1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152
153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 f2fs_update_time(sbi, REQ_TIME);
155
156 trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 filemap_invalidate_unlock_shared(inode->i_mapping);
159
160 sb_end_pagefault(inode->i_sb);
161 err:
162 return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 .fault = f2fs_filemap_fault,
167 .map_pages = filemap_map_pages,
168 .page_mkwrite = f2fs_vm_page_mkwrite,
169 };
170
get_parent_ino(struct inode * inode,nid_t * pino)171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 struct dentry *dentry;
174
175 /*
176 * Make sure to get the non-deleted alias. The alias associated with
177 * the open file descriptor being fsync()'ed may be deleted already.
178 */
179 dentry = d_find_alias(inode);
180 if (!dentry)
181 return 0;
182
183 *pino = parent_ino(dentry);
184 dput(dentry);
185 return 1;
186 }
187
need_do_checkpoint(struct inode * inode)188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193 if (!S_ISREG(inode->i_mode))
194 cp_reason = CP_NON_REGULAR;
195 else if (f2fs_compressed_file(inode))
196 cp_reason = CP_COMPRESSED;
197 else if (inode->i_nlink != 1)
198 cp_reason = CP_HARDLINK;
199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 cp_reason = CP_SB_NEED_CP;
201 else if (file_wrong_pino(inode))
202 cp_reason = CP_WRONG_PINO;
203 else if (!f2fs_space_for_roll_forward(sbi))
204 cp_reason = CP_NO_SPC_ROLL;
205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 cp_reason = CP_NODE_NEED_CP;
207 else if (test_opt(sbi, FASTBOOT))
208 cp_reason = CP_FASTBOOT_MODE;
209 else if (F2FS_OPTION(sbi).active_logs == 2)
210 cp_reason = CP_SPEC_LOG_NUM;
211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 TRANS_DIR_INO))
215 cp_reason = CP_RECOVER_DIR;
216 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 XATTR_DIR_INO))
218 cp_reason = CP_XATTR_DIR;
219
220 return cp_reason;
221 }
222
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 f2fs_down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 f2fs_up_write(&fi->i_sem);
246 }
247
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 } else {
303 /*
304 * for OPU case, during fsync(), node can be persisted before
305 * data when lower device doesn't support write barrier, result
306 * in data corruption after SPO.
307 * So for strict fsync mode, force to use atomic write semantics
308 * to keep write order in between data/node and last node to
309 * avoid potential data corruption.
310 */
311 if (F2FS_OPTION(sbi).fsync_mode ==
312 FSYNC_MODE_STRICT && !atomic)
313 atomic = true;
314 }
315 go_write:
316 /*
317 * Both of fdatasync() and fsync() are able to be recovered from
318 * sudden-power-off.
319 */
320 f2fs_down_read(&F2FS_I(inode)->i_sem);
321 cp_reason = need_do_checkpoint(inode);
322 f2fs_up_read(&F2FS_I(inode)->i_sem);
323
324 if (cp_reason) {
325 /* all the dirty node pages should be flushed for POR */
326 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328 /*
329 * We've secured consistency through sync_fs. Following pino
330 * will be used only for fsynced inodes after checkpoint.
331 */
332 try_to_fix_pino(inode);
333 clear_inode_flag(inode, FI_APPEND_WRITE);
334 clear_inode_flag(inode, FI_UPDATE_WRITE);
335 goto out;
336 }
337 sync_nodes:
338 atomic_inc(&sbi->wb_sync_req[NODE]);
339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 atomic_dec(&sbi->wb_sync_req[NODE]);
341 if (ret)
342 goto out;
343
344 /* if cp_error was enabled, we should avoid infinite loop */
345 if (unlikely(f2fs_cp_error(sbi))) {
346 ret = -EIO;
347 goto out;
348 }
349
350 if (f2fs_need_inode_block_update(sbi, ino)) {
351 f2fs_mark_inode_dirty_sync(inode, true);
352 f2fs_write_inode(inode, NULL);
353 goto sync_nodes;
354 }
355
356 /*
357 * If it's atomic_write, it's just fine to keep write ordering. So
358 * here we don't need to wait for node write completion, since we use
359 * node chain which serializes node blocks. If one of node writes are
360 * reordered, we can see simply broken chain, resulting in stopping
361 * roll-forward recovery. It means we'll recover all or none node blocks
362 * given fsync mark.
363 */
364 if (!atomic) {
365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 if (ret)
367 goto out;
368 }
369
370 /* once recovery info is written, don't need to tack this */
371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 ret = f2fs_issue_flush(sbi, inode->i_ino);
377 if (!ret) {
378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 clear_inode_flag(inode, FI_UPDATE_WRITE);
380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 }
382 f2fs_update_time(sbi, REQ_TIME);
383 out:
384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 return ret;
386 }
387
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 return -EIO;
392 return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 pgoff_t index, int whence)
397 {
398 switch (whence) {
399 case SEEK_DATA:
400 if (__is_valid_data_blkaddr(blkaddr))
401 return true;
402 if (blkaddr == NEW_ADDR &&
403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 return true;
405 break;
406 case SEEK_HOLE:
407 if (blkaddr == NULL_ADDR)
408 return true;
409 break;
410 }
411 return false;
412 }
413
f2fs_seek_block(struct file * file,loff_t offset,int whence)414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 struct inode *inode = file->f_mapping->host;
417 loff_t maxbytes = inode->i_sb->s_maxbytes;
418 struct dnode_of_data dn;
419 pgoff_t pgofs, end_offset;
420 loff_t data_ofs = offset;
421 loff_t isize;
422 int err = 0;
423
424 inode_lock(inode);
425
426 isize = i_size_read(inode);
427 if (offset >= isize)
428 goto fail;
429
430 /* handle inline data case */
431 if (f2fs_has_inline_data(inode)) {
432 if (whence == SEEK_HOLE) {
433 data_ofs = isize;
434 goto found;
435 } else if (whence == SEEK_DATA) {
436 data_ofs = offset;
437 goto found;
438 }
439 }
440
441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442
443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 set_new_dnode(&dn, inode, NULL, NULL, 0);
445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 if (err && err != -ENOENT) {
447 goto fail;
448 } else if (err == -ENOENT) {
449 /* direct node does not exists */
450 if (whence == SEEK_DATA) {
451 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 continue;
453 } else {
454 goto found;
455 }
456 }
457
458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459
460 /* find data/hole in dnode block */
461 for (; dn.ofs_in_node < end_offset;
462 dn.ofs_in_node++, pgofs++,
463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 block_t blkaddr;
465
466 blkaddr = f2fs_data_blkaddr(&dn);
467
468 if (__is_valid_data_blkaddr(blkaddr) &&
469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 blkaddr, DATA_GENERIC_ENHANCE)) {
471 f2fs_put_dnode(&dn);
472 goto fail;
473 }
474
475 if (__found_offset(file->f_mapping, blkaddr,
476 pgofs, whence)) {
477 f2fs_put_dnode(&dn);
478 goto found;
479 }
480 }
481 f2fs_put_dnode(&dn);
482 }
483
484 if (whence == SEEK_DATA)
485 goto fail;
486 found:
487 if (whence == SEEK_HOLE && data_ofs > isize)
488 data_ofs = isize;
489 inode_unlock(inode);
490 return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 inode_unlock(inode);
493 return -ENXIO;
494 }
495
f2fs_llseek(struct file * file,loff_t offset,int whence)496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 struct inode *inode = file->f_mapping->host;
499 loff_t maxbytes = inode->i_sb->s_maxbytes;
500
501 if (f2fs_compressed_file(inode))
502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503
504 switch (whence) {
505 case SEEK_SET:
506 case SEEK_CUR:
507 case SEEK_END:
508 return generic_file_llseek_size(file, offset, whence,
509 maxbytes, i_size_read(inode));
510 case SEEK_DATA:
511 case SEEK_HOLE:
512 if (offset < 0)
513 return -ENXIO;
514 return f2fs_seek_block(file, offset, whence);
515 }
516
517 return -EINVAL;
518 }
519
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 struct inode *inode = file_inode(file);
523
524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 return -EIO;
526
527 if (!f2fs_is_compress_backend_ready(inode))
528 return -EOPNOTSUPP;
529
530 file_accessed(file);
531 vma->vm_ops = &f2fs_file_vm_ops;
532
533 f2fs_down_read(&F2FS_I(inode)->i_sem);
534 set_inode_flag(inode, FI_MMAP_FILE);
535 f2fs_up_read(&F2FS_I(inode)->i_sem);
536
537 return 0;
538 }
539
finish_preallocate_blocks(struct inode * inode)540 static int finish_preallocate_blocks(struct inode *inode)
541 {
542 int ret;
543
544 inode_lock(inode);
545 if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
546 inode_unlock(inode);
547 return 0;
548 }
549
550 if (!file_should_truncate(inode)) {
551 set_inode_flag(inode, FI_OPENED_FILE);
552 inode_unlock(inode);
553 return 0;
554 }
555
556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
557 filemap_invalidate_lock(inode->i_mapping);
558
559 truncate_setsize(inode, i_size_read(inode));
560 ret = f2fs_truncate(inode);
561
562 filemap_invalidate_unlock(inode->i_mapping);
563 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
564
565 if (!ret)
566 set_inode_flag(inode, FI_OPENED_FILE);
567
568 inode_unlock(inode);
569 if (ret)
570 return ret;
571
572 file_dont_truncate(inode);
573 return 0;
574 }
575
f2fs_file_open(struct inode * inode,struct file * filp)576 static int f2fs_file_open(struct inode *inode, struct file *filp)
577 {
578 int err = fscrypt_file_open(inode, filp);
579
580 if (err)
581 return err;
582
583 if (!f2fs_is_compress_backend_ready(inode))
584 return -EOPNOTSUPP;
585
586 err = fsverity_file_open(inode, filp);
587 if (err)
588 return err;
589
590 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
591 filp->f_mode |= FMODE_CAN_ODIRECT;
592
593 err = dquot_file_open(inode, filp);
594 if (err)
595 return err;
596
597 return finish_preallocate_blocks(inode);
598 }
599
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
601 {
602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
603 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
604 __le32 *addr;
605 bool compressed_cluster = false;
606 int cluster_index = 0, valid_blocks = 0;
607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
608 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
609
610 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
611
612 /* Assumption: truncation starts with cluster */
613 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
614 block_t blkaddr = le32_to_cpu(*addr);
615
616 if (f2fs_compressed_file(dn->inode) &&
617 !(cluster_index & (cluster_size - 1))) {
618 if (compressed_cluster)
619 f2fs_i_compr_blocks_update(dn->inode,
620 valid_blocks, false);
621 compressed_cluster = (blkaddr == COMPRESS_ADDR);
622 valid_blocks = 0;
623 }
624
625 if (blkaddr == NULL_ADDR)
626 continue;
627
628 f2fs_set_data_blkaddr(dn, NULL_ADDR);
629
630 if (__is_valid_data_blkaddr(blkaddr)) {
631 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
632 DATA_GENERIC_ENHANCE))
633 continue;
634 if (compressed_cluster)
635 valid_blocks++;
636 }
637
638 f2fs_invalidate_blocks(sbi, blkaddr);
639
640 if (!released || blkaddr != COMPRESS_ADDR)
641 nr_free++;
642 }
643
644 if (compressed_cluster)
645 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
646
647 if (nr_free) {
648 pgoff_t fofs;
649 /*
650 * once we invalidate valid blkaddr in range [ofs, ofs + count],
651 * we will invalidate all blkaddr in the whole range.
652 */
653 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
654 dn->inode) + ofs;
655 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
656 f2fs_update_age_extent_cache_range(dn, fofs, len);
657 dec_valid_block_count(sbi, dn->inode, nr_free);
658 }
659 dn->ofs_in_node = ofs;
660
661 f2fs_update_time(sbi, REQ_TIME);
662 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
663 dn->ofs_in_node, nr_free);
664 }
665
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)666 static int truncate_partial_data_page(struct inode *inode, u64 from,
667 bool cache_only)
668 {
669 loff_t offset = from & (PAGE_SIZE - 1);
670 pgoff_t index = from >> PAGE_SHIFT;
671 struct address_space *mapping = inode->i_mapping;
672 struct page *page;
673
674 if (!offset && !cache_only)
675 return 0;
676
677 if (cache_only) {
678 page = find_lock_page(mapping, index);
679 if (page && PageUptodate(page))
680 goto truncate_out;
681 f2fs_put_page(page, 1);
682 return 0;
683 }
684
685 page = f2fs_get_lock_data_page(inode, index, true);
686 if (IS_ERR(page))
687 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
688 truncate_out:
689 f2fs_wait_on_page_writeback(page, DATA, true, true);
690 zero_user(page, offset, PAGE_SIZE - offset);
691
692 /* An encrypted inode should have a key and truncate the last page. */
693 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
694 if (!cache_only)
695 set_page_dirty(page);
696 f2fs_put_page(page, 1);
697 return 0;
698 }
699
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
701 {
702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 struct dnode_of_data dn;
704 pgoff_t free_from;
705 int count = 0, err = 0;
706 struct page *ipage;
707 bool truncate_page = false;
708
709 trace_f2fs_truncate_blocks_enter(inode, from);
710
711 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
712
713 if (free_from >= max_file_blocks(inode))
714 goto free_partial;
715
716 if (lock)
717 f2fs_lock_op(sbi);
718
719 ipage = f2fs_get_node_page(sbi, inode->i_ino);
720 if (IS_ERR(ipage)) {
721 err = PTR_ERR(ipage);
722 goto out;
723 }
724
725 if (f2fs_has_inline_data(inode)) {
726 f2fs_truncate_inline_inode(inode, ipage, from);
727 f2fs_put_page(ipage, 1);
728 truncate_page = true;
729 goto out;
730 }
731
732 set_new_dnode(&dn, inode, ipage, NULL, 0);
733 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
734 if (err) {
735 if (err == -ENOENT)
736 goto free_next;
737 goto out;
738 }
739
740 count = ADDRS_PER_PAGE(dn.node_page, inode);
741
742 count -= dn.ofs_in_node;
743 f2fs_bug_on(sbi, count < 0);
744
745 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
746 f2fs_truncate_data_blocks_range(&dn, count);
747 free_from += count;
748 }
749
750 f2fs_put_dnode(&dn);
751 free_next:
752 err = f2fs_truncate_inode_blocks(inode, free_from);
753 out:
754 if (lock)
755 f2fs_unlock_op(sbi);
756 free_partial:
757 /* lastly zero out the first data page */
758 if (!err)
759 err = truncate_partial_data_page(inode, from, truncate_page);
760
761 trace_f2fs_truncate_blocks_exit(inode, err);
762 return err;
763 }
764
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
766 {
767 u64 free_from = from;
768 int err;
769
770 #ifdef CONFIG_F2FS_FS_COMPRESSION
771 /*
772 * for compressed file, only support cluster size
773 * aligned truncation.
774 */
775 if (f2fs_compressed_file(inode))
776 free_from = round_up(from,
777 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
778 #endif
779
780 err = f2fs_do_truncate_blocks(inode, free_from, lock);
781 if (err)
782 return err;
783
784 #ifdef CONFIG_F2FS_FS_COMPRESSION
785 /*
786 * For compressed file, after release compress blocks, don't allow write
787 * direct, but we should allow write direct after truncate to zero.
788 */
789 if (f2fs_compressed_file(inode) && !free_from
790 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
791 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
792
793 if (from != free_from) {
794 err = f2fs_truncate_partial_cluster(inode, from, lock);
795 if (err)
796 return err;
797 }
798 #endif
799
800 return 0;
801 }
802
f2fs_truncate(struct inode * inode)803 int f2fs_truncate(struct inode *inode)
804 {
805 int err;
806
807 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
808 return -EIO;
809
810 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
811 S_ISLNK(inode->i_mode)))
812 return 0;
813
814 trace_f2fs_truncate(inode);
815
816 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
817 return -EIO;
818
819 err = f2fs_dquot_initialize(inode);
820 if (err)
821 return err;
822
823 /* we should check inline_data size */
824 if (!f2fs_may_inline_data(inode)) {
825 err = f2fs_convert_inline_inode(inode);
826 if (err)
827 return err;
828 }
829
830 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
831 if (err)
832 return err;
833
834 inode->i_mtime = inode_set_ctime_current(inode);
835 f2fs_mark_inode_dirty_sync(inode, false);
836 return 0;
837 }
838
f2fs_force_buffered_io(struct inode * inode,int rw)839 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
840 {
841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
842
843 if (!fscrypt_dio_supported(inode))
844 return true;
845 if (fsverity_active(inode))
846 return true;
847 if (f2fs_compressed_file(inode))
848 return true;
849 /*
850 * only force direct read to use buffered IO, for direct write,
851 * it expects inline data conversion before committing IO.
852 */
853 if (f2fs_has_inline_data(inode) && rw == READ)
854 return true;
855
856 /* disallow direct IO if any of devices has unaligned blksize */
857 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
858 return true;
859 /*
860 * for blkzoned device, fallback direct IO to buffered IO, so
861 * all IOs can be serialized by log-structured write.
862 */
863 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
864 return true;
865 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
866 return true;
867
868 return false;
869 }
870
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)871 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
872 struct kstat *stat, u32 request_mask, unsigned int query_flags)
873 {
874 struct inode *inode = d_inode(path->dentry);
875 struct f2fs_inode_info *fi = F2FS_I(inode);
876 struct f2fs_inode *ri = NULL;
877 unsigned int flags;
878
879 if (f2fs_has_extra_attr(inode) &&
880 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
881 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
882 stat->result_mask |= STATX_BTIME;
883 stat->btime.tv_sec = fi->i_crtime.tv_sec;
884 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
885 }
886
887 /*
888 * Return the DIO alignment restrictions if requested. We only return
889 * this information when requested, since on encrypted files it might
890 * take a fair bit of work to get if the file wasn't opened recently.
891 *
892 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
893 * cannot represent that, so in that case we report no DIO support.
894 */
895 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
896 unsigned int bsize = i_blocksize(inode);
897
898 stat->result_mask |= STATX_DIOALIGN;
899 if (!f2fs_force_buffered_io(inode, WRITE)) {
900 stat->dio_mem_align = bsize;
901 stat->dio_offset_align = bsize;
902 }
903 }
904
905 flags = fi->i_flags;
906 if (flags & F2FS_COMPR_FL)
907 stat->attributes |= STATX_ATTR_COMPRESSED;
908 if (flags & F2FS_APPEND_FL)
909 stat->attributes |= STATX_ATTR_APPEND;
910 if (IS_ENCRYPTED(inode))
911 stat->attributes |= STATX_ATTR_ENCRYPTED;
912 if (flags & F2FS_IMMUTABLE_FL)
913 stat->attributes |= STATX_ATTR_IMMUTABLE;
914 if (flags & F2FS_NODUMP_FL)
915 stat->attributes |= STATX_ATTR_NODUMP;
916 if (IS_VERITY(inode))
917 stat->attributes |= STATX_ATTR_VERITY;
918
919 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
920 STATX_ATTR_APPEND |
921 STATX_ATTR_ENCRYPTED |
922 STATX_ATTR_IMMUTABLE |
923 STATX_ATTR_NODUMP |
924 STATX_ATTR_VERITY);
925
926 generic_fillattr(idmap, request_mask, inode, stat);
927
928 /* we need to show initial sectors used for inline_data/dentries */
929 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
930 f2fs_has_inline_dentry(inode))
931 stat->blocks += (stat->size + 511) >> 9;
932
933 return 0;
934 }
935
936 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)937 static void __setattr_copy(struct mnt_idmap *idmap,
938 struct inode *inode, const struct iattr *attr)
939 {
940 unsigned int ia_valid = attr->ia_valid;
941
942 i_uid_update(idmap, attr, inode);
943 i_gid_update(idmap, attr, inode);
944 if (ia_valid & ATTR_ATIME)
945 inode->i_atime = attr->ia_atime;
946 if (ia_valid & ATTR_MTIME)
947 inode->i_mtime = attr->ia_mtime;
948 if (ia_valid & ATTR_CTIME)
949 inode_set_ctime_to_ts(inode, attr->ia_ctime);
950 if (ia_valid & ATTR_MODE) {
951 umode_t mode = attr->ia_mode;
952 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
953
954 if (!vfsgid_in_group_p(vfsgid) &&
955 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
956 mode &= ~S_ISGID;
957 set_acl_inode(inode, mode);
958 }
959 }
960 #else
961 #define __setattr_copy setattr_copy
962 #endif
963
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)964 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
965 struct iattr *attr)
966 {
967 struct inode *inode = d_inode(dentry);
968 int err;
969
970 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
971 return -EIO;
972
973 if (unlikely(IS_IMMUTABLE(inode)))
974 return -EPERM;
975
976 if (unlikely(IS_APPEND(inode) &&
977 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
978 ATTR_GID | ATTR_TIMES_SET))))
979 return -EPERM;
980
981 if ((attr->ia_valid & ATTR_SIZE)) {
982 if (!f2fs_is_compress_backend_ready(inode))
983 return -EOPNOTSUPP;
984 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
985 !IS_ALIGNED(attr->ia_size,
986 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
987 return -EINVAL;
988 }
989
990 err = setattr_prepare(idmap, dentry, attr);
991 if (err)
992 return err;
993
994 err = fscrypt_prepare_setattr(dentry, attr);
995 if (err)
996 return err;
997
998 err = fsverity_prepare_setattr(dentry, attr);
999 if (err)
1000 return err;
1001
1002 if (is_quota_modification(idmap, inode, attr)) {
1003 err = f2fs_dquot_initialize(inode);
1004 if (err)
1005 return err;
1006 }
1007 if (i_uid_needs_update(idmap, attr, inode) ||
1008 i_gid_needs_update(idmap, attr, inode)) {
1009 f2fs_lock_op(F2FS_I_SB(inode));
1010 err = dquot_transfer(idmap, inode, attr);
1011 if (err) {
1012 set_sbi_flag(F2FS_I_SB(inode),
1013 SBI_QUOTA_NEED_REPAIR);
1014 f2fs_unlock_op(F2FS_I_SB(inode));
1015 return err;
1016 }
1017 /*
1018 * update uid/gid under lock_op(), so that dquot and inode can
1019 * be updated atomically.
1020 */
1021 i_uid_update(idmap, attr, inode);
1022 i_gid_update(idmap, attr, inode);
1023 f2fs_mark_inode_dirty_sync(inode, true);
1024 f2fs_unlock_op(F2FS_I_SB(inode));
1025 }
1026
1027 if (attr->ia_valid & ATTR_SIZE) {
1028 loff_t old_size = i_size_read(inode);
1029
1030 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1031 /*
1032 * should convert inline inode before i_size_write to
1033 * keep smaller than inline_data size with inline flag.
1034 */
1035 err = f2fs_convert_inline_inode(inode);
1036 if (err)
1037 return err;
1038 }
1039
1040 /*
1041 * wait for inflight dio, blocks should be removed after
1042 * IO completion.
1043 */
1044 if (attr->ia_size < old_size)
1045 inode_dio_wait(inode);
1046
1047 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1048 filemap_invalidate_lock(inode->i_mapping);
1049
1050 truncate_setsize(inode, attr->ia_size);
1051
1052 if (attr->ia_size <= old_size)
1053 err = f2fs_truncate(inode);
1054 /*
1055 * do not trim all blocks after i_size if target size is
1056 * larger than i_size.
1057 */
1058 filemap_invalidate_unlock(inode->i_mapping);
1059 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1060 if (err)
1061 return err;
1062
1063 spin_lock(&F2FS_I(inode)->i_size_lock);
1064 inode->i_mtime = inode_set_ctime_current(inode);
1065 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1066 spin_unlock(&F2FS_I(inode)->i_size_lock);
1067 }
1068
1069 __setattr_copy(idmap, inode, attr);
1070
1071 if (attr->ia_valid & ATTR_MODE) {
1072 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1073
1074 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1075 if (!err)
1076 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1077 clear_inode_flag(inode, FI_ACL_MODE);
1078 }
1079 }
1080
1081 /* file size may changed here */
1082 f2fs_mark_inode_dirty_sync(inode, true);
1083
1084 /* inode change will produce dirty node pages flushed by checkpoint */
1085 f2fs_balance_fs(F2FS_I_SB(inode), true);
1086
1087 return err;
1088 }
1089
1090 const struct inode_operations f2fs_file_inode_operations = {
1091 .getattr = f2fs_getattr,
1092 .setattr = f2fs_setattr,
1093 .get_inode_acl = f2fs_get_acl,
1094 .set_acl = f2fs_set_acl,
1095 .listxattr = f2fs_listxattr,
1096 .fiemap = f2fs_fiemap,
1097 .fileattr_get = f2fs_fileattr_get,
1098 .fileattr_set = f2fs_fileattr_set,
1099 };
1100
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1101 static int fill_zero(struct inode *inode, pgoff_t index,
1102 loff_t start, loff_t len)
1103 {
1104 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1105 struct page *page;
1106
1107 if (!len)
1108 return 0;
1109
1110 f2fs_balance_fs(sbi, true);
1111
1112 f2fs_lock_op(sbi);
1113 page = f2fs_get_new_data_page(inode, NULL, index, false);
1114 f2fs_unlock_op(sbi);
1115
1116 if (IS_ERR(page))
1117 return PTR_ERR(page);
1118
1119 f2fs_wait_on_page_writeback(page, DATA, true, true);
1120 zero_user(page, start, len);
1121 set_page_dirty(page);
1122 f2fs_put_page(page, 1);
1123 return 0;
1124 }
1125
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1126 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1127 {
1128 int err;
1129
1130 while (pg_start < pg_end) {
1131 struct dnode_of_data dn;
1132 pgoff_t end_offset, count;
1133
1134 set_new_dnode(&dn, inode, NULL, NULL, 0);
1135 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1136 if (err) {
1137 if (err == -ENOENT) {
1138 pg_start = f2fs_get_next_page_offset(&dn,
1139 pg_start);
1140 continue;
1141 }
1142 return err;
1143 }
1144
1145 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1146 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1147
1148 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1149
1150 f2fs_truncate_data_blocks_range(&dn, count);
1151 f2fs_put_dnode(&dn);
1152
1153 pg_start += count;
1154 }
1155 return 0;
1156 }
1157
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1158 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1159 {
1160 pgoff_t pg_start, pg_end;
1161 loff_t off_start, off_end;
1162 int ret;
1163
1164 ret = f2fs_convert_inline_inode(inode);
1165 if (ret)
1166 return ret;
1167
1168 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1169 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1170
1171 off_start = offset & (PAGE_SIZE - 1);
1172 off_end = (offset + len) & (PAGE_SIZE - 1);
1173
1174 if (pg_start == pg_end) {
1175 ret = fill_zero(inode, pg_start, off_start,
1176 off_end - off_start);
1177 if (ret)
1178 return ret;
1179 } else {
1180 if (off_start) {
1181 ret = fill_zero(inode, pg_start++, off_start,
1182 PAGE_SIZE - off_start);
1183 if (ret)
1184 return ret;
1185 }
1186 if (off_end) {
1187 ret = fill_zero(inode, pg_end, 0, off_end);
1188 if (ret)
1189 return ret;
1190 }
1191
1192 if (pg_start < pg_end) {
1193 loff_t blk_start, blk_end;
1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195
1196 f2fs_balance_fs(sbi, true);
1197
1198 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1199 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1200
1201 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1202 filemap_invalidate_lock(inode->i_mapping);
1203
1204 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1205
1206 f2fs_lock_op(sbi);
1207 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1208 f2fs_unlock_op(sbi);
1209
1210 filemap_invalidate_unlock(inode->i_mapping);
1211 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1212 }
1213 }
1214
1215 return ret;
1216 }
1217
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1218 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1219 int *do_replace, pgoff_t off, pgoff_t len)
1220 {
1221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1222 struct dnode_of_data dn;
1223 int ret, done, i;
1224
1225 next_dnode:
1226 set_new_dnode(&dn, inode, NULL, NULL, 0);
1227 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1228 if (ret && ret != -ENOENT) {
1229 return ret;
1230 } else if (ret == -ENOENT) {
1231 if (dn.max_level == 0)
1232 return -ENOENT;
1233 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1234 dn.ofs_in_node, len);
1235 blkaddr += done;
1236 do_replace += done;
1237 goto next;
1238 }
1239
1240 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1241 dn.ofs_in_node, len);
1242 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1243 *blkaddr = f2fs_data_blkaddr(&dn);
1244
1245 if (__is_valid_data_blkaddr(*blkaddr) &&
1246 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1247 DATA_GENERIC_ENHANCE)) {
1248 f2fs_put_dnode(&dn);
1249 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1250 return -EFSCORRUPTED;
1251 }
1252
1253 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1254
1255 if (f2fs_lfs_mode(sbi)) {
1256 f2fs_put_dnode(&dn);
1257 return -EOPNOTSUPP;
1258 }
1259
1260 /* do not invalidate this block address */
1261 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1262 *do_replace = 1;
1263 }
1264 }
1265 f2fs_put_dnode(&dn);
1266 next:
1267 len -= done;
1268 off += done;
1269 if (len)
1270 goto next_dnode;
1271 return 0;
1272 }
1273
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1274 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1275 int *do_replace, pgoff_t off, int len)
1276 {
1277 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1278 struct dnode_of_data dn;
1279 int ret, i;
1280
1281 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1282 if (*do_replace == 0)
1283 continue;
1284
1285 set_new_dnode(&dn, inode, NULL, NULL, 0);
1286 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1287 if (ret) {
1288 dec_valid_block_count(sbi, inode, 1);
1289 f2fs_invalidate_blocks(sbi, *blkaddr);
1290 } else {
1291 f2fs_update_data_blkaddr(&dn, *blkaddr);
1292 }
1293 f2fs_put_dnode(&dn);
1294 }
1295 return 0;
1296 }
1297
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1298 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1299 block_t *blkaddr, int *do_replace,
1300 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1301 {
1302 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1303 pgoff_t i = 0;
1304 int ret;
1305
1306 while (i < len) {
1307 if (blkaddr[i] == NULL_ADDR && !full) {
1308 i++;
1309 continue;
1310 }
1311
1312 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1313 struct dnode_of_data dn;
1314 struct node_info ni;
1315 size_t new_size;
1316 pgoff_t ilen;
1317
1318 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1319 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1320 if (ret)
1321 return ret;
1322
1323 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1324 if (ret) {
1325 f2fs_put_dnode(&dn);
1326 return ret;
1327 }
1328
1329 ilen = min((pgoff_t)
1330 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1331 dn.ofs_in_node, len - i);
1332 do {
1333 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1334 f2fs_truncate_data_blocks_range(&dn, 1);
1335
1336 if (do_replace[i]) {
1337 f2fs_i_blocks_write(src_inode,
1338 1, false, false);
1339 f2fs_i_blocks_write(dst_inode,
1340 1, true, false);
1341 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1342 blkaddr[i], ni.version, true, false);
1343
1344 do_replace[i] = 0;
1345 }
1346 dn.ofs_in_node++;
1347 i++;
1348 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1349 if (dst_inode->i_size < new_size)
1350 f2fs_i_size_write(dst_inode, new_size);
1351 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1352
1353 f2fs_put_dnode(&dn);
1354 } else {
1355 struct page *psrc, *pdst;
1356
1357 psrc = f2fs_get_lock_data_page(src_inode,
1358 src + i, true);
1359 if (IS_ERR(psrc))
1360 return PTR_ERR(psrc);
1361 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1362 true);
1363 if (IS_ERR(pdst)) {
1364 f2fs_put_page(psrc, 1);
1365 return PTR_ERR(pdst);
1366 }
1367
1368 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1369
1370 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1371 set_page_dirty(pdst);
1372 set_page_private_gcing(pdst);
1373 f2fs_put_page(pdst, 1);
1374 f2fs_put_page(psrc, 1);
1375
1376 ret = f2fs_truncate_hole(src_inode,
1377 src + i, src + i + 1);
1378 if (ret)
1379 return ret;
1380 i++;
1381 }
1382 }
1383 return 0;
1384 }
1385
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1386 static int __exchange_data_block(struct inode *src_inode,
1387 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1388 pgoff_t len, bool full)
1389 {
1390 block_t *src_blkaddr;
1391 int *do_replace;
1392 pgoff_t olen;
1393 int ret;
1394
1395 while (len) {
1396 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1397
1398 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1399 array_size(olen, sizeof(block_t)),
1400 GFP_NOFS);
1401 if (!src_blkaddr)
1402 return -ENOMEM;
1403
1404 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1405 array_size(olen, sizeof(int)),
1406 GFP_NOFS);
1407 if (!do_replace) {
1408 kvfree(src_blkaddr);
1409 return -ENOMEM;
1410 }
1411
1412 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1413 do_replace, src, olen);
1414 if (ret)
1415 goto roll_back;
1416
1417 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1418 do_replace, src, dst, olen, full);
1419 if (ret)
1420 goto roll_back;
1421
1422 src += olen;
1423 dst += olen;
1424 len -= olen;
1425
1426 kvfree(src_blkaddr);
1427 kvfree(do_replace);
1428 }
1429 return 0;
1430
1431 roll_back:
1432 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1433 kvfree(src_blkaddr);
1434 kvfree(do_replace);
1435 return ret;
1436 }
1437
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1438 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1439 {
1440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1441 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1442 pgoff_t start = offset >> PAGE_SHIFT;
1443 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1444 int ret;
1445
1446 f2fs_balance_fs(sbi, true);
1447
1448 /* avoid gc operation during block exchange */
1449 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1450 filemap_invalidate_lock(inode->i_mapping);
1451
1452 f2fs_lock_op(sbi);
1453 f2fs_drop_extent_tree(inode);
1454 truncate_pagecache(inode, offset);
1455 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1456 f2fs_unlock_op(sbi);
1457
1458 filemap_invalidate_unlock(inode->i_mapping);
1459 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1460 return ret;
1461 }
1462
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1463 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1464 {
1465 loff_t new_size;
1466 int ret;
1467
1468 if (offset + len >= i_size_read(inode))
1469 return -EINVAL;
1470
1471 /* collapse range should be aligned to block size of f2fs. */
1472 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1473 return -EINVAL;
1474
1475 ret = f2fs_convert_inline_inode(inode);
1476 if (ret)
1477 return ret;
1478
1479 /* write out all dirty pages from offset */
1480 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1481 if (ret)
1482 return ret;
1483
1484 ret = f2fs_do_collapse(inode, offset, len);
1485 if (ret)
1486 return ret;
1487
1488 /* write out all moved pages, if possible */
1489 filemap_invalidate_lock(inode->i_mapping);
1490 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1491 truncate_pagecache(inode, offset);
1492
1493 new_size = i_size_read(inode) - len;
1494 ret = f2fs_truncate_blocks(inode, new_size, true);
1495 filemap_invalidate_unlock(inode->i_mapping);
1496 if (!ret)
1497 f2fs_i_size_write(inode, new_size);
1498 return ret;
1499 }
1500
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1501 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1502 pgoff_t end)
1503 {
1504 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1505 pgoff_t index = start;
1506 unsigned int ofs_in_node = dn->ofs_in_node;
1507 blkcnt_t count = 0;
1508 int ret;
1509
1510 for (; index < end; index++, dn->ofs_in_node++) {
1511 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1512 count++;
1513 }
1514
1515 dn->ofs_in_node = ofs_in_node;
1516 ret = f2fs_reserve_new_blocks(dn, count);
1517 if (ret)
1518 return ret;
1519
1520 dn->ofs_in_node = ofs_in_node;
1521 for (index = start; index < end; index++, dn->ofs_in_node++) {
1522 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1523 /*
1524 * f2fs_reserve_new_blocks will not guarantee entire block
1525 * allocation.
1526 */
1527 if (dn->data_blkaddr == NULL_ADDR) {
1528 ret = -ENOSPC;
1529 break;
1530 }
1531
1532 if (dn->data_blkaddr == NEW_ADDR)
1533 continue;
1534
1535 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1536 DATA_GENERIC_ENHANCE)) {
1537 ret = -EFSCORRUPTED;
1538 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1539 break;
1540 }
1541
1542 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1543 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1544 }
1545
1546 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1547 f2fs_update_age_extent_cache_range(dn, start, index - start);
1548
1549 return ret;
1550 }
1551
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1552 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1553 int mode)
1554 {
1555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1556 struct address_space *mapping = inode->i_mapping;
1557 pgoff_t index, pg_start, pg_end;
1558 loff_t new_size = i_size_read(inode);
1559 loff_t off_start, off_end;
1560 int ret = 0;
1561
1562 ret = inode_newsize_ok(inode, (len + offset));
1563 if (ret)
1564 return ret;
1565
1566 ret = f2fs_convert_inline_inode(inode);
1567 if (ret)
1568 return ret;
1569
1570 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1571 if (ret)
1572 return ret;
1573
1574 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1575 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1576
1577 off_start = offset & (PAGE_SIZE - 1);
1578 off_end = (offset + len) & (PAGE_SIZE - 1);
1579
1580 if (pg_start == pg_end) {
1581 ret = fill_zero(inode, pg_start, off_start,
1582 off_end - off_start);
1583 if (ret)
1584 return ret;
1585
1586 new_size = max_t(loff_t, new_size, offset + len);
1587 } else {
1588 if (off_start) {
1589 ret = fill_zero(inode, pg_start++, off_start,
1590 PAGE_SIZE - off_start);
1591 if (ret)
1592 return ret;
1593
1594 new_size = max_t(loff_t, new_size,
1595 (loff_t)pg_start << PAGE_SHIFT);
1596 }
1597
1598 for (index = pg_start; index < pg_end;) {
1599 struct dnode_of_data dn;
1600 unsigned int end_offset;
1601 pgoff_t end;
1602
1603 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1604 filemap_invalidate_lock(mapping);
1605
1606 truncate_pagecache_range(inode,
1607 (loff_t)index << PAGE_SHIFT,
1608 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1609
1610 f2fs_lock_op(sbi);
1611
1612 set_new_dnode(&dn, inode, NULL, NULL, 0);
1613 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1614 if (ret) {
1615 f2fs_unlock_op(sbi);
1616 filemap_invalidate_unlock(mapping);
1617 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1618 goto out;
1619 }
1620
1621 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1622 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1623
1624 ret = f2fs_do_zero_range(&dn, index, end);
1625 f2fs_put_dnode(&dn);
1626
1627 f2fs_unlock_op(sbi);
1628 filemap_invalidate_unlock(mapping);
1629 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1630
1631 f2fs_balance_fs(sbi, dn.node_changed);
1632
1633 if (ret)
1634 goto out;
1635
1636 index = end;
1637 new_size = max_t(loff_t, new_size,
1638 (loff_t)index << PAGE_SHIFT);
1639 }
1640
1641 if (off_end) {
1642 ret = fill_zero(inode, pg_end, 0, off_end);
1643 if (ret)
1644 goto out;
1645
1646 new_size = max_t(loff_t, new_size, offset + len);
1647 }
1648 }
1649
1650 out:
1651 if (new_size > i_size_read(inode)) {
1652 if (mode & FALLOC_FL_KEEP_SIZE)
1653 file_set_keep_isize(inode);
1654 else
1655 f2fs_i_size_write(inode, new_size);
1656 }
1657 return ret;
1658 }
1659
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1660 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1661 {
1662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1663 struct address_space *mapping = inode->i_mapping;
1664 pgoff_t nr, pg_start, pg_end, delta, idx;
1665 loff_t new_size;
1666 int ret = 0;
1667
1668 new_size = i_size_read(inode) + len;
1669 ret = inode_newsize_ok(inode, new_size);
1670 if (ret)
1671 return ret;
1672
1673 if (offset >= i_size_read(inode))
1674 return -EINVAL;
1675
1676 /* insert range should be aligned to block size of f2fs. */
1677 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1678 return -EINVAL;
1679
1680 ret = f2fs_convert_inline_inode(inode);
1681 if (ret)
1682 return ret;
1683
1684 f2fs_balance_fs(sbi, true);
1685
1686 filemap_invalidate_lock(mapping);
1687 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1688 filemap_invalidate_unlock(mapping);
1689 if (ret)
1690 return ret;
1691
1692 /* write out all dirty pages from offset */
1693 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1694 if (ret)
1695 return ret;
1696
1697 pg_start = offset >> PAGE_SHIFT;
1698 pg_end = (offset + len) >> PAGE_SHIFT;
1699 delta = pg_end - pg_start;
1700 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1701
1702 /* avoid gc operation during block exchange */
1703 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1704 filemap_invalidate_lock(mapping);
1705 truncate_pagecache(inode, offset);
1706
1707 while (!ret && idx > pg_start) {
1708 nr = idx - pg_start;
1709 if (nr > delta)
1710 nr = delta;
1711 idx -= nr;
1712
1713 f2fs_lock_op(sbi);
1714 f2fs_drop_extent_tree(inode);
1715
1716 ret = __exchange_data_block(inode, inode, idx,
1717 idx + delta, nr, false);
1718 f2fs_unlock_op(sbi);
1719 }
1720 filemap_invalidate_unlock(mapping);
1721 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1722
1723 /* write out all moved pages, if possible */
1724 filemap_invalidate_lock(mapping);
1725 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1726 truncate_pagecache(inode, offset);
1727 filemap_invalidate_unlock(mapping);
1728
1729 if (!ret)
1730 f2fs_i_size_write(inode, new_size);
1731 return ret;
1732 }
1733
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1734 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1735 loff_t len, int mode)
1736 {
1737 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1738 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1739 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1740 .m_may_create = true };
1741 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1742 .init_gc_type = FG_GC,
1743 .should_migrate_blocks = false,
1744 .err_gc_skipped = true,
1745 .nr_free_secs = 0 };
1746 pgoff_t pg_start, pg_end;
1747 loff_t new_size;
1748 loff_t off_end;
1749 block_t expanded = 0;
1750 int err;
1751
1752 err = inode_newsize_ok(inode, (len + offset));
1753 if (err)
1754 return err;
1755
1756 err = f2fs_convert_inline_inode(inode);
1757 if (err)
1758 return err;
1759
1760 f2fs_balance_fs(sbi, true);
1761
1762 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1763 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1764 off_end = (offset + len) & (PAGE_SIZE - 1);
1765
1766 map.m_lblk = pg_start;
1767 map.m_len = pg_end - pg_start;
1768 if (off_end)
1769 map.m_len++;
1770
1771 if (!map.m_len)
1772 return 0;
1773
1774 if (f2fs_is_pinned_file(inode)) {
1775 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1776 block_t sec_len = roundup(map.m_len, sec_blks);
1777
1778 map.m_len = sec_blks;
1779 next_alloc:
1780 if (has_not_enough_free_secs(sbi, 0,
1781 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1782 f2fs_down_write(&sbi->gc_lock);
1783 stat_inc_gc_call_count(sbi, FOREGROUND);
1784 err = f2fs_gc(sbi, &gc_control);
1785 if (err && err != -ENODATA)
1786 goto out_err;
1787 }
1788
1789 f2fs_down_write(&sbi->pin_sem);
1790
1791 err = f2fs_allocate_pinning_section(sbi);
1792 if (err) {
1793 f2fs_up_write(&sbi->pin_sem);
1794 goto out_err;
1795 }
1796
1797 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1798 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1799 file_dont_truncate(inode);
1800
1801 f2fs_up_write(&sbi->pin_sem);
1802
1803 expanded += map.m_len;
1804 sec_len -= map.m_len;
1805 map.m_lblk += map.m_len;
1806 if (!err && sec_len)
1807 goto next_alloc;
1808
1809 map.m_len = expanded;
1810 } else {
1811 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1812 expanded = map.m_len;
1813 }
1814 out_err:
1815 if (err) {
1816 pgoff_t last_off;
1817
1818 if (!expanded)
1819 return err;
1820
1821 last_off = pg_start + expanded - 1;
1822
1823 /* update new size to the failed position */
1824 new_size = (last_off == pg_end) ? offset + len :
1825 (loff_t)(last_off + 1) << PAGE_SHIFT;
1826 } else {
1827 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1828 }
1829
1830 if (new_size > i_size_read(inode)) {
1831 if (mode & FALLOC_FL_KEEP_SIZE)
1832 file_set_keep_isize(inode);
1833 else
1834 f2fs_i_size_write(inode, new_size);
1835 }
1836
1837 return err;
1838 }
1839
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1840 static long f2fs_fallocate(struct file *file, int mode,
1841 loff_t offset, loff_t len)
1842 {
1843 struct inode *inode = file_inode(file);
1844 long ret = 0;
1845
1846 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1847 return -EIO;
1848 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1849 return -ENOSPC;
1850 if (!f2fs_is_compress_backend_ready(inode))
1851 return -EOPNOTSUPP;
1852
1853 /* f2fs only support ->fallocate for regular file */
1854 if (!S_ISREG(inode->i_mode))
1855 return -EINVAL;
1856
1857 if (IS_ENCRYPTED(inode) &&
1858 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1859 return -EOPNOTSUPP;
1860
1861 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1862 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1863 FALLOC_FL_INSERT_RANGE))
1864 return -EOPNOTSUPP;
1865
1866 inode_lock(inode);
1867
1868 /*
1869 * Pinned file should not support partial truncation since the block
1870 * can be used by applications.
1871 */
1872 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1873 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1874 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1875 ret = -EOPNOTSUPP;
1876 goto out;
1877 }
1878
1879 ret = file_modified(file);
1880 if (ret)
1881 goto out;
1882
1883 /*
1884 * wait for inflight dio, blocks should be removed after IO
1885 * completion.
1886 */
1887 inode_dio_wait(inode);
1888
1889 if (mode & FALLOC_FL_PUNCH_HOLE) {
1890 if (offset >= inode->i_size)
1891 goto out;
1892
1893 ret = f2fs_punch_hole(inode, offset, len);
1894 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1895 ret = f2fs_collapse_range(inode, offset, len);
1896 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1897 ret = f2fs_zero_range(inode, offset, len, mode);
1898 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1899 ret = f2fs_insert_range(inode, offset, len);
1900 } else {
1901 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1902 }
1903
1904 if (!ret) {
1905 inode->i_mtime = inode_set_ctime_current(inode);
1906 f2fs_mark_inode_dirty_sync(inode, false);
1907 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1908 }
1909
1910 out:
1911 inode_unlock(inode);
1912
1913 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1914 return ret;
1915 }
1916
f2fs_release_file(struct inode * inode,struct file * filp)1917 static int f2fs_release_file(struct inode *inode, struct file *filp)
1918 {
1919 /*
1920 * f2fs_release_file is called at every close calls. So we should
1921 * not drop any inmemory pages by close called by other process.
1922 */
1923 if (!(filp->f_mode & FMODE_WRITE) ||
1924 atomic_read(&inode->i_writecount) != 1)
1925 return 0;
1926
1927 inode_lock(inode);
1928 f2fs_abort_atomic_write(inode, true);
1929 inode_unlock(inode);
1930
1931 return 0;
1932 }
1933
f2fs_file_flush(struct file * file,fl_owner_t id)1934 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1935 {
1936 struct inode *inode = file_inode(file);
1937
1938 /*
1939 * If the process doing a transaction is crashed, we should do
1940 * roll-back. Otherwise, other reader/write can see corrupted database
1941 * until all the writers close its file. Since this should be done
1942 * before dropping file lock, it needs to do in ->flush.
1943 */
1944 if (F2FS_I(inode)->atomic_write_task == current &&
1945 (current->flags & PF_EXITING)) {
1946 inode_lock(inode);
1947 f2fs_abort_atomic_write(inode, true);
1948 inode_unlock(inode);
1949 }
1950
1951 return 0;
1952 }
1953
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1954 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1955 {
1956 struct f2fs_inode_info *fi = F2FS_I(inode);
1957 u32 masked_flags = fi->i_flags & mask;
1958
1959 /* mask can be shrunk by flags_valid selector */
1960 iflags &= mask;
1961
1962 /* Is it quota file? Do not allow user to mess with it */
1963 if (IS_NOQUOTA(inode))
1964 return -EPERM;
1965
1966 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1967 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1968 return -EOPNOTSUPP;
1969 if (!f2fs_empty_dir(inode))
1970 return -ENOTEMPTY;
1971 }
1972
1973 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1974 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1975 return -EOPNOTSUPP;
1976 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1977 return -EINVAL;
1978 }
1979
1980 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1981 if (masked_flags & F2FS_COMPR_FL) {
1982 if (!f2fs_disable_compressed_file(inode))
1983 return -EINVAL;
1984 } else {
1985 /* try to convert inline_data to support compression */
1986 int err = f2fs_convert_inline_inode(inode);
1987 if (err)
1988 return err;
1989
1990 f2fs_down_write(&F2FS_I(inode)->i_sem);
1991 if (!f2fs_may_compress(inode) ||
1992 (S_ISREG(inode->i_mode) &&
1993 F2FS_HAS_BLOCKS(inode))) {
1994 f2fs_up_write(&F2FS_I(inode)->i_sem);
1995 return -EINVAL;
1996 }
1997 err = set_compress_context(inode);
1998 f2fs_up_write(&F2FS_I(inode)->i_sem);
1999
2000 if (err)
2001 return err;
2002 }
2003 }
2004
2005 fi->i_flags = iflags | (fi->i_flags & ~mask);
2006 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2007 (fi->i_flags & F2FS_NOCOMP_FL));
2008
2009 if (fi->i_flags & F2FS_PROJINHERIT_FL)
2010 set_inode_flag(inode, FI_PROJ_INHERIT);
2011 else
2012 clear_inode_flag(inode, FI_PROJ_INHERIT);
2013
2014 inode_set_ctime_current(inode);
2015 f2fs_set_inode_flags(inode);
2016 f2fs_mark_inode_dirty_sync(inode, true);
2017 return 0;
2018 }
2019
2020 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2021
2022 /*
2023 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2024 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2025 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2026 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2027 *
2028 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2029 * FS_IOC_FSSETXATTR is done by the VFS.
2030 */
2031
2032 static const struct {
2033 u32 iflag;
2034 u32 fsflag;
2035 } f2fs_fsflags_map[] = {
2036 { F2FS_COMPR_FL, FS_COMPR_FL },
2037 { F2FS_SYNC_FL, FS_SYNC_FL },
2038 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2039 { F2FS_APPEND_FL, FS_APPEND_FL },
2040 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2041 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2042 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2043 { F2FS_INDEX_FL, FS_INDEX_FL },
2044 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2045 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2046 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2047 };
2048
2049 #define F2FS_GETTABLE_FS_FL ( \
2050 FS_COMPR_FL | \
2051 FS_SYNC_FL | \
2052 FS_IMMUTABLE_FL | \
2053 FS_APPEND_FL | \
2054 FS_NODUMP_FL | \
2055 FS_NOATIME_FL | \
2056 FS_NOCOMP_FL | \
2057 FS_INDEX_FL | \
2058 FS_DIRSYNC_FL | \
2059 FS_PROJINHERIT_FL | \
2060 FS_ENCRYPT_FL | \
2061 FS_INLINE_DATA_FL | \
2062 FS_NOCOW_FL | \
2063 FS_VERITY_FL | \
2064 FS_CASEFOLD_FL)
2065
2066 #define F2FS_SETTABLE_FS_FL ( \
2067 FS_COMPR_FL | \
2068 FS_SYNC_FL | \
2069 FS_IMMUTABLE_FL | \
2070 FS_APPEND_FL | \
2071 FS_NODUMP_FL | \
2072 FS_NOATIME_FL | \
2073 FS_NOCOMP_FL | \
2074 FS_DIRSYNC_FL | \
2075 FS_PROJINHERIT_FL | \
2076 FS_CASEFOLD_FL)
2077
2078 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2079 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2080 {
2081 u32 fsflags = 0;
2082 int i;
2083
2084 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2085 if (iflags & f2fs_fsflags_map[i].iflag)
2086 fsflags |= f2fs_fsflags_map[i].fsflag;
2087
2088 return fsflags;
2089 }
2090
2091 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2092 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2093 {
2094 u32 iflags = 0;
2095 int i;
2096
2097 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2098 if (fsflags & f2fs_fsflags_map[i].fsflag)
2099 iflags |= f2fs_fsflags_map[i].iflag;
2100
2101 return iflags;
2102 }
2103
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2104 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2105 {
2106 struct inode *inode = file_inode(filp);
2107
2108 return put_user(inode->i_generation, (int __user *)arg);
2109 }
2110
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2111 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2112 {
2113 struct inode *inode = file_inode(filp);
2114 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2115 struct f2fs_inode_info *fi = F2FS_I(inode);
2116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2117 loff_t isize;
2118 int ret;
2119
2120 if (!(filp->f_mode & FMODE_WRITE))
2121 return -EBADF;
2122
2123 if (!inode_owner_or_capable(idmap, inode))
2124 return -EACCES;
2125
2126 if (!S_ISREG(inode->i_mode))
2127 return -EINVAL;
2128
2129 if (filp->f_flags & O_DIRECT)
2130 return -EINVAL;
2131
2132 ret = mnt_want_write_file(filp);
2133 if (ret)
2134 return ret;
2135
2136 inode_lock(inode);
2137
2138 if (!f2fs_disable_compressed_file(inode)) {
2139 ret = -EINVAL;
2140 goto out;
2141 }
2142
2143 if (f2fs_is_atomic_file(inode))
2144 goto out;
2145
2146 ret = f2fs_convert_inline_inode(inode);
2147 if (ret)
2148 goto out;
2149
2150 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2151
2152 /*
2153 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2154 * f2fs_is_atomic_file.
2155 */
2156 if (get_dirty_pages(inode))
2157 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2158 inode->i_ino, get_dirty_pages(inode));
2159 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2160 if (ret) {
2161 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2162 goto out;
2163 }
2164
2165 /* Check if the inode already has a COW inode */
2166 if (fi->cow_inode == NULL) {
2167 /* Create a COW inode for atomic write */
2168 struct dentry *dentry = file_dentry(filp);
2169 struct inode *dir = d_inode(dentry->d_parent);
2170
2171 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2172 if (ret) {
2173 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2174 goto out;
2175 }
2176
2177 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2178 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2179
2180 /* Set the COW inode's atomic_inode to the atomic inode */
2181 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2182 } else {
2183 /* Reuse the already created COW inode */
2184 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2185
2186 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2187
2188 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2189 if (ret) {
2190 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2191 goto out;
2192 }
2193 }
2194
2195 f2fs_write_inode(inode, NULL);
2196
2197 stat_inc_atomic_inode(inode);
2198
2199 set_inode_flag(inode, FI_ATOMIC_FILE);
2200
2201 isize = i_size_read(inode);
2202 fi->original_i_size = isize;
2203 if (truncate) {
2204 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2205 truncate_inode_pages_final(inode->i_mapping);
2206 f2fs_i_size_write(inode, 0);
2207 isize = 0;
2208 }
2209 f2fs_i_size_write(fi->cow_inode, isize);
2210
2211 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2212
2213 f2fs_update_time(sbi, REQ_TIME);
2214 fi->atomic_write_task = current;
2215 stat_update_max_atomic_write(inode);
2216 fi->atomic_write_cnt = 0;
2217 out:
2218 inode_unlock(inode);
2219 mnt_drop_write_file(filp);
2220 return ret;
2221 }
2222
f2fs_ioc_commit_atomic_write(struct file * filp)2223 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2224 {
2225 struct inode *inode = file_inode(filp);
2226 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2227 int ret;
2228
2229 if (!(filp->f_mode & FMODE_WRITE))
2230 return -EBADF;
2231
2232 if (!inode_owner_or_capable(idmap, inode))
2233 return -EACCES;
2234
2235 ret = mnt_want_write_file(filp);
2236 if (ret)
2237 return ret;
2238
2239 f2fs_balance_fs(F2FS_I_SB(inode), true);
2240
2241 inode_lock(inode);
2242
2243 if (f2fs_is_atomic_file(inode)) {
2244 ret = f2fs_commit_atomic_write(inode);
2245 if (!ret)
2246 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2247
2248 f2fs_abort_atomic_write(inode, ret);
2249 } else {
2250 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2251 }
2252
2253 inode_unlock(inode);
2254 mnt_drop_write_file(filp);
2255 return ret;
2256 }
2257
f2fs_ioc_abort_atomic_write(struct file * filp)2258 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2259 {
2260 struct inode *inode = file_inode(filp);
2261 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2262 int ret;
2263
2264 if (!(filp->f_mode & FMODE_WRITE))
2265 return -EBADF;
2266
2267 if (!inode_owner_or_capable(idmap, inode))
2268 return -EACCES;
2269
2270 ret = mnt_want_write_file(filp);
2271 if (ret)
2272 return ret;
2273
2274 inode_lock(inode);
2275
2276 f2fs_abort_atomic_write(inode, true);
2277
2278 inode_unlock(inode);
2279
2280 mnt_drop_write_file(filp);
2281 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2282 return ret;
2283 }
2284
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2285 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2286 bool readonly, bool need_lock)
2287 {
2288 struct super_block *sb = sbi->sb;
2289 int ret = 0;
2290
2291 switch (flag) {
2292 case F2FS_GOING_DOWN_FULLSYNC:
2293 ret = freeze_bdev(sb->s_bdev);
2294 if (ret)
2295 goto out;
2296 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2297 thaw_bdev(sb->s_bdev);
2298 break;
2299 case F2FS_GOING_DOWN_METASYNC:
2300 /* do checkpoint only */
2301 ret = f2fs_sync_fs(sb, 1);
2302 if (ret)
2303 goto out;
2304 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2305 break;
2306 case F2FS_GOING_DOWN_NOSYNC:
2307 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2308 break;
2309 case F2FS_GOING_DOWN_METAFLUSH:
2310 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2311 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2312 break;
2313 case F2FS_GOING_DOWN_NEED_FSCK:
2314 set_sbi_flag(sbi, SBI_NEED_FSCK);
2315 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2316 set_sbi_flag(sbi, SBI_IS_DIRTY);
2317 /* do checkpoint only */
2318 ret = f2fs_sync_fs(sb, 1);
2319 goto out;
2320 default:
2321 ret = -EINVAL;
2322 goto out;
2323 }
2324
2325 if (readonly)
2326 goto out;
2327
2328 /*
2329 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2330 * paths.
2331 */
2332 if (need_lock)
2333 down_write(&sbi->sb->s_umount);
2334
2335 f2fs_stop_gc_thread(sbi);
2336 f2fs_stop_discard_thread(sbi);
2337
2338 f2fs_drop_discard_cmd(sbi);
2339 clear_opt(sbi, DISCARD);
2340
2341 if (need_lock)
2342 up_write(&sbi->sb->s_umount);
2343
2344 f2fs_update_time(sbi, REQ_TIME);
2345 out:
2346
2347 trace_f2fs_shutdown(sbi, flag, ret);
2348
2349 return ret;
2350 }
2351
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2352 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2353 {
2354 struct inode *inode = file_inode(filp);
2355 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2356 __u32 in;
2357 int ret;
2358 bool need_drop = false, readonly = false;
2359
2360 if (!capable(CAP_SYS_ADMIN))
2361 return -EPERM;
2362
2363 if (get_user(in, (__u32 __user *)arg))
2364 return -EFAULT;
2365
2366 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2367 ret = mnt_want_write_file(filp);
2368 if (ret) {
2369 if (ret != -EROFS)
2370 return ret;
2371
2372 /* fallback to nosync shutdown for readonly fs */
2373 in = F2FS_GOING_DOWN_NOSYNC;
2374 readonly = true;
2375 } else {
2376 need_drop = true;
2377 }
2378 }
2379
2380 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2381
2382 if (need_drop)
2383 mnt_drop_write_file(filp);
2384
2385 return ret;
2386 }
2387
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2388 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2389 {
2390 struct inode *inode = file_inode(filp);
2391 struct super_block *sb = inode->i_sb;
2392 struct fstrim_range range;
2393 int ret;
2394
2395 if (!capable(CAP_SYS_ADMIN))
2396 return -EPERM;
2397
2398 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2399 return -EOPNOTSUPP;
2400
2401 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2402 sizeof(range)))
2403 return -EFAULT;
2404
2405 ret = mnt_want_write_file(filp);
2406 if (ret)
2407 return ret;
2408
2409 range.minlen = max((unsigned int)range.minlen,
2410 bdev_discard_granularity(sb->s_bdev));
2411 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2412 mnt_drop_write_file(filp);
2413 if (ret < 0)
2414 return ret;
2415
2416 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2417 sizeof(range)))
2418 return -EFAULT;
2419 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2420 return 0;
2421 }
2422
uuid_is_nonzero(__u8 u[16])2423 static bool uuid_is_nonzero(__u8 u[16])
2424 {
2425 int i;
2426
2427 for (i = 0; i < 16; i++)
2428 if (u[i])
2429 return true;
2430 return false;
2431 }
2432
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2433 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2434 {
2435 struct inode *inode = file_inode(filp);
2436
2437 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2438 return -EOPNOTSUPP;
2439
2440 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2441
2442 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2443 }
2444
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2445 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2446 {
2447 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2448 return -EOPNOTSUPP;
2449 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2450 }
2451
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2452 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2453 {
2454 struct inode *inode = file_inode(filp);
2455 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2456 u8 encrypt_pw_salt[16];
2457 int err;
2458
2459 if (!f2fs_sb_has_encrypt(sbi))
2460 return -EOPNOTSUPP;
2461
2462 err = mnt_want_write_file(filp);
2463 if (err)
2464 return err;
2465
2466 f2fs_down_write(&sbi->sb_lock);
2467
2468 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2469 goto got_it;
2470
2471 /* update superblock with uuid */
2472 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2473
2474 err = f2fs_commit_super(sbi, false);
2475 if (err) {
2476 /* undo new data */
2477 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2478 goto out_err;
2479 }
2480 got_it:
2481 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2482 out_err:
2483 f2fs_up_write(&sbi->sb_lock);
2484 mnt_drop_write_file(filp);
2485
2486 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2487 err = -EFAULT;
2488
2489 return err;
2490 }
2491
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2492 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2493 unsigned long arg)
2494 {
2495 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2496 return -EOPNOTSUPP;
2497
2498 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2499 }
2500
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2501 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2502 {
2503 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2504 return -EOPNOTSUPP;
2505
2506 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2507 }
2508
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2509 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2510 {
2511 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2512 return -EOPNOTSUPP;
2513
2514 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2515 }
2516
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2517 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2518 unsigned long arg)
2519 {
2520 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2521 return -EOPNOTSUPP;
2522
2523 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2524 }
2525
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2526 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2527 unsigned long arg)
2528 {
2529 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2530 return -EOPNOTSUPP;
2531
2532 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2533 }
2534
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2535 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2536 {
2537 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2538 return -EOPNOTSUPP;
2539
2540 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2541 }
2542
f2fs_ioc_gc(struct file * filp,unsigned long arg)2543 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2544 {
2545 struct inode *inode = file_inode(filp);
2546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2548 .no_bg_gc = false,
2549 .should_migrate_blocks = false,
2550 .nr_free_secs = 0 };
2551 __u32 sync;
2552 int ret;
2553
2554 if (!capable(CAP_SYS_ADMIN))
2555 return -EPERM;
2556
2557 if (get_user(sync, (__u32 __user *)arg))
2558 return -EFAULT;
2559
2560 if (f2fs_readonly(sbi->sb))
2561 return -EROFS;
2562
2563 ret = mnt_want_write_file(filp);
2564 if (ret)
2565 return ret;
2566
2567 if (!sync) {
2568 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2569 ret = -EBUSY;
2570 goto out;
2571 }
2572 } else {
2573 f2fs_down_write(&sbi->gc_lock);
2574 }
2575
2576 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2577 gc_control.err_gc_skipped = sync;
2578 stat_inc_gc_call_count(sbi, FOREGROUND);
2579 ret = f2fs_gc(sbi, &gc_control);
2580 out:
2581 mnt_drop_write_file(filp);
2582 return ret;
2583 }
2584
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2585 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2586 {
2587 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2588 struct f2fs_gc_control gc_control = {
2589 .init_gc_type = range->sync ? FG_GC : BG_GC,
2590 .no_bg_gc = false,
2591 .should_migrate_blocks = false,
2592 .err_gc_skipped = range->sync,
2593 .nr_free_secs = 0 };
2594 u64 end;
2595 int ret;
2596
2597 if (!capable(CAP_SYS_ADMIN))
2598 return -EPERM;
2599 if (f2fs_readonly(sbi->sb))
2600 return -EROFS;
2601
2602 end = range->start + range->len;
2603 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2604 end >= MAX_BLKADDR(sbi))
2605 return -EINVAL;
2606
2607 ret = mnt_want_write_file(filp);
2608 if (ret)
2609 return ret;
2610
2611 do_more:
2612 if (!range->sync) {
2613 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2614 ret = -EBUSY;
2615 goto out;
2616 }
2617 } else {
2618 f2fs_down_write(&sbi->gc_lock);
2619 }
2620
2621 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2622 stat_inc_gc_call_count(sbi, FOREGROUND);
2623 ret = f2fs_gc(sbi, &gc_control);
2624 if (ret) {
2625 if (ret == -EBUSY)
2626 ret = -EAGAIN;
2627 goto out;
2628 }
2629 range->start += CAP_BLKS_PER_SEC(sbi);
2630 if (range->start <= end)
2631 goto do_more;
2632 out:
2633 mnt_drop_write_file(filp);
2634 return ret;
2635 }
2636
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2637 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2638 {
2639 struct f2fs_gc_range range;
2640
2641 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2642 sizeof(range)))
2643 return -EFAULT;
2644 return __f2fs_ioc_gc_range(filp, &range);
2645 }
2646
f2fs_ioc_write_checkpoint(struct file * filp)2647 static int f2fs_ioc_write_checkpoint(struct file *filp)
2648 {
2649 struct inode *inode = file_inode(filp);
2650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2651 int ret;
2652
2653 if (!capable(CAP_SYS_ADMIN))
2654 return -EPERM;
2655
2656 if (f2fs_readonly(sbi->sb))
2657 return -EROFS;
2658
2659 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2660 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2661 return -EINVAL;
2662 }
2663
2664 ret = mnt_want_write_file(filp);
2665 if (ret)
2666 return ret;
2667
2668 ret = f2fs_sync_fs(sbi->sb, 1);
2669
2670 mnt_drop_write_file(filp);
2671 return ret;
2672 }
2673
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2674 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2675 struct file *filp,
2676 struct f2fs_defragment *range)
2677 {
2678 struct inode *inode = file_inode(filp);
2679 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2680 .m_seg_type = NO_CHECK_TYPE,
2681 .m_may_create = false };
2682 struct extent_info ei = {};
2683 pgoff_t pg_start, pg_end, next_pgofs;
2684 unsigned int total = 0, sec_num;
2685 block_t blk_end = 0;
2686 bool fragmented = false;
2687 int err;
2688
2689 pg_start = range->start >> PAGE_SHIFT;
2690 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2691
2692 f2fs_balance_fs(sbi, true);
2693
2694 inode_lock(inode);
2695
2696 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2697 f2fs_is_atomic_file(inode)) {
2698 err = -EINVAL;
2699 goto unlock_out;
2700 }
2701
2702 /* if in-place-update policy is enabled, don't waste time here */
2703 set_inode_flag(inode, FI_OPU_WRITE);
2704 if (f2fs_should_update_inplace(inode, NULL)) {
2705 err = -EINVAL;
2706 goto out;
2707 }
2708
2709 /* writeback all dirty pages in the range */
2710 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2711 range->start + range->len - 1);
2712 if (err)
2713 goto out;
2714
2715 /*
2716 * lookup mapping info in extent cache, skip defragmenting if physical
2717 * block addresses are continuous.
2718 */
2719 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2720 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2721 goto out;
2722 }
2723
2724 map.m_lblk = pg_start;
2725 map.m_next_pgofs = &next_pgofs;
2726
2727 /*
2728 * lookup mapping info in dnode page cache, skip defragmenting if all
2729 * physical block addresses are continuous even if there are hole(s)
2730 * in logical blocks.
2731 */
2732 while (map.m_lblk < pg_end) {
2733 map.m_len = pg_end - map.m_lblk;
2734 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2735 if (err)
2736 goto out;
2737
2738 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2739 map.m_lblk = next_pgofs;
2740 continue;
2741 }
2742
2743 if (blk_end && blk_end != map.m_pblk)
2744 fragmented = true;
2745
2746 /* record total count of block that we're going to move */
2747 total += map.m_len;
2748
2749 blk_end = map.m_pblk + map.m_len;
2750
2751 map.m_lblk += map.m_len;
2752 }
2753
2754 if (!fragmented) {
2755 total = 0;
2756 goto out;
2757 }
2758
2759 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2760
2761 /*
2762 * make sure there are enough free section for LFS allocation, this can
2763 * avoid defragment running in SSR mode when free section are allocated
2764 * intensively
2765 */
2766 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2767 err = -EAGAIN;
2768 goto out;
2769 }
2770
2771 map.m_lblk = pg_start;
2772 map.m_len = pg_end - pg_start;
2773 total = 0;
2774
2775 while (map.m_lblk < pg_end) {
2776 pgoff_t idx;
2777 int cnt = 0;
2778
2779 do_map:
2780 map.m_len = pg_end - map.m_lblk;
2781 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2782 if (err)
2783 goto clear_out;
2784
2785 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2786 map.m_lblk = next_pgofs;
2787 goto check;
2788 }
2789
2790 set_inode_flag(inode, FI_SKIP_WRITES);
2791
2792 idx = map.m_lblk;
2793 while (idx < map.m_lblk + map.m_len &&
2794 cnt < BLKS_PER_SEG(sbi)) {
2795 struct page *page;
2796
2797 page = f2fs_get_lock_data_page(inode, idx, true);
2798 if (IS_ERR(page)) {
2799 err = PTR_ERR(page);
2800 goto clear_out;
2801 }
2802
2803 f2fs_wait_on_page_writeback(page, DATA, true, true);
2804
2805 set_page_dirty(page);
2806 set_page_private_gcing(page);
2807 f2fs_put_page(page, 1);
2808
2809 idx++;
2810 cnt++;
2811 total++;
2812 }
2813
2814 map.m_lblk = idx;
2815 check:
2816 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2817 goto do_map;
2818
2819 clear_inode_flag(inode, FI_SKIP_WRITES);
2820
2821 err = filemap_fdatawrite(inode->i_mapping);
2822 if (err)
2823 goto out;
2824 }
2825 clear_out:
2826 clear_inode_flag(inode, FI_SKIP_WRITES);
2827 out:
2828 clear_inode_flag(inode, FI_OPU_WRITE);
2829 unlock_out:
2830 inode_unlock(inode);
2831 if (!err)
2832 range->len = (u64)total << PAGE_SHIFT;
2833 return err;
2834 }
2835
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2836 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2837 {
2838 struct inode *inode = file_inode(filp);
2839 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2840 struct f2fs_defragment range;
2841 int err;
2842
2843 if (!capable(CAP_SYS_ADMIN))
2844 return -EPERM;
2845
2846 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2847 return -EINVAL;
2848
2849 if (f2fs_readonly(sbi->sb))
2850 return -EROFS;
2851
2852 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2853 sizeof(range)))
2854 return -EFAULT;
2855
2856 /* verify alignment of offset & size */
2857 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2858 return -EINVAL;
2859
2860 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2861 max_file_blocks(inode)))
2862 return -EINVAL;
2863
2864 err = mnt_want_write_file(filp);
2865 if (err)
2866 return err;
2867
2868 err = f2fs_defragment_range(sbi, filp, &range);
2869 mnt_drop_write_file(filp);
2870
2871 f2fs_update_time(sbi, REQ_TIME);
2872 if (err < 0)
2873 return err;
2874
2875 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2876 sizeof(range)))
2877 return -EFAULT;
2878
2879 return 0;
2880 }
2881
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2882 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2883 struct file *file_out, loff_t pos_out, size_t len)
2884 {
2885 struct inode *src = file_inode(file_in);
2886 struct inode *dst = file_inode(file_out);
2887 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2888 size_t olen = len, dst_max_i_size = 0;
2889 size_t dst_osize;
2890 int ret;
2891
2892 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2893 src->i_sb != dst->i_sb)
2894 return -EXDEV;
2895
2896 if (unlikely(f2fs_readonly(src->i_sb)))
2897 return -EROFS;
2898
2899 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2900 return -EINVAL;
2901
2902 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2903 return -EOPNOTSUPP;
2904
2905 if (pos_out < 0 || pos_in < 0)
2906 return -EINVAL;
2907
2908 if (src == dst) {
2909 if (pos_in == pos_out)
2910 return 0;
2911 if (pos_out > pos_in && pos_out < pos_in + len)
2912 return -EINVAL;
2913 }
2914
2915 inode_lock(src);
2916 if (src != dst) {
2917 ret = -EBUSY;
2918 if (!inode_trylock(dst))
2919 goto out;
2920 }
2921
2922 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2923 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2924 ret = -EOPNOTSUPP;
2925 goto out_unlock;
2926 }
2927
2928 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2929 ret = -EINVAL;
2930 goto out_unlock;
2931 }
2932
2933 ret = -EINVAL;
2934 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2935 goto out_unlock;
2936 if (len == 0)
2937 olen = len = src->i_size - pos_in;
2938 if (pos_in + len == src->i_size)
2939 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2940 if (len == 0) {
2941 ret = 0;
2942 goto out_unlock;
2943 }
2944
2945 dst_osize = dst->i_size;
2946 if (pos_out + olen > dst->i_size)
2947 dst_max_i_size = pos_out + olen;
2948
2949 /* verify the end result is block aligned */
2950 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2951 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2952 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2953 goto out_unlock;
2954
2955 ret = f2fs_convert_inline_inode(src);
2956 if (ret)
2957 goto out_unlock;
2958
2959 ret = f2fs_convert_inline_inode(dst);
2960 if (ret)
2961 goto out_unlock;
2962
2963 /* write out all dirty pages from offset */
2964 ret = filemap_write_and_wait_range(src->i_mapping,
2965 pos_in, pos_in + len);
2966 if (ret)
2967 goto out_unlock;
2968
2969 ret = filemap_write_and_wait_range(dst->i_mapping,
2970 pos_out, pos_out + len);
2971 if (ret)
2972 goto out_unlock;
2973
2974 f2fs_balance_fs(sbi, true);
2975
2976 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2977 if (src != dst) {
2978 ret = -EBUSY;
2979 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2980 goto out_src;
2981 }
2982
2983 f2fs_lock_op(sbi);
2984 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2985 pos_out >> F2FS_BLKSIZE_BITS,
2986 len >> F2FS_BLKSIZE_BITS, false);
2987
2988 if (!ret) {
2989 if (dst_max_i_size)
2990 f2fs_i_size_write(dst, dst_max_i_size);
2991 else if (dst_osize != dst->i_size)
2992 f2fs_i_size_write(dst, dst_osize);
2993 }
2994 f2fs_unlock_op(sbi);
2995
2996 if (src != dst)
2997 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2998 out_src:
2999 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3000 if (ret)
3001 goto out_unlock;
3002
3003 src->i_mtime = inode_set_ctime_current(src);
3004 f2fs_mark_inode_dirty_sync(src, false);
3005 if (src != dst) {
3006 dst->i_mtime = inode_set_ctime_current(dst);
3007 f2fs_mark_inode_dirty_sync(dst, false);
3008 }
3009 f2fs_update_time(sbi, REQ_TIME);
3010
3011 out_unlock:
3012 if (src != dst)
3013 inode_unlock(dst);
3014 out:
3015 inode_unlock(src);
3016 return ret;
3017 }
3018
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3019 static int __f2fs_ioc_move_range(struct file *filp,
3020 struct f2fs_move_range *range)
3021 {
3022 struct fd dst;
3023 int err;
3024
3025 if (!(filp->f_mode & FMODE_READ) ||
3026 !(filp->f_mode & FMODE_WRITE))
3027 return -EBADF;
3028
3029 dst = fdget(range->dst_fd);
3030 if (!dst.file)
3031 return -EBADF;
3032
3033 if (!(dst.file->f_mode & FMODE_WRITE)) {
3034 err = -EBADF;
3035 goto err_out;
3036 }
3037
3038 err = mnt_want_write_file(filp);
3039 if (err)
3040 goto err_out;
3041
3042 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3043 range->pos_out, range->len);
3044
3045 mnt_drop_write_file(filp);
3046 err_out:
3047 fdput(dst);
3048 return err;
3049 }
3050
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3051 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3052 {
3053 struct f2fs_move_range range;
3054
3055 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3056 sizeof(range)))
3057 return -EFAULT;
3058 return __f2fs_ioc_move_range(filp, &range);
3059 }
3060
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3061 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3062 {
3063 struct inode *inode = file_inode(filp);
3064 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3065 struct sit_info *sm = SIT_I(sbi);
3066 unsigned int start_segno = 0, end_segno = 0;
3067 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3068 struct f2fs_flush_device range;
3069 struct f2fs_gc_control gc_control = {
3070 .init_gc_type = FG_GC,
3071 .should_migrate_blocks = true,
3072 .err_gc_skipped = true,
3073 .nr_free_secs = 0 };
3074 int ret;
3075
3076 if (!capable(CAP_SYS_ADMIN))
3077 return -EPERM;
3078
3079 if (f2fs_readonly(sbi->sb))
3080 return -EROFS;
3081
3082 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3083 return -EINVAL;
3084
3085 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3086 sizeof(range)))
3087 return -EFAULT;
3088
3089 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3090 __is_large_section(sbi)) {
3091 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3092 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3093 return -EINVAL;
3094 }
3095
3096 ret = mnt_want_write_file(filp);
3097 if (ret)
3098 return ret;
3099
3100 if (range.dev_num != 0)
3101 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3102 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3103
3104 start_segno = sm->last_victim[FLUSH_DEVICE];
3105 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3106 start_segno = dev_start_segno;
3107 end_segno = min(start_segno + range.segments, dev_end_segno);
3108
3109 while (start_segno < end_segno) {
3110 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3111 ret = -EBUSY;
3112 goto out;
3113 }
3114 sm->last_victim[GC_CB] = end_segno + 1;
3115 sm->last_victim[GC_GREEDY] = end_segno + 1;
3116 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3117
3118 gc_control.victim_segno = start_segno;
3119 stat_inc_gc_call_count(sbi, FOREGROUND);
3120 ret = f2fs_gc(sbi, &gc_control);
3121 if (ret == -EAGAIN)
3122 ret = 0;
3123 else if (ret < 0)
3124 break;
3125 start_segno++;
3126 }
3127 out:
3128 mnt_drop_write_file(filp);
3129 return ret;
3130 }
3131
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3132 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3133 {
3134 struct inode *inode = file_inode(filp);
3135 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3136
3137 /* Must validate to set it with SQLite behavior in Android. */
3138 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3139
3140 return put_user(sb_feature, (u32 __user *)arg);
3141 }
3142
3143 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3144 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3145 {
3146 struct dquot *transfer_to[MAXQUOTAS] = {};
3147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3148 struct super_block *sb = sbi->sb;
3149 int err;
3150
3151 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3152 if (IS_ERR(transfer_to[PRJQUOTA]))
3153 return PTR_ERR(transfer_to[PRJQUOTA]);
3154
3155 err = __dquot_transfer(inode, transfer_to);
3156 if (err)
3157 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3158 dqput(transfer_to[PRJQUOTA]);
3159 return err;
3160 }
3161
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3162 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3163 {
3164 struct f2fs_inode_info *fi = F2FS_I(inode);
3165 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3166 struct f2fs_inode *ri = NULL;
3167 kprojid_t kprojid;
3168 int err;
3169
3170 if (!f2fs_sb_has_project_quota(sbi)) {
3171 if (projid != F2FS_DEF_PROJID)
3172 return -EOPNOTSUPP;
3173 else
3174 return 0;
3175 }
3176
3177 if (!f2fs_has_extra_attr(inode))
3178 return -EOPNOTSUPP;
3179
3180 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3181
3182 if (projid_eq(kprojid, fi->i_projid))
3183 return 0;
3184
3185 err = -EPERM;
3186 /* Is it quota file? Do not allow user to mess with it */
3187 if (IS_NOQUOTA(inode))
3188 return err;
3189
3190 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3191 return -EOVERFLOW;
3192
3193 err = f2fs_dquot_initialize(inode);
3194 if (err)
3195 return err;
3196
3197 f2fs_lock_op(sbi);
3198 err = f2fs_transfer_project_quota(inode, kprojid);
3199 if (err)
3200 goto out_unlock;
3201
3202 fi->i_projid = kprojid;
3203 inode_set_ctime_current(inode);
3204 f2fs_mark_inode_dirty_sync(inode, true);
3205 out_unlock:
3206 f2fs_unlock_op(sbi);
3207 return err;
3208 }
3209 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3210 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3211 {
3212 return 0;
3213 }
3214
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3215 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3216 {
3217 if (projid != F2FS_DEF_PROJID)
3218 return -EOPNOTSUPP;
3219 return 0;
3220 }
3221 #endif
3222
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3223 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3224 {
3225 struct inode *inode = d_inode(dentry);
3226 struct f2fs_inode_info *fi = F2FS_I(inode);
3227 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3228
3229 if (IS_ENCRYPTED(inode))
3230 fsflags |= FS_ENCRYPT_FL;
3231 if (IS_VERITY(inode))
3232 fsflags |= FS_VERITY_FL;
3233 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3234 fsflags |= FS_INLINE_DATA_FL;
3235 if (is_inode_flag_set(inode, FI_PIN_FILE))
3236 fsflags |= FS_NOCOW_FL;
3237
3238 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3239
3240 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3241 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3242
3243 return 0;
3244 }
3245
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3246 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3247 struct dentry *dentry, struct fileattr *fa)
3248 {
3249 struct inode *inode = d_inode(dentry);
3250 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3251 u32 iflags;
3252 int err;
3253
3254 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3255 return -EIO;
3256 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3257 return -ENOSPC;
3258 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3259 return -EOPNOTSUPP;
3260 fsflags &= F2FS_SETTABLE_FS_FL;
3261 if (!fa->flags_valid)
3262 mask &= FS_COMMON_FL;
3263
3264 iflags = f2fs_fsflags_to_iflags(fsflags);
3265 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3266 return -EOPNOTSUPP;
3267
3268 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3269 if (!err)
3270 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3271
3272 return err;
3273 }
3274
f2fs_pin_file_control(struct inode * inode,bool inc)3275 int f2fs_pin_file_control(struct inode *inode, bool inc)
3276 {
3277 struct f2fs_inode_info *fi = F2FS_I(inode);
3278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3279
3280 /* Use i_gc_failures for normal file as a risk signal. */
3281 if (inc)
3282 f2fs_i_gc_failures_write(inode,
3283 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3284
3285 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3286 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3287 __func__, inode->i_ino,
3288 fi->i_gc_failures[GC_FAILURE_PIN]);
3289 clear_inode_flag(inode, FI_PIN_FILE);
3290 return -EAGAIN;
3291 }
3292 return 0;
3293 }
3294
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3295 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3296 {
3297 struct inode *inode = file_inode(filp);
3298 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3299 __u32 pin;
3300 int ret = 0;
3301
3302 if (get_user(pin, (__u32 __user *)arg))
3303 return -EFAULT;
3304
3305 if (!S_ISREG(inode->i_mode))
3306 return -EINVAL;
3307
3308 if (f2fs_readonly(sbi->sb))
3309 return -EROFS;
3310
3311 ret = mnt_want_write_file(filp);
3312 if (ret)
3313 return ret;
3314
3315 inode_lock(inode);
3316
3317 if (f2fs_is_atomic_file(inode)) {
3318 ret = -EINVAL;
3319 goto out;
3320 }
3321
3322 if (!pin) {
3323 clear_inode_flag(inode, FI_PIN_FILE);
3324 f2fs_i_gc_failures_write(inode, 0);
3325 goto done;
3326 } else if (f2fs_is_pinned_file(inode)) {
3327 goto done;
3328 }
3329
3330 if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3331 ret = -EFBIG;
3332 goto out;
3333 }
3334
3335 /* Let's allow file pinning on zoned device. */
3336 if (!f2fs_sb_has_blkzoned(sbi) &&
3337 f2fs_should_update_outplace(inode, NULL)) {
3338 ret = -EINVAL;
3339 goto out;
3340 }
3341
3342 if (f2fs_pin_file_control(inode, false)) {
3343 ret = -EAGAIN;
3344 goto out;
3345 }
3346
3347 ret = f2fs_convert_inline_inode(inode);
3348 if (ret)
3349 goto out;
3350
3351 if (!f2fs_disable_compressed_file(inode)) {
3352 ret = -EOPNOTSUPP;
3353 goto out;
3354 }
3355
3356 set_inode_flag(inode, FI_PIN_FILE);
3357 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3358 done:
3359 f2fs_update_time(sbi, REQ_TIME);
3360 out:
3361 inode_unlock(inode);
3362 mnt_drop_write_file(filp);
3363 return ret;
3364 }
3365
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3366 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3367 {
3368 struct inode *inode = file_inode(filp);
3369 __u32 pin = 0;
3370
3371 if (is_inode_flag_set(inode, FI_PIN_FILE))
3372 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3373 return put_user(pin, (u32 __user *)arg);
3374 }
3375
f2fs_precache_extents(struct inode * inode)3376 int f2fs_precache_extents(struct inode *inode)
3377 {
3378 struct f2fs_inode_info *fi = F2FS_I(inode);
3379 struct f2fs_map_blocks map;
3380 pgoff_t m_next_extent;
3381 loff_t end;
3382 int err;
3383
3384 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3385 return -EOPNOTSUPP;
3386
3387 map.m_lblk = 0;
3388 map.m_pblk = 0;
3389 map.m_next_pgofs = NULL;
3390 map.m_next_extent = &m_next_extent;
3391 map.m_seg_type = NO_CHECK_TYPE;
3392 map.m_may_create = false;
3393 end = max_file_blocks(inode);
3394
3395 while (map.m_lblk < end) {
3396 map.m_len = end - map.m_lblk;
3397
3398 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3399 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3400 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3401 if (err)
3402 return err;
3403
3404 map.m_lblk = m_next_extent;
3405 }
3406
3407 return 0;
3408 }
3409
f2fs_ioc_precache_extents(struct file * filp)3410 static int f2fs_ioc_precache_extents(struct file *filp)
3411 {
3412 return f2fs_precache_extents(file_inode(filp));
3413 }
3414
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3415 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3416 {
3417 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3418 __u64 block_count;
3419
3420 if (!capable(CAP_SYS_ADMIN))
3421 return -EPERM;
3422
3423 if (f2fs_readonly(sbi->sb))
3424 return -EROFS;
3425
3426 if (copy_from_user(&block_count, (void __user *)arg,
3427 sizeof(block_count)))
3428 return -EFAULT;
3429
3430 return f2fs_resize_fs(filp, block_count);
3431 }
3432
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3433 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3434 {
3435 struct inode *inode = file_inode(filp);
3436
3437 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3438
3439 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3440 f2fs_warn(F2FS_I_SB(inode),
3441 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3442 inode->i_ino);
3443 return -EOPNOTSUPP;
3444 }
3445
3446 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3447 }
3448
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3449 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3450 {
3451 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3452 return -EOPNOTSUPP;
3453
3454 return fsverity_ioctl_measure(filp, (void __user *)arg);
3455 }
3456
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3457 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3458 {
3459 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3460 return -EOPNOTSUPP;
3461
3462 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3463 }
3464
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3465 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3466 {
3467 struct inode *inode = file_inode(filp);
3468 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3469 char *vbuf;
3470 int count;
3471 int err = 0;
3472
3473 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3474 if (!vbuf)
3475 return -ENOMEM;
3476
3477 f2fs_down_read(&sbi->sb_lock);
3478 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3479 ARRAY_SIZE(sbi->raw_super->volume_name),
3480 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3481 f2fs_up_read(&sbi->sb_lock);
3482
3483 if (copy_to_user((char __user *)arg, vbuf,
3484 min(FSLABEL_MAX, count)))
3485 err = -EFAULT;
3486
3487 kfree(vbuf);
3488 return err;
3489 }
3490
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3491 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3492 {
3493 struct inode *inode = file_inode(filp);
3494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3495 char *vbuf;
3496 int err = 0;
3497
3498 if (!capable(CAP_SYS_ADMIN))
3499 return -EPERM;
3500
3501 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3502 if (IS_ERR(vbuf))
3503 return PTR_ERR(vbuf);
3504
3505 err = mnt_want_write_file(filp);
3506 if (err)
3507 goto out;
3508
3509 f2fs_down_write(&sbi->sb_lock);
3510
3511 memset(sbi->raw_super->volume_name, 0,
3512 sizeof(sbi->raw_super->volume_name));
3513 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3514 sbi->raw_super->volume_name,
3515 ARRAY_SIZE(sbi->raw_super->volume_name));
3516
3517 err = f2fs_commit_super(sbi, false);
3518
3519 f2fs_up_write(&sbi->sb_lock);
3520
3521 mnt_drop_write_file(filp);
3522 out:
3523 kfree(vbuf);
3524 return err;
3525 }
3526
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3527 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3528 {
3529 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3530 return -EOPNOTSUPP;
3531
3532 if (!f2fs_compressed_file(inode))
3533 return -EINVAL;
3534
3535 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3536
3537 return 0;
3538 }
3539
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3540 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3541 {
3542 struct inode *inode = file_inode(filp);
3543 __u64 blocks;
3544 int ret;
3545
3546 ret = f2fs_get_compress_blocks(inode, &blocks);
3547 if (ret < 0)
3548 return ret;
3549
3550 return put_user(blocks, (u64 __user *)arg);
3551 }
3552
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3553 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3554 {
3555 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3556 unsigned int released_blocks = 0;
3557 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3558 block_t blkaddr;
3559 int i;
3560
3561 for (i = 0; i < count; i++) {
3562 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3563 dn->ofs_in_node + i);
3564
3565 if (!__is_valid_data_blkaddr(blkaddr))
3566 continue;
3567 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3568 DATA_GENERIC_ENHANCE))) {
3569 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3570 return -EFSCORRUPTED;
3571 }
3572 }
3573
3574 while (count) {
3575 int compr_blocks = 0;
3576
3577 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3578 blkaddr = f2fs_data_blkaddr(dn);
3579
3580 if (i == 0) {
3581 if (blkaddr == COMPRESS_ADDR)
3582 continue;
3583 dn->ofs_in_node += cluster_size;
3584 goto next;
3585 }
3586
3587 if (__is_valid_data_blkaddr(blkaddr))
3588 compr_blocks++;
3589
3590 if (blkaddr != NEW_ADDR)
3591 continue;
3592
3593 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3594 }
3595
3596 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3597 dec_valid_block_count(sbi, dn->inode,
3598 cluster_size - compr_blocks);
3599
3600 released_blocks += cluster_size - compr_blocks;
3601 next:
3602 count -= cluster_size;
3603 }
3604
3605 return released_blocks;
3606 }
3607
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3608 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3609 {
3610 struct inode *inode = file_inode(filp);
3611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3612 pgoff_t page_idx = 0, last_idx;
3613 unsigned int released_blocks = 0;
3614 int ret;
3615 int writecount;
3616
3617 if (!f2fs_sb_has_compression(sbi))
3618 return -EOPNOTSUPP;
3619
3620 if (f2fs_readonly(sbi->sb))
3621 return -EROFS;
3622
3623 ret = mnt_want_write_file(filp);
3624 if (ret)
3625 return ret;
3626
3627 f2fs_balance_fs(sbi, true);
3628
3629 inode_lock(inode);
3630
3631 writecount = atomic_read(&inode->i_writecount);
3632 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3633 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3634 ret = -EBUSY;
3635 goto out;
3636 }
3637
3638 if (!f2fs_compressed_file(inode) ||
3639 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3640 ret = -EINVAL;
3641 goto out;
3642 }
3643
3644 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3645 if (ret)
3646 goto out;
3647
3648 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3649 ret = -EPERM;
3650 goto out;
3651 }
3652
3653 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3654 inode_set_ctime_current(inode);
3655 f2fs_mark_inode_dirty_sync(inode, true);
3656
3657 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3658 filemap_invalidate_lock(inode->i_mapping);
3659
3660 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3661
3662 while (page_idx < last_idx) {
3663 struct dnode_of_data dn;
3664 pgoff_t end_offset, count;
3665
3666 f2fs_lock_op(sbi);
3667
3668 set_new_dnode(&dn, inode, NULL, NULL, 0);
3669 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3670 if (ret) {
3671 f2fs_unlock_op(sbi);
3672 if (ret == -ENOENT) {
3673 page_idx = f2fs_get_next_page_offset(&dn,
3674 page_idx);
3675 ret = 0;
3676 continue;
3677 }
3678 break;
3679 }
3680
3681 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3682 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3683 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3684
3685 ret = release_compress_blocks(&dn, count);
3686
3687 f2fs_put_dnode(&dn);
3688
3689 f2fs_unlock_op(sbi);
3690
3691 if (ret < 0)
3692 break;
3693
3694 page_idx += count;
3695 released_blocks += ret;
3696 }
3697
3698 filemap_invalidate_unlock(inode->i_mapping);
3699 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3700 out:
3701 inode_unlock(inode);
3702
3703 mnt_drop_write_file(filp);
3704
3705 if (ret >= 0) {
3706 ret = put_user(released_blocks, (u64 __user *)arg);
3707 } else if (released_blocks &&
3708 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3709 set_sbi_flag(sbi, SBI_NEED_FSCK);
3710 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3711 "iblocks=%llu, released=%u, compr_blocks=%u, "
3712 "run fsck to fix.",
3713 __func__, inode->i_ino, inode->i_blocks,
3714 released_blocks,
3715 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3716 }
3717
3718 return ret;
3719 }
3720
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3721 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3722 unsigned int *reserved_blocks)
3723 {
3724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3725 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3726 block_t blkaddr;
3727 int i;
3728
3729 for (i = 0; i < count; i++) {
3730 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3731 dn->ofs_in_node + i);
3732
3733 if (!__is_valid_data_blkaddr(blkaddr))
3734 continue;
3735 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3736 DATA_GENERIC_ENHANCE))) {
3737 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3738 return -EFSCORRUPTED;
3739 }
3740 }
3741
3742 while (count) {
3743 int compr_blocks = 0;
3744 blkcnt_t reserved = 0;
3745 blkcnt_t to_reserved;
3746 int ret;
3747
3748 for (i = 0; i < cluster_size; i++) {
3749 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3750 dn->ofs_in_node + i);
3751
3752 if (i == 0) {
3753 if (blkaddr != COMPRESS_ADDR) {
3754 dn->ofs_in_node += cluster_size;
3755 goto next;
3756 }
3757 continue;
3758 }
3759
3760 /*
3761 * compressed cluster was not released due to it
3762 * fails in release_compress_blocks(), so NEW_ADDR
3763 * is a possible case.
3764 */
3765 if (blkaddr == NEW_ADDR) {
3766 reserved++;
3767 continue;
3768 }
3769 if (__is_valid_data_blkaddr(blkaddr)) {
3770 compr_blocks++;
3771 continue;
3772 }
3773 }
3774
3775 to_reserved = cluster_size - compr_blocks - reserved;
3776
3777 /* for the case all blocks in cluster were reserved */
3778 if (reserved && to_reserved == 1) {
3779 dn->ofs_in_node += cluster_size;
3780 goto next;
3781 }
3782
3783 ret = inc_valid_block_count(sbi, dn->inode,
3784 &to_reserved, false);
3785 if (unlikely(ret))
3786 return ret;
3787
3788 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3789 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3790 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3791 }
3792
3793 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3794
3795 *reserved_blocks += to_reserved;
3796 next:
3797 count -= cluster_size;
3798 }
3799
3800 return 0;
3801 }
3802
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3803 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3804 {
3805 struct inode *inode = file_inode(filp);
3806 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3807 pgoff_t page_idx = 0, last_idx;
3808 unsigned int reserved_blocks = 0;
3809 int ret;
3810
3811 if (!f2fs_sb_has_compression(sbi))
3812 return -EOPNOTSUPP;
3813
3814 if (f2fs_readonly(sbi->sb))
3815 return -EROFS;
3816
3817 ret = mnt_want_write_file(filp);
3818 if (ret)
3819 return ret;
3820
3821 f2fs_balance_fs(sbi, true);
3822
3823 inode_lock(inode);
3824
3825 if (!f2fs_compressed_file(inode) ||
3826 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3827 ret = -EINVAL;
3828 goto unlock_inode;
3829 }
3830
3831 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3832 goto unlock_inode;
3833
3834 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3835 filemap_invalidate_lock(inode->i_mapping);
3836
3837 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3838
3839 while (page_idx < last_idx) {
3840 struct dnode_of_data dn;
3841 pgoff_t end_offset, count;
3842
3843 f2fs_lock_op(sbi);
3844
3845 set_new_dnode(&dn, inode, NULL, NULL, 0);
3846 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3847 if (ret) {
3848 f2fs_unlock_op(sbi);
3849 if (ret == -ENOENT) {
3850 page_idx = f2fs_get_next_page_offset(&dn,
3851 page_idx);
3852 ret = 0;
3853 continue;
3854 }
3855 break;
3856 }
3857
3858 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3859 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3860 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3861
3862 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3863
3864 f2fs_put_dnode(&dn);
3865
3866 f2fs_unlock_op(sbi);
3867
3868 if (ret < 0)
3869 break;
3870
3871 page_idx += count;
3872 }
3873
3874 filemap_invalidate_unlock(inode->i_mapping);
3875 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3876
3877 if (!ret) {
3878 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3879 inode_set_ctime_current(inode);
3880 f2fs_mark_inode_dirty_sync(inode, true);
3881 }
3882 unlock_inode:
3883 inode_unlock(inode);
3884 mnt_drop_write_file(filp);
3885
3886 if (!ret) {
3887 ret = put_user(reserved_blocks, (u64 __user *)arg);
3888 } else if (reserved_blocks &&
3889 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3890 set_sbi_flag(sbi, SBI_NEED_FSCK);
3891 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3892 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3893 "run fsck to fix.",
3894 __func__, inode->i_ino, inode->i_blocks,
3895 reserved_blocks,
3896 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3897 }
3898
3899 return ret;
3900 }
3901
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3902 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3903 pgoff_t off, block_t block, block_t len, u32 flags)
3904 {
3905 sector_t sector = SECTOR_FROM_BLOCK(block);
3906 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3907 int ret = 0;
3908
3909 if (flags & F2FS_TRIM_FILE_DISCARD) {
3910 if (bdev_max_secure_erase_sectors(bdev))
3911 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3912 GFP_NOFS);
3913 else
3914 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3915 GFP_NOFS);
3916 }
3917
3918 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3919 if (IS_ENCRYPTED(inode))
3920 ret = fscrypt_zeroout_range(inode, off, block, len);
3921 else
3922 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3923 GFP_NOFS, 0);
3924 }
3925
3926 return ret;
3927 }
3928
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3929 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3930 {
3931 struct inode *inode = file_inode(filp);
3932 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3933 struct address_space *mapping = inode->i_mapping;
3934 struct block_device *prev_bdev = NULL;
3935 struct f2fs_sectrim_range range;
3936 pgoff_t index, pg_end, prev_index = 0;
3937 block_t prev_block = 0, len = 0;
3938 loff_t end_addr;
3939 bool to_end = false;
3940 int ret = 0;
3941
3942 if (!(filp->f_mode & FMODE_WRITE))
3943 return -EBADF;
3944
3945 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3946 sizeof(range)))
3947 return -EFAULT;
3948
3949 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3950 !S_ISREG(inode->i_mode))
3951 return -EINVAL;
3952
3953 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3954 !f2fs_hw_support_discard(sbi)) ||
3955 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3956 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3957 return -EOPNOTSUPP;
3958
3959 file_start_write(filp);
3960 inode_lock(inode);
3961
3962 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3963 range.start >= inode->i_size) {
3964 ret = -EINVAL;
3965 goto err;
3966 }
3967
3968 if (range.len == 0)
3969 goto err;
3970
3971 if (inode->i_size - range.start > range.len) {
3972 end_addr = range.start + range.len;
3973 } else {
3974 end_addr = range.len == (u64)-1 ?
3975 sbi->sb->s_maxbytes : inode->i_size;
3976 to_end = true;
3977 }
3978
3979 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3980 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3981 ret = -EINVAL;
3982 goto err;
3983 }
3984
3985 index = F2FS_BYTES_TO_BLK(range.start);
3986 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3987
3988 ret = f2fs_convert_inline_inode(inode);
3989 if (ret)
3990 goto err;
3991
3992 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3993 filemap_invalidate_lock(mapping);
3994
3995 ret = filemap_write_and_wait_range(mapping, range.start,
3996 to_end ? LLONG_MAX : end_addr - 1);
3997 if (ret)
3998 goto out;
3999
4000 truncate_inode_pages_range(mapping, range.start,
4001 to_end ? -1 : end_addr - 1);
4002
4003 while (index < pg_end) {
4004 struct dnode_of_data dn;
4005 pgoff_t end_offset, count;
4006 int i;
4007
4008 set_new_dnode(&dn, inode, NULL, NULL, 0);
4009 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4010 if (ret) {
4011 if (ret == -ENOENT) {
4012 index = f2fs_get_next_page_offset(&dn, index);
4013 continue;
4014 }
4015 goto out;
4016 }
4017
4018 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4019 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4020 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4021 struct block_device *cur_bdev;
4022 block_t blkaddr = f2fs_data_blkaddr(&dn);
4023
4024 if (!__is_valid_data_blkaddr(blkaddr))
4025 continue;
4026
4027 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4028 DATA_GENERIC_ENHANCE)) {
4029 ret = -EFSCORRUPTED;
4030 f2fs_put_dnode(&dn);
4031 f2fs_handle_error(sbi,
4032 ERROR_INVALID_BLKADDR);
4033 goto out;
4034 }
4035
4036 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4037 if (f2fs_is_multi_device(sbi)) {
4038 int di = f2fs_target_device_index(sbi, blkaddr);
4039
4040 blkaddr -= FDEV(di).start_blk;
4041 }
4042
4043 if (len) {
4044 if (prev_bdev == cur_bdev &&
4045 index == prev_index + len &&
4046 blkaddr == prev_block + len) {
4047 len++;
4048 } else {
4049 ret = f2fs_secure_erase(prev_bdev,
4050 inode, prev_index, prev_block,
4051 len, range.flags);
4052 if (ret) {
4053 f2fs_put_dnode(&dn);
4054 goto out;
4055 }
4056
4057 len = 0;
4058 }
4059 }
4060
4061 if (!len) {
4062 prev_bdev = cur_bdev;
4063 prev_index = index;
4064 prev_block = blkaddr;
4065 len = 1;
4066 }
4067 }
4068
4069 f2fs_put_dnode(&dn);
4070
4071 if (fatal_signal_pending(current)) {
4072 ret = -EINTR;
4073 goto out;
4074 }
4075 cond_resched();
4076 }
4077
4078 if (len)
4079 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4080 prev_block, len, range.flags);
4081 out:
4082 filemap_invalidate_unlock(mapping);
4083 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4084 err:
4085 inode_unlock(inode);
4086 file_end_write(filp);
4087
4088 return ret;
4089 }
4090
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4091 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4092 {
4093 struct inode *inode = file_inode(filp);
4094 struct f2fs_comp_option option;
4095
4096 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4097 return -EOPNOTSUPP;
4098
4099 inode_lock_shared(inode);
4100
4101 if (!f2fs_compressed_file(inode)) {
4102 inode_unlock_shared(inode);
4103 return -ENODATA;
4104 }
4105
4106 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4107 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4108
4109 inode_unlock_shared(inode);
4110
4111 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4112 sizeof(option)))
4113 return -EFAULT;
4114
4115 return 0;
4116 }
4117
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4118 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4119 {
4120 struct inode *inode = file_inode(filp);
4121 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4122 struct f2fs_comp_option option;
4123 int ret = 0;
4124
4125 if (!f2fs_sb_has_compression(sbi))
4126 return -EOPNOTSUPP;
4127
4128 if (!(filp->f_mode & FMODE_WRITE))
4129 return -EBADF;
4130
4131 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4132 sizeof(option)))
4133 return -EFAULT;
4134
4135 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4136 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4137 option.algorithm >= COMPRESS_MAX)
4138 return -EINVAL;
4139
4140 file_start_write(filp);
4141 inode_lock(inode);
4142
4143 f2fs_down_write(&F2FS_I(inode)->i_sem);
4144 if (!f2fs_compressed_file(inode)) {
4145 ret = -EINVAL;
4146 goto out;
4147 }
4148
4149 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4150 ret = -EBUSY;
4151 goto out;
4152 }
4153
4154 if (F2FS_HAS_BLOCKS(inode)) {
4155 ret = -EFBIG;
4156 goto out;
4157 }
4158
4159 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4160 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4161 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4162 /* Set default level */
4163 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4164 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4165 else
4166 F2FS_I(inode)->i_compress_level = 0;
4167 /* Adjust mount option level */
4168 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4169 F2FS_OPTION(sbi).compress_level)
4170 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4171 f2fs_mark_inode_dirty_sync(inode, true);
4172
4173 if (!f2fs_is_compress_backend_ready(inode))
4174 f2fs_warn(sbi, "compression algorithm is successfully set, "
4175 "but current kernel doesn't support this algorithm.");
4176 out:
4177 f2fs_up_write(&F2FS_I(inode)->i_sem);
4178 inode_unlock(inode);
4179 file_end_write(filp);
4180
4181 return ret;
4182 }
4183
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4184 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4185 {
4186 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4187 struct address_space *mapping = inode->i_mapping;
4188 struct page *page;
4189 pgoff_t redirty_idx = page_idx;
4190 int i, page_len = 0, ret = 0;
4191
4192 page_cache_ra_unbounded(&ractl, len, 0);
4193
4194 for (i = 0; i < len; i++, page_idx++) {
4195 page = read_cache_page(mapping, page_idx, NULL, NULL);
4196 if (IS_ERR(page)) {
4197 ret = PTR_ERR(page);
4198 break;
4199 }
4200 page_len++;
4201 }
4202
4203 for (i = 0; i < page_len; i++, redirty_idx++) {
4204 page = find_lock_page(mapping, redirty_idx);
4205
4206 /* It will never fail, when page has pinned above */
4207 f2fs_bug_on(F2FS_I_SB(inode), !page);
4208
4209 f2fs_wait_on_page_writeback(page, DATA, true, true);
4210
4211 set_page_dirty(page);
4212 set_page_private_gcing(page);
4213 f2fs_put_page(page, 1);
4214 f2fs_put_page(page, 0);
4215 }
4216
4217 return ret;
4218 }
4219
f2fs_ioc_decompress_file(struct file * filp)4220 static int f2fs_ioc_decompress_file(struct file *filp)
4221 {
4222 struct inode *inode = file_inode(filp);
4223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4224 struct f2fs_inode_info *fi = F2FS_I(inode);
4225 pgoff_t page_idx = 0, last_idx, cluster_idx;
4226 int ret;
4227
4228 if (!f2fs_sb_has_compression(sbi) ||
4229 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4230 return -EOPNOTSUPP;
4231
4232 if (!(filp->f_mode & FMODE_WRITE))
4233 return -EBADF;
4234
4235 f2fs_balance_fs(sbi, true);
4236
4237 file_start_write(filp);
4238 inode_lock(inode);
4239
4240 if (!f2fs_is_compress_backend_ready(inode)) {
4241 ret = -EOPNOTSUPP;
4242 goto out;
4243 }
4244
4245 if (!f2fs_compressed_file(inode) ||
4246 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4247 ret = -EINVAL;
4248 goto out;
4249 }
4250
4251 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4252 if (ret)
4253 goto out;
4254
4255 if (!atomic_read(&fi->i_compr_blocks))
4256 goto out;
4257
4258 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4259 last_idx >>= fi->i_log_cluster_size;
4260
4261 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4262 page_idx = cluster_idx << fi->i_log_cluster_size;
4263
4264 if (!f2fs_is_compressed_cluster(inode, page_idx))
4265 continue;
4266
4267 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4268 if (ret < 0)
4269 break;
4270
4271 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4272 ret = filemap_fdatawrite(inode->i_mapping);
4273 if (ret < 0)
4274 break;
4275 }
4276
4277 cond_resched();
4278 if (fatal_signal_pending(current)) {
4279 ret = -EINTR;
4280 break;
4281 }
4282 }
4283
4284 if (!ret)
4285 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4286 LLONG_MAX);
4287
4288 if (ret)
4289 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4290 __func__, ret);
4291 out:
4292 inode_unlock(inode);
4293 file_end_write(filp);
4294
4295 return ret;
4296 }
4297
f2fs_ioc_compress_file(struct file * filp)4298 static int f2fs_ioc_compress_file(struct file *filp)
4299 {
4300 struct inode *inode = file_inode(filp);
4301 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4302 struct f2fs_inode_info *fi = F2FS_I(inode);
4303 pgoff_t page_idx = 0, last_idx, cluster_idx;
4304 int ret;
4305
4306 if (!f2fs_sb_has_compression(sbi) ||
4307 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4308 return -EOPNOTSUPP;
4309
4310 if (!(filp->f_mode & FMODE_WRITE))
4311 return -EBADF;
4312
4313 f2fs_balance_fs(sbi, true);
4314
4315 file_start_write(filp);
4316 inode_lock(inode);
4317
4318 if (!f2fs_is_compress_backend_ready(inode)) {
4319 ret = -EOPNOTSUPP;
4320 goto out;
4321 }
4322
4323 if (!f2fs_compressed_file(inode) ||
4324 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4325 ret = -EINVAL;
4326 goto out;
4327 }
4328
4329 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4330 if (ret)
4331 goto out;
4332
4333 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4334
4335 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4336 last_idx >>= fi->i_log_cluster_size;
4337
4338 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4339 page_idx = cluster_idx << fi->i_log_cluster_size;
4340
4341 if (f2fs_is_sparse_cluster(inode, page_idx))
4342 continue;
4343
4344 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4345 if (ret < 0)
4346 break;
4347
4348 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4349 ret = filemap_fdatawrite(inode->i_mapping);
4350 if (ret < 0)
4351 break;
4352 }
4353
4354 cond_resched();
4355 if (fatal_signal_pending(current)) {
4356 ret = -EINTR;
4357 break;
4358 }
4359 }
4360
4361 if (!ret)
4362 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4363 LLONG_MAX);
4364
4365 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4366
4367 if (ret)
4368 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4369 __func__, ret);
4370 out:
4371 inode_unlock(inode);
4372 file_end_write(filp);
4373
4374 return ret;
4375 }
4376
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4377 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4378 {
4379 switch (cmd) {
4380 case FS_IOC_GETVERSION:
4381 return f2fs_ioc_getversion(filp, arg);
4382 case F2FS_IOC_START_ATOMIC_WRITE:
4383 return f2fs_ioc_start_atomic_write(filp, false);
4384 case F2FS_IOC_START_ATOMIC_REPLACE:
4385 return f2fs_ioc_start_atomic_write(filp, true);
4386 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4387 return f2fs_ioc_commit_atomic_write(filp);
4388 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4389 return f2fs_ioc_abort_atomic_write(filp);
4390 case F2FS_IOC_START_VOLATILE_WRITE:
4391 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4392 return -EOPNOTSUPP;
4393 case F2FS_IOC_SHUTDOWN:
4394 return f2fs_ioc_shutdown(filp, arg);
4395 case FITRIM:
4396 return f2fs_ioc_fitrim(filp, arg);
4397 case FS_IOC_SET_ENCRYPTION_POLICY:
4398 return f2fs_ioc_set_encryption_policy(filp, arg);
4399 case FS_IOC_GET_ENCRYPTION_POLICY:
4400 return f2fs_ioc_get_encryption_policy(filp, arg);
4401 case FS_IOC_GET_ENCRYPTION_PWSALT:
4402 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4403 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4404 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4405 case FS_IOC_ADD_ENCRYPTION_KEY:
4406 return f2fs_ioc_add_encryption_key(filp, arg);
4407 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4408 return f2fs_ioc_remove_encryption_key(filp, arg);
4409 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4410 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4411 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4412 return f2fs_ioc_get_encryption_key_status(filp, arg);
4413 case FS_IOC_GET_ENCRYPTION_NONCE:
4414 return f2fs_ioc_get_encryption_nonce(filp, arg);
4415 case F2FS_IOC_GARBAGE_COLLECT:
4416 return f2fs_ioc_gc(filp, arg);
4417 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4418 return f2fs_ioc_gc_range(filp, arg);
4419 case F2FS_IOC_WRITE_CHECKPOINT:
4420 return f2fs_ioc_write_checkpoint(filp);
4421 case F2FS_IOC_DEFRAGMENT:
4422 return f2fs_ioc_defragment(filp, arg);
4423 case F2FS_IOC_MOVE_RANGE:
4424 return f2fs_ioc_move_range(filp, arg);
4425 case F2FS_IOC_FLUSH_DEVICE:
4426 return f2fs_ioc_flush_device(filp, arg);
4427 case F2FS_IOC_GET_FEATURES:
4428 return f2fs_ioc_get_features(filp, arg);
4429 case F2FS_IOC_GET_PIN_FILE:
4430 return f2fs_ioc_get_pin_file(filp, arg);
4431 case F2FS_IOC_SET_PIN_FILE:
4432 return f2fs_ioc_set_pin_file(filp, arg);
4433 case F2FS_IOC_PRECACHE_EXTENTS:
4434 return f2fs_ioc_precache_extents(filp);
4435 case F2FS_IOC_RESIZE_FS:
4436 return f2fs_ioc_resize_fs(filp, arg);
4437 case FS_IOC_ENABLE_VERITY:
4438 return f2fs_ioc_enable_verity(filp, arg);
4439 case FS_IOC_MEASURE_VERITY:
4440 return f2fs_ioc_measure_verity(filp, arg);
4441 case FS_IOC_READ_VERITY_METADATA:
4442 return f2fs_ioc_read_verity_metadata(filp, arg);
4443 case FS_IOC_GETFSLABEL:
4444 return f2fs_ioc_getfslabel(filp, arg);
4445 case FS_IOC_SETFSLABEL:
4446 return f2fs_ioc_setfslabel(filp, arg);
4447 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4448 return f2fs_ioc_get_compress_blocks(filp, arg);
4449 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4450 return f2fs_release_compress_blocks(filp, arg);
4451 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4452 return f2fs_reserve_compress_blocks(filp, arg);
4453 case F2FS_IOC_SEC_TRIM_FILE:
4454 return f2fs_sec_trim_file(filp, arg);
4455 case F2FS_IOC_GET_COMPRESS_OPTION:
4456 return f2fs_ioc_get_compress_option(filp, arg);
4457 case F2FS_IOC_SET_COMPRESS_OPTION:
4458 return f2fs_ioc_set_compress_option(filp, arg);
4459 case F2FS_IOC_DECOMPRESS_FILE:
4460 return f2fs_ioc_decompress_file(filp);
4461 case F2FS_IOC_COMPRESS_FILE:
4462 return f2fs_ioc_compress_file(filp);
4463 default:
4464 return -ENOTTY;
4465 }
4466 }
4467
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4468 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4469 {
4470 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4471 return -EIO;
4472 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4473 return -ENOSPC;
4474
4475 return __f2fs_ioctl(filp, cmd, arg);
4476 }
4477
4478 /*
4479 * Return %true if the given read or write request should use direct I/O, or
4480 * %false if it should use buffered I/O.
4481 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4482 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4483 struct iov_iter *iter)
4484 {
4485 unsigned int align;
4486
4487 if (!(iocb->ki_flags & IOCB_DIRECT))
4488 return false;
4489
4490 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4491 return false;
4492
4493 /*
4494 * Direct I/O not aligned to the disk's logical_block_size will be
4495 * attempted, but will fail with -EINVAL.
4496 *
4497 * f2fs additionally requires that direct I/O be aligned to the
4498 * filesystem block size, which is often a stricter requirement.
4499 * However, f2fs traditionally falls back to buffered I/O on requests
4500 * that are logical_block_size-aligned but not fs-block aligned.
4501 *
4502 * The below logic implements this behavior.
4503 */
4504 align = iocb->ki_pos | iov_iter_alignment(iter);
4505 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4506 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4507 return false;
4508
4509 return true;
4510 }
4511
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4512 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4513 unsigned int flags)
4514 {
4515 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4516
4517 dec_page_count(sbi, F2FS_DIO_READ);
4518 if (error)
4519 return error;
4520 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4521 return 0;
4522 }
4523
4524 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4525 .end_io = f2fs_dio_read_end_io,
4526 };
4527
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4528 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4529 {
4530 struct file *file = iocb->ki_filp;
4531 struct inode *inode = file_inode(file);
4532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4533 struct f2fs_inode_info *fi = F2FS_I(inode);
4534 const loff_t pos = iocb->ki_pos;
4535 const size_t count = iov_iter_count(to);
4536 struct iomap_dio *dio;
4537 ssize_t ret;
4538
4539 if (count == 0)
4540 return 0; /* skip atime update */
4541
4542 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4543
4544 if (iocb->ki_flags & IOCB_NOWAIT) {
4545 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4546 ret = -EAGAIN;
4547 goto out;
4548 }
4549 } else {
4550 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4551 }
4552
4553 /*
4554 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4555 * the higher-level function iomap_dio_rw() in order to ensure that the
4556 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4557 */
4558 inc_page_count(sbi, F2FS_DIO_READ);
4559 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4560 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4561 if (IS_ERR_OR_NULL(dio)) {
4562 ret = PTR_ERR_OR_ZERO(dio);
4563 if (ret != -EIOCBQUEUED)
4564 dec_page_count(sbi, F2FS_DIO_READ);
4565 } else {
4566 ret = iomap_dio_complete(dio);
4567 }
4568
4569 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4570
4571 file_accessed(file);
4572 out:
4573 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4574 return ret;
4575 }
4576
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4577 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4578 int rw)
4579 {
4580 struct inode *inode = file_inode(file);
4581 char *buf, *path;
4582
4583 buf = f2fs_getname(F2FS_I_SB(inode));
4584 if (!buf)
4585 return;
4586 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4587 if (IS_ERR(path))
4588 goto free_buf;
4589 if (rw == WRITE)
4590 trace_f2fs_datawrite_start(inode, pos, count,
4591 current->pid, path, current->comm);
4592 else
4593 trace_f2fs_dataread_start(inode, pos, count,
4594 current->pid, path, current->comm);
4595 free_buf:
4596 f2fs_putname(buf);
4597 }
4598
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4599 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4600 {
4601 struct inode *inode = file_inode(iocb->ki_filp);
4602 const loff_t pos = iocb->ki_pos;
4603 ssize_t ret;
4604
4605 if (!f2fs_is_compress_backend_ready(inode))
4606 return -EOPNOTSUPP;
4607
4608 if (trace_f2fs_dataread_start_enabled())
4609 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4610 iov_iter_count(to), READ);
4611
4612 /* In LFS mode, if there is inflight dio, wait for its completion */
4613 if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4614 inode_dio_wait(inode);
4615
4616 if (f2fs_should_use_dio(inode, iocb, to)) {
4617 ret = f2fs_dio_read_iter(iocb, to);
4618 } else {
4619 ret = filemap_read(iocb, to, 0);
4620 if (ret > 0)
4621 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4622 APP_BUFFERED_READ_IO, ret);
4623 }
4624 if (trace_f2fs_dataread_end_enabled())
4625 trace_f2fs_dataread_end(inode, pos, ret);
4626 return ret;
4627 }
4628
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4629 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4630 struct pipe_inode_info *pipe,
4631 size_t len, unsigned int flags)
4632 {
4633 struct inode *inode = file_inode(in);
4634 const loff_t pos = *ppos;
4635 ssize_t ret;
4636
4637 if (!f2fs_is_compress_backend_ready(inode))
4638 return -EOPNOTSUPP;
4639
4640 if (trace_f2fs_dataread_start_enabled())
4641 f2fs_trace_rw_file_path(in, pos, len, READ);
4642
4643 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4644 if (ret > 0)
4645 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4646 APP_BUFFERED_READ_IO, ret);
4647
4648 if (trace_f2fs_dataread_end_enabled())
4649 trace_f2fs_dataread_end(inode, pos, ret);
4650 return ret;
4651 }
4652
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4653 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4654 {
4655 struct file *file = iocb->ki_filp;
4656 struct inode *inode = file_inode(file);
4657 ssize_t count;
4658 int err;
4659
4660 if (IS_IMMUTABLE(inode))
4661 return -EPERM;
4662
4663 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4664 return -EPERM;
4665
4666 count = generic_write_checks(iocb, from);
4667 if (count <= 0)
4668 return count;
4669
4670 err = file_modified(file);
4671 if (err)
4672 return err;
4673 return count;
4674 }
4675
4676 /*
4677 * Preallocate blocks for a write request, if it is possible and helpful to do
4678 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4679 * blocks were preallocated, or a negative errno value if something went
4680 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4681 * requested blocks (not just some of them) have been allocated.
4682 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4683 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4684 bool dio)
4685 {
4686 struct inode *inode = file_inode(iocb->ki_filp);
4687 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4688 const loff_t pos = iocb->ki_pos;
4689 const size_t count = iov_iter_count(iter);
4690 struct f2fs_map_blocks map = {};
4691 int flag;
4692 int ret;
4693
4694 /* If it will be an out-of-place direct write, don't bother. */
4695 if (dio && f2fs_lfs_mode(sbi))
4696 return 0;
4697 /*
4698 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4699 * buffered IO, if DIO meets any holes.
4700 */
4701 if (dio && i_size_read(inode) &&
4702 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4703 return 0;
4704
4705 /* No-wait I/O can't allocate blocks. */
4706 if (iocb->ki_flags & IOCB_NOWAIT)
4707 return 0;
4708
4709 /* If it will be a short write, don't bother. */
4710 if (fault_in_iov_iter_readable(iter, count))
4711 return 0;
4712
4713 if (f2fs_has_inline_data(inode)) {
4714 /* If the data will fit inline, don't bother. */
4715 if (pos + count <= MAX_INLINE_DATA(inode))
4716 return 0;
4717 ret = f2fs_convert_inline_inode(inode);
4718 if (ret)
4719 return ret;
4720 }
4721
4722 /* Do not preallocate blocks that will be written partially in 4KB. */
4723 map.m_lblk = F2FS_BLK_ALIGN(pos);
4724 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4725 if (map.m_len > map.m_lblk)
4726 map.m_len -= map.m_lblk;
4727 else
4728 map.m_len = 0;
4729 map.m_may_create = true;
4730 if (dio) {
4731 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4732 flag = F2FS_GET_BLOCK_PRE_DIO;
4733 } else {
4734 map.m_seg_type = NO_CHECK_TYPE;
4735 flag = F2FS_GET_BLOCK_PRE_AIO;
4736 }
4737
4738 ret = f2fs_map_blocks(inode, &map, flag);
4739 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4740 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4741 return ret;
4742 if (ret == 0)
4743 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4744 return map.m_len;
4745 }
4746
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4747 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4748 struct iov_iter *from)
4749 {
4750 struct file *file = iocb->ki_filp;
4751 struct inode *inode = file_inode(file);
4752 ssize_t ret;
4753
4754 if (iocb->ki_flags & IOCB_NOWAIT)
4755 return -EOPNOTSUPP;
4756
4757 ret = generic_perform_write(iocb, from);
4758
4759 if (ret > 0) {
4760 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4761 APP_BUFFERED_IO, ret);
4762 }
4763 return ret;
4764 }
4765
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4766 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4767 unsigned int flags)
4768 {
4769 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4770
4771 dec_page_count(sbi, F2FS_DIO_WRITE);
4772 if (error)
4773 return error;
4774 f2fs_update_time(sbi, REQ_TIME);
4775 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4776 return 0;
4777 }
4778
4779 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4780 .end_io = f2fs_dio_write_end_io,
4781 };
4782
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4783 static void f2fs_flush_buffered_write(struct address_space *mapping,
4784 loff_t start_pos, loff_t end_pos)
4785 {
4786 int ret;
4787
4788 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4789 if (ret < 0)
4790 return;
4791 invalidate_mapping_pages(mapping,
4792 start_pos >> PAGE_SHIFT,
4793 end_pos >> PAGE_SHIFT);
4794 }
4795
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4796 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4797 bool *may_need_sync)
4798 {
4799 struct file *file = iocb->ki_filp;
4800 struct inode *inode = file_inode(file);
4801 struct f2fs_inode_info *fi = F2FS_I(inode);
4802 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4803 const bool do_opu = f2fs_lfs_mode(sbi);
4804 const loff_t pos = iocb->ki_pos;
4805 const ssize_t count = iov_iter_count(from);
4806 unsigned int dio_flags;
4807 struct iomap_dio *dio;
4808 ssize_t ret;
4809
4810 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4811
4812 if (iocb->ki_flags & IOCB_NOWAIT) {
4813 /* f2fs_convert_inline_inode() and block allocation can block */
4814 if (f2fs_has_inline_data(inode) ||
4815 !f2fs_overwrite_io(inode, pos, count)) {
4816 ret = -EAGAIN;
4817 goto out;
4818 }
4819
4820 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4821 ret = -EAGAIN;
4822 goto out;
4823 }
4824 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4825 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4826 ret = -EAGAIN;
4827 goto out;
4828 }
4829 } else {
4830 ret = f2fs_convert_inline_inode(inode);
4831 if (ret)
4832 goto out;
4833
4834 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4835 if (do_opu)
4836 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4837 }
4838
4839 /*
4840 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4841 * the higher-level function iomap_dio_rw() in order to ensure that the
4842 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4843 */
4844 inc_page_count(sbi, F2FS_DIO_WRITE);
4845 dio_flags = 0;
4846 if (pos + count > inode->i_size)
4847 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4848 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4849 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4850 if (IS_ERR_OR_NULL(dio)) {
4851 ret = PTR_ERR_OR_ZERO(dio);
4852 if (ret == -ENOTBLK)
4853 ret = 0;
4854 if (ret != -EIOCBQUEUED)
4855 dec_page_count(sbi, F2FS_DIO_WRITE);
4856 } else {
4857 ret = iomap_dio_complete(dio);
4858 }
4859
4860 if (do_opu)
4861 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4862 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4863
4864 if (ret < 0)
4865 goto out;
4866 if (pos + ret > inode->i_size)
4867 f2fs_i_size_write(inode, pos + ret);
4868 if (!do_opu)
4869 set_inode_flag(inode, FI_UPDATE_WRITE);
4870
4871 if (iov_iter_count(from)) {
4872 ssize_t ret2;
4873 loff_t bufio_start_pos = iocb->ki_pos;
4874
4875 /*
4876 * The direct write was partial, so we need to fall back to a
4877 * buffered write for the remainder.
4878 */
4879
4880 ret2 = f2fs_buffered_write_iter(iocb, from);
4881 if (iov_iter_count(from))
4882 f2fs_write_failed(inode, iocb->ki_pos);
4883 if (ret2 < 0)
4884 goto out;
4885
4886 /*
4887 * Ensure that the pagecache pages are written to disk and
4888 * invalidated to preserve the expected O_DIRECT semantics.
4889 */
4890 if (ret2 > 0) {
4891 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4892
4893 ret += ret2;
4894
4895 f2fs_flush_buffered_write(file->f_mapping,
4896 bufio_start_pos,
4897 bufio_end_pos);
4898 }
4899 } else {
4900 /* iomap_dio_rw() already handled the generic_write_sync(). */
4901 *may_need_sync = false;
4902 }
4903 out:
4904 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4905 return ret;
4906 }
4907
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4908 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4909 {
4910 struct inode *inode = file_inode(iocb->ki_filp);
4911 const loff_t orig_pos = iocb->ki_pos;
4912 const size_t orig_count = iov_iter_count(from);
4913 loff_t target_size;
4914 bool dio;
4915 bool may_need_sync = true;
4916 int preallocated;
4917 ssize_t ret;
4918
4919 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4920 ret = -EIO;
4921 goto out;
4922 }
4923
4924 if (!f2fs_is_compress_backend_ready(inode)) {
4925 ret = -EOPNOTSUPP;
4926 goto out;
4927 }
4928
4929 if (iocb->ki_flags & IOCB_NOWAIT) {
4930 if (!inode_trylock(inode)) {
4931 ret = -EAGAIN;
4932 goto out;
4933 }
4934 } else {
4935 inode_lock(inode);
4936 }
4937
4938 ret = f2fs_write_checks(iocb, from);
4939 if (ret <= 0)
4940 goto out_unlock;
4941
4942 /* Determine whether we will do a direct write or a buffered write. */
4943 dio = f2fs_should_use_dio(inode, iocb, from);
4944
4945 /* Possibly preallocate the blocks for the write. */
4946 target_size = iocb->ki_pos + iov_iter_count(from);
4947 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4948 if (preallocated < 0) {
4949 ret = preallocated;
4950 } else {
4951 if (trace_f2fs_datawrite_start_enabled())
4952 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4953 orig_count, WRITE);
4954
4955 /* Do the actual write. */
4956 ret = dio ?
4957 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4958 f2fs_buffered_write_iter(iocb, from);
4959
4960 if (trace_f2fs_datawrite_end_enabled())
4961 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4962 }
4963
4964 /* Don't leave any preallocated blocks around past i_size. */
4965 if (preallocated && i_size_read(inode) < target_size) {
4966 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4967 filemap_invalidate_lock(inode->i_mapping);
4968 if (!f2fs_truncate(inode))
4969 file_dont_truncate(inode);
4970 filemap_invalidate_unlock(inode->i_mapping);
4971 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4972 } else {
4973 file_dont_truncate(inode);
4974 }
4975
4976 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4977 out_unlock:
4978 inode_unlock(inode);
4979 out:
4980 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4981
4982 if (ret > 0 && may_need_sync)
4983 ret = generic_write_sync(iocb, ret);
4984
4985 /* If buffered IO was forced, flush and drop the data from
4986 * the page cache to preserve O_DIRECT semantics
4987 */
4988 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4989 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4990 orig_pos,
4991 orig_pos + ret - 1);
4992
4993 return ret;
4994 }
4995
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4996 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4997 int advice)
4998 {
4999 struct address_space *mapping;
5000 struct backing_dev_info *bdi;
5001 struct inode *inode = file_inode(filp);
5002 int err;
5003
5004 if (advice == POSIX_FADV_SEQUENTIAL) {
5005 if (S_ISFIFO(inode->i_mode))
5006 return -ESPIPE;
5007
5008 mapping = filp->f_mapping;
5009 if (!mapping || len < 0)
5010 return -EINVAL;
5011
5012 bdi = inode_to_bdi(mapping->host);
5013 filp->f_ra.ra_pages = bdi->ra_pages *
5014 F2FS_I_SB(inode)->seq_file_ra_mul;
5015 spin_lock(&filp->f_lock);
5016 filp->f_mode &= ~FMODE_RANDOM;
5017 spin_unlock(&filp->f_lock);
5018 return 0;
5019 }
5020
5021 err = generic_fadvise(filp, offset, len, advice);
5022 if (!err && advice == POSIX_FADV_DONTNEED &&
5023 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5024 f2fs_compressed_file(inode))
5025 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5026
5027 return err;
5028 }
5029
5030 #ifdef CONFIG_COMPAT
5031 struct compat_f2fs_gc_range {
5032 u32 sync;
5033 compat_u64 start;
5034 compat_u64 len;
5035 };
5036 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5037 struct compat_f2fs_gc_range)
5038
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5039 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5040 {
5041 struct compat_f2fs_gc_range __user *urange;
5042 struct f2fs_gc_range range;
5043 int err;
5044
5045 urange = compat_ptr(arg);
5046 err = get_user(range.sync, &urange->sync);
5047 err |= get_user(range.start, &urange->start);
5048 err |= get_user(range.len, &urange->len);
5049 if (err)
5050 return -EFAULT;
5051
5052 return __f2fs_ioc_gc_range(file, &range);
5053 }
5054
5055 struct compat_f2fs_move_range {
5056 u32 dst_fd;
5057 compat_u64 pos_in;
5058 compat_u64 pos_out;
5059 compat_u64 len;
5060 };
5061 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5062 struct compat_f2fs_move_range)
5063
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5064 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5065 {
5066 struct compat_f2fs_move_range __user *urange;
5067 struct f2fs_move_range range;
5068 int err;
5069
5070 urange = compat_ptr(arg);
5071 err = get_user(range.dst_fd, &urange->dst_fd);
5072 err |= get_user(range.pos_in, &urange->pos_in);
5073 err |= get_user(range.pos_out, &urange->pos_out);
5074 err |= get_user(range.len, &urange->len);
5075 if (err)
5076 return -EFAULT;
5077
5078 return __f2fs_ioc_move_range(file, &range);
5079 }
5080
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5081 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5082 {
5083 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5084 return -EIO;
5085 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5086 return -ENOSPC;
5087
5088 switch (cmd) {
5089 case FS_IOC32_GETVERSION:
5090 cmd = FS_IOC_GETVERSION;
5091 break;
5092 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5093 return f2fs_compat_ioc_gc_range(file, arg);
5094 case F2FS_IOC32_MOVE_RANGE:
5095 return f2fs_compat_ioc_move_range(file, arg);
5096 case F2FS_IOC_START_ATOMIC_WRITE:
5097 case F2FS_IOC_START_ATOMIC_REPLACE:
5098 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5099 case F2FS_IOC_START_VOLATILE_WRITE:
5100 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5101 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5102 case F2FS_IOC_SHUTDOWN:
5103 case FITRIM:
5104 case FS_IOC_SET_ENCRYPTION_POLICY:
5105 case FS_IOC_GET_ENCRYPTION_PWSALT:
5106 case FS_IOC_GET_ENCRYPTION_POLICY:
5107 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5108 case FS_IOC_ADD_ENCRYPTION_KEY:
5109 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5110 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5111 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5112 case FS_IOC_GET_ENCRYPTION_NONCE:
5113 case F2FS_IOC_GARBAGE_COLLECT:
5114 case F2FS_IOC_WRITE_CHECKPOINT:
5115 case F2FS_IOC_DEFRAGMENT:
5116 case F2FS_IOC_FLUSH_DEVICE:
5117 case F2FS_IOC_GET_FEATURES:
5118 case F2FS_IOC_GET_PIN_FILE:
5119 case F2FS_IOC_SET_PIN_FILE:
5120 case F2FS_IOC_PRECACHE_EXTENTS:
5121 case F2FS_IOC_RESIZE_FS:
5122 case FS_IOC_ENABLE_VERITY:
5123 case FS_IOC_MEASURE_VERITY:
5124 case FS_IOC_READ_VERITY_METADATA:
5125 case FS_IOC_GETFSLABEL:
5126 case FS_IOC_SETFSLABEL:
5127 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5128 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5129 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5130 case F2FS_IOC_SEC_TRIM_FILE:
5131 case F2FS_IOC_GET_COMPRESS_OPTION:
5132 case F2FS_IOC_SET_COMPRESS_OPTION:
5133 case F2FS_IOC_DECOMPRESS_FILE:
5134 case F2FS_IOC_COMPRESS_FILE:
5135 break;
5136 default:
5137 return -ENOIOCTLCMD;
5138 }
5139 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5140 }
5141 #endif
5142
5143 const struct file_operations f2fs_file_operations = {
5144 .llseek = f2fs_llseek,
5145 .read_iter = f2fs_file_read_iter,
5146 .write_iter = f2fs_file_write_iter,
5147 .iopoll = iocb_bio_iopoll,
5148 .open = f2fs_file_open,
5149 .release = f2fs_release_file,
5150 .mmap = f2fs_file_mmap,
5151 .flush = f2fs_file_flush,
5152 .fsync = f2fs_sync_file,
5153 .fallocate = f2fs_fallocate,
5154 .unlocked_ioctl = f2fs_ioctl,
5155 #ifdef CONFIG_COMPAT
5156 .compat_ioctl = f2fs_compat_ioctl,
5157 #endif
5158 .splice_read = f2fs_file_splice_read,
5159 .splice_write = iter_file_splice_write,
5160 .fadvise = f2fs_file_fadvise,
5161 };
5162