1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
get_resync_r10bio(struct bio * bio)101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 return get_resync_pages(bio)->raid_bio;
104 }
105
r10bio_pool_alloc(gfp_t gfp_flags,void * data)106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
113 return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
135 struct bio *bio;
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 if (!r10_bio)
142 return NULL;
143
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 if (!rps)
157 goto out_free_r10bio;
158
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 if (!bio)
165 goto out_free_bio;
166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
169 continue;
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 if (!bio)
172 goto out_free_bio;
173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
188 bio = r10_bio->devs[j].bio;
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
193 goto out_free_pages;
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
198
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
204 }
205 }
206
207 return r10_bio;
208
209 out_free_pages:
210 while (--j >= 0)
211 resync_free_pages(&rps[j]);
212
213 j = 0;
214 out_free_bio:
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
222 }
223 kfree(rps);
224 out_free_r10bio:
225 rbio_pool_free(r10_bio, conf);
226 return NULL;
227 }
228
r10buf_pool_free(void * __r10_bio,void * data)229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
233 int j;
234 struct resync_pages *rp = NULL;
235
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
238
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
242 bio_uninit(bio);
243 kfree(bio);
244 }
245
246 bio = r10bio->devs[j].repl_bio;
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
251 }
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
256 rbio_pool_free(r10bio, conf);
257 }
258
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 int i;
262
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
266 bio_put(*bio);
267 *bio = NULL;
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
272 }
273 }
274
free_r10bio(struct r10bio * r10_bio)275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 struct r10conf *conf = r10_bio->mddev->private;
278
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
put_buf(struct r10bio * r10_bio)283 static void put_buf(struct r10bio *r10_bio)
284 {
285 struct r10conf *conf = r10_bio->mddev->private;
286
287 mempool_free(r10_bio, &conf->r10buf_pool);
288
289 lower_barrier(conf);
290 }
291
wake_up_barrier(struct r10conf * conf)292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296 }
297
reschedule_retry(struct r10bio * r10_bio)298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 unsigned long flags;
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
306 conf->nr_queued ++;
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
312 md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
raid_end_bio_io(struct r10bio * r10_bio)320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
324
325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 bio->bi_status = BLK_STS_IOERR;
327
328 bio_endio(bio);
329 /*
330 * Wake up any possible resync thread that waits for the device
331 * to go idle.
332 */
333 allow_barrier(conf);
334
335 free_r10bio(r10_bio);
336 }
337
338 /*
339 * Update disk head position estimator based on IRQ completion info.
340 */
update_head_pos(int slot,struct r10bio * r10_bio)341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 struct r10conf *conf = r10_bio->mddev->private;
344
345 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350 * Find the disk number which triggered given bio
351 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 struct bio *bio, int *slotp, int *replp)
354 {
355 int slot;
356 int repl = 0;
357
358 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 if (r10_bio->devs[slot].bio == bio)
360 break;
361 if (r10_bio->devs[slot].repl_bio == bio) {
362 repl = 1;
363 break;
364 }
365 }
366
367 update_head_pos(slot, r10_bio);
368
369 if (slotp)
370 *slotp = slot;
371 if (replp)
372 *replp = repl;
373 return r10_bio->devs[slot].devnum;
374 }
375
raid10_end_read_request(struct bio * bio)376 static void raid10_end_read_request(struct bio *bio)
377 {
378 int uptodate = !bio->bi_status;
379 struct r10bio *r10_bio = bio->bi_private;
380 int slot;
381 struct md_rdev *rdev;
382 struct r10conf *conf = r10_bio->mddev->private;
383
384 slot = r10_bio->read_slot;
385 rdev = r10_bio->devs[slot].rdev;
386 /*
387 * this branch is our 'one mirror IO has finished' event handler:
388 */
389 update_head_pos(slot, r10_bio);
390
391 if (uptodate) {
392 /*
393 * Set R10BIO_Uptodate in our master bio, so that
394 * we will return a good error code to the higher
395 * levels even if IO on some other mirrored buffer fails.
396 *
397 * The 'master' represents the composite IO operation to
398 * user-side. So if something waits for IO, then it will
399 * wait for the 'master' bio.
400 */
401 set_bit(R10BIO_Uptodate, &r10_bio->state);
402 } else {
403 /* If all other devices that store this block have
404 * failed, we want to return the error upwards rather
405 * than fail the last device. Here we redefine
406 * "uptodate" to mean "Don't want to retry"
407 */
408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 rdev->raid_disk))
410 uptodate = 1;
411 }
412 if (uptodate) {
413 raid_end_bio_io(r10_bio);
414 rdev_dec_pending(rdev, conf->mddev);
415 } else {
416 /*
417 * oops, read error - keep the refcount on the rdev
418 */
419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 mdname(conf->mddev),
421 rdev->bdev,
422 (unsigned long long)r10_bio->sector);
423 set_bit(R10BIO_ReadError, &r10_bio->state);
424 reschedule_retry(r10_bio);
425 }
426 }
427
close_write(struct r10bio * r10_bio)428 static void close_write(struct r10bio *r10_bio)
429 {
430 md_write_end(r10_bio->mddev);
431 }
432
one_write_done(struct r10bio * r10_bio)433 static void one_write_done(struct r10bio *r10_bio)
434 {
435 if (atomic_dec_and_test(&r10_bio->remaining)) {
436 if (test_bit(R10BIO_WriteError, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else {
439 close_write(r10_bio);
440 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
441 reschedule_retry(r10_bio);
442 else
443 raid_end_bio_io(r10_bio);
444 }
445 }
446 }
447
raid10_end_write_request(struct bio * bio)448 static void raid10_end_write_request(struct bio *bio)
449 {
450 struct r10bio *r10_bio = bio->bi_private;
451 int dev;
452 int dec_rdev = 1;
453 struct r10conf *conf = r10_bio->mddev->private;
454 int slot, repl;
455 struct md_rdev *rdev = NULL;
456 struct bio *to_put = NULL;
457 bool discard_error;
458
459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
460
461 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
462
463 if (repl)
464 rdev = conf->mirrors[dev].replacement;
465 if (!rdev) {
466 smp_rmb();
467 repl = 0;
468 rdev = conf->mirrors[dev].rdev;
469 }
470 /*
471 * this branch is our 'one mirror IO has finished' event handler:
472 */
473 if (bio->bi_status && !discard_error) {
474 if (repl)
475 /* Never record new bad blocks to replacement,
476 * just fail it.
477 */
478 md_error(rdev->mddev, rdev);
479 else {
480 set_bit(WriteErrorSeen, &rdev->flags);
481 if (!test_and_set_bit(WantReplacement, &rdev->flags))
482 set_bit(MD_RECOVERY_NEEDED,
483 &rdev->mddev->recovery);
484
485 dec_rdev = 0;
486 if (test_bit(FailFast, &rdev->flags) &&
487 (bio->bi_opf & MD_FAILFAST)) {
488 md_error(rdev->mddev, rdev);
489 }
490
491 /*
492 * When the device is faulty, it is not necessary to
493 * handle write error.
494 */
495 if (!test_bit(Faulty, &rdev->flags))
496 set_bit(R10BIO_WriteError, &r10_bio->state);
497 else {
498 /* Fail the request */
499 r10_bio->devs[slot].bio = NULL;
500 to_put = bio;
501 dec_rdev = 1;
502 }
503 }
504 } else {
505 /*
506 * Set R10BIO_Uptodate in our master bio, so that
507 * we will return a good error code for to the higher
508 * levels even if IO on some other mirrored buffer fails.
509 *
510 * The 'master' represents the composite IO operation to
511 * user-side. So if something waits for IO, then it will
512 * wait for the 'master' bio.
513 */
514 sector_t first_bad;
515 int bad_sectors;
516
517 /*
518 * Do not set R10BIO_Uptodate if the current device is
519 * rebuilding or Faulty. This is because we cannot use
520 * such device for properly reading the data back (we could
521 * potentially use it, if the current write would have felt
522 * before rdev->recovery_offset, but for simplicity we don't
523 * check this here.
524 */
525 if (test_bit(In_sync, &rdev->flags) &&
526 !test_bit(Faulty, &rdev->flags))
527 set_bit(R10BIO_Uptodate, &r10_bio->state);
528
529 /* Maybe we can clear some bad blocks. */
530 if (is_badblock(rdev,
531 r10_bio->devs[slot].addr,
532 r10_bio->sectors,
533 &first_bad, &bad_sectors) && !discard_error) {
534 bio_put(bio);
535 if (repl)
536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537 else
538 r10_bio->devs[slot].bio = IO_MADE_GOOD;
539 dec_rdev = 0;
540 set_bit(R10BIO_MadeGood, &r10_bio->state);
541 }
542 }
543
544 /*
545 *
546 * Let's see if all mirrored write operations have finished
547 * already.
548 */
549 one_write_done(r10_bio);
550 if (dec_rdev)
551 rdev_dec_pending(rdev, conf->mddev);
552 if (to_put)
553 bio_put(to_put);
554 }
555
556 /*
557 * RAID10 layout manager
558 * As well as the chunksize and raid_disks count, there are two
559 * parameters: near_copies and far_copies.
560 * near_copies * far_copies must be <= raid_disks.
561 * Normally one of these will be 1.
562 * If both are 1, we get raid0.
563 * If near_copies == raid_disks, we get raid1.
564 *
565 * Chunks are laid out in raid0 style with near_copies copies of the
566 * first chunk, followed by near_copies copies of the next chunk and
567 * so on.
568 * If far_copies > 1, then after 1/far_copies of the array has been assigned
569 * as described above, we start again with a device offset of near_copies.
570 * So we effectively have another copy of the whole array further down all
571 * the drives, but with blocks on different drives.
572 * With this layout, and block is never stored twice on the one device.
573 *
574 * raid10_find_phys finds the sector offset of a given virtual sector
575 * on each device that it is on.
576 *
577 * raid10_find_virt does the reverse mapping, from a device and a
578 * sector offset to a virtual address
579 */
580
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583 int n,f;
584 sector_t sector;
585 sector_t chunk;
586 sector_t stripe;
587 int dev;
588 int slot = 0;
589 int last_far_set_start, last_far_set_size;
590
591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 last_far_set_start *= geo->far_set_size;
593
594 last_far_set_size = geo->far_set_size;
595 last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597 /* now calculate first sector/dev */
598 chunk = r10bio->sector >> geo->chunk_shift;
599 sector = r10bio->sector & geo->chunk_mask;
600
601 chunk *= geo->near_copies;
602 stripe = chunk;
603 dev = sector_div(stripe, geo->raid_disks);
604 if (geo->far_offset)
605 stripe *= geo->far_copies;
606
607 sector += stripe << geo->chunk_shift;
608
609 /* and calculate all the others */
610 for (n = 0; n < geo->near_copies; n++) {
611 int d = dev;
612 int set;
613 sector_t s = sector;
614 r10bio->devs[slot].devnum = d;
615 r10bio->devs[slot].addr = s;
616 slot++;
617
618 for (f = 1; f < geo->far_copies; f++) {
619 set = d / geo->far_set_size;
620 d += geo->near_copies;
621
622 if ((geo->raid_disks % geo->far_set_size) &&
623 (d > last_far_set_start)) {
624 d -= last_far_set_start;
625 d %= last_far_set_size;
626 d += last_far_set_start;
627 } else {
628 d %= geo->far_set_size;
629 d += geo->far_set_size * set;
630 }
631 s += geo->stride;
632 r10bio->devs[slot].devnum = d;
633 r10bio->devs[slot].addr = s;
634 slot++;
635 }
636 dev++;
637 if (dev >= geo->raid_disks) {
638 dev = 0;
639 sector += (geo->chunk_mask + 1);
640 }
641 }
642 }
643
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646 struct geom *geo = &conf->geo;
647
648 if (conf->reshape_progress != MaxSector &&
649 ((r10bio->sector >= conf->reshape_progress) !=
650 conf->mddev->reshape_backwards)) {
651 set_bit(R10BIO_Previous, &r10bio->state);
652 geo = &conf->prev;
653 } else
654 clear_bit(R10BIO_Previous, &r10bio->state);
655
656 __raid10_find_phys(geo, r10bio);
657 }
658
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661 sector_t offset, chunk, vchunk;
662 /* Never use conf->prev as this is only called during resync
663 * or recovery, so reshape isn't happening
664 */
665 struct geom *geo = &conf->geo;
666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 int far_set_size = geo->far_set_size;
668 int last_far_set_start;
669
670 if (geo->raid_disks % geo->far_set_size) {
671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 last_far_set_start *= geo->far_set_size;
673
674 if (dev >= last_far_set_start) {
675 far_set_size = geo->far_set_size;
676 far_set_size += (geo->raid_disks % geo->far_set_size);
677 far_set_start = last_far_set_start;
678 }
679 }
680
681 offset = sector & geo->chunk_mask;
682 if (geo->far_offset) {
683 int fc;
684 chunk = sector >> geo->chunk_shift;
685 fc = sector_div(chunk, geo->far_copies);
686 dev -= fc * geo->near_copies;
687 if (dev < far_set_start)
688 dev += far_set_size;
689 } else {
690 while (sector >= geo->stride) {
691 sector -= geo->stride;
692 if (dev < (geo->near_copies + far_set_start))
693 dev += far_set_size - geo->near_copies;
694 else
695 dev -= geo->near_copies;
696 }
697 chunk = sector >> geo->chunk_shift;
698 }
699 vchunk = chunk * geo->raid_disks + dev;
700 sector_div(vchunk, geo->near_copies);
701 return (vchunk << geo->chunk_shift) + offset;
702 }
703
704 /*
705 * This routine returns the disk from which the requested read should
706 * be done. There is a per-array 'next expected sequential IO' sector
707 * number - if this matches on the next IO then we use the last disk.
708 * There is also a per-disk 'last know head position' sector that is
709 * maintained from IRQ contexts, both the normal and the resync IO
710 * completion handlers update this position correctly. If there is no
711 * perfect sequential match then we pick the disk whose head is closest.
712 *
713 * If there are 2 mirrors in the same 2 devices, performance degrades
714 * because position is mirror, not device based.
715 *
716 * The rdev for the device selected will have nr_pending incremented.
717 */
718
719 /*
720 * FIXME: possibly should rethink readbalancing and do it differently
721 * depending on near_copies / far_copies geometry.
722 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)723 static struct md_rdev *read_balance(struct r10conf *conf,
724 struct r10bio *r10_bio,
725 int *max_sectors)
726 {
727 const sector_t this_sector = r10_bio->sector;
728 int disk, slot;
729 int sectors = r10_bio->sectors;
730 int best_good_sectors;
731 sector_t new_distance, best_dist;
732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733 int do_balance;
734 int best_dist_slot, best_pending_slot;
735 bool has_nonrot_disk = false;
736 unsigned int min_pending;
737 struct geom *geo = &conf->geo;
738
739 raid10_find_phys(conf, r10_bio);
740 rcu_read_lock();
741 best_dist_slot = -1;
742 min_pending = UINT_MAX;
743 best_dist_rdev = NULL;
744 best_pending_rdev = NULL;
745 best_dist = MaxSector;
746 best_good_sectors = 0;
747 do_balance = 1;
748 clear_bit(R10BIO_FailFast, &r10_bio->state);
749 /*
750 * Check if we can balance. We can balance on the whole
751 * device if no resync is going on (recovery is ok), or below
752 * the resync window. We take the first readable disk when
753 * above the resync window.
754 */
755 if ((conf->mddev->recovery_cp < MaxSector
756 && (this_sector + sectors >= conf->next_resync)) ||
757 (mddev_is_clustered(conf->mddev) &&
758 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
759 this_sector + sectors)))
760 do_balance = 0;
761
762 for (slot = 0; slot < conf->copies ; slot++) {
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766 unsigned int pending;
767 bool nonrot;
768
769 if (r10_bio->devs[slot].bio == IO_BLOCKED)
770 continue;
771 disk = r10_bio->devs[slot].devnum;
772 rdev = rcu_dereference(conf->mirrors[disk].replacement);
773 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
774 r10_bio->devs[slot].addr + sectors >
775 rdev->recovery_offset) {
776 /*
777 * Read replacement first to prevent reading both rdev
778 * and replacement as NULL during replacement replace
779 * rdev.
780 */
781 smp_mb();
782 rdev = rcu_dereference(conf->mirrors[disk].rdev);
783 }
784 if (rdev == NULL ||
785 test_bit(Faulty, &rdev->flags))
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 continue;
790
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_dist_slot = slot;
813 best_dist_rdev = rdev;
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
823 if (!do_balance)
824 break;
825
826 nonrot = bdev_nonrot(rdev->bdev);
827 has_nonrot_disk |= nonrot;
828 pending = atomic_read(&rdev->nr_pending);
829 if (min_pending > pending && nonrot) {
830 min_pending = pending;
831 best_pending_slot = slot;
832 best_pending_rdev = rdev;
833 }
834
835 if (best_dist_slot >= 0)
836 /* At least 2 disks to choose from so failfast is OK */
837 set_bit(R10BIO_FailFast, &r10_bio->state);
838 /* This optimisation is debatable, and completely destroys
839 * sequential read speed for 'far copies' arrays. So only
840 * keep it for 'near' arrays, and review those later.
841 */
842 if (geo->near_copies > 1 && !pending)
843 new_distance = 0;
844
845 /* for far > 1 always use the lowest address */
846 else if (geo->far_copies > 1)
847 new_distance = r10_bio->devs[slot].addr;
848 else
849 new_distance = abs(r10_bio->devs[slot].addr -
850 conf->mirrors[disk].head_position);
851
852 if (new_distance < best_dist) {
853 best_dist = new_distance;
854 best_dist_slot = slot;
855 best_dist_rdev = rdev;
856 }
857 }
858 if (slot >= conf->copies) {
859 if (has_nonrot_disk) {
860 slot = best_pending_slot;
861 rdev = best_pending_rdev;
862 } else {
863 slot = best_dist_slot;
864 rdev = best_dist_rdev;
865 }
866 }
867
868 if (slot >= 0) {
869 atomic_inc(&rdev->nr_pending);
870 r10_bio->read_slot = slot;
871 } else
872 rdev = NULL;
873 rcu_read_unlock();
874 *max_sectors = best_good_sectors;
875
876 return rdev;
877 }
878
flush_pending_writes(struct r10conf * conf)879 static void flush_pending_writes(struct r10conf *conf)
880 {
881 /* Any writes that have been queued but are awaiting
882 * bitmap updates get flushed here.
883 */
884 spin_lock_irq(&conf->device_lock);
885
886 if (conf->pending_bio_list.head) {
887 struct blk_plug plug;
888 struct bio *bio;
889
890 bio = bio_list_get(&conf->pending_bio_list);
891 spin_unlock_irq(&conf->device_lock);
892
893 /*
894 * As this is called in a wait_event() loop (see freeze_array),
895 * current->state might be TASK_UNINTERRUPTIBLE which will
896 * cause a warning when we prepare to wait again. As it is
897 * rare that this path is taken, it is perfectly safe to force
898 * us to go around the wait_event() loop again, so the warning
899 * is a false-positive. Silence the warning by resetting
900 * thread state
901 */
902 __set_current_state(TASK_RUNNING);
903
904 blk_start_plug(&plug);
905 raid1_prepare_flush_writes(conf->mddev->bitmap);
906 wake_up(&conf->wait_barrier);
907
908 while (bio) { /* submit pending writes */
909 struct bio *next = bio->bi_next;
910
911 raid1_submit_write(bio);
912 bio = next;
913 cond_resched();
914 }
915 blk_finish_plug(&plug);
916 } else
917 spin_unlock_irq(&conf->device_lock);
918 }
919
920 /* Barriers....
921 * Sometimes we need to suspend IO while we do something else,
922 * either some resync/recovery, or reconfigure the array.
923 * To do this we raise a 'barrier'.
924 * The 'barrier' is a counter that can be raised multiple times
925 * to count how many activities are happening which preclude
926 * normal IO.
927 * We can only raise the barrier if there is no pending IO.
928 * i.e. if nr_pending == 0.
929 * We choose only to raise the barrier if no-one is waiting for the
930 * barrier to go down. This means that as soon as an IO request
931 * is ready, no other operations which require a barrier will start
932 * until the IO request has had a chance.
933 *
934 * So: regular IO calls 'wait_barrier'. When that returns there
935 * is no backgroup IO happening, It must arrange to call
936 * allow_barrier when it has finished its IO.
937 * backgroup IO calls must call raise_barrier. Once that returns
938 * there is no normal IO happeing. It must arrange to call
939 * lower_barrier when the particular background IO completes.
940 */
941
raise_barrier(struct r10conf * conf,int force)942 static void raise_barrier(struct r10conf *conf, int force)
943 {
944 write_seqlock_irq(&conf->resync_lock);
945
946 if (WARN_ON_ONCE(force && !conf->barrier))
947 force = false;
948
949 /* Wait until no block IO is waiting (unless 'force') */
950 wait_event_barrier(conf, force || !conf->nr_waiting);
951
952 /* block any new IO from starting */
953 WRITE_ONCE(conf->barrier, conf->barrier + 1);
954
955 /* Now wait for all pending IO to complete */
956 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
957 conf->barrier < RESYNC_DEPTH);
958
959 write_sequnlock_irq(&conf->resync_lock);
960 }
961
lower_barrier(struct r10conf * conf)962 static void lower_barrier(struct r10conf *conf)
963 {
964 unsigned long flags;
965
966 write_seqlock_irqsave(&conf->resync_lock, flags);
967 WRITE_ONCE(conf->barrier, conf->barrier - 1);
968 write_sequnlock_irqrestore(&conf->resync_lock, flags);
969 wake_up(&conf->wait_barrier);
970 }
971
stop_waiting_barrier(struct r10conf * conf)972 static bool stop_waiting_barrier(struct r10conf *conf)
973 {
974 struct bio_list *bio_list = current->bio_list;
975 struct md_thread *thread;
976
977 /* barrier is dropped */
978 if (!conf->barrier)
979 return true;
980
981 /*
982 * If there are already pending requests (preventing the barrier from
983 * rising completely), and the pre-process bio queue isn't empty, then
984 * don't wait, as we need to empty that queue to get the nr_pending
985 * count down.
986 */
987 if (atomic_read(&conf->nr_pending) && bio_list &&
988 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
989 return true;
990
991 /* daemon thread must exist while handling io */
992 thread = rcu_dereference_protected(conf->mddev->thread, true);
993 /*
994 * move on if io is issued from raid10d(), nr_pending is not released
995 * from original io(see handle_read_error()). All raise barrier is
996 * blocked until this io is done.
997 */
998 if (thread->tsk == current) {
999 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1000 return true;
1001 }
1002
1003 return false;
1004 }
1005
wait_barrier_nolock(struct r10conf * conf)1006 static bool wait_barrier_nolock(struct r10conf *conf)
1007 {
1008 unsigned int seq = read_seqbegin(&conf->resync_lock);
1009
1010 if (READ_ONCE(conf->barrier))
1011 return false;
1012
1013 atomic_inc(&conf->nr_pending);
1014 if (!read_seqretry(&conf->resync_lock, seq))
1015 return true;
1016
1017 if (atomic_dec_and_test(&conf->nr_pending))
1018 wake_up_barrier(conf);
1019
1020 return false;
1021 }
1022
wait_barrier(struct r10conf * conf,bool nowait)1023 static bool wait_barrier(struct r10conf *conf, bool nowait)
1024 {
1025 bool ret = true;
1026
1027 if (wait_barrier_nolock(conf))
1028 return true;
1029
1030 write_seqlock_irq(&conf->resync_lock);
1031 if (conf->barrier) {
1032 /* Return false when nowait flag is set */
1033 if (nowait) {
1034 ret = false;
1035 } else {
1036 conf->nr_waiting++;
1037 raid10_log(conf->mddev, "wait barrier");
1038 wait_event_barrier(conf, stop_waiting_barrier(conf));
1039 conf->nr_waiting--;
1040 }
1041 if (!conf->nr_waiting)
1042 wake_up(&conf->wait_barrier);
1043 }
1044 /* Only increment nr_pending when we wait */
1045 if (ret)
1046 atomic_inc(&conf->nr_pending);
1047 write_sequnlock_irq(&conf->resync_lock);
1048 return ret;
1049 }
1050
allow_barrier(struct r10conf * conf)1051 static void allow_barrier(struct r10conf *conf)
1052 {
1053 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1054 (conf->array_freeze_pending))
1055 wake_up_barrier(conf);
1056 }
1057
freeze_array(struct r10conf * conf,int extra)1058 static void freeze_array(struct r10conf *conf, int extra)
1059 {
1060 /* stop syncio and normal IO and wait for everything to
1061 * go quiet.
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+extra
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (extra)
1069 * must match the number of pending IOs (nr_pending) before
1070 * we continue.
1071 */
1072 write_seqlock_irq(&conf->resync_lock);
1073 conf->array_freeze_pending++;
1074 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1075 conf->nr_waiting++;
1076 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1077 conf->nr_queued + extra, flush_pending_writes(conf));
1078 conf->array_freeze_pending--;
1079 write_sequnlock_irq(&conf->resync_lock);
1080 }
1081
unfreeze_array(struct r10conf * conf)1082 static void unfreeze_array(struct r10conf *conf)
1083 {
1084 /* reverse the effect of the freeze */
1085 write_seqlock_irq(&conf->resync_lock);
1086 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1087 conf->nr_waiting--;
1088 wake_up(&conf->wait_barrier);
1089 write_sequnlock_irq(&conf->resync_lock);
1090 }
1091
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1092 static sector_t choose_data_offset(struct r10bio *r10_bio,
1093 struct md_rdev *rdev)
1094 {
1095 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1096 test_bit(R10BIO_Previous, &r10_bio->state))
1097 return rdev->data_offset;
1098 else
1099 return rdev->new_data_offset;
1100 }
1101
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1102 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1103 {
1104 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1105 struct mddev *mddev = plug->cb.data;
1106 struct r10conf *conf = mddev->private;
1107 struct bio *bio;
1108
1109 if (from_schedule) {
1110 spin_lock_irq(&conf->device_lock);
1111 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1112 spin_unlock_irq(&conf->device_lock);
1113 wake_up_barrier(conf);
1114 md_wakeup_thread(mddev->thread);
1115 kfree(plug);
1116 return;
1117 }
1118
1119 /* we aren't scheduling, so we can do the write-out directly. */
1120 bio = bio_list_get(&plug->pending);
1121 raid1_prepare_flush_writes(mddev->bitmap);
1122 wake_up_barrier(conf);
1123
1124 while (bio) { /* submit pending writes */
1125 struct bio *next = bio->bi_next;
1126
1127 raid1_submit_write(bio);
1128 bio = next;
1129 cond_resched();
1130 }
1131 kfree(plug);
1132 }
1133
1134 /*
1135 * 1. Register the new request and wait if the reconstruction thread has put
1136 * up a bar for new requests. Continue immediately if no resync is active
1137 * currently.
1138 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1139 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1140 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1141 struct bio *bio, sector_t sectors)
1142 {
1143 /* Bail out if REQ_NOWAIT is set for the bio */
1144 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1145 bio_wouldblock_error(bio);
1146 return false;
1147 }
1148 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1149 bio->bi_iter.bi_sector < conf->reshape_progress &&
1150 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1151 allow_barrier(conf);
1152 if (bio->bi_opf & REQ_NOWAIT) {
1153 bio_wouldblock_error(bio);
1154 return false;
1155 }
1156 raid10_log(conf->mddev, "wait reshape");
1157 wait_event(conf->wait_barrier,
1158 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1159 conf->reshape_progress >= bio->bi_iter.bi_sector +
1160 sectors);
1161 wait_barrier(conf, false);
1162 }
1163 return true;
1164 }
1165
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio,bool io_accounting)1166 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1167 struct r10bio *r10_bio, bool io_accounting)
1168 {
1169 struct r10conf *conf = mddev->private;
1170 struct bio *read_bio;
1171 const enum req_op op = bio_op(bio);
1172 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1173 int max_sectors;
1174 struct md_rdev *rdev;
1175 char b[BDEVNAME_SIZE];
1176 int slot = r10_bio->read_slot;
1177 struct md_rdev *err_rdev = NULL;
1178 gfp_t gfp = GFP_NOIO;
1179
1180 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1181 /*
1182 * This is an error retry, but we cannot
1183 * safely dereference the rdev in the r10_bio,
1184 * we must use the one in conf.
1185 * If it has already been disconnected (unlikely)
1186 * we lose the device name in error messages.
1187 */
1188 int disk;
1189 /*
1190 * As we are blocking raid10, it is a little safer to
1191 * use __GFP_HIGH.
1192 */
1193 gfp = GFP_NOIO | __GFP_HIGH;
1194
1195 rcu_read_lock();
1196 disk = r10_bio->devs[slot].devnum;
1197 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1198 if (err_rdev)
1199 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1200 else {
1201 strcpy(b, "???");
1202 /* This never gets dereferenced */
1203 err_rdev = r10_bio->devs[slot].rdev;
1204 }
1205 rcu_read_unlock();
1206 }
1207
1208 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) {
1209 raid_end_bio_io(r10_bio);
1210 return;
1211 }
1212
1213 rdev = read_balance(conf, r10_bio, &max_sectors);
1214 if (!rdev) {
1215 if (err_rdev) {
1216 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1217 mdname(mddev), b,
1218 (unsigned long long)r10_bio->sector);
1219 }
1220 raid_end_bio_io(r10_bio);
1221 return;
1222 }
1223 if (err_rdev)
1224 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1225 mdname(mddev),
1226 rdev->bdev,
1227 (unsigned long long)r10_bio->sector);
1228 if (max_sectors < bio_sectors(bio)) {
1229 struct bio *split = bio_split(bio, max_sectors,
1230 gfp, &conf->bio_split);
1231 bio_chain(split, bio);
1232 allow_barrier(conf);
1233 submit_bio_noacct(bio);
1234 wait_barrier(conf, false);
1235 bio = split;
1236 r10_bio->master_bio = bio;
1237 r10_bio->sectors = max_sectors;
1238 }
1239 slot = r10_bio->read_slot;
1240
1241 if (io_accounting) {
1242 md_account_bio(mddev, &bio);
1243 r10_bio->master_bio = bio;
1244 }
1245 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1246
1247 r10_bio->devs[slot].bio = read_bio;
1248 r10_bio->devs[slot].rdev = rdev;
1249
1250 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1251 choose_data_offset(r10_bio, rdev);
1252 read_bio->bi_end_io = raid10_end_read_request;
1253 read_bio->bi_opf = op | do_sync;
1254 if (test_bit(FailFast, &rdev->flags) &&
1255 test_bit(R10BIO_FailFast, &r10_bio->state))
1256 read_bio->bi_opf |= MD_FAILFAST;
1257 read_bio->bi_private = r10_bio;
1258
1259 if (mddev->gendisk)
1260 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1261 r10_bio->sector);
1262 submit_bio_noacct(read_bio);
1263 return;
1264 }
1265
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1266 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1267 struct bio *bio, bool replacement,
1268 int n_copy)
1269 {
1270 const enum req_op op = bio_op(bio);
1271 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1272 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1273 unsigned long flags;
1274 struct r10conf *conf = mddev->private;
1275 struct md_rdev *rdev;
1276 int devnum = r10_bio->devs[n_copy].devnum;
1277 struct bio *mbio;
1278
1279 if (replacement) {
1280 rdev = conf->mirrors[devnum].replacement;
1281 if (rdev == NULL) {
1282 /* Replacement just got moved to main 'rdev' */
1283 smp_mb();
1284 rdev = conf->mirrors[devnum].rdev;
1285 }
1286 } else
1287 rdev = conf->mirrors[devnum].rdev;
1288
1289 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1290 if (replacement)
1291 r10_bio->devs[n_copy].repl_bio = mbio;
1292 else
1293 r10_bio->devs[n_copy].bio = mbio;
1294
1295 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1296 choose_data_offset(r10_bio, rdev));
1297 mbio->bi_end_io = raid10_end_write_request;
1298 mbio->bi_opf = op | do_sync | do_fua;
1299 if (!replacement && test_bit(FailFast,
1300 &conf->mirrors[devnum].rdev->flags)
1301 && enough(conf, devnum))
1302 mbio->bi_opf |= MD_FAILFAST;
1303 mbio->bi_private = r10_bio;
1304
1305 if (conf->mddev->gendisk)
1306 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1307 r10_bio->sector);
1308 /* flush_pending_writes() needs access to the rdev so...*/
1309 mbio->bi_bdev = (void *)rdev;
1310
1311 atomic_inc(&r10_bio->remaining);
1312
1313 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1314 spin_lock_irqsave(&conf->device_lock, flags);
1315 bio_list_add(&conf->pending_bio_list, mbio);
1316 spin_unlock_irqrestore(&conf->device_lock, flags);
1317 md_wakeup_thread(mddev->thread);
1318 }
1319 }
1320
dereference_rdev_and_rrdev(struct raid10_info * mirror,struct md_rdev ** prrdev)1321 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1322 struct md_rdev **prrdev)
1323 {
1324 struct md_rdev *rdev, *rrdev;
1325
1326 rrdev = rcu_dereference(mirror->replacement);
1327 /*
1328 * Read replacement first to prevent reading both rdev and
1329 * replacement as NULL during replacement replace rdev.
1330 */
1331 smp_mb();
1332 rdev = rcu_dereference(mirror->rdev);
1333 if (rdev == rrdev)
1334 rrdev = NULL;
1335
1336 *prrdev = rrdev;
1337 return rdev;
1338 }
1339
wait_blocked_dev(struct mddev * mddev,struct r10bio * r10_bio)1340 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1341 {
1342 int i;
1343 struct r10conf *conf = mddev->private;
1344 struct md_rdev *blocked_rdev;
1345
1346 retry_wait:
1347 blocked_rdev = NULL;
1348 rcu_read_lock();
1349 for (i = 0; i < conf->copies; i++) {
1350 struct md_rdev *rdev, *rrdev;
1351
1352 rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1353 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1354 atomic_inc(&rdev->nr_pending);
1355 blocked_rdev = rdev;
1356 break;
1357 }
1358 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1359 atomic_inc(&rrdev->nr_pending);
1360 blocked_rdev = rrdev;
1361 break;
1362 }
1363
1364 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1365 sector_t first_bad;
1366 sector_t dev_sector = r10_bio->devs[i].addr;
1367 int bad_sectors;
1368 int is_bad;
1369
1370 /*
1371 * Discard request doesn't care the write result
1372 * so it doesn't need to wait blocked disk here.
1373 */
1374 if (!r10_bio->sectors)
1375 continue;
1376
1377 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1378 &first_bad, &bad_sectors);
1379 if (is_bad < 0) {
1380 /*
1381 * Mustn't write here until the bad block
1382 * is acknowledged
1383 */
1384 atomic_inc(&rdev->nr_pending);
1385 set_bit(BlockedBadBlocks, &rdev->flags);
1386 blocked_rdev = rdev;
1387 break;
1388 }
1389 }
1390 }
1391 rcu_read_unlock();
1392
1393 if (unlikely(blocked_rdev)) {
1394 /* Have to wait for this device to get unblocked, then retry */
1395 allow_barrier(conf);
1396 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1397 __func__, blocked_rdev->raid_disk);
1398 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1399 wait_barrier(conf, false);
1400 goto retry_wait;
1401 }
1402 }
1403
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1404 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1405 struct r10bio *r10_bio)
1406 {
1407 struct r10conf *conf = mddev->private;
1408 int i;
1409 sector_t sectors;
1410 int max_sectors;
1411
1412 if ((mddev_is_clustered(mddev) &&
1413 md_cluster_ops->area_resyncing(mddev, WRITE,
1414 bio->bi_iter.bi_sector,
1415 bio_end_sector(bio)))) {
1416 DEFINE_WAIT(w);
1417 /* Bail out if REQ_NOWAIT is set for the bio */
1418 if (bio->bi_opf & REQ_NOWAIT) {
1419 bio_wouldblock_error(bio);
1420 return;
1421 }
1422 for (;;) {
1423 prepare_to_wait(&conf->wait_barrier,
1424 &w, TASK_IDLE);
1425 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1426 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1427 break;
1428 schedule();
1429 }
1430 finish_wait(&conf->wait_barrier, &w);
1431 }
1432
1433 sectors = r10_bio->sectors;
1434 if (!regular_request_wait(mddev, conf, bio, sectors)) {
1435 raid_end_bio_io(r10_bio);
1436 return;
1437 }
1438
1439 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440 (mddev->reshape_backwards
1441 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445 /* Need to update reshape_position in metadata */
1446 mddev->reshape_position = conf->reshape_progress;
1447 set_mask_bits(&mddev->sb_flags, 0,
1448 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449 md_wakeup_thread(mddev->thread);
1450 if (bio->bi_opf & REQ_NOWAIT) {
1451 allow_barrier(conf);
1452 bio_wouldblock_error(bio);
1453 return;
1454 }
1455 raid10_log(conf->mddev, "wait reshape metadata");
1456 wait_event(mddev->sb_wait,
1457 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1458
1459 conf->reshape_safe = mddev->reshape_position;
1460 }
1461
1462 /* first select target devices under rcu_lock and
1463 * inc refcount on their rdev. Record them by setting
1464 * bios[x] to bio
1465 * If there are known/acknowledged bad blocks on any device
1466 * on which we have seen a write error, we want to avoid
1467 * writing to those blocks. This potentially requires several
1468 * writes to write around the bad blocks. Each set of writes
1469 * gets its own r10_bio with a set of bios attached.
1470 */
1471
1472 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473 raid10_find_phys(conf, r10_bio);
1474
1475 wait_blocked_dev(mddev, r10_bio);
1476
1477 rcu_read_lock();
1478 max_sectors = r10_bio->sectors;
1479
1480 for (i = 0; i < conf->copies; i++) {
1481 int d = r10_bio->devs[i].devnum;
1482 struct md_rdev *rdev, *rrdev;
1483
1484 rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1485 if (rdev && (test_bit(Faulty, &rdev->flags)))
1486 rdev = NULL;
1487 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1488 rrdev = NULL;
1489
1490 r10_bio->devs[i].bio = NULL;
1491 r10_bio->devs[i].repl_bio = NULL;
1492
1493 if (!rdev && !rrdev)
1494 continue;
1495 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1496 sector_t first_bad;
1497 sector_t dev_sector = r10_bio->devs[i].addr;
1498 int bad_sectors;
1499 int is_bad;
1500
1501 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1502 &first_bad, &bad_sectors);
1503 if (is_bad && first_bad <= dev_sector) {
1504 /* Cannot write here at all */
1505 bad_sectors -= (dev_sector - first_bad);
1506 if (bad_sectors < max_sectors)
1507 /* Mustn't write more than bad_sectors
1508 * to other devices yet
1509 */
1510 max_sectors = bad_sectors;
1511 continue;
1512 }
1513 if (is_bad) {
1514 int good_sectors = first_bad - dev_sector;
1515 if (good_sectors < max_sectors)
1516 max_sectors = good_sectors;
1517 }
1518 }
1519 if (rdev) {
1520 r10_bio->devs[i].bio = bio;
1521 atomic_inc(&rdev->nr_pending);
1522 }
1523 if (rrdev) {
1524 r10_bio->devs[i].repl_bio = bio;
1525 atomic_inc(&rrdev->nr_pending);
1526 }
1527 }
1528 rcu_read_unlock();
1529
1530 if (max_sectors < r10_bio->sectors)
1531 r10_bio->sectors = max_sectors;
1532
1533 if (r10_bio->sectors < bio_sectors(bio)) {
1534 struct bio *split = bio_split(bio, r10_bio->sectors,
1535 GFP_NOIO, &conf->bio_split);
1536 bio_chain(split, bio);
1537 allow_barrier(conf);
1538 submit_bio_noacct(bio);
1539 wait_barrier(conf, false);
1540 bio = split;
1541 r10_bio->master_bio = bio;
1542 }
1543
1544 md_account_bio(mddev, &bio);
1545 r10_bio->master_bio = bio;
1546 atomic_set(&r10_bio->remaining, 1);
1547
1548 for (i = 0; i < conf->copies; i++) {
1549 if (r10_bio->devs[i].bio)
1550 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1551 if (r10_bio->devs[i].repl_bio)
1552 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1553 }
1554 one_write_done(r10_bio);
1555 }
1556
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1557 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1558 {
1559 struct r10conf *conf = mddev->private;
1560 struct r10bio *r10_bio;
1561
1562 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1563
1564 r10_bio->master_bio = bio;
1565 r10_bio->sectors = sectors;
1566
1567 r10_bio->mddev = mddev;
1568 r10_bio->sector = bio->bi_iter.bi_sector;
1569 r10_bio->state = 0;
1570 r10_bio->read_slot = -1;
1571 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1572 conf->geo.raid_disks);
1573
1574 if (bio_data_dir(bio) == READ)
1575 raid10_read_request(mddev, bio, r10_bio, true);
1576 else
1577 raid10_write_request(mddev, bio, r10_bio);
1578 }
1579
raid_end_discard_bio(struct r10bio * r10bio)1580 static void raid_end_discard_bio(struct r10bio *r10bio)
1581 {
1582 struct r10conf *conf = r10bio->mddev->private;
1583 struct r10bio *first_r10bio;
1584
1585 while (atomic_dec_and_test(&r10bio->remaining)) {
1586
1587 allow_barrier(conf);
1588
1589 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1590 first_r10bio = (struct r10bio *)r10bio->master_bio;
1591 free_r10bio(r10bio);
1592 r10bio = first_r10bio;
1593 } else {
1594 md_write_end(r10bio->mddev);
1595 bio_endio(r10bio->master_bio);
1596 free_r10bio(r10bio);
1597 break;
1598 }
1599 }
1600 }
1601
raid10_end_discard_request(struct bio * bio)1602 static void raid10_end_discard_request(struct bio *bio)
1603 {
1604 struct r10bio *r10_bio = bio->bi_private;
1605 struct r10conf *conf = r10_bio->mddev->private;
1606 struct md_rdev *rdev = NULL;
1607 int dev;
1608 int slot, repl;
1609
1610 /*
1611 * We don't care the return value of discard bio
1612 */
1613 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1614 set_bit(R10BIO_Uptodate, &r10_bio->state);
1615
1616 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1617 if (repl)
1618 rdev = conf->mirrors[dev].replacement;
1619 if (!rdev) {
1620 /*
1621 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1622 * replacement before setting replacement to NULL. It can read
1623 * rdev first without barrier protect even replacement is NULL
1624 */
1625 smp_rmb();
1626 rdev = conf->mirrors[dev].rdev;
1627 }
1628
1629 raid_end_discard_bio(r10_bio);
1630 rdev_dec_pending(rdev, conf->mddev);
1631 }
1632
1633 /*
1634 * There are some limitations to handle discard bio
1635 * 1st, the discard size is bigger than stripe_size*2.
1636 * 2st, if the discard bio spans reshape progress, we use the old way to
1637 * handle discard bio
1638 */
raid10_handle_discard(struct mddev * mddev,struct bio * bio)1639 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1640 {
1641 struct r10conf *conf = mddev->private;
1642 struct geom *geo = &conf->geo;
1643 int far_copies = geo->far_copies;
1644 bool first_copy = true;
1645 struct r10bio *r10_bio, *first_r10bio;
1646 struct bio *split;
1647 int disk;
1648 sector_t chunk;
1649 unsigned int stripe_size;
1650 unsigned int stripe_data_disks;
1651 sector_t split_size;
1652 sector_t bio_start, bio_end;
1653 sector_t first_stripe_index, last_stripe_index;
1654 sector_t start_disk_offset;
1655 unsigned int start_disk_index;
1656 sector_t end_disk_offset;
1657 unsigned int end_disk_index;
1658 unsigned int remainder;
1659
1660 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1661 return -EAGAIN;
1662
1663 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1664 bio_wouldblock_error(bio);
1665 return 0;
1666 }
1667 wait_barrier(conf, false);
1668
1669 /*
1670 * Check reshape again to avoid reshape happens after checking
1671 * MD_RECOVERY_RESHAPE and before wait_barrier
1672 */
1673 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1674 goto out;
1675
1676 if (geo->near_copies)
1677 stripe_data_disks = geo->raid_disks / geo->near_copies +
1678 geo->raid_disks % geo->near_copies;
1679 else
1680 stripe_data_disks = geo->raid_disks;
1681
1682 stripe_size = stripe_data_disks << geo->chunk_shift;
1683
1684 bio_start = bio->bi_iter.bi_sector;
1685 bio_end = bio_end_sector(bio);
1686
1687 /*
1688 * Maybe one discard bio is smaller than strip size or across one
1689 * stripe and discard region is larger than one stripe size. For far
1690 * offset layout, if the discard region is not aligned with stripe
1691 * size, there is hole when we submit discard bio to member disk.
1692 * For simplicity, we only handle discard bio which discard region
1693 * is bigger than stripe_size * 2
1694 */
1695 if (bio_sectors(bio) < stripe_size*2)
1696 goto out;
1697
1698 /*
1699 * Keep bio aligned with strip size.
1700 */
1701 div_u64_rem(bio_start, stripe_size, &remainder);
1702 if (remainder) {
1703 split_size = stripe_size - remainder;
1704 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1705 bio_chain(split, bio);
1706 allow_barrier(conf);
1707 /* Resend the fist split part */
1708 submit_bio_noacct(split);
1709 wait_barrier(conf, false);
1710 }
1711 div_u64_rem(bio_end, stripe_size, &remainder);
1712 if (remainder) {
1713 split_size = bio_sectors(bio) - remainder;
1714 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1715 bio_chain(split, bio);
1716 allow_barrier(conf);
1717 /* Resend the second split part */
1718 submit_bio_noacct(bio);
1719 bio = split;
1720 wait_barrier(conf, false);
1721 }
1722
1723 bio_start = bio->bi_iter.bi_sector;
1724 bio_end = bio_end_sector(bio);
1725
1726 /*
1727 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1728 * One stripe contains the chunks from all member disk (one chunk from
1729 * one disk at the same HBA address). For layout detail, see 'man md 4'
1730 */
1731 chunk = bio_start >> geo->chunk_shift;
1732 chunk *= geo->near_copies;
1733 first_stripe_index = chunk;
1734 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1735 if (geo->far_offset)
1736 first_stripe_index *= geo->far_copies;
1737 start_disk_offset = (bio_start & geo->chunk_mask) +
1738 (first_stripe_index << geo->chunk_shift);
1739
1740 chunk = bio_end >> geo->chunk_shift;
1741 chunk *= geo->near_copies;
1742 last_stripe_index = chunk;
1743 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1744 if (geo->far_offset)
1745 last_stripe_index *= geo->far_copies;
1746 end_disk_offset = (bio_end & geo->chunk_mask) +
1747 (last_stripe_index << geo->chunk_shift);
1748
1749 retry_discard:
1750 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1751 r10_bio->mddev = mddev;
1752 r10_bio->state = 0;
1753 r10_bio->sectors = 0;
1754 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1755 wait_blocked_dev(mddev, r10_bio);
1756
1757 /*
1758 * For far layout it needs more than one r10bio to cover all regions.
1759 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1760 * to record the discard bio. Other r10bio->master_bio record the first
1761 * r10bio. The first r10bio only release after all other r10bios finish.
1762 * The discard bio returns only first r10bio finishes
1763 */
1764 if (first_copy) {
1765 md_account_bio(mddev, &bio);
1766 r10_bio->master_bio = bio;
1767 set_bit(R10BIO_Discard, &r10_bio->state);
1768 first_copy = false;
1769 first_r10bio = r10_bio;
1770 } else
1771 r10_bio->master_bio = (struct bio *)first_r10bio;
1772
1773 /*
1774 * first select target devices under rcu_lock and
1775 * inc refcount on their rdev. Record them by setting
1776 * bios[x] to bio
1777 */
1778 rcu_read_lock();
1779 for (disk = 0; disk < geo->raid_disks; disk++) {
1780 struct md_rdev *rdev, *rrdev;
1781
1782 rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1783 r10_bio->devs[disk].bio = NULL;
1784 r10_bio->devs[disk].repl_bio = NULL;
1785
1786 if (rdev && (test_bit(Faulty, &rdev->flags)))
1787 rdev = NULL;
1788 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1789 rrdev = NULL;
1790 if (!rdev && !rrdev)
1791 continue;
1792
1793 if (rdev) {
1794 r10_bio->devs[disk].bio = bio;
1795 atomic_inc(&rdev->nr_pending);
1796 }
1797 if (rrdev) {
1798 r10_bio->devs[disk].repl_bio = bio;
1799 atomic_inc(&rrdev->nr_pending);
1800 }
1801 }
1802 rcu_read_unlock();
1803
1804 atomic_set(&r10_bio->remaining, 1);
1805 for (disk = 0; disk < geo->raid_disks; disk++) {
1806 sector_t dev_start, dev_end;
1807 struct bio *mbio, *rbio = NULL;
1808
1809 /*
1810 * Now start to calculate the start and end address for each disk.
1811 * The space between dev_start and dev_end is the discard region.
1812 *
1813 * For dev_start, it needs to consider three conditions:
1814 * 1st, the disk is before start_disk, you can imagine the disk in
1815 * the next stripe. So the dev_start is the start address of next
1816 * stripe.
1817 * 2st, the disk is after start_disk, it means the disk is at the
1818 * same stripe of first disk
1819 * 3st, the first disk itself, we can use start_disk_offset directly
1820 */
1821 if (disk < start_disk_index)
1822 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1823 else if (disk > start_disk_index)
1824 dev_start = first_stripe_index * mddev->chunk_sectors;
1825 else
1826 dev_start = start_disk_offset;
1827
1828 if (disk < end_disk_index)
1829 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1830 else if (disk > end_disk_index)
1831 dev_end = last_stripe_index * mddev->chunk_sectors;
1832 else
1833 dev_end = end_disk_offset;
1834
1835 /*
1836 * It only handles discard bio which size is >= stripe size, so
1837 * dev_end > dev_start all the time.
1838 * It doesn't need to use rcu lock to get rdev here. We already
1839 * add rdev->nr_pending in the first loop.
1840 */
1841 if (r10_bio->devs[disk].bio) {
1842 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1843 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1844 &mddev->bio_set);
1845 mbio->bi_end_io = raid10_end_discard_request;
1846 mbio->bi_private = r10_bio;
1847 r10_bio->devs[disk].bio = mbio;
1848 r10_bio->devs[disk].devnum = disk;
1849 atomic_inc(&r10_bio->remaining);
1850 md_submit_discard_bio(mddev, rdev, mbio,
1851 dev_start + choose_data_offset(r10_bio, rdev),
1852 dev_end - dev_start);
1853 bio_endio(mbio);
1854 }
1855 if (r10_bio->devs[disk].repl_bio) {
1856 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1857 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1858 &mddev->bio_set);
1859 rbio->bi_end_io = raid10_end_discard_request;
1860 rbio->bi_private = r10_bio;
1861 r10_bio->devs[disk].repl_bio = rbio;
1862 r10_bio->devs[disk].devnum = disk;
1863 atomic_inc(&r10_bio->remaining);
1864 md_submit_discard_bio(mddev, rrdev, rbio,
1865 dev_start + choose_data_offset(r10_bio, rrdev),
1866 dev_end - dev_start);
1867 bio_endio(rbio);
1868 }
1869 }
1870
1871 if (!geo->far_offset && --far_copies) {
1872 first_stripe_index += geo->stride >> geo->chunk_shift;
1873 start_disk_offset += geo->stride;
1874 last_stripe_index += geo->stride >> geo->chunk_shift;
1875 end_disk_offset += geo->stride;
1876 atomic_inc(&first_r10bio->remaining);
1877 raid_end_discard_bio(r10_bio);
1878 wait_barrier(conf, false);
1879 goto retry_discard;
1880 }
1881
1882 raid_end_discard_bio(r10_bio);
1883
1884 return 0;
1885 out:
1886 allow_barrier(conf);
1887 return -EAGAIN;
1888 }
1889
raid10_make_request(struct mddev * mddev,struct bio * bio)1890 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1891 {
1892 struct r10conf *conf = mddev->private;
1893 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1894 int chunk_sects = chunk_mask + 1;
1895 int sectors = bio_sectors(bio);
1896
1897 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1898 && md_flush_request(mddev, bio))
1899 return true;
1900
1901 if (!md_write_start(mddev, bio))
1902 return false;
1903
1904 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1905 if (!raid10_handle_discard(mddev, bio))
1906 return true;
1907
1908 /*
1909 * If this request crosses a chunk boundary, we need to split
1910 * it.
1911 */
1912 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1913 sectors > chunk_sects
1914 && (conf->geo.near_copies < conf->geo.raid_disks
1915 || conf->prev.near_copies <
1916 conf->prev.raid_disks)))
1917 sectors = chunk_sects -
1918 (bio->bi_iter.bi_sector &
1919 (chunk_sects - 1));
1920 __make_request(mddev, bio, sectors);
1921
1922 /* In case raid10d snuck in to freeze_array */
1923 wake_up_barrier(conf);
1924 return true;
1925 }
1926
raid10_status(struct seq_file * seq,struct mddev * mddev)1927 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1928 {
1929 struct r10conf *conf = mddev->private;
1930 int i;
1931
1932 if (conf->geo.near_copies < conf->geo.raid_disks)
1933 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1934 if (conf->geo.near_copies > 1)
1935 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1936 if (conf->geo.far_copies > 1) {
1937 if (conf->geo.far_offset)
1938 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1939 else
1940 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1941 if (conf->geo.far_set_size != conf->geo.raid_disks)
1942 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1943 }
1944 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1945 conf->geo.raid_disks - mddev->degraded);
1946 rcu_read_lock();
1947 for (i = 0; i < conf->geo.raid_disks; i++) {
1948 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1949 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1950 }
1951 rcu_read_unlock();
1952 seq_printf(seq, "]");
1953 }
1954
1955 /* check if there are enough drives for
1956 * every block to appear on atleast one.
1957 * Don't consider the device numbered 'ignore'
1958 * as we might be about to remove it.
1959 */
_enough(struct r10conf * conf,int previous,int ignore)1960 static int _enough(struct r10conf *conf, int previous, int ignore)
1961 {
1962 int first = 0;
1963 int has_enough = 0;
1964 int disks, ncopies;
1965 if (previous) {
1966 disks = conf->prev.raid_disks;
1967 ncopies = conf->prev.near_copies;
1968 } else {
1969 disks = conf->geo.raid_disks;
1970 ncopies = conf->geo.near_copies;
1971 }
1972
1973 rcu_read_lock();
1974 do {
1975 int n = conf->copies;
1976 int cnt = 0;
1977 int this = first;
1978 while (n--) {
1979 struct md_rdev *rdev;
1980 if (this != ignore &&
1981 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1982 test_bit(In_sync, &rdev->flags))
1983 cnt++;
1984 this = (this+1) % disks;
1985 }
1986 if (cnt == 0)
1987 goto out;
1988 first = (first + ncopies) % disks;
1989 } while (first != 0);
1990 has_enough = 1;
1991 out:
1992 rcu_read_unlock();
1993 return has_enough;
1994 }
1995
enough(struct r10conf * conf,int ignore)1996 static int enough(struct r10conf *conf, int ignore)
1997 {
1998 /* when calling 'enough', both 'prev' and 'geo' must
1999 * be stable.
2000 * This is ensured if ->reconfig_mutex or ->device_lock
2001 * is held.
2002 */
2003 return _enough(conf, 0, ignore) &&
2004 _enough(conf, 1, ignore);
2005 }
2006
2007 /**
2008 * raid10_error() - RAID10 error handler.
2009 * @mddev: affected md device.
2010 * @rdev: member device to fail.
2011 *
2012 * The routine acknowledges &rdev failure and determines new @mddev state.
2013 * If it failed, then:
2014 * - &MD_BROKEN flag is set in &mddev->flags.
2015 * Otherwise, it must be degraded:
2016 * - recovery is interrupted.
2017 * - &mddev->degraded is bumped.
2018 *
2019 * @rdev is marked as &Faulty excluding case when array is failed and
2020 * &mddev->fail_last_dev is off.
2021 */
raid10_error(struct mddev * mddev,struct md_rdev * rdev)2022 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2023 {
2024 struct r10conf *conf = mddev->private;
2025 unsigned long flags;
2026
2027 spin_lock_irqsave(&conf->device_lock, flags);
2028
2029 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2030 set_bit(MD_BROKEN, &mddev->flags);
2031
2032 if (!mddev->fail_last_dev) {
2033 spin_unlock_irqrestore(&conf->device_lock, flags);
2034 return;
2035 }
2036 }
2037 if (test_and_clear_bit(In_sync, &rdev->flags))
2038 mddev->degraded++;
2039
2040 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2041 set_bit(Blocked, &rdev->flags);
2042 set_bit(Faulty, &rdev->flags);
2043 set_mask_bits(&mddev->sb_flags, 0,
2044 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2045 spin_unlock_irqrestore(&conf->device_lock, flags);
2046 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2047 "md/raid10:%s: Operation continuing on %d devices.\n",
2048 mdname(mddev), rdev->bdev,
2049 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2050 }
2051
print_conf(struct r10conf * conf)2052 static void print_conf(struct r10conf *conf)
2053 {
2054 int i;
2055 struct md_rdev *rdev;
2056
2057 pr_debug("RAID10 conf printout:\n");
2058 if (!conf) {
2059 pr_debug("(!conf)\n");
2060 return;
2061 }
2062 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2063 conf->geo.raid_disks);
2064
2065 /* This is only called with ->reconfix_mutex held, so
2066 * rcu protection of rdev is not needed */
2067 for (i = 0; i < conf->geo.raid_disks; i++) {
2068 rdev = conf->mirrors[i].rdev;
2069 if (rdev)
2070 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2071 i, !test_bit(In_sync, &rdev->flags),
2072 !test_bit(Faulty, &rdev->flags),
2073 rdev->bdev);
2074 }
2075 }
2076
close_sync(struct r10conf * conf)2077 static void close_sync(struct r10conf *conf)
2078 {
2079 wait_barrier(conf, false);
2080 allow_barrier(conf);
2081
2082 mempool_exit(&conf->r10buf_pool);
2083 }
2084
raid10_spare_active(struct mddev * mddev)2085 static int raid10_spare_active(struct mddev *mddev)
2086 {
2087 int i;
2088 struct r10conf *conf = mddev->private;
2089 struct raid10_info *tmp;
2090 int count = 0;
2091 unsigned long flags;
2092
2093 /*
2094 * Find all non-in_sync disks within the RAID10 configuration
2095 * and mark them in_sync
2096 */
2097 for (i = 0; i < conf->geo.raid_disks; i++) {
2098 tmp = conf->mirrors + i;
2099 if (tmp->replacement
2100 && tmp->replacement->recovery_offset == MaxSector
2101 && !test_bit(Faulty, &tmp->replacement->flags)
2102 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2103 /* Replacement has just become active */
2104 if (!tmp->rdev
2105 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2106 count++;
2107 if (tmp->rdev) {
2108 /* Replaced device not technically faulty,
2109 * but we need to be sure it gets removed
2110 * and never re-added.
2111 */
2112 set_bit(Faulty, &tmp->rdev->flags);
2113 sysfs_notify_dirent_safe(
2114 tmp->rdev->sysfs_state);
2115 }
2116 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2117 } else if (tmp->rdev
2118 && tmp->rdev->recovery_offset == MaxSector
2119 && !test_bit(Faulty, &tmp->rdev->flags)
2120 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2121 count++;
2122 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2123 }
2124 }
2125 spin_lock_irqsave(&conf->device_lock, flags);
2126 mddev->degraded -= count;
2127 spin_unlock_irqrestore(&conf->device_lock, flags);
2128
2129 print_conf(conf);
2130 return count;
2131 }
2132
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)2133 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2134 {
2135 struct r10conf *conf = mddev->private;
2136 int err = -EEXIST;
2137 int mirror, repl_slot = -1;
2138 int first = 0;
2139 int last = conf->geo.raid_disks - 1;
2140 struct raid10_info *p;
2141
2142 if (mddev->recovery_cp < MaxSector)
2143 /* only hot-add to in-sync arrays, as recovery is
2144 * very different from resync
2145 */
2146 return -EBUSY;
2147 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2148 return -EINVAL;
2149
2150 if (md_integrity_add_rdev(rdev, mddev))
2151 return -ENXIO;
2152
2153 if (rdev->raid_disk >= 0)
2154 first = last = rdev->raid_disk;
2155
2156 if (rdev->saved_raid_disk >= first &&
2157 rdev->saved_raid_disk < conf->geo.raid_disks &&
2158 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2159 mirror = rdev->saved_raid_disk;
2160 else
2161 mirror = first;
2162 for ( ; mirror <= last ; mirror++) {
2163 p = &conf->mirrors[mirror];
2164 if (p->recovery_disabled == mddev->recovery_disabled)
2165 continue;
2166 if (p->rdev) {
2167 if (test_bit(WantReplacement, &p->rdev->flags) &&
2168 p->replacement == NULL && repl_slot < 0)
2169 repl_slot = mirror;
2170 continue;
2171 }
2172
2173 if (mddev->gendisk)
2174 disk_stack_limits(mddev->gendisk, rdev->bdev,
2175 rdev->data_offset << 9);
2176
2177 p->head_position = 0;
2178 p->recovery_disabled = mddev->recovery_disabled - 1;
2179 rdev->raid_disk = mirror;
2180 err = 0;
2181 if (rdev->saved_raid_disk != mirror)
2182 conf->fullsync = 1;
2183 rcu_assign_pointer(p->rdev, rdev);
2184 break;
2185 }
2186
2187 if (err && repl_slot >= 0) {
2188 p = &conf->mirrors[repl_slot];
2189 clear_bit(In_sync, &rdev->flags);
2190 set_bit(Replacement, &rdev->flags);
2191 rdev->raid_disk = repl_slot;
2192 err = 0;
2193 if (mddev->gendisk)
2194 disk_stack_limits(mddev->gendisk, rdev->bdev,
2195 rdev->data_offset << 9);
2196 conf->fullsync = 1;
2197 rcu_assign_pointer(p->replacement, rdev);
2198 }
2199
2200 print_conf(conf);
2201 return err;
2202 }
2203
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)2204 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2205 {
2206 struct r10conf *conf = mddev->private;
2207 int err = 0;
2208 int number = rdev->raid_disk;
2209 struct md_rdev **rdevp;
2210 struct raid10_info *p;
2211
2212 print_conf(conf);
2213 if (unlikely(number >= mddev->raid_disks))
2214 return 0;
2215 p = conf->mirrors + number;
2216 if (rdev == p->rdev)
2217 rdevp = &p->rdev;
2218 else if (rdev == p->replacement)
2219 rdevp = &p->replacement;
2220 else
2221 return 0;
2222
2223 if (test_bit(In_sync, &rdev->flags) ||
2224 atomic_read(&rdev->nr_pending)) {
2225 err = -EBUSY;
2226 goto abort;
2227 }
2228 /* Only remove non-faulty devices if recovery
2229 * is not possible.
2230 */
2231 if (!test_bit(Faulty, &rdev->flags) &&
2232 mddev->recovery_disabled != p->recovery_disabled &&
2233 (!p->replacement || p->replacement == rdev) &&
2234 number < conf->geo.raid_disks &&
2235 enough(conf, -1)) {
2236 err = -EBUSY;
2237 goto abort;
2238 }
2239 *rdevp = NULL;
2240 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2241 synchronize_rcu();
2242 if (atomic_read(&rdev->nr_pending)) {
2243 /* lost the race, try later */
2244 err = -EBUSY;
2245 *rdevp = rdev;
2246 goto abort;
2247 }
2248 }
2249 if (p->replacement) {
2250 /* We must have just cleared 'rdev' */
2251 p->rdev = p->replacement;
2252 clear_bit(Replacement, &p->replacement->flags);
2253 smp_mb(); /* Make sure other CPUs may see both as identical
2254 * but will never see neither -- if they are careful.
2255 */
2256 p->replacement = NULL;
2257 }
2258
2259 clear_bit(WantReplacement, &rdev->flags);
2260 err = md_integrity_register(mddev);
2261
2262 abort:
2263
2264 print_conf(conf);
2265 return err;
2266 }
2267
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)2268 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2269 {
2270 struct r10conf *conf = r10_bio->mddev->private;
2271
2272 if (!bio->bi_status)
2273 set_bit(R10BIO_Uptodate, &r10_bio->state);
2274 else
2275 /* The write handler will notice the lack of
2276 * R10BIO_Uptodate and record any errors etc
2277 */
2278 atomic_add(r10_bio->sectors,
2279 &conf->mirrors[d].rdev->corrected_errors);
2280
2281 /* for reconstruct, we always reschedule after a read.
2282 * for resync, only after all reads
2283 */
2284 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2285 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2286 atomic_dec_and_test(&r10_bio->remaining)) {
2287 /* we have read all the blocks,
2288 * do the comparison in process context in raid10d
2289 */
2290 reschedule_retry(r10_bio);
2291 }
2292 }
2293
end_sync_read(struct bio * bio)2294 static void end_sync_read(struct bio *bio)
2295 {
2296 struct r10bio *r10_bio = get_resync_r10bio(bio);
2297 struct r10conf *conf = r10_bio->mddev->private;
2298 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2299
2300 __end_sync_read(r10_bio, bio, d);
2301 }
2302
end_reshape_read(struct bio * bio)2303 static void end_reshape_read(struct bio *bio)
2304 {
2305 /* reshape read bio isn't allocated from r10buf_pool */
2306 struct r10bio *r10_bio = bio->bi_private;
2307
2308 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2309 }
2310
end_sync_request(struct r10bio * r10_bio)2311 static void end_sync_request(struct r10bio *r10_bio)
2312 {
2313 struct mddev *mddev = r10_bio->mddev;
2314
2315 while (atomic_dec_and_test(&r10_bio->remaining)) {
2316 if (r10_bio->master_bio == NULL) {
2317 /* the primary of several recovery bios */
2318 sector_t s = r10_bio->sectors;
2319 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2320 test_bit(R10BIO_WriteError, &r10_bio->state))
2321 reschedule_retry(r10_bio);
2322 else
2323 put_buf(r10_bio);
2324 md_done_sync(mddev, s, 1);
2325 break;
2326 } else {
2327 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2328 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2329 test_bit(R10BIO_WriteError, &r10_bio->state))
2330 reschedule_retry(r10_bio);
2331 else
2332 put_buf(r10_bio);
2333 r10_bio = r10_bio2;
2334 }
2335 }
2336 }
2337
end_sync_write(struct bio * bio)2338 static void end_sync_write(struct bio *bio)
2339 {
2340 struct r10bio *r10_bio = get_resync_r10bio(bio);
2341 struct mddev *mddev = r10_bio->mddev;
2342 struct r10conf *conf = mddev->private;
2343 int d;
2344 sector_t first_bad;
2345 int bad_sectors;
2346 int slot;
2347 int repl;
2348 struct md_rdev *rdev = NULL;
2349
2350 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2351 if (repl)
2352 rdev = conf->mirrors[d].replacement;
2353 else
2354 rdev = conf->mirrors[d].rdev;
2355
2356 if (bio->bi_status) {
2357 if (repl)
2358 md_error(mddev, rdev);
2359 else {
2360 set_bit(WriteErrorSeen, &rdev->flags);
2361 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2362 set_bit(MD_RECOVERY_NEEDED,
2363 &rdev->mddev->recovery);
2364 set_bit(R10BIO_WriteError, &r10_bio->state);
2365 }
2366 } else if (is_badblock(rdev,
2367 r10_bio->devs[slot].addr,
2368 r10_bio->sectors,
2369 &first_bad, &bad_sectors))
2370 set_bit(R10BIO_MadeGood, &r10_bio->state);
2371
2372 rdev_dec_pending(rdev, mddev);
2373
2374 end_sync_request(r10_bio);
2375 }
2376
2377 /*
2378 * Note: sync and recover and handled very differently for raid10
2379 * This code is for resync.
2380 * For resync, we read through virtual addresses and read all blocks.
2381 * If there is any error, we schedule a write. The lowest numbered
2382 * drive is authoritative.
2383 * However requests come for physical address, so we need to map.
2384 * For every physical address there are raid_disks/copies virtual addresses,
2385 * which is always are least one, but is not necessarly an integer.
2386 * This means that a physical address can span multiple chunks, so we may
2387 * have to submit multiple io requests for a single sync request.
2388 */
2389 /*
2390 * We check if all blocks are in-sync and only write to blocks that
2391 * aren't in sync
2392 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2393 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2394 {
2395 struct r10conf *conf = mddev->private;
2396 int i, first;
2397 struct bio *tbio, *fbio;
2398 int vcnt;
2399 struct page **tpages, **fpages;
2400
2401 atomic_set(&r10_bio->remaining, 1);
2402
2403 /* find the first device with a block */
2404 for (i=0; i<conf->copies; i++)
2405 if (!r10_bio->devs[i].bio->bi_status)
2406 break;
2407
2408 if (i == conf->copies)
2409 goto done;
2410
2411 first = i;
2412 fbio = r10_bio->devs[i].bio;
2413 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2414 fbio->bi_iter.bi_idx = 0;
2415 fpages = get_resync_pages(fbio)->pages;
2416
2417 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2418 /* now find blocks with errors */
2419 for (i=0 ; i < conf->copies ; i++) {
2420 int j, d;
2421 struct md_rdev *rdev;
2422 struct resync_pages *rp;
2423
2424 tbio = r10_bio->devs[i].bio;
2425
2426 if (tbio->bi_end_io != end_sync_read)
2427 continue;
2428 if (i == first)
2429 continue;
2430
2431 tpages = get_resync_pages(tbio)->pages;
2432 d = r10_bio->devs[i].devnum;
2433 rdev = conf->mirrors[d].rdev;
2434 if (!r10_bio->devs[i].bio->bi_status) {
2435 /* We know that the bi_io_vec layout is the same for
2436 * both 'first' and 'i', so we just compare them.
2437 * All vec entries are PAGE_SIZE;
2438 */
2439 int sectors = r10_bio->sectors;
2440 for (j = 0; j < vcnt; j++) {
2441 int len = PAGE_SIZE;
2442 if (sectors < (len / 512))
2443 len = sectors * 512;
2444 if (memcmp(page_address(fpages[j]),
2445 page_address(tpages[j]),
2446 len))
2447 break;
2448 sectors -= len/512;
2449 }
2450 if (j == vcnt)
2451 continue;
2452 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2453 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2454 /* Don't fix anything. */
2455 continue;
2456 } else if (test_bit(FailFast, &rdev->flags)) {
2457 /* Just give up on this device */
2458 md_error(rdev->mddev, rdev);
2459 continue;
2460 }
2461 /* Ok, we need to write this bio, either to correct an
2462 * inconsistency or to correct an unreadable block.
2463 * First we need to fixup bv_offset, bv_len and
2464 * bi_vecs, as the read request might have corrupted these
2465 */
2466 rp = get_resync_pages(tbio);
2467 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2468
2469 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2470
2471 rp->raid_bio = r10_bio;
2472 tbio->bi_private = rp;
2473 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2474 tbio->bi_end_io = end_sync_write;
2475
2476 bio_copy_data(tbio, fbio);
2477
2478 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2479 atomic_inc(&r10_bio->remaining);
2480 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2481
2482 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2483 tbio->bi_opf |= MD_FAILFAST;
2484 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2485 submit_bio_noacct(tbio);
2486 }
2487
2488 /* Now write out to any replacement devices
2489 * that are active
2490 */
2491 for (i = 0; i < conf->copies; i++) {
2492 int d;
2493
2494 tbio = r10_bio->devs[i].repl_bio;
2495 if (!tbio || !tbio->bi_end_io)
2496 continue;
2497 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2498 && r10_bio->devs[i].bio != fbio)
2499 bio_copy_data(tbio, fbio);
2500 d = r10_bio->devs[i].devnum;
2501 atomic_inc(&r10_bio->remaining);
2502 md_sync_acct(conf->mirrors[d].replacement->bdev,
2503 bio_sectors(tbio));
2504 submit_bio_noacct(tbio);
2505 }
2506
2507 done:
2508 if (atomic_dec_and_test(&r10_bio->remaining)) {
2509 md_done_sync(mddev, r10_bio->sectors, 1);
2510 put_buf(r10_bio);
2511 }
2512 }
2513
2514 /*
2515 * Now for the recovery code.
2516 * Recovery happens across physical sectors.
2517 * We recover all non-is_sync drives by finding the virtual address of
2518 * each, and then choose a working drive that also has that virt address.
2519 * There is a separate r10_bio for each non-in_sync drive.
2520 * Only the first two slots are in use. The first for reading,
2521 * The second for writing.
2522 *
2523 */
fix_recovery_read_error(struct r10bio * r10_bio)2524 static void fix_recovery_read_error(struct r10bio *r10_bio)
2525 {
2526 /* We got a read error during recovery.
2527 * We repeat the read in smaller page-sized sections.
2528 * If a read succeeds, write it to the new device or record
2529 * a bad block if we cannot.
2530 * If a read fails, record a bad block on both old and
2531 * new devices.
2532 */
2533 struct mddev *mddev = r10_bio->mddev;
2534 struct r10conf *conf = mddev->private;
2535 struct bio *bio = r10_bio->devs[0].bio;
2536 sector_t sect = 0;
2537 int sectors = r10_bio->sectors;
2538 int idx = 0;
2539 int dr = r10_bio->devs[0].devnum;
2540 int dw = r10_bio->devs[1].devnum;
2541 struct page **pages = get_resync_pages(bio)->pages;
2542
2543 while (sectors) {
2544 int s = sectors;
2545 struct md_rdev *rdev;
2546 sector_t addr;
2547 int ok;
2548
2549 if (s > (PAGE_SIZE>>9))
2550 s = PAGE_SIZE >> 9;
2551
2552 rdev = conf->mirrors[dr].rdev;
2553 addr = r10_bio->devs[0].addr + sect,
2554 ok = sync_page_io(rdev,
2555 addr,
2556 s << 9,
2557 pages[idx],
2558 REQ_OP_READ, false);
2559 if (ok) {
2560 rdev = conf->mirrors[dw].rdev;
2561 addr = r10_bio->devs[1].addr + sect;
2562 ok = sync_page_io(rdev,
2563 addr,
2564 s << 9,
2565 pages[idx],
2566 REQ_OP_WRITE, false);
2567 if (!ok) {
2568 set_bit(WriteErrorSeen, &rdev->flags);
2569 if (!test_and_set_bit(WantReplacement,
2570 &rdev->flags))
2571 set_bit(MD_RECOVERY_NEEDED,
2572 &rdev->mddev->recovery);
2573 }
2574 }
2575 if (!ok) {
2576 /* We don't worry if we cannot set a bad block -
2577 * it really is bad so there is no loss in not
2578 * recording it yet
2579 */
2580 rdev_set_badblocks(rdev, addr, s, 0);
2581
2582 if (rdev != conf->mirrors[dw].rdev) {
2583 /* need bad block on destination too */
2584 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2585 addr = r10_bio->devs[1].addr + sect;
2586 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2587 if (!ok) {
2588 /* just abort the recovery */
2589 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2590 mdname(mddev));
2591
2592 conf->mirrors[dw].recovery_disabled
2593 = mddev->recovery_disabled;
2594 set_bit(MD_RECOVERY_INTR,
2595 &mddev->recovery);
2596 break;
2597 }
2598 }
2599 }
2600
2601 sectors -= s;
2602 sect += s;
2603 idx++;
2604 }
2605 }
2606
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2607 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2608 {
2609 struct r10conf *conf = mddev->private;
2610 int d;
2611 struct bio *wbio = r10_bio->devs[1].bio;
2612 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2613
2614 /* Need to test wbio2->bi_end_io before we call
2615 * submit_bio_noacct as if the former is NULL,
2616 * the latter is free to free wbio2.
2617 */
2618 if (wbio2 && !wbio2->bi_end_io)
2619 wbio2 = NULL;
2620
2621 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2622 fix_recovery_read_error(r10_bio);
2623 if (wbio->bi_end_io)
2624 end_sync_request(r10_bio);
2625 if (wbio2)
2626 end_sync_request(r10_bio);
2627 return;
2628 }
2629
2630 /*
2631 * share the pages with the first bio
2632 * and submit the write request
2633 */
2634 d = r10_bio->devs[1].devnum;
2635 if (wbio->bi_end_io) {
2636 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2637 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2638 submit_bio_noacct(wbio);
2639 }
2640 if (wbio2) {
2641 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2642 md_sync_acct(conf->mirrors[d].replacement->bdev,
2643 bio_sectors(wbio2));
2644 submit_bio_noacct(wbio2);
2645 }
2646 }
2647
2648 /*
2649 * Used by fix_read_error() to decay the per rdev read_errors.
2650 * We halve the read error count for every hour that has elapsed
2651 * since the last recorded read error.
2652 *
2653 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2654 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2655 {
2656 long cur_time_mon;
2657 unsigned long hours_since_last;
2658 unsigned int read_errors = atomic_read(&rdev->read_errors);
2659
2660 cur_time_mon = ktime_get_seconds();
2661
2662 if (rdev->last_read_error == 0) {
2663 /* first time we've seen a read error */
2664 rdev->last_read_error = cur_time_mon;
2665 return;
2666 }
2667
2668 hours_since_last = (long)(cur_time_mon -
2669 rdev->last_read_error) / 3600;
2670
2671 rdev->last_read_error = cur_time_mon;
2672
2673 /*
2674 * if hours_since_last is > the number of bits in read_errors
2675 * just set read errors to 0. We do this to avoid
2676 * overflowing the shift of read_errors by hours_since_last.
2677 */
2678 if (hours_since_last >= 8 * sizeof(read_errors))
2679 atomic_set(&rdev->read_errors, 0);
2680 else
2681 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2682 }
2683
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,enum req_op op)2684 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2685 int sectors, struct page *page, enum req_op op)
2686 {
2687 sector_t first_bad;
2688 int bad_sectors;
2689
2690 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2691 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2692 return -1;
2693 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2694 /* success */
2695 return 1;
2696 if (op == REQ_OP_WRITE) {
2697 set_bit(WriteErrorSeen, &rdev->flags);
2698 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2699 set_bit(MD_RECOVERY_NEEDED,
2700 &rdev->mddev->recovery);
2701 }
2702 /* need to record an error - either for the block or the device */
2703 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2704 md_error(rdev->mddev, rdev);
2705 return 0;
2706 }
2707
2708 /*
2709 * This is a kernel thread which:
2710 *
2711 * 1. Retries failed read operations on working mirrors.
2712 * 2. Updates the raid superblock when problems encounter.
2713 * 3. Performs writes following reads for array synchronising.
2714 */
2715
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2716 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2717 {
2718 int sect = 0; /* Offset from r10_bio->sector */
2719 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2720 struct md_rdev *rdev;
2721 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2722 int d = r10_bio->devs[slot].devnum;
2723
2724 /* still own a reference to this rdev, so it cannot
2725 * have been cleared recently.
2726 */
2727 rdev = conf->mirrors[d].rdev;
2728
2729 if (test_bit(Faulty, &rdev->flags))
2730 /* drive has already been failed, just ignore any
2731 more fix_read_error() attempts */
2732 return;
2733
2734 check_decay_read_errors(mddev, rdev);
2735 atomic_inc(&rdev->read_errors);
2736 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2737 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2738 mdname(mddev), rdev->bdev,
2739 atomic_read(&rdev->read_errors), max_read_errors);
2740 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2741 mdname(mddev), rdev->bdev);
2742 md_error(mddev, rdev);
2743 r10_bio->devs[slot].bio = IO_BLOCKED;
2744 return;
2745 }
2746
2747 while(sectors) {
2748 int s = sectors;
2749 int sl = slot;
2750 int success = 0;
2751 int start;
2752
2753 if (s > (PAGE_SIZE>>9))
2754 s = PAGE_SIZE >> 9;
2755
2756 rcu_read_lock();
2757 do {
2758 sector_t first_bad;
2759 int bad_sectors;
2760
2761 d = r10_bio->devs[sl].devnum;
2762 rdev = rcu_dereference(conf->mirrors[d].rdev);
2763 if (rdev &&
2764 test_bit(In_sync, &rdev->flags) &&
2765 !test_bit(Faulty, &rdev->flags) &&
2766 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2767 &first_bad, &bad_sectors) == 0) {
2768 atomic_inc(&rdev->nr_pending);
2769 rcu_read_unlock();
2770 success = sync_page_io(rdev,
2771 r10_bio->devs[sl].addr +
2772 sect,
2773 s<<9,
2774 conf->tmppage,
2775 REQ_OP_READ, false);
2776 rdev_dec_pending(rdev, mddev);
2777 rcu_read_lock();
2778 if (success)
2779 break;
2780 }
2781 sl++;
2782 if (sl == conf->copies)
2783 sl = 0;
2784 } while (sl != slot);
2785 rcu_read_unlock();
2786
2787 if (!success) {
2788 /* Cannot read from anywhere, just mark the block
2789 * as bad on the first device to discourage future
2790 * reads.
2791 */
2792 int dn = r10_bio->devs[slot].devnum;
2793 rdev = conf->mirrors[dn].rdev;
2794
2795 if (!rdev_set_badblocks(
2796 rdev,
2797 r10_bio->devs[slot].addr
2798 + sect,
2799 s, 0)) {
2800 md_error(mddev, rdev);
2801 r10_bio->devs[slot].bio
2802 = IO_BLOCKED;
2803 }
2804 break;
2805 }
2806
2807 start = sl;
2808 /* write it back and re-read */
2809 rcu_read_lock();
2810 while (sl != slot) {
2811 if (sl==0)
2812 sl = conf->copies;
2813 sl--;
2814 d = r10_bio->devs[sl].devnum;
2815 rdev = rcu_dereference(conf->mirrors[d].rdev);
2816 if (!rdev ||
2817 test_bit(Faulty, &rdev->flags) ||
2818 !test_bit(In_sync, &rdev->flags))
2819 continue;
2820
2821 atomic_inc(&rdev->nr_pending);
2822 rcu_read_unlock();
2823 if (r10_sync_page_io(rdev,
2824 r10_bio->devs[sl].addr +
2825 sect,
2826 s, conf->tmppage, REQ_OP_WRITE)
2827 == 0) {
2828 /* Well, this device is dead */
2829 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2830 mdname(mddev), s,
2831 (unsigned long long)(
2832 sect +
2833 choose_data_offset(r10_bio,
2834 rdev)),
2835 rdev->bdev);
2836 pr_notice("md/raid10:%s: %pg: failing drive\n",
2837 mdname(mddev),
2838 rdev->bdev);
2839 }
2840 rdev_dec_pending(rdev, mddev);
2841 rcu_read_lock();
2842 }
2843 sl = start;
2844 while (sl != slot) {
2845 if (sl==0)
2846 sl = conf->copies;
2847 sl--;
2848 d = r10_bio->devs[sl].devnum;
2849 rdev = rcu_dereference(conf->mirrors[d].rdev);
2850 if (!rdev ||
2851 test_bit(Faulty, &rdev->flags) ||
2852 !test_bit(In_sync, &rdev->flags))
2853 continue;
2854
2855 atomic_inc(&rdev->nr_pending);
2856 rcu_read_unlock();
2857 switch (r10_sync_page_io(rdev,
2858 r10_bio->devs[sl].addr +
2859 sect,
2860 s, conf->tmppage, REQ_OP_READ)) {
2861 case 0:
2862 /* Well, this device is dead */
2863 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2864 mdname(mddev), s,
2865 (unsigned long long)(
2866 sect +
2867 choose_data_offset(r10_bio, rdev)),
2868 rdev->bdev);
2869 pr_notice("md/raid10:%s: %pg: failing drive\n",
2870 mdname(mddev),
2871 rdev->bdev);
2872 break;
2873 case 1:
2874 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2875 mdname(mddev), s,
2876 (unsigned long long)(
2877 sect +
2878 choose_data_offset(r10_bio, rdev)),
2879 rdev->bdev);
2880 atomic_add(s, &rdev->corrected_errors);
2881 }
2882
2883 rdev_dec_pending(rdev, mddev);
2884 rcu_read_lock();
2885 }
2886 rcu_read_unlock();
2887
2888 sectors -= s;
2889 sect += s;
2890 }
2891 }
2892
narrow_write_error(struct r10bio * r10_bio,int i)2893 static int narrow_write_error(struct r10bio *r10_bio, int i)
2894 {
2895 struct bio *bio = r10_bio->master_bio;
2896 struct mddev *mddev = r10_bio->mddev;
2897 struct r10conf *conf = mddev->private;
2898 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2899 /* bio has the data to be written to slot 'i' where
2900 * we just recently had a write error.
2901 * We repeatedly clone the bio and trim down to one block,
2902 * then try the write. Where the write fails we record
2903 * a bad block.
2904 * It is conceivable that the bio doesn't exactly align with
2905 * blocks. We must handle this.
2906 *
2907 * We currently own a reference to the rdev.
2908 */
2909
2910 int block_sectors;
2911 sector_t sector;
2912 int sectors;
2913 int sect_to_write = r10_bio->sectors;
2914 int ok = 1;
2915
2916 if (rdev->badblocks.shift < 0)
2917 return 0;
2918
2919 block_sectors = roundup(1 << rdev->badblocks.shift,
2920 bdev_logical_block_size(rdev->bdev) >> 9);
2921 sector = r10_bio->sector;
2922 sectors = ((r10_bio->sector + block_sectors)
2923 & ~(sector_t)(block_sectors - 1))
2924 - sector;
2925
2926 while (sect_to_write) {
2927 struct bio *wbio;
2928 sector_t wsector;
2929 if (sectors > sect_to_write)
2930 sectors = sect_to_write;
2931 /* Write at 'sector' for 'sectors' */
2932 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2933 &mddev->bio_set);
2934 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2935 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2936 wbio->bi_iter.bi_sector = wsector +
2937 choose_data_offset(r10_bio, rdev);
2938 wbio->bi_opf = REQ_OP_WRITE;
2939
2940 if (submit_bio_wait(wbio) < 0)
2941 /* Failure! */
2942 ok = rdev_set_badblocks(rdev, wsector,
2943 sectors, 0)
2944 && ok;
2945
2946 bio_put(wbio);
2947 sect_to_write -= sectors;
2948 sector += sectors;
2949 sectors = block_sectors;
2950 }
2951 return ok;
2952 }
2953
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2954 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2955 {
2956 int slot = r10_bio->read_slot;
2957 struct bio *bio;
2958 struct r10conf *conf = mddev->private;
2959 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2960
2961 /* we got a read error. Maybe the drive is bad. Maybe just
2962 * the block and we can fix it.
2963 * We freeze all other IO, and try reading the block from
2964 * other devices. When we find one, we re-write
2965 * and check it that fixes the read error.
2966 * This is all done synchronously while the array is
2967 * frozen.
2968 */
2969 bio = r10_bio->devs[slot].bio;
2970 bio_put(bio);
2971 r10_bio->devs[slot].bio = NULL;
2972
2973 if (mddev->ro)
2974 r10_bio->devs[slot].bio = IO_BLOCKED;
2975 else if (!test_bit(FailFast, &rdev->flags)) {
2976 freeze_array(conf, 1);
2977 fix_read_error(conf, mddev, r10_bio);
2978 unfreeze_array(conf);
2979 } else
2980 md_error(mddev, rdev);
2981
2982 rdev_dec_pending(rdev, mddev);
2983 r10_bio->state = 0;
2984 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2985 /*
2986 * allow_barrier after re-submit to ensure no sync io
2987 * can be issued while regular io pending.
2988 */
2989 allow_barrier(conf);
2990 }
2991
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2992 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2993 {
2994 /* Some sort of write request has finished and it
2995 * succeeded in writing where we thought there was a
2996 * bad block. So forget the bad block.
2997 * Or possibly if failed and we need to record
2998 * a bad block.
2999 */
3000 int m;
3001 struct md_rdev *rdev;
3002
3003 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3004 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3005 for (m = 0; m < conf->copies; m++) {
3006 int dev = r10_bio->devs[m].devnum;
3007 rdev = conf->mirrors[dev].rdev;
3008 if (r10_bio->devs[m].bio == NULL ||
3009 r10_bio->devs[m].bio->bi_end_io == NULL)
3010 continue;
3011 if (!r10_bio->devs[m].bio->bi_status) {
3012 rdev_clear_badblocks(
3013 rdev,
3014 r10_bio->devs[m].addr,
3015 r10_bio->sectors, 0);
3016 } else {
3017 if (!rdev_set_badblocks(
3018 rdev,
3019 r10_bio->devs[m].addr,
3020 r10_bio->sectors, 0))
3021 md_error(conf->mddev, rdev);
3022 }
3023 rdev = conf->mirrors[dev].replacement;
3024 if (r10_bio->devs[m].repl_bio == NULL ||
3025 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3026 continue;
3027
3028 if (!r10_bio->devs[m].repl_bio->bi_status) {
3029 rdev_clear_badblocks(
3030 rdev,
3031 r10_bio->devs[m].addr,
3032 r10_bio->sectors, 0);
3033 } else {
3034 if (!rdev_set_badblocks(
3035 rdev,
3036 r10_bio->devs[m].addr,
3037 r10_bio->sectors, 0))
3038 md_error(conf->mddev, rdev);
3039 }
3040 }
3041 put_buf(r10_bio);
3042 } else {
3043 bool fail = false;
3044 for (m = 0; m < conf->copies; m++) {
3045 int dev = r10_bio->devs[m].devnum;
3046 struct bio *bio = r10_bio->devs[m].bio;
3047 rdev = conf->mirrors[dev].rdev;
3048 if (bio == IO_MADE_GOOD) {
3049 rdev_clear_badblocks(
3050 rdev,
3051 r10_bio->devs[m].addr,
3052 r10_bio->sectors, 0);
3053 rdev_dec_pending(rdev, conf->mddev);
3054 } else if (bio != NULL && bio->bi_status) {
3055 fail = true;
3056 if (!narrow_write_error(r10_bio, m))
3057 md_error(conf->mddev, rdev);
3058 rdev_dec_pending(rdev, conf->mddev);
3059 }
3060 bio = r10_bio->devs[m].repl_bio;
3061 rdev = conf->mirrors[dev].replacement;
3062 if (rdev && bio == IO_MADE_GOOD) {
3063 rdev_clear_badblocks(
3064 rdev,
3065 r10_bio->devs[m].addr,
3066 r10_bio->sectors, 0);
3067 rdev_dec_pending(rdev, conf->mddev);
3068 }
3069 }
3070 if (fail) {
3071 spin_lock_irq(&conf->device_lock);
3072 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3073 conf->nr_queued++;
3074 spin_unlock_irq(&conf->device_lock);
3075 /*
3076 * In case freeze_array() is waiting for condition
3077 * nr_pending == nr_queued + extra to be true.
3078 */
3079 wake_up(&conf->wait_barrier);
3080 md_wakeup_thread(conf->mddev->thread);
3081 } else {
3082 if (test_bit(R10BIO_WriteError,
3083 &r10_bio->state))
3084 close_write(r10_bio);
3085 raid_end_bio_io(r10_bio);
3086 }
3087 }
3088 }
3089
raid10d(struct md_thread * thread)3090 static void raid10d(struct md_thread *thread)
3091 {
3092 struct mddev *mddev = thread->mddev;
3093 struct r10bio *r10_bio;
3094 unsigned long flags;
3095 struct r10conf *conf = mddev->private;
3096 struct list_head *head = &conf->retry_list;
3097 struct blk_plug plug;
3098
3099 md_check_recovery(mddev);
3100
3101 if (!list_empty_careful(&conf->bio_end_io_list) &&
3102 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3103 LIST_HEAD(tmp);
3104 spin_lock_irqsave(&conf->device_lock, flags);
3105 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3106 while (!list_empty(&conf->bio_end_io_list)) {
3107 list_move(conf->bio_end_io_list.prev, &tmp);
3108 conf->nr_queued--;
3109 }
3110 }
3111 spin_unlock_irqrestore(&conf->device_lock, flags);
3112 while (!list_empty(&tmp)) {
3113 r10_bio = list_first_entry(&tmp, struct r10bio,
3114 retry_list);
3115 list_del(&r10_bio->retry_list);
3116
3117 if (test_bit(R10BIO_WriteError,
3118 &r10_bio->state))
3119 close_write(r10_bio);
3120 raid_end_bio_io(r10_bio);
3121 }
3122 }
3123
3124 blk_start_plug(&plug);
3125 for (;;) {
3126
3127 flush_pending_writes(conf);
3128
3129 spin_lock_irqsave(&conf->device_lock, flags);
3130 if (list_empty(head)) {
3131 spin_unlock_irqrestore(&conf->device_lock, flags);
3132 break;
3133 }
3134 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3135 list_del(head->prev);
3136 conf->nr_queued--;
3137 spin_unlock_irqrestore(&conf->device_lock, flags);
3138
3139 mddev = r10_bio->mddev;
3140 conf = mddev->private;
3141 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3142 test_bit(R10BIO_WriteError, &r10_bio->state))
3143 handle_write_completed(conf, r10_bio);
3144 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3145 reshape_request_write(mddev, r10_bio);
3146 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3147 sync_request_write(mddev, r10_bio);
3148 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3149 recovery_request_write(mddev, r10_bio);
3150 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3151 handle_read_error(mddev, r10_bio);
3152 else
3153 WARN_ON_ONCE(1);
3154
3155 cond_resched();
3156 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3157 md_check_recovery(mddev);
3158 }
3159 blk_finish_plug(&plug);
3160 }
3161
init_resync(struct r10conf * conf)3162 static int init_resync(struct r10conf *conf)
3163 {
3164 int ret, buffs, i;
3165
3166 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3167 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3168 conf->have_replacement = 0;
3169 for (i = 0; i < conf->geo.raid_disks; i++)
3170 if (conf->mirrors[i].replacement)
3171 conf->have_replacement = 1;
3172 ret = mempool_init(&conf->r10buf_pool, buffs,
3173 r10buf_pool_alloc, r10buf_pool_free, conf);
3174 if (ret)
3175 return ret;
3176 conf->next_resync = 0;
3177 return 0;
3178 }
3179
raid10_alloc_init_r10buf(struct r10conf * conf)3180 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3181 {
3182 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3183 struct rsync_pages *rp;
3184 struct bio *bio;
3185 int nalloc;
3186 int i;
3187
3188 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3189 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3190 nalloc = conf->copies; /* resync */
3191 else
3192 nalloc = 2; /* recovery */
3193
3194 for (i = 0; i < nalloc; i++) {
3195 bio = r10bio->devs[i].bio;
3196 rp = bio->bi_private;
3197 bio_reset(bio, NULL, 0);
3198 bio->bi_private = rp;
3199 bio = r10bio->devs[i].repl_bio;
3200 if (bio) {
3201 rp = bio->bi_private;
3202 bio_reset(bio, NULL, 0);
3203 bio->bi_private = rp;
3204 }
3205 }
3206 return r10bio;
3207 }
3208
3209 /*
3210 * Set cluster_sync_high since we need other nodes to add the
3211 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3212 */
raid10_set_cluster_sync_high(struct r10conf * conf)3213 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3214 {
3215 sector_t window_size;
3216 int extra_chunk, chunks;
3217
3218 /*
3219 * First, here we define "stripe" as a unit which across
3220 * all member devices one time, so we get chunks by use
3221 * raid_disks / near_copies. Otherwise, if near_copies is
3222 * close to raid_disks, then resync window could increases
3223 * linearly with the increase of raid_disks, which means
3224 * we will suspend a really large IO window while it is not
3225 * necessary. If raid_disks is not divisible by near_copies,
3226 * an extra chunk is needed to ensure the whole "stripe" is
3227 * covered.
3228 */
3229
3230 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3231 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3232 extra_chunk = 0;
3233 else
3234 extra_chunk = 1;
3235 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3236
3237 /*
3238 * At least use a 32M window to align with raid1's resync window
3239 */
3240 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3241 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3242
3243 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3244 }
3245
3246 /*
3247 * perform a "sync" on one "block"
3248 *
3249 * We need to make sure that no normal I/O request - particularly write
3250 * requests - conflict with active sync requests.
3251 *
3252 * This is achieved by tracking pending requests and a 'barrier' concept
3253 * that can be installed to exclude normal IO requests.
3254 *
3255 * Resync and recovery are handled very differently.
3256 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3257 *
3258 * For resync, we iterate over virtual addresses, read all copies,
3259 * and update if there are differences. If only one copy is live,
3260 * skip it.
3261 * For recovery, we iterate over physical addresses, read a good
3262 * value for each non-in_sync drive, and over-write.
3263 *
3264 * So, for recovery we may have several outstanding complex requests for a
3265 * given address, one for each out-of-sync device. We model this by allocating
3266 * a number of r10_bio structures, one for each out-of-sync device.
3267 * As we setup these structures, we collect all bio's together into a list
3268 * which we then process collectively to add pages, and then process again
3269 * to pass to submit_bio_noacct.
3270 *
3271 * The r10_bio structures are linked using a borrowed master_bio pointer.
3272 * This link is counted in ->remaining. When the r10_bio that points to NULL
3273 * has its remaining count decremented to 0, the whole complex operation
3274 * is complete.
3275 *
3276 */
3277
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)3278 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3279 int *skipped)
3280 {
3281 struct r10conf *conf = mddev->private;
3282 struct r10bio *r10_bio;
3283 struct bio *biolist = NULL, *bio;
3284 sector_t max_sector, nr_sectors;
3285 int i;
3286 int max_sync;
3287 sector_t sync_blocks;
3288 sector_t sectors_skipped = 0;
3289 int chunks_skipped = 0;
3290 sector_t chunk_mask = conf->geo.chunk_mask;
3291 int page_idx = 0;
3292 int error_disk = -1;
3293
3294 /*
3295 * Allow skipping a full rebuild for incremental assembly
3296 * of a clean array, like RAID1 does.
3297 */
3298 if (mddev->bitmap == NULL &&
3299 mddev->recovery_cp == MaxSector &&
3300 mddev->reshape_position == MaxSector &&
3301 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3302 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3303 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3304 conf->fullsync == 0) {
3305 *skipped = 1;
3306 return mddev->dev_sectors - sector_nr;
3307 }
3308
3309 if (!mempool_initialized(&conf->r10buf_pool))
3310 if (init_resync(conf))
3311 return 0;
3312
3313 skipped:
3314 max_sector = mddev->dev_sectors;
3315 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3316 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3317 max_sector = mddev->resync_max_sectors;
3318 if (sector_nr >= max_sector) {
3319 conf->cluster_sync_low = 0;
3320 conf->cluster_sync_high = 0;
3321
3322 /* If we aborted, we need to abort the
3323 * sync on the 'current' bitmap chucks (there can
3324 * be several when recovering multiple devices).
3325 * as we may have started syncing it but not finished.
3326 * We can find the current address in
3327 * mddev->curr_resync, but for recovery,
3328 * we need to convert that to several
3329 * virtual addresses.
3330 */
3331 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3332 end_reshape(conf);
3333 close_sync(conf);
3334 return 0;
3335 }
3336
3337 if (mddev->curr_resync < max_sector) { /* aborted */
3338 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3339 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3340 &sync_blocks, 1);
3341 else for (i = 0; i < conf->geo.raid_disks; i++) {
3342 sector_t sect =
3343 raid10_find_virt(conf, mddev->curr_resync, i);
3344 md_bitmap_end_sync(mddev->bitmap, sect,
3345 &sync_blocks, 1);
3346 }
3347 } else {
3348 /* completed sync */
3349 if ((!mddev->bitmap || conf->fullsync)
3350 && conf->have_replacement
3351 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3352 /* Completed a full sync so the replacements
3353 * are now fully recovered.
3354 */
3355 rcu_read_lock();
3356 for (i = 0; i < conf->geo.raid_disks; i++) {
3357 struct md_rdev *rdev =
3358 rcu_dereference(conf->mirrors[i].replacement);
3359 if (rdev)
3360 rdev->recovery_offset = MaxSector;
3361 }
3362 rcu_read_unlock();
3363 }
3364 conf->fullsync = 0;
3365 }
3366 md_bitmap_close_sync(mddev->bitmap);
3367 close_sync(conf);
3368 *skipped = 1;
3369 return sectors_skipped;
3370 }
3371
3372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3373 return reshape_request(mddev, sector_nr, skipped);
3374
3375 if (chunks_skipped >= conf->geo.raid_disks) {
3376 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3377 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3378 if (error_disk >= 0 &&
3379 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3380 /*
3381 * recovery fails, set mirrors.recovery_disabled,
3382 * device shouldn't be added to there.
3383 */
3384 conf->mirrors[error_disk].recovery_disabled =
3385 mddev->recovery_disabled;
3386 return 0;
3387 }
3388 /*
3389 * if there has been nothing to do on any drive,
3390 * then there is nothing to do at all.
3391 */
3392 *skipped = 1;
3393 return (max_sector - sector_nr) + sectors_skipped;
3394 }
3395
3396 if (max_sector > mddev->resync_max)
3397 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3398
3399 /* make sure whole request will fit in a chunk - if chunks
3400 * are meaningful
3401 */
3402 if (conf->geo.near_copies < conf->geo.raid_disks &&
3403 max_sector > (sector_nr | chunk_mask))
3404 max_sector = (sector_nr | chunk_mask) + 1;
3405
3406 /*
3407 * If there is non-resync activity waiting for a turn, then let it
3408 * though before starting on this new sync request.
3409 */
3410 if (conf->nr_waiting)
3411 schedule_timeout_uninterruptible(1);
3412
3413 /* Again, very different code for resync and recovery.
3414 * Both must result in an r10bio with a list of bios that
3415 * have bi_end_io, bi_sector, bi_bdev set,
3416 * and bi_private set to the r10bio.
3417 * For recovery, we may actually create several r10bios
3418 * with 2 bios in each, that correspond to the bios in the main one.
3419 * In this case, the subordinate r10bios link back through a
3420 * borrowed master_bio pointer, and the counter in the master
3421 * includes a ref from each subordinate.
3422 */
3423 /* First, we decide what to do and set ->bi_end_io
3424 * To end_sync_read if we want to read, and
3425 * end_sync_write if we will want to write.
3426 */
3427
3428 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3429 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3430 /* recovery... the complicated one */
3431 int j;
3432 r10_bio = NULL;
3433
3434 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3435 int still_degraded;
3436 struct r10bio *rb2;
3437 sector_t sect;
3438 int must_sync;
3439 int any_working;
3440 struct raid10_info *mirror = &conf->mirrors[i];
3441 struct md_rdev *mrdev, *mreplace;
3442
3443 rcu_read_lock();
3444 mrdev = rcu_dereference(mirror->rdev);
3445 mreplace = rcu_dereference(mirror->replacement);
3446
3447 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3448 test_bit(In_sync, &mrdev->flags)))
3449 mrdev = NULL;
3450 if (mreplace && test_bit(Faulty, &mreplace->flags))
3451 mreplace = NULL;
3452
3453 if (!mrdev && !mreplace) {
3454 rcu_read_unlock();
3455 continue;
3456 }
3457
3458 still_degraded = 0;
3459 /* want to reconstruct this device */
3460 rb2 = r10_bio;
3461 sect = raid10_find_virt(conf, sector_nr, i);
3462 if (sect >= mddev->resync_max_sectors) {
3463 /* last stripe is not complete - don't
3464 * try to recover this sector.
3465 */
3466 rcu_read_unlock();
3467 continue;
3468 }
3469 /* Unless we are doing a full sync, or a replacement
3470 * we only need to recover the block if it is set in
3471 * the bitmap
3472 */
3473 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3474 &sync_blocks, 1);
3475 if (sync_blocks < max_sync)
3476 max_sync = sync_blocks;
3477 if (!must_sync &&
3478 mreplace == NULL &&
3479 !conf->fullsync) {
3480 /* yep, skip the sync_blocks here, but don't assume
3481 * that there will never be anything to do here
3482 */
3483 chunks_skipped = -1;
3484 rcu_read_unlock();
3485 continue;
3486 }
3487 if (mrdev)
3488 atomic_inc(&mrdev->nr_pending);
3489 if (mreplace)
3490 atomic_inc(&mreplace->nr_pending);
3491 rcu_read_unlock();
3492
3493 r10_bio = raid10_alloc_init_r10buf(conf);
3494 r10_bio->state = 0;
3495 raise_barrier(conf, rb2 != NULL);
3496 atomic_set(&r10_bio->remaining, 0);
3497
3498 r10_bio->master_bio = (struct bio*)rb2;
3499 if (rb2)
3500 atomic_inc(&rb2->remaining);
3501 r10_bio->mddev = mddev;
3502 set_bit(R10BIO_IsRecover, &r10_bio->state);
3503 r10_bio->sector = sect;
3504
3505 raid10_find_phys(conf, r10_bio);
3506
3507 /* Need to check if the array will still be
3508 * degraded
3509 */
3510 rcu_read_lock();
3511 for (j = 0; j < conf->geo.raid_disks; j++) {
3512 struct md_rdev *rdev = rcu_dereference(
3513 conf->mirrors[j].rdev);
3514 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3515 still_degraded = 1;
3516 break;
3517 }
3518 }
3519
3520 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3521 &sync_blocks, still_degraded);
3522
3523 any_working = 0;
3524 for (j=0; j<conf->copies;j++) {
3525 int k;
3526 int d = r10_bio->devs[j].devnum;
3527 sector_t from_addr, to_addr;
3528 struct md_rdev *rdev =
3529 rcu_dereference(conf->mirrors[d].rdev);
3530 sector_t sector, first_bad;
3531 int bad_sectors;
3532 if (!rdev ||
3533 !test_bit(In_sync, &rdev->flags))
3534 continue;
3535 /* This is where we read from */
3536 any_working = 1;
3537 sector = r10_bio->devs[j].addr;
3538
3539 if (is_badblock(rdev, sector, max_sync,
3540 &first_bad, &bad_sectors)) {
3541 if (first_bad > sector)
3542 max_sync = first_bad - sector;
3543 else {
3544 bad_sectors -= (sector
3545 - first_bad);
3546 if (max_sync > bad_sectors)
3547 max_sync = bad_sectors;
3548 continue;
3549 }
3550 }
3551 bio = r10_bio->devs[0].bio;
3552 bio->bi_next = biolist;
3553 biolist = bio;
3554 bio->bi_end_io = end_sync_read;
3555 bio->bi_opf = REQ_OP_READ;
3556 if (test_bit(FailFast, &rdev->flags))
3557 bio->bi_opf |= MD_FAILFAST;
3558 from_addr = r10_bio->devs[j].addr;
3559 bio->bi_iter.bi_sector = from_addr +
3560 rdev->data_offset;
3561 bio_set_dev(bio, rdev->bdev);
3562 atomic_inc(&rdev->nr_pending);
3563 /* and we write to 'i' (if not in_sync) */
3564
3565 for (k=0; k<conf->copies; k++)
3566 if (r10_bio->devs[k].devnum == i)
3567 break;
3568 BUG_ON(k == conf->copies);
3569 to_addr = r10_bio->devs[k].addr;
3570 r10_bio->devs[0].devnum = d;
3571 r10_bio->devs[0].addr = from_addr;
3572 r10_bio->devs[1].devnum = i;
3573 r10_bio->devs[1].addr = to_addr;
3574
3575 if (mrdev) {
3576 bio = r10_bio->devs[1].bio;
3577 bio->bi_next = biolist;
3578 biolist = bio;
3579 bio->bi_end_io = end_sync_write;
3580 bio->bi_opf = REQ_OP_WRITE;
3581 bio->bi_iter.bi_sector = to_addr
3582 + mrdev->data_offset;
3583 bio_set_dev(bio, mrdev->bdev);
3584 atomic_inc(&r10_bio->remaining);
3585 } else
3586 r10_bio->devs[1].bio->bi_end_io = NULL;
3587
3588 /* and maybe write to replacement */
3589 bio = r10_bio->devs[1].repl_bio;
3590 if (bio)
3591 bio->bi_end_io = NULL;
3592 /* Note: if replace is not NULL, then bio
3593 * cannot be NULL as r10buf_pool_alloc will
3594 * have allocated it.
3595 */
3596 if (!mreplace)
3597 break;
3598 bio->bi_next = biolist;
3599 biolist = bio;
3600 bio->bi_end_io = end_sync_write;
3601 bio->bi_opf = REQ_OP_WRITE;
3602 bio->bi_iter.bi_sector = to_addr +
3603 mreplace->data_offset;
3604 bio_set_dev(bio, mreplace->bdev);
3605 atomic_inc(&r10_bio->remaining);
3606 break;
3607 }
3608 rcu_read_unlock();
3609 if (j == conf->copies) {
3610 /* Cannot recover, so abort the recovery or
3611 * record a bad block */
3612 if (any_working) {
3613 /* problem is that there are bad blocks
3614 * on other device(s)
3615 */
3616 int k;
3617 for (k = 0; k < conf->copies; k++)
3618 if (r10_bio->devs[k].devnum == i)
3619 break;
3620 if (mrdev && !test_bit(In_sync,
3621 &mrdev->flags)
3622 && !rdev_set_badblocks(
3623 mrdev,
3624 r10_bio->devs[k].addr,
3625 max_sync, 0))
3626 any_working = 0;
3627 if (mreplace &&
3628 !rdev_set_badblocks(
3629 mreplace,
3630 r10_bio->devs[k].addr,
3631 max_sync, 0))
3632 any_working = 0;
3633 }
3634 if (!any_working) {
3635 if (!test_and_set_bit(MD_RECOVERY_INTR,
3636 &mddev->recovery))
3637 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3638 mdname(mddev));
3639 mirror->recovery_disabled
3640 = mddev->recovery_disabled;
3641 } else {
3642 error_disk = i;
3643 }
3644 put_buf(r10_bio);
3645 if (rb2)
3646 atomic_dec(&rb2->remaining);
3647 r10_bio = rb2;
3648 if (mrdev)
3649 rdev_dec_pending(mrdev, mddev);
3650 if (mreplace)
3651 rdev_dec_pending(mreplace, mddev);
3652 break;
3653 }
3654 if (mrdev)
3655 rdev_dec_pending(mrdev, mddev);
3656 if (mreplace)
3657 rdev_dec_pending(mreplace, mddev);
3658 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3659 /* Only want this if there is elsewhere to
3660 * read from. 'j' is currently the first
3661 * readable copy.
3662 */
3663 int targets = 1;
3664 for (; j < conf->copies; j++) {
3665 int d = r10_bio->devs[j].devnum;
3666 if (conf->mirrors[d].rdev &&
3667 test_bit(In_sync,
3668 &conf->mirrors[d].rdev->flags))
3669 targets++;
3670 }
3671 if (targets == 1)
3672 r10_bio->devs[0].bio->bi_opf
3673 &= ~MD_FAILFAST;
3674 }
3675 }
3676 if (biolist == NULL) {
3677 while (r10_bio) {
3678 struct r10bio *rb2 = r10_bio;
3679 r10_bio = (struct r10bio*) rb2->master_bio;
3680 rb2->master_bio = NULL;
3681 put_buf(rb2);
3682 }
3683 goto giveup;
3684 }
3685 } else {
3686 /* resync. Schedule a read for every block at this virt offset */
3687 int count = 0;
3688
3689 /*
3690 * Since curr_resync_completed could probably not update in
3691 * time, and we will set cluster_sync_low based on it.
3692 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3693 * safety reason, which ensures curr_resync_completed is
3694 * updated in bitmap_cond_end_sync.
3695 */
3696 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3697 mddev_is_clustered(mddev) &&
3698 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3699
3700 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3701 &sync_blocks, mddev->degraded) &&
3702 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3703 &mddev->recovery)) {
3704 /* We can skip this block */
3705 *skipped = 1;
3706 return sync_blocks + sectors_skipped;
3707 }
3708 if (sync_blocks < max_sync)
3709 max_sync = sync_blocks;
3710 r10_bio = raid10_alloc_init_r10buf(conf);
3711 r10_bio->state = 0;
3712
3713 r10_bio->mddev = mddev;
3714 atomic_set(&r10_bio->remaining, 0);
3715 raise_barrier(conf, 0);
3716 conf->next_resync = sector_nr;
3717
3718 r10_bio->master_bio = NULL;
3719 r10_bio->sector = sector_nr;
3720 set_bit(R10BIO_IsSync, &r10_bio->state);
3721 raid10_find_phys(conf, r10_bio);
3722 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3723
3724 for (i = 0; i < conf->copies; i++) {
3725 int d = r10_bio->devs[i].devnum;
3726 sector_t first_bad, sector;
3727 int bad_sectors;
3728 struct md_rdev *rdev;
3729
3730 if (r10_bio->devs[i].repl_bio)
3731 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3732
3733 bio = r10_bio->devs[i].bio;
3734 bio->bi_status = BLK_STS_IOERR;
3735 rcu_read_lock();
3736 rdev = rcu_dereference(conf->mirrors[d].rdev);
3737 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3738 rcu_read_unlock();
3739 continue;
3740 }
3741 sector = r10_bio->devs[i].addr;
3742 if (is_badblock(rdev, sector, max_sync,
3743 &first_bad, &bad_sectors)) {
3744 if (first_bad > sector)
3745 max_sync = first_bad - sector;
3746 else {
3747 bad_sectors -= (sector - first_bad);
3748 if (max_sync > bad_sectors)
3749 max_sync = bad_sectors;
3750 rcu_read_unlock();
3751 continue;
3752 }
3753 }
3754 atomic_inc(&rdev->nr_pending);
3755 atomic_inc(&r10_bio->remaining);
3756 bio->bi_next = biolist;
3757 biolist = bio;
3758 bio->bi_end_io = end_sync_read;
3759 bio->bi_opf = REQ_OP_READ;
3760 if (test_bit(FailFast, &rdev->flags))
3761 bio->bi_opf |= MD_FAILFAST;
3762 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3763 bio_set_dev(bio, rdev->bdev);
3764 count++;
3765
3766 rdev = rcu_dereference(conf->mirrors[d].replacement);
3767 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3768 rcu_read_unlock();
3769 continue;
3770 }
3771 atomic_inc(&rdev->nr_pending);
3772
3773 /* Need to set up for writing to the replacement */
3774 bio = r10_bio->devs[i].repl_bio;
3775 bio->bi_status = BLK_STS_IOERR;
3776
3777 sector = r10_bio->devs[i].addr;
3778 bio->bi_next = biolist;
3779 biolist = bio;
3780 bio->bi_end_io = end_sync_write;
3781 bio->bi_opf = REQ_OP_WRITE;
3782 if (test_bit(FailFast, &rdev->flags))
3783 bio->bi_opf |= MD_FAILFAST;
3784 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3785 bio_set_dev(bio, rdev->bdev);
3786 count++;
3787 rcu_read_unlock();
3788 }
3789
3790 if (count < 2) {
3791 for (i=0; i<conf->copies; i++) {
3792 int d = r10_bio->devs[i].devnum;
3793 if (r10_bio->devs[i].bio->bi_end_io)
3794 rdev_dec_pending(conf->mirrors[d].rdev,
3795 mddev);
3796 if (r10_bio->devs[i].repl_bio &&
3797 r10_bio->devs[i].repl_bio->bi_end_io)
3798 rdev_dec_pending(
3799 conf->mirrors[d].replacement,
3800 mddev);
3801 }
3802 put_buf(r10_bio);
3803 biolist = NULL;
3804 goto giveup;
3805 }
3806 }
3807
3808 nr_sectors = 0;
3809 if (sector_nr + max_sync < max_sector)
3810 max_sector = sector_nr + max_sync;
3811 do {
3812 struct page *page;
3813 int len = PAGE_SIZE;
3814 if (sector_nr + (len>>9) > max_sector)
3815 len = (max_sector - sector_nr) << 9;
3816 if (len == 0)
3817 break;
3818 for (bio= biolist ; bio ; bio=bio->bi_next) {
3819 struct resync_pages *rp = get_resync_pages(bio);
3820 page = resync_fetch_page(rp, page_idx);
3821 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3822 bio->bi_status = BLK_STS_RESOURCE;
3823 bio_endio(bio);
3824 goto giveup;
3825 }
3826 }
3827 nr_sectors += len>>9;
3828 sector_nr += len>>9;
3829 } while (++page_idx < RESYNC_PAGES);
3830 r10_bio->sectors = nr_sectors;
3831
3832 if (mddev_is_clustered(mddev) &&
3833 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3834 /* It is resync not recovery */
3835 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3836 conf->cluster_sync_low = mddev->curr_resync_completed;
3837 raid10_set_cluster_sync_high(conf);
3838 /* Send resync message */
3839 md_cluster_ops->resync_info_update(mddev,
3840 conf->cluster_sync_low,
3841 conf->cluster_sync_high);
3842 }
3843 } else if (mddev_is_clustered(mddev)) {
3844 /* This is recovery not resync */
3845 sector_t sect_va1, sect_va2;
3846 bool broadcast_msg = false;
3847
3848 for (i = 0; i < conf->geo.raid_disks; i++) {
3849 /*
3850 * sector_nr is a device address for recovery, so we
3851 * need translate it to array address before compare
3852 * with cluster_sync_high.
3853 */
3854 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3855
3856 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3857 broadcast_msg = true;
3858 /*
3859 * curr_resync_completed is similar as
3860 * sector_nr, so make the translation too.
3861 */
3862 sect_va2 = raid10_find_virt(conf,
3863 mddev->curr_resync_completed, i);
3864
3865 if (conf->cluster_sync_low == 0 ||
3866 conf->cluster_sync_low > sect_va2)
3867 conf->cluster_sync_low = sect_va2;
3868 }
3869 }
3870 if (broadcast_msg) {
3871 raid10_set_cluster_sync_high(conf);
3872 md_cluster_ops->resync_info_update(mddev,
3873 conf->cluster_sync_low,
3874 conf->cluster_sync_high);
3875 }
3876 }
3877
3878 while (biolist) {
3879 bio = biolist;
3880 biolist = biolist->bi_next;
3881
3882 bio->bi_next = NULL;
3883 r10_bio = get_resync_r10bio(bio);
3884 r10_bio->sectors = nr_sectors;
3885
3886 if (bio->bi_end_io == end_sync_read) {
3887 md_sync_acct_bio(bio, nr_sectors);
3888 bio->bi_status = 0;
3889 submit_bio_noacct(bio);
3890 }
3891 }
3892
3893 if (sectors_skipped)
3894 /* pretend they weren't skipped, it makes
3895 * no important difference in this case
3896 */
3897 md_done_sync(mddev, sectors_skipped, 1);
3898
3899 return sectors_skipped + nr_sectors;
3900 giveup:
3901 /* There is nowhere to write, so all non-sync
3902 * drives must be failed or in resync, all drives
3903 * have a bad block, so try the next chunk...
3904 */
3905 if (sector_nr + max_sync < max_sector)
3906 max_sector = sector_nr + max_sync;
3907
3908 sectors_skipped += (max_sector - sector_nr);
3909 chunks_skipped ++;
3910 sector_nr = max_sector;
3911 goto skipped;
3912 }
3913
3914 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3915 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3916 {
3917 sector_t size;
3918 struct r10conf *conf = mddev->private;
3919
3920 if (!raid_disks)
3921 raid_disks = min(conf->geo.raid_disks,
3922 conf->prev.raid_disks);
3923 if (!sectors)
3924 sectors = conf->dev_sectors;
3925
3926 size = sectors >> conf->geo.chunk_shift;
3927 sector_div(size, conf->geo.far_copies);
3928 size = size * raid_disks;
3929 sector_div(size, conf->geo.near_copies);
3930
3931 return size << conf->geo.chunk_shift;
3932 }
3933
calc_sectors(struct r10conf * conf,sector_t size)3934 static void calc_sectors(struct r10conf *conf, sector_t size)
3935 {
3936 /* Calculate the number of sectors-per-device that will
3937 * actually be used, and set conf->dev_sectors and
3938 * conf->stride
3939 */
3940
3941 size = size >> conf->geo.chunk_shift;
3942 sector_div(size, conf->geo.far_copies);
3943 size = size * conf->geo.raid_disks;
3944 sector_div(size, conf->geo.near_copies);
3945 /* 'size' is now the number of chunks in the array */
3946 /* calculate "used chunks per device" */
3947 size = size * conf->copies;
3948
3949 /* We need to round up when dividing by raid_disks to
3950 * get the stride size.
3951 */
3952 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3953
3954 conf->dev_sectors = size << conf->geo.chunk_shift;
3955
3956 if (conf->geo.far_offset)
3957 conf->geo.stride = 1 << conf->geo.chunk_shift;
3958 else {
3959 sector_div(size, conf->geo.far_copies);
3960 conf->geo.stride = size << conf->geo.chunk_shift;
3961 }
3962 }
3963
3964 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3965 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3966 {
3967 int nc, fc, fo;
3968 int layout, chunk, disks;
3969 switch (new) {
3970 case geo_old:
3971 layout = mddev->layout;
3972 chunk = mddev->chunk_sectors;
3973 disks = mddev->raid_disks - mddev->delta_disks;
3974 break;
3975 case geo_new:
3976 layout = mddev->new_layout;
3977 chunk = mddev->new_chunk_sectors;
3978 disks = mddev->raid_disks;
3979 break;
3980 default: /* avoid 'may be unused' warnings */
3981 case geo_start: /* new when starting reshape - raid_disks not
3982 * updated yet. */
3983 layout = mddev->new_layout;
3984 chunk = mddev->new_chunk_sectors;
3985 disks = mddev->raid_disks + mddev->delta_disks;
3986 break;
3987 }
3988 if (layout >> 19)
3989 return -1;
3990 if (chunk < (PAGE_SIZE >> 9) ||
3991 !is_power_of_2(chunk))
3992 return -2;
3993 nc = layout & 255;
3994 fc = (layout >> 8) & 255;
3995 fo = layout & (1<<16);
3996 geo->raid_disks = disks;
3997 geo->near_copies = nc;
3998 geo->far_copies = fc;
3999 geo->far_offset = fo;
4000 switch (layout >> 17) {
4001 case 0: /* original layout. simple but not always optimal */
4002 geo->far_set_size = disks;
4003 break;
4004 case 1: /* "improved" layout which was buggy. Hopefully no-one is
4005 * actually using this, but leave code here just in case.*/
4006 geo->far_set_size = disks/fc;
4007 WARN(geo->far_set_size < fc,
4008 "This RAID10 layout does not provide data safety - please backup and create new array\n");
4009 break;
4010 case 2: /* "improved" layout fixed to match documentation */
4011 geo->far_set_size = fc * nc;
4012 break;
4013 default: /* Not a valid layout */
4014 return -1;
4015 }
4016 geo->chunk_mask = chunk - 1;
4017 geo->chunk_shift = ffz(~chunk);
4018 return nc*fc;
4019 }
4020
raid10_free_conf(struct r10conf * conf)4021 static void raid10_free_conf(struct r10conf *conf)
4022 {
4023 if (!conf)
4024 return;
4025
4026 mempool_exit(&conf->r10bio_pool);
4027 kfree(conf->mirrors);
4028 kfree(conf->mirrors_old);
4029 kfree(conf->mirrors_new);
4030 safe_put_page(conf->tmppage);
4031 bioset_exit(&conf->bio_split);
4032 kfree(conf);
4033 }
4034
setup_conf(struct mddev * mddev)4035 static struct r10conf *setup_conf(struct mddev *mddev)
4036 {
4037 struct r10conf *conf = NULL;
4038 int err = -EINVAL;
4039 struct geom geo;
4040 int copies;
4041
4042 copies = setup_geo(&geo, mddev, geo_new);
4043
4044 if (copies == -2) {
4045 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4046 mdname(mddev), PAGE_SIZE);
4047 goto out;
4048 }
4049
4050 if (copies < 2 || copies > mddev->raid_disks) {
4051 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4052 mdname(mddev), mddev->new_layout);
4053 goto out;
4054 }
4055
4056 err = -ENOMEM;
4057 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4058 if (!conf)
4059 goto out;
4060
4061 /* FIXME calc properly */
4062 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4063 sizeof(struct raid10_info),
4064 GFP_KERNEL);
4065 if (!conf->mirrors)
4066 goto out;
4067
4068 conf->tmppage = alloc_page(GFP_KERNEL);
4069 if (!conf->tmppage)
4070 goto out;
4071
4072 conf->geo = geo;
4073 conf->copies = copies;
4074 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4075 rbio_pool_free, conf);
4076 if (err)
4077 goto out;
4078
4079 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4080 if (err)
4081 goto out;
4082
4083 calc_sectors(conf, mddev->dev_sectors);
4084 if (mddev->reshape_position == MaxSector) {
4085 conf->prev = conf->geo;
4086 conf->reshape_progress = MaxSector;
4087 } else {
4088 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4089 err = -EINVAL;
4090 goto out;
4091 }
4092 conf->reshape_progress = mddev->reshape_position;
4093 if (conf->prev.far_offset)
4094 conf->prev.stride = 1 << conf->prev.chunk_shift;
4095 else
4096 /* far_copies must be 1 */
4097 conf->prev.stride = conf->dev_sectors;
4098 }
4099 conf->reshape_safe = conf->reshape_progress;
4100 spin_lock_init(&conf->device_lock);
4101 INIT_LIST_HEAD(&conf->retry_list);
4102 INIT_LIST_HEAD(&conf->bio_end_io_list);
4103
4104 seqlock_init(&conf->resync_lock);
4105 init_waitqueue_head(&conf->wait_barrier);
4106 atomic_set(&conf->nr_pending, 0);
4107
4108 err = -ENOMEM;
4109 rcu_assign_pointer(conf->thread,
4110 md_register_thread(raid10d, mddev, "raid10"));
4111 if (!conf->thread)
4112 goto out;
4113
4114 conf->mddev = mddev;
4115 return conf;
4116
4117 out:
4118 raid10_free_conf(conf);
4119 return ERR_PTR(err);
4120 }
4121
raid10_set_io_opt(struct r10conf * conf)4122 static void raid10_set_io_opt(struct r10conf *conf)
4123 {
4124 int raid_disks = conf->geo.raid_disks;
4125
4126 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4127 raid_disks /= conf->geo.near_copies;
4128 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4129 raid_disks);
4130 }
4131
raid10_run(struct mddev * mddev)4132 static int raid10_run(struct mddev *mddev)
4133 {
4134 struct r10conf *conf;
4135 int i, disk_idx;
4136 struct raid10_info *disk;
4137 struct md_rdev *rdev;
4138 sector_t size;
4139 sector_t min_offset_diff = 0;
4140 int first = 1;
4141
4142 if (mddev_init_writes_pending(mddev) < 0)
4143 return -ENOMEM;
4144
4145 if (mddev->private == NULL) {
4146 conf = setup_conf(mddev);
4147 if (IS_ERR(conf))
4148 return PTR_ERR(conf);
4149 mddev->private = conf;
4150 }
4151 conf = mddev->private;
4152 if (!conf)
4153 goto out;
4154
4155 rcu_assign_pointer(mddev->thread, conf->thread);
4156 rcu_assign_pointer(conf->thread, NULL);
4157
4158 if (mddev_is_clustered(conf->mddev)) {
4159 int fc, fo;
4160
4161 fc = (mddev->layout >> 8) & 255;
4162 fo = mddev->layout & (1<<16);
4163 if (fc > 1 || fo > 0) {
4164 pr_err("only near layout is supported by clustered"
4165 " raid10\n");
4166 goto out_free_conf;
4167 }
4168 }
4169
4170 if (mddev->queue) {
4171 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4172 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4173 raid10_set_io_opt(conf);
4174 }
4175
4176 rdev_for_each(rdev, mddev) {
4177 long long diff;
4178
4179 disk_idx = rdev->raid_disk;
4180 if (disk_idx < 0)
4181 continue;
4182 if (disk_idx >= conf->geo.raid_disks &&
4183 disk_idx >= conf->prev.raid_disks)
4184 continue;
4185 disk = conf->mirrors + disk_idx;
4186
4187 if (test_bit(Replacement, &rdev->flags)) {
4188 if (disk->replacement)
4189 goto out_free_conf;
4190 disk->replacement = rdev;
4191 } else {
4192 if (disk->rdev)
4193 goto out_free_conf;
4194 disk->rdev = rdev;
4195 }
4196 diff = (rdev->new_data_offset - rdev->data_offset);
4197 if (!mddev->reshape_backwards)
4198 diff = -diff;
4199 if (diff < 0)
4200 diff = 0;
4201 if (first || diff < min_offset_diff)
4202 min_offset_diff = diff;
4203
4204 if (mddev->gendisk)
4205 disk_stack_limits(mddev->gendisk, rdev->bdev,
4206 rdev->data_offset << 9);
4207
4208 disk->head_position = 0;
4209 first = 0;
4210 }
4211
4212 /* need to check that every block has at least one working mirror */
4213 if (!enough(conf, -1)) {
4214 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4215 mdname(mddev));
4216 goto out_free_conf;
4217 }
4218
4219 if (conf->reshape_progress != MaxSector) {
4220 /* must ensure that shape change is supported */
4221 if (conf->geo.far_copies != 1 &&
4222 conf->geo.far_offset == 0)
4223 goto out_free_conf;
4224 if (conf->prev.far_copies != 1 &&
4225 conf->prev.far_offset == 0)
4226 goto out_free_conf;
4227 }
4228
4229 mddev->degraded = 0;
4230 for (i = 0;
4231 i < conf->geo.raid_disks
4232 || i < conf->prev.raid_disks;
4233 i++) {
4234
4235 disk = conf->mirrors + i;
4236
4237 if (!disk->rdev && disk->replacement) {
4238 /* The replacement is all we have - use it */
4239 disk->rdev = disk->replacement;
4240 disk->replacement = NULL;
4241 clear_bit(Replacement, &disk->rdev->flags);
4242 }
4243
4244 if (!disk->rdev ||
4245 !test_bit(In_sync, &disk->rdev->flags)) {
4246 disk->head_position = 0;
4247 mddev->degraded++;
4248 if (disk->rdev &&
4249 disk->rdev->saved_raid_disk < 0)
4250 conf->fullsync = 1;
4251 }
4252
4253 if (disk->replacement &&
4254 !test_bit(In_sync, &disk->replacement->flags) &&
4255 disk->replacement->saved_raid_disk < 0) {
4256 conf->fullsync = 1;
4257 }
4258
4259 disk->recovery_disabled = mddev->recovery_disabled - 1;
4260 }
4261
4262 if (mddev->recovery_cp != MaxSector)
4263 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4264 mdname(mddev));
4265 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4266 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4267 conf->geo.raid_disks);
4268 /*
4269 * Ok, everything is just fine now
4270 */
4271 mddev->dev_sectors = conf->dev_sectors;
4272 size = raid10_size(mddev, 0, 0);
4273 md_set_array_sectors(mddev, size);
4274 mddev->resync_max_sectors = size;
4275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4276
4277 if (md_integrity_register(mddev))
4278 goto out_free_conf;
4279
4280 if (conf->reshape_progress != MaxSector) {
4281 unsigned long before_length, after_length;
4282
4283 before_length = ((1 << conf->prev.chunk_shift) *
4284 conf->prev.far_copies);
4285 after_length = ((1 << conf->geo.chunk_shift) *
4286 conf->geo.far_copies);
4287
4288 if (max(before_length, after_length) > min_offset_diff) {
4289 /* This cannot work */
4290 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4291 goto out_free_conf;
4292 }
4293 conf->offset_diff = min_offset_diff;
4294
4295 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4296 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4297 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4298 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4299 rcu_assign_pointer(mddev->sync_thread,
4300 md_register_thread(md_do_sync, mddev, "reshape"));
4301 if (!mddev->sync_thread)
4302 goto out_free_conf;
4303 }
4304
4305 return 0;
4306
4307 out_free_conf:
4308 md_unregister_thread(mddev, &mddev->thread);
4309 raid10_free_conf(conf);
4310 mddev->private = NULL;
4311 out:
4312 return -EIO;
4313 }
4314
raid10_free(struct mddev * mddev,void * priv)4315 static void raid10_free(struct mddev *mddev, void *priv)
4316 {
4317 raid10_free_conf(priv);
4318 }
4319
raid10_quiesce(struct mddev * mddev,int quiesce)4320 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4321 {
4322 struct r10conf *conf = mddev->private;
4323
4324 if (quiesce)
4325 raise_barrier(conf, 0);
4326 else
4327 lower_barrier(conf);
4328 }
4329
raid10_resize(struct mddev * mddev,sector_t sectors)4330 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4331 {
4332 /* Resize of 'far' arrays is not supported.
4333 * For 'near' and 'offset' arrays we can set the
4334 * number of sectors used to be an appropriate multiple
4335 * of the chunk size.
4336 * For 'offset', this is far_copies*chunksize.
4337 * For 'near' the multiplier is the LCM of
4338 * near_copies and raid_disks.
4339 * So if far_copies > 1 && !far_offset, fail.
4340 * Else find LCM(raid_disks, near_copy)*far_copies and
4341 * multiply by chunk_size. Then round to this number.
4342 * This is mostly done by raid10_size()
4343 */
4344 struct r10conf *conf = mddev->private;
4345 sector_t oldsize, size;
4346
4347 if (mddev->reshape_position != MaxSector)
4348 return -EBUSY;
4349
4350 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4351 return -EINVAL;
4352
4353 oldsize = raid10_size(mddev, 0, 0);
4354 size = raid10_size(mddev, sectors, 0);
4355 if (mddev->external_size &&
4356 mddev->array_sectors > size)
4357 return -EINVAL;
4358 if (mddev->bitmap) {
4359 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4360 if (ret)
4361 return ret;
4362 }
4363 md_set_array_sectors(mddev, size);
4364 if (sectors > mddev->dev_sectors &&
4365 mddev->recovery_cp > oldsize) {
4366 mddev->recovery_cp = oldsize;
4367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4368 }
4369 calc_sectors(conf, sectors);
4370 mddev->dev_sectors = conf->dev_sectors;
4371 mddev->resync_max_sectors = size;
4372 return 0;
4373 }
4374
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4375 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4376 {
4377 struct md_rdev *rdev;
4378 struct r10conf *conf;
4379
4380 if (mddev->degraded > 0) {
4381 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4382 mdname(mddev));
4383 return ERR_PTR(-EINVAL);
4384 }
4385 sector_div(size, devs);
4386
4387 /* Set new parameters */
4388 mddev->new_level = 10;
4389 /* new layout: far_copies = 1, near_copies = 2 */
4390 mddev->new_layout = (1<<8) + 2;
4391 mddev->new_chunk_sectors = mddev->chunk_sectors;
4392 mddev->delta_disks = mddev->raid_disks;
4393 mddev->raid_disks *= 2;
4394 /* make sure it will be not marked as dirty */
4395 mddev->recovery_cp = MaxSector;
4396 mddev->dev_sectors = size;
4397
4398 conf = setup_conf(mddev);
4399 if (!IS_ERR(conf)) {
4400 rdev_for_each(rdev, mddev)
4401 if (rdev->raid_disk >= 0) {
4402 rdev->new_raid_disk = rdev->raid_disk * 2;
4403 rdev->sectors = size;
4404 }
4405 }
4406
4407 return conf;
4408 }
4409
raid10_takeover(struct mddev * mddev)4410 static void *raid10_takeover(struct mddev *mddev)
4411 {
4412 struct r0conf *raid0_conf;
4413
4414 /* raid10 can take over:
4415 * raid0 - providing it has only two drives
4416 */
4417 if (mddev->level == 0) {
4418 /* for raid0 takeover only one zone is supported */
4419 raid0_conf = mddev->private;
4420 if (raid0_conf->nr_strip_zones > 1) {
4421 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4422 mdname(mddev));
4423 return ERR_PTR(-EINVAL);
4424 }
4425 return raid10_takeover_raid0(mddev,
4426 raid0_conf->strip_zone->zone_end,
4427 raid0_conf->strip_zone->nb_dev);
4428 }
4429 return ERR_PTR(-EINVAL);
4430 }
4431
raid10_check_reshape(struct mddev * mddev)4432 static int raid10_check_reshape(struct mddev *mddev)
4433 {
4434 /* Called when there is a request to change
4435 * - layout (to ->new_layout)
4436 * - chunk size (to ->new_chunk_sectors)
4437 * - raid_disks (by delta_disks)
4438 * or when trying to restart a reshape that was ongoing.
4439 *
4440 * We need to validate the request and possibly allocate
4441 * space if that might be an issue later.
4442 *
4443 * Currently we reject any reshape of a 'far' mode array,
4444 * allow chunk size to change if new is generally acceptable,
4445 * allow raid_disks to increase, and allow
4446 * a switch between 'near' mode and 'offset' mode.
4447 */
4448 struct r10conf *conf = mddev->private;
4449 struct geom geo;
4450
4451 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4452 return -EINVAL;
4453
4454 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4455 /* mustn't change number of copies */
4456 return -EINVAL;
4457 if (geo.far_copies > 1 && !geo.far_offset)
4458 /* Cannot switch to 'far' mode */
4459 return -EINVAL;
4460
4461 if (mddev->array_sectors & geo.chunk_mask)
4462 /* not factor of array size */
4463 return -EINVAL;
4464
4465 if (!enough(conf, -1))
4466 return -EINVAL;
4467
4468 kfree(conf->mirrors_new);
4469 conf->mirrors_new = NULL;
4470 if (mddev->delta_disks > 0) {
4471 /* allocate new 'mirrors' list */
4472 conf->mirrors_new =
4473 kcalloc(mddev->raid_disks + mddev->delta_disks,
4474 sizeof(struct raid10_info),
4475 GFP_KERNEL);
4476 if (!conf->mirrors_new)
4477 return -ENOMEM;
4478 }
4479 return 0;
4480 }
4481
4482 /*
4483 * Need to check if array has failed when deciding whether to:
4484 * - start an array
4485 * - remove non-faulty devices
4486 * - add a spare
4487 * - allow a reshape
4488 * This determination is simple when no reshape is happening.
4489 * However if there is a reshape, we need to carefully check
4490 * both the before and after sections.
4491 * This is because some failed devices may only affect one
4492 * of the two sections, and some non-in_sync devices may
4493 * be insync in the section most affected by failed devices.
4494 */
calc_degraded(struct r10conf * conf)4495 static int calc_degraded(struct r10conf *conf)
4496 {
4497 int degraded, degraded2;
4498 int i;
4499
4500 rcu_read_lock();
4501 degraded = 0;
4502 /* 'prev' section first */
4503 for (i = 0; i < conf->prev.raid_disks; i++) {
4504 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4505 if (!rdev || test_bit(Faulty, &rdev->flags))
4506 degraded++;
4507 else if (!test_bit(In_sync, &rdev->flags))
4508 /* When we can reduce the number of devices in
4509 * an array, this might not contribute to
4510 * 'degraded'. It does now.
4511 */
4512 degraded++;
4513 }
4514 rcu_read_unlock();
4515 if (conf->geo.raid_disks == conf->prev.raid_disks)
4516 return degraded;
4517 rcu_read_lock();
4518 degraded2 = 0;
4519 for (i = 0; i < conf->geo.raid_disks; i++) {
4520 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4521 if (!rdev || test_bit(Faulty, &rdev->flags))
4522 degraded2++;
4523 else if (!test_bit(In_sync, &rdev->flags)) {
4524 /* If reshape is increasing the number of devices,
4525 * this section has already been recovered, so
4526 * it doesn't contribute to degraded.
4527 * else it does.
4528 */
4529 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4530 degraded2++;
4531 }
4532 }
4533 rcu_read_unlock();
4534 if (degraded2 > degraded)
4535 return degraded2;
4536 return degraded;
4537 }
4538
raid10_start_reshape(struct mddev * mddev)4539 static int raid10_start_reshape(struct mddev *mddev)
4540 {
4541 /* A 'reshape' has been requested. This commits
4542 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4543 * This also checks if there are enough spares and adds them
4544 * to the array.
4545 * We currently require enough spares to make the final
4546 * array non-degraded. We also require that the difference
4547 * between old and new data_offset - on each device - is
4548 * enough that we never risk over-writing.
4549 */
4550
4551 unsigned long before_length, after_length;
4552 sector_t min_offset_diff = 0;
4553 int first = 1;
4554 struct geom new;
4555 struct r10conf *conf = mddev->private;
4556 struct md_rdev *rdev;
4557 int spares = 0;
4558 int ret;
4559
4560 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4561 return -EBUSY;
4562
4563 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4564 return -EINVAL;
4565
4566 before_length = ((1 << conf->prev.chunk_shift) *
4567 conf->prev.far_copies);
4568 after_length = ((1 << conf->geo.chunk_shift) *
4569 conf->geo.far_copies);
4570
4571 rdev_for_each(rdev, mddev) {
4572 if (!test_bit(In_sync, &rdev->flags)
4573 && !test_bit(Faulty, &rdev->flags))
4574 spares++;
4575 if (rdev->raid_disk >= 0) {
4576 long long diff = (rdev->new_data_offset
4577 - rdev->data_offset);
4578 if (!mddev->reshape_backwards)
4579 diff = -diff;
4580 if (diff < 0)
4581 diff = 0;
4582 if (first || diff < min_offset_diff)
4583 min_offset_diff = diff;
4584 first = 0;
4585 }
4586 }
4587
4588 if (max(before_length, after_length) > min_offset_diff)
4589 return -EINVAL;
4590
4591 if (spares < mddev->delta_disks)
4592 return -EINVAL;
4593
4594 conf->offset_diff = min_offset_diff;
4595 spin_lock_irq(&conf->device_lock);
4596 if (conf->mirrors_new) {
4597 memcpy(conf->mirrors_new, conf->mirrors,
4598 sizeof(struct raid10_info)*conf->prev.raid_disks);
4599 smp_mb();
4600 kfree(conf->mirrors_old);
4601 conf->mirrors_old = conf->mirrors;
4602 conf->mirrors = conf->mirrors_new;
4603 conf->mirrors_new = NULL;
4604 }
4605 setup_geo(&conf->geo, mddev, geo_start);
4606 smp_mb();
4607 if (mddev->reshape_backwards) {
4608 sector_t size = raid10_size(mddev, 0, 0);
4609 if (size < mddev->array_sectors) {
4610 spin_unlock_irq(&conf->device_lock);
4611 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4612 mdname(mddev));
4613 return -EINVAL;
4614 }
4615 mddev->resync_max_sectors = size;
4616 conf->reshape_progress = size;
4617 } else
4618 conf->reshape_progress = 0;
4619 conf->reshape_safe = conf->reshape_progress;
4620 spin_unlock_irq(&conf->device_lock);
4621
4622 if (mddev->delta_disks && mddev->bitmap) {
4623 struct mdp_superblock_1 *sb = NULL;
4624 sector_t oldsize, newsize;
4625
4626 oldsize = raid10_size(mddev, 0, 0);
4627 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4628
4629 if (!mddev_is_clustered(mddev)) {
4630 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4631 if (ret)
4632 goto abort;
4633 else
4634 goto out;
4635 }
4636
4637 rdev_for_each(rdev, mddev) {
4638 if (rdev->raid_disk > -1 &&
4639 !test_bit(Faulty, &rdev->flags))
4640 sb = page_address(rdev->sb_page);
4641 }
4642
4643 /*
4644 * some node is already performing reshape, and no need to
4645 * call md_bitmap_resize again since it should be called when
4646 * receiving BITMAP_RESIZE msg
4647 */
4648 if ((sb && (le32_to_cpu(sb->feature_map) &
4649 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4650 goto out;
4651
4652 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4653 if (ret)
4654 goto abort;
4655
4656 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4657 if (ret) {
4658 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4659 goto abort;
4660 }
4661 }
4662 out:
4663 if (mddev->delta_disks > 0) {
4664 rdev_for_each(rdev, mddev)
4665 if (rdev->raid_disk < 0 &&
4666 !test_bit(Faulty, &rdev->flags)) {
4667 if (raid10_add_disk(mddev, rdev) == 0) {
4668 if (rdev->raid_disk >=
4669 conf->prev.raid_disks)
4670 set_bit(In_sync, &rdev->flags);
4671 else
4672 rdev->recovery_offset = 0;
4673
4674 /* Failure here is OK */
4675 sysfs_link_rdev(mddev, rdev);
4676 }
4677 } else if (rdev->raid_disk >= conf->prev.raid_disks
4678 && !test_bit(Faulty, &rdev->flags)) {
4679 /* This is a spare that was manually added */
4680 set_bit(In_sync, &rdev->flags);
4681 }
4682 }
4683 /* When a reshape changes the number of devices,
4684 * ->degraded is measured against the larger of the
4685 * pre and post numbers.
4686 */
4687 spin_lock_irq(&conf->device_lock);
4688 mddev->degraded = calc_degraded(conf);
4689 spin_unlock_irq(&conf->device_lock);
4690 mddev->raid_disks = conf->geo.raid_disks;
4691 mddev->reshape_position = conf->reshape_progress;
4692 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4693
4694 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4695 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4696 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4697 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4698 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4699
4700 rcu_assign_pointer(mddev->sync_thread,
4701 md_register_thread(md_do_sync, mddev, "reshape"));
4702 if (!mddev->sync_thread) {
4703 ret = -EAGAIN;
4704 goto abort;
4705 }
4706 conf->reshape_checkpoint = jiffies;
4707 md_wakeup_thread(mddev->sync_thread);
4708 md_new_event();
4709 return 0;
4710
4711 abort:
4712 mddev->recovery = 0;
4713 spin_lock_irq(&conf->device_lock);
4714 conf->geo = conf->prev;
4715 mddev->raid_disks = conf->geo.raid_disks;
4716 rdev_for_each(rdev, mddev)
4717 rdev->new_data_offset = rdev->data_offset;
4718 smp_wmb();
4719 conf->reshape_progress = MaxSector;
4720 conf->reshape_safe = MaxSector;
4721 mddev->reshape_position = MaxSector;
4722 spin_unlock_irq(&conf->device_lock);
4723 return ret;
4724 }
4725
4726 /* Calculate the last device-address that could contain
4727 * any block from the chunk that includes the array-address 's'
4728 * and report the next address.
4729 * i.e. the address returned will be chunk-aligned and after
4730 * any data that is in the chunk containing 's'.
4731 */
last_dev_address(sector_t s,struct geom * geo)4732 static sector_t last_dev_address(sector_t s, struct geom *geo)
4733 {
4734 s = (s | geo->chunk_mask) + 1;
4735 s >>= geo->chunk_shift;
4736 s *= geo->near_copies;
4737 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4738 s *= geo->far_copies;
4739 s <<= geo->chunk_shift;
4740 return s;
4741 }
4742
4743 /* Calculate the first device-address that could contain
4744 * any block from the chunk that includes the array-address 's'.
4745 * This too will be the start of a chunk
4746 */
first_dev_address(sector_t s,struct geom * geo)4747 static sector_t first_dev_address(sector_t s, struct geom *geo)
4748 {
4749 s >>= geo->chunk_shift;
4750 s *= geo->near_copies;
4751 sector_div(s, geo->raid_disks);
4752 s *= geo->far_copies;
4753 s <<= geo->chunk_shift;
4754 return s;
4755 }
4756
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4757 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4758 int *skipped)
4759 {
4760 /* We simply copy at most one chunk (smallest of old and new)
4761 * at a time, possibly less if that exceeds RESYNC_PAGES,
4762 * or we hit a bad block or something.
4763 * This might mean we pause for normal IO in the middle of
4764 * a chunk, but that is not a problem as mddev->reshape_position
4765 * can record any location.
4766 *
4767 * If we will want to write to a location that isn't
4768 * yet recorded as 'safe' (i.e. in metadata on disk) then
4769 * we need to flush all reshape requests and update the metadata.
4770 *
4771 * When reshaping forwards (e.g. to more devices), we interpret
4772 * 'safe' as the earliest block which might not have been copied
4773 * down yet. We divide this by previous stripe size and multiply
4774 * by previous stripe length to get lowest device offset that we
4775 * cannot write to yet.
4776 * We interpret 'sector_nr' as an address that we want to write to.
4777 * From this we use last_device_address() to find where we might
4778 * write to, and first_device_address on the 'safe' position.
4779 * If this 'next' write position is after the 'safe' position,
4780 * we must update the metadata to increase the 'safe' position.
4781 *
4782 * When reshaping backwards, we round in the opposite direction
4783 * and perform the reverse test: next write position must not be
4784 * less than current safe position.
4785 *
4786 * In all this the minimum difference in data offsets
4787 * (conf->offset_diff - always positive) allows a bit of slack,
4788 * so next can be after 'safe', but not by more than offset_diff
4789 *
4790 * We need to prepare all the bios here before we start any IO
4791 * to ensure the size we choose is acceptable to all devices.
4792 * The means one for each copy for write-out and an extra one for
4793 * read-in.
4794 * We store the read-in bio in ->master_bio and the others in
4795 * ->devs[x].bio and ->devs[x].repl_bio.
4796 */
4797 struct r10conf *conf = mddev->private;
4798 struct r10bio *r10_bio;
4799 sector_t next, safe, last;
4800 int max_sectors;
4801 int nr_sectors;
4802 int s;
4803 struct md_rdev *rdev;
4804 int need_flush = 0;
4805 struct bio *blist;
4806 struct bio *bio, *read_bio;
4807 int sectors_done = 0;
4808 struct page **pages;
4809
4810 if (sector_nr == 0) {
4811 /* If restarting in the middle, skip the initial sectors */
4812 if (mddev->reshape_backwards &&
4813 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4814 sector_nr = (raid10_size(mddev, 0, 0)
4815 - conf->reshape_progress);
4816 } else if (!mddev->reshape_backwards &&
4817 conf->reshape_progress > 0)
4818 sector_nr = conf->reshape_progress;
4819 if (sector_nr) {
4820 mddev->curr_resync_completed = sector_nr;
4821 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4822 *skipped = 1;
4823 return sector_nr;
4824 }
4825 }
4826
4827 /* We don't use sector_nr to track where we are up to
4828 * as that doesn't work well for ->reshape_backwards.
4829 * So just use ->reshape_progress.
4830 */
4831 if (mddev->reshape_backwards) {
4832 /* 'next' is the earliest device address that we might
4833 * write to for this chunk in the new layout
4834 */
4835 next = first_dev_address(conf->reshape_progress - 1,
4836 &conf->geo);
4837
4838 /* 'safe' is the last device address that we might read from
4839 * in the old layout after a restart
4840 */
4841 safe = last_dev_address(conf->reshape_safe - 1,
4842 &conf->prev);
4843
4844 if (next + conf->offset_diff < safe)
4845 need_flush = 1;
4846
4847 last = conf->reshape_progress - 1;
4848 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4849 & conf->prev.chunk_mask);
4850 if (sector_nr + RESYNC_SECTORS < last)
4851 sector_nr = last + 1 - RESYNC_SECTORS;
4852 } else {
4853 /* 'next' is after the last device address that we
4854 * might write to for this chunk in the new layout
4855 */
4856 next = last_dev_address(conf->reshape_progress, &conf->geo);
4857
4858 /* 'safe' is the earliest device address that we might
4859 * read from in the old layout after a restart
4860 */
4861 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4862
4863 /* Need to update metadata if 'next' might be beyond 'safe'
4864 * as that would possibly corrupt data
4865 */
4866 if (next > safe + conf->offset_diff)
4867 need_flush = 1;
4868
4869 sector_nr = conf->reshape_progress;
4870 last = sector_nr | (conf->geo.chunk_mask
4871 & conf->prev.chunk_mask);
4872
4873 if (sector_nr + RESYNC_SECTORS <= last)
4874 last = sector_nr + RESYNC_SECTORS - 1;
4875 }
4876
4877 if (need_flush ||
4878 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4879 /* Need to update reshape_position in metadata */
4880 wait_barrier(conf, false);
4881 mddev->reshape_position = conf->reshape_progress;
4882 if (mddev->reshape_backwards)
4883 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4884 - conf->reshape_progress;
4885 else
4886 mddev->curr_resync_completed = conf->reshape_progress;
4887 conf->reshape_checkpoint = jiffies;
4888 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4889 md_wakeup_thread(mddev->thread);
4890 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4891 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4893 allow_barrier(conf);
4894 return sectors_done;
4895 }
4896 conf->reshape_safe = mddev->reshape_position;
4897 allow_barrier(conf);
4898 }
4899
4900 raise_barrier(conf, 0);
4901 read_more:
4902 /* Now schedule reads for blocks from sector_nr to last */
4903 r10_bio = raid10_alloc_init_r10buf(conf);
4904 r10_bio->state = 0;
4905 raise_barrier(conf, 1);
4906 atomic_set(&r10_bio->remaining, 0);
4907 r10_bio->mddev = mddev;
4908 r10_bio->sector = sector_nr;
4909 set_bit(R10BIO_IsReshape, &r10_bio->state);
4910 r10_bio->sectors = last - sector_nr + 1;
4911 rdev = read_balance(conf, r10_bio, &max_sectors);
4912 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4913
4914 if (!rdev) {
4915 /* Cannot read from here, so need to record bad blocks
4916 * on all the target devices.
4917 */
4918 // FIXME
4919 mempool_free(r10_bio, &conf->r10buf_pool);
4920 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4921 return sectors_done;
4922 }
4923
4924 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4925 GFP_KERNEL, &mddev->bio_set);
4926 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4927 + rdev->data_offset);
4928 read_bio->bi_private = r10_bio;
4929 read_bio->bi_end_io = end_reshape_read;
4930 r10_bio->master_bio = read_bio;
4931 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4932
4933 /*
4934 * Broadcast RESYNC message to other nodes, so all nodes would not
4935 * write to the region to avoid conflict.
4936 */
4937 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4938 struct mdp_superblock_1 *sb = NULL;
4939 int sb_reshape_pos = 0;
4940
4941 conf->cluster_sync_low = sector_nr;
4942 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4943 sb = page_address(rdev->sb_page);
4944 if (sb) {
4945 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4946 /*
4947 * Set cluster_sync_low again if next address for array
4948 * reshape is less than cluster_sync_low. Since we can't
4949 * update cluster_sync_low until it has finished reshape.
4950 */
4951 if (sb_reshape_pos < conf->cluster_sync_low)
4952 conf->cluster_sync_low = sb_reshape_pos;
4953 }
4954
4955 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4956 conf->cluster_sync_high);
4957 }
4958
4959 /* Now find the locations in the new layout */
4960 __raid10_find_phys(&conf->geo, r10_bio);
4961
4962 blist = read_bio;
4963 read_bio->bi_next = NULL;
4964
4965 rcu_read_lock();
4966 for (s = 0; s < conf->copies*2; s++) {
4967 struct bio *b;
4968 int d = r10_bio->devs[s/2].devnum;
4969 struct md_rdev *rdev2;
4970 if (s&1) {
4971 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4972 b = r10_bio->devs[s/2].repl_bio;
4973 } else {
4974 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4975 b = r10_bio->devs[s/2].bio;
4976 }
4977 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4978 continue;
4979
4980 bio_set_dev(b, rdev2->bdev);
4981 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4982 rdev2->new_data_offset;
4983 b->bi_end_io = end_reshape_write;
4984 b->bi_opf = REQ_OP_WRITE;
4985 b->bi_next = blist;
4986 blist = b;
4987 }
4988
4989 /* Now add as many pages as possible to all of these bios. */
4990
4991 nr_sectors = 0;
4992 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4993 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4994 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4995 int len = (max_sectors - s) << 9;
4996 if (len > PAGE_SIZE)
4997 len = PAGE_SIZE;
4998 for (bio = blist; bio ; bio = bio->bi_next) {
4999 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5000 bio->bi_status = BLK_STS_RESOURCE;
5001 bio_endio(bio);
5002 return sectors_done;
5003 }
5004 }
5005 sector_nr += len >> 9;
5006 nr_sectors += len >> 9;
5007 }
5008 rcu_read_unlock();
5009 r10_bio->sectors = nr_sectors;
5010
5011 /* Now submit the read */
5012 md_sync_acct_bio(read_bio, r10_bio->sectors);
5013 atomic_inc(&r10_bio->remaining);
5014 read_bio->bi_next = NULL;
5015 submit_bio_noacct(read_bio);
5016 sectors_done += nr_sectors;
5017 if (sector_nr <= last)
5018 goto read_more;
5019
5020 lower_barrier(conf);
5021
5022 /* Now that we have done the whole section we can
5023 * update reshape_progress
5024 */
5025 if (mddev->reshape_backwards)
5026 conf->reshape_progress -= sectors_done;
5027 else
5028 conf->reshape_progress += sectors_done;
5029
5030 return sectors_done;
5031 }
5032
5033 static void end_reshape_request(struct r10bio *r10_bio);
5034 static int handle_reshape_read_error(struct mddev *mddev,
5035 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)5036 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5037 {
5038 /* Reshape read completed. Hopefully we have a block
5039 * to write out.
5040 * If we got a read error then we do sync 1-page reads from
5041 * elsewhere until we find the data - or give up.
5042 */
5043 struct r10conf *conf = mddev->private;
5044 int s;
5045
5046 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5047 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5048 /* Reshape has been aborted */
5049 md_done_sync(mddev, r10_bio->sectors, 0);
5050 return;
5051 }
5052
5053 /* We definitely have the data in the pages, schedule the
5054 * writes.
5055 */
5056 atomic_set(&r10_bio->remaining, 1);
5057 for (s = 0; s < conf->copies*2; s++) {
5058 struct bio *b;
5059 int d = r10_bio->devs[s/2].devnum;
5060 struct md_rdev *rdev;
5061 rcu_read_lock();
5062 if (s&1) {
5063 rdev = rcu_dereference(conf->mirrors[d].replacement);
5064 b = r10_bio->devs[s/2].repl_bio;
5065 } else {
5066 rdev = rcu_dereference(conf->mirrors[d].rdev);
5067 b = r10_bio->devs[s/2].bio;
5068 }
5069 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5070 rcu_read_unlock();
5071 continue;
5072 }
5073 atomic_inc(&rdev->nr_pending);
5074 rcu_read_unlock();
5075 md_sync_acct_bio(b, r10_bio->sectors);
5076 atomic_inc(&r10_bio->remaining);
5077 b->bi_next = NULL;
5078 submit_bio_noacct(b);
5079 }
5080 end_reshape_request(r10_bio);
5081 }
5082
end_reshape(struct r10conf * conf)5083 static void end_reshape(struct r10conf *conf)
5084 {
5085 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5086 return;
5087
5088 spin_lock_irq(&conf->device_lock);
5089 conf->prev = conf->geo;
5090 md_finish_reshape(conf->mddev);
5091 smp_wmb();
5092 conf->reshape_progress = MaxSector;
5093 conf->reshape_safe = MaxSector;
5094 spin_unlock_irq(&conf->device_lock);
5095
5096 if (conf->mddev->queue)
5097 raid10_set_io_opt(conf);
5098 conf->fullsync = 0;
5099 }
5100
raid10_update_reshape_pos(struct mddev * mddev)5101 static void raid10_update_reshape_pos(struct mddev *mddev)
5102 {
5103 struct r10conf *conf = mddev->private;
5104 sector_t lo, hi;
5105
5106 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5107 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5108 || mddev->reshape_position == MaxSector)
5109 conf->reshape_progress = mddev->reshape_position;
5110 else
5111 WARN_ON_ONCE(1);
5112 }
5113
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)5114 static int handle_reshape_read_error(struct mddev *mddev,
5115 struct r10bio *r10_bio)
5116 {
5117 /* Use sync reads to get the blocks from somewhere else */
5118 int sectors = r10_bio->sectors;
5119 struct r10conf *conf = mddev->private;
5120 struct r10bio *r10b;
5121 int slot = 0;
5122 int idx = 0;
5123 struct page **pages;
5124
5125 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5126 if (!r10b) {
5127 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5128 return -ENOMEM;
5129 }
5130
5131 /* reshape IOs share pages from .devs[0].bio */
5132 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5133
5134 r10b->sector = r10_bio->sector;
5135 __raid10_find_phys(&conf->prev, r10b);
5136
5137 while (sectors) {
5138 int s = sectors;
5139 int success = 0;
5140 int first_slot = slot;
5141
5142 if (s > (PAGE_SIZE >> 9))
5143 s = PAGE_SIZE >> 9;
5144
5145 rcu_read_lock();
5146 while (!success) {
5147 int d = r10b->devs[slot].devnum;
5148 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5149 sector_t addr;
5150 if (rdev == NULL ||
5151 test_bit(Faulty, &rdev->flags) ||
5152 !test_bit(In_sync, &rdev->flags))
5153 goto failed;
5154
5155 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5156 atomic_inc(&rdev->nr_pending);
5157 rcu_read_unlock();
5158 success = sync_page_io(rdev,
5159 addr,
5160 s << 9,
5161 pages[idx],
5162 REQ_OP_READ, false);
5163 rdev_dec_pending(rdev, mddev);
5164 rcu_read_lock();
5165 if (success)
5166 break;
5167 failed:
5168 slot++;
5169 if (slot >= conf->copies)
5170 slot = 0;
5171 if (slot == first_slot)
5172 break;
5173 }
5174 rcu_read_unlock();
5175 if (!success) {
5176 /* couldn't read this block, must give up */
5177 set_bit(MD_RECOVERY_INTR,
5178 &mddev->recovery);
5179 kfree(r10b);
5180 return -EIO;
5181 }
5182 sectors -= s;
5183 idx++;
5184 }
5185 kfree(r10b);
5186 return 0;
5187 }
5188
end_reshape_write(struct bio * bio)5189 static void end_reshape_write(struct bio *bio)
5190 {
5191 struct r10bio *r10_bio = get_resync_r10bio(bio);
5192 struct mddev *mddev = r10_bio->mddev;
5193 struct r10conf *conf = mddev->private;
5194 int d;
5195 int slot;
5196 int repl;
5197 struct md_rdev *rdev = NULL;
5198
5199 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5200 if (repl)
5201 rdev = conf->mirrors[d].replacement;
5202 if (!rdev) {
5203 smp_mb();
5204 rdev = conf->mirrors[d].rdev;
5205 }
5206
5207 if (bio->bi_status) {
5208 /* FIXME should record badblock */
5209 md_error(mddev, rdev);
5210 }
5211
5212 rdev_dec_pending(rdev, mddev);
5213 end_reshape_request(r10_bio);
5214 }
5215
end_reshape_request(struct r10bio * r10_bio)5216 static void end_reshape_request(struct r10bio *r10_bio)
5217 {
5218 if (!atomic_dec_and_test(&r10_bio->remaining))
5219 return;
5220 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5221 bio_put(r10_bio->master_bio);
5222 put_buf(r10_bio);
5223 }
5224
raid10_finish_reshape(struct mddev * mddev)5225 static void raid10_finish_reshape(struct mddev *mddev)
5226 {
5227 struct r10conf *conf = mddev->private;
5228
5229 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5230 return;
5231
5232 if (mddev->delta_disks > 0) {
5233 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5234 mddev->recovery_cp = mddev->resync_max_sectors;
5235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5236 }
5237 mddev->resync_max_sectors = mddev->array_sectors;
5238 } else {
5239 int d;
5240 rcu_read_lock();
5241 for (d = conf->geo.raid_disks ;
5242 d < conf->geo.raid_disks - mddev->delta_disks;
5243 d++) {
5244 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5245 if (rdev)
5246 clear_bit(In_sync, &rdev->flags);
5247 rdev = rcu_dereference(conf->mirrors[d].replacement);
5248 if (rdev)
5249 clear_bit(In_sync, &rdev->flags);
5250 }
5251 rcu_read_unlock();
5252 }
5253 mddev->layout = mddev->new_layout;
5254 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5255 mddev->reshape_position = MaxSector;
5256 mddev->delta_disks = 0;
5257 mddev->reshape_backwards = 0;
5258 }
5259
5260 static struct md_personality raid10_personality =
5261 {
5262 .name = "raid10",
5263 .level = 10,
5264 .owner = THIS_MODULE,
5265 .make_request = raid10_make_request,
5266 .run = raid10_run,
5267 .free = raid10_free,
5268 .status = raid10_status,
5269 .error_handler = raid10_error,
5270 .hot_add_disk = raid10_add_disk,
5271 .hot_remove_disk= raid10_remove_disk,
5272 .spare_active = raid10_spare_active,
5273 .sync_request = raid10_sync_request,
5274 .quiesce = raid10_quiesce,
5275 .size = raid10_size,
5276 .resize = raid10_resize,
5277 .takeover = raid10_takeover,
5278 .check_reshape = raid10_check_reshape,
5279 .start_reshape = raid10_start_reshape,
5280 .finish_reshape = raid10_finish_reshape,
5281 .update_reshape_pos = raid10_update_reshape_pos,
5282 };
5283
raid_init(void)5284 static int __init raid_init(void)
5285 {
5286 return register_md_personality(&raid10_personality);
5287 }
5288
raid_exit(void)5289 static void raid_exit(void)
5290 {
5291 unregister_md_personality(&raid10_personality);
5292 }
5293
5294 module_init(raid_init);
5295 module_exit(raid_exit);
5296 MODULE_LICENSE("GPL");
5297 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5298 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5299 MODULE_ALIAS("md-raid10");
5300 MODULE_ALIAS("md-level-10");
5301