struct kernel_clone_args){
3110 		.flags		= args.flags,
3111 		.pidfd		= u64_to_user_ptr(args.pidfd),
3112 		.child_tid	= u64_to_user_ptr(args.child_tid),
3113 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3114 		.exit_signal	= args.exit_signal,
3115 		.stack		= args.stack,
3116 		.stack_size	= args.stack_size,
3117 		.tls		= args.tls,
3118 		.set_tid_size	= args.set_tid_size,
3119 		.cgroup		= args.cgroup,
3120 	};
3121 
3122 	if (args.set_tid &&
3123 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3124 			(kargs->set_tid_size * sizeof(pid_t))))
3125 		return -EFAULT;
3126 
3127 	kargs->set_tid = kset_tid;
3128 
3129 	return 0;
3130 }
3131 
3132 /**
3133  * clone3_stack_valid - check and prepare stack
3134  * @kargs: kernel clone args
3135  *
3136  * Verify that the stack arguments userspace gave us are sane.
3137  * In addition, set the stack direction for userspace since it's easy for us to
3138  * determine.
3139  */
clone3_stack_valid(struct kernel_clone_args * kargs)3140 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3141 {
3142 	if (kargs->stack == 0) {
3143 		if (kargs->stack_size > 0)
3144 			return false;
3145 	} else {
3146 		if (kargs->stack_size == 0)
3147 			return false;
3148 
3149 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3150 			return false;
3151 
3152 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3153 		kargs->stack += kargs->stack_size;
3154 #endif
3155 	}
3156 
3157 	return true;
3158 }
3159 
clone3_args_valid(struct kernel_clone_args * kargs)3160 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3161 {
3162 	/* Verify that no unknown flags are passed along. */
3163 	if (kargs->flags &
3164 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3165 		return false;
3166 
3167 	/*
3168 	 * - make the CLONE_DETACHED bit reusable for clone3
3169 	 * - make the CSIGNAL bits reusable for clone3
3170 	 */
3171 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3172 		return false;
3173 
3174 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3175 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3176 		return false;
3177 
3178 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3179 	    kargs->exit_signal)
3180 		return false;
3181 
3182 	if (!clone3_stack_valid(kargs))
3183 		return false;
3184 
3185 	return true;
3186 }
3187 
3188 /**
3189  * clone3 - create a new process with specific properties
3190  * @uargs: argument structure
3191  * @size:  size of @uargs
3192  *
3193  * clone3() is the extensible successor to clone()/clone2().
3194  * It takes a struct as argument that is versioned by its size.
3195  *
3196  * Return: On success, a positive PID for the child process.
3197  *         On error, a negative errno number.
3198  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3199 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3200 {
3201 	int err;
3202 
3203 	struct kernel_clone_args kargs;
3204 	pid_t set_tid[MAX_PID_NS_LEVEL];
3205 
3206 	kargs.set_tid = set_tid;
3207 
3208 	err = copy_clone_args_from_user(&kargs, uargs, size);
3209 	if (err)
3210 		return err;
3211 
3212 	if (!clone3_args_valid(&kargs))
3213 		return -EINVAL;
3214 
3215 	return kernel_clone(&kargs);
3216 }
3217 #endif
3218 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3219 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3220 {
3221 	struct task_struct *leader, *parent, *child;
3222 	int res;
3223 
3224 	read_lock(&tasklist_lock);
3225 	leader = top = top->group_leader;
3226 down:
3227 	for_each_thread(leader, parent) {
3228 		list_for_each_entry(child, &parent->children, sibling) {
3229 			res = visitor(child, data);
3230 			if (res) {
3231 				if (res < 0)
3232 					goto out;
3233 				leader = child;
3234 				goto down;
3235 			}
3236 up:
3237 			;
3238 		}
3239 	}
3240 
3241 	if (leader != top) {
3242 		child = leader;
3243 		parent = child->real_parent;
3244 		leader = parent->group_leader;
3245 		goto up;
3246 	}
3247 out:
3248 	read_unlock(&tasklist_lock);
3249 }
3250 
3251 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3252 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3253 #endif
3254 
sighand_ctor(void * data)3255 static void sighand_ctor(void *data)
3256 {
3257 	struct sighand_struct *sighand = data;
3258 
3259 	spin_lock_init(&sighand->siglock);
3260 	init_waitqueue_head(&sighand->signalfd_wqh);
3261 }
3262 
mm_cache_init(void)3263 void __init mm_cache_init(void)
3264 {
3265 	unsigned int mm_size;
3266 
3267 	/*
3268 	 * The mm_cpumask is located at the end of mm_struct, and is
3269 	 * dynamically sized based on the maximum CPU number this system
3270 	 * can have, taking hotplug into account (nr_cpu_ids).
3271 	 */
3272 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3273 
3274 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3275 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3276 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3277 			offsetof(struct mm_struct, saved_auxv),
3278 			sizeof_field(struct mm_struct, saved_auxv),
3279 			NULL);
3280 }
3281 
proc_caches_init(void)3282 void __init proc_caches_init(void)
3283 {
3284 	sighand_cachep = kmem_cache_create("sighand_cache",
3285 			sizeof(struct sighand_struct), 0,
3286 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3287 			SLAB_ACCOUNT, sighand_ctor);
3288 	signal_cachep = kmem_cache_create("signal_cache",
3289 			sizeof(struct signal_struct), 0,
3290 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3291 			NULL);
3292 	files_cachep = kmem_cache_create("files_cache",
3293 			sizeof(struct files_struct), 0,
3294 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3295 			NULL);
3296 	fs_cachep = kmem_cache_create("fs_cache",
3297 			sizeof(struct fs_struct), 0,
3298 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3299 			NULL);
3300 
3301 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3302 #ifdef CONFIG_PER_VMA_LOCK
3303 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3304 #endif
3305 	mmap_init();
3306 	nsproxy_cache_init();
3307 }
3308 
3309 /*
3310  * Check constraints on flags passed to the unshare system call.
3311  */
check_unshare_flags(unsigned long unshare_flags)3312 static int check_unshare_flags(unsigned long unshare_flags)
3313 {
3314 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3315 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3316 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3317 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3318 				CLONE_NEWTIME))
3319 		return -EINVAL;
3320 	/*
3321 	 * Not implemented, but pretend it works if there is nothing
3322 	 * to unshare.  Note that unsharing the address space or the
3323 	 * signal handlers also need to unshare the signal queues (aka
3324 	 * CLONE_THREAD).
3325 	 */
3326 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3327 		if (!thread_group_empty(current))
3328 			return -EINVAL;
3329 	}
3330 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3331 		if (refcount_read(&current->sighand->count) > 1)
3332 			return -EINVAL;
3333 	}
3334 	if (unshare_flags & CLONE_VM) {
3335 		if (!current_is_single_threaded())
3336 			return -EINVAL;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 /*
3343  * Unshare the filesystem structure if it is being shared
3344  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3345 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3346 {
3347 	struct fs_struct *fs = current->fs;
3348 
3349 	if (!(unshare_flags & CLONE_FS) || !fs)
3350 		return 0;
3351 
3352 	/* don't need lock here; in the worst case we'll do useless copy */
3353 	if (fs->users == 1)
3354 		return 0;
3355 
3356 	*new_fsp = copy_fs_struct(fs);
3357 	if (!*new_fsp)
3358 		return -ENOMEM;
3359 
3360 	return 0;
3361 }
3362 
3363 /*
3364  * Unshare file descriptor table if it is being shared
3365  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3366 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3367 {
3368 	struct files_struct *fd = current->files;
3369 
3370 	if ((unshare_flags & CLONE_FILES) &&
3371 	    (fd && atomic_read(&fd->count) > 1)) {
3372 		fd = dup_fd(fd, NULL);
3373 		if (IS_ERR(fd))
3374 			return PTR_ERR(fd);
3375 		*new_fdp = fd;
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 /*
3382  * unshare allows a process to 'unshare' part of the process
3383  * context which was originally shared using clone.  copy_*
3384  * functions used by kernel_clone() cannot be used here directly
3385  * because they modify an inactive task_struct that is being
3386  * constructed. Here we are modifying the current, active,
3387  * task_struct.
3388  */
ksys_unshare(unsigned long unshare_flags)3389 int ksys_unshare(unsigned long unshare_flags)
3390 {
3391 	struct fs_struct *fs, *new_fs = NULL;
3392 	struct files_struct *new_fd = NULL;
3393 	struct cred *new_cred = NULL;
3394 	struct nsproxy *new_nsproxy = NULL;
3395 	int do_sysvsem = 0;
3396 	int err;
3397 
3398 	/*
3399 	 * If unsharing a user namespace must also unshare the thread group
3400 	 * and unshare the filesystem root and working directories.
3401 	 */
3402 	if (unshare_flags & CLONE_NEWUSER)
3403 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3404 	/*
3405 	 * If unsharing vm, must also unshare signal handlers.
3406 	 */
3407 	if (unshare_flags & CLONE_VM)
3408 		unshare_flags |= CLONE_SIGHAND;
3409 	/*
3410 	 * If unsharing a signal handlers, must also unshare the signal queues.
3411 	 */
3412 	if (unshare_flags & CLONE_SIGHAND)
3413 		unshare_flags |= CLONE_THREAD;
3414 	/*
3415 	 * If unsharing namespace, must also unshare filesystem information.
3416 	 */
3417 	if (unshare_flags & CLONE_NEWNS)
3418 		unshare_flags |= CLONE_FS;
3419 
3420 	err = check_unshare_flags(unshare_flags);
3421 	if (err)
3422 		goto bad_unshare_out;
3423 	/*
3424 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3425 	 * to a new ipc namespace, the semaphore arrays from the old
3426 	 * namespace are unreachable.
3427 	 */
3428 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3429 		do_sysvsem = 1;
3430 	err = unshare_fs(unshare_flags, &new_fs);
3431 	if (err)
3432 		goto bad_unshare_out;
3433 	err = unshare_fd(unshare_flags, &new_fd);
3434 	if (err)
3435 		goto bad_unshare_cleanup_fs;
3436 	err = unshare_userns(unshare_flags, &new_cred);
3437 	if (err)
3438 		goto bad_unshare_cleanup_fd;
3439 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3440 					 new_cred, new_fs);
3441 	if (err)
3442 		goto bad_unshare_cleanup_cred;
3443 
3444 	if (new_cred) {
3445 		err = set_cred_ucounts(new_cred);
3446 		if (err)
3447 			goto bad_unshare_cleanup_cred;
3448 	}
3449 
3450 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3451 		if (do_sysvsem) {
3452 			/*
3453 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3454 			 */
3455 			exit_sem(current);
3456 		}
3457 		if (unshare_flags & CLONE_NEWIPC) {
3458 			/* Orphan segments in old ns (see sem above). */
3459 			exit_shm(current);
3460 			shm_init_task(current);
3461 		}
3462 
3463 		if (new_nsproxy)
3464 			switch_task_namespaces(current, new_nsproxy);
3465 
3466 		task_lock(current);
3467 
3468 		if (new_fs) {
3469 			fs = current->fs;
3470 			spin_lock(&fs->lock);
3471 			current->fs = new_fs;
3472 			if (--fs->users)
3473 				new_fs = NULL;
3474 			else
3475 				new_fs = fs;
3476 			spin_unlock(&fs->lock);
3477 		}
3478 
3479 		if (new_fd)
3480 			swap(current->files, new_fd);
3481 
3482 		task_unlock(current);
3483 
3484 		if (new_cred) {
3485 			/* Install the new user namespace */
3486 			commit_creds(new_cred);
3487 			new_cred = NULL;
3488 		}
3489 	}
3490 
3491 	perf_event_namespaces(current);
3492 
3493 bad_unshare_cleanup_cred:
3494 	if (new_cred)
3495 		put_cred(new_cred);
3496 bad_unshare_cleanup_fd:
3497 	if (new_fd)
3498 		put_files_struct(new_fd);
3499 
3500 bad_unshare_cleanup_fs:
3501 	if (new_fs)
3502 		free_fs_struct(new_fs);
3503 
3504 bad_unshare_out:
3505 	return err;
3506 }
3507 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3508 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3509 {
3510 	return ksys_unshare(unshare_flags);
3511 }
3512 
3513 /*
3514  *	Helper to unshare the files of the current task.
3515  *	We don't want to expose copy_files internals to
3516  *	the exec layer of the kernel.
3517  */
3518 
unshare_files(void)3519 int unshare_files(void)
3520 {
3521 	struct task_struct *task = current;
3522 	struct files_struct *old, *copy = NULL;
3523 	int error;
3524 
3525 	error = unshare_fd(CLONE_FILES, &copy);
3526 	if (error || !copy)
3527 		return error;
3528 
3529 	old = task->files;
3530 	task_lock(task);
3531 	task->files = copy;
3532 	task_unlock(task);
3533 	put_files_struct(old);
3534 	return 0;
3535 }
3536 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3537 int sysctl_max_threads(struct ctl_table *table, int write,
3538 		       void *buffer, size_t *lenp, loff_t *ppos)
3539 {
3540 	struct ctl_table t;
3541 	int ret;
3542 	int threads = max_threads;
3543 	int min = 1;
3544 	int max = MAX_THREADS;
3545 
3546 	t = *table;
3547 	t.data = &threads;
3548 	t.extra1 = &min;
3549 	t.extra2 = &max;
3550 
3551 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3552 	if (ret || !write)
3553 		return ret;
3554 
3555 	max_threads = threads;
3556 
3557 	return 0;
3558 }
3559