1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47
48 #include <trace/events/timer.h>
49
50 #include "tick-internal.h"
51
52 /*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
61 /*
62 * The timer bases:
63 *
64 * There are more clockids than hrtimer bases. Thus, we index
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
68 */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 .clock_base =
73 {
74 {
75 .index = HRTIMER_BASE_MONOTONIC,
76 .clockid = CLOCK_MONOTONIC,
77 .get_time = &ktime_get,
78 },
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 },
84 {
85 .index = HRTIMER_BASE_BOOTTIME,
86 .clockid = CLOCK_BOOTTIME,
87 .get_time = &ktime_get_boottime,
88 },
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 },
94 {
95 .index = HRTIMER_BASE_MONOTONIC_SOFT,
96 .clockid = CLOCK_MONOTONIC,
97 .get_time = &ktime_get,
98 },
99 {
100 .index = HRTIMER_BASE_REALTIME_SOFT,
101 .clockid = CLOCK_REALTIME,
102 .get_time = &ktime_get_real,
103 },
104 {
105 .index = HRTIMER_BASE_BOOTTIME_SOFT,
106 .clockid = CLOCK_BOOTTIME,
107 .get_time = &ktime_get_boottime,
108 },
109 {
110 .index = HRTIMER_BASE_TAI_SOFT,
111 .clockid = CLOCK_TAI,
112 .get_time = &ktime_get_clocktai,
113 },
114 }
115 };
116
117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118 /* Make sure we catch unsupported clockids */
119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
120
121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
124 [CLOCK_TAI] = HRTIMER_BASE_TAI,
125 };
126
127 /*
128 * Functions and macros which are different for UP/SMP systems are kept in a
129 * single place
130 */
131 #ifdef CONFIG_SMP
132
133 /*
134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135 * such that hrtimer_callback_running() can unconditionally dereference
136 * timer->base->cpu_base
137 */
138 static struct hrtimer_cpu_base migration_cpu_base = {
139 .clock_base = { {
140 .cpu_base = &migration_cpu_base,
141 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
142 &migration_cpu_base.lock),
143 }, },
144 };
145
146 #define migration_base migration_cpu_base.clock_base[0]
147
148 /*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
159 */
160 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
163 __acquires(&timer->base->lock)
164 {
165 struct hrtimer_clock_base *base;
166
167 for (;;) {
168 base = READ_ONCE(timer->base);
169 if (likely(base != &migration_base)) {
170 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
171 if (likely(base == timer->base))
172 return base;
173 /* The timer has migrated to another CPU: */
174 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
175 }
176 cpu_relax();
177 }
178 }
179
180 /*
181 * We do not migrate the timer when it is expiring before the next
182 * event on the target cpu. When high resolution is enabled, we cannot
183 * reprogram the target cpu hardware and we would cause it to fire
184 * late. To keep it simple, we handle the high resolution enabled and
185 * disabled case similar.
186 *
187 * Called with cpu_base->lock of target cpu held.
188 */
189 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)190 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
191 {
192 ktime_t expires;
193
194 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
195 return expires < new_base->cpu_base->expires_next;
196 }
197
198 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)199 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
200 int pinned)
201 {
202 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
203 if (static_branch_likely(&timers_migration_enabled) && !pinned)
204 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
205 #endif
206 return base;
207 }
208
209 /*
210 * We switch the timer base to a power-optimized selected CPU target,
211 * if:
212 * - NO_HZ_COMMON is enabled
213 * - timer migration is enabled
214 * - the timer callback is not running
215 * - the timer is not the first expiring timer on the new target
216 *
217 * If one of the above requirements is not fulfilled we move the timer
218 * to the current CPU or leave it on the previously assigned CPU if
219 * the timer callback is currently running.
220 */
221 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)222 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
223 int pinned)
224 {
225 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
226 struct hrtimer_clock_base *new_base;
227 int basenum = base->index;
228
229 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
230 new_cpu_base = get_target_base(this_cpu_base, pinned);
231 again:
232 new_base = &new_cpu_base->clock_base[basenum];
233
234 if (base != new_base) {
235 /*
236 * We are trying to move timer to new_base.
237 * However we can't change timer's base while it is running,
238 * so we keep it on the same CPU. No hassle vs. reprogramming
239 * the event source in the high resolution case. The softirq
240 * code will take care of this when the timer function has
241 * completed. There is no conflict as we hold the lock until
242 * the timer is enqueued.
243 */
244 if (unlikely(hrtimer_callback_running(timer)))
245 return base;
246
247 /* See the comment in lock_hrtimer_base() */
248 WRITE_ONCE(timer->base, &migration_base);
249 raw_spin_unlock(&base->cpu_base->lock);
250 raw_spin_lock(&new_base->cpu_base->lock);
251
252 if (new_cpu_base != this_cpu_base &&
253 hrtimer_check_target(timer, new_base)) {
254 raw_spin_unlock(&new_base->cpu_base->lock);
255 raw_spin_lock(&base->cpu_base->lock);
256 new_cpu_base = this_cpu_base;
257 WRITE_ONCE(timer->base, base);
258 goto again;
259 }
260 WRITE_ONCE(timer->base, new_base);
261 } else {
262 if (new_cpu_base != this_cpu_base &&
263 hrtimer_check_target(timer, new_base)) {
264 new_cpu_base = this_cpu_base;
265 goto again;
266 }
267 }
268 return new_base;
269 }
270
271 #else /* CONFIG_SMP */
272
273 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)274 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
275 __acquires(&timer->base->cpu_base->lock)
276 {
277 struct hrtimer_clock_base *base = timer->base;
278
279 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
280
281 return base;
282 }
283
284 # define switch_hrtimer_base(t, b, p) (b)
285
286 #endif /* !CONFIG_SMP */
287
288 /*
289 * Functions for the union type storage format of ktime_t which are
290 * too large for inlining:
291 */
292 #if BITS_PER_LONG < 64
293 /*
294 * Divide a ktime value by a nanosecond value
295 */
__ktime_divns(const ktime_t kt,s64 div)296 s64 __ktime_divns(const ktime_t kt, s64 div)
297 {
298 int sft = 0;
299 s64 dclc;
300 u64 tmp;
301
302 dclc = ktime_to_ns(kt);
303 tmp = dclc < 0 ? -dclc : dclc;
304
305 /* Make sure the divisor is less than 2^32: */
306 while (div >> 32) {
307 sft++;
308 div >>= 1;
309 }
310 tmp >>= sft;
311 do_div(tmp, (u32) div);
312 return dclc < 0 ? -tmp : tmp;
313 }
314 EXPORT_SYMBOL_GPL(__ktime_divns);
315 #endif /* BITS_PER_LONG >= 64 */
316
317 /*
318 * Add two ktime values and do a safety check for overflow:
319 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)320 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
321 {
322 ktime_t res = ktime_add_unsafe(lhs, rhs);
323
324 /*
325 * We use KTIME_SEC_MAX here, the maximum timeout which we can
326 * return to user space in a timespec:
327 */
328 if (res < 0 || res < lhs || res < rhs)
329 res = ktime_set(KTIME_SEC_MAX, 0);
330
331 return res;
332 }
333
334 EXPORT_SYMBOL_GPL(ktime_add_safe);
335
336 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338 static const struct debug_obj_descr hrtimer_debug_descr;
339
hrtimer_debug_hint(void * addr)340 static void *hrtimer_debug_hint(void *addr)
341 {
342 return ((struct hrtimer *) addr)->function;
343 }
344
345 /*
346 * fixup_init is called when:
347 * - an active object is initialized
348 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)349 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
350 {
351 struct hrtimer *timer = addr;
352
353 switch (state) {
354 case ODEBUG_STATE_ACTIVE:
355 hrtimer_cancel(timer);
356 debug_object_init(timer, &hrtimer_debug_descr);
357 return true;
358 default:
359 return false;
360 }
361 }
362
363 /*
364 * fixup_activate is called when:
365 * - an active object is activated
366 * - an unknown non-static object is activated
367 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)368 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
369 {
370 switch (state) {
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373 fallthrough;
374 default:
375 return false;
376 }
377 }
378
379 /*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)383 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 {
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return true;
392 default:
393 return false;
394 }
395 }
396
397 static const struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .debug_hint = hrtimer_debug_hint,
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403 };
404
debug_hrtimer_init(struct hrtimer * timer)405 static inline void debug_hrtimer_init(struct hrtimer *timer)
406 {
407 debug_object_init(timer, &hrtimer_debug_descr);
408 }
409
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)410 static inline void debug_hrtimer_activate(struct hrtimer *timer,
411 enum hrtimer_mode mode)
412 {
413 debug_object_activate(timer, &hrtimer_debug_descr);
414 }
415
debug_hrtimer_deactivate(struct hrtimer * timer)416 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
417 {
418 debug_object_deactivate(timer, &hrtimer_debug_descr);
419 }
420
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426 {
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429 }
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431
432 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
433 clockid_t clock_id, enum hrtimer_mode mode);
434
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)435 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
436 clockid_t clock_id, enum hrtimer_mode mode)
437 {
438 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
439 __hrtimer_init_sleeper(sl, clock_id, mode);
440 }
441 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
442
destroy_hrtimer_on_stack(struct hrtimer * timer)443 void destroy_hrtimer_on_stack(struct hrtimer *timer)
444 {
445 debug_object_free(timer, &hrtimer_debug_descr);
446 }
447 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
448
449 #else
450
debug_hrtimer_init(struct hrtimer * timer)451 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)452 static inline void debug_hrtimer_activate(struct hrtimer *timer,
453 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)454 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
455 #endif
456
457 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)458 debug_init(struct hrtimer *timer, clockid_t clockid,
459 enum hrtimer_mode mode)
460 {
461 debug_hrtimer_init(timer);
462 trace_hrtimer_init(timer, clockid, mode);
463 }
464
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)465 static inline void debug_activate(struct hrtimer *timer,
466 enum hrtimer_mode mode)
467 {
468 debug_hrtimer_activate(timer, mode);
469 trace_hrtimer_start(timer, mode);
470 }
471
debug_deactivate(struct hrtimer * timer)472 static inline void debug_deactivate(struct hrtimer *timer)
473 {
474 debug_hrtimer_deactivate(timer);
475 trace_hrtimer_cancel(timer);
476 }
477
478 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)479 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
480 {
481 unsigned int idx;
482
483 if (!*active)
484 return NULL;
485
486 idx = __ffs(*active);
487 *active &= ~(1U << idx);
488
489 return &cpu_base->clock_base[idx];
490 }
491
492 #define for_each_active_base(base, cpu_base, active) \
493 while ((base = __next_base((cpu_base), &(active))))
494
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)495 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
496 const struct hrtimer *exclude,
497 unsigned int active,
498 ktime_t expires_next)
499 {
500 struct hrtimer_clock_base *base;
501 ktime_t expires;
502
503 for_each_active_base(base, cpu_base, active) {
504 struct timerqueue_node *next;
505 struct hrtimer *timer;
506
507 next = timerqueue_getnext(&base->active);
508 timer = container_of(next, struct hrtimer, node);
509 if (timer == exclude) {
510 /* Get to the next timer in the queue. */
511 next = timerqueue_iterate_next(next);
512 if (!next)
513 continue;
514
515 timer = container_of(next, struct hrtimer, node);
516 }
517 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
518 if (expires < expires_next) {
519 expires_next = expires;
520
521 /* Skip cpu_base update if a timer is being excluded. */
522 if (exclude)
523 continue;
524
525 if (timer->is_soft)
526 cpu_base->softirq_next_timer = timer;
527 else
528 cpu_base->next_timer = timer;
529 }
530 }
531 /*
532 * clock_was_set() might have changed base->offset of any of
533 * the clock bases so the result might be negative. Fix it up
534 * to prevent a false positive in clockevents_program_event().
535 */
536 if (expires_next < 0)
537 expires_next = 0;
538 return expires_next;
539 }
540
541 /*
542 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
543 * but does not set cpu_base::*expires_next, that is done by
544 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
545 * cpu_base::*expires_next right away, reprogramming logic would no longer
546 * work.
547 *
548 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
549 * those timers will get run whenever the softirq gets handled, at the end of
550 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
551 *
552 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
553 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
554 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
555 *
556 * @active_mask must be one of:
557 * - HRTIMER_ACTIVE_ALL,
558 * - HRTIMER_ACTIVE_SOFT, or
559 * - HRTIMER_ACTIVE_HARD.
560 */
561 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)562 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
563 {
564 unsigned int active;
565 struct hrtimer *next_timer = NULL;
566 ktime_t expires_next = KTIME_MAX;
567
568 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
569 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
570 cpu_base->softirq_next_timer = NULL;
571 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
572 active, KTIME_MAX);
573
574 next_timer = cpu_base->softirq_next_timer;
575 }
576
577 if (active_mask & HRTIMER_ACTIVE_HARD) {
578 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
579 cpu_base->next_timer = next_timer;
580 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
581 expires_next);
582 }
583
584 return expires_next;
585 }
586
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)587 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
588 {
589 ktime_t expires_next, soft = KTIME_MAX;
590
591 /*
592 * If the soft interrupt has already been activated, ignore the
593 * soft bases. They will be handled in the already raised soft
594 * interrupt.
595 */
596 if (!cpu_base->softirq_activated) {
597 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
598 /*
599 * Update the soft expiry time. clock_settime() might have
600 * affected it.
601 */
602 cpu_base->softirq_expires_next = soft;
603 }
604
605 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
606 /*
607 * If a softirq timer is expiring first, update cpu_base->next_timer
608 * and program the hardware with the soft expiry time.
609 */
610 if (expires_next > soft) {
611 cpu_base->next_timer = cpu_base->softirq_next_timer;
612 expires_next = soft;
613 }
614
615 return expires_next;
616 }
617
hrtimer_update_base(struct hrtimer_cpu_base * base)618 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
619 {
620 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
621 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
622 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
623
624 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
625 offs_real, offs_boot, offs_tai);
626
627 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
628 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
629 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
630
631 return now;
632 }
633
634 /*
635 * Is the high resolution mode active ?
636 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)637 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
638 {
639 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
640 cpu_base->hres_active : 0;
641 }
642
hrtimer_hres_active(void)643 static inline int hrtimer_hres_active(void)
644 {
645 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
646 }
647
__hrtimer_reprogram(struct hrtimer_cpu_base * cpu_base,struct hrtimer * next_timer,ktime_t expires_next)648 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
649 struct hrtimer *next_timer,
650 ktime_t expires_next)
651 {
652 cpu_base->expires_next = expires_next;
653
654 /*
655 * If hres is not active, hardware does not have to be
656 * reprogrammed yet.
657 *
658 * If a hang was detected in the last timer interrupt then we
659 * leave the hang delay active in the hardware. We want the
660 * system to make progress. That also prevents the following
661 * scenario:
662 * T1 expires 50ms from now
663 * T2 expires 5s from now
664 *
665 * T1 is removed, so this code is called and would reprogram
666 * the hardware to 5s from now. Any hrtimer_start after that
667 * will not reprogram the hardware due to hang_detected being
668 * set. So we'd effectively block all timers until the T2 event
669 * fires.
670 */
671 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
672 return;
673
674 tick_program_event(expires_next, 1);
675 }
676
677 /*
678 * Reprogram the event source with checking both queues for the
679 * next event
680 * Called with interrupts disabled and base->lock held
681 */
682 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)683 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
684 {
685 ktime_t expires_next;
686
687 expires_next = hrtimer_update_next_event(cpu_base);
688
689 if (skip_equal && expires_next == cpu_base->expires_next)
690 return;
691
692 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
693 }
694
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697
698 /*
699 * High resolution timer enabled ?
700 */
701 static bool hrtimer_hres_enabled __read_mostly = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704
705 /*
706 * Enable / Disable high resolution mode
707 */
setup_hrtimer_hres(char * str)708 static int __init setup_hrtimer_hres(char *str)
709 {
710 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712
713 __setup("highres=", setup_hrtimer_hres);
714
715 /*
716 * hrtimer_high_res_enabled - query, if the highres mode is enabled
717 */
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 return hrtimer_hres_enabled;
721 }
722
723 static void retrigger_next_event(void *arg);
724
725 /*
726 * Switch to high resolution mode
727 */
hrtimer_switch_to_hres(void)728 static void hrtimer_switch_to_hres(void)
729 {
730 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731
732 if (tick_init_highres()) {
733 pr_warn("Could not switch to high resolution mode on CPU %u\n",
734 base->cpu);
735 return;
736 }
737 base->hres_active = 1;
738 hrtimer_resolution = HIGH_RES_NSEC;
739
740 tick_setup_sched_timer();
741 /* "Retrigger" the interrupt to get things going */
742 retrigger_next_event(NULL);
743 }
744
745 #else
746
hrtimer_is_hres_enabled(void)747 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)748 static inline void hrtimer_switch_to_hres(void) { }
749
750 #endif /* CONFIG_HIGH_RES_TIMERS */
751 /*
752 * Retrigger next event is called after clock was set with interrupts
753 * disabled through an SMP function call or directly from low level
754 * resume code.
755 *
756 * This is only invoked when:
757 * - CONFIG_HIGH_RES_TIMERS is enabled.
758 * - CONFIG_NOHZ_COMMON is enabled
759 *
760 * For the other cases this function is empty and because the call sites
761 * are optimized out it vanishes as well, i.e. no need for lots of
762 * #ifdeffery.
763 */
retrigger_next_event(void * arg)764 static void retrigger_next_event(void *arg)
765 {
766 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
767
768 /*
769 * When high resolution mode or nohz is active, then the offsets of
770 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
771 * next tick will take care of that.
772 *
773 * If high resolution mode is active then the next expiring timer
774 * must be reevaluated and the clock event device reprogrammed if
775 * necessary.
776 *
777 * In the NOHZ case the update of the offset and the reevaluation
778 * of the next expiring timer is enough. The return from the SMP
779 * function call will take care of the reprogramming in case the
780 * CPU was in a NOHZ idle sleep.
781 */
782 if (!__hrtimer_hres_active(base) && !tick_nohz_active)
783 return;
784
785 raw_spin_lock(&base->lock);
786 hrtimer_update_base(base);
787 if (__hrtimer_hres_active(base))
788 hrtimer_force_reprogram(base, 0);
789 else
790 hrtimer_update_next_event(base);
791 raw_spin_unlock(&base->lock);
792 }
793
794 /*
795 * When a timer is enqueued and expires earlier than the already enqueued
796 * timers, we have to check, whether it expires earlier than the timer for
797 * which the clock event device was armed.
798 *
799 * Called with interrupts disabled and base->cpu_base.lock held
800 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)801 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
802 {
803 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
804 struct hrtimer_clock_base *base = timer->base;
805 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
806
807 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
808
809 /*
810 * CLOCK_REALTIME timer might be requested with an absolute
811 * expiry time which is less than base->offset. Set it to 0.
812 */
813 if (expires < 0)
814 expires = 0;
815
816 if (timer->is_soft) {
817 /*
818 * soft hrtimer could be started on a remote CPU. In this
819 * case softirq_expires_next needs to be updated on the
820 * remote CPU. The soft hrtimer will not expire before the
821 * first hard hrtimer on the remote CPU -
822 * hrtimer_check_target() prevents this case.
823 */
824 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
825
826 if (timer_cpu_base->softirq_activated)
827 return;
828
829 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
830 return;
831
832 timer_cpu_base->softirq_next_timer = timer;
833 timer_cpu_base->softirq_expires_next = expires;
834
835 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
836 !reprogram)
837 return;
838 }
839
840 /*
841 * If the timer is not on the current cpu, we cannot reprogram
842 * the other cpus clock event device.
843 */
844 if (base->cpu_base != cpu_base)
845 return;
846
847 if (expires >= cpu_base->expires_next)
848 return;
849
850 /*
851 * If the hrtimer interrupt is running, then it will reevaluate the
852 * clock bases and reprogram the clock event device.
853 */
854 if (cpu_base->in_hrtirq)
855 return;
856
857 cpu_base->next_timer = timer;
858
859 __hrtimer_reprogram(cpu_base, timer, expires);
860 }
861
update_needs_ipi(struct hrtimer_cpu_base * cpu_base,unsigned int active)862 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
863 unsigned int active)
864 {
865 struct hrtimer_clock_base *base;
866 unsigned int seq;
867 ktime_t expires;
868
869 /*
870 * Update the base offsets unconditionally so the following
871 * checks whether the SMP function call is required works.
872 *
873 * The update is safe even when the remote CPU is in the hrtimer
874 * interrupt or the hrtimer soft interrupt and expiring affected
875 * bases. Either it will see the update before handling a base or
876 * it will see it when it finishes the processing and reevaluates
877 * the next expiring timer.
878 */
879 seq = cpu_base->clock_was_set_seq;
880 hrtimer_update_base(cpu_base);
881
882 /*
883 * If the sequence did not change over the update then the
884 * remote CPU already handled it.
885 */
886 if (seq == cpu_base->clock_was_set_seq)
887 return false;
888
889 /*
890 * If the remote CPU is currently handling an hrtimer interrupt, it
891 * will reevaluate the first expiring timer of all clock bases
892 * before reprogramming. Nothing to do here.
893 */
894 if (cpu_base->in_hrtirq)
895 return false;
896
897 /*
898 * Walk the affected clock bases and check whether the first expiring
899 * timer in a clock base is moving ahead of the first expiring timer of
900 * @cpu_base. If so, the IPI must be invoked because per CPU clock
901 * event devices cannot be remotely reprogrammed.
902 */
903 active &= cpu_base->active_bases;
904
905 for_each_active_base(base, cpu_base, active) {
906 struct timerqueue_node *next;
907
908 next = timerqueue_getnext(&base->active);
909 expires = ktime_sub(next->expires, base->offset);
910 if (expires < cpu_base->expires_next)
911 return true;
912
913 /* Extra check for softirq clock bases */
914 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
915 continue;
916 if (cpu_base->softirq_activated)
917 continue;
918 if (expires < cpu_base->softirq_expires_next)
919 return true;
920 }
921 return false;
922 }
923
924 /*
925 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
926 * CLOCK_BOOTTIME (for late sleep time injection).
927 *
928 * This requires to update the offsets for these clocks
929 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
930 * also requires to eventually reprogram the per CPU clock event devices
931 * when the change moves an affected timer ahead of the first expiring
932 * timer on that CPU. Obviously remote per CPU clock event devices cannot
933 * be reprogrammed. The other reason why an IPI has to be sent is when the
934 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
935 * in the tick, which obviously might be stopped, so this has to bring out
936 * the remote CPU which might sleep in idle to get this sorted.
937 */
clock_was_set(unsigned int bases)938 void clock_was_set(unsigned int bases)
939 {
940 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
941 cpumask_var_t mask;
942 int cpu;
943
944 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
945 goto out_timerfd;
946
947 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
948 on_each_cpu(retrigger_next_event, NULL, 1);
949 goto out_timerfd;
950 }
951
952 /* Avoid interrupting CPUs if possible */
953 cpus_read_lock();
954 for_each_online_cpu(cpu) {
955 unsigned long flags;
956
957 cpu_base = &per_cpu(hrtimer_bases, cpu);
958 raw_spin_lock_irqsave(&cpu_base->lock, flags);
959
960 if (update_needs_ipi(cpu_base, bases))
961 cpumask_set_cpu(cpu, mask);
962
963 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
964 }
965
966 preempt_disable();
967 smp_call_function_many(mask, retrigger_next_event, NULL, 1);
968 preempt_enable();
969 cpus_read_unlock();
970 free_cpumask_var(mask);
971
972 out_timerfd:
973 timerfd_clock_was_set();
974 }
975
clock_was_set_work(struct work_struct * work)976 static void clock_was_set_work(struct work_struct *work)
977 {
978 clock_was_set(CLOCK_SET_WALL);
979 }
980
981 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
982
983 /*
984 * Called from timekeeping code to reprogram the hrtimer interrupt device
985 * on all cpus and to notify timerfd.
986 */
clock_was_set_delayed(void)987 void clock_was_set_delayed(void)
988 {
989 schedule_work(&hrtimer_work);
990 }
991
992 /*
993 * Called during resume either directly from via timekeeping_resume()
994 * or in the case of s2idle from tick_unfreeze() to ensure that the
995 * hrtimers are up to date.
996 */
hrtimers_resume_local(void)997 void hrtimers_resume_local(void)
998 {
999 lockdep_assert_irqs_disabled();
1000 /* Retrigger on the local CPU */
1001 retrigger_next_event(NULL);
1002 }
1003
1004 /*
1005 * Counterpart to lock_hrtimer_base above:
1006 */
1007 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)1008 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1009 __releases(&timer->base->cpu_base->lock)
1010 {
1011 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1012 }
1013
1014 /**
1015 * hrtimer_forward - forward the timer expiry
1016 * @timer: hrtimer to forward
1017 * @now: forward past this time
1018 * @interval: the interval to forward
1019 *
1020 * Forward the timer expiry so it will expire in the future.
1021 * Returns the number of overruns.
1022 *
1023 * Can be safely called from the callback function of @timer. If
1024 * called from other contexts @timer must neither be enqueued nor
1025 * running the callback and the caller needs to take care of
1026 * serialization.
1027 *
1028 * Note: This only updates the timer expiry value and does not requeue
1029 * the timer.
1030 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)1031 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1032 {
1033 u64 orun = 1;
1034 ktime_t delta;
1035
1036 delta = ktime_sub(now, hrtimer_get_expires(timer));
1037
1038 if (delta < 0)
1039 return 0;
1040
1041 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1042 return 0;
1043
1044 if (interval < hrtimer_resolution)
1045 interval = hrtimer_resolution;
1046
1047 if (unlikely(delta >= interval)) {
1048 s64 incr = ktime_to_ns(interval);
1049
1050 orun = ktime_divns(delta, incr);
1051 hrtimer_add_expires_ns(timer, incr * orun);
1052 if (hrtimer_get_expires_tv64(timer) > now)
1053 return orun;
1054 /*
1055 * This (and the ktime_add() below) is the
1056 * correction for exact:
1057 */
1058 orun++;
1059 }
1060 hrtimer_add_expires(timer, interval);
1061
1062 return orun;
1063 }
1064 EXPORT_SYMBOL_GPL(hrtimer_forward);
1065
1066 /*
1067 * enqueue_hrtimer - internal function to (re)start a timer
1068 *
1069 * The timer is inserted in expiry order. Insertion into the
1070 * red black tree is O(log(n)). Must hold the base lock.
1071 *
1072 * Returns 1 when the new timer is the leftmost timer in the tree.
1073 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)1074 static int enqueue_hrtimer(struct hrtimer *timer,
1075 struct hrtimer_clock_base *base,
1076 enum hrtimer_mode mode)
1077 {
1078 debug_activate(timer, mode);
1079 WARN_ON_ONCE(!base->cpu_base->online);
1080
1081 base->cpu_base->active_bases |= 1 << base->index;
1082
1083 /* Pairs with the lockless read in hrtimer_is_queued() */
1084 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1085
1086 return timerqueue_add(&base->active, &timer->node);
1087 }
1088
1089 /*
1090 * __remove_hrtimer - internal function to remove a timer
1091 *
1092 * Caller must hold the base lock.
1093 *
1094 * High resolution timer mode reprograms the clock event device when the
1095 * timer is the one which expires next. The caller can disable this by setting
1096 * reprogram to zero. This is useful, when the context does a reprogramming
1097 * anyway (e.g. timer interrupt)
1098 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1099 static void __remove_hrtimer(struct hrtimer *timer,
1100 struct hrtimer_clock_base *base,
1101 u8 newstate, int reprogram)
1102 {
1103 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1104 u8 state = timer->state;
1105
1106 /* Pairs with the lockless read in hrtimer_is_queued() */
1107 WRITE_ONCE(timer->state, newstate);
1108 if (!(state & HRTIMER_STATE_ENQUEUED))
1109 return;
1110
1111 if (!timerqueue_del(&base->active, &timer->node))
1112 cpu_base->active_bases &= ~(1 << base->index);
1113
1114 /*
1115 * Note: If reprogram is false we do not update
1116 * cpu_base->next_timer. This happens when we remove the first
1117 * timer on a remote cpu. No harm as we never dereference
1118 * cpu_base->next_timer. So the worst thing what can happen is
1119 * an superfluous call to hrtimer_force_reprogram() on the
1120 * remote cpu later on if the same timer gets enqueued again.
1121 */
1122 if (reprogram && timer == cpu_base->next_timer)
1123 hrtimer_force_reprogram(cpu_base, 1);
1124 }
1125
1126 /*
1127 * remove hrtimer, called with base lock held
1128 */
1129 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1130 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1131 bool restart, bool keep_local)
1132 {
1133 u8 state = timer->state;
1134
1135 if (state & HRTIMER_STATE_ENQUEUED) {
1136 bool reprogram;
1137
1138 /*
1139 * Remove the timer and force reprogramming when high
1140 * resolution mode is active and the timer is on the current
1141 * CPU. If we remove a timer on another CPU, reprogramming is
1142 * skipped. The interrupt event on this CPU is fired and
1143 * reprogramming happens in the interrupt handler. This is a
1144 * rare case and less expensive than a smp call.
1145 */
1146 debug_deactivate(timer);
1147 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1148
1149 /*
1150 * If the timer is not restarted then reprogramming is
1151 * required if the timer is local. If it is local and about
1152 * to be restarted, avoid programming it twice (on removal
1153 * and a moment later when it's requeued).
1154 */
1155 if (!restart)
1156 state = HRTIMER_STATE_INACTIVE;
1157 else
1158 reprogram &= !keep_local;
1159
1160 __remove_hrtimer(timer, base, state, reprogram);
1161 return 1;
1162 }
1163 return 0;
1164 }
1165
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1166 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1167 const enum hrtimer_mode mode)
1168 {
1169 #ifdef CONFIG_TIME_LOW_RES
1170 /*
1171 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1172 * granular time values. For relative timers we add hrtimer_resolution
1173 * (i.e. one jiffie) to prevent short timeouts.
1174 */
1175 timer->is_rel = mode & HRTIMER_MODE_REL;
1176 if (timer->is_rel)
1177 tim = ktime_add_safe(tim, hrtimer_resolution);
1178 #endif
1179 return tim;
1180 }
1181
1182 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1183 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1184 {
1185 ktime_t expires;
1186
1187 /*
1188 * Find the next SOFT expiration.
1189 */
1190 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1191
1192 /*
1193 * reprogramming needs to be triggered, even if the next soft
1194 * hrtimer expires at the same time than the next hard
1195 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1196 */
1197 if (expires == KTIME_MAX)
1198 return;
1199
1200 /*
1201 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1202 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1203 */
1204 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1205 }
1206
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1207 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1208 u64 delta_ns, const enum hrtimer_mode mode,
1209 struct hrtimer_clock_base *base)
1210 {
1211 struct hrtimer_clock_base *new_base;
1212 bool force_local, first;
1213
1214 /*
1215 * If the timer is on the local cpu base and is the first expiring
1216 * timer then this might end up reprogramming the hardware twice
1217 * (on removal and on enqueue). To avoid that by prevent the
1218 * reprogram on removal, keep the timer local to the current CPU
1219 * and enforce reprogramming after it is queued no matter whether
1220 * it is the new first expiring timer again or not.
1221 */
1222 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1223 force_local &= base->cpu_base->next_timer == timer;
1224
1225 /*
1226 * Remove an active timer from the queue. In case it is not queued
1227 * on the current CPU, make sure that remove_hrtimer() updates the
1228 * remote data correctly.
1229 *
1230 * If it's on the current CPU and the first expiring timer, then
1231 * skip reprogramming, keep the timer local and enforce
1232 * reprogramming later if it was the first expiring timer. This
1233 * avoids programming the underlying clock event twice (once at
1234 * removal and once after enqueue).
1235 */
1236 remove_hrtimer(timer, base, true, force_local);
1237
1238 if (mode & HRTIMER_MODE_REL)
1239 tim = ktime_add_safe(tim, base->get_time());
1240
1241 tim = hrtimer_update_lowres(timer, tim, mode);
1242
1243 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1244
1245 /* Switch the timer base, if necessary: */
1246 if (!force_local) {
1247 new_base = switch_hrtimer_base(timer, base,
1248 mode & HRTIMER_MODE_PINNED);
1249 } else {
1250 new_base = base;
1251 }
1252
1253 first = enqueue_hrtimer(timer, new_base, mode);
1254 if (!force_local)
1255 return first;
1256
1257 /*
1258 * Timer was forced to stay on the current CPU to avoid
1259 * reprogramming on removal and enqueue. Force reprogram the
1260 * hardware by evaluating the new first expiring timer.
1261 */
1262 hrtimer_force_reprogram(new_base->cpu_base, 1);
1263 return 0;
1264 }
1265
1266 /**
1267 * hrtimer_start_range_ns - (re)start an hrtimer
1268 * @timer: the timer to be added
1269 * @tim: expiry time
1270 * @delta_ns: "slack" range for the timer
1271 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1272 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1273 * softirq based mode is considered for debug purpose only!
1274 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1275 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1276 u64 delta_ns, const enum hrtimer_mode mode)
1277 {
1278 struct hrtimer_clock_base *base;
1279 unsigned long flags;
1280
1281 if (WARN_ON_ONCE(!timer->function))
1282 return;
1283 /*
1284 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1285 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1286 * expiry mode because unmarked timers are moved to softirq expiry.
1287 */
1288 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1289 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1290 else
1291 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1292
1293 base = lock_hrtimer_base(timer, &flags);
1294
1295 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1296 hrtimer_reprogram(timer, true);
1297
1298 unlock_hrtimer_base(timer, &flags);
1299 }
1300 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1301
1302 /**
1303 * hrtimer_try_to_cancel - try to deactivate a timer
1304 * @timer: hrtimer to stop
1305 *
1306 * Returns:
1307 *
1308 * * 0 when the timer was not active
1309 * * 1 when the timer was active
1310 * * -1 when the timer is currently executing the callback function and
1311 * cannot be stopped
1312 */
hrtimer_try_to_cancel(struct hrtimer * timer)1313 int hrtimer_try_to_cancel(struct hrtimer *timer)
1314 {
1315 struct hrtimer_clock_base *base;
1316 unsigned long flags;
1317 int ret = -1;
1318
1319 /*
1320 * Check lockless first. If the timer is not active (neither
1321 * enqueued nor running the callback, nothing to do here. The
1322 * base lock does not serialize against a concurrent enqueue,
1323 * so we can avoid taking it.
1324 */
1325 if (!hrtimer_active(timer))
1326 return 0;
1327
1328 base = lock_hrtimer_base(timer, &flags);
1329
1330 if (!hrtimer_callback_running(timer))
1331 ret = remove_hrtimer(timer, base, false, false);
1332
1333 unlock_hrtimer_base(timer, &flags);
1334
1335 return ret;
1336
1337 }
1338 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1339
1340 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1341 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1342 {
1343 spin_lock_init(&base->softirq_expiry_lock);
1344 }
1345
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1346 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1347 {
1348 spin_lock(&base->softirq_expiry_lock);
1349 }
1350
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1351 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1352 {
1353 spin_unlock(&base->softirq_expiry_lock);
1354 }
1355
1356 /*
1357 * The counterpart to hrtimer_cancel_wait_running().
1358 *
1359 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1360 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1361 * allows the waiter to acquire the lock and make progress.
1362 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1363 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1364 unsigned long flags)
1365 {
1366 if (atomic_read(&cpu_base->timer_waiters)) {
1367 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1368 spin_unlock(&cpu_base->softirq_expiry_lock);
1369 spin_lock(&cpu_base->softirq_expiry_lock);
1370 raw_spin_lock_irq(&cpu_base->lock);
1371 }
1372 }
1373
1374 #ifdef CONFIG_SMP
is_migration_base(struct hrtimer_clock_base * base)1375 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1376 {
1377 return base == &migration_base;
1378 }
1379 #else
is_migration_base(struct hrtimer_clock_base * base)1380 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base)
1381 {
1382 return false;
1383 }
1384 #endif
1385
1386 /*
1387 * This function is called on PREEMPT_RT kernels when the fast path
1388 * deletion of a timer failed because the timer callback function was
1389 * running.
1390 *
1391 * This prevents priority inversion: if the soft irq thread is preempted
1392 * in the middle of a timer callback, then calling del_timer_sync() can
1393 * lead to two issues:
1394 *
1395 * - If the caller is on a remote CPU then it has to spin wait for the timer
1396 * handler to complete. This can result in unbound priority inversion.
1397 *
1398 * - If the caller originates from the task which preempted the timer
1399 * handler on the same CPU, then spin waiting for the timer handler to
1400 * complete is never going to end.
1401 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1402 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1403 {
1404 /* Lockless read. Prevent the compiler from reloading it below */
1405 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1406
1407 /*
1408 * Just relax if the timer expires in hard interrupt context or if
1409 * it is currently on the migration base.
1410 */
1411 if (!timer->is_soft || is_migration_base(base)) {
1412 cpu_relax();
1413 return;
1414 }
1415
1416 /*
1417 * Mark the base as contended and grab the expiry lock, which is
1418 * held by the softirq across the timer callback. Drop the lock
1419 * immediately so the softirq can expire the next timer. In theory
1420 * the timer could already be running again, but that's more than
1421 * unlikely and just causes another wait loop.
1422 */
1423 atomic_inc(&base->cpu_base->timer_waiters);
1424 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1425 atomic_dec(&base->cpu_base->timer_waiters);
1426 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1427 }
1428 #else
1429 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1430 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1431 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1432 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1433 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1434 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1435 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1436 unsigned long flags) { }
1437 #endif
1438
1439 /**
1440 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1441 * @timer: the timer to be cancelled
1442 *
1443 * Returns:
1444 * 0 when the timer was not active
1445 * 1 when the timer was active
1446 */
hrtimer_cancel(struct hrtimer * timer)1447 int hrtimer_cancel(struct hrtimer *timer)
1448 {
1449 int ret;
1450
1451 do {
1452 ret = hrtimer_try_to_cancel(timer);
1453
1454 if (ret < 0)
1455 hrtimer_cancel_wait_running(timer);
1456 } while (ret < 0);
1457 return ret;
1458 }
1459 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1460
1461 /**
1462 * __hrtimer_get_remaining - get remaining time for the timer
1463 * @timer: the timer to read
1464 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1465 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1466 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1467 {
1468 unsigned long flags;
1469 ktime_t rem;
1470
1471 lock_hrtimer_base(timer, &flags);
1472 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1473 rem = hrtimer_expires_remaining_adjusted(timer);
1474 else
1475 rem = hrtimer_expires_remaining(timer);
1476 unlock_hrtimer_base(timer, &flags);
1477
1478 return rem;
1479 }
1480 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1481
1482 #ifdef CONFIG_NO_HZ_COMMON
1483 /**
1484 * hrtimer_get_next_event - get the time until next expiry event
1485 *
1486 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1487 */
hrtimer_get_next_event(void)1488 u64 hrtimer_get_next_event(void)
1489 {
1490 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1491 u64 expires = KTIME_MAX;
1492 unsigned long flags;
1493
1494 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1495
1496 if (!__hrtimer_hres_active(cpu_base))
1497 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1498
1499 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1500
1501 return expires;
1502 }
1503
1504 /**
1505 * hrtimer_next_event_without - time until next expiry event w/o one timer
1506 * @exclude: timer to exclude
1507 *
1508 * Returns the next expiry time over all timers except for the @exclude one or
1509 * KTIME_MAX if none of them is pending.
1510 */
hrtimer_next_event_without(const struct hrtimer * exclude)1511 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1512 {
1513 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1514 u64 expires = KTIME_MAX;
1515 unsigned long flags;
1516
1517 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1518
1519 if (__hrtimer_hres_active(cpu_base)) {
1520 unsigned int active;
1521
1522 if (!cpu_base->softirq_activated) {
1523 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1524 expires = __hrtimer_next_event_base(cpu_base, exclude,
1525 active, KTIME_MAX);
1526 }
1527 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1528 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1529 expires);
1530 }
1531
1532 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1533
1534 return expires;
1535 }
1536 #endif
1537
hrtimer_clockid_to_base(clockid_t clock_id)1538 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1539 {
1540 if (likely(clock_id < MAX_CLOCKS)) {
1541 int base = hrtimer_clock_to_base_table[clock_id];
1542
1543 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1544 return base;
1545 }
1546 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1547 return HRTIMER_BASE_MONOTONIC;
1548 }
1549
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1550 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1551 enum hrtimer_mode mode)
1552 {
1553 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1554 struct hrtimer_cpu_base *cpu_base;
1555 int base;
1556
1557 /*
1558 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1559 * marked for hard interrupt expiry mode are moved into soft
1560 * interrupt context for latency reasons and because the callbacks
1561 * can invoke functions which might sleep on RT, e.g. spin_lock().
1562 */
1563 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1564 softtimer = true;
1565
1566 memset(timer, 0, sizeof(struct hrtimer));
1567
1568 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1569
1570 /*
1571 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1572 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1573 * ensure POSIX compliance.
1574 */
1575 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1576 clock_id = CLOCK_MONOTONIC;
1577
1578 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1579 base += hrtimer_clockid_to_base(clock_id);
1580 timer->is_soft = softtimer;
1581 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1582 timer->base = &cpu_base->clock_base[base];
1583 timerqueue_init(&timer->node);
1584 }
1585
1586 /**
1587 * hrtimer_init - initialize a timer to the given clock
1588 * @timer: the timer to be initialized
1589 * @clock_id: the clock to be used
1590 * @mode: The modes which are relevant for initialization:
1591 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1592 * HRTIMER_MODE_REL_SOFT
1593 *
1594 * The PINNED variants of the above can be handed in,
1595 * but the PINNED bit is ignored as pinning happens
1596 * when the hrtimer is started
1597 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1598 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1599 enum hrtimer_mode mode)
1600 {
1601 debug_init(timer, clock_id, mode);
1602 __hrtimer_init(timer, clock_id, mode);
1603 }
1604 EXPORT_SYMBOL_GPL(hrtimer_init);
1605
1606 /*
1607 * A timer is active, when it is enqueued into the rbtree or the
1608 * callback function is running or it's in the state of being migrated
1609 * to another cpu.
1610 *
1611 * It is important for this function to not return a false negative.
1612 */
hrtimer_active(const struct hrtimer * timer)1613 bool hrtimer_active(const struct hrtimer *timer)
1614 {
1615 struct hrtimer_clock_base *base;
1616 unsigned int seq;
1617
1618 do {
1619 base = READ_ONCE(timer->base);
1620 seq = raw_read_seqcount_begin(&base->seq);
1621
1622 if (timer->state != HRTIMER_STATE_INACTIVE ||
1623 base->running == timer)
1624 return true;
1625
1626 } while (read_seqcount_retry(&base->seq, seq) ||
1627 base != READ_ONCE(timer->base));
1628
1629 return false;
1630 }
1631 EXPORT_SYMBOL_GPL(hrtimer_active);
1632
1633 /*
1634 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1635 * distinct sections:
1636 *
1637 * - queued: the timer is queued
1638 * - callback: the timer is being ran
1639 * - post: the timer is inactive or (re)queued
1640 *
1641 * On the read side we ensure we observe timer->state and cpu_base->running
1642 * from the same section, if anything changed while we looked at it, we retry.
1643 * This includes timer->base changing because sequence numbers alone are
1644 * insufficient for that.
1645 *
1646 * The sequence numbers are required because otherwise we could still observe
1647 * a false negative if the read side got smeared over multiple consecutive
1648 * __run_hrtimer() invocations.
1649 */
1650
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1651 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1652 struct hrtimer_clock_base *base,
1653 struct hrtimer *timer, ktime_t *now,
1654 unsigned long flags) __must_hold(&cpu_base->lock)
1655 {
1656 enum hrtimer_restart (*fn)(struct hrtimer *);
1657 bool expires_in_hardirq;
1658 int restart;
1659
1660 lockdep_assert_held(&cpu_base->lock);
1661
1662 debug_deactivate(timer);
1663 base->running = timer;
1664
1665 /*
1666 * Separate the ->running assignment from the ->state assignment.
1667 *
1668 * As with a regular write barrier, this ensures the read side in
1669 * hrtimer_active() cannot observe base->running == NULL &&
1670 * timer->state == INACTIVE.
1671 */
1672 raw_write_seqcount_barrier(&base->seq);
1673
1674 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1675 fn = timer->function;
1676
1677 /*
1678 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1679 * timer is restarted with a period then it becomes an absolute
1680 * timer. If its not restarted it does not matter.
1681 */
1682 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1683 timer->is_rel = false;
1684
1685 /*
1686 * The timer is marked as running in the CPU base, so it is
1687 * protected against migration to a different CPU even if the lock
1688 * is dropped.
1689 */
1690 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1691 trace_hrtimer_expire_entry(timer, now);
1692 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1693
1694 restart = fn(timer);
1695
1696 lockdep_hrtimer_exit(expires_in_hardirq);
1697 trace_hrtimer_expire_exit(timer);
1698 raw_spin_lock_irq(&cpu_base->lock);
1699
1700 /*
1701 * Note: We clear the running state after enqueue_hrtimer and
1702 * we do not reprogram the event hardware. Happens either in
1703 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1704 *
1705 * Note: Because we dropped the cpu_base->lock above,
1706 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1707 * for us already.
1708 */
1709 if (restart != HRTIMER_NORESTART &&
1710 !(timer->state & HRTIMER_STATE_ENQUEUED))
1711 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1712
1713 /*
1714 * Separate the ->running assignment from the ->state assignment.
1715 *
1716 * As with a regular write barrier, this ensures the read side in
1717 * hrtimer_active() cannot observe base->running.timer == NULL &&
1718 * timer->state == INACTIVE.
1719 */
1720 raw_write_seqcount_barrier(&base->seq);
1721
1722 WARN_ON_ONCE(base->running != timer);
1723 base->running = NULL;
1724 }
1725
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1726 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1727 unsigned long flags, unsigned int active_mask)
1728 {
1729 struct hrtimer_clock_base *base;
1730 unsigned int active = cpu_base->active_bases & active_mask;
1731
1732 for_each_active_base(base, cpu_base, active) {
1733 struct timerqueue_node *node;
1734 ktime_t basenow;
1735
1736 basenow = ktime_add(now, base->offset);
1737
1738 while ((node = timerqueue_getnext(&base->active))) {
1739 struct hrtimer *timer;
1740
1741 timer = container_of(node, struct hrtimer, node);
1742
1743 /*
1744 * The immediate goal for using the softexpires is
1745 * minimizing wakeups, not running timers at the
1746 * earliest interrupt after their soft expiration.
1747 * This allows us to avoid using a Priority Search
1748 * Tree, which can answer a stabbing query for
1749 * overlapping intervals and instead use the simple
1750 * BST we already have.
1751 * We don't add extra wakeups by delaying timers that
1752 * are right-of a not yet expired timer, because that
1753 * timer will have to trigger a wakeup anyway.
1754 */
1755 if (basenow < hrtimer_get_softexpires_tv64(timer))
1756 break;
1757
1758 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1759 if (active_mask == HRTIMER_ACTIVE_SOFT)
1760 hrtimer_sync_wait_running(cpu_base, flags);
1761 }
1762 }
1763 }
1764
hrtimer_run_softirq(struct softirq_action * h)1765 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1766 {
1767 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1768 unsigned long flags;
1769 ktime_t now;
1770
1771 hrtimer_cpu_base_lock_expiry(cpu_base);
1772 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1773
1774 now = hrtimer_update_base(cpu_base);
1775 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1776
1777 cpu_base->softirq_activated = 0;
1778 hrtimer_update_softirq_timer(cpu_base, true);
1779
1780 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1781 hrtimer_cpu_base_unlock_expiry(cpu_base);
1782 }
1783
1784 #ifdef CONFIG_HIGH_RES_TIMERS
1785
1786 /*
1787 * High resolution timer interrupt
1788 * Called with interrupts disabled
1789 */
hrtimer_interrupt(struct clock_event_device * dev)1790 void hrtimer_interrupt(struct clock_event_device *dev)
1791 {
1792 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1793 ktime_t expires_next, now, entry_time, delta;
1794 unsigned long flags;
1795 int retries = 0;
1796
1797 BUG_ON(!cpu_base->hres_active);
1798 cpu_base->nr_events++;
1799 dev->next_event = KTIME_MAX;
1800
1801 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1802 entry_time = now = hrtimer_update_base(cpu_base);
1803 retry:
1804 cpu_base->in_hrtirq = 1;
1805 /*
1806 * We set expires_next to KTIME_MAX here with cpu_base->lock
1807 * held to prevent that a timer is enqueued in our queue via
1808 * the migration code. This does not affect enqueueing of
1809 * timers which run their callback and need to be requeued on
1810 * this CPU.
1811 */
1812 cpu_base->expires_next = KTIME_MAX;
1813
1814 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1815 cpu_base->softirq_expires_next = KTIME_MAX;
1816 cpu_base->softirq_activated = 1;
1817 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1818 }
1819
1820 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1821
1822 /* Reevaluate the clock bases for the [soft] next expiry */
1823 expires_next = hrtimer_update_next_event(cpu_base);
1824 /*
1825 * Store the new expiry value so the migration code can verify
1826 * against it.
1827 */
1828 cpu_base->expires_next = expires_next;
1829 cpu_base->in_hrtirq = 0;
1830 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1831
1832 /* Reprogramming necessary ? */
1833 if (!tick_program_event(expires_next, 0)) {
1834 cpu_base->hang_detected = 0;
1835 return;
1836 }
1837
1838 /*
1839 * The next timer was already expired due to:
1840 * - tracing
1841 * - long lasting callbacks
1842 * - being scheduled away when running in a VM
1843 *
1844 * We need to prevent that we loop forever in the hrtimer
1845 * interrupt routine. We give it 3 attempts to avoid
1846 * overreacting on some spurious event.
1847 *
1848 * Acquire base lock for updating the offsets and retrieving
1849 * the current time.
1850 */
1851 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1852 now = hrtimer_update_base(cpu_base);
1853 cpu_base->nr_retries++;
1854 if (++retries < 3)
1855 goto retry;
1856 /*
1857 * Give the system a chance to do something else than looping
1858 * here. We stored the entry time, so we know exactly how long
1859 * we spent here. We schedule the next event this amount of
1860 * time away.
1861 */
1862 cpu_base->nr_hangs++;
1863 cpu_base->hang_detected = 1;
1864 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1865
1866 delta = ktime_sub(now, entry_time);
1867 if ((unsigned int)delta > cpu_base->max_hang_time)
1868 cpu_base->max_hang_time = (unsigned int) delta;
1869 /*
1870 * Limit it to a sensible value as we enforce a longer
1871 * delay. Give the CPU at least 100ms to catch up.
1872 */
1873 if (delta > 100 * NSEC_PER_MSEC)
1874 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1875 else
1876 expires_next = ktime_add(now, delta);
1877 tick_program_event(expires_next, 1);
1878 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1879 }
1880
1881 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1882 static inline void __hrtimer_peek_ahead_timers(void)
1883 {
1884 struct tick_device *td;
1885
1886 if (!hrtimer_hres_active())
1887 return;
1888
1889 td = this_cpu_ptr(&tick_cpu_device);
1890 if (td && td->evtdev)
1891 hrtimer_interrupt(td->evtdev);
1892 }
1893
1894 #else /* CONFIG_HIGH_RES_TIMERS */
1895
__hrtimer_peek_ahead_timers(void)1896 static inline void __hrtimer_peek_ahead_timers(void) { }
1897
1898 #endif /* !CONFIG_HIGH_RES_TIMERS */
1899
1900 /*
1901 * Called from run_local_timers in hardirq context every jiffy
1902 */
hrtimer_run_queues(void)1903 void hrtimer_run_queues(void)
1904 {
1905 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1906 unsigned long flags;
1907 ktime_t now;
1908
1909 if (__hrtimer_hres_active(cpu_base))
1910 return;
1911
1912 /*
1913 * This _is_ ugly: We have to check periodically, whether we
1914 * can switch to highres and / or nohz mode. The clocksource
1915 * switch happens with xtime_lock held. Notification from
1916 * there only sets the check bit in the tick_oneshot code,
1917 * otherwise we might deadlock vs. xtime_lock.
1918 */
1919 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1920 hrtimer_switch_to_hres();
1921 return;
1922 }
1923
1924 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1925 now = hrtimer_update_base(cpu_base);
1926
1927 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1928 cpu_base->softirq_expires_next = KTIME_MAX;
1929 cpu_base->softirq_activated = 1;
1930 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1931 }
1932
1933 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1934 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1935 }
1936
1937 /*
1938 * Sleep related functions:
1939 */
hrtimer_wakeup(struct hrtimer * timer)1940 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1941 {
1942 struct hrtimer_sleeper *t =
1943 container_of(timer, struct hrtimer_sleeper, timer);
1944 struct task_struct *task = t->task;
1945
1946 t->task = NULL;
1947 if (task)
1948 wake_up_process(task);
1949
1950 return HRTIMER_NORESTART;
1951 }
1952
1953 /**
1954 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1955 * @sl: sleeper to be started
1956 * @mode: timer mode abs/rel
1957 *
1958 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1959 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1960 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1961 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1962 enum hrtimer_mode mode)
1963 {
1964 /*
1965 * Make the enqueue delivery mode check work on RT. If the sleeper
1966 * was initialized for hard interrupt delivery, force the mode bit.
1967 * This is a special case for hrtimer_sleepers because
1968 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1969 * fiddling with this decision is avoided at the call sites.
1970 */
1971 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1972 mode |= HRTIMER_MODE_HARD;
1973
1974 hrtimer_start_expires(&sl->timer, mode);
1975 }
1976 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1977
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1978 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1979 clockid_t clock_id, enum hrtimer_mode mode)
1980 {
1981 /*
1982 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1983 * marked for hard interrupt expiry mode are moved into soft
1984 * interrupt context either for latency reasons or because the
1985 * hrtimer callback takes regular spinlocks or invokes other
1986 * functions which are not suitable for hard interrupt context on
1987 * PREEMPT_RT.
1988 *
1989 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1990 * context, but there is a latency concern: Untrusted userspace can
1991 * spawn many threads which arm timers for the same expiry time on
1992 * the same CPU. That causes a latency spike due to the wakeup of
1993 * a gazillion threads.
1994 *
1995 * OTOH, privileged real-time user space applications rely on the
1996 * low latency of hard interrupt wakeups. If the current task is in
1997 * a real-time scheduling class, mark the mode for hard interrupt
1998 * expiry.
1999 */
2000 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2001 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
2002 mode |= HRTIMER_MODE_HARD;
2003 }
2004
2005 __hrtimer_init(&sl->timer, clock_id, mode);
2006 sl->timer.function = hrtimer_wakeup;
2007 sl->task = current;
2008 }
2009
2010 /**
2011 * hrtimer_init_sleeper - initialize sleeper to the given clock
2012 * @sl: sleeper to be initialized
2013 * @clock_id: the clock to be used
2014 * @mode: timer mode abs/rel
2015 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)2016 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
2017 enum hrtimer_mode mode)
2018 {
2019 debug_init(&sl->timer, clock_id, mode);
2020 __hrtimer_init_sleeper(sl, clock_id, mode);
2021
2022 }
2023 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2024
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)2025 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2026 {
2027 switch(restart->nanosleep.type) {
2028 #ifdef CONFIG_COMPAT_32BIT_TIME
2029 case TT_COMPAT:
2030 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2031 return -EFAULT;
2032 break;
2033 #endif
2034 case TT_NATIVE:
2035 if (put_timespec64(ts, restart->nanosleep.rmtp))
2036 return -EFAULT;
2037 break;
2038 default:
2039 BUG();
2040 }
2041 return -ERESTART_RESTARTBLOCK;
2042 }
2043
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)2044 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2045 {
2046 struct restart_block *restart;
2047
2048 do {
2049 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2050 hrtimer_sleeper_start_expires(t, mode);
2051
2052 if (likely(t->task))
2053 schedule();
2054
2055 hrtimer_cancel(&t->timer);
2056 mode = HRTIMER_MODE_ABS;
2057
2058 } while (t->task && !signal_pending(current));
2059
2060 __set_current_state(TASK_RUNNING);
2061
2062 if (!t->task)
2063 return 0;
2064
2065 restart = ¤t->restart_block;
2066 if (restart->nanosleep.type != TT_NONE) {
2067 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2068 struct timespec64 rmt;
2069
2070 if (rem <= 0)
2071 return 0;
2072 rmt = ktime_to_timespec64(rem);
2073
2074 return nanosleep_copyout(restart, &rmt);
2075 }
2076 return -ERESTART_RESTARTBLOCK;
2077 }
2078
hrtimer_nanosleep_restart(struct restart_block * restart)2079 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2080 {
2081 struct hrtimer_sleeper t;
2082 int ret;
2083
2084 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2085 HRTIMER_MODE_ABS);
2086 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2087 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2088 destroy_hrtimer_on_stack(&t.timer);
2089 return ret;
2090 }
2091
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)2092 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2093 const clockid_t clockid)
2094 {
2095 struct restart_block *restart;
2096 struct hrtimer_sleeper t;
2097 int ret = 0;
2098
2099 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2100 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2101 ret = do_nanosleep(&t, mode);
2102 if (ret != -ERESTART_RESTARTBLOCK)
2103 goto out;
2104
2105 /* Absolute timers do not update the rmtp value and restart: */
2106 if (mode == HRTIMER_MODE_ABS) {
2107 ret = -ERESTARTNOHAND;
2108 goto out;
2109 }
2110
2111 restart = ¤t->restart_block;
2112 restart->nanosleep.clockid = t.timer.base->clockid;
2113 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2114 set_restart_fn(restart, hrtimer_nanosleep_restart);
2115 out:
2116 destroy_hrtimer_on_stack(&t.timer);
2117 return ret;
2118 }
2119
2120 #ifdef CONFIG_64BIT
2121
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2122 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2123 struct __kernel_timespec __user *, rmtp)
2124 {
2125 struct timespec64 tu;
2126
2127 if (get_timespec64(&tu, rqtp))
2128 return -EFAULT;
2129
2130 if (!timespec64_valid(&tu))
2131 return -EINVAL;
2132
2133 current->restart_block.fn = do_no_restart_syscall;
2134 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2135 current->restart_block.nanosleep.rmtp = rmtp;
2136 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2137 CLOCK_MONOTONIC);
2138 }
2139
2140 #endif
2141
2142 #ifdef CONFIG_COMPAT_32BIT_TIME
2143
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2144 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2145 struct old_timespec32 __user *, rmtp)
2146 {
2147 struct timespec64 tu;
2148
2149 if (get_old_timespec32(&tu, rqtp))
2150 return -EFAULT;
2151
2152 if (!timespec64_valid(&tu))
2153 return -EINVAL;
2154
2155 current->restart_block.fn = do_no_restart_syscall;
2156 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2157 current->restart_block.nanosleep.compat_rmtp = rmtp;
2158 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2159 CLOCK_MONOTONIC);
2160 }
2161 #endif
2162
2163 /*
2164 * Functions related to boot-time initialization:
2165 */
hrtimers_prepare_cpu(unsigned int cpu)2166 int hrtimers_prepare_cpu(unsigned int cpu)
2167 {
2168 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2169 int i;
2170
2171 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2172 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2173
2174 clock_b->cpu_base = cpu_base;
2175 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2176 timerqueue_init_head(&clock_b->active);
2177 }
2178
2179 cpu_base->cpu = cpu;
2180 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2181 return 0;
2182 }
2183
hrtimers_cpu_starting(unsigned int cpu)2184 int hrtimers_cpu_starting(unsigned int cpu)
2185 {
2186 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2187
2188 /* Clear out any left over state from a CPU down operation */
2189 cpu_base->active_bases = 0;
2190 cpu_base->hres_active = 0;
2191 cpu_base->hang_detected = 0;
2192 cpu_base->next_timer = NULL;
2193 cpu_base->softirq_next_timer = NULL;
2194 cpu_base->expires_next = KTIME_MAX;
2195 cpu_base->softirq_expires_next = KTIME_MAX;
2196 cpu_base->online = 1;
2197 return 0;
2198 }
2199
2200 #ifdef CONFIG_HOTPLUG_CPU
2201
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2202 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2203 struct hrtimer_clock_base *new_base)
2204 {
2205 struct hrtimer *timer;
2206 struct timerqueue_node *node;
2207
2208 while ((node = timerqueue_getnext(&old_base->active))) {
2209 timer = container_of(node, struct hrtimer, node);
2210 BUG_ON(hrtimer_callback_running(timer));
2211 debug_deactivate(timer);
2212
2213 /*
2214 * Mark it as ENQUEUED not INACTIVE otherwise the
2215 * timer could be seen as !active and just vanish away
2216 * under us on another CPU
2217 */
2218 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2219 timer->base = new_base;
2220 /*
2221 * Enqueue the timers on the new cpu. This does not
2222 * reprogram the event device in case the timer
2223 * expires before the earliest on this CPU, but we run
2224 * hrtimer_interrupt after we migrated everything to
2225 * sort out already expired timers and reprogram the
2226 * event device.
2227 */
2228 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2229 }
2230 }
2231
hrtimers_cpu_dying(unsigned int dying_cpu)2232 int hrtimers_cpu_dying(unsigned int dying_cpu)
2233 {
2234 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2235 struct hrtimer_cpu_base *old_base, *new_base;
2236
2237 tick_cancel_sched_timer(dying_cpu);
2238
2239 old_base = this_cpu_ptr(&hrtimer_bases);
2240 new_base = &per_cpu(hrtimer_bases, ncpu);
2241
2242 /*
2243 * The caller is globally serialized and nobody else
2244 * takes two locks at once, deadlock is not possible.
2245 */
2246 raw_spin_lock(&old_base->lock);
2247 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2248
2249 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2250 migrate_hrtimer_list(&old_base->clock_base[i],
2251 &new_base->clock_base[i]);
2252 }
2253
2254 /*
2255 * The migration might have changed the first expiring softirq
2256 * timer on this CPU. Update it.
2257 */
2258 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2259 /* Tell the other CPU to retrigger the next event */
2260 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2261
2262 raw_spin_unlock(&new_base->lock);
2263 old_base->online = 0;
2264 raw_spin_unlock(&old_base->lock);
2265
2266 return 0;
2267 }
2268
2269 #endif /* CONFIG_HOTPLUG_CPU */
2270
hrtimers_init(void)2271 void __init hrtimers_init(void)
2272 {
2273 hrtimers_prepare_cpu(smp_processor_id());
2274 hrtimers_cpu_starting(smp_processor_id());
2275 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2276 }
2277
2278 /**
2279 * schedule_hrtimeout_range_clock - sleep until timeout
2280 * @expires: timeout value (ktime_t)
2281 * @delta: slack in expires timeout (ktime_t)
2282 * @mode: timer mode
2283 * @clock_id: timer clock to be used
2284 */
2285 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2286 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2287 const enum hrtimer_mode mode, clockid_t clock_id)
2288 {
2289 struct hrtimer_sleeper t;
2290
2291 /*
2292 * Optimize when a zero timeout value is given. It does not
2293 * matter whether this is an absolute or a relative time.
2294 */
2295 if (expires && *expires == 0) {
2296 __set_current_state(TASK_RUNNING);
2297 return 0;
2298 }
2299
2300 /*
2301 * A NULL parameter means "infinite"
2302 */
2303 if (!expires) {
2304 schedule();
2305 return -EINTR;
2306 }
2307
2308 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2309 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2310 hrtimer_sleeper_start_expires(&t, mode);
2311
2312 if (likely(t.task))
2313 schedule();
2314
2315 hrtimer_cancel(&t.timer);
2316 destroy_hrtimer_on_stack(&t.timer);
2317
2318 __set_current_state(TASK_RUNNING);
2319
2320 return !t.task ? 0 : -EINTR;
2321 }
2322 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2323
2324 /**
2325 * schedule_hrtimeout_range - sleep until timeout
2326 * @expires: timeout value (ktime_t)
2327 * @delta: slack in expires timeout (ktime_t)
2328 * @mode: timer mode
2329 *
2330 * Make the current task sleep until the given expiry time has
2331 * elapsed. The routine will return immediately unless
2332 * the current task state has been set (see set_current_state()).
2333 *
2334 * The @delta argument gives the kernel the freedom to schedule the
2335 * actual wakeup to a time that is both power and performance friendly
2336 * for regular (non RT/DL) tasks.
2337 * The kernel give the normal best effort behavior for "@expires+@delta",
2338 * but may decide to fire the timer earlier, but no earlier than @expires.
2339 *
2340 * You can set the task state as follows -
2341 *
2342 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2343 * pass before the routine returns unless the current task is explicitly
2344 * woken up, (e.g. by wake_up_process()).
2345 *
2346 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2347 * delivered to the current task or the current task is explicitly woken
2348 * up.
2349 *
2350 * The current task state is guaranteed to be TASK_RUNNING when this
2351 * routine returns.
2352 *
2353 * Returns 0 when the timer has expired. If the task was woken before the
2354 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2355 * by an explicit wakeup, it returns -EINTR.
2356 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2357 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2358 const enum hrtimer_mode mode)
2359 {
2360 return schedule_hrtimeout_range_clock(expires, delta, mode,
2361 CLOCK_MONOTONIC);
2362 }
2363 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2364
2365 /**
2366 * schedule_hrtimeout - sleep until timeout
2367 * @expires: timeout value (ktime_t)
2368 * @mode: timer mode
2369 *
2370 * Make the current task sleep until the given expiry time has
2371 * elapsed. The routine will return immediately unless
2372 * the current task state has been set (see set_current_state()).
2373 *
2374 * You can set the task state as follows -
2375 *
2376 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2377 * pass before the routine returns unless the current task is explicitly
2378 * woken up, (e.g. by wake_up_process()).
2379 *
2380 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2381 * delivered to the current task or the current task is explicitly woken
2382 * up.
2383 *
2384 * The current task state is guaranteed to be TASK_RUNNING when this
2385 * routine returns.
2386 *
2387 * Returns 0 when the timer has expired. If the task was woken before the
2388 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2389 * by an explicit wakeup, it returns -EINTR.
2390 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2391 int __sched schedule_hrtimeout(ktime_t *expires,
2392 const enum hrtimer_mode mode)
2393 {
2394 return schedule_hrtimeout_range(expires, 0, mode);
2395 }
2396 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2397