xref: /openbmc/linux/fs/f2fs/data.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
f2fs_destroy_bioset(void)46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
f2fs_is_cp_guaranteed(struct page * page)51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 			page_private_gcing(page))
70 		return true;
71 	return false;
72 }
73 
__read_io_type(struct page * page)74 static enum count_type __read_io_type(struct page *page)
75 {
76 	struct address_space *mapping = page_file_mapping(page);
77 
78 	if (mapping) {
79 		struct inode *inode = mapping->host;
80 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81 
82 		if (inode->i_ino == F2FS_META_INO(sbi))
83 			return F2FS_RD_META;
84 
85 		if (inode->i_ino == F2FS_NODE_INO(sbi))
86 			return F2FS_RD_NODE;
87 	}
88 	return F2FS_RD_DATA;
89 }
90 
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94 	STEP_DECRYPT	= BIT(0),
95 #else
96 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 	STEP_DECOMPRESS	= BIT(1),
100 #else
101 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104 	STEP_VERITY	= BIT(2),
105 #else
106 	STEP_VERITY	= 0,	/* compile out the verity-related code */
107 #endif
108 };
109 
110 struct bio_post_read_ctx {
111 	struct bio *bio;
112 	struct f2fs_sb_info *sbi;
113 	struct work_struct work;
114 	unsigned int enabled_steps;
115 	/*
116 	 * decompression_attempted keeps track of whether
117 	 * f2fs_end_read_compressed_page() has been called on the pages in the
118 	 * bio that belong to a compressed cluster yet.
119 	 */
120 	bool decompression_attempted;
121 	block_t fs_blkaddr;
122 };
123 
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
f2fs_finish_read_bio(struct bio * bio,bool in_task)138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 	struct bio_vec *bv;
141 	struct bvec_iter_all iter_all;
142 	struct bio_post_read_ctx *ctx = bio->bi_private;
143 
144 	bio_for_each_segment_all(bv, bio, iter_all) {
145 		struct page *page = bv->bv_page;
146 
147 		if (f2fs_is_compressed_page(page)) {
148 			if (ctx && !ctx->decompression_attempted)
149 				f2fs_end_read_compressed_page(page, true, 0,
150 							in_task);
151 			f2fs_put_page_dic(page, in_task);
152 			continue;
153 		}
154 
155 		if (bio->bi_status)
156 			ClearPageUptodate(page);
157 		else
158 			SetPageUptodate(page);
159 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160 		unlock_page(page);
161 	}
162 
163 	if (ctx)
164 		mempool_free(ctx, bio_post_read_ctx_pool);
165 	bio_put(bio);
166 }
167 
f2fs_verify_bio(struct work_struct * work)168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 	struct bio_post_read_ctx *ctx =
171 		container_of(work, struct bio_post_read_ctx, work);
172 	struct bio *bio = ctx->bio;
173 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174 
175 	/*
176 	 * fsverity_verify_bio() may call readahead() again, and while verity
177 	 * will be disabled for this, decryption and/or decompression may still
178 	 * be needed, resulting in another bio_post_read_ctx being allocated.
179 	 * So to prevent deadlocks we need to release the current ctx to the
180 	 * mempool first.  This assumes that verity is the last post-read step.
181 	 */
182 	mempool_free(ctx, bio_post_read_ctx_pool);
183 	bio->bi_private = NULL;
184 
185 	/*
186 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187 	 * as those were handled separately by f2fs_end_read_compressed_page().
188 	 */
189 	if (may_have_compressed_pages) {
190 		struct bio_vec *bv;
191 		struct bvec_iter_all iter_all;
192 
193 		bio_for_each_segment_all(bv, bio, iter_all) {
194 			struct page *page = bv->bv_page;
195 
196 			if (!f2fs_is_compressed_page(page) &&
197 			    !fsverity_verify_page(page)) {
198 				bio->bi_status = BLK_STS_IOERR;
199 				break;
200 			}
201 		}
202 	} else {
203 		fsverity_verify_bio(bio);
204 	}
205 
206 	f2fs_finish_read_bio(bio, true);
207 }
208 
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 	struct bio_post_read_ctx *ctx = bio->bi_private;
221 
222 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 		INIT_WORK(&ctx->work, f2fs_verify_bio);
224 		fsverity_enqueue_verify_work(&ctx->work);
225 	} else {
226 		f2fs_finish_read_bio(bio, in_task);
227 	}
228 }
229 
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 		bool in_task)
241 {
242 	struct bio_vec *bv;
243 	struct bvec_iter_all iter_all;
244 	bool all_compressed = true;
245 	block_t blkaddr = ctx->fs_blkaddr;
246 
247 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 		struct page *page = bv->bv_page;
249 
250 		if (f2fs_is_compressed_page(page))
251 			f2fs_end_read_compressed_page(page, false, blkaddr,
252 						      in_task);
253 		else
254 			all_compressed = false;
255 
256 		blkaddr++;
257 	}
258 
259 	ctx->decompression_attempted = true;
260 
261 	/*
262 	 * Optimization: if all the bio's pages are compressed, then scheduling
263 	 * the per-bio verity work is unnecessary, as verity will be fully
264 	 * handled at the compression cluster level.
265 	 */
266 	if (all_compressed)
267 		ctx->enabled_steps &= ~STEP_VERITY;
268 }
269 
f2fs_post_read_work(struct work_struct * work)270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 	struct bio_post_read_ctx *ctx =
273 		container_of(work, struct bio_post_read_ctx, work);
274 	struct bio *bio = ctx->bio;
275 
276 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 		f2fs_finish_read_bio(bio, true);
278 		return;
279 	}
280 
281 	if (ctx->enabled_steps & STEP_DECOMPRESS)
282 		f2fs_handle_step_decompress(ctx, true);
283 
284 	f2fs_verify_and_finish_bio(bio, true);
285 }
286 
f2fs_read_end_io(struct bio * bio)287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 	struct bio_post_read_ctx *ctx;
291 	bool intask = in_task();
292 
293 	iostat_update_and_unbind_ctx(bio);
294 	ctx = bio->bi_private;
295 
296 	if (time_to_inject(sbi, FAULT_READ_IO))
297 		bio->bi_status = BLK_STS_IOERR;
298 
299 	if (bio->bi_status) {
300 		f2fs_finish_read_bio(bio, intask);
301 		return;
302 	}
303 
304 	if (ctx) {
305 		unsigned int enabled_steps = ctx->enabled_steps &
306 					(STEP_DECRYPT | STEP_DECOMPRESS);
307 
308 		/*
309 		 * If we have only decompression step between decompression and
310 		 * decrypt, we don't need post processing for this.
311 		 */
312 		if (enabled_steps == STEP_DECOMPRESS &&
313 				!f2fs_low_mem_mode(sbi)) {
314 			f2fs_handle_step_decompress(ctx, intask);
315 		} else if (enabled_steps) {
316 			INIT_WORK(&ctx->work, f2fs_post_read_work);
317 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 			return;
319 		}
320 	}
321 
322 	f2fs_verify_and_finish_bio(bio, intask);
323 }
324 
f2fs_write_end_io(struct bio * bio)325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 	struct f2fs_sb_info *sbi;
328 	struct bio_vec *bvec;
329 	struct bvec_iter_all iter_all;
330 
331 	iostat_update_and_unbind_ctx(bio);
332 	sbi = bio->bi_private;
333 
334 	if (time_to_inject(sbi, FAULT_WRITE_IO))
335 		bio->bi_status = BLK_STS_IOERR;
336 
337 	bio_for_each_segment_all(bvec, bio, iter_all) {
338 		struct page *page = bvec->bv_page;
339 		enum count_type type = WB_DATA_TYPE(page, false);
340 
341 		fscrypt_finalize_bounce_page(&page);
342 
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344 		if (f2fs_is_compressed_page(page)) {
345 			f2fs_compress_write_end_io(bio, page);
346 			continue;
347 		}
348 #endif
349 
350 		if (unlikely(bio->bi_status)) {
351 			mapping_set_error(page->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 					page->index != nid_of_node(page));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, page))
362 			f2fs_del_fsync_node_entry(sbi, page);
363 		clear_page_private_gcing(page);
364 		end_page_writeback(page);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
f2fs_io_flags(struct f2fs_io_info * fio)419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	unsigned int fua_flag, meta_flag, io_flag;
423 	blk_opf_t op_flags = 0;
424 
425 	if (fio->op != REQ_OP_WRITE)
426 		return 0;
427 	if (fio->type == DATA)
428 		io_flag = fio->sbi->data_io_flag;
429 	else if (fio->type == NODE)
430 		io_flag = fio->sbi->node_io_flag;
431 	else
432 		return 0;
433 
434 	fua_flag = io_flag & temp_mask;
435 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436 
437 	/*
438 	 * data/node io flag bits per temp:
439 	 *      REQ_META     |      REQ_FUA      |
440 	 *    5 |    4 |   3 |    2 |    1 |   0 |
441 	 * Cold | Warm | Hot | Cold | Warm | Hot |
442 	 */
443 	if (BIT(fio->temp) & meta_flag)
444 		op_flags |= REQ_META;
445 	if (BIT(fio->temp) & fua_flag)
446 		op_flags |= REQ_FUA;
447 	return op_flags;
448 }
449 
__bio_alloc(struct f2fs_io_info * fio,int npages)450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452 	struct f2fs_sb_info *sbi = fio->sbi;
453 	struct block_device *bdev;
454 	sector_t sector;
455 	struct bio *bio;
456 
457 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458 	bio = bio_alloc_bioset(bdev, npages,
459 				fio->op | fio->op_flags | f2fs_io_flags(fio),
460 				GFP_NOIO, &f2fs_bioset);
461 	bio->bi_iter.bi_sector = sector;
462 	if (is_read_io(fio->op)) {
463 		bio->bi_end_io = f2fs_read_end_io;
464 		bio->bi_private = NULL;
465 	} else {
466 		bio->bi_end_io = f2fs_write_end_io;
467 		bio->bi_private = sbi;
468 	}
469 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470 
471 	if (fio->io_wbc)
472 		wbc_init_bio(fio->io_wbc, bio);
473 
474 	return bio;
475 }
476 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)477 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 				  pgoff_t first_idx,
479 				  const struct f2fs_io_info *fio,
480 				  gfp_t gfp_mask)
481 {
482 	/*
483 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 	 * read/write raw data without encryption.
485 	 */
486 	if (!fio || !fio->encrypted_page)
487 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488 }
489 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)490 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 				     pgoff_t next_idx,
492 				     const struct f2fs_io_info *fio)
493 {
494 	/*
495 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 	 * read/write raw data without encryption.
497 	 */
498 	if (fio && fio->encrypted_page)
499 		return !bio_has_crypt_ctx(bio);
500 
501 	return fscrypt_mergeable_bio(bio, inode, next_idx);
502 }
503 
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)504 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 				 enum page_type type)
506 {
507 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509 
510 	iostat_update_submit_ctx(bio, type);
511 	submit_bio(bio);
512 }
513 
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)514 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 				  enum page_type type)
516 {
517 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
518 
519 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 		blk_finish_plug(current->plug);
521 
522 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 	iostat_update_submit_ctx(bio, type);
524 	submit_bio(bio);
525 }
526 
__submit_merged_bio(struct f2fs_bio_info * io)527 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 {
529 	struct f2fs_io_info *fio = &io->fio;
530 
531 	if (!io->bio)
532 		return;
533 
534 	if (is_read_io(fio->op)) {
535 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537 	} else {
538 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540 	}
541 	io->bio = NULL;
542 }
543 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)544 static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 						struct page *page, nid_t ino)
546 {
547 	struct bio_vec *bvec;
548 	struct bvec_iter_all iter_all;
549 
550 	if (!bio)
551 		return false;
552 
553 	if (!inode && !page && !ino)
554 		return true;
555 
556 	bio_for_each_segment_all(bvec, bio, iter_all) {
557 		struct page *target = bvec->bv_page;
558 
559 		if (fscrypt_is_bounce_page(target)) {
560 			target = fscrypt_pagecache_page(target);
561 			if (IS_ERR(target))
562 				continue;
563 		}
564 		if (f2fs_is_compressed_page(target)) {
565 			target = f2fs_compress_control_page(target);
566 			if (IS_ERR(target))
567 				continue;
568 		}
569 
570 		if (inode && inode == target->mapping->host)
571 			return true;
572 		if (page && page == target)
573 			return true;
574 		if (ino && ino == ino_of_node(target))
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 	int i;
584 
585 	for (i = 0; i < NR_PAGE_TYPE; i++) {
586 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 		int j;
588 
589 		sbi->write_io[i] = f2fs_kmalloc(sbi,
590 				array_size(n, sizeof(struct f2fs_bio_info)),
591 				GFP_KERNEL);
592 		if (!sbi->write_io[i])
593 			return -ENOMEM;
594 
595 		for (j = HOT; j < n; j++) {
596 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 			sbi->write_io[i][j].sbi = sbi;
598 			sbi->write_io[i][j].bio = NULL;
599 			spin_lock_init(&sbi->write_io[i][j].io_lock);
600 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603 #ifdef CONFIG_BLK_DEV_ZONED
604 			init_completion(&sbi->write_io[i][j].zone_wait);
605 			sbi->write_io[i][j].zone_pending_bio = NULL;
606 			sbi->write_io[i][j].bi_private = NULL;
607 #endif
608 		}
609 	}
610 
611 	return 0;
612 }
613 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)614 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 				enum page_type type, enum temp_type temp)
616 {
617 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619 
620 	f2fs_down_write(&io->io_rwsem);
621 
622 	if (!io->bio)
623 		goto unlock_out;
624 
625 	/* change META to META_FLUSH in the checkpoint procedure */
626 	if (type >= META_FLUSH) {
627 		io->fio.type = META_FLUSH;
628 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 		if (!test_opt(sbi, NOBARRIER))
630 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 	}
632 	__submit_merged_bio(io);
633 unlock_out:
634 	f2fs_up_write(&io->io_rwsem);
635 }
636 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)637 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type, bool force)
640 {
641 	enum temp_type temp;
642 	bool ret = true;
643 
644 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 		if (!force)	{
646 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648 
649 			f2fs_down_read(&io->io_rwsem);
650 			ret = __has_merged_page(io->bio, inode, page, ino);
651 			f2fs_up_read(&io->io_rwsem);
652 		}
653 		if (ret)
654 			__f2fs_submit_merged_write(sbi, type, temp);
655 
656 		/* TODO: use HOT temp only for meta pages now. */
657 		if (type >= META)
658 			break;
659 	}
660 }
661 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)662 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663 {
664 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665 }
666 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)667 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 				struct inode *inode, struct page *page,
669 				nid_t ino, enum page_type type)
670 {
671 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
672 }
673 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)674 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675 {
676 	f2fs_submit_merged_write(sbi, DATA);
677 	f2fs_submit_merged_write(sbi, NODE);
678 	f2fs_submit_merged_write(sbi, META);
679 }
680 
681 /*
682  * Fill the locked page with data located in the block address.
683  * A caller needs to unlock the page on failure.
684  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)685 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686 {
687 	struct bio *bio;
688 	struct page *page = fio->encrypted_page ?
689 			fio->encrypted_page : fio->page;
690 
691 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
694 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
695 		return -EFSCORRUPTED;
696 	}
697 
698 	trace_f2fs_submit_page_bio(page, fio);
699 
700 	/* Allocate a new bio */
701 	bio = __bio_alloc(fio, 1);
702 
703 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
704 			       fio->page->index, fio, GFP_NOIO);
705 
706 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
707 		bio_put(bio);
708 		return -EFAULT;
709 	}
710 
711 	if (fio->io_wbc && !is_read_io(fio->op))
712 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
713 
714 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
715 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
716 
717 	if (is_read_io(bio_op(bio)))
718 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
719 	else
720 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
721 	return 0;
722 }
723 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)724 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
725 				block_t last_blkaddr, block_t cur_blkaddr)
726 {
727 	if (unlikely(sbi->max_io_bytes &&
728 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
729 		return false;
730 	if (last_blkaddr + 1 != cur_blkaddr)
731 		return false;
732 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
733 }
734 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)735 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
736 						struct f2fs_io_info *fio)
737 {
738 	if (io->fio.op != fio->op)
739 		return false;
740 	return io->fio.op_flags == fio->op_flags;
741 }
742 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)743 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
744 					struct f2fs_bio_info *io,
745 					struct f2fs_io_info *fio,
746 					block_t last_blkaddr,
747 					block_t cur_blkaddr)
748 {
749 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
750 		return false;
751 	return io_type_is_mergeable(io, fio);
752 }
753 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)754 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
755 				struct page *page, enum temp_type temp)
756 {
757 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
758 	struct bio_entry *be;
759 
760 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
761 	be->bio = bio;
762 	bio_get(bio);
763 
764 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
765 		f2fs_bug_on(sbi, 1);
766 
767 	f2fs_down_write(&io->bio_list_lock);
768 	list_add_tail(&be->list, &io->bio_list);
769 	f2fs_up_write(&io->bio_list_lock);
770 }
771 
del_bio_entry(struct bio_entry * be)772 static void del_bio_entry(struct bio_entry *be)
773 {
774 	list_del(&be->list);
775 	kmem_cache_free(bio_entry_slab, be);
776 }
777 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)778 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
779 							struct page *page)
780 {
781 	struct f2fs_sb_info *sbi = fio->sbi;
782 	enum temp_type temp;
783 	bool found = false;
784 	int ret = -EAGAIN;
785 
786 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
787 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
788 		struct list_head *head = &io->bio_list;
789 		struct bio_entry *be;
790 
791 		f2fs_down_write(&io->bio_list_lock);
792 		list_for_each_entry(be, head, list) {
793 			if (be->bio != *bio)
794 				continue;
795 
796 			found = true;
797 
798 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
799 							    *fio->last_block,
800 							    fio->new_blkaddr));
801 			if (f2fs_crypt_mergeable_bio(*bio,
802 					fio->page->mapping->host,
803 					fio->page->index, fio) &&
804 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
805 					PAGE_SIZE) {
806 				ret = 0;
807 				break;
808 			}
809 
810 			/* page can't be merged into bio; submit the bio */
811 			del_bio_entry(be);
812 			f2fs_submit_write_bio(sbi, *bio, DATA);
813 			break;
814 		}
815 		f2fs_up_write(&io->bio_list_lock);
816 	}
817 
818 	if (ret) {
819 		bio_put(*bio);
820 		*bio = NULL;
821 	}
822 
823 	return ret;
824 }
825 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)826 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
827 					struct bio **bio, struct page *page)
828 {
829 	enum temp_type temp;
830 	bool found = false;
831 	struct bio *target = bio ? *bio : NULL;
832 
833 	f2fs_bug_on(sbi, !target && !page);
834 
835 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 		struct list_head *head = &io->bio_list;
838 		struct bio_entry *be;
839 
840 		if (list_empty(head))
841 			continue;
842 
843 		f2fs_down_read(&io->bio_list_lock);
844 		list_for_each_entry(be, head, list) {
845 			if (target)
846 				found = (target == be->bio);
847 			else
848 				found = __has_merged_page(be->bio, NULL,
849 								page, 0);
850 			if (found)
851 				break;
852 		}
853 		f2fs_up_read(&io->bio_list_lock);
854 
855 		if (!found)
856 			continue;
857 
858 		found = false;
859 
860 		f2fs_down_write(&io->bio_list_lock);
861 		list_for_each_entry(be, head, list) {
862 			if (target)
863 				found = (target == be->bio);
864 			else
865 				found = __has_merged_page(be->bio, NULL,
866 								page, 0);
867 			if (found) {
868 				target = be->bio;
869 				del_bio_entry(be);
870 				break;
871 			}
872 		}
873 		f2fs_up_write(&io->bio_list_lock);
874 	}
875 
876 	if (found)
877 		f2fs_submit_write_bio(sbi, target, DATA);
878 	if (bio && *bio) {
879 		bio_put(*bio);
880 		*bio = NULL;
881 	}
882 }
883 
f2fs_merge_page_bio(struct f2fs_io_info * fio)884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 	struct bio *bio = *fio->bio;
887 	struct page *page = fio->encrypted_page ?
888 			fio->encrypted_page : fio->page;
889 
890 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
892 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
893 		return -EFSCORRUPTED;
894 	}
895 
896 	trace_f2fs_submit_page_bio(page, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 				       fio->page->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, page, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, page))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	struct block_device *bdev = sbi->sb->s_bdev;
928 	int devi = 0;
929 
930 	if (f2fs_is_multi_device(sbi)) {
931 		devi = f2fs_target_device_index(sbi, blkaddr);
932 		if (blkaddr < FDEV(devi).start_blk ||
933 		    blkaddr > FDEV(devi).end_blk) {
934 			f2fs_err(sbi, "Invalid block %x", blkaddr);
935 			return false;
936 		}
937 		blkaddr -= FDEV(devi).start_blk;
938 		bdev = FDEV(devi).bdev;
939 	}
940 	return bdev_is_zoned(bdev) &&
941 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943 }
944 #endif
945 
f2fs_submit_page_write(struct f2fs_io_info * fio)946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 	struct f2fs_sb_info *sbi = fio->sbi;
949 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 	struct page *bio_page;
952 	enum count_type type;
953 
954 	f2fs_bug_on(sbi, is_read_io(fio->op));
955 
956 	f2fs_down_write(&io->io_rwsem);
957 next:
958 #ifdef CONFIG_BLK_DEV_ZONED
959 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960 		wait_for_completion_io(&io->zone_wait);
961 		bio_put(io->zone_pending_bio);
962 		io->zone_pending_bio = NULL;
963 		io->bi_private = NULL;
964 	}
965 #endif
966 
967 	if (fio->in_list) {
968 		spin_lock(&io->io_lock);
969 		if (list_empty(&io->io_list)) {
970 			spin_unlock(&io->io_lock);
971 			goto out;
972 		}
973 		fio = list_first_entry(&io->io_list,
974 						struct f2fs_io_info, list);
975 		list_del(&fio->list);
976 		spin_unlock(&io->io_lock);
977 	}
978 
979 	verify_fio_blkaddr(fio);
980 
981 	if (fio->encrypted_page)
982 		bio_page = fio->encrypted_page;
983 	else if (fio->compressed_page)
984 		bio_page = fio->compressed_page;
985 	else
986 		bio_page = fio->page;
987 
988 	/* set submitted = true as a return value */
989 	fio->submitted = 1;
990 
991 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
992 	inc_page_count(sbi, type);
993 
994 	if (io->bio &&
995 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996 			      fio->new_blkaddr) ||
997 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
998 				       bio_page->index, fio)))
999 		__submit_merged_bio(io);
1000 alloc_new:
1001 	if (io->bio == NULL) {
1002 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1004 				       bio_page->index, fio, GFP_NOIO);
1005 		io->fio = *fio;
1006 	}
1007 
1008 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1009 		__submit_merged_bio(io);
1010 		goto alloc_new;
1011 	}
1012 
1013 	if (fio->io_wbc)
1014 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1015 
1016 	io->last_block_in_bio = fio->new_blkaddr;
1017 
1018 	trace_f2fs_submit_page_write(fio->page, fio);
1019 #ifdef CONFIG_BLK_DEV_ZONED
1020 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1021 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1022 		bio_get(io->bio);
1023 		reinit_completion(&io->zone_wait);
1024 		io->bi_private = io->bio->bi_private;
1025 		io->bio->bi_private = io;
1026 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1027 		io->zone_pending_bio = io->bio;
1028 		__submit_merged_bio(io);
1029 	}
1030 #endif
1031 	if (fio->in_list)
1032 		goto next;
1033 out:
1034 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035 				!f2fs_is_checkpoint_ready(sbi))
1036 		__submit_merged_bio(io);
1037 	f2fs_up_write(&io->io_rwsem);
1038 }
1039 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1040 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041 				      unsigned nr_pages, blk_opf_t op_flag,
1042 				      pgoff_t first_idx, bool for_write)
1043 {
1044 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045 	struct bio *bio;
1046 	struct bio_post_read_ctx *ctx = NULL;
1047 	unsigned int post_read_steps = 0;
1048 	sector_t sector;
1049 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1050 
1051 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052 			       REQ_OP_READ | op_flag,
1053 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1054 	if (!bio)
1055 		return ERR_PTR(-ENOMEM);
1056 	bio->bi_iter.bi_sector = sector;
1057 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 	bio->bi_end_io = f2fs_read_end_io;
1059 
1060 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 		post_read_steps |= STEP_DECRYPT;
1062 
1063 	if (f2fs_need_verity(inode, first_idx))
1064 		post_read_steps |= STEP_VERITY;
1065 
1066 	/*
1067 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1069 	 * bio_post_read_ctx if the file is compressed, but the caller is
1070 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 	 */
1072 
1073 	if (post_read_steps || f2fs_compressed_file(inode)) {
1074 		/* Due to the mempool, this never fails. */
1075 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 		ctx->bio = bio;
1077 		ctx->sbi = sbi;
1078 		ctx->enabled_steps = post_read_steps;
1079 		ctx->fs_blkaddr = blkaddr;
1080 		ctx->decompression_attempted = false;
1081 		bio->bi_private = ctx;
1082 	}
1083 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084 
1085 	return bio;
1086 }
1087 
1088 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1090 				 block_t blkaddr, blk_opf_t op_flags,
1091 				 bool for_write)
1092 {
1093 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 	struct bio *bio;
1095 
1096 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 					page->index, for_write);
1098 	if (IS_ERR(bio))
1099 		return PTR_ERR(bio);
1100 
1101 	/* wait for GCed page writeback via META_MAPPING */
1102 	f2fs_wait_on_block_writeback(inode, blkaddr);
1103 
1104 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1105 		iostat_update_and_unbind_ctx(bio);
1106 		if (bio->bi_private)
1107 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 		bio_put(bio);
1109 		return -EFAULT;
1110 	}
1111 	inc_page_count(sbi, F2FS_RD_DATA);
1112 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 	f2fs_submit_read_bio(sbi, bio, DATA);
1114 	return 0;
1115 }
1116 
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120 
1121 	dn->data_blkaddr = blkaddr;
1122 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124 
1125 /*
1126  * Lock ordering for the change of data block address:
1127  * ->data_page
1128  *  ->node_page
1129  *    update block addresses in the node page
1130  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134 	__set_data_blkaddr(dn, blkaddr);
1135 	if (set_page_dirty(dn->node_page))
1136 		dn->node_changed = true;
1137 }
1138 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 	f2fs_set_data_blkaddr(dn, blkaddr);
1142 	f2fs_update_read_extent_cache(dn);
1143 }
1144 
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 	int err;
1150 
1151 	if (!count)
1152 		return 0;
1153 
1154 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 		return -EPERM;
1156 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 	if (unlikely(err))
1158 		return err;
1159 
1160 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 						dn->ofs_in_node, count);
1162 
1163 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164 
1165 	for (; count > 0; dn->ofs_in_node++) {
1166 		block_t blkaddr = f2fs_data_blkaddr(dn);
1167 
1168 		if (blkaddr == NULL_ADDR) {
1169 			__set_data_blkaddr(dn, NEW_ADDR);
1170 			count--;
1171 		}
1172 	}
1173 
1174 	if (set_page_dirty(dn->node_page))
1175 		dn->node_changed = true;
1176 	return 0;
1177 }
1178 
1179 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 	unsigned int ofs_in_node = dn->ofs_in_node;
1183 	int ret;
1184 
1185 	ret = f2fs_reserve_new_blocks(dn, 1);
1186 	dn->ofs_in_node = ofs_in_node;
1187 	return ret;
1188 }
1189 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 	bool need_put = dn->inode_page ? false : true;
1193 	int err;
1194 
1195 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 	if (err)
1197 		return err;
1198 
1199 	if (dn->data_blkaddr == NULL_ADDR)
1200 		err = f2fs_reserve_new_block(dn);
1201 	if (err || need_put)
1202 		f2fs_put_dnode(dn);
1203 	return err;
1204 }
1205 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1207 				     blk_opf_t op_flags, bool for_write,
1208 				     pgoff_t *next_pgofs)
1209 {
1210 	struct address_space *mapping = inode->i_mapping;
1211 	struct dnode_of_data dn;
1212 	struct page *page;
1213 	int err;
1214 
1215 	page = f2fs_grab_cache_page(mapping, index, for_write);
1216 	if (!page)
1217 		return ERR_PTR(-ENOMEM);
1218 
1219 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1220 						&dn.data_blkaddr)) {
1221 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1222 						DATA_GENERIC_ENHANCE_READ)) {
1223 			err = -EFSCORRUPTED;
1224 			f2fs_handle_error(F2FS_I_SB(inode),
1225 						ERROR_INVALID_BLKADDR);
1226 			goto put_err;
1227 		}
1228 		goto got_it;
1229 	}
1230 
1231 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1233 	if (err) {
1234 		if (err == -ENOENT && next_pgofs)
1235 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1236 		goto put_err;
1237 	}
1238 	f2fs_put_dnode(&dn);
1239 
1240 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1241 		err = -ENOENT;
1242 		if (next_pgofs)
1243 			*next_pgofs = index + 1;
1244 		goto put_err;
1245 	}
1246 	if (dn.data_blkaddr != NEW_ADDR &&
1247 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1248 						dn.data_blkaddr,
1249 						DATA_GENERIC_ENHANCE)) {
1250 		err = -EFSCORRUPTED;
1251 		f2fs_handle_error(F2FS_I_SB(inode),
1252 					ERROR_INVALID_BLKADDR);
1253 		goto put_err;
1254 	}
1255 got_it:
1256 	if (PageUptodate(page)) {
1257 		unlock_page(page);
1258 		return page;
1259 	}
1260 
1261 	/*
1262 	 * A new dentry page is allocated but not able to be written, since its
1263 	 * new inode page couldn't be allocated due to -ENOSPC.
1264 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1265 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1266 	 * f2fs_init_inode_metadata.
1267 	 */
1268 	if (dn.data_blkaddr == NEW_ADDR) {
1269 		zero_user_segment(page, 0, PAGE_SIZE);
1270 		if (!PageUptodate(page))
1271 			SetPageUptodate(page);
1272 		unlock_page(page);
1273 		return page;
1274 	}
1275 
1276 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1277 						op_flags, for_write);
1278 	if (err)
1279 		goto put_err;
1280 	return page;
1281 
1282 put_err:
1283 	f2fs_put_page(page, 1);
1284 	return ERR_PTR(err);
1285 }
1286 
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1287 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1288 					pgoff_t *next_pgofs)
1289 {
1290 	struct address_space *mapping = inode->i_mapping;
1291 	struct page *page;
1292 
1293 	page = find_get_page(mapping, index);
1294 	if (page && PageUptodate(page))
1295 		return page;
1296 	f2fs_put_page(page, 0);
1297 
1298 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1299 	if (IS_ERR(page))
1300 		return page;
1301 
1302 	if (PageUptodate(page))
1303 		return page;
1304 
1305 	wait_on_page_locked(page);
1306 	if (unlikely(!PageUptodate(page))) {
1307 		f2fs_put_page(page, 0);
1308 		return ERR_PTR(-EIO);
1309 	}
1310 	return page;
1311 }
1312 
1313 /*
1314  * If it tries to access a hole, return an error.
1315  * Because, the callers, functions in dir.c and GC, should be able to know
1316  * whether this page exists or not.
1317  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1318 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1319 							bool for_write)
1320 {
1321 	struct address_space *mapping = inode->i_mapping;
1322 	struct page *page;
1323 
1324 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1325 	if (IS_ERR(page))
1326 		return page;
1327 
1328 	/* wait for read completion */
1329 	lock_page(page);
1330 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1331 		f2fs_put_page(page, 1);
1332 		return ERR_PTR(-EIO);
1333 	}
1334 	return page;
1335 }
1336 
1337 /*
1338  * Caller ensures that this data page is never allocated.
1339  * A new zero-filled data page is allocated in the page cache.
1340  *
1341  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1342  * f2fs_unlock_op().
1343  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344  * ipage should be released by this function.
1345  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 		struct page *ipage, pgoff_t index, bool new_i_size)
1348 {
1349 	struct address_space *mapping = inode->i_mapping;
1350 	struct page *page;
1351 	struct dnode_of_data dn;
1352 	int err;
1353 
1354 	page = f2fs_grab_cache_page(mapping, index, true);
1355 	if (!page) {
1356 		/*
1357 		 * before exiting, we should make sure ipage will be released
1358 		 * if any error occur.
1359 		 */
1360 		f2fs_put_page(ipage, 1);
1361 		return ERR_PTR(-ENOMEM);
1362 	}
1363 
1364 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 	err = f2fs_reserve_block(&dn, index);
1366 	if (err) {
1367 		f2fs_put_page(page, 1);
1368 		return ERR_PTR(err);
1369 	}
1370 	if (!ipage)
1371 		f2fs_put_dnode(&dn);
1372 
1373 	if (PageUptodate(page))
1374 		goto got_it;
1375 
1376 	if (dn.data_blkaddr == NEW_ADDR) {
1377 		zero_user_segment(page, 0, PAGE_SIZE);
1378 		if (!PageUptodate(page))
1379 			SetPageUptodate(page);
1380 	} else {
1381 		f2fs_put_page(page, 1);
1382 
1383 		/* if ipage exists, blkaddr should be NEW_ADDR */
1384 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 		page = f2fs_get_lock_data_page(inode, index, true);
1386 		if (IS_ERR(page))
1387 			return page;
1388 	}
1389 got_it:
1390 	if (new_i_size && i_size_read(inode) <
1391 				((loff_t)(index + 1) << PAGE_SHIFT))
1392 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1393 	return page;
1394 }
1395 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1397 {
1398 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 	struct f2fs_summary sum;
1400 	struct node_info ni;
1401 	block_t old_blkaddr;
1402 	blkcnt_t count = 1;
1403 	int err;
1404 
1405 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1406 		return -EPERM;
1407 
1408 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1409 	if (err)
1410 		return err;
1411 
1412 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 	if (dn->data_blkaddr == NULL_ADDR) {
1414 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1415 		if (unlikely(err))
1416 			return err;
1417 	}
1418 
1419 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1420 	old_blkaddr = dn->data_blkaddr;
1421 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1422 				&sum, seg_type, NULL);
1423 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1425 
1426 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427 	return 0;
1428 }
1429 
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1430 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1431 {
1432 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1433 		f2fs_down_read(&sbi->node_change);
1434 	else
1435 		f2fs_lock_op(sbi);
1436 }
1437 
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1438 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1439 {
1440 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1441 		f2fs_up_read(&sbi->node_change);
1442 	else
1443 		f2fs_unlock_op(sbi);
1444 }
1445 
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1446 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1447 {
1448 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1449 	int err = 0;
1450 
1451 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1452 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1453 						&dn->data_blkaddr))
1454 		err = f2fs_reserve_block(dn, index);
1455 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1456 
1457 	return err;
1458 }
1459 
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1460 static int f2fs_map_no_dnode(struct inode *inode,
1461 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1462 		pgoff_t pgoff)
1463 {
1464 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1465 
1466 	/*
1467 	 * There is one exceptional case that read_node_page() may return
1468 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1469 	 * -EIO in that case.
1470 	 */
1471 	if (map->m_may_create &&
1472 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1473 		return -EIO;
1474 
1475 	if (map->m_next_pgofs)
1476 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1477 	if (map->m_next_extent)
1478 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1479 	return 0;
1480 }
1481 
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1482 static bool f2fs_map_blocks_cached(struct inode *inode,
1483 		struct f2fs_map_blocks *map, int flag)
1484 {
1485 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1486 	unsigned int maxblocks = map->m_len;
1487 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1488 	struct extent_info ei = {};
1489 
1490 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1491 		return false;
1492 
1493 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1494 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1495 	map->m_flags = F2FS_MAP_MAPPED;
1496 	if (map->m_next_extent)
1497 		*map->m_next_extent = pgoff + map->m_len;
1498 
1499 	/* for hardware encryption, but to avoid potential issue in future */
1500 	if (flag == F2FS_GET_BLOCK_DIO)
1501 		f2fs_wait_on_block_writeback_range(inode,
1502 					map->m_pblk, map->m_len);
1503 
1504 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1505 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1506 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1507 
1508 		map->m_bdev = dev->bdev;
1509 		map->m_pblk -= dev->start_blk;
1510 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1511 	} else {
1512 		map->m_bdev = inode->i_sb->s_bdev;
1513 	}
1514 	return true;
1515 }
1516 
1517 /*
1518  * f2fs_map_blocks() tries to find or build mapping relationship which
1519  * maps continuous logical blocks to physical blocks, and return such
1520  * info via f2fs_map_blocks structure.
1521  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1522 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1523 {
1524 	unsigned int maxblocks = map->m_len;
1525 	struct dnode_of_data dn;
1526 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1527 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1528 	pgoff_t pgofs, end_offset, end;
1529 	int err = 0, ofs = 1;
1530 	unsigned int ofs_in_node, last_ofs_in_node;
1531 	blkcnt_t prealloc;
1532 	block_t blkaddr;
1533 	unsigned int start_pgofs;
1534 	int bidx = 0;
1535 	bool is_hole;
1536 
1537 	if (!maxblocks)
1538 		return 0;
1539 
1540 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1541 		goto out;
1542 
1543 	map->m_bdev = inode->i_sb->s_bdev;
1544 	map->m_multidev_dio =
1545 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1546 
1547 	map->m_len = 0;
1548 	map->m_flags = 0;
1549 
1550 	/* it only supports block size == page size */
1551 	pgofs =	(pgoff_t)map->m_lblk;
1552 	end = pgofs + maxblocks;
1553 
1554 next_dnode:
1555 	if (map->m_may_create)
1556 		f2fs_map_lock(sbi, flag);
1557 
1558 	/* When reading holes, we need its node page */
1559 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1560 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1561 	if (err) {
1562 		if (flag == F2FS_GET_BLOCK_BMAP)
1563 			map->m_pblk = 0;
1564 		if (err == -ENOENT)
1565 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1566 		goto unlock_out;
1567 	}
1568 
1569 	start_pgofs = pgofs;
1570 	prealloc = 0;
1571 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1572 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1573 
1574 next_block:
1575 	blkaddr = f2fs_data_blkaddr(&dn);
1576 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1577 	if (!is_hole &&
1578 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1579 		err = -EFSCORRUPTED;
1580 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1581 		goto sync_out;
1582 	}
1583 
1584 	/* use out-place-update for direct IO under LFS mode */
1585 	if (map->m_may_create &&
1586 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1587 		if (unlikely(f2fs_cp_error(sbi))) {
1588 			err = -EIO;
1589 			goto sync_out;
1590 		}
1591 
1592 		switch (flag) {
1593 		case F2FS_GET_BLOCK_PRE_AIO:
1594 			if (blkaddr == NULL_ADDR) {
1595 				prealloc++;
1596 				last_ofs_in_node = dn.ofs_in_node;
1597 			}
1598 			break;
1599 		case F2FS_GET_BLOCK_PRE_DIO:
1600 		case F2FS_GET_BLOCK_DIO:
1601 			err = __allocate_data_block(&dn, map->m_seg_type);
1602 			if (err)
1603 				goto sync_out;
1604 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1605 				file_need_truncate(inode);
1606 			set_inode_flag(inode, FI_APPEND_WRITE);
1607 			break;
1608 		default:
1609 			WARN_ON_ONCE(1);
1610 			err = -EIO;
1611 			goto sync_out;
1612 		}
1613 
1614 		blkaddr = dn.data_blkaddr;
1615 		if (is_hole)
1616 			map->m_flags |= F2FS_MAP_NEW;
1617 	} else if (is_hole) {
1618 		if (f2fs_compressed_file(inode) &&
1619 		    f2fs_sanity_check_cluster(&dn)) {
1620 			err = -EFSCORRUPTED;
1621 			f2fs_handle_error(sbi,
1622 					ERROR_CORRUPTED_CLUSTER);
1623 			goto sync_out;
1624 		}
1625 
1626 		switch (flag) {
1627 		case F2FS_GET_BLOCK_PRECACHE:
1628 			goto sync_out;
1629 		case F2FS_GET_BLOCK_BMAP:
1630 			map->m_pblk = 0;
1631 			goto sync_out;
1632 		case F2FS_GET_BLOCK_FIEMAP:
1633 			if (blkaddr == NULL_ADDR) {
1634 				if (map->m_next_pgofs)
1635 					*map->m_next_pgofs = pgofs + 1;
1636 				goto sync_out;
1637 			}
1638 			break;
1639 		default:
1640 			/* for defragment case */
1641 			if (map->m_next_pgofs)
1642 				*map->m_next_pgofs = pgofs + 1;
1643 			goto sync_out;
1644 		}
1645 	}
1646 
1647 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1648 		goto skip;
1649 
1650 	if (map->m_multidev_dio)
1651 		bidx = f2fs_target_device_index(sbi, blkaddr);
1652 
1653 	if (map->m_len == 0) {
1654 		/* reserved delalloc block should be mapped for fiemap. */
1655 		if (blkaddr == NEW_ADDR)
1656 			map->m_flags |= F2FS_MAP_DELALLOC;
1657 		map->m_flags |= F2FS_MAP_MAPPED;
1658 
1659 		map->m_pblk = blkaddr;
1660 		map->m_len = 1;
1661 
1662 		if (map->m_multidev_dio)
1663 			map->m_bdev = FDEV(bidx).bdev;
1664 	} else if ((map->m_pblk != NEW_ADDR &&
1665 			blkaddr == (map->m_pblk + ofs)) ||
1666 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1667 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1668 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1669 			goto sync_out;
1670 		ofs++;
1671 		map->m_len++;
1672 	} else {
1673 		goto sync_out;
1674 	}
1675 
1676 skip:
1677 	dn.ofs_in_node++;
1678 	pgofs++;
1679 
1680 	/* preallocate blocks in batch for one dnode page */
1681 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1682 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1683 
1684 		dn.ofs_in_node = ofs_in_node;
1685 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1686 		if (err)
1687 			goto sync_out;
1688 
1689 		map->m_len += dn.ofs_in_node - ofs_in_node;
1690 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1691 			err = -ENOSPC;
1692 			goto sync_out;
1693 		}
1694 		dn.ofs_in_node = end_offset;
1695 	}
1696 
1697 	if (pgofs >= end)
1698 		goto sync_out;
1699 	else if (dn.ofs_in_node < end_offset)
1700 		goto next_block;
1701 
1702 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1703 		if (map->m_flags & F2FS_MAP_MAPPED) {
1704 			unsigned int ofs = start_pgofs - map->m_lblk;
1705 
1706 			f2fs_update_read_extent_cache_range(&dn,
1707 				start_pgofs, map->m_pblk + ofs,
1708 				map->m_len - ofs);
1709 		}
1710 	}
1711 
1712 	f2fs_put_dnode(&dn);
1713 
1714 	if (map->m_may_create) {
1715 		f2fs_map_unlock(sbi, flag);
1716 		f2fs_balance_fs(sbi, dn.node_changed);
1717 	}
1718 	goto next_dnode;
1719 
1720 sync_out:
1721 
1722 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1723 		/*
1724 		 * for hardware encryption, but to avoid potential issue
1725 		 * in future
1726 		 */
1727 		f2fs_wait_on_block_writeback_range(inode,
1728 						map->m_pblk, map->m_len);
1729 
1730 		if (map->m_multidev_dio) {
1731 			block_t blk_addr = map->m_pblk;
1732 
1733 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1734 
1735 			map->m_bdev = FDEV(bidx).bdev;
1736 			map->m_pblk -= FDEV(bidx).start_blk;
1737 
1738 			if (map->m_may_create)
1739 				f2fs_update_device_state(sbi, inode->i_ino,
1740 							blk_addr, map->m_len);
1741 
1742 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1743 						FDEV(bidx).end_blk + 1);
1744 		}
1745 	}
1746 
1747 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1748 		if (map->m_flags & F2FS_MAP_MAPPED) {
1749 			unsigned int ofs = start_pgofs - map->m_lblk;
1750 
1751 			f2fs_update_read_extent_cache_range(&dn,
1752 				start_pgofs, map->m_pblk + ofs,
1753 				map->m_len - ofs);
1754 		}
1755 		if (map->m_next_extent)
1756 			*map->m_next_extent = pgofs + 1;
1757 	}
1758 	f2fs_put_dnode(&dn);
1759 unlock_out:
1760 	if (map->m_may_create) {
1761 		f2fs_map_unlock(sbi, flag);
1762 		f2fs_balance_fs(sbi, dn.node_changed);
1763 	}
1764 out:
1765 	trace_f2fs_map_blocks(inode, map, flag, err);
1766 	return err;
1767 }
1768 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1769 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1770 {
1771 	struct f2fs_map_blocks map;
1772 	block_t last_lblk;
1773 	int err;
1774 
1775 	if (pos + len > i_size_read(inode))
1776 		return false;
1777 
1778 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1779 	map.m_next_pgofs = NULL;
1780 	map.m_next_extent = NULL;
1781 	map.m_seg_type = NO_CHECK_TYPE;
1782 	map.m_may_create = false;
1783 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1784 
1785 	while (map.m_lblk < last_lblk) {
1786 		map.m_len = last_lblk - map.m_lblk;
1787 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1788 		if (err || map.m_len == 0)
1789 			return false;
1790 		map.m_lblk += map.m_len;
1791 	}
1792 	return true;
1793 }
1794 
bytes_to_blks(struct inode * inode,u64 bytes)1795 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1796 {
1797 	return (bytes >> inode->i_blkbits);
1798 }
1799 
blks_to_bytes(struct inode * inode,u64 blks)1800 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1801 {
1802 	return (blks << inode->i_blkbits);
1803 }
1804 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1805 static int f2fs_xattr_fiemap(struct inode *inode,
1806 				struct fiemap_extent_info *fieinfo)
1807 {
1808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1809 	struct page *page;
1810 	struct node_info ni;
1811 	__u64 phys = 0, len;
1812 	__u32 flags;
1813 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1814 	int err = 0;
1815 
1816 	if (f2fs_has_inline_xattr(inode)) {
1817 		int offset;
1818 
1819 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1820 						inode->i_ino, false);
1821 		if (!page)
1822 			return -ENOMEM;
1823 
1824 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1825 		if (err) {
1826 			f2fs_put_page(page, 1);
1827 			return err;
1828 		}
1829 
1830 		phys = blks_to_bytes(inode, ni.blk_addr);
1831 		offset = offsetof(struct f2fs_inode, i_addr) +
1832 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1833 					get_inline_xattr_addrs(inode));
1834 
1835 		phys += offset;
1836 		len = inline_xattr_size(inode);
1837 
1838 		f2fs_put_page(page, 1);
1839 
1840 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1841 
1842 		if (!xnid)
1843 			flags |= FIEMAP_EXTENT_LAST;
1844 
1845 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1846 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1847 		if (err)
1848 			return err;
1849 	}
1850 
1851 	if (xnid) {
1852 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1853 		if (!page)
1854 			return -ENOMEM;
1855 
1856 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1857 		if (err) {
1858 			f2fs_put_page(page, 1);
1859 			return err;
1860 		}
1861 
1862 		phys = blks_to_bytes(inode, ni.blk_addr);
1863 		len = inode->i_sb->s_blocksize;
1864 
1865 		f2fs_put_page(page, 1);
1866 
1867 		flags = FIEMAP_EXTENT_LAST;
1868 	}
1869 
1870 	if (phys) {
1871 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1872 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1873 	}
1874 
1875 	return (err < 0 ? err : 0);
1876 }
1877 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1878 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1879 		u64 start, u64 len)
1880 {
1881 	struct f2fs_map_blocks map;
1882 	sector_t start_blk, last_blk;
1883 	pgoff_t next_pgofs;
1884 	u64 logical = 0, phys = 0, size = 0;
1885 	u32 flags = 0;
1886 	int ret = 0;
1887 	bool compr_cluster = false, compr_appended;
1888 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1889 	unsigned int count_in_cluster = 0;
1890 	loff_t maxbytes;
1891 
1892 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1893 		ret = f2fs_precache_extents(inode);
1894 		if (ret)
1895 			return ret;
1896 	}
1897 
1898 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1899 	if (ret)
1900 		return ret;
1901 
1902 	inode_lock(inode);
1903 
1904 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1905 	if (start > maxbytes) {
1906 		ret = -EFBIG;
1907 		goto out;
1908 	}
1909 
1910 	if (len > maxbytes || (maxbytes - len) < start)
1911 		len = maxbytes - start;
1912 
1913 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1914 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1915 		goto out;
1916 	}
1917 
1918 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1919 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1920 		if (ret != -EAGAIN)
1921 			goto out;
1922 	}
1923 
1924 	if (bytes_to_blks(inode, len) == 0)
1925 		len = blks_to_bytes(inode, 1);
1926 
1927 	start_blk = bytes_to_blks(inode, start);
1928 	last_blk = bytes_to_blks(inode, start + len - 1);
1929 
1930 next:
1931 	memset(&map, 0, sizeof(map));
1932 	map.m_lblk = start_blk;
1933 	map.m_len = bytes_to_blks(inode, len);
1934 	map.m_next_pgofs = &next_pgofs;
1935 	map.m_seg_type = NO_CHECK_TYPE;
1936 
1937 	if (compr_cluster) {
1938 		map.m_lblk += 1;
1939 		map.m_len = cluster_size - count_in_cluster;
1940 	}
1941 
1942 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1943 	if (ret)
1944 		goto out;
1945 
1946 	/* HOLE */
1947 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1948 		start_blk = next_pgofs;
1949 
1950 		if (blks_to_bytes(inode, start_blk) < maxbytes)
1951 			goto prep_next;
1952 
1953 		flags |= FIEMAP_EXTENT_LAST;
1954 	}
1955 
1956 	compr_appended = false;
1957 	/* In a case of compressed cluster, append this to the last extent */
1958 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1959 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1960 		compr_appended = true;
1961 		goto skip_fill;
1962 	}
1963 
1964 	if (size) {
1965 		flags |= FIEMAP_EXTENT_MERGED;
1966 		if (IS_ENCRYPTED(inode))
1967 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1968 
1969 		ret = fiemap_fill_next_extent(fieinfo, logical,
1970 				phys, size, flags);
1971 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1972 		if (ret)
1973 			goto out;
1974 		size = 0;
1975 	}
1976 
1977 	if (start_blk > last_blk)
1978 		goto out;
1979 
1980 skip_fill:
1981 	if (map.m_pblk == COMPRESS_ADDR) {
1982 		compr_cluster = true;
1983 		count_in_cluster = 1;
1984 	} else if (compr_appended) {
1985 		unsigned int appended_blks = cluster_size -
1986 						count_in_cluster + 1;
1987 		size += blks_to_bytes(inode, appended_blks);
1988 		start_blk += appended_blks;
1989 		compr_cluster = false;
1990 	} else {
1991 		logical = blks_to_bytes(inode, start_blk);
1992 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
1993 			blks_to_bytes(inode, map.m_pblk) : 0;
1994 		size = blks_to_bytes(inode, map.m_len);
1995 		flags = 0;
1996 
1997 		if (compr_cluster) {
1998 			flags = FIEMAP_EXTENT_ENCODED;
1999 			count_in_cluster += map.m_len;
2000 			if (count_in_cluster == cluster_size) {
2001 				compr_cluster = false;
2002 				size += blks_to_bytes(inode, 1);
2003 			}
2004 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2005 			flags = FIEMAP_EXTENT_UNWRITTEN;
2006 		}
2007 
2008 		start_blk += bytes_to_blks(inode, size);
2009 	}
2010 
2011 prep_next:
2012 	cond_resched();
2013 	if (fatal_signal_pending(current))
2014 		ret = -EINTR;
2015 	else
2016 		goto next;
2017 out:
2018 	if (ret == 1)
2019 		ret = 0;
2020 
2021 	inode_unlock(inode);
2022 	return ret;
2023 }
2024 
f2fs_readpage_limit(struct inode * inode)2025 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2026 {
2027 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2028 		return inode->i_sb->s_maxbytes;
2029 
2030 	return i_size_read(inode);
2031 }
2032 
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2033 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2034 					unsigned nr_pages,
2035 					struct f2fs_map_blocks *map,
2036 					struct bio **bio_ret,
2037 					sector_t *last_block_in_bio,
2038 					bool is_readahead)
2039 {
2040 	struct bio *bio = *bio_ret;
2041 	const unsigned blocksize = blks_to_bytes(inode, 1);
2042 	sector_t block_in_file;
2043 	sector_t last_block;
2044 	sector_t last_block_in_file;
2045 	sector_t block_nr;
2046 	int ret = 0;
2047 
2048 	block_in_file = (sector_t)page_index(page);
2049 	last_block = block_in_file + nr_pages;
2050 	last_block_in_file = bytes_to_blks(inode,
2051 			f2fs_readpage_limit(inode) + blocksize - 1);
2052 	if (last_block > last_block_in_file)
2053 		last_block = last_block_in_file;
2054 
2055 	/* just zeroing out page which is beyond EOF */
2056 	if (block_in_file >= last_block)
2057 		goto zero_out;
2058 	/*
2059 	 * Map blocks using the previous result first.
2060 	 */
2061 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2062 			block_in_file > map->m_lblk &&
2063 			block_in_file < (map->m_lblk + map->m_len))
2064 		goto got_it;
2065 
2066 	/*
2067 	 * Then do more f2fs_map_blocks() calls until we are
2068 	 * done with this page.
2069 	 */
2070 	map->m_lblk = block_in_file;
2071 	map->m_len = last_block - block_in_file;
2072 
2073 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2074 	if (ret)
2075 		goto out;
2076 got_it:
2077 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2078 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2079 		SetPageMappedToDisk(page);
2080 
2081 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2082 						DATA_GENERIC_ENHANCE_READ)) {
2083 			ret = -EFSCORRUPTED;
2084 			f2fs_handle_error(F2FS_I_SB(inode),
2085 						ERROR_INVALID_BLKADDR);
2086 			goto out;
2087 		}
2088 	} else {
2089 zero_out:
2090 		zero_user_segment(page, 0, PAGE_SIZE);
2091 		if (f2fs_need_verity(inode, page->index) &&
2092 		    !fsverity_verify_page(page)) {
2093 			ret = -EIO;
2094 			goto out;
2095 		}
2096 		if (!PageUptodate(page))
2097 			SetPageUptodate(page);
2098 		unlock_page(page);
2099 		goto out;
2100 	}
2101 
2102 	/*
2103 	 * This page will go to BIO.  Do we need to send this
2104 	 * BIO off first?
2105 	 */
2106 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2107 				       *last_block_in_bio, block_nr) ||
2108 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2109 submit_and_realloc:
2110 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2111 		bio = NULL;
2112 	}
2113 	if (bio == NULL) {
2114 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2115 				is_readahead ? REQ_RAHEAD : 0, page->index,
2116 				false);
2117 		if (IS_ERR(bio)) {
2118 			ret = PTR_ERR(bio);
2119 			bio = NULL;
2120 			goto out;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * If the page is under writeback, we need to wait for
2126 	 * its completion to see the correct decrypted data.
2127 	 */
2128 	f2fs_wait_on_block_writeback(inode, block_nr);
2129 
2130 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2131 		goto submit_and_realloc;
2132 
2133 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2134 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2135 							F2FS_BLKSIZE);
2136 	*last_block_in_bio = block_nr;
2137 out:
2138 	*bio_ret = bio;
2139 	return ret;
2140 }
2141 
2142 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2143 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2144 				unsigned nr_pages, sector_t *last_block_in_bio,
2145 				bool is_readahead, bool for_write)
2146 {
2147 	struct dnode_of_data dn;
2148 	struct inode *inode = cc->inode;
2149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2150 	struct bio *bio = *bio_ret;
2151 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2152 	sector_t last_block_in_file;
2153 	const unsigned blocksize = blks_to_bytes(inode, 1);
2154 	struct decompress_io_ctx *dic = NULL;
2155 	struct extent_info ei = {};
2156 	bool from_dnode = true;
2157 	int i;
2158 	int ret = 0;
2159 
2160 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2161 
2162 	last_block_in_file = bytes_to_blks(inode,
2163 			f2fs_readpage_limit(inode) + blocksize - 1);
2164 
2165 	/* get rid of pages beyond EOF */
2166 	for (i = 0; i < cc->cluster_size; i++) {
2167 		struct page *page = cc->rpages[i];
2168 
2169 		if (!page)
2170 			continue;
2171 		if ((sector_t)page->index >= last_block_in_file) {
2172 			zero_user_segment(page, 0, PAGE_SIZE);
2173 			if (!PageUptodate(page))
2174 				SetPageUptodate(page);
2175 		} else if (!PageUptodate(page)) {
2176 			continue;
2177 		}
2178 		unlock_page(page);
2179 		if (for_write)
2180 			put_page(page);
2181 		cc->rpages[i] = NULL;
2182 		cc->nr_rpages--;
2183 	}
2184 
2185 	/* we are done since all pages are beyond EOF */
2186 	if (f2fs_cluster_is_empty(cc))
2187 		goto out;
2188 
2189 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2190 		from_dnode = false;
2191 
2192 	if (!from_dnode)
2193 		goto skip_reading_dnode;
2194 
2195 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2196 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2197 	if (ret)
2198 		goto out;
2199 
2200 	if (unlikely(f2fs_cp_error(sbi))) {
2201 		ret = -EIO;
2202 		goto out_put_dnode;
2203 	}
2204 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2205 
2206 skip_reading_dnode:
2207 	for (i = 1; i < cc->cluster_size; i++) {
2208 		block_t blkaddr;
2209 
2210 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2211 					dn.ofs_in_node + i) :
2212 					ei.blk + i - 1;
2213 
2214 		if (!__is_valid_data_blkaddr(blkaddr))
2215 			break;
2216 
2217 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2218 			ret = -EFAULT;
2219 			goto out_put_dnode;
2220 		}
2221 		cc->nr_cpages++;
2222 
2223 		if (!from_dnode && i >= ei.c_len)
2224 			break;
2225 	}
2226 
2227 	/* nothing to decompress */
2228 	if (cc->nr_cpages == 0) {
2229 		ret = 0;
2230 		goto out_put_dnode;
2231 	}
2232 
2233 	dic = f2fs_alloc_dic(cc);
2234 	if (IS_ERR(dic)) {
2235 		ret = PTR_ERR(dic);
2236 		goto out_put_dnode;
2237 	}
2238 
2239 	for (i = 0; i < cc->nr_cpages; i++) {
2240 		struct page *page = dic->cpages[i];
2241 		block_t blkaddr;
2242 		struct bio_post_read_ctx *ctx;
2243 
2244 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2245 					dn.ofs_in_node + i + 1) :
2246 					ei.blk + i;
2247 
2248 		f2fs_wait_on_block_writeback(inode, blkaddr);
2249 
2250 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2251 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2252 				f2fs_decompress_cluster(dic, true);
2253 				break;
2254 			}
2255 			continue;
2256 		}
2257 
2258 		if (bio && (!page_is_mergeable(sbi, bio,
2259 					*last_block_in_bio, blkaddr) ||
2260 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2261 submit_and_realloc:
2262 			f2fs_submit_read_bio(sbi, bio, DATA);
2263 			bio = NULL;
2264 		}
2265 
2266 		if (!bio) {
2267 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2268 					is_readahead ? REQ_RAHEAD : 0,
2269 					page->index, for_write);
2270 			if (IS_ERR(bio)) {
2271 				ret = PTR_ERR(bio);
2272 				f2fs_decompress_end_io(dic, ret, true);
2273 				f2fs_put_dnode(&dn);
2274 				*bio_ret = NULL;
2275 				return ret;
2276 			}
2277 		}
2278 
2279 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2280 			goto submit_and_realloc;
2281 
2282 		ctx = get_post_read_ctx(bio);
2283 		ctx->enabled_steps |= STEP_DECOMPRESS;
2284 		refcount_inc(&dic->refcnt);
2285 
2286 		inc_page_count(sbi, F2FS_RD_DATA);
2287 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2288 		*last_block_in_bio = blkaddr;
2289 	}
2290 
2291 	if (from_dnode)
2292 		f2fs_put_dnode(&dn);
2293 
2294 	*bio_ret = bio;
2295 	return 0;
2296 
2297 out_put_dnode:
2298 	if (from_dnode)
2299 		f2fs_put_dnode(&dn);
2300 out:
2301 	for (i = 0; i < cc->cluster_size; i++) {
2302 		if (cc->rpages[i]) {
2303 			ClearPageUptodate(cc->rpages[i]);
2304 			unlock_page(cc->rpages[i]);
2305 		}
2306 	}
2307 	*bio_ret = bio;
2308 	return ret;
2309 }
2310 #endif
2311 
2312 /*
2313  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2314  * Major change was from block_size == page_size in f2fs by default.
2315  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2316 static int f2fs_mpage_readpages(struct inode *inode,
2317 		struct readahead_control *rac, struct page *page)
2318 {
2319 	struct bio *bio = NULL;
2320 	sector_t last_block_in_bio = 0;
2321 	struct f2fs_map_blocks map;
2322 #ifdef CONFIG_F2FS_FS_COMPRESSION
2323 	struct compress_ctx cc = {
2324 		.inode = inode,
2325 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2326 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2327 		.cluster_idx = NULL_CLUSTER,
2328 		.rpages = NULL,
2329 		.cpages = NULL,
2330 		.nr_rpages = 0,
2331 		.nr_cpages = 0,
2332 	};
2333 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2334 #endif
2335 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2336 	unsigned max_nr_pages = nr_pages;
2337 	int ret = 0;
2338 
2339 	map.m_pblk = 0;
2340 	map.m_lblk = 0;
2341 	map.m_len = 0;
2342 	map.m_flags = 0;
2343 	map.m_next_pgofs = NULL;
2344 	map.m_next_extent = NULL;
2345 	map.m_seg_type = NO_CHECK_TYPE;
2346 	map.m_may_create = false;
2347 
2348 	for (; nr_pages; nr_pages--) {
2349 		if (rac) {
2350 			page = readahead_page(rac);
2351 			prefetchw(&page->flags);
2352 		}
2353 
2354 #ifdef CONFIG_F2FS_FS_COMPRESSION
2355 		if (f2fs_compressed_file(inode)) {
2356 			/* there are remained compressed pages, submit them */
2357 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2358 				ret = f2fs_read_multi_pages(&cc, &bio,
2359 							max_nr_pages,
2360 							&last_block_in_bio,
2361 							rac != NULL, false);
2362 				f2fs_destroy_compress_ctx(&cc, false);
2363 				if (ret)
2364 					goto set_error_page;
2365 			}
2366 			if (cc.cluster_idx == NULL_CLUSTER) {
2367 				if (nc_cluster_idx ==
2368 					page->index >> cc.log_cluster_size) {
2369 					goto read_single_page;
2370 				}
2371 
2372 				ret = f2fs_is_compressed_cluster(inode, page->index);
2373 				if (ret < 0)
2374 					goto set_error_page;
2375 				else if (!ret) {
2376 					nc_cluster_idx =
2377 						page->index >> cc.log_cluster_size;
2378 					goto read_single_page;
2379 				}
2380 
2381 				nc_cluster_idx = NULL_CLUSTER;
2382 			}
2383 			ret = f2fs_init_compress_ctx(&cc);
2384 			if (ret)
2385 				goto set_error_page;
2386 
2387 			f2fs_compress_ctx_add_page(&cc, page);
2388 
2389 			goto next_page;
2390 		}
2391 read_single_page:
2392 #endif
2393 
2394 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2395 					&bio, &last_block_in_bio, rac);
2396 		if (ret) {
2397 #ifdef CONFIG_F2FS_FS_COMPRESSION
2398 set_error_page:
2399 #endif
2400 			zero_user_segment(page, 0, PAGE_SIZE);
2401 			unlock_page(page);
2402 		}
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 next_page:
2405 #endif
2406 		if (rac)
2407 			put_page(page);
2408 
2409 #ifdef CONFIG_F2FS_FS_COMPRESSION
2410 		if (f2fs_compressed_file(inode)) {
2411 			/* last page */
2412 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2413 				ret = f2fs_read_multi_pages(&cc, &bio,
2414 							max_nr_pages,
2415 							&last_block_in_bio,
2416 							rac != NULL, false);
2417 				f2fs_destroy_compress_ctx(&cc, false);
2418 			}
2419 		}
2420 #endif
2421 	}
2422 	if (bio)
2423 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2424 	return ret;
2425 }
2426 
f2fs_read_data_folio(struct file * file,struct folio * folio)2427 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2428 {
2429 	struct page *page = &folio->page;
2430 	struct inode *inode = page_file_mapping(page)->host;
2431 	int ret = -EAGAIN;
2432 
2433 	trace_f2fs_readpage(page, DATA);
2434 
2435 	if (!f2fs_is_compress_backend_ready(inode)) {
2436 		unlock_page(page);
2437 		return -EOPNOTSUPP;
2438 	}
2439 
2440 	/* If the file has inline data, try to read it directly */
2441 	if (f2fs_has_inline_data(inode))
2442 		ret = f2fs_read_inline_data(inode, page);
2443 	if (ret == -EAGAIN)
2444 		ret = f2fs_mpage_readpages(inode, NULL, page);
2445 	return ret;
2446 }
2447 
f2fs_readahead(struct readahead_control * rac)2448 static void f2fs_readahead(struct readahead_control *rac)
2449 {
2450 	struct inode *inode = rac->mapping->host;
2451 
2452 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2453 
2454 	if (!f2fs_is_compress_backend_ready(inode))
2455 		return;
2456 
2457 	/* If the file has inline data, skip readahead */
2458 	if (f2fs_has_inline_data(inode))
2459 		return;
2460 
2461 	f2fs_mpage_readpages(inode, rac, NULL);
2462 }
2463 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2464 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2465 {
2466 	struct inode *inode = fio->page->mapping->host;
2467 	struct page *mpage, *page;
2468 	gfp_t gfp_flags = GFP_NOFS;
2469 
2470 	if (!f2fs_encrypted_file(inode))
2471 		return 0;
2472 
2473 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2474 
2475 	if (fscrypt_inode_uses_inline_crypto(inode))
2476 		return 0;
2477 
2478 retry_encrypt:
2479 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2480 					PAGE_SIZE, 0, gfp_flags);
2481 	if (IS_ERR(fio->encrypted_page)) {
2482 		/* flush pending IOs and wait for a while in the ENOMEM case */
2483 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2484 			f2fs_flush_merged_writes(fio->sbi);
2485 			memalloc_retry_wait(GFP_NOFS);
2486 			gfp_flags |= __GFP_NOFAIL;
2487 			goto retry_encrypt;
2488 		}
2489 		return PTR_ERR(fio->encrypted_page);
2490 	}
2491 
2492 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2493 	if (mpage) {
2494 		if (PageUptodate(mpage))
2495 			memcpy(page_address(mpage),
2496 				page_address(fio->encrypted_page), PAGE_SIZE);
2497 		f2fs_put_page(mpage, 1);
2498 	}
2499 	return 0;
2500 }
2501 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2502 static inline bool check_inplace_update_policy(struct inode *inode,
2503 				struct f2fs_io_info *fio)
2504 {
2505 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2506 
2507 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2508 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2509 		return false;
2510 	if (IS_F2FS_IPU_FORCE(sbi))
2511 		return true;
2512 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2513 		return true;
2514 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2515 		return true;
2516 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2517 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2518 		return true;
2519 
2520 	/*
2521 	 * IPU for rewrite async pages
2522 	 */
2523 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2524 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2525 		return true;
2526 
2527 	/* this is only set during fdatasync */
2528 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2529 		return true;
2530 
2531 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2532 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2533 		return true;
2534 
2535 	return false;
2536 }
2537 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2538 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2539 {
2540 	/* swap file is migrating in aligned write mode */
2541 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2542 		return false;
2543 
2544 	if (f2fs_is_pinned_file(inode))
2545 		return true;
2546 
2547 	/* if this is cold file, we should overwrite to avoid fragmentation */
2548 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2549 		return true;
2550 
2551 	return check_inplace_update_policy(inode, fio);
2552 }
2553 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2554 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2555 {
2556 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2557 
2558 	/* The below cases were checked when setting it. */
2559 	if (f2fs_is_pinned_file(inode))
2560 		return false;
2561 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2562 		return true;
2563 	if (f2fs_lfs_mode(sbi))
2564 		return true;
2565 	if (S_ISDIR(inode->i_mode))
2566 		return true;
2567 	if (IS_NOQUOTA(inode))
2568 		return true;
2569 	if (f2fs_used_in_atomic_write(inode))
2570 		return true;
2571 
2572 	/* swap file is migrating in aligned write mode */
2573 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2574 		return true;
2575 
2576 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2577 		return true;
2578 
2579 	if (fio) {
2580 		if (page_private_gcing(fio->page))
2581 			return true;
2582 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2583 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2584 			return true;
2585 	}
2586 	return false;
2587 }
2588 
need_inplace_update(struct f2fs_io_info * fio)2589 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2590 {
2591 	struct inode *inode = fio->page->mapping->host;
2592 
2593 	if (f2fs_should_update_outplace(inode, fio))
2594 		return false;
2595 
2596 	return f2fs_should_update_inplace(inode, fio);
2597 }
2598 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2599 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2600 {
2601 	struct page *page = fio->page;
2602 	struct inode *inode = page->mapping->host;
2603 	struct dnode_of_data dn;
2604 	struct node_info ni;
2605 	bool ipu_force = false;
2606 	bool atomic_commit;
2607 	int err = 0;
2608 
2609 	/* Use COW inode to make dnode_of_data for atomic write */
2610 	atomic_commit = f2fs_is_atomic_file(inode) &&
2611 				page_private_atomic(fio->page);
2612 	if (atomic_commit)
2613 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2614 	else
2615 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2616 
2617 	if (need_inplace_update(fio) &&
2618 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2619 						&fio->old_blkaddr)) {
2620 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2621 						DATA_GENERIC_ENHANCE)) {
2622 			f2fs_handle_error(fio->sbi,
2623 						ERROR_INVALID_BLKADDR);
2624 			return -EFSCORRUPTED;
2625 		}
2626 
2627 		ipu_force = true;
2628 		fio->need_lock = LOCK_DONE;
2629 		goto got_it;
2630 	}
2631 
2632 	/* Deadlock due to between page->lock and f2fs_lock_op */
2633 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2634 		return -EAGAIN;
2635 
2636 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2637 	if (err)
2638 		goto out;
2639 
2640 	fio->old_blkaddr = dn.data_blkaddr;
2641 
2642 	/* This page is already truncated */
2643 	if (fio->old_blkaddr == NULL_ADDR) {
2644 		ClearPageUptodate(page);
2645 		clear_page_private_gcing(page);
2646 		goto out_writepage;
2647 	}
2648 got_it:
2649 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2650 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2651 						DATA_GENERIC_ENHANCE)) {
2652 		err = -EFSCORRUPTED;
2653 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2654 		goto out_writepage;
2655 	}
2656 
2657 	/* wait for GCed page writeback via META_MAPPING */
2658 	if (fio->meta_gc)
2659 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2660 
2661 	/*
2662 	 * If current allocation needs SSR,
2663 	 * it had better in-place writes for updated data.
2664 	 */
2665 	if (ipu_force ||
2666 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2667 					need_inplace_update(fio))) {
2668 		err = f2fs_encrypt_one_page(fio);
2669 		if (err)
2670 			goto out_writepage;
2671 
2672 		set_page_writeback(page);
2673 		f2fs_put_dnode(&dn);
2674 		if (fio->need_lock == LOCK_REQ)
2675 			f2fs_unlock_op(fio->sbi);
2676 		err = f2fs_inplace_write_data(fio);
2677 		if (err) {
2678 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2679 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2680 			if (PageWriteback(page))
2681 				end_page_writeback(page);
2682 		} else {
2683 			set_inode_flag(inode, FI_UPDATE_WRITE);
2684 		}
2685 		trace_f2fs_do_write_data_page(fio->page, IPU);
2686 		return err;
2687 	}
2688 
2689 	if (fio->need_lock == LOCK_RETRY) {
2690 		if (!f2fs_trylock_op(fio->sbi)) {
2691 			err = -EAGAIN;
2692 			goto out_writepage;
2693 		}
2694 		fio->need_lock = LOCK_REQ;
2695 	}
2696 
2697 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2698 	if (err)
2699 		goto out_writepage;
2700 
2701 	fio->version = ni.version;
2702 
2703 	err = f2fs_encrypt_one_page(fio);
2704 	if (err)
2705 		goto out_writepage;
2706 
2707 	set_page_writeback(page);
2708 
2709 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2710 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2711 
2712 	/* LFS mode write path */
2713 	f2fs_outplace_write_data(&dn, fio);
2714 	trace_f2fs_do_write_data_page(page, OPU);
2715 	set_inode_flag(inode, FI_APPEND_WRITE);
2716 	if (atomic_commit)
2717 		clear_page_private_atomic(page);
2718 out_writepage:
2719 	f2fs_put_dnode(&dn);
2720 out:
2721 	if (fio->need_lock == LOCK_REQ)
2722 		f2fs_unlock_op(fio->sbi);
2723 	return err;
2724 }
2725 
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2726 int f2fs_write_single_data_page(struct page *page, int *submitted,
2727 				struct bio **bio,
2728 				sector_t *last_block,
2729 				struct writeback_control *wbc,
2730 				enum iostat_type io_type,
2731 				int compr_blocks,
2732 				bool allow_balance)
2733 {
2734 	struct inode *inode = page->mapping->host;
2735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2736 	loff_t i_size = i_size_read(inode);
2737 	const pgoff_t end_index = ((unsigned long long)i_size)
2738 							>> PAGE_SHIFT;
2739 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2740 	unsigned offset = 0;
2741 	bool need_balance_fs = false;
2742 	bool quota_inode = IS_NOQUOTA(inode);
2743 	int err = 0;
2744 	struct f2fs_io_info fio = {
2745 		.sbi = sbi,
2746 		.ino = inode->i_ino,
2747 		.type = DATA,
2748 		.op = REQ_OP_WRITE,
2749 		.op_flags = wbc_to_write_flags(wbc),
2750 		.old_blkaddr = NULL_ADDR,
2751 		.page = page,
2752 		.encrypted_page = NULL,
2753 		.submitted = 0,
2754 		.compr_blocks = compr_blocks,
2755 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2756 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2757 		.io_type = io_type,
2758 		.io_wbc = wbc,
2759 		.bio = bio,
2760 		.last_block = last_block,
2761 	};
2762 
2763 	trace_f2fs_writepage(page, DATA);
2764 
2765 	/* we should bypass data pages to proceed the kworker jobs */
2766 	if (unlikely(f2fs_cp_error(sbi))) {
2767 		mapping_set_error(page->mapping, -EIO);
2768 		/*
2769 		 * don't drop any dirty dentry pages for keeping lastest
2770 		 * directory structure.
2771 		 */
2772 		if (S_ISDIR(inode->i_mode) &&
2773 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2774 			goto redirty_out;
2775 
2776 		/* keep data pages in remount-ro mode */
2777 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2778 			goto redirty_out;
2779 		goto out;
2780 	}
2781 
2782 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2783 		goto redirty_out;
2784 
2785 	if (page->index < end_index ||
2786 			f2fs_verity_in_progress(inode) ||
2787 			compr_blocks)
2788 		goto write;
2789 
2790 	/*
2791 	 * If the offset is out-of-range of file size,
2792 	 * this page does not have to be written to disk.
2793 	 */
2794 	offset = i_size & (PAGE_SIZE - 1);
2795 	if ((page->index >= end_index + 1) || !offset)
2796 		goto out;
2797 
2798 	zero_user_segment(page, offset, PAGE_SIZE);
2799 write:
2800 	/* Dentry/quota blocks are controlled by checkpoint */
2801 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2802 		/*
2803 		 * We need to wait for node_write to avoid block allocation during
2804 		 * checkpoint. This can only happen to quota writes which can cause
2805 		 * the below discard race condition.
2806 		 */
2807 		if (quota_inode)
2808 			f2fs_down_read(&sbi->node_write);
2809 
2810 		fio.need_lock = LOCK_DONE;
2811 		err = f2fs_do_write_data_page(&fio);
2812 
2813 		if (quota_inode)
2814 			f2fs_up_read(&sbi->node_write);
2815 
2816 		goto done;
2817 	}
2818 
2819 	if (!wbc->for_reclaim)
2820 		need_balance_fs = true;
2821 	else if (has_not_enough_free_secs(sbi, 0, 0))
2822 		goto redirty_out;
2823 	else
2824 		set_inode_flag(inode, FI_HOT_DATA);
2825 
2826 	err = -EAGAIN;
2827 	if (f2fs_has_inline_data(inode)) {
2828 		err = f2fs_write_inline_data(inode, page);
2829 		if (!err)
2830 			goto out;
2831 	}
2832 
2833 	if (err == -EAGAIN) {
2834 		err = f2fs_do_write_data_page(&fio);
2835 		if (err == -EAGAIN) {
2836 			f2fs_bug_on(sbi, compr_blocks);
2837 			fio.need_lock = LOCK_REQ;
2838 			err = f2fs_do_write_data_page(&fio);
2839 		}
2840 	}
2841 
2842 	if (err) {
2843 		file_set_keep_isize(inode);
2844 	} else {
2845 		spin_lock(&F2FS_I(inode)->i_size_lock);
2846 		if (F2FS_I(inode)->last_disk_size < psize)
2847 			F2FS_I(inode)->last_disk_size = psize;
2848 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2849 	}
2850 
2851 done:
2852 	if (err && err != -ENOENT)
2853 		goto redirty_out;
2854 
2855 out:
2856 	inode_dec_dirty_pages(inode);
2857 	if (err) {
2858 		ClearPageUptodate(page);
2859 		clear_page_private_gcing(page);
2860 	}
2861 
2862 	if (wbc->for_reclaim) {
2863 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2864 		clear_inode_flag(inode, FI_HOT_DATA);
2865 		f2fs_remove_dirty_inode(inode);
2866 		submitted = NULL;
2867 	}
2868 	unlock_page(page);
2869 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2870 			!F2FS_I(inode)->wb_task && allow_balance)
2871 		f2fs_balance_fs(sbi, need_balance_fs);
2872 
2873 	if (unlikely(f2fs_cp_error(sbi))) {
2874 		f2fs_submit_merged_write(sbi, DATA);
2875 		if (bio && *bio)
2876 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2877 		submitted = NULL;
2878 	}
2879 
2880 	if (submitted)
2881 		*submitted = fio.submitted;
2882 
2883 	return 0;
2884 
2885 redirty_out:
2886 	redirty_page_for_writepage(wbc, page);
2887 	/*
2888 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2889 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2890 	 * file_write_and_wait_range() will see EIO error, which is critical
2891 	 * to return value of fsync() followed by atomic_write failure to user.
2892 	 */
2893 	if (!err || wbc->for_reclaim)
2894 		return AOP_WRITEPAGE_ACTIVATE;
2895 	unlock_page(page);
2896 	return err;
2897 }
2898 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2899 static int f2fs_write_data_page(struct page *page,
2900 					struct writeback_control *wbc)
2901 {
2902 #ifdef CONFIG_F2FS_FS_COMPRESSION
2903 	struct inode *inode = page->mapping->host;
2904 
2905 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2906 		goto out;
2907 
2908 	if (f2fs_compressed_file(inode)) {
2909 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2910 			redirty_page_for_writepage(wbc, page);
2911 			return AOP_WRITEPAGE_ACTIVATE;
2912 		}
2913 	}
2914 out:
2915 #endif
2916 
2917 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2918 						wbc, FS_DATA_IO, 0, true);
2919 }
2920 
2921 /*
2922  * This function was copied from write_cache_pages from mm/page-writeback.c.
2923  * The major change is making write step of cold data page separately from
2924  * warm/hot data page.
2925  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2926 static int f2fs_write_cache_pages(struct address_space *mapping,
2927 					struct writeback_control *wbc,
2928 					enum iostat_type io_type)
2929 {
2930 	int ret = 0;
2931 	int done = 0, retry = 0;
2932 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2933 	struct page **pages = pages_local;
2934 	struct folio_batch fbatch;
2935 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2936 	struct bio *bio = NULL;
2937 	sector_t last_block;
2938 #ifdef CONFIG_F2FS_FS_COMPRESSION
2939 	struct inode *inode = mapping->host;
2940 	struct compress_ctx cc = {
2941 		.inode = inode,
2942 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2943 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2944 		.cluster_idx = NULL_CLUSTER,
2945 		.rpages = NULL,
2946 		.nr_rpages = 0,
2947 		.cpages = NULL,
2948 		.valid_nr_cpages = 0,
2949 		.rbuf = NULL,
2950 		.cbuf = NULL,
2951 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2952 		.private = NULL,
2953 	};
2954 #endif
2955 	int nr_folios, p, idx;
2956 	int nr_pages;
2957 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2958 	pgoff_t index;
2959 	pgoff_t end;		/* Inclusive */
2960 	pgoff_t done_index;
2961 	int range_whole = 0;
2962 	xa_mark_t tag;
2963 	int nwritten = 0;
2964 	int submitted = 0;
2965 	int i;
2966 
2967 #ifdef CONFIG_F2FS_FS_COMPRESSION
2968 	if (f2fs_compressed_file(inode) &&
2969 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2970 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2971 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2972 		max_pages = 1 << cc.log_cluster_size;
2973 	}
2974 #endif
2975 
2976 	folio_batch_init(&fbatch);
2977 
2978 	if (get_dirty_pages(mapping->host) <=
2979 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2980 		set_inode_flag(mapping->host, FI_HOT_DATA);
2981 	else
2982 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2983 
2984 	if (wbc->range_cyclic) {
2985 		index = mapping->writeback_index; /* prev offset */
2986 		end = -1;
2987 	} else {
2988 		index = wbc->range_start >> PAGE_SHIFT;
2989 		end = wbc->range_end >> PAGE_SHIFT;
2990 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2991 			range_whole = 1;
2992 	}
2993 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2994 		tag = PAGECACHE_TAG_TOWRITE;
2995 	else
2996 		tag = PAGECACHE_TAG_DIRTY;
2997 retry:
2998 	retry = 0;
2999 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3000 		tag_pages_for_writeback(mapping, index, end);
3001 	done_index = index;
3002 	while (!done && !retry && (index <= end)) {
3003 		nr_pages = 0;
3004 again:
3005 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3006 				tag, &fbatch);
3007 		if (nr_folios == 0) {
3008 			if (nr_pages)
3009 				goto write;
3010 			break;
3011 		}
3012 
3013 		for (i = 0; i < nr_folios; i++) {
3014 			struct folio *folio = fbatch.folios[i];
3015 
3016 			idx = 0;
3017 			p = folio_nr_pages(folio);
3018 add_more:
3019 			pages[nr_pages] = folio_page(folio, idx);
3020 			folio_get(folio);
3021 			if (++nr_pages == max_pages) {
3022 				index = folio->index + idx + 1;
3023 				folio_batch_release(&fbatch);
3024 				goto write;
3025 			}
3026 			if (++idx < p)
3027 				goto add_more;
3028 		}
3029 		folio_batch_release(&fbatch);
3030 		goto again;
3031 write:
3032 		for (i = 0; i < nr_pages; i++) {
3033 			struct page *page = pages[i];
3034 			struct folio *folio = page_folio(page);
3035 			bool need_readd;
3036 readd:
3037 			need_readd = false;
3038 #ifdef CONFIG_F2FS_FS_COMPRESSION
3039 			if (f2fs_compressed_file(inode)) {
3040 				void *fsdata = NULL;
3041 				struct page *pagep;
3042 				int ret2;
3043 
3044 				ret = f2fs_init_compress_ctx(&cc);
3045 				if (ret) {
3046 					done = 1;
3047 					break;
3048 				}
3049 
3050 				if (!f2fs_cluster_can_merge_page(&cc,
3051 								folio->index)) {
3052 					ret = f2fs_write_multi_pages(&cc,
3053 						&submitted, wbc, io_type);
3054 					if (!ret)
3055 						need_readd = true;
3056 					goto result;
3057 				}
3058 
3059 				if (unlikely(f2fs_cp_error(sbi)))
3060 					goto lock_folio;
3061 
3062 				if (!f2fs_cluster_is_empty(&cc))
3063 					goto lock_folio;
3064 
3065 				if (f2fs_all_cluster_page_ready(&cc,
3066 					pages, i, nr_pages, true))
3067 					goto lock_folio;
3068 
3069 				ret2 = f2fs_prepare_compress_overwrite(
3070 							inode, &pagep,
3071 							folio->index, &fsdata);
3072 				if (ret2 < 0) {
3073 					ret = ret2;
3074 					done = 1;
3075 					break;
3076 				} else if (ret2 &&
3077 					(!f2fs_compress_write_end(inode,
3078 						fsdata, folio->index, 1) ||
3079 					 !f2fs_all_cluster_page_ready(&cc,
3080 						pages, i, nr_pages,
3081 						false))) {
3082 					retry = 1;
3083 					break;
3084 				}
3085 			}
3086 #endif
3087 			/* give a priority to WB_SYNC threads */
3088 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3089 					wbc->sync_mode == WB_SYNC_NONE) {
3090 				done = 1;
3091 				break;
3092 			}
3093 #ifdef CONFIG_F2FS_FS_COMPRESSION
3094 lock_folio:
3095 #endif
3096 			done_index = folio->index;
3097 retry_write:
3098 			folio_lock(folio);
3099 
3100 			if (unlikely(folio->mapping != mapping)) {
3101 continue_unlock:
3102 				folio_unlock(folio);
3103 				continue;
3104 			}
3105 
3106 			if (!folio_test_dirty(folio)) {
3107 				/* someone wrote it for us */
3108 				goto continue_unlock;
3109 			}
3110 
3111 			if (folio_test_writeback(folio)) {
3112 				if (wbc->sync_mode == WB_SYNC_NONE)
3113 					goto continue_unlock;
3114 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3115 			}
3116 
3117 			if (!folio_clear_dirty_for_io(folio))
3118 				goto continue_unlock;
3119 
3120 #ifdef CONFIG_F2FS_FS_COMPRESSION
3121 			if (f2fs_compressed_file(inode)) {
3122 				folio_get(folio);
3123 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3124 				continue;
3125 			}
3126 #endif
3127 			ret = f2fs_write_single_data_page(&folio->page,
3128 					&submitted, &bio, &last_block,
3129 					wbc, io_type, 0, true);
3130 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3131 				folio_unlock(folio);
3132 #ifdef CONFIG_F2FS_FS_COMPRESSION
3133 result:
3134 #endif
3135 			nwritten += submitted;
3136 			wbc->nr_to_write -= submitted;
3137 
3138 			if (unlikely(ret)) {
3139 				/*
3140 				 * keep nr_to_write, since vfs uses this to
3141 				 * get # of written pages.
3142 				 */
3143 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3144 					ret = 0;
3145 					goto next;
3146 				} else if (ret == -EAGAIN) {
3147 					ret = 0;
3148 					if (wbc->sync_mode == WB_SYNC_ALL) {
3149 						f2fs_io_schedule_timeout(
3150 							DEFAULT_IO_TIMEOUT);
3151 						goto retry_write;
3152 					}
3153 					goto next;
3154 				}
3155 				done_index = folio_next_index(folio);
3156 				done = 1;
3157 				break;
3158 			}
3159 
3160 			if (wbc->nr_to_write <= 0 &&
3161 					wbc->sync_mode == WB_SYNC_NONE) {
3162 				done = 1;
3163 				break;
3164 			}
3165 next:
3166 			if (need_readd)
3167 				goto readd;
3168 		}
3169 		release_pages(pages, nr_pages);
3170 		cond_resched();
3171 	}
3172 #ifdef CONFIG_F2FS_FS_COMPRESSION
3173 	/* flush remained pages in compress cluster */
3174 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3175 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3176 		nwritten += submitted;
3177 		wbc->nr_to_write -= submitted;
3178 		if (ret) {
3179 			done = 1;
3180 			retry = 0;
3181 		}
3182 	}
3183 	if (f2fs_compressed_file(inode))
3184 		f2fs_destroy_compress_ctx(&cc, false);
3185 #endif
3186 	if (retry) {
3187 		index = 0;
3188 		end = -1;
3189 		goto retry;
3190 	}
3191 	if (wbc->range_cyclic && !done)
3192 		done_index = 0;
3193 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3194 		mapping->writeback_index = done_index;
3195 
3196 	if (nwritten)
3197 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3198 								NULL, 0, DATA);
3199 	/* submit cached bio of IPU write */
3200 	if (bio)
3201 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3202 
3203 #ifdef CONFIG_F2FS_FS_COMPRESSION
3204 	if (pages != pages_local)
3205 		kfree(pages);
3206 #endif
3207 
3208 	return ret;
3209 }
3210 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3211 static inline bool __should_serialize_io(struct inode *inode,
3212 					struct writeback_control *wbc)
3213 {
3214 	/* to avoid deadlock in path of data flush */
3215 	if (F2FS_I(inode)->wb_task)
3216 		return false;
3217 
3218 	if (!S_ISREG(inode->i_mode))
3219 		return false;
3220 	if (IS_NOQUOTA(inode))
3221 		return false;
3222 
3223 	if (f2fs_need_compress_data(inode))
3224 		return true;
3225 	if (wbc->sync_mode != WB_SYNC_ALL)
3226 		return true;
3227 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3228 		return true;
3229 	return false;
3230 }
3231 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3232 static int __f2fs_write_data_pages(struct address_space *mapping,
3233 						struct writeback_control *wbc,
3234 						enum iostat_type io_type)
3235 {
3236 	struct inode *inode = mapping->host;
3237 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3238 	struct blk_plug plug;
3239 	int ret;
3240 	bool locked = false;
3241 
3242 	/* deal with chardevs and other special file */
3243 	if (!mapping->a_ops->writepage)
3244 		return 0;
3245 
3246 	/* skip writing if there is no dirty page in this inode */
3247 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3248 		return 0;
3249 
3250 	/* during POR, we don't need to trigger writepage at all. */
3251 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3252 		goto skip_write;
3253 
3254 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3255 			wbc->sync_mode == WB_SYNC_NONE &&
3256 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3257 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3258 		goto skip_write;
3259 
3260 	/* skip writing in file defragment preparing stage */
3261 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3262 		goto skip_write;
3263 
3264 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3265 
3266 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3267 	if (wbc->sync_mode == WB_SYNC_ALL)
3268 		atomic_inc(&sbi->wb_sync_req[DATA]);
3269 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3270 		/* to avoid potential deadlock */
3271 		if (current->plug)
3272 			blk_finish_plug(current->plug);
3273 		goto skip_write;
3274 	}
3275 
3276 	if (__should_serialize_io(inode, wbc)) {
3277 		mutex_lock(&sbi->writepages);
3278 		locked = true;
3279 	}
3280 
3281 	blk_start_plug(&plug);
3282 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3283 	blk_finish_plug(&plug);
3284 
3285 	if (locked)
3286 		mutex_unlock(&sbi->writepages);
3287 
3288 	if (wbc->sync_mode == WB_SYNC_ALL)
3289 		atomic_dec(&sbi->wb_sync_req[DATA]);
3290 	/*
3291 	 * if some pages were truncated, we cannot guarantee its mapping->host
3292 	 * to detect pending bios.
3293 	 */
3294 
3295 	f2fs_remove_dirty_inode(inode);
3296 	return ret;
3297 
3298 skip_write:
3299 	wbc->pages_skipped += get_dirty_pages(inode);
3300 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3301 	return 0;
3302 }
3303 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3304 static int f2fs_write_data_pages(struct address_space *mapping,
3305 			    struct writeback_control *wbc)
3306 {
3307 	struct inode *inode = mapping->host;
3308 
3309 	return __f2fs_write_data_pages(mapping, wbc,
3310 			F2FS_I(inode)->cp_task == current ?
3311 			FS_CP_DATA_IO : FS_DATA_IO);
3312 }
3313 
f2fs_write_failed(struct inode * inode,loff_t to)3314 void f2fs_write_failed(struct inode *inode, loff_t to)
3315 {
3316 	loff_t i_size = i_size_read(inode);
3317 
3318 	if (IS_NOQUOTA(inode))
3319 		return;
3320 
3321 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3322 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3323 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3324 		filemap_invalidate_lock(inode->i_mapping);
3325 
3326 		truncate_pagecache(inode, i_size);
3327 		f2fs_truncate_blocks(inode, i_size, true);
3328 
3329 		filemap_invalidate_unlock(inode->i_mapping);
3330 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3331 	}
3332 }
3333 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3334 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3335 			struct page *page, loff_t pos, unsigned len,
3336 			block_t *blk_addr, bool *node_changed)
3337 {
3338 	struct inode *inode = page->mapping->host;
3339 	pgoff_t index = page->index;
3340 	struct dnode_of_data dn;
3341 	struct page *ipage;
3342 	bool locked = false;
3343 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3344 	int err = 0;
3345 
3346 	/*
3347 	 * If a whole page is being written and we already preallocated all the
3348 	 * blocks, then there is no need to get a block address now.
3349 	 */
3350 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3351 		return 0;
3352 
3353 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3354 	if (f2fs_has_inline_data(inode)) {
3355 		if (pos + len > MAX_INLINE_DATA(inode))
3356 			flag = F2FS_GET_BLOCK_DEFAULT;
3357 		f2fs_map_lock(sbi, flag);
3358 		locked = true;
3359 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3360 		f2fs_map_lock(sbi, flag);
3361 		locked = true;
3362 	}
3363 
3364 restart:
3365 	/* check inline_data */
3366 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3367 	if (IS_ERR(ipage)) {
3368 		err = PTR_ERR(ipage);
3369 		goto unlock_out;
3370 	}
3371 
3372 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3373 
3374 	if (f2fs_has_inline_data(inode)) {
3375 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3376 			f2fs_do_read_inline_data(page, ipage);
3377 			set_inode_flag(inode, FI_DATA_EXIST);
3378 			if (inode->i_nlink)
3379 				set_page_private_inline(ipage);
3380 			goto out;
3381 		}
3382 		err = f2fs_convert_inline_page(&dn, page);
3383 		if (err || dn.data_blkaddr != NULL_ADDR)
3384 			goto out;
3385 	}
3386 
3387 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3388 						 &dn.data_blkaddr)) {
3389 		if (locked) {
3390 			err = f2fs_reserve_block(&dn, index);
3391 			goto out;
3392 		}
3393 
3394 		/* hole case */
3395 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3396 		if (!err && dn.data_blkaddr != NULL_ADDR)
3397 			goto out;
3398 		f2fs_put_dnode(&dn);
3399 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3400 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3401 		locked = true;
3402 		goto restart;
3403 	}
3404 out:
3405 	if (!err) {
3406 		/* convert_inline_page can make node_changed */
3407 		*blk_addr = dn.data_blkaddr;
3408 		*node_changed = dn.node_changed;
3409 	}
3410 	f2fs_put_dnode(&dn);
3411 unlock_out:
3412 	if (locked)
3413 		f2fs_map_unlock(sbi, flag);
3414 	return err;
3415 }
3416 
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3417 static int __find_data_block(struct inode *inode, pgoff_t index,
3418 				block_t *blk_addr)
3419 {
3420 	struct dnode_of_data dn;
3421 	struct page *ipage;
3422 	int err = 0;
3423 
3424 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3425 	if (IS_ERR(ipage))
3426 		return PTR_ERR(ipage);
3427 
3428 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3429 
3430 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3431 						 &dn.data_blkaddr)) {
3432 		/* hole case */
3433 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3434 		if (err) {
3435 			dn.data_blkaddr = NULL_ADDR;
3436 			err = 0;
3437 		}
3438 	}
3439 	*blk_addr = dn.data_blkaddr;
3440 	f2fs_put_dnode(&dn);
3441 	return err;
3442 }
3443 
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3444 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3445 				block_t *blk_addr, bool *node_changed)
3446 {
3447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3448 	struct dnode_of_data dn;
3449 	struct page *ipage;
3450 	int err = 0;
3451 
3452 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3453 
3454 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3455 	if (IS_ERR(ipage)) {
3456 		err = PTR_ERR(ipage);
3457 		goto unlock_out;
3458 	}
3459 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3460 
3461 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3462 						&dn.data_blkaddr))
3463 		err = f2fs_reserve_block(&dn, index);
3464 
3465 	*blk_addr = dn.data_blkaddr;
3466 	*node_changed = dn.node_changed;
3467 	f2fs_put_dnode(&dn);
3468 
3469 unlock_out:
3470 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3471 	return err;
3472 }
3473 
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3474 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3475 			struct page *page, loff_t pos, unsigned int len,
3476 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3477 {
3478 	struct inode *inode = page->mapping->host;
3479 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3480 	pgoff_t index = page->index;
3481 	int err = 0;
3482 	block_t ori_blk_addr = NULL_ADDR;
3483 
3484 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3485 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3486 		goto reserve_block;
3487 
3488 	/* Look for the block in COW inode first */
3489 	err = __find_data_block(cow_inode, index, blk_addr);
3490 	if (err) {
3491 		return err;
3492 	} else if (*blk_addr != NULL_ADDR) {
3493 		*use_cow = true;
3494 		return 0;
3495 	}
3496 
3497 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3498 		goto reserve_block;
3499 
3500 	/* Look for the block in the original inode */
3501 	err = __find_data_block(inode, index, &ori_blk_addr);
3502 	if (err)
3503 		return err;
3504 
3505 reserve_block:
3506 	/* Finally, we should reserve a new block in COW inode for the update */
3507 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3508 	if (err)
3509 		return err;
3510 	inc_atomic_write_cnt(inode);
3511 
3512 	if (ori_blk_addr != NULL_ADDR)
3513 		*blk_addr = ori_blk_addr;
3514 	return 0;
3515 }
3516 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3517 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3518 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3519 {
3520 	struct inode *inode = mapping->host;
3521 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3522 	struct page *page = NULL;
3523 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3524 	bool need_balance = false;
3525 	bool use_cow = false;
3526 	block_t blkaddr = NULL_ADDR;
3527 	int err = 0;
3528 
3529 	trace_f2fs_write_begin(inode, pos, len);
3530 
3531 	if (!f2fs_is_checkpoint_ready(sbi)) {
3532 		err = -ENOSPC;
3533 		goto fail;
3534 	}
3535 
3536 	/*
3537 	 * We should check this at this moment to avoid deadlock on inode page
3538 	 * and #0 page. The locking rule for inline_data conversion should be:
3539 	 * lock_page(page #0) -> lock_page(inode_page)
3540 	 */
3541 	if (index != 0) {
3542 		err = f2fs_convert_inline_inode(inode);
3543 		if (err)
3544 			goto fail;
3545 	}
3546 
3547 #ifdef CONFIG_F2FS_FS_COMPRESSION
3548 	if (f2fs_compressed_file(inode)) {
3549 		int ret;
3550 
3551 		*fsdata = NULL;
3552 
3553 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3554 			goto repeat;
3555 
3556 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3557 							index, fsdata);
3558 		if (ret < 0) {
3559 			err = ret;
3560 			goto fail;
3561 		} else if (ret) {
3562 			return 0;
3563 		}
3564 	}
3565 #endif
3566 
3567 repeat:
3568 	/*
3569 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3570 	 * wait_for_stable_page. Will wait that below with our IO control.
3571 	 */
3572 	page = f2fs_pagecache_get_page(mapping, index,
3573 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3574 	if (!page) {
3575 		err = -ENOMEM;
3576 		goto fail;
3577 	}
3578 
3579 	/* TODO: cluster can be compressed due to race with .writepage */
3580 
3581 	*pagep = page;
3582 
3583 	if (f2fs_is_atomic_file(inode))
3584 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3585 					&blkaddr, &need_balance, &use_cow);
3586 	else
3587 		err = prepare_write_begin(sbi, page, pos, len,
3588 					&blkaddr, &need_balance);
3589 	if (err)
3590 		goto fail;
3591 
3592 	if (need_balance && !IS_NOQUOTA(inode) &&
3593 			has_not_enough_free_secs(sbi, 0, 0)) {
3594 		unlock_page(page);
3595 		f2fs_balance_fs(sbi, true);
3596 		lock_page(page);
3597 		if (page->mapping != mapping) {
3598 			/* The page got truncated from under us */
3599 			f2fs_put_page(page, 1);
3600 			goto repeat;
3601 		}
3602 	}
3603 
3604 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3605 
3606 	if (len == PAGE_SIZE || PageUptodate(page))
3607 		return 0;
3608 
3609 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3610 	    !f2fs_verity_in_progress(inode)) {
3611 		zero_user_segment(page, len, PAGE_SIZE);
3612 		return 0;
3613 	}
3614 
3615 	if (blkaddr == NEW_ADDR) {
3616 		zero_user_segment(page, 0, PAGE_SIZE);
3617 		SetPageUptodate(page);
3618 	} else {
3619 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3620 				DATA_GENERIC_ENHANCE_READ)) {
3621 			err = -EFSCORRUPTED;
3622 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3623 			goto fail;
3624 		}
3625 		err = f2fs_submit_page_read(use_cow ?
3626 				F2FS_I(inode)->cow_inode : inode, page,
3627 				blkaddr, 0, true);
3628 		if (err)
3629 			goto fail;
3630 
3631 		lock_page(page);
3632 		if (unlikely(page->mapping != mapping)) {
3633 			f2fs_put_page(page, 1);
3634 			goto repeat;
3635 		}
3636 		if (unlikely(!PageUptodate(page))) {
3637 			err = -EIO;
3638 			goto fail;
3639 		}
3640 	}
3641 	return 0;
3642 
3643 fail:
3644 	f2fs_put_page(page, 1);
3645 	f2fs_write_failed(inode, pos + len);
3646 	return err;
3647 }
3648 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3649 static int f2fs_write_end(struct file *file,
3650 			struct address_space *mapping,
3651 			loff_t pos, unsigned len, unsigned copied,
3652 			struct page *page, void *fsdata)
3653 {
3654 	struct inode *inode = page->mapping->host;
3655 
3656 	trace_f2fs_write_end(inode, pos, len, copied);
3657 
3658 	/*
3659 	 * This should be come from len == PAGE_SIZE, and we expect copied
3660 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3661 	 * let generic_perform_write() try to copy data again through copied=0.
3662 	 */
3663 	if (!PageUptodate(page)) {
3664 		if (unlikely(copied != len))
3665 			copied = 0;
3666 		else
3667 			SetPageUptodate(page);
3668 	}
3669 
3670 #ifdef CONFIG_F2FS_FS_COMPRESSION
3671 	/* overwrite compressed file */
3672 	if (f2fs_compressed_file(inode) && fsdata) {
3673 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3674 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3675 
3676 		if (pos + copied > i_size_read(inode) &&
3677 				!f2fs_verity_in_progress(inode))
3678 			f2fs_i_size_write(inode, pos + copied);
3679 		return copied;
3680 	}
3681 #endif
3682 
3683 	if (!copied)
3684 		goto unlock_out;
3685 
3686 	set_page_dirty(page);
3687 
3688 	if (f2fs_is_atomic_file(inode))
3689 		set_page_private_atomic(page);
3690 
3691 	if (pos + copied > i_size_read(inode) &&
3692 	    !f2fs_verity_in_progress(inode)) {
3693 		f2fs_i_size_write(inode, pos + copied);
3694 		if (f2fs_is_atomic_file(inode))
3695 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3696 					pos + copied);
3697 	}
3698 unlock_out:
3699 	f2fs_put_page(page, 1);
3700 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3701 	return copied;
3702 }
3703 
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3704 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3705 {
3706 	struct inode *inode = folio->mapping->host;
3707 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708 
3709 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3710 				(offset || length != folio_size(folio)))
3711 		return;
3712 
3713 	if (folio_test_dirty(folio)) {
3714 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3715 			dec_page_count(sbi, F2FS_DIRTY_META);
3716 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3717 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3718 		} else {
3719 			inode_dec_dirty_pages(inode);
3720 			f2fs_remove_dirty_inode(inode);
3721 		}
3722 	}
3723 	clear_page_private_all(&folio->page);
3724 }
3725 
f2fs_release_folio(struct folio * folio,gfp_t wait)3726 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3727 {
3728 	/* If this is dirty folio, keep private data */
3729 	if (folio_test_dirty(folio))
3730 		return false;
3731 
3732 	clear_page_private_all(&folio->page);
3733 	return true;
3734 }
3735 
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3736 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3737 		struct folio *folio)
3738 {
3739 	struct inode *inode = mapping->host;
3740 
3741 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3742 
3743 	if (!folio_test_uptodate(folio))
3744 		folio_mark_uptodate(folio);
3745 	BUG_ON(folio_test_swapcache(folio));
3746 
3747 	if (filemap_dirty_folio(mapping, folio)) {
3748 		f2fs_update_dirty_folio(inode, folio);
3749 		return true;
3750 	}
3751 	return false;
3752 }
3753 
3754 
f2fs_bmap_compress(struct inode * inode,sector_t block)3755 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3756 {
3757 #ifdef CONFIG_F2FS_FS_COMPRESSION
3758 	struct dnode_of_data dn;
3759 	sector_t start_idx, blknr = 0;
3760 	int ret;
3761 
3762 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3763 
3764 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3765 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3766 	if (ret)
3767 		return 0;
3768 
3769 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3770 		dn.ofs_in_node += block - start_idx;
3771 		blknr = f2fs_data_blkaddr(&dn);
3772 		if (!__is_valid_data_blkaddr(blknr))
3773 			blknr = 0;
3774 	}
3775 
3776 	f2fs_put_dnode(&dn);
3777 	return blknr;
3778 #else
3779 	return 0;
3780 #endif
3781 }
3782 
3783 
f2fs_bmap(struct address_space * mapping,sector_t block)3784 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3785 {
3786 	struct inode *inode = mapping->host;
3787 	sector_t blknr = 0;
3788 
3789 	if (f2fs_has_inline_data(inode))
3790 		goto out;
3791 
3792 	/* make sure allocating whole blocks */
3793 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3794 		filemap_write_and_wait(mapping);
3795 
3796 	/* Block number less than F2FS MAX BLOCKS */
3797 	if (unlikely(block >= max_file_blocks(inode)))
3798 		goto out;
3799 
3800 	if (f2fs_compressed_file(inode)) {
3801 		blknr = f2fs_bmap_compress(inode, block);
3802 	} else {
3803 		struct f2fs_map_blocks map;
3804 
3805 		memset(&map, 0, sizeof(map));
3806 		map.m_lblk = block;
3807 		map.m_len = 1;
3808 		map.m_next_pgofs = NULL;
3809 		map.m_seg_type = NO_CHECK_TYPE;
3810 
3811 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3812 			blknr = map.m_pblk;
3813 	}
3814 out:
3815 	trace_f2fs_bmap(inode, block, blknr);
3816 	return blknr;
3817 }
3818 
3819 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3820 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3821 							unsigned int blkcnt)
3822 {
3823 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3824 	unsigned int blkofs;
3825 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3826 	unsigned int secidx = start_blk / blk_per_sec;
3827 	unsigned int end_sec;
3828 	int ret = 0;
3829 
3830 	if (!blkcnt)
3831 		return 0;
3832 	end_sec = secidx + (blkcnt - 1) / blk_per_sec;
3833 
3834 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3835 	filemap_invalidate_lock(inode->i_mapping);
3836 
3837 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3838 	set_inode_flag(inode, FI_OPU_WRITE);
3839 
3840 	for (; secidx <= end_sec; secidx++) {
3841 		unsigned int blkofs_end = secidx == end_sec ?
3842 			(blkcnt - 1) % blk_per_sec : blk_per_sec - 1;
3843 
3844 		f2fs_down_write(&sbi->pin_sem);
3845 
3846 		ret = f2fs_allocate_pinning_section(sbi);
3847 		if (ret) {
3848 			f2fs_up_write(&sbi->pin_sem);
3849 			break;
3850 		}
3851 
3852 		set_inode_flag(inode, FI_SKIP_WRITES);
3853 
3854 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3855 			struct page *page;
3856 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3857 
3858 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3859 			if (IS_ERR(page)) {
3860 				f2fs_up_write(&sbi->pin_sem);
3861 				ret = PTR_ERR(page);
3862 				goto done;
3863 			}
3864 
3865 			set_page_dirty(page);
3866 			f2fs_put_page(page, 1);
3867 		}
3868 
3869 		clear_inode_flag(inode, FI_SKIP_WRITES);
3870 
3871 		ret = filemap_fdatawrite(inode->i_mapping);
3872 
3873 		f2fs_up_write(&sbi->pin_sem);
3874 
3875 		if (ret)
3876 			break;
3877 	}
3878 
3879 done:
3880 	clear_inode_flag(inode, FI_SKIP_WRITES);
3881 	clear_inode_flag(inode, FI_OPU_WRITE);
3882 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3883 
3884 	filemap_invalidate_unlock(inode->i_mapping);
3885 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3886 
3887 	return ret;
3888 }
3889 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3890 static int check_swap_activate(struct swap_info_struct *sis,
3891 				struct file *swap_file, sector_t *span)
3892 {
3893 	struct address_space *mapping = swap_file->f_mapping;
3894 	struct inode *inode = mapping->host;
3895 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3896 	block_t cur_lblock;
3897 	block_t last_lblock;
3898 	block_t pblock;
3899 	block_t lowest_pblock = -1;
3900 	block_t highest_pblock = 0;
3901 	int nr_extents = 0;
3902 	unsigned int nr_pblocks;
3903 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3904 	unsigned int not_aligned = 0;
3905 	int ret = 0;
3906 
3907 	/*
3908 	 * Map all the blocks into the extent list.  This code doesn't try
3909 	 * to be very smart.
3910 	 */
3911 	cur_lblock = 0;
3912 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3913 
3914 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3915 		struct f2fs_map_blocks map;
3916 retry:
3917 		cond_resched();
3918 
3919 		memset(&map, 0, sizeof(map));
3920 		map.m_lblk = cur_lblock;
3921 		map.m_len = last_lblock - cur_lblock;
3922 		map.m_next_pgofs = NULL;
3923 		map.m_next_extent = NULL;
3924 		map.m_seg_type = NO_CHECK_TYPE;
3925 		map.m_may_create = false;
3926 
3927 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3928 		if (ret)
3929 			goto out;
3930 
3931 		/* hole */
3932 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3933 			f2fs_err(sbi, "Swapfile has holes");
3934 			ret = -EINVAL;
3935 			goto out;
3936 		}
3937 
3938 		pblock = map.m_pblk;
3939 		nr_pblocks = map.m_len;
3940 
3941 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3942 				nr_pblocks % blks_per_sec ||
3943 				!f2fs_valid_pinned_area(sbi, pblock)) {
3944 			bool last_extent = false;
3945 
3946 			not_aligned++;
3947 
3948 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3949 			if (cur_lblock + nr_pblocks > sis->max)
3950 				nr_pblocks -= blks_per_sec;
3951 
3952 			/* this extent is last one */
3953 			if (!nr_pblocks) {
3954 				nr_pblocks = last_lblock - cur_lblock;
3955 				last_extent = true;
3956 			}
3957 
3958 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3959 							nr_pblocks);
3960 			if (ret) {
3961 				if (ret == -ENOENT)
3962 					ret = -EINVAL;
3963 				goto out;
3964 			}
3965 
3966 			if (!last_extent)
3967 				goto retry;
3968 		}
3969 
3970 		if (cur_lblock + nr_pblocks >= sis->max)
3971 			nr_pblocks = sis->max - cur_lblock;
3972 
3973 		if (cur_lblock) {	/* exclude the header page */
3974 			if (pblock < lowest_pblock)
3975 				lowest_pblock = pblock;
3976 			if (pblock + nr_pblocks - 1 > highest_pblock)
3977 				highest_pblock = pblock + nr_pblocks - 1;
3978 		}
3979 
3980 		/*
3981 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3982 		 */
3983 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3984 		if (ret < 0)
3985 			goto out;
3986 		nr_extents += ret;
3987 		cur_lblock += nr_pblocks;
3988 	}
3989 	ret = nr_extents;
3990 	*span = 1 + highest_pblock - lowest_pblock;
3991 	if (cur_lblock == 0)
3992 		cur_lblock = 1;	/* force Empty message */
3993 	sis->max = cur_lblock;
3994 	sis->pages = cur_lblock - 1;
3995 	sis->highest_bit = cur_lblock - 1;
3996 out:
3997 	if (not_aligned)
3998 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3999 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4000 	return ret;
4001 }
4002 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4003 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4004 				sector_t *span)
4005 {
4006 	struct inode *inode = file_inode(file);
4007 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4008 	int ret;
4009 
4010 	if (!S_ISREG(inode->i_mode))
4011 		return -EINVAL;
4012 
4013 	if (f2fs_readonly(sbi->sb))
4014 		return -EROFS;
4015 
4016 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4017 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4018 		return -EINVAL;
4019 	}
4020 
4021 	ret = f2fs_convert_inline_inode(inode);
4022 	if (ret)
4023 		return ret;
4024 
4025 	if (!f2fs_disable_compressed_file(inode))
4026 		return -EINVAL;
4027 
4028 	f2fs_precache_extents(inode);
4029 
4030 	ret = filemap_fdatawrite(inode->i_mapping);
4031 	if (ret < 0)
4032 		return ret;
4033 
4034 	ret = check_swap_activate(sis, file, span);
4035 	if (ret < 0)
4036 		return ret;
4037 
4038 	stat_inc_swapfile_inode(inode);
4039 	set_inode_flag(inode, FI_PIN_FILE);
4040 	f2fs_update_time(sbi, REQ_TIME);
4041 	return ret;
4042 }
4043 
f2fs_swap_deactivate(struct file * file)4044 static void f2fs_swap_deactivate(struct file *file)
4045 {
4046 	struct inode *inode = file_inode(file);
4047 
4048 	stat_dec_swapfile_inode(inode);
4049 	clear_inode_flag(inode, FI_PIN_FILE);
4050 }
4051 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4052 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4053 				sector_t *span)
4054 {
4055 	return -EOPNOTSUPP;
4056 }
4057 
f2fs_swap_deactivate(struct file * file)4058 static void f2fs_swap_deactivate(struct file *file)
4059 {
4060 }
4061 #endif
4062 
4063 const struct address_space_operations f2fs_dblock_aops = {
4064 	.read_folio	= f2fs_read_data_folio,
4065 	.readahead	= f2fs_readahead,
4066 	.writepage	= f2fs_write_data_page,
4067 	.writepages	= f2fs_write_data_pages,
4068 	.write_begin	= f2fs_write_begin,
4069 	.write_end	= f2fs_write_end,
4070 	.dirty_folio	= f2fs_dirty_data_folio,
4071 	.migrate_folio	= filemap_migrate_folio,
4072 	.invalidate_folio = f2fs_invalidate_folio,
4073 	.release_folio	= f2fs_release_folio,
4074 	.bmap		= f2fs_bmap,
4075 	.swap_activate  = f2fs_swap_activate,
4076 	.swap_deactivate = f2fs_swap_deactivate,
4077 };
4078 
f2fs_clear_page_cache_dirty_tag(struct page * page)4079 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4080 {
4081 	struct address_space *mapping = page_mapping(page);
4082 	unsigned long flags;
4083 
4084 	xa_lock_irqsave(&mapping->i_pages, flags);
4085 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4086 						PAGECACHE_TAG_DIRTY);
4087 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4088 }
4089 
f2fs_init_post_read_processing(void)4090 int __init f2fs_init_post_read_processing(void)
4091 {
4092 	bio_post_read_ctx_cache =
4093 		kmem_cache_create("f2fs_bio_post_read_ctx",
4094 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4095 	if (!bio_post_read_ctx_cache)
4096 		goto fail;
4097 	bio_post_read_ctx_pool =
4098 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4099 					 bio_post_read_ctx_cache);
4100 	if (!bio_post_read_ctx_pool)
4101 		goto fail_free_cache;
4102 	return 0;
4103 
4104 fail_free_cache:
4105 	kmem_cache_destroy(bio_post_read_ctx_cache);
4106 fail:
4107 	return -ENOMEM;
4108 }
4109 
f2fs_destroy_post_read_processing(void)4110 void f2fs_destroy_post_read_processing(void)
4111 {
4112 	mempool_destroy(bio_post_read_ctx_pool);
4113 	kmem_cache_destroy(bio_post_read_ctx_cache);
4114 }
4115 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4116 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4117 {
4118 	if (!f2fs_sb_has_encrypt(sbi) &&
4119 		!f2fs_sb_has_verity(sbi) &&
4120 		!f2fs_sb_has_compression(sbi))
4121 		return 0;
4122 
4123 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4124 						 WQ_UNBOUND | WQ_HIGHPRI,
4125 						 num_online_cpus());
4126 	return sbi->post_read_wq ? 0 : -ENOMEM;
4127 }
4128 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4129 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4130 {
4131 	if (sbi->post_read_wq)
4132 		destroy_workqueue(sbi->post_read_wq);
4133 }
4134 
f2fs_init_bio_entry_cache(void)4135 int __init f2fs_init_bio_entry_cache(void)
4136 {
4137 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4138 			sizeof(struct bio_entry));
4139 	return bio_entry_slab ? 0 : -ENOMEM;
4140 }
4141 
f2fs_destroy_bio_entry_cache(void)4142 void f2fs_destroy_bio_entry_cache(void)
4143 {
4144 	kmem_cache_destroy(bio_entry_slab);
4145 }
4146 
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4147 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4148 			    unsigned int flags, struct iomap *iomap,
4149 			    struct iomap *srcmap)
4150 {
4151 	struct f2fs_map_blocks map = {};
4152 	pgoff_t next_pgofs = 0;
4153 	int err;
4154 
4155 	map.m_lblk = bytes_to_blks(inode, offset);
4156 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4157 	map.m_next_pgofs = &next_pgofs;
4158 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4159 	if (flags & IOMAP_WRITE)
4160 		map.m_may_create = true;
4161 
4162 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4163 	if (err)
4164 		return err;
4165 
4166 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4167 
4168 	/*
4169 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4170 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4171 	 * limiting the length of the mapping returned.
4172 	 */
4173 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4174 
4175 	/*
4176 	 * We should never see delalloc or compressed extents here based on
4177 	 * prior flushing and checks.
4178 	 */
4179 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4180 		return -EINVAL;
4181 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4182 		return -EINVAL;
4183 
4184 	if (map.m_flags & F2FS_MAP_MAPPED) {
4185 		iomap->length = blks_to_bytes(inode, map.m_len);
4186 		iomap->type = IOMAP_MAPPED;
4187 		iomap->flags |= IOMAP_F_MERGED;
4188 		iomap->bdev = map.m_bdev;
4189 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4190 	} else {
4191 		if (flags & IOMAP_WRITE)
4192 			return -ENOTBLK;
4193 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4194 				iomap->offset;
4195 		iomap->type = IOMAP_HOLE;
4196 		iomap->addr = IOMAP_NULL_ADDR;
4197 	}
4198 
4199 	if (map.m_flags & F2FS_MAP_NEW)
4200 		iomap->flags |= IOMAP_F_NEW;
4201 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4202 	    offset + length > i_size_read(inode))
4203 		iomap->flags |= IOMAP_F_DIRTY;
4204 
4205 	return 0;
4206 }
4207 
4208 const struct iomap_ops f2fs_iomap_ops = {
4209 	.iomap_begin	= f2fs_iomap_begin,
4210 };
4211