1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "qemu/error-report.h"
26 #include "qemu/module.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 #include "qom/object.h"
34 #include "target/arm/cpregs.h"
35
36
37 #ifdef DEBUG_GICV3_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42 do { } while (0)
43 #endif
44
45 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
46 typedef struct KVMARMGICv3Class KVMARMGICv3Class;
47 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
48 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
49 KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
50
51 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
52 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
57
58 #define ICC_PMR_EL1 \
59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1 \
61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1 \
67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1 \
69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
76
77 struct KVMARMGICv3Class {
78 ARMGICv3CommonClass parent_class;
79 DeviceRealize parent_realize;
80 ResettablePhases parent_phases;
81 };
82
kvm_arm_gicv3_set_irq(void * opaque,int irq,int level)83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
84 {
85 GICv3State *s = (GICv3State *)opaque;
86
87 kvm_arm_gic_set_irq(s->num_irq, irq, level);
88 }
89
90 #define KVM_VGIC_ATTR(reg, typer) \
91 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
92
kvm_gicd_access(GICv3State * s,int offset,uint32_t * val,bool write)93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94 uint32_t *val, bool write)
95 {
96 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97 KVM_VGIC_ATTR(offset, 0),
98 val, write, &error_abort);
99 }
100
kvm_gicr_access(GICv3State * s,int offset,int cpu,uint32_t * val,bool write)101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102 uint32_t *val, bool write)
103 {
104 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106 val, write, &error_abort);
107 }
108
kvm_gicc_access(GICv3State * s,uint64_t reg,int cpu,uint64_t * val,bool write)109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110 uint64_t *val, bool write)
111 {
112 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114 val, write, &error_abort);
115 }
116
kvm_gic_line_level_access(GICv3State * s,int irq,int cpu,uint32_t * val,bool write)117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118 uint32_t *val, bool write)
119 {
120 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122 (VGIC_LEVEL_INFO_LINE_LEVEL <<
123 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124 val, write, &error_abort);
125 }
126
127 /* Loop through each distributor IRQ related register; since bits
128 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129 * is enabled, we skip those.
130 */
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
133
kvm_dist_get_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
135 {
136 uint32_t reg, *field;
137 int irq;
138
139 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143 * offset.
144 */
145 field = (uint32_t *)(bmp + GIC_INTERNAL);
146 offset += (GIC_INTERNAL * 8) / 8;
147 for_each_dist_irq_reg(irq, s->num_irq, 8) {
148 kvm_gicd_access(s, offset, ®, false);
149 *field = reg;
150 offset += 4;
151 field++;
152 }
153 }
154
kvm_dist_put_priority(GICv3State * s,uint32_t offset,uint8_t * bmp)155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
156 {
157 uint32_t reg, *field;
158 int irq;
159
160 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164 * offset.
165 */
166 field = (uint32_t *)(bmp + GIC_INTERNAL);
167 offset += (GIC_INTERNAL * 8) / 8;
168 for_each_dist_irq_reg(irq, s->num_irq, 8) {
169 reg = *field;
170 kvm_gicd_access(s, offset, ®, true);
171 offset += 4;
172 field++;
173 }
174 }
175
kvm_dist_get_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177 uint32_t *bmp)
178 {
179 uint32_t reg;
180 int irq;
181
182 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186 * This matches the for_each_dist_irq_reg() macro which also skips the
187 * first GIC_INTERNAL irqs.
188 */
189 offset += (GIC_INTERNAL * 2) / 8;
190 for_each_dist_irq_reg(irq, s->num_irq, 2) {
191 kvm_gicd_access(s, offset, ®, false);
192 reg = half_unshuffle32(reg >> 1);
193 if (irq % 32 != 0) {
194 reg = (reg << 16);
195 }
196 *gic_bmp_ptr32(bmp, irq) |= reg;
197 offset += 4;
198 }
199 }
200
kvm_dist_put_edge_trigger(GICv3State * s,uint32_t offset,uint32_t * bmp)201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202 uint32_t *bmp)
203 {
204 uint32_t reg;
205 int irq;
206
207 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211 * This matches the for_each_dist_irq_reg() macro which also skips the
212 * first GIC_INTERNAL irqs.
213 */
214 offset += (GIC_INTERNAL * 2) / 8;
215 for_each_dist_irq_reg(irq, s->num_irq, 2) {
216 reg = *gic_bmp_ptr32(bmp, irq);
217 if (irq % 32 != 0) {
218 reg = (reg & 0xffff0000) >> 16;
219 } else {
220 reg = reg & 0xffff;
221 }
222 reg = half_shuffle32(reg) << 1;
223 kvm_gicd_access(s, offset, ®, true);
224 offset += 4;
225 }
226 }
227
kvm_gic_get_line_level_bmp(GICv3State * s,uint32_t * bmp)228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
229 {
230 uint32_t reg;
231 int irq;
232
233 for_each_dist_irq_reg(irq, s->num_irq, 1) {
234 kvm_gic_line_level_access(s, irq, 0, ®, false);
235 *gic_bmp_ptr32(bmp, irq) = reg;
236 }
237 }
238
kvm_gic_put_line_level_bmp(GICv3State * s,uint32_t * bmp)239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
240 {
241 uint32_t reg;
242 int irq;
243
244 for_each_dist_irq_reg(irq, s->num_irq, 1) {
245 reg = *gic_bmp_ptr32(bmp, irq);
246 kvm_gic_line_level_access(s, irq, 0, ®, true);
247 }
248 }
249
250 /* Read a bitmap register group from the kernel VGIC. */
kvm_dist_getbmp(GICv3State * s,uint32_t offset,uint32_t * bmp)251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
252 {
253 uint32_t reg;
254 int irq;
255
256 /* For the KVM GICv3, affinity routing is always enabled, and the
257 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259 * functionality is replaced by the GICR registers. It doesn't need to sync
260 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261 * This matches the for_each_dist_irq_reg() macro which also skips the
262 * first GIC_INTERNAL irqs.
263 */
264 offset += (GIC_INTERNAL * 1) / 8;
265 for_each_dist_irq_reg(irq, s->num_irq, 1) {
266 kvm_gicd_access(s, offset, ®, false);
267 *gic_bmp_ptr32(bmp, irq) = reg;
268 offset += 4;
269 }
270 }
271
kvm_dist_putbmp(GICv3State * s,uint32_t offset,uint32_t clroffset,uint32_t * bmp)272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273 uint32_t clroffset, uint32_t *bmp)
274 {
275 uint32_t reg;
276 int irq;
277
278 /* For the KVM GICv3, affinity routing is always enabled, and the
279 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281 * functionality is replaced by the GICR registers. It doesn't need to sync
282 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284 * first GIC_INTERNAL irqs.
285 */
286 offset += (GIC_INTERNAL * 1) / 8;
287 if (clroffset != 0) {
288 clroffset += (GIC_INTERNAL * 1) / 8;
289 }
290
291 for_each_dist_irq_reg(irq, s->num_irq, 1) {
292 /* If this bitmap is a set/clear register pair, first write to the
293 * clear-reg to clear all bits before using the set-reg to write
294 * the 1 bits.
295 */
296 if (clroffset != 0) {
297 reg = 0;
298 kvm_gicd_access(s, clroffset, ®, true);
299 clroffset += 4;
300 }
301 reg = *gic_bmp_ptr32(bmp, irq);
302 kvm_gicd_access(s, offset, ®, true);
303 offset += 4;
304 }
305 }
306
kvm_arm_gicv3_check(GICv3State * s)307 static void kvm_arm_gicv3_check(GICv3State *s)
308 {
309 uint32_t reg;
310 uint32_t num_irq;
311
312 /* Sanity checking s->num_irq */
313 kvm_gicd_access(s, GICD_TYPER, ®, false);
314 num_irq = ((reg & 0x1f) + 1) * 32;
315
316 if (num_irq < s->num_irq) {
317 error_report("Model requests %u IRQs, but kernel supports max %u",
318 s->num_irq, num_irq);
319 abort();
320 }
321 }
322
kvm_arm_gicv3_put(GICv3State * s)323 static void kvm_arm_gicv3_put(GICv3State *s)
324 {
325 uint32_t regl, regh, reg;
326 uint64_t reg64, redist_typer;
327 int ncpu, i;
328
329 kvm_arm_gicv3_check(s);
330
331 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false);
332 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false);
333 redist_typer = ((uint64_t)regh << 32) | regl;
334
335 reg = s->gicd_ctlr;
336 kvm_gicd_access(s, GICD_CTLR, ®, true);
337
338 if (redist_typer & GICR_TYPER_PLPIS) {
339 /*
340 * Restore base addresses before LPIs are potentially enabled by
341 * GICR_CTLR write
342 */
343 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
344 GICv3CPUState *c = &s->cpu[ncpu];
345
346 reg64 = c->gicr_propbaser;
347 regl = (uint32_t)reg64;
348 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, true);
349 regh = (uint32_t)(reg64 >> 32);
350 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, true);
351
352 reg64 = c->gicr_pendbaser;
353 regl = (uint32_t)reg64;
354 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, true);
355 regh = (uint32_t)(reg64 >> 32);
356 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, true);
357 }
358 }
359
360 /* Redistributor state (one per CPU) */
361
362 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
363 GICv3CPUState *c = &s->cpu[ncpu];
364
365 reg = c->gicr_ctlr;
366 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, true);
367
368 reg = c->gicr_statusr[GICV3_NS];
369 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, true);
370
371 reg = c->gicr_waker;
372 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, true);
373
374 reg = c->gicr_igroupr0;
375 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, true);
376
377 reg = ~0;
378 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, ®, true);
379 reg = c->gicr_ienabler0;
380 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, true);
381
382 /* Restore config before pending so we treat level/edge correctly */
383 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
384 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, true);
385
386 reg = c->level;
387 kvm_gic_line_level_access(s, 0, ncpu, ®, true);
388
389 reg = ~0;
390 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, ®, true);
391 reg = c->gicr_ipendr0;
392 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, true);
393
394 reg = ~0;
395 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, ®, true);
396 reg = c->gicr_iactiver0;
397 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, true);
398
399 for (i = 0; i < GIC_INTERNAL; i += 4) {
400 reg = c->gicr_ipriorityr[i] |
401 (c->gicr_ipriorityr[i + 1] << 8) |
402 (c->gicr_ipriorityr[i + 2] << 16) |
403 (c->gicr_ipriorityr[i + 3] << 24);
404 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, true);
405 }
406 }
407
408 /* Distributor state (shared between all CPUs */
409 reg = s->gicd_statusr[GICV3_NS];
410 kvm_gicd_access(s, GICD_STATUSR, ®, true);
411
412 /* s->enable bitmap -> GICD_ISENABLERn */
413 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
414
415 /* s->group bitmap -> GICD_IGROUPRn */
416 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
417
418 /* Restore targets before pending to ensure the pending state is set on
419 * the appropriate CPU interfaces in the kernel
420 */
421
422 /* s->gicd_irouter[irq] -> GICD_IROUTERn
423 * We can't use kvm_dist_put() here because the registers are 64-bit
424 */
425 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
426 uint32_t offset;
427
428 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
429 reg = (uint32_t)s->gicd_irouter[i];
430 kvm_gicd_access(s, offset, ®, true);
431
432 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
433 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
434 kvm_gicd_access(s, offset, ®, true);
435 }
436
437 /* s->trigger bitmap -> GICD_ICFGRn
438 * (restore configuration registers before pending IRQs so we treat
439 * level/edge correctly)
440 */
441 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
442
443 /* s->level bitmap -> line_level */
444 kvm_gic_put_line_level_bmp(s, s->level);
445
446 /* s->pending bitmap -> GICD_ISPENDRn */
447 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
448
449 /* s->active bitmap -> GICD_ISACTIVERn */
450 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
451
452 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
454
455 /* CPU Interface state (one per CPU) */
456
457 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
458 GICv3CPUState *c = &s->cpu[ncpu];
459 int num_pri_bits;
460
461 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
462 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
463 &c->icc_ctlr_el1[GICV3_NS], true);
464 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
465 &c->icc_igrpen[GICV3_G0], true);
466 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
467 &c->icc_igrpen[GICV3_G1NS], true);
468 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
469 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
470 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
471
472 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
473 ICC_CTLR_EL1_PRIBITS_MASK) >>
474 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
475
476 switch (num_pri_bits) {
477 case 7:
478 reg64 = c->icc_apr[GICV3_G0][3];
479 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, true);
480 reg64 = c->icc_apr[GICV3_G0][2];
481 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, true);
482 /* fall through */
483 case 6:
484 reg64 = c->icc_apr[GICV3_G0][1];
485 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, true);
486 /* fall through */
487 default:
488 reg64 = c->icc_apr[GICV3_G0][0];
489 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, true);
490 }
491
492 switch (num_pri_bits) {
493 case 7:
494 reg64 = c->icc_apr[GICV3_G1NS][3];
495 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, true);
496 reg64 = c->icc_apr[GICV3_G1NS][2];
497 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, true);
498 /* fall through */
499 case 6:
500 reg64 = c->icc_apr[GICV3_G1NS][1];
501 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, true);
502 /* fall through */
503 default:
504 reg64 = c->icc_apr[GICV3_G1NS][0];
505 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, true);
506 }
507 }
508 }
509
kvm_arm_gicv3_get(GICv3State * s)510 static void kvm_arm_gicv3_get(GICv3State *s)
511 {
512 uint32_t regl, regh, reg;
513 uint64_t reg64, redist_typer;
514 int ncpu, i;
515
516 kvm_arm_gicv3_check(s);
517
518 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false);
519 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false);
520 redist_typer = ((uint64_t)regh << 32) | regl;
521
522 kvm_gicd_access(s, GICD_CTLR, ®, false);
523 s->gicd_ctlr = reg;
524
525 /* Redistributor state (one per CPU) */
526
527 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
528 GICv3CPUState *c = &s->cpu[ncpu];
529
530 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, false);
531 c->gicr_ctlr = reg;
532
533 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, false);
534 c->gicr_statusr[GICV3_NS] = reg;
535
536 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, false);
537 c->gicr_waker = reg;
538
539 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, false);
540 c->gicr_igroupr0 = reg;
541 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, false);
542 c->gicr_ienabler0 = reg;
543 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, false);
544 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
545 kvm_gic_line_level_access(s, 0, ncpu, ®, false);
546 c->level = reg;
547 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, false);
548 c->gicr_ipendr0 = reg;
549 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, false);
550 c->gicr_iactiver0 = reg;
551
552 for (i = 0; i < GIC_INTERNAL; i += 4) {
553 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, false);
554 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
555 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
556 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
557 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
558 }
559 }
560
561 if (redist_typer & GICR_TYPER_PLPIS) {
562 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
563 GICv3CPUState *c = &s->cpu[ncpu];
564
565 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, false);
566 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, false);
567 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
568
569 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, false);
570 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, false);
571 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
572 }
573 }
574
575 /* Distributor state (shared between all CPUs */
576
577 kvm_gicd_access(s, GICD_STATUSR, ®, false);
578 s->gicd_statusr[GICV3_NS] = reg;
579
580 /* GICD_IGROUPRn -> s->group bitmap */
581 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
582
583 /* GICD_ISENABLERn -> s->enabled bitmap */
584 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
585
586 /* Line level of irq */
587 kvm_gic_get_line_level_bmp(s, s->level);
588 /* GICD_ISPENDRn -> s->pending bitmap */
589 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
590
591 /* GICD_ISACTIVERn -> s->active bitmap */
592 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
593
594 /* GICD_ICFGRn -> s->trigger bitmap */
595 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
596
597 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
598 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
599
600 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
601 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
602 uint32_t offset;
603
604 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
605 kvm_gicd_access(s, offset, ®l, false);
606 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
607 kvm_gicd_access(s, offset, ®h, false);
608 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
609 }
610
611 /*****************************************************************
612 * CPU Interface(s) State
613 */
614
615 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
616 GICv3CPUState *c = &s->cpu[ncpu];
617 int num_pri_bits;
618
619 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
620 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
621 &c->icc_ctlr_el1[GICV3_NS], false);
622 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
623 &c->icc_igrpen[GICV3_G0], false);
624 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
625 &c->icc_igrpen[GICV3_G1NS], false);
626 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
627 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
628 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
629 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
630 ICC_CTLR_EL1_PRIBITS_MASK) >>
631 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
632
633 switch (num_pri_bits) {
634 case 7:
635 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, false);
636 c->icc_apr[GICV3_G0][3] = reg64;
637 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, false);
638 c->icc_apr[GICV3_G0][2] = reg64;
639 /* fall through */
640 case 6:
641 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, false);
642 c->icc_apr[GICV3_G0][1] = reg64;
643 /* fall through */
644 default:
645 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, false);
646 c->icc_apr[GICV3_G0][0] = reg64;
647 }
648
649 switch (num_pri_bits) {
650 case 7:
651 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, false);
652 c->icc_apr[GICV3_G1NS][3] = reg64;
653 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, false);
654 c->icc_apr[GICV3_G1NS][2] = reg64;
655 /* fall through */
656 case 6:
657 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, false);
658 c->icc_apr[GICV3_G1NS][1] = reg64;
659 /* fall through */
660 default:
661 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, false);
662 c->icc_apr[GICV3_G1NS][0] = reg64;
663 }
664 }
665 }
666
arm_gicv3_icc_reset(CPUARMState * env,const ARMCPRegInfo * ri)667 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
668 {
669 GICv3State *s;
670 GICv3CPUState *c;
671
672 c = (GICv3CPUState *)env->gicv3state;
673 s = c->gic;
674
675 c->icc_pmr_el1 = 0;
676 /*
677 * Architecturally the reset value of the ICC_BPR registers
678 * is UNKNOWN. We set them all to 0 here; when the kernel
679 * uses these values to program the ICH_VMCR_EL2 fields that
680 * determine the guest-visible ICC_BPR register values, the
681 * hardware's "writing a value less than the minimum sets
682 * the field to the minimum value" behaviour will result in
683 * them effectively resetting to the correct minimum value
684 * for the host GIC.
685 */
686 c->icc_bpr[GICV3_G0] = 0;
687 c->icc_bpr[GICV3_G1] = 0;
688 c->icc_bpr[GICV3_G1NS] = 0;
689
690 c->icc_sre_el1 = 0x7;
691 memset(c->icc_apr, 0, sizeof(c->icc_apr));
692 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
693
694 if (s->migration_blocker) {
695 return;
696 }
697
698 /* Initialize to actual HW supported configuration */
699 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
700 KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
701 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
702
703 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
704 }
705
kvm_arm_gicv3_reset_hold(Object * obj,ResetType type)706 static void kvm_arm_gicv3_reset_hold(Object *obj, ResetType type)
707 {
708 GICv3State *s = ARM_GICV3_COMMON(obj);
709 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
710
711 DPRINTF("Reset\n");
712
713 if (kgc->parent_phases.hold) {
714 kgc->parent_phases.hold(obj, type);
715 }
716
717 if (s->migration_blocker) {
718 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
719 return;
720 }
721
722 kvm_arm_gicv3_put(s);
723 }
724
725 /*
726 * CPU interface registers of GIC needs to be reset on CPU reset.
727 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
728 * below ARMCPRegInfo. As we reset the whole cpu interface under single
729 * register reset, we define only one register of CPU interface instead
730 * of defining all the registers.
731 */
732 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
733 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
734 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
735 /*
736 * If ARM_CP_NOP is used, resetfn is not called,
737 * So ARM_CP_NO_RAW is appropriate type.
738 */
739 .type = ARM_CP_NO_RAW,
740 .access = PL1_RW,
741 .readfn = arm_cp_read_zero,
742 .writefn = arm_cp_write_ignore,
743 /*
744 * We hang the whole cpu interface reset routine off here
745 * rather than parcelling it out into one little function
746 * per register
747 */
748 .resetfn = arm_gicv3_icc_reset,
749 },
750 };
751
752 /**
753 * vm_change_state_handler - VM change state callback aiming at flushing
754 * RDIST pending tables into guest RAM
755 *
756 * The tables get flushed to guest RAM whenever the VM gets stopped.
757 */
vm_change_state_handler(void * opaque,bool running,RunState state)758 static void vm_change_state_handler(void *opaque, bool running,
759 RunState state)
760 {
761 GICv3State *s = (GICv3State *)opaque;
762 Error *err = NULL;
763 int ret;
764
765 if (running) {
766 return;
767 }
768
769 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
770 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
771 NULL, true, &err);
772 if (err) {
773 error_report_err(err);
774 }
775 if (ret < 0 && ret != -EFAULT) {
776 abort();
777 }
778 }
779
780
kvm_arm_gicv3_realize(DeviceState * dev,Error ** errp)781 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
782 {
783 GICv3State *s = KVM_ARM_GICV3(dev);
784 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
785 bool multiple_redist_region_allowed;
786 Error *local_err = NULL;
787 int i;
788
789 DPRINTF("kvm_arm_gicv3_realize\n");
790
791 kgc->parent_realize(dev, &local_err);
792 if (local_err) {
793 error_propagate(errp, local_err);
794 return;
795 }
796
797 if (s->revision != 3) {
798 error_setg(errp, "unsupported GIC revision %d for in-kernel GIC",
799 s->revision);
800 }
801
802 if (s->security_extn) {
803 error_setg(errp, "the in-kernel VGICv3 does not implement the "
804 "security extensions");
805 return;
806 }
807
808 if (s->nmi_support) {
809 error_setg(errp, "NMI is not supported with the in-kernel GIC");
810 return;
811 }
812
813 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
814
815 for (i = 0; i < s->num_cpu; i++) {
816 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
817
818 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
819 }
820
821 /* Try to create the device via the device control API */
822 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
823 if (s->dev_fd < 0) {
824 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
825 return;
826 }
827
828 multiple_redist_region_allowed =
829 kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
830 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
831
832 if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
833 error_setg(errp, "Multiple VGICv3 redistributor regions are not "
834 "supported by this host kernel");
835 error_append_hint(errp, "A maximum of %d VCPUs can be used",
836 s->redist_region_count[0]);
837 return;
838 }
839
840 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
841 0, &s->num_irq, true, &error_abort);
842
843 /* Tell the kernel to complete VGIC initialization now */
844 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
845 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
846
847 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
848 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
849
850 if (!multiple_redist_region_allowed) {
851 kvm_arm_register_device(&s->redist_regions[0].iomem, -1,
852 KVM_DEV_ARM_VGIC_GRP_ADDR,
853 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
854 } else {
855 /* we register regions in reverse order as "devices" are inserted at
856 * the head of a QSLIST and the list is then popped from the head
857 * onwards by kvm_arm_machine_init_done()
858 */
859 for (i = s->nb_redist_regions - 1; i >= 0; i--) {
860 /* Address mask made of the rdist region index and count */
861 uint64_t addr_ormask =
862 i | ((uint64_t)s->redist_region_count[i] << 52);
863
864 kvm_arm_register_device(&s->redist_regions[i].iomem, -1,
865 KVM_DEV_ARM_VGIC_GRP_ADDR,
866 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
867 s->dev_fd, addr_ormask);
868 }
869 }
870
871 if (kvm_has_gsi_routing()) {
872 /* set up irq routing */
873 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
874 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
875 }
876
877 kvm_gsi_routing_allowed = true;
878
879 kvm_irqchip_commit_routes(kvm_state);
880 }
881
882 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
883 GICD_CTLR)) {
884 error_setg(&s->migration_blocker, "This operating system kernel does "
885 "not support vGICv3 migration");
886 if (migrate_add_blocker(&s->migration_blocker, errp) < 0) {
887 return;
888 }
889 }
890 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
891 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
892 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
893 }
894 }
895
kvm_arm_gicv3_class_init(ObjectClass * klass,void * data)896 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
897 {
898 DeviceClass *dc = DEVICE_CLASS(klass);
899 ResettableClass *rc = RESETTABLE_CLASS(klass);
900 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
901 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
902
903 agcc->pre_save = kvm_arm_gicv3_get;
904 agcc->post_load = kvm_arm_gicv3_put;
905 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
906 &kgc->parent_realize);
907 resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL,
908 &kgc->parent_phases);
909 }
910
911 static const TypeInfo kvm_arm_gicv3_info = {
912 .name = TYPE_KVM_ARM_GICV3,
913 .parent = TYPE_ARM_GICV3_COMMON,
914 .instance_size = sizeof(GICv3State),
915 .class_init = kvm_arm_gicv3_class_init,
916 .class_size = sizeof(KVMARMGICv3Class),
917 };
918
kvm_arm_gicv3_register_types(void)919 static void kvm_arm_gicv3_register_types(void)
920 {
921 type_register_static(&kvm_arm_gicv3_info);
922 }
923
924 type_init(kvm_arm_gicv3_register_types)
925