1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver
4 *
5 * The Arm FFA specification[1] describes a software architecture to
6 * leverages the virtualization extension to isolate software images
7 * provided by an ecosystem of vendors from each other and describes
8 * interfaces that standardize communication between the various software
9 * images including communication between images in the Secure world and
10 * Normal world. Any Hypervisor could use the FFA interfaces to enable
11 * communication between VMs it manages.
12 *
13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign
14 * system resources(Memory regions, Devices, CPU cycles) to the partitions
15 * and manage isolation amongst them.
16 *
17 * [1] https://developer.arm.com/docs/den0077/latest
18 *
19 * Copyright (C) 2021 ARM Ltd.
20 */
21
22 #define DRIVER_NAME "ARM FF-A"
23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
24
25 #include <linux/arm_ffa.h>
26 #include <linux/bitfield.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/slab.h>
34 #include <linux/uuid.h>
35
36 #include "common.h"
37
38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0
39 #define FFA_MIN_VERSION FFA_VERSION_1_0
40
41 #define SENDER_ID_MASK GENMASK(31, 16)
42 #define RECEIVER_ID_MASK GENMASK(15, 0)
43 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
44 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
45 #define PACK_TARGET_INFO(s, r) \
46 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
47
48 /*
49 * Keeping RX TX buffer size as 4K for now
50 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
51 */
52 #define RXTX_BUFFER_SIZE SZ_4K
53
54 static ffa_fn *invoke_ffa_fn;
55
56 static const int ffa_linux_errmap[] = {
57 /* better than switch case as long as return value is continuous */
58 0, /* FFA_RET_SUCCESS */
59 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
60 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */
61 -ENOMEM, /* FFA_RET_NO_MEMORY */
62 -EBUSY, /* FFA_RET_BUSY */
63 -EINTR, /* FFA_RET_INTERRUPTED */
64 -EACCES, /* FFA_RET_DENIED */
65 -EAGAIN, /* FFA_RET_RETRY */
66 -ECANCELED, /* FFA_RET_ABORTED */
67 };
68
ffa_to_linux_errno(int errno)69 static inline int ffa_to_linux_errno(int errno)
70 {
71 int err_idx = -errno;
72
73 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
74 return ffa_linux_errmap[err_idx];
75 return -EINVAL;
76 }
77
78 struct ffa_drv_info {
79 u32 version;
80 u16 vm_id;
81 struct mutex rx_lock; /* lock to protect Rx buffer */
82 struct mutex tx_lock; /* lock to protect Tx buffer */
83 void *rx_buffer;
84 void *tx_buffer;
85 bool mem_ops_native;
86 };
87
88 static struct ffa_drv_info *drv_info;
89
90 /*
91 * The driver must be able to support all the versions from the earliest
92 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
93 * The specification states that if firmware supports a FFA implementation
94 * that is incompatible with and at a greater version number than specified
95 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
96 * it must return the NOT_SUPPORTED error code.
97 */
ffa_compatible_version_find(u32 version)98 static u32 ffa_compatible_version_find(u32 version)
99 {
100 u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
101 u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
102 u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
103
104 if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
105 return version;
106
107 pr_info("Firmware version higher than driver version, downgrading\n");
108 return FFA_DRIVER_VERSION;
109 }
110
ffa_version_check(u32 * version)111 static int ffa_version_check(u32 *version)
112 {
113 ffa_value_t ver;
114
115 invoke_ffa_fn((ffa_value_t){
116 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
117 }, &ver);
118
119 if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
120 pr_info("FFA_VERSION returned not supported\n");
121 return -EOPNOTSUPP;
122 }
123
124 if (FFA_MAJOR_VERSION(ver.a0) > FFA_MAJOR_VERSION(FFA_DRIVER_VERSION)) {
125 pr_err("Incompatible v%d.%d! Latest supported v%d.%d\n",
126 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
127 FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
128 FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
129 return -EINVAL;
130 }
131
132 if (ver.a0 < FFA_MIN_VERSION) {
133 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
134 FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
135 FFA_MAJOR_VERSION(FFA_MIN_VERSION),
136 FFA_MINOR_VERSION(FFA_MIN_VERSION));
137 return -EINVAL;
138 }
139
140 pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
141 FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
142 pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
143 FFA_MINOR_VERSION(ver.a0));
144 *version = ffa_compatible_version_find(ver.a0);
145
146 return 0;
147 }
148
ffa_rx_release(void)149 static int ffa_rx_release(void)
150 {
151 ffa_value_t ret;
152
153 invoke_ffa_fn((ffa_value_t){
154 .a0 = FFA_RX_RELEASE,
155 }, &ret);
156
157 if (ret.a0 == FFA_ERROR)
158 return ffa_to_linux_errno((int)ret.a2);
159
160 /* check for ret.a0 == FFA_RX_RELEASE ? */
161
162 return 0;
163 }
164
ffa_rxtx_map(phys_addr_t tx_buf,phys_addr_t rx_buf,u32 pg_cnt)165 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
166 {
167 ffa_value_t ret;
168
169 invoke_ffa_fn((ffa_value_t){
170 .a0 = FFA_FN_NATIVE(RXTX_MAP),
171 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
172 }, &ret);
173
174 if (ret.a0 == FFA_ERROR)
175 return ffa_to_linux_errno((int)ret.a2);
176
177 return 0;
178 }
179
ffa_rxtx_unmap(u16 vm_id)180 static int ffa_rxtx_unmap(u16 vm_id)
181 {
182 ffa_value_t ret;
183
184 invoke_ffa_fn((ffa_value_t){
185 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
186 }, &ret);
187
188 if (ret.a0 == FFA_ERROR)
189 return ffa_to_linux_errno((int)ret.a2);
190
191 return 0;
192 }
193
194 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
195
196 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
197 static int
__ffa_partition_info_get(u32 uuid0,u32 uuid1,u32 uuid2,u32 uuid3,struct ffa_partition_info * buffer,int num_partitions)198 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
199 struct ffa_partition_info *buffer, int num_partitions)
200 {
201 int idx, count, flags = 0, sz, buf_sz;
202 ffa_value_t partition_info;
203
204 if (drv_info->version > FFA_VERSION_1_0 &&
205 (!buffer || !num_partitions)) /* Just get the count for now */
206 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
207
208 mutex_lock(&drv_info->rx_lock);
209 invoke_ffa_fn((ffa_value_t){
210 .a0 = FFA_PARTITION_INFO_GET,
211 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
212 .a5 = flags,
213 }, &partition_info);
214
215 if (partition_info.a0 == FFA_ERROR) {
216 mutex_unlock(&drv_info->rx_lock);
217 return ffa_to_linux_errno((int)partition_info.a2);
218 }
219
220 count = partition_info.a2;
221
222 if (drv_info->version > FFA_VERSION_1_0) {
223 buf_sz = sz = partition_info.a3;
224 if (sz > sizeof(*buffer))
225 buf_sz = sizeof(*buffer);
226 } else {
227 /* FFA_VERSION_1_0 lacks size in the response */
228 buf_sz = sz = 8;
229 }
230
231 if (buffer && count <= num_partitions)
232 for (idx = 0; idx < count; idx++)
233 memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
234 buf_sz);
235
236 if (!(flags & PARTITION_INFO_GET_RETURN_COUNT_ONLY))
237 ffa_rx_release();
238
239 mutex_unlock(&drv_info->rx_lock);
240
241 return count;
242 }
243
244 /* buffer is allocated and caller must free the same if returned count > 0 */
245 static int
ffa_partition_probe(const uuid_t * uuid,struct ffa_partition_info ** buffer)246 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
247 {
248 int count;
249 u32 uuid0_4[4];
250 struct ffa_partition_info *pbuf;
251
252 export_uuid((u8 *)uuid0_4, uuid);
253 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
254 uuid0_4[3], NULL, 0);
255 if (count <= 0)
256 return count;
257
258 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
259 if (!pbuf)
260 return -ENOMEM;
261
262 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
263 uuid0_4[3], pbuf, count);
264 if (count <= 0)
265 kfree(pbuf);
266 else
267 *buffer = pbuf;
268
269 return count;
270 }
271
272 #define VM_ID_MASK GENMASK(15, 0)
ffa_id_get(u16 * vm_id)273 static int ffa_id_get(u16 *vm_id)
274 {
275 ffa_value_t id;
276
277 invoke_ffa_fn((ffa_value_t){
278 .a0 = FFA_ID_GET,
279 }, &id);
280
281 if (id.a0 == FFA_ERROR)
282 return ffa_to_linux_errno((int)id.a2);
283
284 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
285
286 return 0;
287 }
288
ffa_msg_send_direct_req(u16 src_id,u16 dst_id,bool mode_32bit,struct ffa_send_direct_data * data)289 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
290 struct ffa_send_direct_data *data)
291 {
292 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
293 ffa_value_t ret;
294
295 if (mode_32bit) {
296 req_id = FFA_MSG_SEND_DIRECT_REQ;
297 resp_id = FFA_MSG_SEND_DIRECT_RESP;
298 } else {
299 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
300 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
301 }
302
303 invoke_ffa_fn((ffa_value_t){
304 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
305 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
306 .a6 = data->data3, .a7 = data->data4,
307 }, &ret);
308
309 while (ret.a0 == FFA_INTERRUPT)
310 invoke_ffa_fn((ffa_value_t){
311 .a0 = FFA_RUN, .a1 = ret.a1,
312 }, &ret);
313
314 if (ret.a0 == FFA_ERROR)
315 return ffa_to_linux_errno((int)ret.a2);
316
317 if (ret.a0 == resp_id) {
318 data->data0 = ret.a3;
319 data->data1 = ret.a4;
320 data->data2 = ret.a5;
321 data->data3 = ret.a6;
322 data->data4 = ret.a7;
323 return 0;
324 }
325
326 return -EINVAL;
327 }
328
ffa_mem_first_frag(u32 func_id,phys_addr_t buf,u32 buf_sz,u32 frag_len,u32 len,u64 * handle)329 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
330 u32 frag_len, u32 len, u64 *handle)
331 {
332 ffa_value_t ret;
333
334 invoke_ffa_fn((ffa_value_t){
335 .a0 = func_id, .a1 = len, .a2 = frag_len,
336 .a3 = buf, .a4 = buf_sz,
337 }, &ret);
338
339 while (ret.a0 == FFA_MEM_OP_PAUSE)
340 invoke_ffa_fn((ffa_value_t){
341 .a0 = FFA_MEM_OP_RESUME,
342 .a1 = ret.a1, .a2 = ret.a2,
343 }, &ret);
344
345 if (ret.a0 == FFA_ERROR)
346 return ffa_to_linux_errno((int)ret.a2);
347
348 if (ret.a0 == FFA_SUCCESS) {
349 if (handle)
350 *handle = PACK_HANDLE(ret.a2, ret.a3);
351 } else if (ret.a0 == FFA_MEM_FRAG_RX) {
352 if (handle)
353 *handle = PACK_HANDLE(ret.a1, ret.a2);
354 } else {
355 return -EOPNOTSUPP;
356 }
357
358 return frag_len;
359 }
360
ffa_mem_next_frag(u64 handle,u32 frag_len)361 static int ffa_mem_next_frag(u64 handle, u32 frag_len)
362 {
363 ffa_value_t ret;
364
365 invoke_ffa_fn((ffa_value_t){
366 .a0 = FFA_MEM_FRAG_TX,
367 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
368 .a3 = frag_len,
369 }, &ret);
370
371 while (ret.a0 == FFA_MEM_OP_PAUSE)
372 invoke_ffa_fn((ffa_value_t){
373 .a0 = FFA_MEM_OP_RESUME,
374 .a1 = ret.a1, .a2 = ret.a2,
375 }, &ret);
376
377 if (ret.a0 == FFA_ERROR)
378 return ffa_to_linux_errno((int)ret.a2);
379
380 if (ret.a0 == FFA_MEM_FRAG_RX)
381 return ret.a3;
382 else if (ret.a0 == FFA_SUCCESS)
383 return 0;
384
385 return -EOPNOTSUPP;
386 }
387
388 static int
ffa_transmit_fragment(u32 func_id,phys_addr_t buf,u32 buf_sz,u32 frag_len,u32 len,u64 * handle,bool first)389 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
390 u32 len, u64 *handle, bool first)
391 {
392 if (!first)
393 return ffa_mem_next_frag(*handle, frag_len);
394
395 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
396 }
397
ffa_get_num_pages_sg(struct scatterlist * sg)398 static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
399 {
400 u32 num_pages = 0;
401
402 do {
403 num_pages += sg->length / FFA_PAGE_SIZE;
404 } while ((sg = sg_next(sg)));
405
406 return num_pages;
407 }
408
ffa_memory_attributes_get(u32 func_id)409 static u8 ffa_memory_attributes_get(u32 func_id)
410 {
411 /*
412 * For the memory lend or donate operation, if the receiver is a PE or
413 * a proxy endpoint, the owner/sender must not specify the attributes
414 */
415 if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
416 func_id == FFA_MEM_LEND)
417 return 0;
418
419 return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
420 }
421
422 static int
ffa_setup_and_transmit(u32 func_id,void * buffer,u32 max_fragsize,struct ffa_mem_ops_args * args)423 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
424 struct ffa_mem_ops_args *args)
425 {
426 int rc = 0;
427 bool first = true;
428 phys_addr_t addr = 0;
429 struct ffa_composite_mem_region *composite;
430 struct ffa_mem_region_addr_range *constituents;
431 struct ffa_mem_region_attributes *ep_mem_access;
432 struct ffa_mem_region *mem_region = buffer;
433 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
434
435 mem_region->tag = args->tag;
436 mem_region->flags = args->flags;
437 mem_region->sender_id = drv_info->vm_id;
438 mem_region->attributes = ffa_memory_attributes_get(func_id);
439 ep_mem_access = &mem_region->ep_mem_access[0];
440
441 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
442 ep_mem_access->receiver = args->attrs[idx].receiver;
443 ep_mem_access->attrs = args->attrs[idx].attrs;
444 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs);
445 ep_mem_access->flag = 0;
446 ep_mem_access->reserved = 0;
447 }
448 mem_region->handle = 0;
449 mem_region->reserved_0 = 0;
450 mem_region->reserved_1 = 0;
451 mem_region->ep_count = args->nattrs;
452
453 composite = buffer + COMPOSITE_OFFSET(args->nattrs);
454 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
455 composite->addr_range_cnt = num_entries;
456 composite->reserved = 0;
457
458 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries);
459 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0);
460 if (frag_len > max_fragsize)
461 return -ENXIO;
462
463 if (!args->use_txbuf) {
464 addr = virt_to_phys(buffer);
465 buf_sz = max_fragsize / FFA_PAGE_SIZE;
466 }
467
468 constituents = buffer + frag_len;
469 idx = 0;
470 do {
471 if (frag_len == max_fragsize) {
472 rc = ffa_transmit_fragment(func_id, addr, buf_sz,
473 frag_len, length,
474 &args->g_handle, first);
475 if (rc < 0)
476 return -ENXIO;
477
478 first = false;
479 idx = 0;
480 frag_len = 0;
481 constituents = buffer;
482 }
483
484 if ((void *)constituents - buffer > max_fragsize) {
485 pr_err("Memory Region Fragment > Tx Buffer size\n");
486 return -EFAULT;
487 }
488
489 constituents->address = sg_phys(args->sg);
490 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
491 constituents->reserved = 0;
492 constituents++;
493 frag_len += sizeof(struct ffa_mem_region_addr_range);
494 } while ((args->sg = sg_next(args->sg)));
495
496 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
497 length, &args->g_handle, first);
498 }
499
ffa_memory_ops(u32 func_id,struct ffa_mem_ops_args * args)500 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
501 {
502 int ret;
503 void *buffer;
504
505 if (!args->use_txbuf) {
506 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
507 if (!buffer)
508 return -ENOMEM;
509 } else {
510 buffer = drv_info->tx_buffer;
511 mutex_lock(&drv_info->tx_lock);
512 }
513
514 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
515
516 if (args->use_txbuf)
517 mutex_unlock(&drv_info->tx_lock);
518 else
519 free_pages_exact(buffer, RXTX_BUFFER_SIZE);
520
521 return ret < 0 ? ret : 0;
522 }
523
ffa_memory_reclaim(u64 g_handle,u32 flags)524 static int ffa_memory_reclaim(u64 g_handle, u32 flags)
525 {
526 ffa_value_t ret;
527
528 invoke_ffa_fn((ffa_value_t){
529 .a0 = FFA_MEM_RECLAIM,
530 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
531 .a3 = flags,
532 }, &ret);
533
534 if (ret.a0 == FFA_ERROR)
535 return ffa_to_linux_errno((int)ret.a2);
536
537 return 0;
538 }
539
ffa_features(u32 func_feat_id,u32 input_props,u32 * if_props_1,u32 * if_props_2)540 static int ffa_features(u32 func_feat_id, u32 input_props,
541 u32 *if_props_1, u32 *if_props_2)
542 {
543 ffa_value_t id;
544
545 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
546 pr_err("%s: Invalid Parameters: %x, %x", __func__,
547 func_feat_id, input_props);
548 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
549 }
550
551 invoke_ffa_fn((ffa_value_t){
552 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
553 }, &id);
554
555 if (id.a0 == FFA_ERROR)
556 return ffa_to_linux_errno((int)id.a2);
557
558 if (if_props_1)
559 *if_props_1 = id.a2;
560 if (if_props_2)
561 *if_props_2 = id.a3;
562
563 return 0;
564 }
565
ffa_set_up_mem_ops_native_flag(void)566 static void ffa_set_up_mem_ops_native_flag(void)
567 {
568 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
569 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
570 drv_info->mem_ops_native = true;
571 }
572
ffa_api_version_get(void)573 static u32 ffa_api_version_get(void)
574 {
575 return drv_info->version;
576 }
577
ffa_partition_info_get(const char * uuid_str,struct ffa_partition_info * buffer)578 static int ffa_partition_info_get(const char *uuid_str,
579 struct ffa_partition_info *buffer)
580 {
581 int count;
582 uuid_t uuid;
583 struct ffa_partition_info *pbuf;
584
585 if (uuid_parse(uuid_str, &uuid)) {
586 pr_err("invalid uuid (%s)\n", uuid_str);
587 return -ENODEV;
588 }
589
590 count = ffa_partition_probe(&uuid, &pbuf);
591 if (count <= 0)
592 return -ENOENT;
593
594 memcpy(buffer, pbuf, sizeof(*pbuf) * count);
595 kfree(pbuf);
596 return 0;
597 }
598
ffa_mode_32bit_set(struct ffa_device * dev)599 static void ffa_mode_32bit_set(struct ffa_device *dev)
600 {
601 dev->mode_32bit = true;
602 }
603
ffa_sync_send_receive(struct ffa_device * dev,struct ffa_send_direct_data * data)604 static int ffa_sync_send_receive(struct ffa_device *dev,
605 struct ffa_send_direct_data *data)
606 {
607 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
608 dev->mode_32bit, data);
609 }
610
ffa_memory_share(struct ffa_mem_ops_args * args)611 static int ffa_memory_share(struct ffa_mem_ops_args *args)
612 {
613 if (drv_info->mem_ops_native)
614 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
615
616 return ffa_memory_ops(FFA_MEM_SHARE, args);
617 }
618
ffa_memory_lend(struct ffa_mem_ops_args * args)619 static int ffa_memory_lend(struct ffa_mem_ops_args *args)
620 {
621 /* Note that upon a successful MEM_LEND request the caller
622 * must ensure that the memory region specified is not accessed
623 * until a successful MEM_RECALIM call has been made.
624 * On systems with a hypervisor present this will been enforced,
625 * however on systems without a hypervisor the responsibility
626 * falls to the calling kernel driver to prevent access.
627 */
628 if (drv_info->mem_ops_native)
629 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
630
631 return ffa_memory_ops(FFA_MEM_LEND, args);
632 }
633
634 static const struct ffa_info_ops ffa_drv_info_ops = {
635 .api_version_get = ffa_api_version_get,
636 .partition_info_get = ffa_partition_info_get,
637 };
638
639 static const struct ffa_msg_ops ffa_drv_msg_ops = {
640 .mode_32bit_set = ffa_mode_32bit_set,
641 .sync_send_receive = ffa_sync_send_receive,
642 };
643
644 static const struct ffa_mem_ops ffa_drv_mem_ops = {
645 .memory_reclaim = ffa_memory_reclaim,
646 .memory_share = ffa_memory_share,
647 .memory_lend = ffa_memory_lend,
648 };
649
650 static const struct ffa_ops ffa_drv_ops = {
651 .info_ops = &ffa_drv_info_ops,
652 .msg_ops = &ffa_drv_msg_ops,
653 .mem_ops = &ffa_drv_mem_ops,
654 };
655
ffa_device_match_uuid(struct ffa_device * ffa_dev,const uuid_t * uuid)656 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
657 {
658 int count, idx;
659 struct ffa_partition_info *pbuf, *tpbuf;
660
661 /*
662 * FF-A v1.1 provides UUID for each partition as part of the discovery
663 * API, the discovered UUID must be populated in the device's UUID and
664 * there is no need to copy the same from the driver table.
665 */
666 if (drv_info->version > FFA_VERSION_1_0)
667 return;
668
669 count = ffa_partition_probe(uuid, &pbuf);
670 if (count <= 0)
671 return;
672
673 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
674 if (tpbuf->id == ffa_dev->vm_id)
675 uuid_copy(&ffa_dev->uuid, uuid);
676 kfree(pbuf);
677 }
678
ffa_setup_partitions(void)679 static void ffa_setup_partitions(void)
680 {
681 int count, idx;
682 uuid_t uuid;
683 struct ffa_device *ffa_dev;
684 struct ffa_partition_info *pbuf, *tpbuf;
685
686 count = ffa_partition_probe(&uuid_null, &pbuf);
687 if (count <= 0) {
688 pr_info("%s: No partitions found, error %d\n", __func__, count);
689 return;
690 }
691
692 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
693 import_uuid(&uuid, (u8 *)tpbuf->uuid);
694
695 /* Note that if the UUID will be uuid_null, that will require
696 * ffa_device_match() to find the UUID of this partition id
697 * with help of ffa_device_match_uuid(). FF-A v1.1 and above
698 * provides UUID here for each partition as part of the
699 * discovery API and the same is passed.
700 */
701 ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
702 if (!ffa_dev) {
703 pr_err("%s: failed to register partition ID 0x%x\n",
704 __func__, tpbuf->id);
705 continue;
706 }
707
708 if (drv_info->version > FFA_VERSION_1_0 &&
709 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
710 ffa_mode_32bit_set(ffa_dev);
711 }
712 kfree(pbuf);
713 }
714
ffa_init(void)715 static int __init ffa_init(void)
716 {
717 int ret;
718
719 ret = ffa_transport_init(&invoke_ffa_fn);
720 if (ret)
721 return ret;
722
723 ret = arm_ffa_bus_init();
724 if (ret)
725 return ret;
726
727 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
728 if (!drv_info) {
729 ret = -ENOMEM;
730 goto ffa_bus_exit;
731 }
732
733 ret = ffa_version_check(&drv_info->version);
734 if (ret)
735 goto free_drv_info;
736
737 if (ffa_id_get(&drv_info->vm_id)) {
738 pr_err("failed to obtain VM id for self\n");
739 ret = -ENODEV;
740 goto free_drv_info;
741 }
742
743 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
744 if (!drv_info->rx_buffer) {
745 ret = -ENOMEM;
746 goto free_pages;
747 }
748
749 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
750 if (!drv_info->tx_buffer) {
751 ret = -ENOMEM;
752 goto free_pages;
753 }
754
755 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
756 virt_to_phys(drv_info->rx_buffer),
757 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
758 if (ret) {
759 pr_err("failed to register FFA RxTx buffers\n");
760 goto free_pages;
761 }
762
763 mutex_init(&drv_info->rx_lock);
764 mutex_init(&drv_info->tx_lock);
765
766 ffa_setup_partitions();
767
768 ffa_set_up_mem_ops_native_flag();
769
770 return 0;
771 free_pages:
772 if (drv_info->tx_buffer)
773 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
774 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
775 free_drv_info:
776 kfree(drv_info);
777 ffa_bus_exit:
778 arm_ffa_bus_exit();
779 return ret;
780 }
781 subsys_initcall(ffa_init);
782
ffa_exit(void)783 static void __exit ffa_exit(void)
784 {
785 ffa_rxtx_unmap(drv_info->vm_id);
786 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
787 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
788 kfree(drv_info);
789 arm_ffa_bus_exit();
790 }
791 module_exit(ffa_exit);
792
793 MODULE_ALIAS("arm-ffa");
794 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
795 MODULE_DESCRIPTION("Arm FF-A interface driver");
796 MODULE_LICENSE("GPL v2");
797