xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision aad29a73199b7fbccfbabea3f1ee627ad1924f52)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		.name = "imx25-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192 	}, {
193 		.name = "imx27-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195 	}, {
196 		.name = "imx28-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198 	}, {
199 		.name = "imx6q-fec",
200 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 	}, {
202 		.name = "mvf600-fec",
203 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 	}, {
205 		.name = "imx6sx-fec",
206 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 	}, {
208 		.name = "imx6ul-fec",
209 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 	}, {
211 		.name = "imx8mq-fec",
212 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 	}, {
214 		.name = "imx8qm-fec",
215 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 	}, {
217 		.name = "s32v234-fec",
218 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 	}, {
220 		/* sentinel */
221 	}
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224 
225 enum imx_fec_type {
226 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227 	IMX27_FEC,	/* runs on i.mx27/35/51 */
228 	IMX28_FEC,
229 	IMX6Q_FEC,
230 	MVF600_FEC,
231 	IMX6SX_FEC,
232 	IMX6UL_FEC,
233 	IMX8MQ_FEC,
234 	IMX8QM_FEC,
235 	S32V234_FEC,
236 };
237 
238 static const struct of_device_id fec_dt_ids[] = {
239 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 	{ /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252 
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256 
257 #if defined(CONFIG_M5272)
258 /*
259  * Some hardware gets it MAC address out of local flash memory.
260  * if this is non-zero then assume it is the address to get MAC from.
261  */
262 #if defined(CONFIG_NETtel)
263 #define	FEC_FLASHMAC	0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define	FEC_FLASHMAC	0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define	FEC_FLASHMAC	0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define	FEC_FLASHMAC	(0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC	0xffc0406b
272 #else
273 #define	FEC_FLASHMAC	0
274 #endif
275 #endif /* CONFIG_M5272 */
276 
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278  *
279  * 2048 byte skbufs are allocated. However, alignment requirements
280  * varies between FEC variants. Worst case is 64, so round down by 64.
281  */
282 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE		64
284 
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS		BIT(1)
287 #define FEC_RACC_PRODIS		BIT(2)
288 #define FEC_RACC_SHIFT16	BIT(7)
289 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290 
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293 
294 /*
295  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296  * size bits. Other FEC hardware does not, so we need to take that into
297  * account when setting it.
298  */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301     defined(CONFIG_ARM64)
302 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303 #else
304 #define	OPT_FRAME_SIZE	0
305 #endif
306 
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST		(1 << 30)
309 #define FEC_MMFR_ST_C45		(0)
310 #define FEC_MMFR_OP_READ	(2 << 28)
311 #define FEC_MMFR_OP_READ_C45	(3 << 28)
312 #define FEC_MMFR_OP_WRITE	(1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE	(0)
314 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316 #define FEC_MMFR_TA		(2 << 16)
317 #define FEC_MMFR_DATA(v)	(v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET           BIT(0)
320 #define FEC_ECR_ETHEREN         BIT(1)
321 #define FEC_ECR_MAGICEN         BIT(2)
322 #define FEC_ECR_SLEEP           BIT(3)
323 #define FEC_ECR_EN1588          BIT(4)
324 #define FEC_ECR_BYTESWP         BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP            BIT(0)
327 #define FEC_RCR_HALFDPX         BIT(1)
328 #define FEC_RCR_MII             BIT(2)
329 #define FEC_RCR_PROMISC         BIT(3)
330 #define FEC_RCR_BC_REJ          BIT(4)
331 #define FEC_RCR_FLOWCTL         BIT(5)
332 #define FEC_RCR_RMII            BIT(8)
333 #define FEC_RCR_10BASET         BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD       BIT(8)
336 
337 #define FEC_MII_TIMEOUT		30000 /* us */
338 
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341 
342 #define FEC_PAUSE_FLAG_AUTONEG	0x1
343 #define FEC_PAUSE_FLAG_ENABLE	0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
347 
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS	100
350 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351 
352 #define IS_TSO_HEADER(txq, addr) \
353 	((addr >= txq->tso_hdrs_dma) && \
354 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355 
356 static int mii_cnt;
357 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 					     struct bufdesc_prop *bd)
360 {
361 	return (bdp >= bd->last) ? bd->base
362 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 					     struct bufdesc_prop *bd)
367 {
368 	return (bdp <= bd->base) ? bd->last
369 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 				 struct bufdesc_prop *bd)
374 {
375 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 	int entries;
381 
382 	entries = (((const char *)txq->dirty_tx -
383 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384 
385 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387 
swap_buffer(void * bufaddr,int len)388 static void swap_buffer(void *bufaddr, int len)
389 {
390 	int i;
391 	unsigned int *buf = bufaddr;
392 
393 	for (i = 0; i < len; i += 4, buf++)
394 		swab32s(buf);
395 }
396 
fec_dump(struct net_device * ndev)397 static void fec_dump(struct net_device *ndev)
398 {
399 	struct fec_enet_private *fep = netdev_priv(ndev);
400 	struct bufdesc *bdp;
401 	struct fec_enet_priv_tx_q *txq;
402 	int index = 0;
403 
404 	netdev_info(ndev, "TX ring dump\n");
405 	pr_info("Nr     SC     addr       len  SKB\n");
406 
407 	txq = fep->tx_queue[0];
408 	bdp = txq->bd.base;
409 
410 	do {
411 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 			index,
413 			bdp == txq->bd.cur ? 'S' : ' ',
414 			bdp == txq->dirty_tx ? 'H' : ' ',
415 			fec16_to_cpu(bdp->cbd_sc),
416 			fec32_to_cpu(bdp->cbd_bufaddr),
417 			fec16_to_cpu(bdp->cbd_datlen),
418 			txq->tx_buf[index].buf_p);
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		index++;
421 	} while (bdp != txq->bd.base);
422 }
423 
is_ipv4_pkt(struct sk_buff * skb)424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428 
429 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 	/* Only run for packets requiring a checksum. */
433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
434 		return 0;
435 
436 	if (unlikely(skb_cow_head(skb, 0)))
437 		return -1;
438 
439 	if (is_ipv4_pkt(skb))
440 		ip_hdr(skb)->check = 0;
441 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442 
443 	return 0;
444 }
445 
446 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 			  struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 	struct page_pool_params pp_params = {
452 		.order = 0,
453 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 		.pool_size = size,
455 		.nid = dev_to_node(&fep->pdev->dev),
456 		.dev = &fep->pdev->dev,
457 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 		.offset = FEC_ENET_XDP_HEADROOM,
459 		.max_len = FEC_ENET_RX_FRSIZE,
460 	};
461 	int err;
462 
463 	rxq->page_pool = page_pool_create(&pp_params);
464 	if (IS_ERR(rxq->page_pool)) {
465 		err = PTR_ERR(rxq->page_pool);
466 		rxq->page_pool = NULL;
467 		return err;
468 	}
469 
470 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 	if (err < 0)
472 		goto err_free_pp;
473 
474 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 					 rxq->page_pool);
476 	if (err)
477 		goto err_unregister_rxq;
478 
479 	return 0;
480 
481 err_unregister_rxq:
482 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 	page_pool_destroy(rxq->page_pool);
485 	rxq->page_pool = NULL;
486 	return err;
487 }
488 
489 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 			     struct sk_buff *skb,
492 			     struct net_device *ndev)
493 {
494 	struct fec_enet_private *fep = netdev_priv(ndev);
495 	struct bufdesc *bdp = txq->bd.cur;
496 	struct bufdesc_ex *ebdp;
497 	int nr_frags = skb_shinfo(skb)->nr_frags;
498 	int frag, frag_len;
499 	unsigned short status;
500 	unsigned int estatus = 0;
501 	skb_frag_t *this_frag;
502 	unsigned int index;
503 	void *bufaddr;
504 	dma_addr_t addr;
505 	int i;
506 
507 	for (frag = 0; frag < nr_frags; frag++) {
508 		this_frag = &skb_shinfo(skb)->frags[frag];
509 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 		ebdp = (struct bufdesc_ex *)bdp;
511 
512 		status = fec16_to_cpu(bdp->cbd_sc);
513 		status &= ~BD_ENET_TX_STATS;
514 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516 
517 		/* Handle the last BD specially */
518 		if (frag == nr_frags - 1) {
519 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 			if (fep->bufdesc_ex) {
521 				estatus |= BD_ENET_TX_INT;
522 				if (unlikely(skb_shinfo(skb)->tx_flags &
523 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 					estatus |= BD_ENET_TX_TS;
525 			}
526 		}
527 
528 		if (fep->bufdesc_ex) {
529 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 			if (skb->ip_summed == CHECKSUM_PARTIAL)
532 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533 
534 			ebdp->cbd_bdu = 0;
535 			ebdp->cbd_esc = cpu_to_fec32(estatus);
536 		}
537 
538 		bufaddr = skb_frag_address(this_frag);
539 
540 		index = fec_enet_get_bd_index(bdp, &txq->bd);
541 		if (((unsigned long) bufaddr) & fep->tx_align ||
542 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 			bufaddr = txq->tx_bounce[index];
545 
546 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 				swap_buffer(bufaddr, frag_len);
548 		}
549 
550 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 				      DMA_TO_DEVICE);
552 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 			if (net_ratelimit())
554 				netdev_err(ndev, "Tx DMA memory map failed\n");
555 			goto dma_mapping_error;
556 		}
557 
558 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 		/* Make sure the updates to rest of the descriptor are
561 		 * performed before transferring ownership.
562 		 */
563 		wmb();
564 		bdp->cbd_sc = cpu_to_fec16(status);
565 	}
566 
567 	return bdp;
568 dma_mapping_error:
569 	bdp = txq->bd.cur;
570 	for (i = 0; i < frag; i++) {
571 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 	}
575 	return ERR_PTR(-ENOMEM);
576 }
577 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 				   struct sk_buff *skb, struct net_device *ndev)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	int nr_frags = skb_shinfo(skb)->nr_frags;
583 	struct bufdesc *bdp, *last_bdp;
584 	void *bufaddr;
585 	dma_addr_t addr;
586 	unsigned short status;
587 	unsigned short buflen;
588 	unsigned int estatus = 0;
589 	unsigned int index;
590 	int entries_free;
591 
592 	entries_free = fec_enet_get_free_txdesc_num(txq);
593 	if (entries_free < MAX_SKB_FRAGS + 1) {
594 		dev_kfree_skb_any(skb);
595 		if (net_ratelimit())
596 			netdev_err(ndev, "NOT enough BD for SG!\n");
597 		return NETDEV_TX_OK;
598 	}
599 
600 	/* Protocol checksum off-load for TCP and UDP. */
601 	if (fec_enet_clear_csum(skb, ndev)) {
602 		dev_kfree_skb_any(skb);
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Fill in a Tx ring entry */
607 	bdp = txq->bd.cur;
608 	last_bdp = bdp;
609 	status = fec16_to_cpu(bdp->cbd_sc);
610 	status &= ~BD_ENET_TX_STATS;
611 
612 	/* Set buffer length and buffer pointer */
613 	bufaddr = skb->data;
614 	buflen = skb_headlen(skb);
615 
616 	index = fec_enet_get_bd_index(bdp, &txq->bd);
617 	if (((unsigned long) bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, buflen);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, buflen);
624 	}
625 
626 	/* Push the data cache so the CPM does not get stale memory data. */
627 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 		dev_kfree_skb_any(skb);
630 		if (net_ratelimit())
631 			netdev_err(ndev, "Tx DMA memory map failed\n");
632 		return NETDEV_TX_OK;
633 	}
634 
635 	if (nr_frags) {
636 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 		if (IS_ERR(last_bdp)) {
638 			dma_unmap_single(&fep->pdev->dev, addr,
639 					 buflen, DMA_TO_DEVICE);
640 			dev_kfree_skb_any(skb);
641 			return NETDEV_TX_OK;
642 		}
643 	} else {
644 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 		if (fep->bufdesc_ex) {
646 			estatus = BD_ENET_TX_INT;
647 			if (unlikely(skb_shinfo(skb)->tx_flags &
648 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 				estatus |= BD_ENET_TX_TS;
650 		}
651 	}
652 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 	bdp->cbd_datlen = cpu_to_fec16(buflen);
654 
655 	if (fep->bufdesc_ex) {
656 
657 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658 
659 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 			fep->hwts_tx_en))
661 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662 
663 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665 
666 		if (skb->ip_summed == CHECKSUM_PARTIAL)
667 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668 
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = cpu_to_fec32(estatus);
671 	}
672 
673 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 	/* Save skb pointer */
675 	txq->tx_buf[index].buf_p = skb;
676 
677 	/* Make sure the updates to rest of the descriptor are performed before
678 	 * transferring ownership.
679 	 */
680 	wmb();
681 
682 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
683 	 * it's the last BD of the frame, and to put the CRC on the end.
684 	 */
685 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 	bdp->cbd_sc = cpu_to_fec16(status);
687 
688 	/* If this was the last BD in the ring, start at the beginning again. */
689 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690 
691 	skb_tx_timestamp(skb);
692 
693 	/* Make sure the update to bdp is performed before txq->bd.cur. */
694 	wmb();
695 	txq->bd.cur = bdp;
696 
697 	/* Trigger transmission start */
698 	writel(0, txq->bd.reg_desc_active);
699 
700 	return 0;
701 }
702 
703 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 			  struct net_device *ndev,
706 			  struct bufdesc *bdp, int index, char *data,
707 			  int size, bool last_tcp, bool is_last)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 	dma_addr_t addr;
714 
715 	status = fec16_to_cpu(bdp->cbd_sc);
716 	status &= ~BD_ENET_TX_STATS;
717 
718 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719 
720 	if (((unsigned long) data) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], data, size);
723 		data = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(data, size);
727 	}
728 
729 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 		dev_kfree_skb_any(skb);
732 		if (net_ratelimit())
733 			netdev_err(ndev, "Tx DMA memory map failed\n");
734 		return NETDEV_TX_OK;
735 	}
736 
737 	bdp->cbd_datlen = cpu_to_fec16(size);
738 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
739 
740 	if (fep->bufdesc_ex) {
741 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 		if (skb->ip_summed == CHECKSUM_PARTIAL)
744 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 		ebdp->cbd_bdu = 0;
746 		ebdp->cbd_esc = cpu_to_fec32(estatus);
747 	}
748 
749 	/* Handle the last BD specially */
750 	if (last_tcp)
751 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 	if (is_last) {
753 		status |= BD_ENET_TX_INTR;
754 		if (fep->bufdesc_ex)
755 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 	}
757 
758 	bdp->cbd_sc = cpu_to_fec16(status);
759 
760 	return 0;
761 }
762 
763 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 			 struct sk_buff *skb, struct net_device *ndev,
766 			 struct bufdesc *bdp, int index)
767 {
768 	struct fec_enet_private *fep = netdev_priv(ndev);
769 	int hdr_len = skb_tcp_all_headers(skb);
770 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 	void *bufaddr;
772 	unsigned long dmabuf;
773 	unsigned short status;
774 	unsigned int estatus = 0;
775 
776 	status = fec16_to_cpu(bdp->cbd_sc);
777 	status &= ~BD_ENET_TX_STATS;
778 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779 
780 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 	if (((unsigned long)bufaddr) & fep->tx_align ||
783 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 		bufaddr = txq->tx_bounce[index];
786 
787 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 			swap_buffer(bufaddr, hdr_len);
789 
790 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 					hdr_len, DMA_TO_DEVICE);
792 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 			dev_kfree_skb_any(skb);
794 			if (net_ratelimit())
795 				netdev_err(ndev, "Tx DMA memory map failed\n");
796 			return NETDEV_TX_OK;
797 		}
798 	}
799 
800 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802 
803 	if (fep->bufdesc_ex) {
804 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 		if (skb->ip_summed == CHECKSUM_PARTIAL)
807 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 		ebdp->cbd_bdu = 0;
809 		ebdp->cbd_esc = cpu_to_fec32(estatus);
810 	}
811 
812 	bdp->cbd_sc = cpu_to_fec16(status);
813 
814 	return 0;
815 }
816 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 				   struct sk_buff *skb,
819 				   struct net_device *ndev)
820 {
821 	struct fec_enet_private *fep = netdev_priv(ndev);
822 	int hdr_len, total_len, data_left;
823 	struct bufdesc *bdp = txq->bd.cur;
824 	struct tso_t tso;
825 	unsigned int index = 0;
826 	int ret;
827 
828 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 		dev_kfree_skb_any(skb);
830 		if (net_ratelimit())
831 			netdev_err(ndev, "NOT enough BD for TSO!\n");
832 		return NETDEV_TX_OK;
833 	}
834 
835 	/* Protocol checksum off-load for TCP and UDP. */
836 	if (fec_enet_clear_csum(skb, ndev)) {
837 		dev_kfree_skb_any(skb);
838 		return NETDEV_TX_OK;
839 	}
840 
841 	/* Initialize the TSO handler, and prepare the first payload */
842 	hdr_len = tso_start(skb, &tso);
843 
844 	total_len = skb->len - hdr_len;
845 	while (total_len > 0) {
846 		char *hdr;
847 
848 		index = fec_enet_get_bd_index(bdp, &txq->bd);
849 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 		total_len -= data_left;
851 
852 		/* prepare packet headers: MAC + IP + TCP */
853 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 		if (ret)
857 			goto err_release;
858 
859 		while (data_left > 0) {
860 			int size;
861 
862 			size = min_t(int, tso.size, data_left);
863 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 			index = fec_enet_get_bd_index(bdp, &txq->bd);
865 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 							bdp, index,
867 							tso.data, size,
868 							size == data_left,
869 							total_len == 0);
870 			if (ret)
871 				goto err_release;
872 
873 			data_left -= size;
874 			tso_build_data(skb, &tso, size);
875 		}
876 
877 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 	}
879 
880 	/* Save skb pointer */
881 	txq->tx_buf[index].buf_p = skb;
882 
883 	skb_tx_timestamp(skb);
884 	txq->bd.cur = bdp;
885 
886 	/* Trigger transmission start */
887 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 	    !readl(txq->bd.reg_desc_active) ||
889 	    !readl(txq->bd.reg_desc_active) ||
890 	    !readl(txq->bd.reg_desc_active) ||
891 	    !readl(txq->bd.reg_desc_active))
892 		writel(0, txq->bd.reg_desc_active);
893 
894 	return 0;
895 
896 err_release:
897 	/* TODO: Release all used data descriptors for TSO */
898 	return ret;
899 }
900 
901 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 	struct fec_enet_private *fep = netdev_priv(ndev);
905 	int entries_free;
906 	unsigned short queue;
907 	struct fec_enet_priv_tx_q *txq;
908 	struct netdev_queue *nq;
909 	int ret;
910 
911 	queue = skb_get_queue_mapping(skb);
912 	txq = fep->tx_queue[queue];
913 	nq = netdev_get_tx_queue(ndev, queue);
914 
915 	if (skb_is_gso(skb))
916 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 	else
918 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 	if (ret)
920 		return ret;
921 
922 	entries_free = fec_enet_get_free_txdesc_num(txq);
923 	if (entries_free <= txq->tx_stop_threshold)
924 		netif_tx_stop_queue(nq);
925 
926 	return NETDEV_TX_OK;
927 }
928 
929 /* Init RX & TX buffer descriptors
930  */
fec_enet_bd_init(struct net_device * dev)931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 	struct fec_enet_private *fep = netdev_priv(dev);
934 	struct fec_enet_priv_tx_q *txq;
935 	struct fec_enet_priv_rx_q *rxq;
936 	struct bufdesc *bdp;
937 	unsigned int i;
938 	unsigned int q;
939 
940 	for (q = 0; q < fep->num_rx_queues; q++) {
941 		/* Initialize the receive buffer descriptors. */
942 		rxq = fep->rx_queue[q];
943 		bdp = rxq->bd.base;
944 
945 		for (i = 0; i < rxq->bd.ring_size; i++) {
946 
947 			/* Initialize the BD for every fragment in the page. */
948 			if (bdp->cbd_bufaddr)
949 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 			else
951 				bdp->cbd_sc = cpu_to_fec16(0);
952 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 		}
954 
955 		/* Set the last buffer to wrap */
956 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958 
959 		rxq->bd.cur = rxq->bd.base;
960 	}
961 
962 	for (q = 0; q < fep->num_tx_queues; q++) {
963 		/* ...and the same for transmit */
964 		txq = fep->tx_queue[q];
965 		bdp = txq->bd.base;
966 		txq->bd.cur = bdp;
967 
968 		for (i = 0; i < txq->bd.ring_size; i++) {
969 			/* Initialize the BD for every fragment in the page. */
970 			bdp->cbd_sc = cpu_to_fec16(0);
971 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 				if (bdp->cbd_bufaddr &&
973 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 					dma_unmap_single(&fep->pdev->dev,
975 							 fec32_to_cpu(bdp->cbd_bufaddr),
976 							 fec16_to_cpu(bdp->cbd_datlen),
977 							 DMA_TO_DEVICE);
978 				if (txq->tx_buf[i].buf_p)
979 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 				if (bdp->cbd_bufaddr)
982 					dma_unmap_single(&fep->pdev->dev,
983 							 fec32_to_cpu(bdp->cbd_bufaddr),
984 							 fec16_to_cpu(bdp->cbd_datlen),
985 							 DMA_TO_DEVICE);
986 
987 				if (txq->tx_buf[i].buf_p)
988 					xdp_return_frame(txq->tx_buf[i].buf_p);
989 			} else {
990 				struct page *page = txq->tx_buf[i].buf_p;
991 
992 				if (page)
993 					page_pool_put_page(page->pp, page, 0, false);
994 			}
995 
996 			txq->tx_buf[i].buf_p = NULL;
997 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 		}
1002 
1003 		/* Set the last buffer to wrap */
1004 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 		txq->dirty_tx = bdp;
1007 	}
1008 }
1009 
fec_enet_active_rxring(struct net_device * ndev)1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 	struct fec_enet_private *fep = netdev_priv(ndev);
1013 	int i;
1014 
1015 	for (i = 0; i < fep->num_rx_queues; i++)
1016 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018 
fec_enet_enable_ring(struct net_device * ndev)1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 	struct fec_enet_private *fep = netdev_priv(ndev);
1022 	struct fec_enet_priv_tx_q *txq;
1023 	struct fec_enet_priv_rx_q *rxq;
1024 	int i;
1025 
1026 	for (i = 0; i < fep->num_rx_queues; i++) {
1027 		rxq = fep->rx_queue[i];
1028 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030 
1031 		/* enable DMA1/2 */
1032 		if (i)
1033 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 			       fep->hwp + FEC_RCMR(i));
1035 	}
1036 
1037 	for (i = 0; i < fep->num_tx_queues; i++) {
1038 		txq = fep->tx_queue[i];
1039 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040 
1041 		/* enable DMA1/2 */
1042 		if (i)
1043 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 			       fep->hwp + FEC_DMA_CFG(i));
1045 	}
1046 }
1047 
1048 /*
1049  * This function is called to start or restart the FEC during a link
1050  * change, transmit timeout, or to reconfigure the FEC.  The network
1051  * packet processing for this device must be stopped before this call.
1052  */
1053 static void
fec_restart(struct net_device * ndev)1054 fec_restart(struct net_device *ndev)
1055 {
1056 	struct fec_enet_private *fep = netdev_priv(ndev);
1057 	u32 temp_mac[2];
1058 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 	u32 ecntl = FEC_ECR_ETHEREN;
1060 
1061 	if (fep->bufdesc_ex)
1062 		fec_ptp_save_state(fep);
1063 
1064 	/* Whack a reset.  We should wait for this.
1065 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1066 	 * instead of reset MAC itself.
1067 	 */
1068 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1069 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1070 		writel(0, fep->hwp + FEC_ECNTRL);
1071 	} else {
1072 		writel(1, fep->hwp + FEC_ECNTRL);
1073 		udelay(10);
1074 	}
1075 
1076 	/*
1077 	 * enet-mac reset will reset mac address registers too,
1078 	 * so need to reconfigure it.
1079 	 */
1080 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1081 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1082 	       fep->hwp + FEC_ADDR_LOW);
1083 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1084 	       fep->hwp + FEC_ADDR_HIGH);
1085 
1086 	/* Clear any outstanding interrupt, except MDIO. */
1087 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1088 
1089 	fec_enet_bd_init(ndev);
1090 
1091 	fec_enet_enable_ring(ndev);
1092 
1093 	/* Enable MII mode */
1094 	if (fep->full_duplex == DUPLEX_FULL) {
1095 		/* FD enable */
1096 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1097 	} else {
1098 		/* No Rcv on Xmit */
1099 		rcntl |= 0x02;
1100 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1101 	}
1102 
1103 	/* Set MII speed */
1104 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1105 
1106 #if !defined(CONFIG_M5272)
1107 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1108 		u32 val = readl(fep->hwp + FEC_RACC);
1109 
1110 		/* align IP header */
1111 		val |= FEC_RACC_SHIFT16;
1112 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1113 			/* set RX checksum */
1114 			val |= FEC_RACC_OPTIONS;
1115 		else
1116 			val &= ~FEC_RACC_OPTIONS;
1117 		writel(val, fep->hwp + FEC_RACC);
1118 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1119 	}
1120 #endif
1121 
1122 	/*
1123 	 * The phy interface and speed need to get configured
1124 	 * differently on enet-mac.
1125 	 */
1126 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1127 		/* Enable flow control and length check */
1128 		rcntl |= 0x40000000 | 0x00000020;
1129 
1130 		/* RGMII, RMII or MII */
1131 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1132 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1133 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1134 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1135 			rcntl |= (1 << 6);
1136 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1137 			rcntl |= FEC_RCR_RMII;
1138 		else
1139 			rcntl &= ~FEC_RCR_RMII;
1140 
1141 		/* 1G, 100M or 10M */
1142 		if (ndev->phydev) {
1143 			if (ndev->phydev->speed == SPEED_1000)
1144 				ecntl |= (1 << 5);
1145 			else if (ndev->phydev->speed == SPEED_100)
1146 				rcntl &= ~FEC_RCR_10BASET;
1147 			else
1148 				rcntl |= FEC_RCR_10BASET;
1149 		}
1150 	} else {
1151 #ifdef FEC_MIIGSK_ENR
1152 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1153 			u32 cfgr;
1154 			/* disable the gasket and wait */
1155 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1156 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1157 				udelay(1);
1158 
1159 			/*
1160 			 * configure the gasket:
1161 			 *   RMII, 50 MHz, no loopback, no echo
1162 			 *   MII, 25 MHz, no loopback, no echo
1163 			 */
1164 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1165 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1166 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1167 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1168 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1169 
1170 			/* re-enable the gasket */
1171 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1172 		}
1173 #endif
1174 	}
1175 
1176 #if !defined(CONFIG_M5272)
1177 	/* enable pause frame*/
1178 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1179 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1180 	     ndev->phydev && ndev->phydev->pause)) {
1181 		rcntl |= FEC_ENET_FCE;
1182 
1183 		/* set FIFO threshold parameter to reduce overrun */
1184 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1185 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1186 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1187 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1188 
1189 		/* OPD */
1190 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1191 	} else {
1192 		rcntl &= ~FEC_ENET_FCE;
1193 	}
1194 #endif /* !defined(CONFIG_M5272) */
1195 
1196 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1197 
1198 	/* Setup multicast filter. */
1199 	set_multicast_list(ndev);
1200 #ifndef CONFIG_M5272
1201 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1202 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1203 #endif
1204 
1205 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1206 		/* enable ENET endian swap */
1207 		ecntl |= FEC_ECR_BYTESWP;
1208 		/* enable ENET store and forward mode */
1209 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1210 	}
1211 
1212 	if (fep->bufdesc_ex)
1213 		ecntl |= FEC_ECR_EN1588;
1214 
1215 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1216 	    fep->rgmii_txc_dly)
1217 		ecntl |= FEC_ENET_TXC_DLY;
1218 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 	    fep->rgmii_rxc_dly)
1220 		ecntl |= FEC_ENET_RXC_DLY;
1221 
1222 #ifndef CONFIG_M5272
1223 	/* Enable the MIB statistic event counters */
1224 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1225 #endif
1226 
1227 	/* And last, enable the transmit and receive processing */
1228 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1229 	fec_enet_active_rxring(ndev);
1230 
1231 	if (fep->bufdesc_ex) {
1232 		fec_ptp_start_cyclecounter(ndev);
1233 		fec_ptp_restore_state(fep);
1234 	}
1235 
1236 	/* Enable interrupts we wish to service */
1237 	if (fep->link)
1238 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1239 	else
1240 		writel(0, fep->hwp + FEC_IMASK);
1241 
1242 	/* Init the interrupt coalescing */
1243 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1244 		fec_enet_itr_coal_set(ndev);
1245 }
1246 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1247 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1248 {
1249 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1250 	      of_machine_is_compatible("fsl,imx8qxp") ||
1251 	      of_machine_is_compatible("fsl,imx8dxl")))
1252 		return 0;
1253 
1254 	return imx_scu_get_handle(&fep->ipc_handle);
1255 }
1256 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1257 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1258 {
1259 	struct device_node *np = fep->pdev->dev.of_node;
1260 	u32 rsrc_id, val;
1261 	int idx;
1262 
1263 	if (!np || !fep->ipc_handle)
1264 		return;
1265 
1266 	idx = of_alias_get_id(np, "ethernet");
1267 	if (idx < 0)
1268 		idx = 0;
1269 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1270 
1271 	val = enabled ? 1 : 0;
1272 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1273 }
1274 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1275 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1276 {
1277 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1278 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1279 
1280 	if (stop_gpr->gpr) {
1281 		if (enabled)
1282 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1283 					   BIT(stop_gpr->bit),
1284 					   BIT(stop_gpr->bit));
1285 		else
1286 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1287 					   BIT(stop_gpr->bit), 0);
1288 	} else if (pdata && pdata->sleep_mode_enable) {
1289 		pdata->sleep_mode_enable(enabled);
1290 	} else {
1291 		fec_enet_ipg_stop_set(fep, enabled);
1292 	}
1293 }
1294 
fec_irqs_disable(struct net_device * ndev)1295 static void fec_irqs_disable(struct net_device *ndev)
1296 {
1297 	struct fec_enet_private *fep = netdev_priv(ndev);
1298 
1299 	writel(0, fep->hwp + FEC_IMASK);
1300 }
1301 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1302 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1303 {
1304 	struct fec_enet_private *fep = netdev_priv(ndev);
1305 
1306 	writel(0, fep->hwp + FEC_IMASK);
1307 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1308 }
1309 
1310 static void
fec_stop(struct net_device * ndev)1311 fec_stop(struct net_device *ndev)
1312 {
1313 	struct fec_enet_private *fep = netdev_priv(ndev);
1314 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1315 	u32 val;
1316 
1317 	/* We cannot expect a graceful transmit stop without link !!! */
1318 	if (fep->link) {
1319 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1320 		udelay(10);
1321 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1322 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1323 	}
1324 
1325 	if (fep->bufdesc_ex)
1326 		fec_ptp_save_state(fep);
1327 
1328 	/* Whack a reset.  We should wait for this.
1329 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1330 	 * instead of reset MAC itself.
1331 	 */
1332 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1333 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1334 			writel(0, fep->hwp + FEC_ECNTRL);
1335 		} else {
1336 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1337 			udelay(10);
1338 		}
1339 	} else {
1340 		val = readl(fep->hwp + FEC_ECNTRL);
1341 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1342 		writel(val, fep->hwp + FEC_ECNTRL);
1343 	}
1344 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1345 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1346 
1347 	/* We have to keep ENET enabled to have MII interrupt stay working */
1348 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1349 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1350 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1351 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1352 	}
1353 
1354 	if (fep->bufdesc_ex) {
1355 		val = readl(fep->hwp + FEC_ECNTRL);
1356 		val |= FEC_ECR_EN1588;
1357 		writel(val, fep->hwp + FEC_ECNTRL);
1358 
1359 		fec_ptp_start_cyclecounter(ndev);
1360 		fec_ptp_restore_state(fep);
1361 	}
1362 }
1363 
1364 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1365 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1366 {
1367 	struct fec_enet_private *fep = netdev_priv(ndev);
1368 
1369 	fec_dump(ndev);
1370 
1371 	ndev->stats.tx_errors++;
1372 
1373 	schedule_work(&fep->tx_timeout_work);
1374 }
1375 
fec_enet_timeout_work(struct work_struct * work)1376 static void fec_enet_timeout_work(struct work_struct *work)
1377 {
1378 	struct fec_enet_private *fep =
1379 		container_of(work, struct fec_enet_private, tx_timeout_work);
1380 	struct net_device *ndev = fep->netdev;
1381 
1382 	rtnl_lock();
1383 	if (netif_device_present(ndev) || netif_running(ndev)) {
1384 		napi_disable(&fep->napi);
1385 		netif_tx_lock_bh(ndev);
1386 		fec_restart(ndev);
1387 		netif_tx_wake_all_queues(ndev);
1388 		netif_tx_unlock_bh(ndev);
1389 		napi_enable(&fep->napi);
1390 	}
1391 	rtnl_unlock();
1392 }
1393 
1394 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1395 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1396 	struct skb_shared_hwtstamps *hwtstamps)
1397 {
1398 	unsigned long flags;
1399 	u64 ns;
1400 
1401 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1402 	ns = timecounter_cyc2time(&fep->tc, ts);
1403 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1404 
1405 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1406 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1407 }
1408 
1409 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1410 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1411 {
1412 	struct	fec_enet_private *fep;
1413 	struct xdp_frame *xdpf;
1414 	struct bufdesc *bdp;
1415 	unsigned short status;
1416 	struct	sk_buff	*skb;
1417 	struct fec_enet_priv_tx_q *txq;
1418 	struct netdev_queue *nq;
1419 	int	index = 0;
1420 	int	entries_free;
1421 	struct page *page;
1422 	int frame_len;
1423 
1424 	fep = netdev_priv(ndev);
1425 
1426 	txq = fep->tx_queue[queue_id];
1427 	/* get next bdp of dirty_tx */
1428 	nq = netdev_get_tx_queue(ndev, queue_id);
1429 	bdp = txq->dirty_tx;
1430 
1431 	/* get next bdp of dirty_tx */
1432 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1433 
1434 	while (bdp != READ_ONCE(txq->bd.cur)) {
1435 		/* Order the load of bd.cur and cbd_sc */
1436 		rmb();
1437 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1438 		if (status & BD_ENET_TX_READY)
1439 			break;
1440 
1441 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1442 
1443 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1444 			skb = txq->tx_buf[index].buf_p;
1445 			if (bdp->cbd_bufaddr &&
1446 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1447 				dma_unmap_single(&fep->pdev->dev,
1448 						 fec32_to_cpu(bdp->cbd_bufaddr),
1449 						 fec16_to_cpu(bdp->cbd_datlen),
1450 						 DMA_TO_DEVICE);
1451 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1452 			if (!skb)
1453 				goto tx_buf_done;
1454 		} else {
1455 			/* Tx processing cannot call any XDP (or page pool) APIs if
1456 			 * the "budget" is 0. Because NAPI is called with budget of
1457 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1458 			 * however, we can't use the page pool from IRQ context.
1459 			 */
1460 			if (unlikely(!budget))
1461 				break;
1462 
1463 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1464 				xdpf = txq->tx_buf[index].buf_p;
1465 				if (bdp->cbd_bufaddr)
1466 					dma_unmap_single(&fep->pdev->dev,
1467 							 fec32_to_cpu(bdp->cbd_bufaddr),
1468 							 fec16_to_cpu(bdp->cbd_datlen),
1469 							 DMA_TO_DEVICE);
1470 			} else {
1471 				page = txq->tx_buf[index].buf_p;
1472 			}
1473 
1474 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1475 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1476 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1477 				goto tx_buf_done;
1478 			}
1479 
1480 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1481 		}
1482 
1483 		/* Check for errors. */
1484 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1485 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1486 				   BD_ENET_TX_CSL)) {
1487 			ndev->stats.tx_errors++;
1488 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1489 				ndev->stats.tx_heartbeat_errors++;
1490 			if (status & BD_ENET_TX_LC)  /* Late collision */
1491 				ndev->stats.tx_window_errors++;
1492 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1493 				ndev->stats.tx_aborted_errors++;
1494 			if (status & BD_ENET_TX_UN)  /* Underrun */
1495 				ndev->stats.tx_fifo_errors++;
1496 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1497 				ndev->stats.tx_carrier_errors++;
1498 		} else {
1499 			ndev->stats.tx_packets++;
1500 
1501 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1502 				ndev->stats.tx_bytes += skb->len;
1503 			else
1504 				ndev->stats.tx_bytes += frame_len;
1505 		}
1506 
1507 		/* Deferred means some collisions occurred during transmit,
1508 		 * but we eventually sent the packet OK.
1509 		 */
1510 		if (status & BD_ENET_TX_DEF)
1511 			ndev->stats.collisions++;
1512 
1513 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1514 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1515 			 * are to time stamp the packet, so we still need to check time
1516 			 * stamping enabled flag.
1517 			 */
1518 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1519 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1520 				struct skb_shared_hwtstamps shhwtstamps;
1521 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522 
1523 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1524 				skb_tstamp_tx(skb, &shhwtstamps);
1525 			}
1526 
1527 			/* Free the sk buffer associated with this last transmit */
1528 			napi_consume_skb(skb, budget);
1529 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1530 			xdp_return_frame_rx_napi(xdpf);
1531 		} else { /* recycle pages of XDP_TX frames */
1532 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1533 			page_pool_put_page(page->pp, page, 0, true);
1534 		}
1535 
1536 		txq->tx_buf[index].buf_p = NULL;
1537 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1538 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1539 
1540 tx_buf_done:
1541 		/* Make sure the update to bdp and tx_buf are performed
1542 		 * before dirty_tx
1543 		 */
1544 		wmb();
1545 		txq->dirty_tx = bdp;
1546 
1547 		/* Update pointer to next buffer descriptor to be transmitted */
1548 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1549 
1550 		/* Since we have freed up a buffer, the ring is no longer full
1551 		 */
1552 		if (netif_tx_queue_stopped(nq)) {
1553 			entries_free = fec_enet_get_free_txdesc_num(txq);
1554 			if (entries_free >= txq->tx_wake_threshold)
1555 				netif_tx_wake_queue(nq);
1556 		}
1557 	}
1558 
1559 	/* ERR006358: Keep the transmitter going */
1560 	if (bdp != txq->bd.cur &&
1561 	    readl(txq->bd.reg_desc_active) == 0)
1562 		writel(0, txq->bd.reg_desc_active);
1563 }
1564 
fec_enet_tx(struct net_device * ndev,int budget)1565 static void fec_enet_tx(struct net_device *ndev, int budget)
1566 {
1567 	struct fec_enet_private *fep = netdev_priv(ndev);
1568 	int i;
1569 
1570 	/* Make sure that AVB queues are processed first. */
1571 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1572 		fec_enet_tx_queue(ndev, i, budget);
1573 }
1574 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1575 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1576 				struct bufdesc *bdp, int index)
1577 {
1578 	struct page *new_page;
1579 	dma_addr_t phys_addr;
1580 
1581 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1582 	if (unlikely(!new_page))
1583 		return -ENOMEM;
1584 
1585 	rxq->rx_skb_info[index].page = new_page;
1586 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1587 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1588 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1589 
1590 	return 0;
1591 }
1592 
1593 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1594 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1595 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1596 {
1597 	unsigned int sync, len = xdp->data_end - xdp->data;
1598 	u32 ret = FEC_ENET_XDP_PASS;
1599 	struct page *page;
1600 	int err;
1601 	u32 act;
1602 
1603 	act = bpf_prog_run_xdp(prog, xdp);
1604 
1605 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1606 	 * max len CPU touch
1607 	 */
1608 	sync = xdp->data_end - xdp->data;
1609 	sync = max(sync, len);
1610 
1611 	switch (act) {
1612 	case XDP_PASS:
1613 		rxq->stats[RX_XDP_PASS]++;
1614 		ret = FEC_ENET_XDP_PASS;
1615 		break;
1616 
1617 	case XDP_REDIRECT:
1618 		rxq->stats[RX_XDP_REDIRECT]++;
1619 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1620 		if (unlikely(err))
1621 			goto xdp_err;
1622 
1623 		ret = FEC_ENET_XDP_REDIR;
1624 		break;
1625 
1626 	case XDP_TX:
1627 		rxq->stats[RX_XDP_TX]++;
1628 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1629 		if (unlikely(err)) {
1630 			rxq->stats[RX_XDP_TX_ERRORS]++;
1631 			goto xdp_err;
1632 		}
1633 
1634 		ret = FEC_ENET_XDP_TX;
1635 		break;
1636 
1637 	default:
1638 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1639 		fallthrough;
1640 
1641 	case XDP_ABORTED:
1642 		fallthrough;    /* handle aborts by dropping packet */
1643 
1644 	case XDP_DROP:
1645 		rxq->stats[RX_XDP_DROP]++;
1646 xdp_err:
1647 		ret = FEC_ENET_XDP_CONSUMED;
1648 		page = virt_to_head_page(xdp->data);
1649 		page_pool_put_page(rxq->page_pool, page, sync, true);
1650 		if (act != XDP_DROP)
1651 			trace_xdp_exception(fep->netdev, prog, act);
1652 		break;
1653 	}
1654 
1655 	return ret;
1656 }
1657 
1658 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1659  * When we update through the ring, if the next incoming buffer has
1660  * not been given to the system, we just set the empty indicator,
1661  * effectively tossing the packet.
1662  */
1663 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1664 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1665 {
1666 	struct fec_enet_private *fep = netdev_priv(ndev);
1667 	struct fec_enet_priv_rx_q *rxq;
1668 	struct bufdesc *bdp;
1669 	unsigned short status;
1670 	struct  sk_buff *skb;
1671 	ushort	pkt_len;
1672 	__u8 *data;
1673 	int	pkt_received = 0;
1674 	struct	bufdesc_ex *ebdp = NULL;
1675 	bool	vlan_packet_rcvd = false;
1676 	u16	vlan_tag;
1677 	int	index = 0;
1678 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1679 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1680 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1681 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1682 	int cpu = smp_processor_id();
1683 	struct xdp_buff xdp;
1684 	struct page *page;
1685 	__fec32 cbd_bufaddr;
1686 	u32 sub_len = 4;
1687 
1688 #if !defined(CONFIG_M5272)
1689 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1690 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1691 	 */
1692 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1693 		data_start += 2;
1694 		sub_len += 2;
1695 	}
1696 #endif
1697 
1698 #ifdef CONFIG_M532x
1699 	flush_cache_all();
1700 #endif
1701 	rxq = fep->rx_queue[queue_id];
1702 
1703 	/* First, grab all of the stats for the incoming packet.
1704 	 * These get messed up if we get called due to a busy condition.
1705 	 */
1706 	bdp = rxq->bd.cur;
1707 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1708 
1709 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1710 
1711 		if (pkt_received >= budget)
1712 			break;
1713 		pkt_received++;
1714 
1715 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1716 
1717 		/* Check for errors. */
1718 		status ^= BD_ENET_RX_LAST;
1719 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1720 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1721 			   BD_ENET_RX_CL)) {
1722 			ndev->stats.rx_errors++;
1723 			if (status & BD_ENET_RX_OV) {
1724 				/* FIFO overrun */
1725 				ndev->stats.rx_fifo_errors++;
1726 				goto rx_processing_done;
1727 			}
1728 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1729 						| BD_ENET_RX_LAST)) {
1730 				/* Frame too long or too short. */
1731 				ndev->stats.rx_length_errors++;
1732 				if (status & BD_ENET_RX_LAST)
1733 					netdev_err(ndev, "rcv is not +last\n");
1734 			}
1735 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1736 				ndev->stats.rx_crc_errors++;
1737 			/* Report late collisions as a frame error. */
1738 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1739 				ndev->stats.rx_frame_errors++;
1740 			goto rx_processing_done;
1741 		}
1742 
1743 		/* Process the incoming frame. */
1744 		ndev->stats.rx_packets++;
1745 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1746 		ndev->stats.rx_bytes += pkt_len;
1747 
1748 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1749 		page = rxq->rx_skb_info[index].page;
1750 		cbd_bufaddr = bdp->cbd_bufaddr;
1751 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1752 			ndev->stats.rx_dropped++;
1753 			goto rx_processing_done;
1754 		}
1755 
1756 		dma_sync_single_for_cpu(&fep->pdev->dev,
1757 					fec32_to_cpu(cbd_bufaddr),
1758 					pkt_len,
1759 					DMA_FROM_DEVICE);
1760 		prefetch(page_address(page));
1761 
1762 		if (xdp_prog) {
1763 			xdp_buff_clear_frags_flag(&xdp);
1764 			/* subtract 16bit shift and FCS */
1765 			xdp_prepare_buff(&xdp, page_address(page),
1766 					 data_start, pkt_len - sub_len, false);
1767 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1768 			xdp_result |= ret;
1769 			if (ret != FEC_ENET_XDP_PASS)
1770 				goto rx_processing_done;
1771 		}
1772 
1773 		/* The packet length includes FCS, but we don't want to
1774 		 * include that when passing upstream as it messes up
1775 		 * bridging applications.
1776 		 */
1777 		skb = build_skb(page_address(page), PAGE_SIZE);
1778 		if (unlikely(!skb)) {
1779 			page_pool_recycle_direct(rxq->page_pool, page);
1780 			ndev->stats.rx_dropped++;
1781 
1782 			netdev_err_once(ndev, "build_skb failed!\n");
1783 			goto rx_processing_done;
1784 		}
1785 
1786 		skb_reserve(skb, data_start);
1787 		skb_put(skb, pkt_len - sub_len);
1788 		skb_mark_for_recycle(skb);
1789 
1790 		if (unlikely(need_swap)) {
1791 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1792 			swap_buffer(data, pkt_len);
1793 		}
1794 		data = skb->data;
1795 
1796 		/* Extract the enhanced buffer descriptor */
1797 		ebdp = NULL;
1798 		if (fep->bufdesc_ex)
1799 			ebdp = (struct bufdesc_ex *)bdp;
1800 
1801 		/* If this is a VLAN packet remove the VLAN Tag */
1802 		vlan_packet_rcvd = false;
1803 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1804 		    fep->bufdesc_ex &&
1805 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1806 			/* Push and remove the vlan tag */
1807 			struct vlan_hdr *vlan_header =
1808 					(struct vlan_hdr *) (data + ETH_HLEN);
1809 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1810 
1811 			vlan_packet_rcvd = true;
1812 
1813 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1814 			skb_pull(skb, VLAN_HLEN);
1815 		}
1816 
1817 		skb->protocol = eth_type_trans(skb, ndev);
1818 
1819 		/* Get receive timestamp from the skb */
1820 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1821 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1822 					  skb_hwtstamps(skb));
1823 
1824 		if (fep->bufdesc_ex &&
1825 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1826 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1827 				/* don't check it */
1828 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1829 			} else {
1830 				skb_checksum_none_assert(skb);
1831 			}
1832 		}
1833 
1834 		/* Handle received VLAN packets */
1835 		if (vlan_packet_rcvd)
1836 			__vlan_hwaccel_put_tag(skb,
1837 					       htons(ETH_P_8021Q),
1838 					       vlan_tag);
1839 
1840 		skb_record_rx_queue(skb, queue_id);
1841 		napi_gro_receive(&fep->napi, skb);
1842 
1843 rx_processing_done:
1844 		/* Clear the status flags for this buffer */
1845 		status &= ~BD_ENET_RX_STATS;
1846 
1847 		/* Mark the buffer empty */
1848 		status |= BD_ENET_RX_EMPTY;
1849 
1850 		if (fep->bufdesc_ex) {
1851 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1852 
1853 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1854 			ebdp->cbd_prot = 0;
1855 			ebdp->cbd_bdu = 0;
1856 		}
1857 		/* Make sure the updates to rest of the descriptor are
1858 		 * performed before transferring ownership.
1859 		 */
1860 		wmb();
1861 		bdp->cbd_sc = cpu_to_fec16(status);
1862 
1863 		/* Update BD pointer to next entry */
1864 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1865 
1866 		/* Doing this here will keep the FEC running while we process
1867 		 * incoming frames.  On a heavily loaded network, we should be
1868 		 * able to keep up at the expense of system resources.
1869 		 */
1870 		writel(0, rxq->bd.reg_desc_active);
1871 	}
1872 	rxq->bd.cur = bdp;
1873 
1874 	if (xdp_result & FEC_ENET_XDP_REDIR)
1875 		xdp_do_flush_map();
1876 
1877 	return pkt_received;
1878 }
1879 
fec_enet_rx(struct net_device * ndev,int budget)1880 static int fec_enet_rx(struct net_device *ndev, int budget)
1881 {
1882 	struct fec_enet_private *fep = netdev_priv(ndev);
1883 	int i, done = 0;
1884 
1885 	/* Make sure that AVB queues are processed first. */
1886 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1887 		done += fec_enet_rx_queue(ndev, budget - done, i);
1888 
1889 	return done;
1890 }
1891 
fec_enet_collect_events(struct fec_enet_private * fep)1892 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1893 {
1894 	uint int_events;
1895 
1896 	int_events = readl(fep->hwp + FEC_IEVENT);
1897 
1898 	/* Don't clear MDIO events, we poll for those */
1899 	int_events &= ~FEC_ENET_MII;
1900 
1901 	writel(int_events, fep->hwp + FEC_IEVENT);
1902 
1903 	return int_events != 0;
1904 }
1905 
1906 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1907 fec_enet_interrupt(int irq, void *dev_id)
1908 {
1909 	struct net_device *ndev = dev_id;
1910 	struct fec_enet_private *fep = netdev_priv(ndev);
1911 	irqreturn_t ret = IRQ_NONE;
1912 
1913 	if (fec_enet_collect_events(fep) && fep->link) {
1914 		ret = IRQ_HANDLED;
1915 
1916 		if (napi_schedule_prep(&fep->napi)) {
1917 			/* Disable interrupts */
1918 			writel(0, fep->hwp + FEC_IMASK);
1919 			__napi_schedule(&fep->napi);
1920 		}
1921 	}
1922 
1923 	return ret;
1924 }
1925 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1926 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1927 {
1928 	struct net_device *ndev = napi->dev;
1929 	struct fec_enet_private *fep = netdev_priv(ndev);
1930 	int done = 0;
1931 
1932 	do {
1933 		done += fec_enet_rx(ndev, budget - done);
1934 		fec_enet_tx(ndev, budget);
1935 	} while ((done < budget) && fec_enet_collect_events(fep));
1936 
1937 	if (done < budget) {
1938 		napi_complete_done(napi, done);
1939 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1940 	}
1941 
1942 	return done;
1943 }
1944 
1945 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1946 static int fec_get_mac(struct net_device *ndev)
1947 {
1948 	struct fec_enet_private *fep = netdev_priv(ndev);
1949 	unsigned char *iap, tmpaddr[ETH_ALEN];
1950 	int ret;
1951 
1952 	/*
1953 	 * try to get mac address in following order:
1954 	 *
1955 	 * 1) module parameter via kernel command line in form
1956 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1957 	 */
1958 	iap = macaddr;
1959 
1960 	/*
1961 	 * 2) from device tree data
1962 	 */
1963 	if (!is_valid_ether_addr(iap)) {
1964 		struct device_node *np = fep->pdev->dev.of_node;
1965 		if (np) {
1966 			ret = of_get_mac_address(np, tmpaddr);
1967 			if (!ret)
1968 				iap = tmpaddr;
1969 			else if (ret == -EPROBE_DEFER)
1970 				return ret;
1971 		}
1972 	}
1973 
1974 	/*
1975 	 * 3) from flash or fuse (via platform data)
1976 	 */
1977 	if (!is_valid_ether_addr(iap)) {
1978 #ifdef CONFIG_M5272
1979 		if (FEC_FLASHMAC)
1980 			iap = (unsigned char *)FEC_FLASHMAC;
1981 #else
1982 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1983 
1984 		if (pdata)
1985 			iap = (unsigned char *)&pdata->mac;
1986 #endif
1987 	}
1988 
1989 	/*
1990 	 * 4) FEC mac registers set by bootloader
1991 	 */
1992 	if (!is_valid_ether_addr(iap)) {
1993 		*((__be32 *) &tmpaddr[0]) =
1994 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1995 		*((__be16 *) &tmpaddr[4]) =
1996 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1997 		iap = &tmpaddr[0];
1998 	}
1999 
2000 	/*
2001 	 * 5) random mac address
2002 	 */
2003 	if (!is_valid_ether_addr(iap)) {
2004 		/* Report it and use a random ethernet address instead */
2005 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2006 		eth_hw_addr_random(ndev);
2007 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2008 			 ndev->dev_addr);
2009 		return 0;
2010 	}
2011 
2012 	/* Adjust MAC if using macaddr */
2013 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2014 
2015 	return 0;
2016 }
2017 
2018 /* ------------------------------------------------------------------------- */
2019 
2020 /*
2021  * Phy section
2022  */
fec_enet_adjust_link(struct net_device * ndev)2023 static void fec_enet_adjust_link(struct net_device *ndev)
2024 {
2025 	struct fec_enet_private *fep = netdev_priv(ndev);
2026 	struct phy_device *phy_dev = ndev->phydev;
2027 	int status_change = 0;
2028 
2029 	/*
2030 	 * If the netdev is down, or is going down, we're not interested
2031 	 * in link state events, so just mark our idea of the link as down
2032 	 * and ignore the event.
2033 	 */
2034 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2035 		fep->link = 0;
2036 	} else if (phy_dev->link) {
2037 		if (!fep->link) {
2038 			fep->link = phy_dev->link;
2039 			status_change = 1;
2040 		}
2041 
2042 		if (fep->full_duplex != phy_dev->duplex) {
2043 			fep->full_duplex = phy_dev->duplex;
2044 			status_change = 1;
2045 		}
2046 
2047 		if (phy_dev->speed != fep->speed) {
2048 			fep->speed = phy_dev->speed;
2049 			status_change = 1;
2050 		}
2051 
2052 		/* if any of the above changed restart the FEC */
2053 		if (status_change) {
2054 			netif_stop_queue(ndev);
2055 			napi_disable(&fep->napi);
2056 			netif_tx_lock_bh(ndev);
2057 			fec_restart(ndev);
2058 			netif_tx_wake_all_queues(ndev);
2059 			netif_tx_unlock_bh(ndev);
2060 			napi_enable(&fep->napi);
2061 		}
2062 	} else {
2063 		if (fep->link) {
2064 			netif_stop_queue(ndev);
2065 			napi_disable(&fep->napi);
2066 			netif_tx_lock_bh(ndev);
2067 			fec_stop(ndev);
2068 			netif_tx_unlock_bh(ndev);
2069 			napi_enable(&fep->napi);
2070 			fep->link = phy_dev->link;
2071 			status_change = 1;
2072 		}
2073 	}
2074 
2075 	if (status_change)
2076 		phy_print_status(phy_dev);
2077 }
2078 
fec_enet_mdio_wait(struct fec_enet_private * fep)2079 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2080 {
2081 	uint ievent;
2082 	int ret;
2083 
2084 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2085 					ievent & FEC_ENET_MII, 2, 30000);
2086 
2087 	if (!ret)
2088 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2089 
2090 	return ret;
2091 }
2092 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2093 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2094 {
2095 	struct fec_enet_private *fep = bus->priv;
2096 	struct device *dev = &fep->pdev->dev;
2097 	int ret = 0, frame_start, frame_addr, frame_op;
2098 
2099 	ret = pm_runtime_resume_and_get(dev);
2100 	if (ret < 0)
2101 		return ret;
2102 
2103 	/* C22 read */
2104 	frame_op = FEC_MMFR_OP_READ;
2105 	frame_start = FEC_MMFR_ST;
2106 	frame_addr = regnum;
2107 
2108 	/* start a read op */
2109 	writel(frame_start | frame_op |
2110 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2111 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2112 
2113 	/* wait for end of transfer */
2114 	ret = fec_enet_mdio_wait(fep);
2115 	if (ret) {
2116 		netdev_err(fep->netdev, "MDIO read timeout\n");
2117 		goto out;
2118 	}
2119 
2120 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2121 
2122 out:
2123 	pm_runtime_mark_last_busy(dev);
2124 	pm_runtime_put_autosuspend(dev);
2125 
2126 	return ret;
2127 }
2128 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2129 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2130 				  int devad, int regnum)
2131 {
2132 	struct fec_enet_private *fep = bus->priv;
2133 	struct device *dev = &fep->pdev->dev;
2134 	int ret = 0, frame_start, frame_op;
2135 
2136 	ret = pm_runtime_resume_and_get(dev);
2137 	if (ret < 0)
2138 		return ret;
2139 
2140 	frame_start = FEC_MMFR_ST_C45;
2141 
2142 	/* write address */
2143 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2144 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2146 	       fep->hwp + FEC_MII_DATA);
2147 
2148 	/* wait for end of transfer */
2149 	ret = fec_enet_mdio_wait(fep);
2150 	if (ret) {
2151 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2152 		goto out;
2153 	}
2154 
2155 	frame_op = FEC_MMFR_OP_READ_C45;
2156 
2157 	/* start a read op */
2158 	writel(frame_start | frame_op |
2159 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2160 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2161 
2162 	/* wait for end of transfer */
2163 	ret = fec_enet_mdio_wait(fep);
2164 	if (ret) {
2165 		netdev_err(fep->netdev, "MDIO read timeout\n");
2166 		goto out;
2167 	}
2168 
2169 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2170 
2171 out:
2172 	pm_runtime_mark_last_busy(dev);
2173 	pm_runtime_put_autosuspend(dev);
2174 
2175 	return ret;
2176 }
2177 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2178 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2179 				   u16 value)
2180 {
2181 	struct fec_enet_private *fep = bus->priv;
2182 	struct device *dev = &fep->pdev->dev;
2183 	int ret, frame_start, frame_addr;
2184 
2185 	ret = pm_runtime_resume_and_get(dev);
2186 	if (ret < 0)
2187 		return ret;
2188 
2189 	/* C22 write */
2190 	frame_start = FEC_MMFR_ST;
2191 	frame_addr = regnum;
2192 
2193 	/* start a write op */
2194 	writel(frame_start | FEC_MMFR_OP_WRITE |
2195 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2196 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2197 	       fep->hwp + FEC_MII_DATA);
2198 
2199 	/* wait for end of transfer */
2200 	ret = fec_enet_mdio_wait(fep);
2201 	if (ret)
2202 		netdev_err(fep->netdev, "MDIO write timeout\n");
2203 
2204 	pm_runtime_mark_last_busy(dev);
2205 	pm_runtime_put_autosuspend(dev);
2206 
2207 	return ret;
2208 }
2209 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2210 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2211 				   int devad, int regnum, u16 value)
2212 {
2213 	struct fec_enet_private *fep = bus->priv;
2214 	struct device *dev = &fep->pdev->dev;
2215 	int ret, frame_start;
2216 
2217 	ret = pm_runtime_resume_and_get(dev);
2218 	if (ret < 0)
2219 		return ret;
2220 
2221 	frame_start = FEC_MMFR_ST_C45;
2222 
2223 	/* write address */
2224 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2225 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2226 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2227 	       fep->hwp + FEC_MII_DATA);
2228 
2229 	/* wait for end of transfer */
2230 	ret = fec_enet_mdio_wait(fep);
2231 	if (ret) {
2232 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2233 		goto out;
2234 	}
2235 
2236 	/* start a write op */
2237 	writel(frame_start | FEC_MMFR_OP_WRITE |
2238 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2239 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2240 	       fep->hwp + FEC_MII_DATA);
2241 
2242 	/* wait for end of transfer */
2243 	ret = fec_enet_mdio_wait(fep);
2244 	if (ret)
2245 		netdev_err(fep->netdev, "MDIO write timeout\n");
2246 
2247 out:
2248 	pm_runtime_mark_last_busy(dev);
2249 	pm_runtime_put_autosuspend(dev);
2250 
2251 	return ret;
2252 }
2253 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2254 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2255 {
2256 	struct fec_enet_private *fep = netdev_priv(ndev);
2257 	struct phy_device *phy_dev = ndev->phydev;
2258 
2259 	if (phy_dev) {
2260 		phy_reset_after_clk_enable(phy_dev);
2261 	} else if (fep->phy_node) {
2262 		/*
2263 		 * If the PHY still is not bound to the MAC, but there is
2264 		 * OF PHY node and a matching PHY device instance already,
2265 		 * use the OF PHY node to obtain the PHY device instance,
2266 		 * and then use that PHY device instance when triggering
2267 		 * the PHY reset.
2268 		 */
2269 		phy_dev = of_phy_find_device(fep->phy_node);
2270 		phy_reset_after_clk_enable(phy_dev);
2271 		put_device(&phy_dev->mdio.dev);
2272 	}
2273 }
2274 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2275 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2276 {
2277 	struct fec_enet_private *fep = netdev_priv(ndev);
2278 	int ret;
2279 
2280 	if (enable) {
2281 		ret = clk_prepare_enable(fep->clk_enet_out);
2282 		if (ret)
2283 			return ret;
2284 
2285 		if (fep->clk_ptp) {
2286 			mutex_lock(&fep->ptp_clk_mutex);
2287 			ret = clk_prepare_enable(fep->clk_ptp);
2288 			if (ret) {
2289 				mutex_unlock(&fep->ptp_clk_mutex);
2290 				goto failed_clk_ptp;
2291 			} else {
2292 				fep->ptp_clk_on = true;
2293 			}
2294 			mutex_unlock(&fep->ptp_clk_mutex);
2295 		}
2296 
2297 		ret = clk_prepare_enable(fep->clk_ref);
2298 		if (ret)
2299 			goto failed_clk_ref;
2300 
2301 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2302 		if (ret)
2303 			goto failed_clk_2x_txclk;
2304 
2305 		fec_enet_phy_reset_after_clk_enable(ndev);
2306 	} else {
2307 		clk_disable_unprepare(fep->clk_enet_out);
2308 		if (fep->clk_ptp) {
2309 			mutex_lock(&fep->ptp_clk_mutex);
2310 			clk_disable_unprepare(fep->clk_ptp);
2311 			fep->ptp_clk_on = false;
2312 			mutex_unlock(&fep->ptp_clk_mutex);
2313 		}
2314 		clk_disable_unprepare(fep->clk_ref);
2315 		clk_disable_unprepare(fep->clk_2x_txclk);
2316 	}
2317 
2318 	return 0;
2319 
2320 failed_clk_2x_txclk:
2321 	if (fep->clk_ref)
2322 		clk_disable_unprepare(fep->clk_ref);
2323 failed_clk_ref:
2324 	if (fep->clk_ptp) {
2325 		mutex_lock(&fep->ptp_clk_mutex);
2326 		clk_disable_unprepare(fep->clk_ptp);
2327 		fep->ptp_clk_on = false;
2328 		mutex_unlock(&fep->ptp_clk_mutex);
2329 	}
2330 failed_clk_ptp:
2331 	clk_disable_unprepare(fep->clk_enet_out);
2332 
2333 	return ret;
2334 }
2335 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2336 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2337 				      struct device_node *np)
2338 {
2339 	u32 rgmii_tx_delay, rgmii_rx_delay;
2340 
2341 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2342 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2343 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2344 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2345 			return -EINVAL;
2346 		} else if (rgmii_tx_delay == 2000) {
2347 			fep->rgmii_txc_dly = true;
2348 		}
2349 	}
2350 
2351 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2352 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2353 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2354 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2355 			return -EINVAL;
2356 		} else if (rgmii_rx_delay == 2000) {
2357 			fep->rgmii_rxc_dly = true;
2358 		}
2359 	}
2360 
2361 	return 0;
2362 }
2363 
fec_enet_mii_probe(struct net_device * ndev)2364 static int fec_enet_mii_probe(struct net_device *ndev)
2365 {
2366 	struct fec_enet_private *fep = netdev_priv(ndev);
2367 	struct phy_device *phy_dev = NULL;
2368 	char mdio_bus_id[MII_BUS_ID_SIZE];
2369 	char phy_name[MII_BUS_ID_SIZE + 3];
2370 	int phy_id;
2371 	int dev_id = fep->dev_id;
2372 
2373 	if (fep->phy_node) {
2374 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2375 					 &fec_enet_adjust_link, 0,
2376 					 fep->phy_interface);
2377 		if (!phy_dev) {
2378 			netdev_err(ndev, "Unable to connect to phy\n");
2379 			return -ENODEV;
2380 		}
2381 	} else {
2382 		/* check for attached phy */
2383 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2384 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2385 				continue;
2386 			if (dev_id--)
2387 				continue;
2388 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2389 			break;
2390 		}
2391 
2392 		if (phy_id >= PHY_MAX_ADDR) {
2393 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2394 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2395 			phy_id = 0;
2396 		}
2397 
2398 		snprintf(phy_name, sizeof(phy_name),
2399 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2400 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2401 				      fep->phy_interface);
2402 	}
2403 
2404 	if (IS_ERR(phy_dev)) {
2405 		netdev_err(ndev, "could not attach to PHY\n");
2406 		return PTR_ERR(phy_dev);
2407 	}
2408 
2409 	/* mask with MAC supported features */
2410 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2411 		phy_set_max_speed(phy_dev, 1000);
2412 		phy_remove_link_mode(phy_dev,
2413 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2414 #if !defined(CONFIG_M5272)
2415 		phy_support_sym_pause(phy_dev);
2416 #endif
2417 	}
2418 	else
2419 		phy_set_max_speed(phy_dev, 100);
2420 
2421 	fep->link = 0;
2422 	fep->full_duplex = 0;
2423 
2424 	phy_attached_info(phy_dev);
2425 
2426 	return 0;
2427 }
2428 
fec_enet_mii_init(struct platform_device * pdev)2429 static int fec_enet_mii_init(struct platform_device *pdev)
2430 {
2431 	static struct mii_bus *fec0_mii_bus;
2432 	struct net_device *ndev = platform_get_drvdata(pdev);
2433 	struct fec_enet_private *fep = netdev_priv(ndev);
2434 	bool suppress_preamble = false;
2435 	struct phy_device *phydev;
2436 	struct device_node *node;
2437 	int err = -ENXIO;
2438 	u32 mii_speed, holdtime;
2439 	u32 bus_freq;
2440 	int addr;
2441 
2442 	/*
2443 	 * The i.MX28 dual fec interfaces are not equal.
2444 	 * Here are the differences:
2445 	 *
2446 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2447 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2448 	 *  - external phys can only be configured by fec0
2449 	 *
2450 	 * That is to say fec1 can not work independently. It only works
2451 	 * when fec0 is working. The reason behind this design is that the
2452 	 * second interface is added primarily for Switch mode.
2453 	 *
2454 	 * Because of the last point above, both phys are attached on fec0
2455 	 * mdio interface in board design, and need to be configured by
2456 	 * fec0 mii_bus.
2457 	 */
2458 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2459 		/* fec1 uses fec0 mii_bus */
2460 		if (mii_cnt && fec0_mii_bus) {
2461 			fep->mii_bus = fec0_mii_bus;
2462 			mii_cnt++;
2463 			return 0;
2464 		}
2465 		return -ENOENT;
2466 	}
2467 
2468 	bus_freq = 2500000; /* 2.5MHz by default */
2469 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2470 	if (node) {
2471 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2472 		suppress_preamble = of_property_read_bool(node,
2473 							  "suppress-preamble");
2474 	}
2475 
2476 	/*
2477 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2478 	 *
2479 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2480 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2481 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2482 	 * document.
2483 	 */
2484 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2485 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2486 		mii_speed--;
2487 	if (mii_speed > 63) {
2488 		dev_err(&pdev->dev,
2489 			"fec clock (%lu) too fast to get right mii speed\n",
2490 			clk_get_rate(fep->clk_ipg));
2491 		err = -EINVAL;
2492 		goto err_out;
2493 	}
2494 
2495 	/*
2496 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2497 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2498 	 * versions are RAZ there, so just ignore the difference and write the
2499 	 * register always.
2500 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2501 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2502 	 * output.
2503 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2504 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2505 	 * holdtime cannot result in a value greater than 3.
2506 	 */
2507 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2508 
2509 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2510 
2511 	if (suppress_preamble)
2512 		fep->phy_speed |= BIT(7);
2513 
2514 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2515 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2516 		 * MII event generation condition:
2517 		 * - writing MSCR:
2518 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2519 		 *	  mscr_reg_data_in[7:0] != 0
2520 		 * - writing MMFR:
2521 		 *	- mscr[7:0]_not_zero
2522 		 */
2523 		writel(0, fep->hwp + FEC_MII_DATA);
2524 	}
2525 
2526 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2527 
2528 	/* Clear any pending transaction complete indication */
2529 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2530 
2531 	fep->mii_bus = mdiobus_alloc();
2532 	if (fep->mii_bus == NULL) {
2533 		err = -ENOMEM;
2534 		goto err_out;
2535 	}
2536 
2537 	fep->mii_bus->name = "fec_enet_mii_bus";
2538 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2539 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2540 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2541 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2542 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2543 	}
2544 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2545 		pdev->name, fep->dev_id + 1);
2546 	fep->mii_bus->priv = fep;
2547 	fep->mii_bus->parent = &pdev->dev;
2548 
2549 	err = of_mdiobus_register(fep->mii_bus, node);
2550 	if (err)
2551 		goto err_out_free_mdiobus;
2552 	of_node_put(node);
2553 
2554 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2555 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2556 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2557 		if (phydev)
2558 			phydev->mac_managed_pm = true;
2559 	}
2560 
2561 	mii_cnt++;
2562 
2563 	/* save fec0 mii_bus */
2564 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2565 		fec0_mii_bus = fep->mii_bus;
2566 
2567 	return 0;
2568 
2569 err_out_free_mdiobus:
2570 	mdiobus_free(fep->mii_bus);
2571 err_out:
2572 	of_node_put(node);
2573 	return err;
2574 }
2575 
fec_enet_mii_remove(struct fec_enet_private * fep)2576 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2577 {
2578 	if (--mii_cnt == 0) {
2579 		mdiobus_unregister(fep->mii_bus);
2580 		mdiobus_free(fep->mii_bus);
2581 	}
2582 }
2583 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2584 static void fec_enet_get_drvinfo(struct net_device *ndev,
2585 				 struct ethtool_drvinfo *info)
2586 {
2587 	struct fec_enet_private *fep = netdev_priv(ndev);
2588 
2589 	strscpy(info->driver, fep->pdev->dev.driver->name,
2590 		sizeof(info->driver));
2591 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2592 }
2593 
fec_enet_get_regs_len(struct net_device * ndev)2594 static int fec_enet_get_regs_len(struct net_device *ndev)
2595 {
2596 	struct fec_enet_private *fep = netdev_priv(ndev);
2597 	struct resource *r;
2598 	int s = 0;
2599 
2600 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2601 	if (r)
2602 		s = resource_size(r);
2603 
2604 	return s;
2605 }
2606 
2607 /* List of registers that can be safety be read to dump them with ethtool */
2608 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2609 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2610 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2611 static __u32 fec_enet_register_version = 2;
2612 static u32 fec_enet_register_offset[] = {
2613 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2614 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2615 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2616 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2617 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2618 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2619 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2620 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2621 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2622 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2623 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2624 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2625 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2626 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2627 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2628 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2629 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2630 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2631 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2632 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2633 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2634 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2635 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2636 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2637 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2638 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2639 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2640 };
2641 /* for i.MX6ul */
2642 static u32 fec_enet_register_offset_6ul[] = {
2643 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2644 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2645 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2646 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2647 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2648 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2649 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2650 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2651 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2652 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2653 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2654 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2655 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2656 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2657 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2658 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2659 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2660 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2661 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2662 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2663 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2664 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2665 };
2666 #else
2667 static __u32 fec_enet_register_version = 1;
2668 static u32 fec_enet_register_offset[] = {
2669 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2670 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2671 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2672 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2673 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2674 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2675 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2676 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2677 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2678 };
2679 #endif
2680 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2681 static void fec_enet_get_regs(struct net_device *ndev,
2682 			      struct ethtool_regs *regs, void *regbuf)
2683 {
2684 	struct fec_enet_private *fep = netdev_priv(ndev);
2685 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2686 	struct device *dev = &fep->pdev->dev;
2687 	u32 *buf = (u32 *)regbuf;
2688 	u32 i, off;
2689 	int ret;
2690 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2691 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2692 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2693 	u32 *reg_list;
2694 	u32 reg_cnt;
2695 
2696 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2697 		reg_list = fec_enet_register_offset;
2698 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2699 	} else {
2700 		reg_list = fec_enet_register_offset_6ul;
2701 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2702 	}
2703 #else
2704 	/* coldfire */
2705 	static u32 *reg_list = fec_enet_register_offset;
2706 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2707 #endif
2708 	ret = pm_runtime_resume_and_get(dev);
2709 	if (ret < 0)
2710 		return;
2711 
2712 	regs->version = fec_enet_register_version;
2713 
2714 	memset(buf, 0, regs->len);
2715 
2716 	for (i = 0; i < reg_cnt; i++) {
2717 		off = reg_list[i];
2718 
2719 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2720 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2721 			continue;
2722 
2723 		off >>= 2;
2724 		buf[off] = readl(&theregs[off]);
2725 	}
2726 
2727 	pm_runtime_mark_last_busy(dev);
2728 	pm_runtime_put_autosuspend(dev);
2729 }
2730 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2731 static int fec_enet_get_ts_info(struct net_device *ndev,
2732 				struct ethtool_ts_info *info)
2733 {
2734 	struct fec_enet_private *fep = netdev_priv(ndev);
2735 
2736 	if (fep->bufdesc_ex) {
2737 
2738 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2739 					SOF_TIMESTAMPING_RX_SOFTWARE |
2740 					SOF_TIMESTAMPING_SOFTWARE |
2741 					SOF_TIMESTAMPING_TX_HARDWARE |
2742 					SOF_TIMESTAMPING_RX_HARDWARE |
2743 					SOF_TIMESTAMPING_RAW_HARDWARE;
2744 		if (fep->ptp_clock)
2745 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2746 		else
2747 			info->phc_index = -1;
2748 
2749 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2750 				 (1 << HWTSTAMP_TX_ON);
2751 
2752 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2753 				   (1 << HWTSTAMP_FILTER_ALL);
2754 		return 0;
2755 	} else {
2756 		return ethtool_op_get_ts_info(ndev, info);
2757 	}
2758 }
2759 
2760 #if !defined(CONFIG_M5272)
2761 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2762 static void fec_enet_get_pauseparam(struct net_device *ndev,
2763 				    struct ethtool_pauseparam *pause)
2764 {
2765 	struct fec_enet_private *fep = netdev_priv(ndev);
2766 
2767 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2768 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2769 	pause->rx_pause = pause->tx_pause;
2770 }
2771 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2772 static int fec_enet_set_pauseparam(struct net_device *ndev,
2773 				   struct ethtool_pauseparam *pause)
2774 {
2775 	struct fec_enet_private *fep = netdev_priv(ndev);
2776 
2777 	if (!ndev->phydev)
2778 		return -ENODEV;
2779 
2780 	if (pause->tx_pause != pause->rx_pause) {
2781 		netdev_info(ndev,
2782 			"hardware only support enable/disable both tx and rx");
2783 		return -EINVAL;
2784 	}
2785 
2786 	fep->pause_flag = 0;
2787 
2788 	/* tx pause must be same as rx pause */
2789 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2790 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2791 
2792 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2793 			  pause->autoneg);
2794 
2795 	if (pause->autoneg) {
2796 		if (netif_running(ndev))
2797 			fec_stop(ndev);
2798 		phy_start_aneg(ndev->phydev);
2799 	}
2800 	if (netif_running(ndev)) {
2801 		napi_disable(&fep->napi);
2802 		netif_tx_lock_bh(ndev);
2803 		fec_restart(ndev);
2804 		netif_tx_wake_all_queues(ndev);
2805 		netif_tx_unlock_bh(ndev);
2806 		napi_enable(&fep->napi);
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 static const struct fec_stat {
2813 	char name[ETH_GSTRING_LEN];
2814 	u16 offset;
2815 } fec_stats[] = {
2816 	/* RMON TX */
2817 	{ "tx_dropped", RMON_T_DROP },
2818 	{ "tx_packets", RMON_T_PACKETS },
2819 	{ "tx_broadcast", RMON_T_BC_PKT },
2820 	{ "tx_multicast", RMON_T_MC_PKT },
2821 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2822 	{ "tx_undersize", RMON_T_UNDERSIZE },
2823 	{ "tx_oversize", RMON_T_OVERSIZE },
2824 	{ "tx_fragment", RMON_T_FRAG },
2825 	{ "tx_jabber", RMON_T_JAB },
2826 	{ "tx_collision", RMON_T_COL },
2827 	{ "tx_64byte", RMON_T_P64 },
2828 	{ "tx_65to127byte", RMON_T_P65TO127 },
2829 	{ "tx_128to255byte", RMON_T_P128TO255 },
2830 	{ "tx_256to511byte", RMON_T_P256TO511 },
2831 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2832 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2833 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2834 	{ "tx_octets", RMON_T_OCTETS },
2835 
2836 	/* IEEE TX */
2837 	{ "IEEE_tx_drop", IEEE_T_DROP },
2838 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2839 	{ "IEEE_tx_1col", IEEE_T_1COL },
2840 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2841 	{ "IEEE_tx_def", IEEE_T_DEF },
2842 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2843 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2844 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2845 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2846 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2847 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2848 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2849 
2850 	/* RMON RX */
2851 	{ "rx_packets", RMON_R_PACKETS },
2852 	{ "rx_broadcast", RMON_R_BC_PKT },
2853 	{ "rx_multicast", RMON_R_MC_PKT },
2854 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2855 	{ "rx_undersize", RMON_R_UNDERSIZE },
2856 	{ "rx_oversize", RMON_R_OVERSIZE },
2857 	{ "rx_fragment", RMON_R_FRAG },
2858 	{ "rx_jabber", RMON_R_JAB },
2859 	{ "rx_64byte", RMON_R_P64 },
2860 	{ "rx_65to127byte", RMON_R_P65TO127 },
2861 	{ "rx_128to255byte", RMON_R_P128TO255 },
2862 	{ "rx_256to511byte", RMON_R_P256TO511 },
2863 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2864 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2865 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2866 	{ "rx_octets", RMON_R_OCTETS },
2867 
2868 	/* IEEE RX */
2869 	{ "IEEE_rx_drop", IEEE_R_DROP },
2870 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2871 	{ "IEEE_rx_crc", IEEE_R_CRC },
2872 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2873 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2874 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2875 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2876 };
2877 
2878 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2879 
2880 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2881 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2882 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2883 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2884 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2885 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2886 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2887 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2888 };
2889 
fec_enet_update_ethtool_stats(struct net_device * dev)2890 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2891 {
2892 	struct fec_enet_private *fep = netdev_priv(dev);
2893 	int i;
2894 
2895 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2896 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2897 }
2898 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2899 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2900 {
2901 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2902 	struct fec_enet_priv_rx_q *rxq;
2903 	int i, j;
2904 
2905 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2906 		rxq = fep->rx_queue[i];
2907 
2908 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2909 			xdp_stats[j] += rxq->stats[j];
2910 	}
2911 
2912 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2913 }
2914 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2915 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2916 {
2917 #ifdef CONFIG_PAGE_POOL_STATS
2918 	struct page_pool_stats stats = {};
2919 	struct fec_enet_priv_rx_q *rxq;
2920 	int i;
2921 
2922 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2923 		rxq = fep->rx_queue[i];
2924 
2925 		if (!rxq->page_pool)
2926 			continue;
2927 
2928 		page_pool_get_stats(rxq->page_pool, &stats);
2929 	}
2930 
2931 	page_pool_ethtool_stats_get(data, &stats);
2932 #endif
2933 }
2934 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2935 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2936 				       struct ethtool_stats *stats, u64 *data)
2937 {
2938 	struct fec_enet_private *fep = netdev_priv(dev);
2939 
2940 	if (netif_running(dev))
2941 		fec_enet_update_ethtool_stats(dev);
2942 
2943 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2944 	data += FEC_STATS_SIZE / sizeof(u64);
2945 
2946 	fec_enet_get_xdp_stats(fep, data);
2947 	data += XDP_STATS_TOTAL;
2948 
2949 	fec_enet_page_pool_stats(fep, data);
2950 }
2951 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2952 static void fec_enet_get_strings(struct net_device *netdev,
2953 	u32 stringset, u8 *data)
2954 {
2955 	int i;
2956 	switch (stringset) {
2957 	case ETH_SS_STATS:
2958 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2959 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2960 			data += ETH_GSTRING_LEN;
2961 		}
2962 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2963 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2964 			data += ETH_GSTRING_LEN;
2965 		}
2966 		page_pool_ethtool_stats_get_strings(data);
2967 
2968 		break;
2969 	case ETH_SS_TEST:
2970 		net_selftest_get_strings(data);
2971 		break;
2972 	}
2973 }
2974 
fec_enet_get_sset_count(struct net_device * dev,int sset)2975 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2976 {
2977 	int count;
2978 
2979 	switch (sset) {
2980 	case ETH_SS_STATS:
2981 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2982 		count += page_pool_ethtool_stats_get_count();
2983 		return count;
2984 
2985 	case ETH_SS_TEST:
2986 		return net_selftest_get_count();
2987 	default:
2988 		return -EOPNOTSUPP;
2989 	}
2990 }
2991 
fec_enet_clear_ethtool_stats(struct net_device * dev)2992 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2993 {
2994 	struct fec_enet_private *fep = netdev_priv(dev);
2995 	struct fec_enet_priv_rx_q *rxq;
2996 	int i, j;
2997 
2998 	/* Disable MIB statistics counters */
2999 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3000 
3001 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3002 		writel(0, fep->hwp + fec_stats[i].offset);
3003 
3004 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3005 		rxq = fep->rx_queue[i];
3006 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3007 			rxq->stats[j] = 0;
3008 	}
3009 
3010 	/* Don't disable MIB statistics counters */
3011 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3012 }
3013 
3014 #else	/* !defined(CONFIG_M5272) */
3015 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3016 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3017 {
3018 }
3019 
fec_enet_clear_ethtool_stats(struct net_device * dev)3020 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3021 {
3022 }
3023 #endif /* !defined(CONFIG_M5272) */
3024 
3025 /* ITR clock source is enet system clock (clk_ahb).
3026  * TCTT unit is cycle_ns * 64 cycle
3027  * So, the ICTT value = X us / (cycle_ns * 64)
3028  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3029 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3030 {
3031 	struct fec_enet_private *fep = netdev_priv(ndev);
3032 
3033 	return us * (fep->itr_clk_rate / 64000) / 1000;
3034 }
3035 
3036 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3037 static void fec_enet_itr_coal_set(struct net_device *ndev)
3038 {
3039 	struct fec_enet_private *fep = netdev_priv(ndev);
3040 	int rx_itr, tx_itr;
3041 
3042 	/* Must be greater than zero to avoid unpredictable behavior */
3043 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3044 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3045 		return;
3046 
3047 	/* Select enet system clock as Interrupt Coalescing
3048 	 * timer Clock Source
3049 	 */
3050 	rx_itr = FEC_ITR_CLK_SEL;
3051 	tx_itr = FEC_ITR_CLK_SEL;
3052 
3053 	/* set ICFT and ICTT */
3054 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3055 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3056 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3057 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3058 
3059 	rx_itr |= FEC_ITR_EN;
3060 	tx_itr |= FEC_ITR_EN;
3061 
3062 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3063 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3064 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3065 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3066 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3067 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3068 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3069 	}
3070 }
3071 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3072 static int fec_enet_get_coalesce(struct net_device *ndev,
3073 				 struct ethtool_coalesce *ec,
3074 				 struct kernel_ethtool_coalesce *kernel_coal,
3075 				 struct netlink_ext_ack *extack)
3076 {
3077 	struct fec_enet_private *fep = netdev_priv(ndev);
3078 
3079 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3080 		return -EOPNOTSUPP;
3081 
3082 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3083 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3084 
3085 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3086 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3087 
3088 	return 0;
3089 }
3090 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3091 static int fec_enet_set_coalesce(struct net_device *ndev,
3092 				 struct ethtool_coalesce *ec,
3093 				 struct kernel_ethtool_coalesce *kernel_coal,
3094 				 struct netlink_ext_ack *extack)
3095 {
3096 	struct fec_enet_private *fep = netdev_priv(ndev);
3097 	struct device *dev = &fep->pdev->dev;
3098 	unsigned int cycle;
3099 
3100 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3101 		return -EOPNOTSUPP;
3102 
3103 	if (ec->rx_max_coalesced_frames > 255) {
3104 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3105 		return -EINVAL;
3106 	}
3107 
3108 	if (ec->tx_max_coalesced_frames > 255) {
3109 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3110 		return -EINVAL;
3111 	}
3112 
3113 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3114 	if (cycle > 0xFFFF) {
3115 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3116 		return -EINVAL;
3117 	}
3118 
3119 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3120 	if (cycle > 0xFFFF) {
3121 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3122 		return -EINVAL;
3123 	}
3124 
3125 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3126 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3127 
3128 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3129 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3130 
3131 	fec_enet_itr_coal_set(ndev);
3132 
3133 	return 0;
3134 }
3135 
3136 /* LPI Sleep Ts count base on tx clk (clk_ref).
3137  * The lpi sleep cnt value = X us / (cycle_ns).
3138  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3139 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3140 {
3141 	struct fec_enet_private *fep = netdev_priv(ndev);
3142 
3143 	return us * (fep->clk_ref_rate / 1000) / 1000;
3144 }
3145 
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3146 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3147 {
3148 	struct fec_enet_private *fep = netdev_priv(ndev);
3149 	struct ethtool_eee *p = &fep->eee;
3150 	unsigned int sleep_cycle, wake_cycle;
3151 	int ret = 0;
3152 
3153 	if (enable) {
3154 		ret = phy_init_eee(ndev->phydev, false);
3155 		if (ret)
3156 			return ret;
3157 
3158 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3159 		wake_cycle = sleep_cycle;
3160 	} else {
3161 		sleep_cycle = 0;
3162 		wake_cycle = 0;
3163 	}
3164 
3165 	p->tx_lpi_enabled = enable;
3166 	p->eee_enabled = enable;
3167 	p->eee_active = enable;
3168 
3169 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3170 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3171 
3172 	return 0;
3173 }
3174 
3175 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3176 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3177 {
3178 	struct fec_enet_private *fep = netdev_priv(ndev);
3179 	struct ethtool_eee *p = &fep->eee;
3180 
3181 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3182 		return -EOPNOTSUPP;
3183 
3184 	if (!netif_running(ndev))
3185 		return -ENETDOWN;
3186 
3187 	edata->eee_enabled = p->eee_enabled;
3188 	edata->eee_active = p->eee_active;
3189 	edata->tx_lpi_timer = p->tx_lpi_timer;
3190 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3191 
3192 	return phy_ethtool_get_eee(ndev->phydev, edata);
3193 }
3194 
3195 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3196 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3197 {
3198 	struct fec_enet_private *fep = netdev_priv(ndev);
3199 	struct ethtool_eee *p = &fep->eee;
3200 	int ret = 0;
3201 
3202 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3203 		return -EOPNOTSUPP;
3204 
3205 	if (!netif_running(ndev))
3206 		return -ENETDOWN;
3207 
3208 	p->tx_lpi_timer = edata->tx_lpi_timer;
3209 
3210 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3211 	    !edata->tx_lpi_timer)
3212 		ret = fec_enet_eee_mode_set(ndev, false);
3213 	else
3214 		ret = fec_enet_eee_mode_set(ndev, true);
3215 
3216 	if (ret)
3217 		return ret;
3218 
3219 	return phy_ethtool_set_eee(ndev->phydev, edata);
3220 }
3221 
3222 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3223 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3224 {
3225 	struct fec_enet_private *fep = netdev_priv(ndev);
3226 
3227 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3228 		wol->supported = WAKE_MAGIC;
3229 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3230 	} else {
3231 		wol->supported = wol->wolopts = 0;
3232 	}
3233 }
3234 
3235 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3236 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3237 {
3238 	struct fec_enet_private *fep = netdev_priv(ndev);
3239 
3240 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3241 		return -EINVAL;
3242 
3243 	if (wol->wolopts & ~WAKE_MAGIC)
3244 		return -EINVAL;
3245 
3246 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3247 	if (device_may_wakeup(&ndev->dev))
3248 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3249 	else
3250 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3251 
3252 	return 0;
3253 }
3254 
3255 static const struct ethtool_ops fec_enet_ethtool_ops = {
3256 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3257 				     ETHTOOL_COALESCE_MAX_FRAMES,
3258 	.get_drvinfo		= fec_enet_get_drvinfo,
3259 	.get_regs_len		= fec_enet_get_regs_len,
3260 	.get_regs		= fec_enet_get_regs,
3261 	.nway_reset		= phy_ethtool_nway_reset,
3262 	.get_link		= ethtool_op_get_link,
3263 	.get_coalesce		= fec_enet_get_coalesce,
3264 	.set_coalesce		= fec_enet_set_coalesce,
3265 #ifndef CONFIG_M5272
3266 	.get_pauseparam		= fec_enet_get_pauseparam,
3267 	.set_pauseparam		= fec_enet_set_pauseparam,
3268 	.get_strings		= fec_enet_get_strings,
3269 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3270 	.get_sset_count		= fec_enet_get_sset_count,
3271 #endif
3272 	.get_ts_info		= fec_enet_get_ts_info,
3273 	.get_wol		= fec_enet_get_wol,
3274 	.set_wol		= fec_enet_set_wol,
3275 	.get_eee		= fec_enet_get_eee,
3276 	.set_eee		= fec_enet_set_eee,
3277 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3278 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3279 	.self_test		= net_selftest,
3280 };
3281 
fec_enet_free_buffers(struct net_device * ndev)3282 static void fec_enet_free_buffers(struct net_device *ndev)
3283 {
3284 	struct fec_enet_private *fep = netdev_priv(ndev);
3285 	unsigned int i;
3286 	struct fec_enet_priv_tx_q *txq;
3287 	struct fec_enet_priv_rx_q *rxq;
3288 	unsigned int q;
3289 
3290 	for (q = 0; q < fep->num_rx_queues; q++) {
3291 		rxq = fep->rx_queue[q];
3292 		for (i = 0; i < rxq->bd.ring_size; i++)
3293 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3294 
3295 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3296 			rxq->stats[i] = 0;
3297 
3298 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3299 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3300 		page_pool_destroy(rxq->page_pool);
3301 		rxq->page_pool = NULL;
3302 	}
3303 
3304 	for (q = 0; q < fep->num_tx_queues; q++) {
3305 		txq = fep->tx_queue[q];
3306 		for (i = 0; i < txq->bd.ring_size; i++) {
3307 			kfree(txq->tx_bounce[i]);
3308 			txq->tx_bounce[i] = NULL;
3309 
3310 			if (!txq->tx_buf[i].buf_p) {
3311 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3312 				continue;
3313 			}
3314 
3315 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3316 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3317 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3318 				xdp_return_frame(txq->tx_buf[i].buf_p);
3319 			} else {
3320 				struct page *page = txq->tx_buf[i].buf_p;
3321 
3322 				page_pool_put_page(page->pp, page, 0, false);
3323 			}
3324 
3325 			txq->tx_buf[i].buf_p = NULL;
3326 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3327 		}
3328 	}
3329 }
3330 
fec_enet_free_queue(struct net_device * ndev)3331 static void fec_enet_free_queue(struct net_device *ndev)
3332 {
3333 	struct fec_enet_private *fep = netdev_priv(ndev);
3334 	int i;
3335 	struct fec_enet_priv_tx_q *txq;
3336 
3337 	for (i = 0; i < fep->num_tx_queues; i++)
3338 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3339 			txq = fep->tx_queue[i];
3340 			dma_free_coherent(&fep->pdev->dev,
3341 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3342 					  txq->tso_hdrs,
3343 					  txq->tso_hdrs_dma);
3344 		}
3345 
3346 	for (i = 0; i < fep->num_rx_queues; i++)
3347 		kfree(fep->rx_queue[i]);
3348 	for (i = 0; i < fep->num_tx_queues; i++)
3349 		kfree(fep->tx_queue[i]);
3350 }
3351 
fec_enet_alloc_queue(struct net_device * ndev)3352 static int fec_enet_alloc_queue(struct net_device *ndev)
3353 {
3354 	struct fec_enet_private *fep = netdev_priv(ndev);
3355 	int i;
3356 	int ret = 0;
3357 	struct fec_enet_priv_tx_q *txq;
3358 
3359 	for (i = 0; i < fep->num_tx_queues; i++) {
3360 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3361 		if (!txq) {
3362 			ret = -ENOMEM;
3363 			goto alloc_failed;
3364 		}
3365 
3366 		fep->tx_queue[i] = txq;
3367 		txq->bd.ring_size = TX_RING_SIZE;
3368 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3369 
3370 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3371 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3372 
3373 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3374 					txq->bd.ring_size * TSO_HEADER_SIZE,
3375 					&txq->tso_hdrs_dma,
3376 					GFP_KERNEL);
3377 		if (!txq->tso_hdrs) {
3378 			ret = -ENOMEM;
3379 			goto alloc_failed;
3380 		}
3381 	}
3382 
3383 	for (i = 0; i < fep->num_rx_queues; i++) {
3384 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3385 					   GFP_KERNEL);
3386 		if (!fep->rx_queue[i]) {
3387 			ret = -ENOMEM;
3388 			goto alloc_failed;
3389 		}
3390 
3391 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3392 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3393 	}
3394 	return ret;
3395 
3396 alloc_failed:
3397 	fec_enet_free_queue(ndev);
3398 	return ret;
3399 }
3400 
3401 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3402 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3403 {
3404 	struct fec_enet_private *fep = netdev_priv(ndev);
3405 	struct fec_enet_priv_rx_q *rxq;
3406 	dma_addr_t phys_addr;
3407 	struct bufdesc	*bdp;
3408 	struct page *page;
3409 	int i, err;
3410 
3411 	rxq = fep->rx_queue[queue];
3412 	bdp = rxq->bd.base;
3413 
3414 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3415 	if (err < 0) {
3416 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3417 		return err;
3418 	}
3419 
3420 	for (i = 0; i < rxq->bd.ring_size; i++) {
3421 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3422 		if (!page)
3423 			goto err_alloc;
3424 
3425 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3426 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3427 
3428 		rxq->rx_skb_info[i].page = page;
3429 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3430 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3431 
3432 		if (fep->bufdesc_ex) {
3433 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3434 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3435 		}
3436 
3437 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3438 	}
3439 
3440 	/* Set the last buffer to wrap. */
3441 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3442 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3443 	return 0;
3444 
3445  err_alloc:
3446 	fec_enet_free_buffers(ndev);
3447 	return -ENOMEM;
3448 }
3449 
3450 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3451 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3452 {
3453 	struct fec_enet_private *fep = netdev_priv(ndev);
3454 	unsigned int i;
3455 	struct bufdesc  *bdp;
3456 	struct fec_enet_priv_tx_q *txq;
3457 
3458 	txq = fep->tx_queue[queue];
3459 	bdp = txq->bd.base;
3460 	for (i = 0; i < txq->bd.ring_size; i++) {
3461 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3462 		if (!txq->tx_bounce[i])
3463 			goto err_alloc;
3464 
3465 		bdp->cbd_sc = cpu_to_fec16(0);
3466 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3467 
3468 		if (fep->bufdesc_ex) {
3469 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3470 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3471 		}
3472 
3473 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3474 	}
3475 
3476 	/* Set the last buffer to wrap. */
3477 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3478 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3479 
3480 	return 0;
3481 
3482  err_alloc:
3483 	fec_enet_free_buffers(ndev);
3484 	return -ENOMEM;
3485 }
3486 
fec_enet_alloc_buffers(struct net_device * ndev)3487 static int fec_enet_alloc_buffers(struct net_device *ndev)
3488 {
3489 	struct fec_enet_private *fep = netdev_priv(ndev);
3490 	unsigned int i;
3491 
3492 	for (i = 0; i < fep->num_rx_queues; i++)
3493 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3494 			return -ENOMEM;
3495 
3496 	for (i = 0; i < fep->num_tx_queues; i++)
3497 		if (fec_enet_alloc_txq_buffers(ndev, i))
3498 			return -ENOMEM;
3499 	return 0;
3500 }
3501 
3502 static int
fec_enet_open(struct net_device * ndev)3503 fec_enet_open(struct net_device *ndev)
3504 {
3505 	struct fec_enet_private *fep = netdev_priv(ndev);
3506 	int ret;
3507 	bool reset_again;
3508 
3509 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3510 	if (ret < 0)
3511 		return ret;
3512 
3513 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3514 	ret = fec_enet_clk_enable(ndev, true);
3515 	if (ret)
3516 		goto clk_enable;
3517 
3518 	/* During the first fec_enet_open call the PHY isn't probed at this
3519 	 * point. Therefore the phy_reset_after_clk_enable() call within
3520 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3521 	 * sure the PHY is working correctly we check if we need to reset again
3522 	 * later when the PHY is probed
3523 	 */
3524 	if (ndev->phydev && ndev->phydev->drv)
3525 		reset_again = false;
3526 	else
3527 		reset_again = true;
3528 
3529 	/* I should reset the ring buffers here, but I don't yet know
3530 	 * a simple way to do that.
3531 	 */
3532 
3533 	ret = fec_enet_alloc_buffers(ndev);
3534 	if (ret)
3535 		goto err_enet_alloc;
3536 
3537 	/* Init MAC prior to mii bus probe */
3538 	fec_restart(ndev);
3539 
3540 	/* Call phy_reset_after_clk_enable() again if it failed during
3541 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3542 	 */
3543 	if (reset_again)
3544 		fec_enet_phy_reset_after_clk_enable(ndev);
3545 
3546 	/* Probe and connect to PHY when open the interface */
3547 	ret = fec_enet_mii_probe(ndev);
3548 	if (ret)
3549 		goto err_enet_mii_probe;
3550 
3551 	if (fep->quirks & FEC_QUIRK_ERR006687)
3552 		imx6q_cpuidle_fec_irqs_used();
3553 
3554 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3555 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3556 
3557 	napi_enable(&fep->napi);
3558 	phy_start(ndev->phydev);
3559 	netif_tx_start_all_queues(ndev);
3560 
3561 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3562 				 FEC_WOL_FLAG_ENABLE);
3563 
3564 	return 0;
3565 
3566 err_enet_mii_probe:
3567 	fec_enet_free_buffers(ndev);
3568 err_enet_alloc:
3569 	fec_enet_clk_enable(ndev, false);
3570 clk_enable:
3571 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3572 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3573 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3574 	return ret;
3575 }
3576 
3577 static int
fec_enet_close(struct net_device * ndev)3578 fec_enet_close(struct net_device *ndev)
3579 {
3580 	struct fec_enet_private *fep = netdev_priv(ndev);
3581 
3582 	phy_stop(ndev->phydev);
3583 
3584 	if (netif_device_present(ndev)) {
3585 		napi_disable(&fep->napi);
3586 		netif_tx_disable(ndev);
3587 		fec_stop(ndev);
3588 	}
3589 
3590 	phy_disconnect(ndev->phydev);
3591 
3592 	if (fep->quirks & FEC_QUIRK_ERR006687)
3593 		imx6q_cpuidle_fec_irqs_unused();
3594 
3595 	fec_enet_update_ethtool_stats(ndev);
3596 
3597 	fec_enet_clk_enable(ndev, false);
3598 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3599 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3600 
3601 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3602 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3603 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3604 
3605 	fec_enet_free_buffers(ndev);
3606 
3607 	return 0;
3608 }
3609 
3610 /* Set or clear the multicast filter for this adaptor.
3611  * Skeleton taken from sunlance driver.
3612  * The CPM Ethernet implementation allows Multicast as well as individual
3613  * MAC address filtering.  Some of the drivers check to make sure it is
3614  * a group multicast address, and discard those that are not.  I guess I
3615  * will do the same for now, but just remove the test if you want
3616  * individual filtering as well (do the upper net layers want or support
3617  * this kind of feature?).
3618  */
3619 
3620 #define FEC_HASH_BITS	6		/* #bits in hash */
3621 
set_multicast_list(struct net_device * ndev)3622 static void set_multicast_list(struct net_device *ndev)
3623 {
3624 	struct fec_enet_private *fep = netdev_priv(ndev);
3625 	struct netdev_hw_addr *ha;
3626 	unsigned int crc, tmp;
3627 	unsigned char hash;
3628 	unsigned int hash_high = 0, hash_low = 0;
3629 
3630 	if (ndev->flags & IFF_PROMISC) {
3631 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3632 		tmp |= 0x8;
3633 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3634 		return;
3635 	}
3636 
3637 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3638 	tmp &= ~0x8;
3639 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3640 
3641 	if (ndev->flags & IFF_ALLMULTI) {
3642 		/* Catch all multicast addresses, so set the
3643 		 * filter to all 1's
3644 		 */
3645 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3646 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3647 
3648 		return;
3649 	}
3650 
3651 	/* Add the addresses in hash register */
3652 	netdev_for_each_mc_addr(ha, ndev) {
3653 		/* calculate crc32 value of mac address */
3654 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3655 
3656 		/* only upper 6 bits (FEC_HASH_BITS) are used
3657 		 * which point to specific bit in the hash registers
3658 		 */
3659 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3660 
3661 		if (hash > 31)
3662 			hash_high |= 1 << (hash - 32);
3663 		else
3664 			hash_low |= 1 << hash;
3665 	}
3666 
3667 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3668 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3669 }
3670 
3671 /* Set a MAC change in hardware. */
3672 static int
fec_set_mac_address(struct net_device * ndev,void * p)3673 fec_set_mac_address(struct net_device *ndev, void *p)
3674 {
3675 	struct fec_enet_private *fep = netdev_priv(ndev);
3676 	struct sockaddr *addr = p;
3677 
3678 	if (addr) {
3679 		if (!is_valid_ether_addr(addr->sa_data))
3680 			return -EADDRNOTAVAIL;
3681 		eth_hw_addr_set(ndev, addr->sa_data);
3682 	}
3683 
3684 	/* Add netif status check here to avoid system hang in below case:
3685 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3686 	 * After ethx down, fec all clocks are gated off and then register
3687 	 * access causes system hang.
3688 	 */
3689 	if (!netif_running(ndev))
3690 		return 0;
3691 
3692 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3693 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3694 		fep->hwp + FEC_ADDR_LOW);
3695 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3696 		fep->hwp + FEC_ADDR_HIGH);
3697 	return 0;
3698 }
3699 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3700 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3701 	netdev_features_t features)
3702 {
3703 	struct fec_enet_private *fep = netdev_priv(netdev);
3704 	netdev_features_t changed = features ^ netdev->features;
3705 
3706 	netdev->features = features;
3707 
3708 	/* Receive checksum has been changed */
3709 	if (changed & NETIF_F_RXCSUM) {
3710 		if (features & NETIF_F_RXCSUM)
3711 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3712 		else
3713 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3714 	}
3715 }
3716 
fec_set_features(struct net_device * netdev,netdev_features_t features)3717 static int fec_set_features(struct net_device *netdev,
3718 	netdev_features_t features)
3719 {
3720 	struct fec_enet_private *fep = netdev_priv(netdev);
3721 	netdev_features_t changed = features ^ netdev->features;
3722 
3723 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3724 		napi_disable(&fep->napi);
3725 		netif_tx_lock_bh(netdev);
3726 		fec_stop(netdev);
3727 		fec_enet_set_netdev_features(netdev, features);
3728 		fec_restart(netdev);
3729 		netif_tx_wake_all_queues(netdev);
3730 		netif_tx_unlock_bh(netdev);
3731 		napi_enable(&fep->napi);
3732 	} else {
3733 		fec_enet_set_netdev_features(netdev, features);
3734 	}
3735 
3736 	return 0;
3737 }
3738 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3739 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3740 				 struct net_device *sb_dev)
3741 {
3742 	struct fec_enet_private *fep = netdev_priv(ndev);
3743 	u16 vlan_tag = 0;
3744 
3745 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3746 		return netdev_pick_tx(ndev, skb, NULL);
3747 
3748 	/* VLAN is present in the payload.*/
3749 	if (eth_type_vlan(skb->protocol)) {
3750 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3751 
3752 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3753 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3754 	} else if (skb_vlan_tag_present(skb)) {
3755 		vlan_tag = skb->vlan_tci;
3756 	} else {
3757 		return vlan_tag;
3758 	}
3759 
3760 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3761 }
3762 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3763 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3764 {
3765 	struct fec_enet_private *fep = netdev_priv(dev);
3766 	bool is_run = netif_running(dev);
3767 	struct bpf_prog *old_prog;
3768 
3769 	switch (bpf->command) {
3770 	case XDP_SETUP_PROG:
3771 		/* No need to support the SoCs that require to
3772 		 * do the frame swap because the performance wouldn't be
3773 		 * better than the skb mode.
3774 		 */
3775 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3776 			return -EOPNOTSUPP;
3777 
3778 		if (!bpf->prog)
3779 			xdp_features_clear_redirect_target(dev);
3780 
3781 		if (is_run) {
3782 			napi_disable(&fep->napi);
3783 			netif_tx_disable(dev);
3784 		}
3785 
3786 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3787 		if (old_prog)
3788 			bpf_prog_put(old_prog);
3789 
3790 		fec_restart(dev);
3791 
3792 		if (is_run) {
3793 			napi_enable(&fep->napi);
3794 			netif_tx_start_all_queues(dev);
3795 		}
3796 
3797 		if (bpf->prog)
3798 			xdp_features_set_redirect_target(dev, false);
3799 
3800 		return 0;
3801 
3802 	case XDP_SETUP_XSK_POOL:
3803 		return -EOPNOTSUPP;
3804 
3805 	default:
3806 		return -EOPNOTSUPP;
3807 	}
3808 }
3809 
3810 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3811 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3812 {
3813 	if (unlikely(index < 0))
3814 		return 0;
3815 
3816 	return (index % fep->num_tx_queues);
3817 }
3818 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3819 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3820 				   struct fec_enet_priv_tx_q *txq,
3821 				   void *frame, u32 dma_sync_len,
3822 				   bool ndo_xmit)
3823 {
3824 	unsigned int index, status, estatus;
3825 	struct bufdesc *bdp;
3826 	dma_addr_t dma_addr;
3827 	int entries_free;
3828 	u16 frame_len;
3829 
3830 	entries_free = fec_enet_get_free_txdesc_num(txq);
3831 	if (entries_free < MAX_SKB_FRAGS + 1) {
3832 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3833 		return -EBUSY;
3834 	}
3835 
3836 	/* Fill in a Tx ring entry */
3837 	bdp = txq->bd.cur;
3838 	status = fec16_to_cpu(bdp->cbd_sc);
3839 	status &= ~BD_ENET_TX_STATS;
3840 
3841 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3842 
3843 	if (ndo_xmit) {
3844 		struct xdp_frame *xdpf = frame;
3845 
3846 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3847 					  xdpf->len, DMA_TO_DEVICE);
3848 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3849 			return -ENOMEM;
3850 
3851 		frame_len = xdpf->len;
3852 		txq->tx_buf[index].buf_p = xdpf;
3853 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3854 	} else {
3855 		struct xdp_buff *xdpb = frame;
3856 		struct page *page;
3857 
3858 		page = virt_to_page(xdpb->data);
3859 		dma_addr = page_pool_get_dma_addr(page) +
3860 			   (xdpb->data - xdpb->data_hard_start);
3861 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3862 					   dma_sync_len, DMA_BIDIRECTIONAL);
3863 		frame_len = xdpb->data_end - xdpb->data;
3864 		txq->tx_buf[index].buf_p = page;
3865 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3866 	}
3867 
3868 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3869 	if (fep->bufdesc_ex)
3870 		estatus = BD_ENET_TX_INT;
3871 
3872 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3873 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3874 
3875 	if (fep->bufdesc_ex) {
3876 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3877 
3878 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3879 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3880 
3881 		ebdp->cbd_bdu = 0;
3882 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3883 	}
3884 
3885 	/* Make sure the updates to rest of the descriptor are performed before
3886 	 * transferring ownership.
3887 	 */
3888 	dma_wmb();
3889 
3890 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3891 	 * it's the last BD of the frame, and to put the CRC on the end.
3892 	 */
3893 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3894 	bdp->cbd_sc = cpu_to_fec16(status);
3895 
3896 	/* If this was the last BD in the ring, start at the beginning again. */
3897 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3898 
3899 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3900 	dma_wmb();
3901 
3902 	txq->bd.cur = bdp;
3903 
3904 	/* Trigger transmission start */
3905 	writel(0, txq->bd.reg_desc_active);
3906 
3907 	return 0;
3908 }
3909 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3910 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3911 				int cpu, struct xdp_buff *xdp,
3912 				u32 dma_sync_len)
3913 {
3914 	struct fec_enet_priv_tx_q *txq;
3915 	struct netdev_queue *nq;
3916 	int queue, ret;
3917 
3918 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3919 	txq = fep->tx_queue[queue];
3920 	nq = netdev_get_tx_queue(fep->netdev, queue);
3921 
3922 	__netif_tx_lock(nq, cpu);
3923 
3924 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3925 	txq_trans_cond_update(nq);
3926 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3927 
3928 	__netif_tx_unlock(nq);
3929 
3930 	return ret;
3931 }
3932 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3933 static int fec_enet_xdp_xmit(struct net_device *dev,
3934 			     int num_frames,
3935 			     struct xdp_frame **frames,
3936 			     u32 flags)
3937 {
3938 	struct fec_enet_private *fep = netdev_priv(dev);
3939 	struct fec_enet_priv_tx_q *txq;
3940 	int cpu = smp_processor_id();
3941 	unsigned int sent_frames = 0;
3942 	struct netdev_queue *nq;
3943 	unsigned int queue;
3944 	int i;
3945 
3946 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3947 	txq = fep->tx_queue[queue];
3948 	nq = netdev_get_tx_queue(fep->netdev, queue);
3949 
3950 	__netif_tx_lock(nq, cpu);
3951 
3952 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3953 	txq_trans_cond_update(nq);
3954 	for (i = 0; i < num_frames; i++) {
3955 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3956 			break;
3957 		sent_frames++;
3958 	}
3959 
3960 	__netif_tx_unlock(nq);
3961 
3962 	return sent_frames;
3963 }
3964 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3965 static int fec_hwtstamp_get(struct net_device *ndev,
3966 			    struct kernel_hwtstamp_config *config)
3967 {
3968 	struct fec_enet_private *fep = netdev_priv(ndev);
3969 
3970 	if (!netif_running(ndev))
3971 		return -EINVAL;
3972 
3973 	if (!fep->bufdesc_ex)
3974 		return -EOPNOTSUPP;
3975 
3976 	fec_ptp_get(ndev, config);
3977 
3978 	return 0;
3979 }
3980 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3981 static int fec_hwtstamp_set(struct net_device *ndev,
3982 			    struct kernel_hwtstamp_config *config,
3983 			    struct netlink_ext_ack *extack)
3984 {
3985 	struct fec_enet_private *fep = netdev_priv(ndev);
3986 
3987 	if (!netif_running(ndev))
3988 		return -EINVAL;
3989 
3990 	if (!fep->bufdesc_ex)
3991 		return -EOPNOTSUPP;
3992 
3993 	return fec_ptp_set(ndev, config, extack);
3994 }
3995 
3996 static const struct net_device_ops fec_netdev_ops = {
3997 	.ndo_open		= fec_enet_open,
3998 	.ndo_stop		= fec_enet_close,
3999 	.ndo_start_xmit		= fec_enet_start_xmit,
4000 	.ndo_select_queue       = fec_enet_select_queue,
4001 	.ndo_set_rx_mode	= set_multicast_list,
4002 	.ndo_validate_addr	= eth_validate_addr,
4003 	.ndo_tx_timeout		= fec_timeout,
4004 	.ndo_set_mac_address	= fec_set_mac_address,
4005 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4006 	.ndo_set_features	= fec_set_features,
4007 	.ndo_bpf		= fec_enet_bpf,
4008 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4009 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4010 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4011 };
4012 
4013 static const unsigned short offset_des_active_rxq[] = {
4014 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015 };
4016 
4017 static const unsigned short offset_des_active_txq[] = {
4018 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019 };
4020 
4021  /*
4022   * XXX:  We need to clean up on failure exits here.
4023   *
4024   */
fec_enet_init(struct net_device * ndev)4025 static int fec_enet_init(struct net_device *ndev)
4026 {
4027 	struct fec_enet_private *fep = netdev_priv(ndev);
4028 	struct bufdesc *cbd_base;
4029 	dma_addr_t bd_dma;
4030 	int bd_size;
4031 	unsigned int i;
4032 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033 			sizeof(struct bufdesc);
4034 	unsigned dsize_log2 = __fls(dsize);
4035 	int ret;
4036 
4037 	WARN_ON(dsize != (1 << dsize_log2));
4038 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039 	fep->rx_align = 0xf;
4040 	fep->tx_align = 0xf;
4041 #else
4042 	fep->rx_align = 0x3;
4043 	fep->tx_align = 0x3;
4044 #endif
4045 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049 
4050 	/* Check mask of the streaming and coherent API */
4051 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052 	if (ret < 0) {
4053 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054 		return ret;
4055 	}
4056 
4057 	ret = fec_enet_alloc_queue(ndev);
4058 	if (ret)
4059 		return ret;
4060 
4061 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062 
4063 	/* Allocate memory for buffer descriptors. */
4064 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4065 				       GFP_KERNEL);
4066 	if (!cbd_base) {
4067 		ret = -ENOMEM;
4068 		goto free_queue_mem;
4069 	}
4070 
4071 	/* Get the Ethernet address */
4072 	ret = fec_get_mac(ndev);
4073 	if (ret)
4074 		goto free_queue_mem;
4075 
4076 	/* Set receive and transmit descriptor base. */
4077 	for (i = 0; i < fep->num_rx_queues; i++) {
4078 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079 		unsigned size = dsize * rxq->bd.ring_size;
4080 
4081 		rxq->bd.qid = i;
4082 		rxq->bd.base = cbd_base;
4083 		rxq->bd.cur = cbd_base;
4084 		rxq->bd.dma = bd_dma;
4085 		rxq->bd.dsize = dsize;
4086 		rxq->bd.dsize_log2 = dsize_log2;
4087 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088 		bd_dma += size;
4089 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091 	}
4092 
4093 	for (i = 0; i < fep->num_tx_queues; i++) {
4094 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095 		unsigned size = dsize * txq->bd.ring_size;
4096 
4097 		txq->bd.qid = i;
4098 		txq->bd.base = cbd_base;
4099 		txq->bd.cur = cbd_base;
4100 		txq->bd.dma = bd_dma;
4101 		txq->bd.dsize = dsize;
4102 		txq->bd.dsize_log2 = dsize_log2;
4103 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104 		bd_dma += size;
4105 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107 	}
4108 
4109 
4110 	/* The FEC Ethernet specific entries in the device structure */
4111 	ndev->watchdog_timeo = TX_TIMEOUT;
4112 	ndev->netdev_ops = &fec_netdev_ops;
4113 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114 
4115 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117 
4118 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119 		/* enable hw VLAN support */
4120 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4121 
4122 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124 
4125 		/* enable hw accelerator */
4126 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4128 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129 	}
4130 
4131 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132 		fep->tx_align = 0;
4133 		fep->rx_align = 0x3f;
4134 	}
4135 
4136 	ndev->hw_features = ndev->features;
4137 
4138 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140 				     NETDEV_XDP_ACT_REDIRECT;
4141 
4142 	fec_restart(ndev);
4143 
4144 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145 		fec_enet_clear_ethtool_stats(ndev);
4146 	else
4147 		fec_enet_update_ethtool_stats(ndev);
4148 
4149 	return 0;
4150 
4151 free_queue_mem:
4152 	fec_enet_free_queue(ndev);
4153 	return ret;
4154 }
4155 
fec_enet_deinit(struct net_device * ndev)4156 static void fec_enet_deinit(struct net_device *ndev)
4157 {
4158 	struct fec_enet_private *fep = netdev_priv(ndev);
4159 
4160 	netif_napi_del(&fep->napi);
4161 	fec_enet_free_queue(ndev);
4162 }
4163 
4164 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4165 static int fec_reset_phy(struct platform_device *pdev)
4166 {
4167 	struct gpio_desc *phy_reset;
4168 	int msec = 1, phy_post_delay = 0;
4169 	struct device_node *np = pdev->dev.of_node;
4170 	int err;
4171 
4172 	if (!np)
4173 		return 0;
4174 
4175 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4176 	/* A sane reset duration should not be longer than 1s */
4177 	if (!err && msec > 1000)
4178 		msec = 1;
4179 
4180 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4181 	/* valid reset duration should be less than 1s */
4182 	if (!err && phy_post_delay > 1000)
4183 		return -EINVAL;
4184 
4185 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4186 					    GPIOD_OUT_HIGH);
4187 	if (IS_ERR(phy_reset))
4188 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4189 				     "failed to get phy-reset-gpios\n");
4190 
4191 	if (!phy_reset)
4192 		return 0;
4193 
4194 	if (msec > 20)
4195 		msleep(msec);
4196 	else
4197 		usleep_range(msec * 1000, msec * 1000 + 1000);
4198 
4199 	gpiod_set_value_cansleep(phy_reset, 0);
4200 
4201 	if (!phy_post_delay)
4202 		return 0;
4203 
4204 	if (phy_post_delay > 20)
4205 		msleep(phy_post_delay);
4206 	else
4207 		usleep_range(phy_post_delay * 1000,
4208 			     phy_post_delay * 1000 + 1000);
4209 
4210 	return 0;
4211 }
4212 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4213 static int fec_reset_phy(struct platform_device *pdev)
4214 {
4215 	/*
4216 	 * In case of platform probe, the reset has been done
4217 	 * by machine code.
4218 	 */
4219 	return 0;
4220 }
4221 #endif /* CONFIG_OF */
4222 
4223 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4224 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4225 {
4226 	struct device_node *np = pdev->dev.of_node;
4227 
4228 	*num_tx = *num_rx = 1;
4229 
4230 	if (!np || !of_device_is_available(np))
4231 		return;
4232 
4233 	/* parse the num of tx and rx queues */
4234 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4235 
4236 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4237 
4238 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4239 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4240 			 *num_tx);
4241 		*num_tx = 1;
4242 		return;
4243 	}
4244 
4245 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4246 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4247 			 *num_rx);
4248 		*num_rx = 1;
4249 		return;
4250 	}
4251 
4252 }
4253 
fec_enet_get_irq_cnt(struct platform_device * pdev)4254 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4255 {
4256 	int irq_cnt = platform_irq_count(pdev);
4257 
4258 	if (irq_cnt > FEC_IRQ_NUM)
4259 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4260 	else if (irq_cnt == 2)
4261 		irq_cnt = 1;	/* last for pps */
4262 	else if (irq_cnt <= 0)
4263 		irq_cnt = 1;	/* At least 1 irq is needed */
4264 	return irq_cnt;
4265 }
4266 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4267 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4268 {
4269 	struct net_device *ndev = platform_get_drvdata(pdev);
4270 	struct fec_enet_private *fep = netdev_priv(ndev);
4271 
4272 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4273 		fep->wake_irq = fep->irq[2];
4274 	else
4275 		fep->wake_irq = fep->irq[0];
4276 }
4277 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4278 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4279 				   struct device_node *np)
4280 {
4281 	struct device_node *gpr_np;
4282 	u32 out_val[3];
4283 	int ret = 0;
4284 
4285 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4286 	if (!gpr_np)
4287 		return 0;
4288 
4289 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4290 					 ARRAY_SIZE(out_val));
4291 	if (ret) {
4292 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4293 		goto out;
4294 	}
4295 
4296 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4297 	if (IS_ERR(fep->stop_gpr.gpr)) {
4298 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4299 		ret = PTR_ERR(fep->stop_gpr.gpr);
4300 		fep->stop_gpr.gpr = NULL;
4301 		goto out;
4302 	}
4303 
4304 	fep->stop_gpr.reg = out_val[1];
4305 	fep->stop_gpr.bit = out_val[2];
4306 
4307 out:
4308 	of_node_put(gpr_np);
4309 
4310 	return ret;
4311 }
4312 
4313 static int
fec_probe(struct platform_device * pdev)4314 fec_probe(struct platform_device *pdev)
4315 {
4316 	struct fec_enet_private *fep;
4317 	struct fec_platform_data *pdata;
4318 	phy_interface_t interface;
4319 	struct net_device *ndev;
4320 	int i, irq, ret = 0;
4321 	const struct of_device_id *of_id;
4322 	static int dev_id;
4323 	struct device_node *np = pdev->dev.of_node, *phy_node;
4324 	int num_tx_qs;
4325 	int num_rx_qs;
4326 	char irq_name[8];
4327 	int irq_cnt;
4328 	struct fec_devinfo *dev_info;
4329 
4330 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4331 
4332 	/* Init network device */
4333 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4334 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4335 	if (!ndev)
4336 		return -ENOMEM;
4337 
4338 	SET_NETDEV_DEV(ndev, &pdev->dev);
4339 
4340 	/* setup board info structure */
4341 	fep = netdev_priv(ndev);
4342 
4343 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4344 	if (of_id)
4345 		pdev->id_entry = of_id->data;
4346 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4347 	if (dev_info)
4348 		fep->quirks = dev_info->quirks;
4349 
4350 	fep->netdev = ndev;
4351 	fep->num_rx_queues = num_rx_qs;
4352 	fep->num_tx_queues = num_tx_qs;
4353 
4354 #if !defined(CONFIG_M5272)
4355 	/* default enable pause frame auto negotiation */
4356 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4357 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4358 #endif
4359 
4360 	/* Select default pin state */
4361 	pinctrl_pm_select_default_state(&pdev->dev);
4362 
4363 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4364 	if (IS_ERR(fep->hwp)) {
4365 		ret = PTR_ERR(fep->hwp);
4366 		goto failed_ioremap;
4367 	}
4368 
4369 	fep->pdev = pdev;
4370 	fep->dev_id = dev_id++;
4371 
4372 	platform_set_drvdata(pdev, ndev);
4373 
4374 	if ((of_machine_is_compatible("fsl,imx6q") ||
4375 	     of_machine_is_compatible("fsl,imx6dl")) &&
4376 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4377 		fep->quirks |= FEC_QUIRK_ERR006687;
4378 
4379 	ret = fec_enet_ipc_handle_init(fep);
4380 	if (ret)
4381 		goto failed_ipc_init;
4382 
4383 	if (of_property_read_bool(np, "fsl,magic-packet"))
4384 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4385 
4386 	ret = fec_enet_init_stop_mode(fep, np);
4387 	if (ret)
4388 		goto failed_stop_mode;
4389 
4390 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4391 	if (!phy_node && of_phy_is_fixed_link(np)) {
4392 		ret = of_phy_register_fixed_link(np);
4393 		if (ret < 0) {
4394 			dev_err(&pdev->dev,
4395 				"broken fixed-link specification\n");
4396 			goto failed_phy;
4397 		}
4398 		phy_node = of_node_get(np);
4399 	}
4400 	fep->phy_node = phy_node;
4401 
4402 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4403 	if (ret) {
4404 		pdata = dev_get_platdata(&pdev->dev);
4405 		if (pdata)
4406 			fep->phy_interface = pdata->phy;
4407 		else
4408 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4409 	} else {
4410 		fep->phy_interface = interface;
4411 	}
4412 
4413 	ret = fec_enet_parse_rgmii_delay(fep, np);
4414 	if (ret)
4415 		goto failed_rgmii_delay;
4416 
4417 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4418 	if (IS_ERR(fep->clk_ipg)) {
4419 		ret = PTR_ERR(fep->clk_ipg);
4420 		goto failed_clk;
4421 	}
4422 
4423 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4424 	if (IS_ERR(fep->clk_ahb)) {
4425 		ret = PTR_ERR(fep->clk_ahb);
4426 		goto failed_clk;
4427 	}
4428 
4429 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4430 
4431 	/* enet_out is optional, depends on board */
4432 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4433 	if (IS_ERR(fep->clk_enet_out)) {
4434 		ret = PTR_ERR(fep->clk_enet_out);
4435 		goto failed_clk;
4436 	}
4437 
4438 	fep->ptp_clk_on = false;
4439 	mutex_init(&fep->ptp_clk_mutex);
4440 
4441 	/* clk_ref is optional, depends on board */
4442 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4443 	if (IS_ERR(fep->clk_ref)) {
4444 		ret = PTR_ERR(fep->clk_ref);
4445 		goto failed_clk;
4446 	}
4447 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4448 
4449 	/* clk_2x_txclk is optional, depends on board */
4450 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4451 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4452 		if (IS_ERR(fep->clk_2x_txclk))
4453 			fep->clk_2x_txclk = NULL;
4454 	}
4455 
4456 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4457 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4458 	if (IS_ERR(fep->clk_ptp)) {
4459 		fep->clk_ptp = NULL;
4460 		fep->bufdesc_ex = false;
4461 	}
4462 
4463 	ret = fec_enet_clk_enable(ndev, true);
4464 	if (ret)
4465 		goto failed_clk;
4466 
4467 	ret = clk_prepare_enable(fep->clk_ipg);
4468 	if (ret)
4469 		goto failed_clk_ipg;
4470 	ret = clk_prepare_enable(fep->clk_ahb);
4471 	if (ret)
4472 		goto failed_clk_ahb;
4473 
4474 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4475 	if (!IS_ERR(fep->reg_phy)) {
4476 		ret = regulator_enable(fep->reg_phy);
4477 		if (ret) {
4478 			dev_err(&pdev->dev,
4479 				"Failed to enable phy regulator: %d\n", ret);
4480 			goto failed_regulator;
4481 		}
4482 	} else {
4483 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4484 			ret = -EPROBE_DEFER;
4485 			goto failed_regulator;
4486 		}
4487 		fep->reg_phy = NULL;
4488 	}
4489 
4490 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4491 	pm_runtime_use_autosuspend(&pdev->dev);
4492 	pm_runtime_get_noresume(&pdev->dev);
4493 	pm_runtime_set_active(&pdev->dev);
4494 	pm_runtime_enable(&pdev->dev);
4495 
4496 	ret = fec_reset_phy(pdev);
4497 	if (ret)
4498 		goto failed_reset;
4499 
4500 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4501 	if (fep->bufdesc_ex)
4502 		fec_ptp_init(pdev, irq_cnt);
4503 
4504 	ret = fec_enet_init(ndev);
4505 	if (ret)
4506 		goto failed_init;
4507 
4508 	for (i = 0; i < irq_cnt; i++) {
4509 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4510 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4511 		if (irq < 0)
4512 			irq = platform_get_irq(pdev, i);
4513 		if (irq < 0) {
4514 			ret = irq;
4515 			goto failed_irq;
4516 		}
4517 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4518 				       0, pdev->name, ndev);
4519 		if (ret)
4520 			goto failed_irq;
4521 
4522 		fep->irq[i] = irq;
4523 	}
4524 
4525 	/* Decide which interrupt line is wakeup capable */
4526 	fec_enet_get_wakeup_irq(pdev);
4527 
4528 	ret = fec_enet_mii_init(pdev);
4529 	if (ret)
4530 		goto failed_mii_init;
4531 
4532 	/* Carrier starts down, phylib will bring it up */
4533 	netif_carrier_off(ndev);
4534 	fec_enet_clk_enable(ndev, false);
4535 	pinctrl_pm_select_sleep_state(&pdev->dev);
4536 
4537 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4538 
4539 	ret = register_netdev(ndev);
4540 	if (ret)
4541 		goto failed_register;
4542 
4543 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4544 			   FEC_WOL_HAS_MAGIC_PACKET);
4545 
4546 	if (fep->bufdesc_ex && fep->ptp_clock)
4547 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4548 
4549 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4550 
4551 	pm_runtime_mark_last_busy(&pdev->dev);
4552 	pm_runtime_put_autosuspend(&pdev->dev);
4553 
4554 	return 0;
4555 
4556 failed_register:
4557 	fec_enet_mii_remove(fep);
4558 failed_mii_init:
4559 failed_irq:
4560 	fec_enet_deinit(ndev);
4561 failed_init:
4562 	fec_ptp_stop(pdev);
4563 failed_reset:
4564 	pm_runtime_put_noidle(&pdev->dev);
4565 	pm_runtime_disable(&pdev->dev);
4566 	if (fep->reg_phy)
4567 		regulator_disable(fep->reg_phy);
4568 failed_regulator:
4569 	clk_disable_unprepare(fep->clk_ahb);
4570 failed_clk_ahb:
4571 	clk_disable_unprepare(fep->clk_ipg);
4572 failed_clk_ipg:
4573 	fec_enet_clk_enable(ndev, false);
4574 failed_clk:
4575 failed_rgmii_delay:
4576 	if (of_phy_is_fixed_link(np))
4577 		of_phy_deregister_fixed_link(np);
4578 	of_node_put(phy_node);
4579 failed_stop_mode:
4580 failed_ipc_init:
4581 failed_phy:
4582 	dev_id--;
4583 failed_ioremap:
4584 	free_netdev(ndev);
4585 
4586 	return ret;
4587 }
4588 
4589 static void
fec_drv_remove(struct platform_device * pdev)4590 fec_drv_remove(struct platform_device *pdev)
4591 {
4592 	struct net_device *ndev = platform_get_drvdata(pdev);
4593 	struct fec_enet_private *fep = netdev_priv(ndev);
4594 	struct device_node *np = pdev->dev.of_node;
4595 	int ret;
4596 
4597 	ret = pm_runtime_get_sync(&pdev->dev);
4598 	if (ret < 0)
4599 		dev_err(&pdev->dev,
4600 			"Failed to resume device in remove callback (%pe)\n",
4601 			ERR_PTR(ret));
4602 
4603 	cancel_work_sync(&fep->tx_timeout_work);
4604 	fec_ptp_stop(pdev);
4605 	unregister_netdev(ndev);
4606 	fec_enet_mii_remove(fep);
4607 	if (fep->reg_phy)
4608 		regulator_disable(fep->reg_phy);
4609 
4610 	if (of_phy_is_fixed_link(np))
4611 		of_phy_deregister_fixed_link(np);
4612 	of_node_put(fep->phy_node);
4613 
4614 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4615 	 * disabling them again.
4616 	 */
4617 	if (ret >= 0) {
4618 		clk_disable_unprepare(fep->clk_ahb);
4619 		clk_disable_unprepare(fep->clk_ipg);
4620 	}
4621 	pm_runtime_put_noidle(&pdev->dev);
4622 	pm_runtime_disable(&pdev->dev);
4623 
4624 	fec_enet_deinit(ndev);
4625 	free_netdev(ndev);
4626 }
4627 
fec_suspend(struct device * dev)4628 static int __maybe_unused fec_suspend(struct device *dev)
4629 {
4630 	struct net_device *ndev = dev_get_drvdata(dev);
4631 	struct fec_enet_private *fep = netdev_priv(ndev);
4632 	int ret;
4633 
4634 	rtnl_lock();
4635 	if (netif_running(ndev)) {
4636 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4637 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4638 		phy_stop(ndev->phydev);
4639 		napi_disable(&fep->napi);
4640 		netif_tx_lock_bh(ndev);
4641 		netif_device_detach(ndev);
4642 		netif_tx_unlock_bh(ndev);
4643 		fec_stop(ndev);
4644 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4645 			fec_irqs_disable(ndev);
4646 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4647 		} else {
4648 			fec_irqs_disable_except_wakeup(ndev);
4649 			if (fep->wake_irq > 0) {
4650 				disable_irq(fep->wake_irq);
4651 				enable_irq_wake(fep->wake_irq);
4652 			}
4653 			fec_enet_stop_mode(fep, true);
4654 		}
4655 		/* It's safe to disable clocks since interrupts are masked */
4656 		fec_enet_clk_enable(ndev, false);
4657 
4658 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4659 		if (fep->rpm_active) {
4660 			ret = pm_runtime_force_suspend(dev);
4661 			if (ret < 0) {
4662 				rtnl_unlock();
4663 				return ret;
4664 			}
4665 		}
4666 	}
4667 	rtnl_unlock();
4668 
4669 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4670 		regulator_disable(fep->reg_phy);
4671 
4672 	/* SOC supply clock to phy, when clock is disabled, phy link down
4673 	 * SOC control phy regulator, when regulator is disabled, phy link down
4674 	 */
4675 	if (fep->clk_enet_out || fep->reg_phy)
4676 		fep->link = 0;
4677 
4678 	return 0;
4679 }
4680 
fec_resume(struct device * dev)4681 static int __maybe_unused fec_resume(struct device *dev)
4682 {
4683 	struct net_device *ndev = dev_get_drvdata(dev);
4684 	struct fec_enet_private *fep = netdev_priv(ndev);
4685 	int ret;
4686 	int val;
4687 
4688 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4689 		ret = regulator_enable(fep->reg_phy);
4690 		if (ret)
4691 			return ret;
4692 	}
4693 
4694 	rtnl_lock();
4695 	if (netif_running(ndev)) {
4696 		if (fep->rpm_active)
4697 			pm_runtime_force_resume(dev);
4698 
4699 		ret = fec_enet_clk_enable(ndev, true);
4700 		if (ret) {
4701 			rtnl_unlock();
4702 			goto failed_clk;
4703 		}
4704 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4705 			fec_enet_stop_mode(fep, false);
4706 			if (fep->wake_irq) {
4707 				disable_irq_wake(fep->wake_irq);
4708 				enable_irq(fep->wake_irq);
4709 			}
4710 
4711 			val = readl(fep->hwp + FEC_ECNTRL);
4712 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4713 			writel(val, fep->hwp + FEC_ECNTRL);
4714 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4715 		} else {
4716 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4717 		}
4718 		fec_restart(ndev);
4719 		netif_tx_lock_bh(ndev);
4720 		netif_device_attach(ndev);
4721 		netif_tx_unlock_bh(ndev);
4722 		napi_enable(&fep->napi);
4723 		phy_init_hw(ndev->phydev);
4724 		phy_start(ndev->phydev);
4725 	}
4726 	rtnl_unlock();
4727 
4728 	return 0;
4729 
4730 failed_clk:
4731 	if (fep->reg_phy)
4732 		regulator_disable(fep->reg_phy);
4733 	return ret;
4734 }
4735 
fec_runtime_suspend(struct device * dev)4736 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4737 {
4738 	struct net_device *ndev = dev_get_drvdata(dev);
4739 	struct fec_enet_private *fep = netdev_priv(ndev);
4740 
4741 	clk_disable_unprepare(fep->clk_ahb);
4742 	clk_disable_unprepare(fep->clk_ipg);
4743 
4744 	return 0;
4745 }
4746 
fec_runtime_resume(struct device * dev)4747 static int __maybe_unused fec_runtime_resume(struct device *dev)
4748 {
4749 	struct net_device *ndev = dev_get_drvdata(dev);
4750 	struct fec_enet_private *fep = netdev_priv(ndev);
4751 	int ret;
4752 
4753 	ret = clk_prepare_enable(fep->clk_ahb);
4754 	if (ret)
4755 		return ret;
4756 	ret = clk_prepare_enable(fep->clk_ipg);
4757 	if (ret)
4758 		goto failed_clk_ipg;
4759 
4760 	return 0;
4761 
4762 failed_clk_ipg:
4763 	clk_disable_unprepare(fep->clk_ahb);
4764 	return ret;
4765 }
4766 
4767 static const struct dev_pm_ops fec_pm_ops = {
4768 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4769 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4770 };
4771 
4772 static struct platform_driver fec_driver = {
4773 	.driver	= {
4774 		.name	= DRIVER_NAME,
4775 		.pm	= &fec_pm_ops,
4776 		.of_match_table = fec_dt_ids,
4777 		.suppress_bind_attrs = true,
4778 	},
4779 	.id_table = fec_devtype,
4780 	.probe	= fec_probe,
4781 	.remove_new = fec_drv_remove,
4782 };
4783 
4784 module_platform_driver(fec_driver);
4785 
4786 MODULE_LICENSE("GPL");
4787