xref: /openbmc/linux/include/linux/fixp-arith.h (revision 6f84981772535e670e4e2df051a672af229b6694)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _FIXP_ARITH_H
3 #define _FIXP_ARITH_H
4 
5 #include <linux/bug.h>
6 #include <linux/math64.h>
7 
8 /*
9  * Simplistic fixed-point arithmetics.
10  * Hmm, I'm probably duplicating some code :(
11  *
12  * Copyright (c) 2002 Johann Deneux
13  */
14 
15 /*
16  *
17  * Should you need to contact me, the author, you can do so by
18  * e-mail - mail your message to <johann.deneux@gmail.com>
19  */
20 
21 #include <linux/types.h>
22 
23 static const s32 sin_table[] = {
24 	0x00000000, 0x023be165, 0x04779632, 0x06b2f1d2, 0x08edc7b6, 0x0b27eb5c,
25 	0x0d61304d, 0x0f996a26, 0x11d06c96, 0x14060b67, 0x163a1a7d, 0x186c6ddd,
26 	0x1a9cd9ac, 0x1ccb3236, 0x1ef74bf2, 0x2120fb82, 0x234815ba, 0x256c6f9e,
27 	0x278dde6e, 0x29ac379f, 0x2bc750e8, 0x2ddf003f, 0x2ff31bdd, 0x32037a44,
28 	0x340ff241, 0x36185aee, 0x381c8bb5, 0x3a1c5c56, 0x3c17a4e7, 0x3e0e3ddb,
29 	0x3fffffff, 0x41ecc483, 0x43d464fa, 0x45b6bb5d, 0x4793a20f, 0x496af3e1,
30 	0x4b3c8c11, 0x4d084650, 0x4ecdfec6, 0x508d9210, 0x5246dd48, 0x53f9be04,
31 	0x55a6125a, 0x574bb8e5, 0x58ea90c2, 0x5a827999, 0x5c135399, 0x5d9cff82,
32 	0x5f1f5ea0, 0x609a52d1, 0x620dbe8a, 0x637984d3, 0x64dd894f, 0x6639b039,
33 	0x678dde6d, 0x68d9f963, 0x6a1de735, 0x6b598ea1, 0x6c8cd70a, 0x6db7a879,
34 	0x6ed9eba0, 0x6ff389de, 0x71046d3c, 0x720c8074, 0x730baeec, 0x7401e4bf,
35 	0x74ef0ebb, 0x75d31a5f, 0x76adf5e5, 0x777f903b, 0x7847d908, 0x7906c0af,
36 	0x79bc384c, 0x7a6831b8, 0x7b0a9f8c, 0x7ba3751c, 0x7c32a67c, 0x7cb82884,
37 	0x7d33f0c8, 0x7da5f5a3, 0x7e0e2e31, 0x7e6c924f, 0x7ec11aa3, 0x7f0bc095,
38 	0x7f4c7e52, 0x7f834ecf, 0x7fb02dc4, 0x7fd317b3, 0x7fec09e1, 0x7ffb025e,
39 	0x7fffffff
40 };
41 
42 /**
43  * __fixp_sin32() returns the sin of an angle in degrees
44  *
45  * @degrees: angle, in degrees, from 0 to 360.
46  *
47  * The returned value ranges from -0x7fffffff to +0x7fffffff.
48  */
__fixp_sin32(int degrees)49 static inline s32 __fixp_sin32(int degrees)
50 {
51 	s32 ret;
52 	bool negative = false;
53 
54 	if (degrees > 180) {
55 		negative = true;
56 		degrees -= 180;
57 	}
58 	if (degrees > 90)
59 		degrees = 180 - degrees;
60 
61 	ret = sin_table[degrees];
62 
63 	return negative ? -ret : ret;
64 }
65 
66 /**
67  * fixp_sin32() returns the sin of an angle in degrees
68  *
69  * @degrees: angle, in degrees. The angle can be positive or negative
70  *
71  * The returned value ranges from -0x7fffffff to +0x7fffffff.
72  */
fixp_sin32(int degrees)73 static inline s32 fixp_sin32(int degrees)
74 {
75 	degrees = (degrees % 360 + 360) % 360;
76 
77 	return __fixp_sin32(degrees);
78 }
79 
80 /* cos(x) = sin(x + 90 degrees) */
81 #define fixp_cos32(v) fixp_sin32((v) + 90)
82 
83 /*
84  * 16 bits variants
85  *
86  * The returned value ranges from -0x7fff to 0x7fff
87  */
88 
89 #define fixp_sin16(v) (fixp_sin32(v) >> 16)
90 #define fixp_cos16(v) (fixp_cos32(v) >> 16)
91 
92 /**
93  * fixp_sin32_rad() - calculates the sin of an angle in radians
94  *
95  * @radians: angle, in radians
96  * @twopi: value to be used for 2*pi
97  *
98  * Provides a variant for the cases where just 360
99  * values is not enough. This function uses linear
100  * interpolation to a wider range of values given by
101  * twopi var.
102  *
103  * Experimental tests gave a maximum difference of
104  * 0.000038 between the value calculated by sin() and
105  * the one produced by this function, when twopi is
106  * equal to 360000. That seems to be enough precision
107  * for practical purposes.
108  *
109  * Please notice that two high numbers for twopi could cause
110  * overflows, so the routine will not allow values of twopi
111  * bigger than 1^18.
112  */
fixp_sin32_rad(u32 radians,u32 twopi)113 static inline s32 fixp_sin32_rad(u32 radians, u32 twopi)
114 {
115 	int degrees;
116 	s32 v1, v2, dx, dy;
117 	s64 tmp;
118 
119 	/*
120 	 * Avoid too large values for twopi, as we don't want overflows.
121 	 */
122 	BUG_ON(twopi > 1 << 18);
123 
124 	degrees = (radians * 360) / twopi;
125 	tmp = radians - (degrees * twopi) / 360;
126 
127 	degrees = (degrees % 360 + 360) % 360;
128 	v1 = __fixp_sin32(degrees);
129 
130 	v2 = fixp_sin32(degrees + 1);
131 
132 	dx = twopi / 360;
133 	dy = v2 - v1;
134 
135 	tmp *= dy;
136 
137 	return v1 +  div_s64(tmp, dx);
138 }
139 
140 /* cos(x) = sin(x + pi/2 radians) */
141 
142 #define fixp_cos32_rad(rad, twopi)	\
143 	fixp_sin32_rad(rad + twopi / 4, twopi)
144 
145 /**
146  * fixp_linear_interpolate() - interpolates a value from two known points
147  *
148  * @x0: x value of point 0
149  * @y0: y value of point 0
150  * @x1: x value of point 1
151  * @y1: y value of point 1
152  * @x: the linear interpolant
153  */
fixp_linear_interpolate(int x0,int y0,int x1,int y1,int x)154 static inline int fixp_linear_interpolate(int x0, int y0, int x1, int y1, int x)
155 {
156 	if (y0 == y1 || x == x0)
157 		return y0;
158 	if (x1 == x0 || x == x1)
159 		return y1;
160 
161 	return y0 + ((y1 - y0) * (x - x0) / (x1 - x0));
162 }
163 
164 #endif
165