xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 8ebc80a25f9d9bf7a8e368b266d5b740c485c362)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 #define PATCH_MAX_SIZE (3 * PAGE_SIZE)
93 
94 static struct equiv_cpu_table {
95 	unsigned int num_entries;
96 	struct equiv_cpu_entry *entry;
97 } equiv_table;
98 
99 union zen_patch_rev {
100 	struct {
101 		__u32 rev	 : 8,
102 		      stepping	 : 4,
103 		      model	 : 4,
104 		      __reserved : 4,
105 		      ext_model	 : 4,
106 		      ext_fam	 : 8;
107 	};
108 	__u32 ucode_rev;
109 };
110 
111 union cpuid_1_eax {
112 	struct {
113 		__u32 stepping    : 4,
114 		      model	  : 4,
115 		      family	  : 4,
116 		      __reserved0 : 4,
117 		      ext_model   : 4,
118 		      ext_fam     : 8,
119 		      __reserved1 : 4;
120 	};
121 	__u32 full;
122 };
123 
124 /*
125  * This points to the current valid container of microcode patches which we will
126  * save from the initrd/builtin before jettisoning its contents. @mc is the
127  * microcode patch we found to match.
128  */
129 struct cont_desc {
130 	struct microcode_amd *mc;
131 	u32		     psize;
132 	u8		     *data;
133 	size_t		     size;
134 };
135 
136 /*
137  * Microcode patch container file is prepended to the initrd in cpio
138  * format. See Documentation/arch/x86/microcode.rst
139  */
140 static const char
141 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
142 
143 /*
144  * This is CPUID(1).EAX on the BSP. It is used in two ways:
145  *
146  * 1. To ignore the equivalence table on Zen1 and newer.
147  *
148  * 2. To match which patches to load because the patch revision ID
149  *    already contains the f/m/s for which the microcode is destined
150  *    for.
151  */
152 static u32 bsp_cpuid_1_eax __ro_after_init;
153 
154 static bool sha_check = true;
155 
156 struct patch_digest {
157 	u32 patch_id;
158 	u8 sha256[SHA256_DIGEST_SIZE];
159 };
160 
161 #include "amd_shas.c"
162 
cmp_id(const void * key,const void * elem)163 static int cmp_id(const void *key, const void *elem)
164 {
165 	struct patch_digest *pd = (struct patch_digest *)elem;
166 	u32 patch_id = *(u32 *)key;
167 
168 	if (patch_id == pd->patch_id)
169 		return 0;
170 	else if (patch_id < pd->patch_id)
171 		return -1;
172 	else
173 		return 1;
174 }
175 
need_sha_check(u32 cur_rev)176 static bool need_sha_check(u32 cur_rev)
177 {
178 	switch (cur_rev >> 8) {
179 	case 0x80012: return cur_rev <= 0x800126f; break;
180 	case 0x80082: return cur_rev <= 0x800820f; break;
181 	case 0x83010: return cur_rev <= 0x830107c; break;
182 	case 0x86001: return cur_rev <= 0x860010e; break;
183 	case 0x86081: return cur_rev <= 0x8608108; break;
184 	case 0x87010: return cur_rev <= 0x8701034; break;
185 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
186 	case 0xa0010: return cur_rev <= 0xa00107a; break;
187 	case 0xa0011: return cur_rev <= 0xa0011da; break;
188 	case 0xa0012: return cur_rev <= 0xa001243; break;
189 	case 0xa0082: return cur_rev <= 0xa00820e; break;
190 	case 0xa1011: return cur_rev <= 0xa101153; break;
191 	case 0xa1012: return cur_rev <= 0xa10124e; break;
192 	case 0xa1081: return cur_rev <= 0xa108109; break;
193 	case 0xa2010: return cur_rev <= 0xa20102f; break;
194 	case 0xa2012: return cur_rev <= 0xa201212; break;
195 	case 0xa4041: return cur_rev <= 0xa404109; break;
196 	case 0xa5000: return cur_rev <= 0xa500013; break;
197 	case 0xa6012: return cur_rev <= 0xa60120a; break;
198 	case 0xa7041: return cur_rev <= 0xa704109; break;
199 	case 0xa7052: return cur_rev <= 0xa705208; break;
200 	case 0xa7080: return cur_rev <= 0xa708009; break;
201 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
202 	case 0xaa001: return cur_rev <= 0xaa00116; break;
203 	case 0xaa002: return cur_rev <= 0xaa00218; break;
204 	default: break;
205 	}
206 
207 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
208 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
209 	return true;
210 }
211 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)212 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
213 {
214 	struct patch_digest *pd = NULL;
215 	u8 digest[SHA256_DIGEST_SIZE];
216 	struct sha256_state s;
217 	int i;
218 
219 	if (x86_family(bsp_cpuid_1_eax) < 0x17 ||
220 	    x86_family(bsp_cpuid_1_eax) > 0x19)
221 		return true;
222 
223 	if (!need_sha_check(cur_rev))
224 		return true;
225 
226 	if (!sha_check)
227 		return true;
228 
229 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
230 	if (!pd) {
231 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
232 		return false;
233 	}
234 
235 	sha256_init(&s);
236 	sha256_update(&s, data, len);
237 	sha256_final(&s, digest);
238 
239 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
240 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
241 
242 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
243 			pr_cont("0x%x ", digest[i]);
244 		pr_info("\n");
245 
246 		return false;
247 	}
248 
249 	return true;
250 }
251 
get_patch_level(void)252 static u32 get_patch_level(void)
253 {
254 	u32 rev, dummy __always_unused;
255 
256 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
257 
258 	return rev;
259 }
260 
ucode_rev_to_cpuid(unsigned int val)261 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
262 {
263 	union zen_patch_rev p;
264 	union cpuid_1_eax c;
265 
266 	p.ucode_rev = val;
267 	c.full = 0;
268 
269 	c.stepping  = p.stepping;
270 	c.model     = p.model;
271 	c.ext_model = p.ext_model;
272 	c.family    = 0xf;
273 	c.ext_fam   = p.ext_fam;
274 
275 	return c;
276 }
277 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)278 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
279 {
280 	unsigned int i;
281 
282 	/* Zen and newer do not need an equivalence table. */
283 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
284 		return 0;
285 
286 	if (!et || !et->num_entries)
287 		return 0;
288 
289 	for (i = 0; i < et->num_entries; i++) {
290 		struct equiv_cpu_entry *e = &et->entry[i];
291 
292 		if (sig == e->installed_cpu)
293 			return e->equiv_cpu;
294 	}
295 	return 0;
296 }
297 
298 /*
299  * Check whether there is a valid microcode container file at the beginning
300  * of @buf of size @buf_size.
301  */
verify_container(const u8 * buf,size_t buf_size)302 static bool verify_container(const u8 *buf, size_t buf_size)
303 {
304 	u32 cont_magic;
305 
306 	if (buf_size <= CONTAINER_HDR_SZ) {
307 		pr_debug("Truncated microcode container header.\n");
308 		return false;
309 	}
310 
311 	cont_magic = *(const u32 *)buf;
312 	if (cont_magic != UCODE_MAGIC) {
313 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
314 		return false;
315 	}
316 
317 	return true;
318 }
319 
320 /*
321  * Check whether there is a valid, non-truncated CPU equivalence table at the
322  * beginning of @buf of size @buf_size.
323  */
verify_equivalence_table(const u8 * buf,size_t buf_size)324 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
325 {
326 	const u32 *hdr = (const u32 *)buf;
327 	u32 cont_type, equiv_tbl_len;
328 
329 	if (!verify_container(buf, buf_size))
330 		return false;
331 
332 	/* Zen and newer do not need an equivalence table. */
333 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
334 		return true;
335 
336 	cont_type = hdr[1];
337 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
338 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
339 			 cont_type);
340 		return false;
341 	}
342 
343 	buf_size -= CONTAINER_HDR_SZ;
344 
345 	equiv_tbl_len = hdr[2];
346 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
347 	    buf_size < equiv_tbl_len) {
348 		pr_debug("Truncated equivalence table.\n");
349 		return false;
350 	}
351 
352 	return true;
353 }
354 
355 /*
356  * Check whether there is a valid, non-truncated microcode patch section at the
357  * beginning of @buf of size @buf_size.
358  *
359  * On success, @sh_psize returns the patch size according to the section header,
360  * to the caller.
361  */
362 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)363 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
364 {
365 	u32 p_type, p_size;
366 	const u32 *hdr;
367 
368 	if (buf_size < SECTION_HDR_SIZE) {
369 		pr_debug("Truncated patch section.\n");
370 		return false;
371 	}
372 
373 	hdr = (const u32 *)buf;
374 	p_type = hdr[0];
375 	p_size = hdr[1];
376 
377 	if (p_type != UCODE_UCODE_TYPE) {
378 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
379 			 p_type);
380 		return false;
381 	}
382 
383 	if (p_size < sizeof(struct microcode_header_amd)) {
384 		pr_debug("Patch of size %u too short.\n", p_size);
385 		return false;
386 	}
387 
388 	*sh_psize = p_size;
389 
390 	return true;
391 }
392 
393 /*
394  * Check whether the passed remaining file @buf_size is large enough to contain
395  * a patch of the indicated @sh_psize (and also whether this size does not
396  * exceed the per-family maximum). @sh_psize is the size read from the section
397  * header.
398  */
__verify_patch_size(u32 sh_psize,size_t buf_size)399 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
400 {
401 	u8 family = x86_family(bsp_cpuid_1_eax);
402 	u32 max_size;
403 
404 	if (family >= 0x15)
405 		goto ret;
406 
407 #define F1XH_MPB_MAX_SIZE 2048
408 #define F14H_MPB_MAX_SIZE 1824
409 
410 	switch (family) {
411 	case 0x10 ... 0x12:
412 		max_size = F1XH_MPB_MAX_SIZE;
413 		break;
414 	case 0x14:
415 		max_size = F14H_MPB_MAX_SIZE;
416 		break;
417 	default:
418 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
419 		return false;
420 	}
421 
422 	if (sh_psize > max_size)
423 		return false;
424 
425 ret:
426 	/* Working with the whole buffer so < is ok. */
427 	return sh_psize <= buf_size;
428 }
429 
430 /*
431  * Verify the patch in @buf.
432  *
433  * Returns:
434  * negative: on error
435  * positive: patch is not for this family, skip it
436  * 0: success
437  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)438 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
439 {
440 	u8 family = x86_family(bsp_cpuid_1_eax);
441 	struct microcode_header_amd *mc_hdr;
442 	u32 sh_psize;
443 	u16 proc_id;
444 	u8 patch_fam;
445 
446 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
447 		return -1;
448 
449 	/*
450 	 * The section header length is not included in this indicated size
451 	 * but is present in the leftover file length so we need to subtract
452 	 * it before passing this value to the function below.
453 	 */
454 	buf_size -= SECTION_HDR_SIZE;
455 
456 	/*
457 	 * Check if the remaining buffer is big enough to contain a patch of
458 	 * size sh_psize, as the section claims.
459 	 */
460 	if (buf_size < sh_psize) {
461 		pr_debug("Patch of size %u truncated.\n", sh_psize);
462 		return -1;
463 	}
464 
465 	if (!__verify_patch_size(sh_psize, buf_size)) {
466 		pr_debug("Per-family patch size mismatch.\n");
467 		return -1;
468 	}
469 
470 	*patch_size = sh_psize;
471 
472 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
473 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
474 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
475 		return -1;
476 	}
477 
478 	proc_id	= mc_hdr->processor_rev_id;
479 	patch_fam = 0xf + (proc_id >> 12);
480 	if (patch_fam != family)
481 		return 1;
482 
483 	return 0;
484 }
485 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)486 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
487 {
488 	/* Zen and newer do not need an equivalence table. */
489 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
490 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
491 	else
492 		return eq_id == mc->hdr.processor_rev_id;
493 }
494 
495 /*
496  * This scans the ucode blob for the proper container as we can have multiple
497  * containers glued together. Returns the equivalence ID from the equivalence
498  * table or 0 if none found.
499  * Returns the amount of bytes consumed while scanning. @desc contains all the
500  * data we're going to use in later stages of the application.
501  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)502 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
503 {
504 	struct equiv_cpu_table table;
505 	size_t orig_size = size;
506 	u32 *hdr = (u32 *)ucode;
507 	u16 eq_id;
508 	u8 *buf;
509 
510 	if (!verify_equivalence_table(ucode, size))
511 		return 0;
512 
513 	buf = ucode;
514 
515 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
516 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
517 
518 	/*
519 	 * Find the equivalence ID of our CPU in this table. Even if this table
520 	 * doesn't contain a patch for the CPU, scan through the whole container
521 	 * so that it can be skipped in case there are other containers appended.
522 	 */
523 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
524 
525 	buf  += hdr[2] + CONTAINER_HDR_SZ;
526 	size -= hdr[2] + CONTAINER_HDR_SZ;
527 
528 	/*
529 	 * Scan through the rest of the container to find where it ends. We do
530 	 * some basic sanity-checking too.
531 	 */
532 	while (size > 0) {
533 		struct microcode_amd *mc;
534 		u32 patch_size;
535 		int ret;
536 
537 		ret = verify_patch(buf, size, &patch_size);
538 		if (ret < 0) {
539 			/*
540 			 * Patch verification failed, skip to the next container, if
541 			 * there is one. Before exit, check whether that container has
542 			 * found a patch already. If so, use it.
543 			 */
544 			goto out;
545 		} else if (ret > 0) {
546 			goto skip;
547 		}
548 
549 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
550 		if (mc_patch_matches(mc, eq_id)) {
551 			desc->psize = patch_size;
552 			desc->mc = mc;
553 		}
554 
555 skip:
556 		/* Skip patch section header too: */
557 		buf  += patch_size + SECTION_HDR_SIZE;
558 		size -= patch_size + SECTION_HDR_SIZE;
559 	}
560 
561 out:
562 	/*
563 	 * If we have found a patch (desc->mc), it means we're looking at the
564 	 * container which has a patch for this CPU so return 0 to mean, @ucode
565 	 * already points to the proper container. Otherwise, we return the size
566 	 * we scanned so that we can advance to the next container in the
567 	 * buffer.
568 	 */
569 	if (desc->mc) {
570 		desc->data = ucode;
571 		desc->size = orig_size - size;
572 
573 		return 0;
574 	}
575 
576 	return orig_size - size;
577 }
578 
579 /*
580  * Scan the ucode blob for the proper container as we can have multiple
581  * containers glued together.
582  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)583 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
584 {
585 	while (size) {
586 		size_t s = parse_container(ucode, size, desc);
587 		if (!s)
588 			return;
589 
590 		/* catch wraparound */
591 		if (size >= s) {
592 			ucode += s;
593 			size  -= s;
594 		} else {
595 			return;
596 		}
597 	}
598 }
599 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)600 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
601 				  unsigned int psize)
602 {
603 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
604 
605 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
606 		return -1;
607 
608 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
609 
610 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
611 		unsigned long p_addr_end = p_addr + psize - 1;
612 
613 		invlpg(p_addr);
614 
615 		/*
616 		 * Flush next page too if patch image is crossing a page
617 		 * boundary.
618 		 */
619 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
620 			invlpg(p_addr_end);
621 	}
622 
623 	/* verify patch application was successful */
624 	*cur_rev = get_patch_level();
625 	if (*cur_rev != mc->hdr.patch_id)
626 		return false;
627 
628 	return true;
629 }
630 
631 
get_builtin_microcode(struct cpio_data * cp)632 static bool get_builtin_microcode(struct cpio_data *cp)
633 {
634 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
635 	u8 family = x86_family(bsp_cpuid_1_eax);
636 	struct firmware fw;
637 
638 	if (IS_ENABLED(CONFIG_X86_32))
639 		return false;
640 
641 	if (family >= 0x15)
642 		snprintf(fw_name, sizeof(fw_name),
643 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
644 
645 	if (firmware_request_builtin(&fw, fw_name)) {
646 		cp->size = fw.size;
647 		cp->data = (void *)fw.data;
648 		return true;
649 	}
650 
651 	return false;
652 }
653 
find_blobs_in_containers(struct cpio_data * ret)654 static bool __init find_blobs_in_containers(struct cpio_data *ret)
655 {
656 	struct cpio_data cp;
657 	bool found;
658 
659 	if (!get_builtin_microcode(&cp))
660 		cp = find_microcode_in_initrd(ucode_path);
661 
662 	found = cp.data && cp.size;
663 	if (found)
664 		*ret = cp;
665 
666 	return found;
667 }
668 
669 /*
670  * Early load occurs before we can vmalloc(). So we look for the microcode
671  * patch container file in initrd, traverse equivalent cpu table, look for a
672  * matching microcode patch, and update, all in initrd memory in place.
673  * When vmalloc() is available for use later -- on 64-bit during first AP load,
674  * and on 32-bit during save_microcode_in_initrd() -- we can call
675  * load_microcode_amd() to save equivalent cpu table and microcode patches in
676  * kernel heap memory.
677  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)678 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
679 {
680 	struct cont_desc desc = { };
681 	struct microcode_amd *mc;
682 	struct cpio_data cp = { };
683 	char buf[4];
684 	u32 rev;
685 
686 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
687 		if (!strncmp(buf, "off", 3)) {
688 			sha_check = false;
689 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
690 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
691 		}
692 	}
693 
694 	bsp_cpuid_1_eax = cpuid_1_eax;
695 
696 	rev = get_patch_level();
697 	ed->old_rev = rev;
698 
699 	/* Needed in load_microcode_amd() */
700 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
701 
702 	if (!find_blobs_in_containers(&cp))
703 		return;
704 
705 	scan_containers(cp.data, cp.size, &desc);
706 
707 	mc = desc.mc;
708 	if (!mc)
709 		return;
710 
711 	/*
712 	 * Allow application of the same revision to pick up SMT-specific
713 	 * changes even if the revision of the other SMT thread is already
714 	 * up-to-date.
715 	 */
716 	if (ed->old_rev > mc->hdr.patch_id)
717 		return;
718 
719 	if (__apply_microcode_amd(mc, &rev, desc.psize))
720 		ed->new_rev = rev;
721 }
722 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)723 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
724 					 struct ucode_patch *n,
725 					 bool ignore_stepping)
726 {
727 	/* Zen and newer hardcode the f/m/s in the patch ID */
728         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
729 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
730 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
731 
732 		if (ignore_stepping) {
733 			p_cid.stepping = 0;
734 			n_cid.stepping = 0;
735 		}
736 
737 		return p_cid.full == n_cid.full;
738 	} else {
739 		return p->equiv_cpu == n->equiv_cpu;
740 	}
741 }
742 
743 /*
744  * a small, trivial cache of per-family ucode patches
745  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)746 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
747 {
748 	struct ucode_patch *p;
749 	struct ucode_patch n;
750 
751 	n.equiv_cpu = equiv_cpu;
752 	n.patch_id  = uci->cpu_sig.rev;
753 
754 	WARN_ON_ONCE(!n.patch_id);
755 
756 	list_for_each_entry(p, &microcode_cache, plist)
757 		if (patch_cpus_equivalent(p, &n, false))
758 			return p;
759 
760 	return NULL;
761 }
762 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)763 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
764 {
765 	/* Zen and newer hardcode the f/m/s in the patch ID */
766         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
767 		union zen_patch_rev zp, zn;
768 
769 		zp.ucode_rev = p->patch_id;
770 		zn.ucode_rev = n->patch_id;
771 
772 		if (zn.stepping != zp.stepping)
773 			return -1;
774 
775 		return zn.rev > zp.rev;
776 	} else {
777 		return n->patch_id > p->patch_id;
778 	}
779 }
780 
update_cache(struct ucode_patch * new_patch)781 static void update_cache(struct ucode_patch *new_patch)
782 {
783 	struct ucode_patch *p;
784 	int ret;
785 
786 	list_for_each_entry(p, &microcode_cache, plist) {
787 		if (patch_cpus_equivalent(p, new_patch, true)) {
788 			ret = patch_newer(p, new_patch);
789 			if (ret < 0)
790 				continue;
791 			else if (!ret) {
792 				/* we already have the latest patch */
793 				kfree(new_patch->data);
794 				kfree(new_patch);
795 				return;
796 			}
797 
798 			list_replace(&p->plist, &new_patch->plist);
799 			kfree(p->data);
800 			kfree(p);
801 			return;
802 		}
803 	}
804 	/* no patch found, add it */
805 	list_add_tail(&new_patch->plist, &microcode_cache);
806 }
807 
free_cache(void)808 static void free_cache(void)
809 {
810 	struct ucode_patch *p, *tmp;
811 
812 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
813 		__list_del(p->plist.prev, p->plist.next);
814 		kfree(p->data);
815 		kfree(p);
816 	}
817 }
818 
find_patch(unsigned int cpu)819 static struct ucode_patch *find_patch(unsigned int cpu)
820 {
821 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
822 	u16 equiv_id = 0;
823 
824 	uci->cpu_sig.rev = get_patch_level();
825 
826 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
827 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
828 		if (!equiv_id)
829 			return NULL;
830 	}
831 
832 	return cache_find_patch(uci, equiv_id);
833 }
834 
reload_ucode_amd(unsigned int cpu)835 void reload_ucode_amd(unsigned int cpu)
836 {
837 	u32 rev, dummy __always_unused;
838 	struct microcode_amd *mc;
839 	struct ucode_patch *p;
840 
841 	p = find_patch(cpu);
842 	if (!p)
843 		return;
844 
845 	mc = p->data;
846 
847 	rev = get_patch_level();
848 	if (rev < mc->hdr.patch_id) {
849 		if (__apply_microcode_amd(mc, &rev, p->size))
850 			pr_info_once("reload revision: 0x%08x\n", rev);
851 	}
852 }
853 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)854 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
855 {
856 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
857 	struct ucode_patch *p;
858 
859 	csig->sig = cpuid_eax(0x00000001);
860 	csig->rev = get_patch_level();
861 
862 	/*
863 	 * a patch could have been loaded early, set uci->mc so that
864 	 * mc_bp_resume() can call apply_microcode()
865 	 */
866 	p = find_patch(cpu);
867 	if (p && (p->patch_id == csig->rev))
868 		uci->mc = p->data;
869 
870 	return 0;
871 }
872 
apply_microcode_amd(int cpu)873 static enum ucode_state apply_microcode_amd(int cpu)
874 {
875 	struct cpuinfo_x86 *c = &cpu_data(cpu);
876 	struct microcode_amd *mc_amd;
877 	struct ucode_cpu_info *uci;
878 	struct ucode_patch *p;
879 	enum ucode_state ret;
880 	u32 rev;
881 
882 	BUG_ON(raw_smp_processor_id() != cpu);
883 
884 	uci = ucode_cpu_info + cpu;
885 
886 	p = find_patch(cpu);
887 	if (!p)
888 		return UCODE_NFOUND;
889 
890 	rev = uci->cpu_sig.rev;
891 
892 	mc_amd  = p->data;
893 	uci->mc = p->data;
894 
895 	/* need to apply patch? */
896 	if (rev > mc_amd->hdr.patch_id) {
897 		ret = UCODE_OK;
898 		goto out;
899 	}
900 
901 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
902 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
903 			cpu, mc_amd->hdr.patch_id);
904 		return UCODE_ERROR;
905 	}
906 
907 	rev = mc_amd->hdr.patch_id;
908 	ret = UCODE_UPDATED;
909 
910 out:
911 	uci->cpu_sig.rev = rev;
912 	c->microcode	 = rev;
913 
914 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
915 	if (c->cpu_index == boot_cpu_data.cpu_index)
916 		boot_cpu_data.microcode = rev;
917 
918 	return ret;
919 }
920 
load_ucode_amd_ap(unsigned int cpuid_1_eax)921 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
922 {
923 	unsigned int cpu = smp_processor_id();
924 
925 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
926 	apply_microcode_amd(cpu);
927 }
928 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)929 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
930 {
931 	u32 equiv_tbl_len;
932 	const u32 *hdr;
933 
934 	if (!verify_equivalence_table(buf, buf_size))
935 		return 0;
936 
937 	hdr = (const u32 *)buf;
938 	equiv_tbl_len = hdr[2];
939 
940 	/* Zen and newer do not need an equivalence table. */
941 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
942 		goto out;
943 
944 	equiv_table.entry = vmalloc(equiv_tbl_len);
945 	if (!equiv_table.entry) {
946 		pr_err("failed to allocate equivalent CPU table\n");
947 		return 0;
948 	}
949 
950 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
951 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
952 
953 out:
954 	/* add header length */
955 	return equiv_tbl_len + CONTAINER_HDR_SZ;
956 }
957 
free_equiv_cpu_table(void)958 static void free_equiv_cpu_table(void)
959 {
960 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
961 		return;
962 
963 	vfree(equiv_table.entry);
964 	memset(&equiv_table, 0, sizeof(equiv_table));
965 }
966 
cleanup(void)967 static void cleanup(void)
968 {
969 	free_equiv_cpu_table();
970 	free_cache();
971 }
972 
973 /*
974  * Return a non-negative value even if some of the checks failed so that
975  * we can skip over the next patch. If we return a negative value, we
976  * signal a grave error like a memory allocation has failed and the
977  * driver cannot continue functioning normally. In such cases, we tear
978  * down everything we've used up so far and exit.
979  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)980 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
981 				unsigned int *patch_size)
982 {
983 	struct microcode_header_amd *mc_hdr;
984 	struct ucode_patch *patch;
985 	u16 proc_id;
986 	int ret;
987 
988 	ret = verify_patch(fw, leftover, patch_size);
989 	if (ret)
990 		return ret;
991 
992 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
993 	if (!patch) {
994 		pr_err("Patch allocation failure.\n");
995 		return -EINVAL;
996 	}
997 
998 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
999 	if (!patch->data) {
1000 		pr_err("Patch data allocation failure.\n");
1001 		kfree(patch);
1002 		return -EINVAL;
1003 	}
1004 	patch->size = *patch_size;
1005 
1006 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1007 	proc_id     = mc_hdr->processor_rev_id;
1008 
1009 	INIT_LIST_HEAD(&patch->plist);
1010 	patch->patch_id  = mc_hdr->patch_id;
1011 	patch->equiv_cpu = proc_id;
1012 
1013 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1014 		 __func__, patch->patch_id, proc_id);
1015 
1016 	/* ... and add to cache. */
1017 	update_cache(patch);
1018 
1019 	return 0;
1020 }
1021 
1022 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1023 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1024 {
1025 	u8 *fw = (u8 *)data;
1026 	size_t offset;
1027 
1028 	offset = install_equiv_cpu_table(data, size);
1029 	if (!offset)
1030 		return UCODE_ERROR;
1031 
1032 	fw   += offset;
1033 	size -= offset;
1034 
1035 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1036 		pr_err("invalid type field in container file section header\n");
1037 		free_equiv_cpu_table();
1038 		return UCODE_ERROR;
1039 	}
1040 
1041 	while (size > 0) {
1042 		unsigned int crnt_size = 0;
1043 		int ret;
1044 
1045 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1046 		if (ret < 0)
1047 			return UCODE_ERROR;
1048 
1049 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1050 		size -= (crnt_size + SECTION_HDR_SIZE);
1051 	}
1052 
1053 	return UCODE_OK;
1054 }
1055 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1056 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1057 {
1058 	enum ucode_state ret;
1059 
1060 	/* free old equiv table */
1061 	free_equiv_cpu_table();
1062 
1063 	ret = __load_microcode_amd(family, data, size);
1064 	if (ret != UCODE_OK)
1065 		cleanup();
1066 
1067 	return ret;
1068 }
1069 
load_microcode_amd(u8 family,const u8 * data,size_t size)1070 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1071 {
1072 	struct cpuinfo_x86 *c;
1073 	unsigned int nid, cpu;
1074 	struct ucode_patch *p;
1075 	enum ucode_state ret;
1076 
1077 	ret = _load_microcode_amd(family, data, size);
1078 	if (ret != UCODE_OK)
1079 		return ret;
1080 
1081 	for_each_node(nid) {
1082 		cpu = cpumask_first(cpumask_of_node(nid));
1083 		c = &cpu_data(cpu);
1084 
1085 		p = find_patch(cpu);
1086 		if (!p)
1087 			continue;
1088 
1089 		if (c->microcode >= p->patch_id)
1090 			continue;
1091 
1092 		ret = UCODE_NEW;
1093 	}
1094 
1095 	return ret;
1096 }
1097 
save_microcode_in_initrd(void)1098 static int __init save_microcode_in_initrd(void)
1099 {
1100 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
1101 	struct cpuinfo_x86 *c = &boot_cpu_data;
1102 	struct cont_desc desc = { 0 };
1103 	enum ucode_state ret;
1104 	struct cpio_data cp;
1105 
1106 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1107 		return 0;
1108 
1109 	if (!find_blobs_in_containers(&cp))
1110 		return -EINVAL;
1111 
1112 	scan_containers(cp.data, cp.size, &desc);
1113 	if (!desc.mc)
1114 		return -EINVAL;
1115 
1116 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1117 	if (ret > UCODE_UPDATED)
1118 		return -EINVAL;
1119 
1120 	return 0;
1121 }
1122 early_initcall(save_microcode_in_initrd);
1123 
1124 /*
1125  * AMD microcode firmware naming convention, up to family 15h they are in
1126  * the legacy file:
1127  *
1128  *    amd-ucode/microcode_amd.bin
1129  *
1130  * This legacy file is always smaller than 2K in size.
1131  *
1132  * Beginning with family 15h, they are in family-specific firmware files:
1133  *
1134  *    amd-ucode/microcode_amd_fam15h.bin
1135  *    amd-ucode/microcode_amd_fam16h.bin
1136  *    ...
1137  *
1138  * These might be larger than 2K.
1139  */
request_microcode_amd(int cpu,struct device * device)1140 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1141 {
1142 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1143 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1144 	enum ucode_state ret = UCODE_NFOUND;
1145 	const struct firmware *fw;
1146 
1147 	if (force_minrev)
1148 		return UCODE_NFOUND;
1149 
1150 	if (c->x86 >= 0x15)
1151 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1152 
1153 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1154 		pr_debug("failed to load file %s\n", fw_name);
1155 		goto out;
1156 	}
1157 
1158 	ret = UCODE_ERROR;
1159 	if (!verify_container(fw->data, fw->size))
1160 		goto fw_release;
1161 
1162 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1163 
1164  fw_release:
1165 	release_firmware(fw);
1166 
1167  out:
1168 	return ret;
1169 }
1170 
microcode_fini_cpu_amd(int cpu)1171 static void microcode_fini_cpu_amd(int cpu)
1172 {
1173 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1174 
1175 	uci->mc = NULL;
1176 }
1177 
1178 static struct microcode_ops microcode_amd_ops = {
1179 	.request_microcode_fw	= request_microcode_amd,
1180 	.collect_cpu_info	= collect_cpu_info_amd,
1181 	.apply_microcode	= apply_microcode_amd,
1182 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1183 	.nmi_safe		= true,
1184 };
1185 
init_amd_microcode(void)1186 struct microcode_ops * __init init_amd_microcode(void)
1187 {
1188 	struct cpuinfo_x86 *c = &boot_cpu_data;
1189 
1190 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1191 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1192 		return NULL;
1193 	}
1194 	return &microcode_amd_ops;
1195 }
1196 
exit_amd_microcode(void)1197 void __exit exit_amd_microcode(void)
1198 {
1199 	cleanup();
1200 }
1201