1 /* Support for writing ELF notes for ARM architectures
2 *
3 * Copyright (C) 2015 Red Hat Inc.
4 *
5 * Author: Andrew Jones <drjones@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "elf.h"
24 #include "sysemu/dump.h"
25 #include "cpu-features.h"
26
27 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
28 struct aarch64_user_regs {
29 uint64_t regs[31];
30 uint64_t sp;
31 uint64_t pc;
32 uint64_t pstate;
33 } QEMU_PACKED;
34
35 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
36
37 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
38 struct aarch64_elf_prstatus {
39 char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
40 uint32_t pr_pid;
41 char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
42 offsetof(struct elf_prstatus, pr_ppid) */
43 struct aarch64_user_regs pr_reg;
44 uint32_t pr_fpvalid;
45 char pad3[4];
46 } QEMU_PACKED;
47
48 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
49
50 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
51 *
52 * While the vregs member of user_fpsimd_state is of type __uint128_t,
53 * QEMU uses an array of uint64_t, where the high half of the 128-bit
54 * value is always in the 2n+1'th index. Thus we also break the 128-
55 * bit values into two halves in this reproduction of user_fpsimd_state.
56 */
57 struct aarch64_user_vfp_state {
58 uint64_t vregs[64];
59 uint32_t fpsr;
60 uint32_t fpcr;
61 char pad[8];
62 } QEMU_PACKED;
63
64 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
65
66 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
67 struct aarch64_user_sve_header {
68 uint32_t size;
69 uint32_t max_size;
70 uint16_t vl;
71 uint16_t max_vl;
72 uint16_t flags;
73 uint16_t reserved;
74 } QEMU_PACKED;
75
76 struct aarch64_note {
77 Elf64_Nhdr hdr;
78 char name[8]; /* align_up(sizeof("CORE"), 4) */
79 union {
80 struct aarch64_elf_prstatus prstatus;
81 struct aarch64_user_vfp_state vfp;
82 struct aarch64_user_sve_header sve;
83 };
84 } QEMU_PACKED;
85
86 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
87 #define AARCH64_PRSTATUS_NOTE_SIZE \
88 (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
89 #define AARCH64_PRFPREG_NOTE_SIZE \
90 (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
91 #define AARCH64_SVE_NOTE_SIZE(env) \
92 (AARCH64_NOTE_HEADER_SIZE + sve_size(env))
93
aarch64_note_init(struct aarch64_note * note,DumpState * s,const char * name,Elf64_Word namesz,Elf64_Word type,Elf64_Word descsz)94 static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
95 const char *name, Elf64_Word namesz,
96 Elf64_Word type, Elf64_Word descsz)
97 {
98 memset(note, 0, sizeof(*note));
99
100 note->hdr.n_namesz = cpu_to_dump32(s, namesz);
101 note->hdr.n_descsz = cpu_to_dump32(s, descsz);
102 note->hdr.n_type = cpu_to_dump32(s, type);
103
104 memcpy(note->name, name, namesz);
105 }
106
aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,CPUARMState * env,int cpuid,DumpState * s)107 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
108 CPUARMState *env, int cpuid,
109 DumpState *s)
110 {
111 struct aarch64_note note;
112 int ret, i;
113
114 aarch64_note_init(¬e, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
115
116 for (i = 0; i < 32; ++i) {
117 uint64_t *q = aa64_vfp_qreg(env, i);
118 note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]);
119 note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]);
120 }
121
122 if (s->dump_info.d_endian == ELFDATA2MSB) {
123 /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
124 * entries when generating BE notes, because even big endian
125 * hosts use 2n+1 for the high half.
126 */
127 for (i = 0; i < 32; ++i) {
128 uint64_t tmp = note.vfp.vregs[2*i];
129 note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1];
130 note.vfp.vregs[2 * i + 1] = tmp;
131 }
132 }
133
134 note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
135 note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
136
137 ret = f(¬e, AARCH64_PRFPREG_NOTE_SIZE, s);
138 if (ret < 0) {
139 return -1;
140 }
141
142 return 0;
143 }
144
145 #ifdef TARGET_AARCH64
sve_zreg_offset(uint32_t vq,int n)146 static off_t sve_zreg_offset(uint32_t vq, int n)
147 {
148 off_t off = sizeof(struct aarch64_user_sve_header);
149 return ROUND_UP(off, 16) + vq * 16 * n;
150 }
151
sve_preg_offset(uint32_t vq,int n)152 static off_t sve_preg_offset(uint32_t vq, int n)
153 {
154 return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
155 }
156
sve_fpsr_offset(uint32_t vq)157 static off_t sve_fpsr_offset(uint32_t vq)
158 {
159 off_t off = sve_preg_offset(vq, 17);
160 return ROUND_UP(off, 16);
161 }
162
sve_fpcr_offset(uint32_t vq)163 static off_t sve_fpcr_offset(uint32_t vq)
164 {
165 return sve_fpsr_offset(vq) + sizeof(uint32_t);
166 }
167
sve_current_vq(CPUARMState * env)168 static uint32_t sve_current_vq(CPUARMState *env)
169 {
170 return sve_vqm1_for_el(env, arm_current_el(env)) + 1;
171 }
172
sve_size_vq(uint32_t vq)173 static size_t sve_size_vq(uint32_t vq)
174 {
175 off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
176 return ROUND_UP(off, 16);
177 }
178
sve_size(CPUARMState * env)179 static size_t sve_size(CPUARMState *env)
180 {
181 return sve_size_vq(sve_current_vq(env));
182 }
183
aarch64_write_elf64_sve(WriteCoreDumpFunction f,CPUARMState * env,int cpuid,DumpState * s)184 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
185 CPUARMState *env, int cpuid,
186 DumpState *s)
187 {
188 struct aarch64_note *note;
189 ARMCPU *cpu = env_archcpu(env);
190 uint32_t vq = sve_current_vq(env);
191 uint64_t tmp[ARM_MAX_VQ * 2], *r;
192 uint32_t fpr;
193 uint8_t *buf;
194 int ret, i;
195
196 note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
197 buf = (uint8_t *)¬e->sve;
198
199 aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
200
201 note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
202 note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
203 note->sve.vl = cpu_to_dump16(s, vq * 16);
204 note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
205 note->sve.flags = cpu_to_dump16(s, 1);
206
207 for (i = 0; i < 32; ++i) {
208 r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
209 memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
210 }
211
212 for (i = 0; i < 17; ++i) {
213 r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
214 DIV_ROUND_UP(vq * 2, 8));
215 memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
216 }
217
218 fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
219 memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
220
221 fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
222 memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
223
224 ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
225 g_free(note);
226
227 if (ret < 0) {
228 return -1;
229 }
230
231 return 0;
232 }
233 #endif
234
arm_cpu_write_elf64_note(WriteCoreDumpFunction f,CPUState * cs,int cpuid,DumpState * s)235 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
236 int cpuid, DumpState *s)
237 {
238 struct aarch64_note note;
239 ARMCPU *cpu = ARM_CPU(cs);
240 CPUARMState *env = &cpu->env;
241 uint64_t pstate, sp;
242 int ret, i;
243
244 aarch64_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
245
246 note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
247 note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
248
249 if (!is_a64(env)) {
250 aarch64_sync_32_to_64(env);
251 pstate = cpsr_read(env);
252 sp = 0;
253 } else {
254 pstate = pstate_read(env);
255 sp = env->xregs[31];
256 }
257
258 for (i = 0; i < 31; ++i) {
259 note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
260 }
261 note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
262 note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
263 note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
264
265 ret = f(¬e, AARCH64_PRSTATUS_NOTE_SIZE, s);
266 if (ret < 0) {
267 return -1;
268 }
269
270 ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
271 if (ret) {
272 return ret;
273 }
274
275 #ifdef TARGET_AARCH64
276 if (cpu_isar_feature(aa64_sve, cpu)) {
277 ret = aarch64_write_elf64_sve(f, env, cpuid, s);
278 }
279 #endif
280
281 return ret;
282 }
283
284 /* struct pt_regs from arch/arm/include/asm/ptrace.h */
285 struct arm_user_regs {
286 uint32_t regs[17];
287 char pad[4];
288 } QEMU_PACKED;
289
290 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
291
292 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
293 struct arm_elf_prstatus {
294 char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
295 uint32_t pr_pid;
296 char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
297 offsetof(struct elf_prstatus, pr_ppid) */
298 struct arm_user_regs pr_reg;
299 uint32_t pr_fpvalid;
300 } QEMU_PACKED arm_elf_prstatus;
301
302 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
303
304 /* struct user_vfp from arch/arm/include/asm/user.h */
305 struct arm_user_vfp_state {
306 uint64_t vregs[32];
307 uint32_t fpscr;
308 } QEMU_PACKED;
309
310 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
311
312 struct arm_note {
313 Elf32_Nhdr hdr;
314 char name[8]; /* align_up(sizeof("LINUX"), 4) */
315 union {
316 struct arm_elf_prstatus prstatus;
317 struct arm_user_vfp_state vfp;
318 };
319 } QEMU_PACKED;
320
321 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
322 #define ARM_PRSTATUS_NOTE_SIZE \
323 (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
324 #define ARM_VFP_NOTE_SIZE \
325 (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
326
arm_note_init(struct arm_note * note,DumpState * s,const char * name,Elf32_Word namesz,Elf32_Word type,Elf32_Word descsz)327 static void arm_note_init(struct arm_note *note, DumpState *s,
328 const char *name, Elf32_Word namesz,
329 Elf32_Word type, Elf32_Word descsz)
330 {
331 memset(note, 0, sizeof(*note));
332
333 note->hdr.n_namesz = cpu_to_dump32(s, namesz);
334 note->hdr.n_descsz = cpu_to_dump32(s, descsz);
335 note->hdr.n_type = cpu_to_dump32(s, type);
336
337 memcpy(note->name, name, namesz);
338 }
339
arm_write_elf32_vfp(WriteCoreDumpFunction f,CPUARMState * env,int cpuid,DumpState * s)340 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
341 int cpuid, DumpState *s)
342 {
343 struct arm_note note;
344 int ret, i;
345
346 arm_note_init(¬e, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
347
348 for (i = 0; i < 32; ++i) {
349 note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
350 }
351
352 note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
353
354 ret = f(¬e, ARM_VFP_NOTE_SIZE, s);
355 if (ret < 0) {
356 return -1;
357 }
358
359 return 0;
360 }
361
arm_cpu_write_elf32_note(WriteCoreDumpFunction f,CPUState * cs,int cpuid,DumpState * s)362 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
363 int cpuid, DumpState *s)
364 {
365 struct arm_note note;
366 ARMCPU *cpu = ARM_CPU(cs);
367 CPUARMState *env = &cpu->env;
368 int ret, i;
369 bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
370
371 arm_note_init(¬e, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
372
373 note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
374 note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
375
376 for (i = 0; i < 16; ++i) {
377 note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
378 }
379 note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
380
381 ret = f(¬e, ARM_PRSTATUS_NOTE_SIZE, s);
382 if (ret < 0) {
383 return -1;
384 } else if (fpvalid) {
385 return arm_write_elf32_vfp(f, env, cpuid, s);
386 }
387
388 return 0;
389 }
390
cpu_get_dump_info(ArchDumpInfo * info,const GuestPhysBlockList * guest_phys_blocks)391 int cpu_get_dump_info(ArchDumpInfo *info,
392 const GuestPhysBlockList *guest_phys_blocks)
393 {
394 ARMCPU *cpu;
395 CPUARMState *env;
396 GuestPhysBlock *block;
397 hwaddr lowest_addr = ULLONG_MAX;
398
399 if (first_cpu == NULL) {
400 return -1;
401 }
402
403 cpu = ARM_CPU(first_cpu);
404 env = &cpu->env;
405
406 /* Take a best guess at the phys_base. If we get it wrong then crash
407 * will need '--machdep phys_offset=<phys-offset>' added to its command
408 * line, which isn't any worse than assuming we can use zero, but being
409 * wrong. This is the same algorithm the crash utility uses when
410 * attempting to guess as it loads non-dumpfile formatted files.
411 */
412 QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
413 if (block->target_start < lowest_addr) {
414 lowest_addr = block->target_start;
415 }
416 }
417
418 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
419 info->d_machine = EM_AARCH64;
420 info->d_class = ELFCLASS64;
421 info->page_size = (1 << 16); /* aarch64 max pagesize */
422 if (lowest_addr != ULLONG_MAX) {
423 info->phys_base = lowest_addr;
424 }
425 } else {
426 info->d_machine = EM_ARM;
427 info->d_class = ELFCLASS32;
428 info->page_size = (1 << 12);
429 if (lowest_addr < UINT_MAX) {
430 info->phys_base = lowest_addr;
431 }
432 }
433
434 /* We assume the relevant endianness is that of EL1; this is right
435 * for kernels, but might give the wrong answer if you're trying to
436 * dump a hypervisor that happens to be running an opposite-endian
437 * kernel.
438 */
439 info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
440 ? ELFDATA2MSB : ELFDATA2LSB;
441
442 return 0;
443 }
444
cpu_get_note_size(int class,int machine,int nr_cpus)445 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
446 {
447 ARMCPU *cpu = ARM_CPU(first_cpu);
448 size_t note_size;
449
450 if (class == ELFCLASS64) {
451 note_size = AARCH64_PRSTATUS_NOTE_SIZE;
452 note_size += AARCH64_PRFPREG_NOTE_SIZE;
453 #ifdef TARGET_AARCH64
454 if (cpu_isar_feature(aa64_sve, cpu)) {
455 note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
456 }
457 #endif
458 } else {
459 note_size = ARM_PRSTATUS_NOTE_SIZE;
460 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
461 note_size += ARM_VFP_NOTE_SIZE;
462 }
463 }
464
465 return note_size * nr_cpus;
466 }
467