xref: /openbmc/linux/fs/f2fs/segment.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		f2fs_mark_inode_dirty_sync(inode, true);
205 	}
206 	stat_dec_atomic_inode(inode);
207 
208 	F2FS_I(inode)->atomic_write_task = NULL;
209 
210 	if (clean) {
211 		f2fs_i_size_write(inode, fi->original_i_size);
212 		fi->original_i_size = 0;
213 	}
214 	/* avoid stale dirty inode during eviction */
215 	sync_inode_metadata(inode, 0);
216 }
217 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 			block_t new_addr, block_t *old_addr, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct dnode_of_data dn;
223 	struct node_info ni;
224 	int err;
225 
226 retry:
227 	set_new_dnode(&dn, inode, NULL, NULL, 0);
228 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
229 	if (err) {
230 		if (err == -ENOMEM) {
231 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
232 			goto retry;
233 		}
234 		return err;
235 	}
236 
237 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
238 	if (err) {
239 		f2fs_put_dnode(&dn);
240 		return err;
241 	}
242 
243 	if (recover) {
244 		/* dn.data_blkaddr is always valid */
245 		if (!__is_valid_data_blkaddr(new_addr)) {
246 			if (new_addr == NULL_ADDR)
247 				dec_valid_block_count(sbi, inode, 1);
248 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 			f2fs_update_data_blkaddr(&dn, new_addr);
250 		} else {
251 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 				new_addr, ni.version, true, true);
253 		}
254 	} else {
255 		blkcnt_t count = 1;
256 
257 		err = inc_valid_block_count(sbi, inode, &count, true);
258 		if (err) {
259 			f2fs_put_dnode(&dn);
260 			return err;
261 		}
262 
263 		*old_addr = dn.data_blkaddr;
264 		f2fs_truncate_data_blocks_range(&dn, 1);
265 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
266 
267 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 					ni.version, true, false);
269 	}
270 
271 	f2fs_put_dnode(&dn);
272 
273 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 			index, old_addr ? *old_addr : 0, new_addr, recover);
275 	return 0;
276 }
277 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)278 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
279 					bool revoke)
280 {
281 	struct revoke_entry *cur, *tmp;
282 	pgoff_t start_index = 0;
283 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
284 
285 	list_for_each_entry_safe(cur, tmp, head, list) {
286 		if (revoke) {
287 			__replace_atomic_write_block(inode, cur->index,
288 						cur->old_addr, NULL, true);
289 		} else if (truncate) {
290 			f2fs_truncate_hole(inode, start_index, cur->index);
291 			start_index = cur->index + 1;
292 		}
293 
294 		list_del(&cur->list);
295 		kmem_cache_free(revoke_entry_slab, cur);
296 	}
297 
298 	if (!revoke && truncate)
299 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
300 }
301 
__f2fs_commit_atomic_write(struct inode * inode)302 static int __f2fs_commit_atomic_write(struct inode *inode)
303 {
304 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 	struct f2fs_inode_info *fi = F2FS_I(inode);
306 	struct inode *cow_inode = fi->cow_inode;
307 	struct revoke_entry *new;
308 	struct list_head revoke_list;
309 	block_t blkaddr;
310 	struct dnode_of_data dn;
311 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 	pgoff_t off = 0, blen, index;
313 	int ret = 0, i;
314 
315 	INIT_LIST_HEAD(&revoke_list);
316 
317 	while (len) {
318 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
319 
320 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 		if (ret && ret != -ENOENT) {
323 			goto out;
324 		} else if (ret == -ENOENT) {
325 			ret = 0;
326 			if (dn.max_level == 0)
327 				goto out;
328 			goto next;
329 		}
330 
331 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
332 				len);
333 		index = off;
334 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 			blkaddr = f2fs_data_blkaddr(&dn);
336 
337 			if (!__is_valid_data_blkaddr(blkaddr)) {
338 				continue;
339 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 					DATA_GENERIC_ENHANCE)) {
341 				f2fs_put_dnode(&dn);
342 				ret = -EFSCORRUPTED;
343 				f2fs_handle_error(sbi,
344 						ERROR_INVALID_BLKADDR);
345 				goto out;
346 			}
347 
348 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
349 							true, NULL);
350 
351 			ret = __replace_atomic_write_block(inode, index, blkaddr,
352 							&new->old_addr, false);
353 			if (ret) {
354 				f2fs_put_dnode(&dn);
355 				kmem_cache_free(revoke_entry_slab, new);
356 				goto out;
357 			}
358 
359 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
360 			new->index = index;
361 			list_add_tail(&new->list, &revoke_list);
362 		}
363 		f2fs_put_dnode(&dn);
364 next:
365 		off += blen;
366 		len -= blen;
367 	}
368 
369 out:
370 	if (ret) {
371 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
372 	} else {
373 		sbi->committed_atomic_block += fi->atomic_write_cnt;
374 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
375 
376 		/*
377 		 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
378 		 * before commit.
379 		 */
380 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
381 			/* clear atomic dirty status and set vfs dirty status */
382 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
383 			f2fs_mark_inode_dirty_sync(inode, true);
384 		}
385 	}
386 
387 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
388 
389 	return ret;
390 }
391 
f2fs_commit_atomic_write(struct inode * inode)392 int f2fs_commit_atomic_write(struct inode *inode)
393 {
394 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
395 	struct f2fs_inode_info *fi = F2FS_I(inode);
396 	int err;
397 
398 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
399 	if (err)
400 		return err;
401 
402 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
403 	f2fs_lock_op(sbi);
404 
405 	err = __f2fs_commit_atomic_write(inode);
406 
407 	f2fs_unlock_op(sbi);
408 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
409 
410 	return err;
411 }
412 
413 /*
414  * This function balances dirty node and dentry pages.
415  * In addition, it controls garbage collection.
416  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)417 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
418 {
419 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
420 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
421 
422 	/* balance_fs_bg is able to be pending */
423 	if (need && excess_cached_nats(sbi))
424 		f2fs_balance_fs_bg(sbi, false);
425 
426 	if (!f2fs_is_checkpoint_ready(sbi))
427 		return;
428 
429 	/*
430 	 * We should do GC or end up with checkpoint, if there are so many dirty
431 	 * dir/node pages without enough free segments.
432 	 */
433 	if (has_enough_free_secs(sbi, 0, 0))
434 		return;
435 
436 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
437 				sbi->gc_thread->f2fs_gc_task) {
438 		DEFINE_WAIT(wait);
439 
440 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
441 					TASK_UNINTERRUPTIBLE);
442 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
443 		io_schedule();
444 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
445 	} else {
446 		struct f2fs_gc_control gc_control = {
447 			.victim_segno = NULL_SEGNO,
448 			.init_gc_type = BG_GC,
449 			.no_bg_gc = true,
450 			.should_migrate_blocks = false,
451 			.err_gc_skipped = false,
452 			.nr_free_secs = 1 };
453 		f2fs_down_write(&sbi->gc_lock);
454 		stat_inc_gc_call_count(sbi, FOREGROUND);
455 		f2fs_gc(sbi, &gc_control);
456 	}
457 }
458 
excess_dirty_threshold(struct f2fs_sb_info * sbi)459 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
460 {
461 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
462 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
463 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
464 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
465 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
466 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
467 	unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) <<
468 				sbi->log_blocks_per_seg;
469 	unsigned int global_threshold = threshold * 3 / 2;
470 
471 	if (dents >= threshold || qdata >= threshold ||
472 		nodes >= threshold || meta >= threshold ||
473 		imeta >= threshold)
474 		return true;
475 	return dents + qdata + nodes + meta + imeta >  global_threshold;
476 }
477 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)478 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
479 {
480 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
481 		return;
482 
483 	/* try to shrink extent cache when there is no enough memory */
484 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
485 		f2fs_shrink_read_extent_tree(sbi,
486 				READ_EXTENT_CACHE_SHRINK_NUMBER);
487 
488 	/* try to shrink age extent cache when there is no enough memory */
489 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
490 		f2fs_shrink_age_extent_tree(sbi,
491 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
492 
493 	/* check the # of cached NAT entries */
494 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
495 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
496 
497 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
498 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
499 	else
500 		f2fs_build_free_nids(sbi, false, false);
501 
502 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
503 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
504 		goto do_sync;
505 
506 	/* there is background inflight IO or foreground operation recently */
507 	if (is_inflight_io(sbi, REQ_TIME) ||
508 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
509 		return;
510 
511 	/* exceed periodical checkpoint timeout threshold */
512 	if (f2fs_time_over(sbi, CP_TIME))
513 		goto do_sync;
514 
515 	/* checkpoint is the only way to shrink partial cached entries */
516 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
517 		f2fs_available_free_memory(sbi, INO_ENTRIES))
518 		return;
519 
520 do_sync:
521 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
522 		struct blk_plug plug;
523 
524 		mutex_lock(&sbi->flush_lock);
525 
526 		blk_start_plug(&plug);
527 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
528 		blk_finish_plug(&plug);
529 
530 		mutex_unlock(&sbi->flush_lock);
531 	}
532 	stat_inc_cp_call_count(sbi, BACKGROUND);
533 	f2fs_sync_fs(sbi->sb, 1);
534 }
535 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)536 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
537 				struct block_device *bdev)
538 {
539 	int ret = blkdev_issue_flush(bdev);
540 
541 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
542 				test_opt(sbi, FLUSH_MERGE), ret);
543 	if (!ret)
544 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
545 	return ret;
546 }
547 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)548 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550 	int ret = 0;
551 	int i;
552 
553 	if (!f2fs_is_multi_device(sbi))
554 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
555 
556 	for (i = 0; i < sbi->s_ndevs; i++) {
557 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
558 			continue;
559 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
560 		if (ret)
561 			break;
562 	}
563 	return ret;
564 }
565 
issue_flush_thread(void * data)566 static int issue_flush_thread(void *data)
567 {
568 	struct f2fs_sb_info *sbi = data;
569 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
570 	wait_queue_head_t *q = &fcc->flush_wait_queue;
571 repeat:
572 	if (kthread_should_stop())
573 		return 0;
574 
575 	if (!llist_empty(&fcc->issue_list)) {
576 		struct flush_cmd *cmd, *next;
577 		int ret;
578 
579 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
580 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
581 
582 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
583 
584 		ret = submit_flush_wait(sbi, cmd->ino);
585 		atomic_inc(&fcc->issued_flush);
586 
587 		llist_for_each_entry_safe(cmd, next,
588 					  fcc->dispatch_list, llnode) {
589 			cmd->ret = ret;
590 			complete(&cmd->wait);
591 		}
592 		fcc->dispatch_list = NULL;
593 	}
594 
595 	wait_event_interruptible(*q,
596 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
597 	goto repeat;
598 }
599 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)600 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
601 {
602 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
603 	struct flush_cmd cmd;
604 	int ret;
605 
606 	if (test_opt(sbi, NOBARRIER))
607 		return 0;
608 
609 	if (!test_opt(sbi, FLUSH_MERGE)) {
610 		atomic_inc(&fcc->queued_flush);
611 		ret = submit_flush_wait(sbi, ino);
612 		atomic_dec(&fcc->queued_flush);
613 		atomic_inc(&fcc->issued_flush);
614 		return ret;
615 	}
616 
617 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
618 	    f2fs_is_multi_device(sbi)) {
619 		ret = submit_flush_wait(sbi, ino);
620 		atomic_dec(&fcc->queued_flush);
621 
622 		atomic_inc(&fcc->issued_flush);
623 		return ret;
624 	}
625 
626 	cmd.ino = ino;
627 	init_completion(&cmd.wait);
628 
629 	llist_add(&cmd.llnode, &fcc->issue_list);
630 
631 	/*
632 	 * update issue_list before we wake up issue_flush thread, this
633 	 * smp_mb() pairs with another barrier in ___wait_event(), see
634 	 * more details in comments of waitqueue_active().
635 	 */
636 	smp_mb();
637 
638 	if (waitqueue_active(&fcc->flush_wait_queue))
639 		wake_up(&fcc->flush_wait_queue);
640 
641 	if (fcc->f2fs_issue_flush) {
642 		wait_for_completion(&cmd.wait);
643 		atomic_dec(&fcc->queued_flush);
644 	} else {
645 		struct llist_node *list;
646 
647 		list = llist_del_all(&fcc->issue_list);
648 		if (!list) {
649 			wait_for_completion(&cmd.wait);
650 			atomic_dec(&fcc->queued_flush);
651 		} else {
652 			struct flush_cmd *tmp, *next;
653 
654 			ret = submit_flush_wait(sbi, ino);
655 
656 			llist_for_each_entry_safe(tmp, next, list, llnode) {
657 				if (tmp == &cmd) {
658 					cmd.ret = ret;
659 					atomic_dec(&fcc->queued_flush);
660 					continue;
661 				}
662 				tmp->ret = ret;
663 				complete(&tmp->wait);
664 			}
665 		}
666 	}
667 
668 	return cmd.ret;
669 }
670 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)671 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
672 {
673 	dev_t dev = sbi->sb->s_bdev->bd_dev;
674 	struct flush_cmd_control *fcc;
675 
676 	if (SM_I(sbi)->fcc_info) {
677 		fcc = SM_I(sbi)->fcc_info;
678 		if (fcc->f2fs_issue_flush)
679 			return 0;
680 		goto init_thread;
681 	}
682 
683 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
684 	if (!fcc)
685 		return -ENOMEM;
686 	atomic_set(&fcc->issued_flush, 0);
687 	atomic_set(&fcc->queued_flush, 0);
688 	init_waitqueue_head(&fcc->flush_wait_queue);
689 	init_llist_head(&fcc->issue_list);
690 	SM_I(sbi)->fcc_info = fcc;
691 	if (!test_opt(sbi, FLUSH_MERGE))
692 		return 0;
693 
694 init_thread:
695 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
696 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
697 	if (IS_ERR(fcc->f2fs_issue_flush)) {
698 		int err = PTR_ERR(fcc->f2fs_issue_flush);
699 
700 		fcc->f2fs_issue_flush = NULL;
701 		return err;
702 	}
703 
704 	return 0;
705 }
706 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)707 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
708 {
709 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
710 
711 	if (fcc && fcc->f2fs_issue_flush) {
712 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
713 
714 		fcc->f2fs_issue_flush = NULL;
715 		kthread_stop(flush_thread);
716 	}
717 	if (free) {
718 		kfree(fcc);
719 		SM_I(sbi)->fcc_info = NULL;
720 	}
721 }
722 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)723 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
724 {
725 	int ret = 0, i;
726 
727 	if (!f2fs_is_multi_device(sbi))
728 		return 0;
729 
730 	if (test_opt(sbi, NOBARRIER))
731 		return 0;
732 
733 	for (i = 1; i < sbi->s_ndevs; i++) {
734 		int count = DEFAULT_RETRY_IO_COUNT;
735 
736 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
737 			continue;
738 
739 		do {
740 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
741 			if (ret)
742 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
743 		} while (ret && --count);
744 
745 		if (ret) {
746 			f2fs_stop_checkpoint(sbi, false,
747 					STOP_CP_REASON_FLUSH_FAIL);
748 			break;
749 		}
750 
751 		spin_lock(&sbi->dev_lock);
752 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
753 		spin_unlock(&sbi->dev_lock);
754 	}
755 
756 	return ret;
757 }
758 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)759 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
760 		enum dirty_type dirty_type)
761 {
762 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
763 
764 	/* need not be added */
765 	if (IS_CURSEG(sbi, segno))
766 		return;
767 
768 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769 		dirty_i->nr_dirty[dirty_type]++;
770 
771 	if (dirty_type == DIRTY) {
772 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
773 		enum dirty_type t = sentry->type;
774 
775 		if (unlikely(t >= DIRTY)) {
776 			f2fs_bug_on(sbi, 1);
777 			return;
778 		}
779 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
780 			dirty_i->nr_dirty[t]++;
781 
782 		if (__is_large_section(sbi)) {
783 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
784 			block_t valid_blocks =
785 				get_valid_blocks(sbi, segno, true);
786 
787 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
788 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
789 
790 			if (!IS_CURSEC(sbi, secno))
791 				set_bit(secno, dirty_i->dirty_secmap);
792 		}
793 	}
794 }
795 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)796 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
797 		enum dirty_type dirty_type)
798 {
799 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
800 	block_t valid_blocks;
801 
802 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 		dirty_i->nr_dirty[dirty_type]--;
804 
805 	if (dirty_type == DIRTY) {
806 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 		enum dirty_type t = sentry->type;
808 
809 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
810 			dirty_i->nr_dirty[t]--;
811 
812 		valid_blocks = get_valid_blocks(sbi, segno, true);
813 		if (valid_blocks == 0) {
814 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
815 						dirty_i->victim_secmap);
816 #ifdef CONFIG_F2FS_CHECK_FS
817 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
818 #endif
819 		}
820 		if (__is_large_section(sbi)) {
821 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
822 
823 			if (!valid_blocks ||
824 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
825 				clear_bit(secno, dirty_i->dirty_secmap);
826 				return;
827 			}
828 
829 			if (!IS_CURSEC(sbi, secno))
830 				set_bit(secno, dirty_i->dirty_secmap);
831 		}
832 	}
833 }
834 
835 /*
836  * Should not occur error such as -ENOMEM.
837  * Adding dirty entry into seglist is not critical operation.
838  * If a given segment is one of current working segments, it won't be added.
839  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)840 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
841 {
842 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
843 	unsigned short valid_blocks, ckpt_valid_blocks;
844 	unsigned int usable_blocks;
845 
846 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
847 		return;
848 
849 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
850 	mutex_lock(&dirty_i->seglist_lock);
851 
852 	valid_blocks = get_valid_blocks(sbi, segno, false);
853 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
854 
855 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
856 		ckpt_valid_blocks == usable_blocks)) {
857 		__locate_dirty_segment(sbi, segno, PRE);
858 		__remove_dirty_segment(sbi, segno, DIRTY);
859 	} else if (valid_blocks < usable_blocks) {
860 		__locate_dirty_segment(sbi, segno, DIRTY);
861 	} else {
862 		/* Recovery routine with SSR needs this */
863 		__remove_dirty_segment(sbi, segno, DIRTY);
864 	}
865 
866 	mutex_unlock(&dirty_i->seglist_lock);
867 }
868 
869 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)870 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
871 {
872 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
873 	unsigned int segno;
874 
875 	mutex_lock(&dirty_i->seglist_lock);
876 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
877 		if (get_valid_blocks(sbi, segno, false))
878 			continue;
879 		if (IS_CURSEG(sbi, segno))
880 			continue;
881 		__locate_dirty_segment(sbi, segno, PRE);
882 		__remove_dirty_segment(sbi, segno, DIRTY);
883 	}
884 	mutex_unlock(&dirty_i->seglist_lock);
885 }
886 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)887 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
888 {
889 	int ovp_hole_segs =
890 		(overprovision_segments(sbi) - reserved_segments(sbi));
891 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
892 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
893 	block_t holes[2] = {0, 0};	/* DATA and NODE */
894 	block_t unusable;
895 	struct seg_entry *se;
896 	unsigned int segno;
897 
898 	mutex_lock(&dirty_i->seglist_lock);
899 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
900 		se = get_seg_entry(sbi, segno);
901 		if (IS_NODESEG(se->type))
902 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
903 							se->valid_blocks;
904 		else
905 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
906 							se->valid_blocks;
907 	}
908 	mutex_unlock(&dirty_i->seglist_lock);
909 
910 	unusable = max(holes[DATA], holes[NODE]);
911 	if (unusable > ovp_holes)
912 		return unusable - ovp_holes;
913 	return 0;
914 }
915 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)916 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
917 {
918 	int ovp_hole_segs =
919 		(overprovision_segments(sbi) - reserved_segments(sbi));
920 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
921 		return -EAGAIN;
922 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
923 		dirty_segments(sbi) > ovp_hole_segs)
924 		return -EAGAIN;
925 	return 0;
926 }
927 
928 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)929 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
930 {
931 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
932 	unsigned int segno = 0;
933 
934 	mutex_lock(&dirty_i->seglist_lock);
935 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
936 		if (get_valid_blocks(sbi, segno, false))
937 			continue;
938 		if (get_ckpt_valid_blocks(sbi, segno, false))
939 			continue;
940 		mutex_unlock(&dirty_i->seglist_lock);
941 		return segno;
942 	}
943 	mutex_unlock(&dirty_i->seglist_lock);
944 	return NULL_SEGNO;
945 }
946 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)947 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
948 		struct block_device *bdev, block_t lstart,
949 		block_t start, block_t len)
950 {
951 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
952 	struct list_head *pend_list;
953 	struct discard_cmd *dc;
954 
955 	f2fs_bug_on(sbi, !len);
956 
957 	pend_list = &dcc->pend_list[plist_idx(len)];
958 
959 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
960 	INIT_LIST_HEAD(&dc->list);
961 	dc->bdev = bdev;
962 	dc->di.lstart = lstart;
963 	dc->di.start = start;
964 	dc->di.len = len;
965 	dc->ref = 0;
966 	dc->state = D_PREP;
967 	dc->queued = 0;
968 	dc->error = 0;
969 	init_completion(&dc->wait);
970 	list_add_tail(&dc->list, pend_list);
971 	spin_lock_init(&dc->lock);
972 	dc->bio_ref = 0;
973 	atomic_inc(&dcc->discard_cmd_cnt);
974 	dcc->undiscard_blks += len;
975 
976 	return dc;
977 }
978 
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)979 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
980 {
981 #ifdef CONFIG_F2FS_CHECK_FS
982 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
983 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
984 	struct discard_cmd *cur_dc, *next_dc;
985 
986 	while (cur) {
987 		next = rb_next(cur);
988 		if (!next)
989 			return true;
990 
991 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
992 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
993 
994 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
995 			f2fs_info(sbi, "broken discard_rbtree, "
996 				"cur(%u, %u) next(%u, %u)",
997 				cur_dc->di.lstart, cur_dc->di.len,
998 				next_dc->di.lstart, next_dc->di.len);
999 			return false;
1000 		}
1001 		cur = next;
1002 	}
1003 #endif
1004 	return true;
1005 }
1006 
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1007 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1008 						block_t blkaddr)
1009 {
1010 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1011 	struct rb_node *node = dcc->root.rb_root.rb_node;
1012 	struct discard_cmd *dc;
1013 
1014 	while (node) {
1015 		dc = rb_entry(node, struct discard_cmd, rb_node);
1016 
1017 		if (blkaddr < dc->di.lstart)
1018 			node = node->rb_left;
1019 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1020 			node = node->rb_right;
1021 		else
1022 			return dc;
1023 	}
1024 	return NULL;
1025 }
1026 
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1027 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1028 				block_t blkaddr,
1029 				struct discard_cmd **prev_entry,
1030 				struct discard_cmd **next_entry,
1031 				struct rb_node ***insert_p,
1032 				struct rb_node **insert_parent)
1033 {
1034 	struct rb_node **pnode = &root->rb_root.rb_node;
1035 	struct rb_node *parent = NULL, *tmp_node;
1036 	struct discard_cmd *dc;
1037 
1038 	*insert_p = NULL;
1039 	*insert_parent = NULL;
1040 	*prev_entry = NULL;
1041 	*next_entry = NULL;
1042 
1043 	if (RB_EMPTY_ROOT(&root->rb_root))
1044 		return NULL;
1045 
1046 	while (*pnode) {
1047 		parent = *pnode;
1048 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1049 
1050 		if (blkaddr < dc->di.lstart)
1051 			pnode = &(*pnode)->rb_left;
1052 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1053 			pnode = &(*pnode)->rb_right;
1054 		else
1055 			goto lookup_neighbors;
1056 	}
1057 
1058 	*insert_p = pnode;
1059 	*insert_parent = parent;
1060 
1061 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1062 	tmp_node = parent;
1063 	if (parent && blkaddr > dc->di.lstart)
1064 		tmp_node = rb_next(parent);
1065 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1066 
1067 	tmp_node = parent;
1068 	if (parent && blkaddr < dc->di.lstart)
1069 		tmp_node = rb_prev(parent);
1070 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1071 	return NULL;
1072 
1073 lookup_neighbors:
1074 	/* lookup prev node for merging backward later */
1075 	tmp_node = rb_prev(&dc->rb_node);
1076 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1077 
1078 	/* lookup next node for merging frontward later */
1079 	tmp_node = rb_next(&dc->rb_node);
1080 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1081 	return dc;
1082 }
1083 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1084 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1085 							struct discard_cmd *dc)
1086 {
1087 	if (dc->state == D_DONE)
1088 		atomic_sub(dc->queued, &dcc->queued_discard);
1089 
1090 	list_del(&dc->list);
1091 	rb_erase_cached(&dc->rb_node, &dcc->root);
1092 	dcc->undiscard_blks -= dc->di.len;
1093 
1094 	kmem_cache_free(discard_cmd_slab, dc);
1095 
1096 	atomic_dec(&dcc->discard_cmd_cnt);
1097 }
1098 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1099 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1100 							struct discard_cmd *dc)
1101 {
1102 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1103 	unsigned long flags;
1104 
1105 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1106 
1107 	spin_lock_irqsave(&dc->lock, flags);
1108 	if (dc->bio_ref) {
1109 		spin_unlock_irqrestore(&dc->lock, flags);
1110 		return;
1111 	}
1112 	spin_unlock_irqrestore(&dc->lock, flags);
1113 
1114 	f2fs_bug_on(sbi, dc->ref);
1115 
1116 	if (dc->error == -EOPNOTSUPP)
1117 		dc->error = 0;
1118 
1119 	if (dc->error)
1120 		f2fs_info_ratelimited(sbi,
1121 			"Issue discard(%u, %u, %u) failed, ret: %d",
1122 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1123 	__detach_discard_cmd(dcc, dc);
1124 }
1125 
f2fs_submit_discard_endio(struct bio * bio)1126 static void f2fs_submit_discard_endio(struct bio *bio)
1127 {
1128 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1129 	unsigned long flags;
1130 
1131 	spin_lock_irqsave(&dc->lock, flags);
1132 	if (!dc->error)
1133 		dc->error = blk_status_to_errno(bio->bi_status);
1134 	dc->bio_ref--;
1135 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1136 		dc->state = D_DONE;
1137 		complete_all(&dc->wait);
1138 	}
1139 	spin_unlock_irqrestore(&dc->lock, flags);
1140 	bio_put(bio);
1141 }
1142 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1143 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1144 				block_t start, block_t end)
1145 {
1146 #ifdef CONFIG_F2FS_CHECK_FS
1147 	struct seg_entry *sentry;
1148 	unsigned int segno;
1149 	block_t blk = start;
1150 	unsigned long offset, size, *map;
1151 
1152 	while (blk < end) {
1153 		segno = GET_SEGNO(sbi, blk);
1154 		sentry = get_seg_entry(sbi, segno);
1155 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1156 
1157 		if (end < START_BLOCK(sbi, segno + 1))
1158 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1159 		else
1160 			size = BLKS_PER_SEG(sbi);
1161 		map = (unsigned long *)(sentry->cur_valid_map);
1162 		offset = __find_rev_next_bit(map, size, offset);
1163 		f2fs_bug_on(sbi, offset != size);
1164 		blk = START_BLOCK(sbi, segno + 1);
1165 	}
1166 #endif
1167 }
1168 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1169 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1170 				struct discard_policy *dpolicy,
1171 				int discard_type, unsigned int granularity)
1172 {
1173 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1174 
1175 	/* common policy */
1176 	dpolicy->type = discard_type;
1177 	dpolicy->sync = true;
1178 	dpolicy->ordered = false;
1179 	dpolicy->granularity = granularity;
1180 
1181 	dpolicy->max_requests = dcc->max_discard_request;
1182 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1183 	dpolicy->timeout = false;
1184 
1185 	if (discard_type == DPOLICY_BG) {
1186 		dpolicy->min_interval = dcc->min_discard_issue_time;
1187 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1188 		dpolicy->max_interval = dcc->max_discard_issue_time;
1189 		dpolicy->io_aware = true;
1190 		dpolicy->sync = false;
1191 		dpolicy->ordered = true;
1192 		if (utilization(sbi) > dcc->discard_urgent_util) {
1193 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1194 			if (atomic_read(&dcc->discard_cmd_cnt))
1195 				dpolicy->max_interval =
1196 					dcc->min_discard_issue_time;
1197 		}
1198 	} else if (discard_type == DPOLICY_FORCE) {
1199 		dpolicy->min_interval = dcc->min_discard_issue_time;
1200 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1201 		dpolicy->max_interval = dcc->max_discard_issue_time;
1202 		dpolicy->io_aware = false;
1203 	} else if (discard_type == DPOLICY_FSTRIM) {
1204 		dpolicy->io_aware = false;
1205 	} else if (discard_type == DPOLICY_UMOUNT) {
1206 		dpolicy->io_aware = false;
1207 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1208 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1209 		dpolicy->timeout = true;
1210 	}
1211 }
1212 
1213 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1214 				struct block_device *bdev, block_t lstart,
1215 				block_t start, block_t len);
1216 
1217 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1218 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1219 				   struct discard_cmd *dc, blk_opf_t flag,
1220 				   struct list_head *wait_list,
1221 				   unsigned int *issued)
1222 {
1223 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1224 	struct block_device *bdev = dc->bdev;
1225 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1226 	unsigned long flags;
1227 
1228 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1229 
1230 	spin_lock_irqsave(&dc->lock, flags);
1231 	dc->state = D_SUBMIT;
1232 	dc->bio_ref++;
1233 	spin_unlock_irqrestore(&dc->lock, flags);
1234 
1235 	if (issued)
1236 		(*issued)++;
1237 
1238 	atomic_inc(&dcc->queued_discard);
1239 	dc->queued++;
1240 	list_move_tail(&dc->list, wait_list);
1241 
1242 	/* sanity check on discard range */
1243 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1244 
1245 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1246 	bio->bi_private = dc;
1247 	bio->bi_end_io = f2fs_submit_discard_endio;
1248 	submit_bio(bio);
1249 
1250 	atomic_inc(&dcc->issued_discard);
1251 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1252 }
1253 #endif
1254 
1255 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1256 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1257 				struct discard_policy *dpolicy,
1258 				struct discard_cmd *dc, int *issued)
1259 {
1260 	struct block_device *bdev = dc->bdev;
1261 	unsigned int max_discard_blocks =
1262 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1263 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1264 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1265 					&(dcc->fstrim_list) : &(dcc->wait_list);
1266 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1267 	block_t lstart, start, len, total_len;
1268 	int err = 0;
1269 
1270 	if (dc->state != D_PREP)
1271 		return 0;
1272 
1273 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1274 		return 0;
1275 
1276 #ifdef CONFIG_BLK_DEV_ZONED
1277 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1278 		int devi = f2fs_bdev_index(sbi, bdev);
1279 
1280 		if (devi < 0)
1281 			return -EINVAL;
1282 
1283 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1284 			__submit_zone_reset_cmd(sbi, dc, flag,
1285 						wait_list, issued);
1286 			return 0;
1287 		}
1288 	}
1289 #endif
1290 
1291 	/*
1292 	 * stop issuing discard for any of below cases:
1293 	 * 1. device is conventional zone, but it doesn't support discard.
1294 	 * 2. device is regulare device, after snapshot it doesn't support
1295 	 * discard.
1296 	 */
1297 	if (!bdev_max_discard_sectors(bdev))
1298 		return -EOPNOTSUPP;
1299 
1300 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1301 
1302 	lstart = dc->di.lstart;
1303 	start = dc->di.start;
1304 	len = dc->di.len;
1305 	total_len = len;
1306 
1307 	dc->di.len = 0;
1308 
1309 	while (total_len && *issued < dpolicy->max_requests && !err) {
1310 		struct bio *bio = NULL;
1311 		unsigned long flags;
1312 		bool last = true;
1313 
1314 		if (len > max_discard_blocks) {
1315 			len = max_discard_blocks;
1316 			last = false;
1317 		}
1318 
1319 		(*issued)++;
1320 		if (*issued == dpolicy->max_requests)
1321 			last = true;
1322 
1323 		dc->di.len += len;
1324 
1325 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1326 			err = -EIO;
1327 		} else {
1328 			err = __blkdev_issue_discard(bdev,
1329 					SECTOR_FROM_BLOCK(start),
1330 					SECTOR_FROM_BLOCK(len),
1331 					GFP_NOFS, &bio);
1332 		}
1333 		if (err) {
1334 			spin_lock_irqsave(&dc->lock, flags);
1335 			if (dc->state == D_PARTIAL)
1336 				dc->state = D_SUBMIT;
1337 			spin_unlock_irqrestore(&dc->lock, flags);
1338 
1339 			break;
1340 		}
1341 
1342 		f2fs_bug_on(sbi, !bio);
1343 
1344 		/*
1345 		 * should keep before submission to avoid D_DONE
1346 		 * right away
1347 		 */
1348 		spin_lock_irqsave(&dc->lock, flags);
1349 		if (last)
1350 			dc->state = D_SUBMIT;
1351 		else
1352 			dc->state = D_PARTIAL;
1353 		dc->bio_ref++;
1354 		spin_unlock_irqrestore(&dc->lock, flags);
1355 
1356 		atomic_inc(&dcc->queued_discard);
1357 		dc->queued++;
1358 		list_move_tail(&dc->list, wait_list);
1359 
1360 		/* sanity check on discard range */
1361 		__check_sit_bitmap(sbi, lstart, lstart + len);
1362 
1363 		bio->bi_private = dc;
1364 		bio->bi_end_io = f2fs_submit_discard_endio;
1365 		bio->bi_opf |= flag;
1366 		submit_bio(bio);
1367 
1368 		atomic_inc(&dcc->issued_discard);
1369 
1370 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1371 
1372 		lstart += len;
1373 		start += len;
1374 		total_len -= len;
1375 		len = total_len;
1376 	}
1377 
1378 	if (!err && len) {
1379 		dcc->undiscard_blks -= len;
1380 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1381 	}
1382 	return err;
1383 }
1384 
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1385 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1386 				struct block_device *bdev, block_t lstart,
1387 				block_t start, block_t len)
1388 {
1389 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1390 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1391 	struct rb_node *parent = NULL;
1392 	struct discard_cmd *dc;
1393 	bool leftmost = true;
1394 
1395 	/* look up rb tree to find parent node */
1396 	while (*p) {
1397 		parent = *p;
1398 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1399 
1400 		if (lstart < dc->di.lstart) {
1401 			p = &(*p)->rb_left;
1402 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1403 			p = &(*p)->rb_right;
1404 			leftmost = false;
1405 		} else {
1406 			f2fs_bug_on(sbi, 1);
1407 		}
1408 	}
1409 
1410 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1411 
1412 	rb_link_node(&dc->rb_node, parent, p);
1413 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1414 }
1415 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1416 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1417 						struct discard_cmd *dc)
1418 {
1419 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1420 }
1421 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1422 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1423 				struct discard_cmd *dc, block_t blkaddr)
1424 {
1425 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1426 	struct discard_info di = dc->di;
1427 	bool modified = false;
1428 
1429 	if (dc->state == D_DONE || dc->di.len == 1) {
1430 		__remove_discard_cmd(sbi, dc);
1431 		return;
1432 	}
1433 
1434 	dcc->undiscard_blks -= di.len;
1435 
1436 	if (blkaddr > di.lstart) {
1437 		dc->di.len = blkaddr - dc->di.lstart;
1438 		dcc->undiscard_blks += dc->di.len;
1439 		__relocate_discard_cmd(dcc, dc);
1440 		modified = true;
1441 	}
1442 
1443 	if (blkaddr < di.lstart + di.len - 1) {
1444 		if (modified) {
1445 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1446 					di.start + blkaddr + 1 - di.lstart,
1447 					di.lstart + di.len - 1 - blkaddr);
1448 		} else {
1449 			dc->di.lstart++;
1450 			dc->di.len--;
1451 			dc->di.start++;
1452 			dcc->undiscard_blks += dc->di.len;
1453 			__relocate_discard_cmd(dcc, dc);
1454 		}
1455 	}
1456 }
1457 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1458 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1459 				struct block_device *bdev, block_t lstart,
1460 				block_t start, block_t len)
1461 {
1462 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1463 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1464 	struct discard_cmd *dc;
1465 	struct discard_info di = {0};
1466 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1467 	unsigned int max_discard_blocks =
1468 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1469 	block_t end = lstart + len;
1470 
1471 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1472 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1473 	if (dc)
1474 		prev_dc = dc;
1475 
1476 	if (!prev_dc) {
1477 		di.lstart = lstart;
1478 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1479 		di.len = min(di.len, len);
1480 		di.start = start;
1481 	}
1482 
1483 	while (1) {
1484 		struct rb_node *node;
1485 		bool merged = false;
1486 		struct discard_cmd *tdc = NULL;
1487 
1488 		if (prev_dc) {
1489 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1490 			if (di.lstart < lstart)
1491 				di.lstart = lstart;
1492 			if (di.lstart >= end)
1493 				break;
1494 
1495 			if (!next_dc || next_dc->di.lstart > end)
1496 				di.len = end - di.lstart;
1497 			else
1498 				di.len = next_dc->di.lstart - di.lstart;
1499 			di.start = start + di.lstart - lstart;
1500 		}
1501 
1502 		if (!di.len)
1503 			goto next;
1504 
1505 		if (prev_dc && prev_dc->state == D_PREP &&
1506 			prev_dc->bdev == bdev &&
1507 			__is_discard_back_mergeable(&di, &prev_dc->di,
1508 							max_discard_blocks)) {
1509 			prev_dc->di.len += di.len;
1510 			dcc->undiscard_blks += di.len;
1511 			__relocate_discard_cmd(dcc, prev_dc);
1512 			di = prev_dc->di;
1513 			tdc = prev_dc;
1514 			merged = true;
1515 		}
1516 
1517 		if (next_dc && next_dc->state == D_PREP &&
1518 			next_dc->bdev == bdev &&
1519 			__is_discard_front_mergeable(&di, &next_dc->di,
1520 							max_discard_blocks)) {
1521 			next_dc->di.lstart = di.lstart;
1522 			next_dc->di.len += di.len;
1523 			next_dc->di.start = di.start;
1524 			dcc->undiscard_blks += di.len;
1525 			__relocate_discard_cmd(dcc, next_dc);
1526 			if (tdc)
1527 				__remove_discard_cmd(sbi, tdc);
1528 			merged = true;
1529 		}
1530 
1531 		if (!merged)
1532 			__insert_discard_cmd(sbi, bdev,
1533 						di.lstart, di.start, di.len);
1534  next:
1535 		prev_dc = next_dc;
1536 		if (!prev_dc)
1537 			break;
1538 
1539 		node = rb_next(&prev_dc->rb_node);
1540 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1541 	}
1542 }
1543 
1544 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1545 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1546 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1547 		block_t blklen)
1548 {
1549 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1550 
1551 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1552 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1553 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1554 }
1555 #endif
1556 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1557 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1558 		struct block_device *bdev, block_t blkstart, block_t blklen)
1559 {
1560 	block_t lblkstart = blkstart;
1561 
1562 	if (!f2fs_bdev_support_discard(bdev))
1563 		return;
1564 
1565 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1566 
1567 	if (f2fs_is_multi_device(sbi)) {
1568 		int devi = f2fs_target_device_index(sbi, blkstart);
1569 
1570 		blkstart -= FDEV(devi).start_blk;
1571 	}
1572 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1573 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1574 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1575 }
1576 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1577 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1578 		struct discard_policy *dpolicy, int *issued)
1579 {
1580 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1582 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1583 	struct discard_cmd *dc;
1584 	struct blk_plug plug;
1585 	bool io_interrupted = false;
1586 
1587 	mutex_lock(&dcc->cmd_lock);
1588 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1589 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1590 	if (!dc)
1591 		dc = next_dc;
1592 
1593 	blk_start_plug(&plug);
1594 
1595 	while (dc) {
1596 		struct rb_node *node;
1597 		int err = 0;
1598 
1599 		if (dc->state != D_PREP)
1600 			goto next;
1601 
1602 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1603 			io_interrupted = true;
1604 			break;
1605 		}
1606 
1607 		dcc->next_pos = dc->di.lstart + dc->di.len;
1608 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1609 
1610 		if (*issued >= dpolicy->max_requests)
1611 			break;
1612 next:
1613 		node = rb_next(&dc->rb_node);
1614 		if (err)
1615 			__remove_discard_cmd(sbi, dc);
1616 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1617 	}
1618 
1619 	blk_finish_plug(&plug);
1620 
1621 	if (!dc)
1622 		dcc->next_pos = 0;
1623 
1624 	mutex_unlock(&dcc->cmd_lock);
1625 
1626 	if (!(*issued) && io_interrupted)
1627 		*issued = -1;
1628 }
1629 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1630 					struct discard_policy *dpolicy);
1631 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1632 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1633 					struct discard_policy *dpolicy)
1634 {
1635 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1636 	struct list_head *pend_list;
1637 	struct discard_cmd *dc, *tmp;
1638 	struct blk_plug plug;
1639 	int i, issued;
1640 	bool io_interrupted = false;
1641 
1642 	if (dpolicy->timeout)
1643 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1644 
1645 retry:
1646 	issued = 0;
1647 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1648 		if (dpolicy->timeout &&
1649 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1650 			break;
1651 
1652 		if (i + 1 < dpolicy->granularity)
1653 			break;
1654 
1655 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1656 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1657 			return issued;
1658 		}
1659 
1660 		pend_list = &dcc->pend_list[i];
1661 
1662 		mutex_lock(&dcc->cmd_lock);
1663 		if (list_empty(pend_list))
1664 			goto next;
1665 		if (unlikely(dcc->rbtree_check))
1666 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1667 		blk_start_plug(&plug);
1668 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1669 			f2fs_bug_on(sbi, dc->state != D_PREP);
1670 
1671 			if (dpolicy->timeout &&
1672 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1673 				break;
1674 
1675 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1676 						!is_idle(sbi, DISCARD_TIME)) {
1677 				io_interrupted = true;
1678 				break;
1679 			}
1680 
1681 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1682 
1683 			if (issued >= dpolicy->max_requests)
1684 				break;
1685 		}
1686 		blk_finish_plug(&plug);
1687 next:
1688 		mutex_unlock(&dcc->cmd_lock);
1689 
1690 		if (issued >= dpolicy->max_requests || io_interrupted)
1691 			break;
1692 	}
1693 
1694 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1695 		__wait_all_discard_cmd(sbi, dpolicy);
1696 		goto retry;
1697 	}
1698 
1699 	if (!issued && io_interrupted)
1700 		issued = -1;
1701 
1702 	return issued;
1703 }
1704 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1705 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1706 {
1707 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1708 	struct list_head *pend_list;
1709 	struct discard_cmd *dc, *tmp;
1710 	int i;
1711 	bool dropped = false;
1712 
1713 	mutex_lock(&dcc->cmd_lock);
1714 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1715 		pend_list = &dcc->pend_list[i];
1716 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1717 			f2fs_bug_on(sbi, dc->state != D_PREP);
1718 			__remove_discard_cmd(sbi, dc);
1719 			dropped = true;
1720 		}
1721 	}
1722 	mutex_unlock(&dcc->cmd_lock);
1723 
1724 	return dropped;
1725 }
1726 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1727 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1728 {
1729 	__drop_discard_cmd(sbi);
1730 }
1731 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1732 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1733 							struct discard_cmd *dc)
1734 {
1735 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1736 	unsigned int len = 0;
1737 
1738 	wait_for_completion_io(&dc->wait);
1739 	mutex_lock(&dcc->cmd_lock);
1740 	f2fs_bug_on(sbi, dc->state != D_DONE);
1741 	dc->ref--;
1742 	if (!dc->ref) {
1743 		if (!dc->error)
1744 			len = dc->di.len;
1745 		__remove_discard_cmd(sbi, dc);
1746 	}
1747 	mutex_unlock(&dcc->cmd_lock);
1748 
1749 	return len;
1750 }
1751 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1752 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1753 						struct discard_policy *dpolicy,
1754 						block_t start, block_t end)
1755 {
1756 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1757 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1758 					&(dcc->fstrim_list) : &(dcc->wait_list);
1759 	struct discard_cmd *dc = NULL, *iter, *tmp;
1760 	unsigned int trimmed = 0;
1761 
1762 next:
1763 	dc = NULL;
1764 
1765 	mutex_lock(&dcc->cmd_lock);
1766 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1767 		if (iter->di.lstart + iter->di.len <= start ||
1768 					end <= iter->di.lstart)
1769 			continue;
1770 		if (iter->di.len < dpolicy->granularity)
1771 			continue;
1772 		if (iter->state == D_DONE && !iter->ref) {
1773 			wait_for_completion_io(&iter->wait);
1774 			if (!iter->error)
1775 				trimmed += iter->di.len;
1776 			__remove_discard_cmd(sbi, iter);
1777 		} else {
1778 			iter->ref++;
1779 			dc = iter;
1780 			break;
1781 		}
1782 	}
1783 	mutex_unlock(&dcc->cmd_lock);
1784 
1785 	if (dc) {
1786 		trimmed += __wait_one_discard_bio(sbi, dc);
1787 		goto next;
1788 	}
1789 
1790 	return trimmed;
1791 }
1792 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1793 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1794 						struct discard_policy *dpolicy)
1795 {
1796 	struct discard_policy dp;
1797 	unsigned int discard_blks;
1798 
1799 	if (dpolicy)
1800 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1801 
1802 	/* wait all */
1803 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1804 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1805 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1806 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1807 
1808 	return discard_blks;
1809 }
1810 
1811 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1812 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1813 {
1814 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1815 	struct discard_cmd *dc;
1816 	bool need_wait = false;
1817 
1818 	mutex_lock(&dcc->cmd_lock);
1819 	dc = __lookup_discard_cmd(sbi, blkaddr);
1820 #ifdef CONFIG_BLK_DEV_ZONED
1821 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1822 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1823 
1824 		if (devi < 0) {
1825 			mutex_unlock(&dcc->cmd_lock);
1826 			return;
1827 		}
1828 
1829 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1830 			/* force submit zone reset */
1831 			if (dc->state == D_PREP)
1832 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1833 							&dcc->wait_list, NULL);
1834 			dc->ref++;
1835 			mutex_unlock(&dcc->cmd_lock);
1836 			/* wait zone reset */
1837 			__wait_one_discard_bio(sbi, dc);
1838 			return;
1839 		}
1840 	}
1841 #endif
1842 	if (dc) {
1843 		if (dc->state == D_PREP) {
1844 			__punch_discard_cmd(sbi, dc, blkaddr);
1845 		} else {
1846 			dc->ref++;
1847 			need_wait = true;
1848 		}
1849 	}
1850 	mutex_unlock(&dcc->cmd_lock);
1851 
1852 	if (need_wait)
1853 		__wait_one_discard_bio(sbi, dc);
1854 }
1855 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1856 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1857 {
1858 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1859 
1860 	if (dcc && dcc->f2fs_issue_discard) {
1861 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1862 
1863 		dcc->f2fs_issue_discard = NULL;
1864 		kthread_stop(discard_thread);
1865 	}
1866 }
1867 
1868 /**
1869  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1870  * @sbi: the f2fs_sb_info data for discard cmd to issue
1871  *
1872  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1873  *
1874  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1875  */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1876 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1877 {
1878 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1879 	struct discard_policy dpolicy;
1880 	bool dropped;
1881 
1882 	if (!atomic_read(&dcc->discard_cmd_cnt))
1883 		return true;
1884 
1885 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1886 					dcc->discard_granularity);
1887 	__issue_discard_cmd(sbi, &dpolicy);
1888 	dropped = __drop_discard_cmd(sbi);
1889 
1890 	/* just to make sure there is no pending discard commands */
1891 	__wait_all_discard_cmd(sbi, NULL);
1892 
1893 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1894 	return !dropped;
1895 }
1896 
issue_discard_thread(void * data)1897 static int issue_discard_thread(void *data)
1898 {
1899 	struct f2fs_sb_info *sbi = data;
1900 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1901 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1902 	struct discard_policy dpolicy;
1903 	unsigned int wait_ms = dcc->min_discard_issue_time;
1904 	int issued;
1905 
1906 	set_freezable();
1907 
1908 	do {
1909 		wait_event_interruptible_timeout(*q,
1910 				kthread_should_stop() || freezing(current) ||
1911 				dcc->discard_wake,
1912 				msecs_to_jiffies(wait_ms));
1913 
1914 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1915 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1916 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1917 						MIN_DISCARD_GRANULARITY);
1918 		else
1919 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1920 						dcc->discard_granularity);
1921 
1922 		if (dcc->discard_wake)
1923 			dcc->discard_wake = false;
1924 
1925 		/* clean up pending candidates before going to sleep */
1926 		if (atomic_read(&dcc->queued_discard))
1927 			__wait_all_discard_cmd(sbi, NULL);
1928 
1929 		if (try_to_freeze())
1930 			continue;
1931 		if (f2fs_readonly(sbi->sb))
1932 			continue;
1933 		if (kthread_should_stop())
1934 			return 0;
1935 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1936 			!atomic_read(&dcc->discard_cmd_cnt)) {
1937 			wait_ms = dpolicy.max_interval;
1938 			continue;
1939 		}
1940 
1941 		sb_start_intwrite(sbi->sb);
1942 
1943 		issued = __issue_discard_cmd(sbi, &dpolicy);
1944 		if (issued > 0) {
1945 			__wait_all_discard_cmd(sbi, &dpolicy);
1946 			wait_ms = dpolicy.min_interval;
1947 		} else if (issued == -1) {
1948 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1949 			if (!wait_ms)
1950 				wait_ms = dpolicy.mid_interval;
1951 		} else {
1952 			wait_ms = dpolicy.max_interval;
1953 		}
1954 		if (!atomic_read(&dcc->discard_cmd_cnt))
1955 			wait_ms = dpolicy.max_interval;
1956 
1957 		sb_end_intwrite(sbi->sb);
1958 
1959 	} while (!kthread_should_stop());
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1964 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1965 		struct block_device *bdev, block_t blkstart, block_t blklen)
1966 {
1967 	sector_t sector, nr_sects;
1968 	block_t lblkstart = blkstart;
1969 	int devi = 0;
1970 	u64 remainder = 0;
1971 
1972 	if (f2fs_is_multi_device(sbi)) {
1973 		devi = f2fs_target_device_index(sbi, blkstart);
1974 		if (blkstart < FDEV(devi).start_blk ||
1975 		    blkstart > FDEV(devi).end_blk) {
1976 			f2fs_err(sbi, "Invalid block %x", blkstart);
1977 			return -EIO;
1978 		}
1979 		blkstart -= FDEV(devi).start_blk;
1980 	}
1981 
1982 	/* For sequential zones, reset the zone write pointer */
1983 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1984 		sector = SECTOR_FROM_BLOCK(blkstart);
1985 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1986 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1987 
1988 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1989 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1990 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1991 				 blkstart, blklen);
1992 			return -EIO;
1993 		}
1994 
1995 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1996 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1997 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1998 						sector, nr_sects, GFP_NOFS);
1999 		}
2000 
2001 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2002 		return 0;
2003 	}
2004 
2005 	/* For conventional zones, use regular discard if supported */
2006 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2007 	return 0;
2008 }
2009 #endif
2010 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2011 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2012 		struct block_device *bdev, block_t blkstart, block_t blklen)
2013 {
2014 #ifdef CONFIG_BLK_DEV_ZONED
2015 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2016 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2017 #endif
2018 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2019 	return 0;
2020 }
2021 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2022 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2023 				block_t blkstart, block_t blklen)
2024 {
2025 	sector_t start = blkstart, len = 0;
2026 	struct block_device *bdev;
2027 	struct seg_entry *se;
2028 	unsigned int offset;
2029 	block_t i;
2030 	int err = 0;
2031 
2032 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2033 
2034 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2035 		if (i != start) {
2036 			struct block_device *bdev2 =
2037 				f2fs_target_device(sbi, i, NULL);
2038 
2039 			if (bdev2 != bdev) {
2040 				err = __issue_discard_async(sbi, bdev,
2041 						start, len);
2042 				if (err)
2043 					return err;
2044 				bdev = bdev2;
2045 				start = i;
2046 				len = 0;
2047 			}
2048 		}
2049 
2050 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2051 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2052 
2053 		if (f2fs_block_unit_discard(sbi) &&
2054 				!f2fs_test_and_set_bit(offset, se->discard_map))
2055 			sbi->discard_blks--;
2056 	}
2057 
2058 	if (len)
2059 		err = __issue_discard_async(sbi, bdev, start, len);
2060 	return err;
2061 }
2062 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2063 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2064 							bool check_only)
2065 {
2066 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2067 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2068 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2069 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2070 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2071 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2072 	unsigned int start = 0, end = -1;
2073 	bool force = (cpc->reason & CP_DISCARD);
2074 	struct discard_entry *de = NULL;
2075 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2076 	int i;
2077 
2078 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2079 	    !f2fs_hw_support_discard(sbi) ||
2080 	    !f2fs_block_unit_discard(sbi))
2081 		return false;
2082 
2083 	if (!force) {
2084 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2085 			SM_I(sbi)->dcc_info->nr_discards >=
2086 				SM_I(sbi)->dcc_info->max_discards)
2087 			return false;
2088 	}
2089 
2090 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2091 	for (i = 0; i < entries; i++)
2092 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2093 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2094 
2095 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2096 				SM_I(sbi)->dcc_info->max_discards) {
2097 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2098 		if (start >= BLKS_PER_SEG(sbi))
2099 			break;
2100 
2101 		end = __find_rev_next_zero_bit(dmap,
2102 						BLKS_PER_SEG(sbi), start + 1);
2103 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2104 		    (end - start) < cpc->trim_minlen)
2105 			continue;
2106 
2107 		if (check_only)
2108 			return true;
2109 
2110 		if (!de) {
2111 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2112 						GFP_F2FS_ZERO, true, NULL);
2113 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2114 			list_add_tail(&de->list, head);
2115 		}
2116 
2117 		for (i = start; i < end; i++)
2118 			__set_bit_le(i, (void *)de->discard_map);
2119 
2120 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2121 	}
2122 	return false;
2123 }
2124 
release_discard_addr(struct discard_entry * entry)2125 static void release_discard_addr(struct discard_entry *entry)
2126 {
2127 	list_del(&entry->list);
2128 	kmem_cache_free(discard_entry_slab, entry);
2129 }
2130 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2131 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2132 {
2133 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2134 	struct discard_entry *entry, *this;
2135 
2136 	/* drop caches */
2137 	list_for_each_entry_safe(entry, this, head, list)
2138 		release_discard_addr(entry);
2139 }
2140 
2141 /*
2142  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2143  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2144 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2145 {
2146 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2147 	unsigned int segno;
2148 
2149 	mutex_lock(&dirty_i->seglist_lock);
2150 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2151 		__set_test_and_free(sbi, segno, false);
2152 	mutex_unlock(&dirty_i->seglist_lock);
2153 }
2154 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2155 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2156 						struct cp_control *cpc)
2157 {
2158 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2159 	struct list_head *head = &dcc->entry_list;
2160 	struct discard_entry *entry, *this;
2161 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2162 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2163 	unsigned int start = 0, end = -1;
2164 	unsigned int secno, start_segno;
2165 	bool force = (cpc->reason & CP_DISCARD);
2166 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2167 						DISCARD_UNIT_SECTION;
2168 
2169 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2170 		section_alignment = true;
2171 
2172 	mutex_lock(&dirty_i->seglist_lock);
2173 
2174 	while (1) {
2175 		int i;
2176 
2177 		if (section_alignment && end != -1)
2178 			end--;
2179 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2180 		if (start >= MAIN_SEGS(sbi))
2181 			break;
2182 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2183 								start + 1);
2184 
2185 		if (section_alignment) {
2186 			start = rounddown(start, SEGS_PER_SEC(sbi));
2187 			end = roundup(end, SEGS_PER_SEC(sbi));
2188 		}
2189 
2190 		for (i = start; i < end; i++) {
2191 			if (test_and_clear_bit(i, prefree_map))
2192 				dirty_i->nr_dirty[PRE]--;
2193 		}
2194 
2195 		if (!f2fs_realtime_discard_enable(sbi))
2196 			continue;
2197 
2198 		if (force && start >= cpc->trim_start &&
2199 					(end - 1) <= cpc->trim_end)
2200 			continue;
2201 
2202 		/* Should cover 2MB zoned device for zone-based reset */
2203 		if (!f2fs_sb_has_blkzoned(sbi) &&
2204 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2205 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2206 				(end - start) << sbi->log_blocks_per_seg);
2207 			continue;
2208 		}
2209 next:
2210 		secno = GET_SEC_FROM_SEG(sbi, start);
2211 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2212 		if (!IS_CURSEC(sbi, secno) &&
2213 			!get_valid_blocks(sbi, start, true))
2214 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2215 						BLKS_PER_SEC(sbi));
2216 
2217 		start = start_segno + SEGS_PER_SEC(sbi);
2218 		if (start < end)
2219 			goto next;
2220 		else
2221 			end = start - 1;
2222 	}
2223 	mutex_unlock(&dirty_i->seglist_lock);
2224 
2225 	if (!f2fs_block_unit_discard(sbi))
2226 		goto wakeup;
2227 
2228 	/* send small discards */
2229 	list_for_each_entry_safe(entry, this, head, list) {
2230 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2231 		bool is_valid = test_bit_le(0, entry->discard_map);
2232 
2233 find_next:
2234 		if (is_valid) {
2235 			next_pos = find_next_zero_bit_le(entry->discard_map,
2236 						BLKS_PER_SEG(sbi), cur_pos);
2237 			len = next_pos - cur_pos;
2238 
2239 			if (f2fs_sb_has_blkzoned(sbi) ||
2240 			    (force && len < cpc->trim_minlen))
2241 				goto skip;
2242 
2243 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2244 									len);
2245 			total_len += len;
2246 		} else {
2247 			next_pos = find_next_bit_le(entry->discard_map,
2248 						BLKS_PER_SEG(sbi), cur_pos);
2249 		}
2250 skip:
2251 		cur_pos = next_pos;
2252 		is_valid = !is_valid;
2253 
2254 		if (cur_pos < BLKS_PER_SEG(sbi))
2255 			goto find_next;
2256 
2257 		release_discard_addr(entry);
2258 		dcc->nr_discards -= total_len;
2259 	}
2260 
2261 wakeup:
2262 	wake_up_discard_thread(sbi, false);
2263 }
2264 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2265 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2266 {
2267 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2268 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2269 	int err = 0;
2270 
2271 	if (!f2fs_realtime_discard_enable(sbi))
2272 		return 0;
2273 
2274 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2275 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2276 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2277 		err = PTR_ERR(dcc->f2fs_issue_discard);
2278 		dcc->f2fs_issue_discard = NULL;
2279 	}
2280 
2281 	return err;
2282 }
2283 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2284 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2285 {
2286 	struct discard_cmd_control *dcc;
2287 	int err = 0, i;
2288 
2289 	if (SM_I(sbi)->dcc_info) {
2290 		dcc = SM_I(sbi)->dcc_info;
2291 		goto init_thread;
2292 	}
2293 
2294 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2295 	if (!dcc)
2296 		return -ENOMEM;
2297 
2298 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2299 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2300 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2301 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2302 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2303 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2304 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2305 
2306 	INIT_LIST_HEAD(&dcc->entry_list);
2307 	for (i = 0; i < MAX_PLIST_NUM; i++)
2308 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2309 	INIT_LIST_HEAD(&dcc->wait_list);
2310 	INIT_LIST_HEAD(&dcc->fstrim_list);
2311 	mutex_init(&dcc->cmd_lock);
2312 	atomic_set(&dcc->issued_discard, 0);
2313 	atomic_set(&dcc->queued_discard, 0);
2314 	atomic_set(&dcc->discard_cmd_cnt, 0);
2315 	dcc->nr_discards = 0;
2316 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2317 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2318 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2319 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2320 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2321 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2322 	dcc->undiscard_blks = 0;
2323 	dcc->next_pos = 0;
2324 	dcc->root = RB_ROOT_CACHED;
2325 	dcc->rbtree_check = false;
2326 
2327 	init_waitqueue_head(&dcc->discard_wait_queue);
2328 	SM_I(sbi)->dcc_info = dcc;
2329 init_thread:
2330 	err = f2fs_start_discard_thread(sbi);
2331 	if (err) {
2332 		kfree(dcc);
2333 		SM_I(sbi)->dcc_info = NULL;
2334 	}
2335 
2336 	return err;
2337 }
2338 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2339 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2340 {
2341 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2342 
2343 	if (!dcc)
2344 		return;
2345 
2346 	f2fs_stop_discard_thread(sbi);
2347 
2348 	/*
2349 	 * Recovery can cache discard commands, so in error path of
2350 	 * fill_super(), it needs to give a chance to handle them.
2351 	 */
2352 	f2fs_issue_discard_timeout(sbi);
2353 
2354 	kfree(dcc);
2355 	SM_I(sbi)->dcc_info = NULL;
2356 }
2357 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2358 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2359 {
2360 	struct sit_info *sit_i = SIT_I(sbi);
2361 
2362 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2363 		sit_i->dirty_sentries++;
2364 		return false;
2365 	}
2366 
2367 	return true;
2368 }
2369 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2370 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2371 					unsigned int segno, int modified)
2372 {
2373 	struct seg_entry *se = get_seg_entry(sbi, segno);
2374 
2375 	se->type = type;
2376 	if (modified)
2377 		__mark_sit_entry_dirty(sbi, segno);
2378 }
2379 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2380 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2381 								block_t blkaddr)
2382 {
2383 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2384 
2385 	if (segno == NULL_SEGNO)
2386 		return 0;
2387 	return get_seg_entry(sbi, segno)->mtime;
2388 }
2389 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2390 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2391 						unsigned long long old_mtime)
2392 {
2393 	struct seg_entry *se;
2394 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2395 	unsigned long long ctime = get_mtime(sbi, false);
2396 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2397 
2398 	if (segno == NULL_SEGNO)
2399 		return;
2400 
2401 	se = get_seg_entry(sbi, segno);
2402 
2403 	if (!se->mtime)
2404 		se->mtime = mtime;
2405 	else
2406 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2407 						se->valid_blocks + 1);
2408 
2409 	if (ctime > SIT_I(sbi)->max_mtime)
2410 		SIT_I(sbi)->max_mtime = ctime;
2411 }
2412 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2413 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2414 {
2415 	struct seg_entry *se;
2416 	unsigned int segno, offset;
2417 	long int new_vblocks;
2418 	bool exist;
2419 #ifdef CONFIG_F2FS_CHECK_FS
2420 	bool mir_exist;
2421 #endif
2422 
2423 	segno = GET_SEGNO(sbi, blkaddr);
2424 	if (segno == NULL_SEGNO)
2425 		return;
2426 
2427 	se = get_seg_entry(sbi, segno);
2428 	new_vblocks = se->valid_blocks + del;
2429 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2430 
2431 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2432 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2433 
2434 	se->valid_blocks = new_vblocks;
2435 
2436 	/* Update valid block bitmap */
2437 	if (del > 0) {
2438 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2439 #ifdef CONFIG_F2FS_CHECK_FS
2440 		mir_exist = f2fs_test_and_set_bit(offset,
2441 						se->cur_valid_map_mir);
2442 		if (unlikely(exist != mir_exist)) {
2443 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2444 				 blkaddr, exist);
2445 			f2fs_bug_on(sbi, 1);
2446 		}
2447 #endif
2448 		if (unlikely(exist)) {
2449 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2450 				 blkaddr);
2451 			f2fs_bug_on(sbi, 1);
2452 			se->valid_blocks--;
2453 			del = 0;
2454 		}
2455 
2456 		if (f2fs_block_unit_discard(sbi) &&
2457 				!f2fs_test_and_set_bit(offset, se->discard_map))
2458 			sbi->discard_blks--;
2459 
2460 		/*
2461 		 * SSR should never reuse block which is checkpointed
2462 		 * or newly invalidated.
2463 		 */
2464 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2465 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2466 				se->ckpt_valid_blocks++;
2467 		}
2468 	} else {
2469 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2470 #ifdef CONFIG_F2FS_CHECK_FS
2471 		mir_exist = f2fs_test_and_clear_bit(offset,
2472 						se->cur_valid_map_mir);
2473 		if (unlikely(exist != mir_exist)) {
2474 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2475 				 blkaddr, exist);
2476 			f2fs_bug_on(sbi, 1);
2477 		}
2478 #endif
2479 		if (unlikely(!exist)) {
2480 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2481 				 blkaddr);
2482 			f2fs_bug_on(sbi, 1);
2483 			se->valid_blocks++;
2484 			del = 0;
2485 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2486 			/*
2487 			 * If checkpoints are off, we must not reuse data that
2488 			 * was used in the previous checkpoint. If it was used
2489 			 * before, we must track that to know how much space we
2490 			 * really have.
2491 			 */
2492 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2493 				spin_lock(&sbi->stat_lock);
2494 				sbi->unusable_block_count++;
2495 				spin_unlock(&sbi->stat_lock);
2496 			}
2497 		}
2498 
2499 		if (f2fs_block_unit_discard(sbi) &&
2500 			f2fs_test_and_clear_bit(offset, se->discard_map))
2501 			sbi->discard_blks++;
2502 	}
2503 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2504 		se->ckpt_valid_blocks += del;
2505 
2506 	__mark_sit_entry_dirty(sbi, segno);
2507 
2508 	/* update total number of valid blocks to be written in ckpt area */
2509 	SIT_I(sbi)->written_valid_blocks += del;
2510 
2511 	if (__is_large_section(sbi))
2512 		get_sec_entry(sbi, segno)->valid_blocks += del;
2513 }
2514 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2515 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2516 {
2517 	unsigned int segno = GET_SEGNO(sbi, addr);
2518 	struct sit_info *sit_i = SIT_I(sbi);
2519 
2520 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2521 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2522 		return;
2523 
2524 	f2fs_invalidate_internal_cache(sbi, addr);
2525 
2526 	/* add it into sit main buffer */
2527 	down_write(&sit_i->sentry_lock);
2528 
2529 	update_segment_mtime(sbi, addr, 0);
2530 	update_sit_entry(sbi, addr, -1);
2531 
2532 	/* add it into dirty seglist */
2533 	locate_dirty_segment(sbi, segno);
2534 
2535 	up_write(&sit_i->sentry_lock);
2536 }
2537 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2538 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2539 {
2540 	struct sit_info *sit_i = SIT_I(sbi);
2541 	unsigned int segno, offset;
2542 	struct seg_entry *se;
2543 	bool is_cp = false;
2544 
2545 	if (!__is_valid_data_blkaddr(blkaddr))
2546 		return true;
2547 
2548 	down_read(&sit_i->sentry_lock);
2549 
2550 	segno = GET_SEGNO(sbi, blkaddr);
2551 	se = get_seg_entry(sbi, segno);
2552 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2553 
2554 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2555 		is_cp = true;
2556 
2557 	up_read(&sit_i->sentry_lock);
2558 
2559 	return is_cp;
2560 }
2561 
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2562 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2563 {
2564 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2565 
2566 	if (sbi->ckpt->alloc_type[type] == SSR)
2567 		return BLKS_PER_SEG(sbi);
2568 	return curseg->next_blkoff;
2569 }
2570 
2571 /*
2572  * Calculate the number of current summary pages for writing
2573  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2574 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2575 {
2576 	int valid_sum_count = 0;
2577 	int i, sum_in_page;
2578 
2579 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2580 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2581 			valid_sum_count +=
2582 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2583 		else
2584 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2585 	}
2586 
2587 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2588 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2589 	if (valid_sum_count <= sum_in_page)
2590 		return 1;
2591 	else if ((valid_sum_count - sum_in_page) <=
2592 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2593 		return 2;
2594 	return 3;
2595 }
2596 
2597 /*
2598  * Caller should put this summary page
2599  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2600 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2601 {
2602 	if (unlikely(f2fs_cp_error(sbi)))
2603 		return ERR_PTR(-EIO);
2604 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2605 }
2606 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2607 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2608 					void *src, block_t blk_addr)
2609 {
2610 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2611 
2612 	memcpy(page_address(page), src, PAGE_SIZE);
2613 	set_page_dirty(page);
2614 	f2fs_put_page(page, 1);
2615 }
2616 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2617 static void write_sum_page(struct f2fs_sb_info *sbi,
2618 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2619 {
2620 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2621 }
2622 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2623 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2624 						int type, block_t blk_addr)
2625 {
2626 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2627 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2628 	struct f2fs_summary_block *src = curseg->sum_blk;
2629 	struct f2fs_summary_block *dst;
2630 
2631 	dst = (struct f2fs_summary_block *)page_address(page);
2632 	memset(dst, 0, PAGE_SIZE);
2633 
2634 	mutex_lock(&curseg->curseg_mutex);
2635 
2636 	down_read(&curseg->journal_rwsem);
2637 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2638 	up_read(&curseg->journal_rwsem);
2639 
2640 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2641 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2642 
2643 	mutex_unlock(&curseg->curseg_mutex);
2644 
2645 	set_page_dirty(page);
2646 	f2fs_put_page(page, 1);
2647 }
2648 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2649 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2650 				struct curseg_info *curseg, int type)
2651 {
2652 	unsigned int segno = curseg->segno + 1;
2653 	struct free_segmap_info *free_i = FREE_I(sbi);
2654 
2655 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2656 		return !test_bit(segno, free_i->free_segmap);
2657 	return 0;
2658 }
2659 
2660 /*
2661  * Find a new segment from the free segments bitmap to right order
2662  * This function should be returned with success, otherwise BUG
2663  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2664 static void get_new_segment(struct f2fs_sb_info *sbi,
2665 			unsigned int *newseg, bool new_sec, bool pinning)
2666 {
2667 	struct free_segmap_info *free_i = FREE_I(sbi);
2668 	unsigned int segno, secno, zoneno;
2669 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2670 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2671 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2672 	bool init = true;
2673 	int i;
2674 	int ret = 0;
2675 
2676 	spin_lock(&free_i->segmap_lock);
2677 
2678 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2679 		segno = find_next_zero_bit(free_i->free_segmap,
2680 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2681 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2682 			goto got_it;
2683 	}
2684 
2685 	/*
2686 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2687 	 * from beginning of the storage, which should be a conventional one.
2688 	 */
2689 	if (f2fs_sb_has_blkzoned(sbi)) {
2690 		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2691 		hint = GET_SEC_FROM_SEG(sbi, segno);
2692 	}
2693 
2694 find_other_zone:
2695 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2696 	if (secno >= MAIN_SECS(sbi)) {
2697 		secno = find_first_zero_bit(free_i->free_secmap,
2698 							MAIN_SECS(sbi));
2699 		if (secno >= MAIN_SECS(sbi)) {
2700 			ret = -ENOSPC;
2701 			goto out_unlock;
2702 		}
2703 	}
2704 	segno = GET_SEG_FROM_SEC(sbi, secno);
2705 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2706 
2707 	/* give up on finding another zone */
2708 	if (!init)
2709 		goto got_it;
2710 	if (sbi->secs_per_zone == 1)
2711 		goto got_it;
2712 	if (zoneno == old_zoneno)
2713 		goto got_it;
2714 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2715 		if (CURSEG_I(sbi, i)->zone == zoneno)
2716 			break;
2717 
2718 	if (i < NR_CURSEG_TYPE) {
2719 		/* zone is in user, try another */
2720 		if (zoneno + 1 >= total_zones)
2721 			hint = 0;
2722 		else
2723 			hint = (zoneno + 1) * sbi->secs_per_zone;
2724 		init = false;
2725 		goto find_other_zone;
2726 	}
2727 got_it:
2728 	/* set it as dirty segment in free segmap */
2729 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2730 	__set_inuse(sbi, segno);
2731 	*newseg = segno;
2732 out_unlock:
2733 	spin_unlock(&free_i->segmap_lock);
2734 
2735 	if (ret) {
2736 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2737 		f2fs_bug_on(sbi, 1);
2738 	}
2739 }
2740 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2741 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2742 {
2743 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2744 	struct summary_footer *sum_footer;
2745 	unsigned short seg_type = curseg->seg_type;
2746 
2747 	curseg->inited = true;
2748 	curseg->segno = curseg->next_segno;
2749 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2750 	curseg->next_blkoff = 0;
2751 	curseg->next_segno = NULL_SEGNO;
2752 
2753 	sum_footer = &(curseg->sum_blk->footer);
2754 	memset(sum_footer, 0, sizeof(struct summary_footer));
2755 
2756 	sanity_check_seg_type(sbi, seg_type);
2757 
2758 	if (IS_DATASEG(seg_type))
2759 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2760 	if (IS_NODESEG(seg_type))
2761 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2762 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2763 }
2764 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2765 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2766 {
2767 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2768 	unsigned short seg_type = curseg->seg_type;
2769 
2770 	sanity_check_seg_type(sbi, seg_type);
2771 	if (f2fs_need_rand_seg(sbi))
2772 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2773 
2774 	if (__is_large_section(sbi))
2775 		return curseg->segno;
2776 
2777 	/* inmem log may not locate on any segment after mount */
2778 	if (!curseg->inited)
2779 		return 0;
2780 
2781 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2782 		return 0;
2783 
2784 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2785 		return 0;
2786 
2787 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2788 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2789 
2790 	/* find segments from 0 to reuse freed segments */
2791 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2792 		return 0;
2793 
2794 	return curseg->segno;
2795 }
2796 
2797 /*
2798  * Allocate a current working segment.
2799  * This function always allocates a free segment in LFS manner.
2800  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2801 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2802 {
2803 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2804 	unsigned int segno = curseg->segno;
2805 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2806 
2807 	if (curseg->inited)
2808 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2809 
2810 	segno = __get_next_segno(sbi, type);
2811 	get_new_segment(sbi, &segno, new_sec, pinning);
2812 	if (new_sec && pinning &&
2813 	    !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2814 		__set_free(sbi, segno);
2815 		return -EAGAIN;
2816 	}
2817 
2818 	curseg->next_segno = segno;
2819 	reset_curseg(sbi, type, 1);
2820 	curseg->alloc_type = LFS;
2821 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2822 		curseg->fragment_remained_chunk =
2823 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2824 	return 0;
2825 }
2826 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2827 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2828 					int segno, block_t start)
2829 {
2830 	struct seg_entry *se = get_seg_entry(sbi, segno);
2831 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2832 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2833 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2834 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2835 	int i;
2836 
2837 	for (i = 0; i < entries; i++)
2838 		target_map[i] = ckpt_map[i] | cur_map[i];
2839 
2840 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2841 }
2842 
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)2843 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2844 		struct curseg_info *seg)
2845 {
2846 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2847 }
2848 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2849 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2850 {
2851 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2852 }
2853 
2854 /*
2855  * This function always allocates a used segment(from dirty seglist) by SSR
2856  * manner, so it should recover the existing segment information of valid blocks
2857  */
change_curseg(struct f2fs_sb_info * sbi,int type)2858 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2859 {
2860 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2861 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2862 	unsigned int new_segno = curseg->next_segno;
2863 	struct f2fs_summary_block *sum_node;
2864 	struct page *sum_page;
2865 
2866 	if (curseg->inited)
2867 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2868 
2869 	__set_test_and_inuse(sbi, new_segno);
2870 
2871 	mutex_lock(&dirty_i->seglist_lock);
2872 	__remove_dirty_segment(sbi, new_segno, PRE);
2873 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2874 	mutex_unlock(&dirty_i->seglist_lock);
2875 
2876 	reset_curseg(sbi, type, 1);
2877 	curseg->alloc_type = SSR;
2878 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2879 
2880 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2881 	if (IS_ERR(sum_page)) {
2882 		/* GC won't be able to use stale summary pages by cp_error */
2883 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2884 		return;
2885 	}
2886 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2887 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2888 	f2fs_put_page(sum_page, 1);
2889 }
2890 
2891 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2892 				int alloc_mode, unsigned long long age);
2893 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2894 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2895 					int target_type, int alloc_mode,
2896 					unsigned long long age)
2897 {
2898 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2899 
2900 	curseg->seg_type = target_type;
2901 
2902 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2903 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2904 
2905 		curseg->seg_type = se->type;
2906 		change_curseg(sbi, type);
2907 	} else {
2908 		/* allocate cold segment by default */
2909 		curseg->seg_type = CURSEG_COLD_DATA;
2910 		new_curseg(sbi, type, true);
2911 	}
2912 	stat_inc_seg_type(sbi, curseg);
2913 }
2914 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2915 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2916 {
2917 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2918 
2919 	if (!sbi->am.atgc_enabled)
2920 		return;
2921 
2922 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2923 
2924 	mutex_lock(&curseg->curseg_mutex);
2925 	down_write(&SIT_I(sbi)->sentry_lock);
2926 
2927 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2928 
2929 	up_write(&SIT_I(sbi)->sentry_lock);
2930 	mutex_unlock(&curseg->curseg_mutex);
2931 
2932 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2933 
2934 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2935 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2936 {
2937 	__f2fs_init_atgc_curseg(sbi);
2938 }
2939 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2940 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2941 {
2942 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2943 
2944 	mutex_lock(&curseg->curseg_mutex);
2945 	if (!curseg->inited)
2946 		goto out;
2947 
2948 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2949 		write_sum_page(sbi, curseg->sum_blk,
2950 				GET_SUM_BLOCK(sbi, curseg->segno));
2951 	} else {
2952 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2953 		__set_test_and_free(sbi, curseg->segno, true);
2954 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2955 	}
2956 out:
2957 	mutex_unlock(&curseg->curseg_mutex);
2958 }
2959 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2960 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2961 {
2962 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2963 
2964 	if (sbi->am.atgc_enabled)
2965 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2966 }
2967 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2968 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2969 {
2970 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2971 
2972 	mutex_lock(&curseg->curseg_mutex);
2973 	if (!curseg->inited)
2974 		goto out;
2975 	if (get_valid_blocks(sbi, curseg->segno, false))
2976 		goto out;
2977 
2978 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2979 	__set_test_and_inuse(sbi, curseg->segno);
2980 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2981 out:
2982 	mutex_unlock(&curseg->curseg_mutex);
2983 }
2984 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2985 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2986 {
2987 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2988 
2989 	if (sbi->am.atgc_enabled)
2990 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2991 }
2992 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2993 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2994 				int alloc_mode, unsigned long long age)
2995 {
2996 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2997 	unsigned segno = NULL_SEGNO;
2998 	unsigned short seg_type = curseg->seg_type;
2999 	int i, cnt;
3000 	bool reversed = false;
3001 
3002 	sanity_check_seg_type(sbi, seg_type);
3003 
3004 	/* f2fs_need_SSR() already forces to do this */
3005 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3006 		curseg->next_segno = segno;
3007 		return 1;
3008 	}
3009 
3010 	/* For node segments, let's do SSR more intensively */
3011 	if (IS_NODESEG(seg_type)) {
3012 		if (seg_type >= CURSEG_WARM_NODE) {
3013 			reversed = true;
3014 			i = CURSEG_COLD_NODE;
3015 		} else {
3016 			i = CURSEG_HOT_NODE;
3017 		}
3018 		cnt = NR_CURSEG_NODE_TYPE;
3019 	} else {
3020 		if (seg_type >= CURSEG_WARM_DATA) {
3021 			reversed = true;
3022 			i = CURSEG_COLD_DATA;
3023 		} else {
3024 			i = CURSEG_HOT_DATA;
3025 		}
3026 		cnt = NR_CURSEG_DATA_TYPE;
3027 	}
3028 
3029 	for (; cnt-- > 0; reversed ? i-- : i++) {
3030 		if (i == seg_type)
3031 			continue;
3032 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3033 			curseg->next_segno = segno;
3034 			return 1;
3035 		}
3036 	}
3037 
3038 	/* find valid_blocks=0 in dirty list */
3039 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3040 		segno = get_free_segment(sbi);
3041 		if (segno != NULL_SEGNO) {
3042 			curseg->next_segno = segno;
3043 			return 1;
3044 		}
3045 	}
3046 	return 0;
3047 }
3048 
need_new_seg(struct f2fs_sb_info * sbi,int type)3049 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3050 {
3051 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3052 
3053 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3054 	    curseg->seg_type == CURSEG_WARM_NODE)
3055 		return true;
3056 	if (curseg->alloc_type == LFS &&
3057 	    is_next_segment_free(sbi, curseg, type) &&
3058 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3059 		return true;
3060 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3061 		return true;
3062 	return false;
3063 }
3064 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3065 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3066 					unsigned int start, unsigned int end)
3067 {
3068 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3069 	unsigned int segno;
3070 
3071 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3072 	mutex_lock(&curseg->curseg_mutex);
3073 	down_write(&SIT_I(sbi)->sentry_lock);
3074 
3075 	segno = CURSEG_I(sbi, type)->segno;
3076 	if (segno < start || segno > end)
3077 		goto unlock;
3078 
3079 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3080 		change_curseg(sbi, type);
3081 	else
3082 		new_curseg(sbi, type, true);
3083 
3084 	stat_inc_seg_type(sbi, curseg);
3085 
3086 	locate_dirty_segment(sbi, segno);
3087 unlock:
3088 	up_write(&SIT_I(sbi)->sentry_lock);
3089 
3090 	if (segno != curseg->segno)
3091 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3092 			    type, segno, curseg->segno);
3093 
3094 	mutex_unlock(&curseg->curseg_mutex);
3095 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3096 }
3097 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3098 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3099 						bool new_sec, bool force)
3100 {
3101 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3102 	unsigned int old_segno;
3103 
3104 	if (!force && curseg->inited &&
3105 	    !curseg->next_blkoff &&
3106 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3107 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3108 		return 0;
3109 
3110 	old_segno = curseg->segno;
3111 	if (new_curseg(sbi, type, true))
3112 		return -EAGAIN;
3113 	stat_inc_seg_type(sbi, curseg);
3114 	locate_dirty_segment(sbi, old_segno);
3115 	return 0;
3116 }
3117 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3118 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3119 {
3120 	int ret;
3121 
3122 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3123 	down_write(&SIT_I(sbi)->sentry_lock);
3124 	ret = __allocate_new_segment(sbi, type, true, force);
3125 	up_write(&SIT_I(sbi)->sentry_lock);
3126 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3127 
3128 	return ret;
3129 }
3130 
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3131 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3132 {
3133 	int err;
3134 	bool gc_required = true;
3135 
3136 retry:
3137 	f2fs_lock_op(sbi);
3138 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3139 	f2fs_unlock_op(sbi);
3140 
3141 	if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) {
3142 		f2fs_down_write(&sbi->gc_lock);
3143 		f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3144 		f2fs_up_write(&sbi->gc_lock);
3145 
3146 		gc_required = false;
3147 		goto retry;
3148 	}
3149 
3150 	return err;
3151 }
3152 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3153 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3154 {
3155 	int i;
3156 
3157 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3158 	down_write(&SIT_I(sbi)->sentry_lock);
3159 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3160 		__allocate_new_segment(sbi, i, false, false);
3161 	up_write(&SIT_I(sbi)->sentry_lock);
3162 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3163 }
3164 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3165 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3166 						struct cp_control *cpc)
3167 {
3168 	__u64 trim_start = cpc->trim_start;
3169 	bool has_candidate = false;
3170 
3171 	down_write(&SIT_I(sbi)->sentry_lock);
3172 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3173 		if (add_discard_addrs(sbi, cpc, true)) {
3174 			has_candidate = true;
3175 			break;
3176 		}
3177 	}
3178 	up_write(&SIT_I(sbi)->sentry_lock);
3179 
3180 	cpc->trim_start = trim_start;
3181 	return has_candidate;
3182 }
3183 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3184 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3185 					struct discard_policy *dpolicy,
3186 					unsigned int start, unsigned int end)
3187 {
3188 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3189 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3190 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3191 	struct discard_cmd *dc;
3192 	struct blk_plug plug;
3193 	int issued;
3194 	unsigned int trimmed = 0;
3195 
3196 next:
3197 	issued = 0;
3198 
3199 	mutex_lock(&dcc->cmd_lock);
3200 	if (unlikely(dcc->rbtree_check))
3201 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3202 
3203 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3204 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3205 	if (!dc)
3206 		dc = next_dc;
3207 
3208 	blk_start_plug(&plug);
3209 
3210 	while (dc && dc->di.lstart <= end) {
3211 		struct rb_node *node;
3212 		int err = 0;
3213 
3214 		if (dc->di.len < dpolicy->granularity)
3215 			goto skip;
3216 
3217 		if (dc->state != D_PREP) {
3218 			list_move_tail(&dc->list, &dcc->fstrim_list);
3219 			goto skip;
3220 		}
3221 
3222 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3223 
3224 		if (issued >= dpolicy->max_requests) {
3225 			start = dc->di.lstart + dc->di.len;
3226 
3227 			if (err)
3228 				__remove_discard_cmd(sbi, dc);
3229 
3230 			blk_finish_plug(&plug);
3231 			mutex_unlock(&dcc->cmd_lock);
3232 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3233 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3234 			goto next;
3235 		}
3236 skip:
3237 		node = rb_next(&dc->rb_node);
3238 		if (err)
3239 			__remove_discard_cmd(sbi, dc);
3240 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3241 
3242 		if (fatal_signal_pending(current))
3243 			break;
3244 	}
3245 
3246 	blk_finish_plug(&plug);
3247 	mutex_unlock(&dcc->cmd_lock);
3248 
3249 	return trimmed;
3250 }
3251 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3252 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3253 {
3254 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3255 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3256 	unsigned int start_segno, end_segno;
3257 	block_t start_block, end_block;
3258 	struct cp_control cpc;
3259 	struct discard_policy dpolicy;
3260 	unsigned long long trimmed = 0;
3261 	int err = 0;
3262 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3263 
3264 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3265 		return -EINVAL;
3266 
3267 	if (end < MAIN_BLKADDR(sbi))
3268 		goto out;
3269 
3270 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3271 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3272 		return -EFSCORRUPTED;
3273 	}
3274 
3275 	/* start/end segment number in main_area */
3276 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3277 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3278 						GET_SEGNO(sbi, end);
3279 	if (need_align) {
3280 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3281 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3282 	}
3283 
3284 	cpc.reason = CP_DISCARD;
3285 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3286 	cpc.trim_start = start_segno;
3287 	cpc.trim_end = end_segno;
3288 
3289 	if (sbi->discard_blks == 0)
3290 		goto out;
3291 
3292 	f2fs_down_write(&sbi->gc_lock);
3293 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3294 	err = f2fs_write_checkpoint(sbi, &cpc);
3295 	f2fs_up_write(&sbi->gc_lock);
3296 	if (err)
3297 		goto out;
3298 
3299 	/*
3300 	 * We filed discard candidates, but actually we don't need to wait for
3301 	 * all of them, since they'll be issued in idle time along with runtime
3302 	 * discard option. User configuration looks like using runtime discard
3303 	 * or periodic fstrim instead of it.
3304 	 */
3305 	if (f2fs_realtime_discard_enable(sbi))
3306 		goto out;
3307 
3308 	start_block = START_BLOCK(sbi, start_segno);
3309 	end_block = START_BLOCK(sbi, end_segno + 1);
3310 
3311 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3312 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3313 					start_block, end_block);
3314 
3315 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3316 					start_block, end_block);
3317 out:
3318 	if (!err)
3319 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3320 	return err;
3321 }
3322 
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3323 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3324 {
3325 	switch (hint) {
3326 	case WRITE_LIFE_SHORT:
3327 		return CURSEG_HOT_DATA;
3328 	case WRITE_LIFE_EXTREME:
3329 		return CURSEG_COLD_DATA;
3330 	default:
3331 		return CURSEG_WARM_DATA;
3332 	}
3333 }
3334 
__get_segment_type_2(struct f2fs_io_info * fio)3335 static int __get_segment_type_2(struct f2fs_io_info *fio)
3336 {
3337 	if (fio->type == DATA)
3338 		return CURSEG_HOT_DATA;
3339 	else
3340 		return CURSEG_HOT_NODE;
3341 }
3342 
__get_segment_type_4(struct f2fs_io_info * fio)3343 static int __get_segment_type_4(struct f2fs_io_info *fio)
3344 {
3345 	if (fio->type == DATA) {
3346 		struct inode *inode = fio->page->mapping->host;
3347 
3348 		if (S_ISDIR(inode->i_mode))
3349 			return CURSEG_HOT_DATA;
3350 		else
3351 			return CURSEG_COLD_DATA;
3352 	} else {
3353 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3354 			return CURSEG_WARM_NODE;
3355 		else
3356 			return CURSEG_COLD_NODE;
3357 	}
3358 }
3359 
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3360 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3361 {
3362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3363 	struct extent_info ei = {};
3364 
3365 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3366 		if (!ei.age)
3367 			return NO_CHECK_TYPE;
3368 		if (ei.age <= sbi->hot_data_age_threshold)
3369 			return CURSEG_HOT_DATA;
3370 		if (ei.age <= sbi->warm_data_age_threshold)
3371 			return CURSEG_WARM_DATA;
3372 		return CURSEG_COLD_DATA;
3373 	}
3374 	return NO_CHECK_TYPE;
3375 }
3376 
__get_segment_type_6(struct f2fs_io_info * fio)3377 static int __get_segment_type_6(struct f2fs_io_info *fio)
3378 {
3379 	if (fio->type == DATA) {
3380 		struct inode *inode = fio->page->mapping->host;
3381 		int type;
3382 
3383 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3384 			return CURSEG_COLD_DATA_PINNED;
3385 
3386 		if (page_private_gcing(fio->page)) {
3387 			if (fio->sbi->am.atgc_enabled &&
3388 				(fio->io_type == FS_DATA_IO) &&
3389 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3390 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3391 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3392 				return CURSEG_ALL_DATA_ATGC;
3393 			else
3394 				return CURSEG_COLD_DATA;
3395 		}
3396 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3397 			return CURSEG_COLD_DATA;
3398 
3399 		type = __get_age_segment_type(inode, fio->page->index);
3400 		if (type != NO_CHECK_TYPE)
3401 			return type;
3402 
3403 		if (file_is_hot(inode) ||
3404 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3405 				f2fs_is_cow_file(inode))
3406 			return CURSEG_HOT_DATA;
3407 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3408 	} else {
3409 		if (IS_DNODE(fio->page))
3410 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3411 						CURSEG_HOT_NODE;
3412 		return CURSEG_COLD_NODE;
3413 	}
3414 }
3415 
__get_segment_type(struct f2fs_io_info * fio)3416 static int __get_segment_type(struct f2fs_io_info *fio)
3417 {
3418 	int type = 0;
3419 
3420 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3421 	case 2:
3422 		type = __get_segment_type_2(fio);
3423 		break;
3424 	case 4:
3425 		type = __get_segment_type_4(fio);
3426 		break;
3427 	case 6:
3428 		type = __get_segment_type_6(fio);
3429 		break;
3430 	default:
3431 		f2fs_bug_on(fio->sbi, true);
3432 	}
3433 
3434 	if (IS_HOT(type))
3435 		fio->temp = HOT;
3436 	else if (IS_WARM(type))
3437 		fio->temp = WARM;
3438 	else
3439 		fio->temp = COLD;
3440 	return type;
3441 }
3442 
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3443 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3444 		struct curseg_info *seg)
3445 {
3446 	/* To allocate block chunks in different sizes, use random number */
3447 	if (--seg->fragment_remained_chunk > 0)
3448 		return;
3449 
3450 	seg->fragment_remained_chunk =
3451 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3452 	seg->next_blkoff +=
3453 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3454 }
3455 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3456 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3457 		block_t old_blkaddr, block_t *new_blkaddr,
3458 		struct f2fs_summary *sum, int type,
3459 		struct f2fs_io_info *fio)
3460 {
3461 	struct sit_info *sit_i = SIT_I(sbi);
3462 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3463 	unsigned long long old_mtime;
3464 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3465 	struct seg_entry *se = NULL;
3466 	bool segment_full = false;
3467 
3468 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3469 
3470 	mutex_lock(&curseg->curseg_mutex);
3471 	down_write(&sit_i->sentry_lock);
3472 
3473 	if (from_gc) {
3474 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3475 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3476 		sanity_check_seg_type(sbi, se->type);
3477 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3478 	}
3479 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3480 
3481 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3482 
3483 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3484 
3485 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3486 	if (curseg->alloc_type == SSR) {
3487 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3488 	} else {
3489 		curseg->next_blkoff++;
3490 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3491 			f2fs_randomize_chunk(sbi, curseg);
3492 	}
3493 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3494 		segment_full = true;
3495 	stat_inc_block_count(sbi, curseg);
3496 
3497 	if (from_gc) {
3498 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3499 	} else {
3500 		update_segment_mtime(sbi, old_blkaddr, 0);
3501 		old_mtime = 0;
3502 	}
3503 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3504 
3505 	/*
3506 	 * SIT information should be updated before segment allocation,
3507 	 * since SSR needs latest valid block information.
3508 	 */
3509 	update_sit_entry(sbi, *new_blkaddr, 1);
3510 	update_sit_entry(sbi, old_blkaddr, -1);
3511 
3512 	/*
3513 	 * If the current segment is full, flush it out and replace it with a
3514 	 * new segment.
3515 	 */
3516 	if (segment_full) {
3517 		if (type == CURSEG_COLD_DATA_PINNED &&
3518 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3519 			write_sum_page(sbi, curseg->sum_blk,
3520 					GET_SUM_BLOCK(sbi, curseg->segno));
3521 			goto skip_new_segment;
3522 		}
3523 
3524 		if (from_gc) {
3525 			get_atssr_segment(sbi, type, se->type,
3526 						AT_SSR, se->mtime);
3527 		} else {
3528 			if (need_new_seg(sbi, type))
3529 				new_curseg(sbi, type, false);
3530 			else
3531 				change_curseg(sbi, type);
3532 			stat_inc_seg_type(sbi, curseg);
3533 		}
3534 	}
3535 
3536 skip_new_segment:
3537 	/*
3538 	 * segment dirty status should be updated after segment allocation,
3539 	 * so we just need to update status only one time after previous
3540 	 * segment being closed.
3541 	 */
3542 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3543 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3544 
3545 	if (IS_DATASEG(curseg->seg_type))
3546 		atomic64_inc(&sbi->allocated_data_blocks);
3547 
3548 	up_write(&sit_i->sentry_lock);
3549 
3550 	if (page && IS_NODESEG(curseg->seg_type)) {
3551 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3552 
3553 		f2fs_inode_chksum_set(sbi, page);
3554 	}
3555 
3556 	if (fio) {
3557 		struct f2fs_bio_info *io;
3558 
3559 		INIT_LIST_HEAD(&fio->list);
3560 		fio->in_list = 1;
3561 		io = sbi->write_io[fio->type] + fio->temp;
3562 		spin_lock(&io->io_lock);
3563 		list_add_tail(&fio->list, &io->io_list);
3564 		spin_unlock(&io->io_lock);
3565 	}
3566 
3567 	mutex_unlock(&curseg->curseg_mutex);
3568 
3569 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3570 }
3571 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3572 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3573 					block_t blkaddr, unsigned int blkcnt)
3574 {
3575 	if (!f2fs_is_multi_device(sbi))
3576 		return;
3577 
3578 	while (1) {
3579 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3580 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3581 
3582 		/* update device state for fsync */
3583 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3584 
3585 		/* update device state for checkpoint */
3586 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3587 			spin_lock(&sbi->dev_lock);
3588 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3589 			spin_unlock(&sbi->dev_lock);
3590 		}
3591 
3592 		if (blkcnt <= blks)
3593 			break;
3594 		blkcnt -= blks;
3595 		blkaddr += blks;
3596 	}
3597 }
3598 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3599 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3600 {
3601 	int type = __get_segment_type(fio);
3602 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3603 
3604 	if (keep_order)
3605 		f2fs_down_read(&fio->sbi->io_order_lock);
3606 
3607 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3608 			&fio->new_blkaddr, sum, type, fio);
3609 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3610 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3611 
3612 	/* writeout dirty page into bdev */
3613 	f2fs_submit_page_write(fio);
3614 
3615 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3616 
3617 	if (keep_order)
3618 		f2fs_up_read(&fio->sbi->io_order_lock);
3619 }
3620 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3621 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3622 					enum iostat_type io_type)
3623 {
3624 	struct f2fs_io_info fio = {
3625 		.sbi = sbi,
3626 		.type = META,
3627 		.temp = HOT,
3628 		.op = REQ_OP_WRITE,
3629 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3630 		.old_blkaddr = page->index,
3631 		.new_blkaddr = page->index,
3632 		.page = page,
3633 		.encrypted_page = NULL,
3634 		.in_list = 0,
3635 	};
3636 
3637 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3638 		fio.op_flags &= ~REQ_META;
3639 
3640 	set_page_writeback(page);
3641 	f2fs_submit_page_write(&fio);
3642 
3643 	stat_inc_meta_count(sbi, page->index);
3644 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3645 }
3646 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3647 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3648 {
3649 	struct f2fs_summary sum;
3650 
3651 	set_summary(&sum, nid, 0, 0);
3652 	do_write_page(&sum, fio);
3653 
3654 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3655 }
3656 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3657 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3658 					struct f2fs_io_info *fio)
3659 {
3660 	struct f2fs_sb_info *sbi = fio->sbi;
3661 	struct f2fs_summary sum;
3662 
3663 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3664 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3665 		f2fs_update_age_extent_cache(dn);
3666 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3667 	do_write_page(&sum, fio);
3668 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3669 
3670 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3671 }
3672 
f2fs_inplace_write_data(struct f2fs_io_info * fio)3673 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3674 {
3675 	int err;
3676 	struct f2fs_sb_info *sbi = fio->sbi;
3677 	unsigned int segno;
3678 
3679 	fio->new_blkaddr = fio->old_blkaddr;
3680 	/* i/o temperature is needed for passing down write hints */
3681 	__get_segment_type(fio);
3682 
3683 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3684 
3685 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3686 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3687 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3688 			  __func__, segno);
3689 		err = -EFSCORRUPTED;
3690 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3691 		goto drop_bio;
3692 	}
3693 
3694 	if (f2fs_cp_error(sbi)) {
3695 		err = -EIO;
3696 		goto drop_bio;
3697 	}
3698 
3699 	if (fio->meta_gc)
3700 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3701 
3702 	stat_inc_inplace_blocks(fio->sbi);
3703 
3704 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3705 		err = f2fs_merge_page_bio(fio);
3706 	else
3707 		err = f2fs_submit_page_bio(fio);
3708 	if (!err) {
3709 		f2fs_update_device_state(fio->sbi, fio->ino,
3710 						fio->new_blkaddr, 1);
3711 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3712 						fio->io_type, F2FS_BLKSIZE);
3713 	}
3714 
3715 	return err;
3716 drop_bio:
3717 	if (fio->bio && *(fio->bio)) {
3718 		struct bio *bio = *(fio->bio);
3719 
3720 		bio->bi_status = BLK_STS_IOERR;
3721 		bio_endio(bio);
3722 		*(fio->bio) = NULL;
3723 	}
3724 	return err;
3725 }
3726 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3727 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3728 						unsigned int segno)
3729 {
3730 	int i;
3731 
3732 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3733 		if (CURSEG_I(sbi, i)->segno == segno)
3734 			break;
3735 	}
3736 	return i;
3737 }
3738 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3739 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3740 				block_t old_blkaddr, block_t new_blkaddr,
3741 				bool recover_curseg, bool recover_newaddr,
3742 				bool from_gc)
3743 {
3744 	struct sit_info *sit_i = SIT_I(sbi);
3745 	struct curseg_info *curseg;
3746 	unsigned int segno, old_cursegno;
3747 	struct seg_entry *se;
3748 	int type;
3749 	unsigned short old_blkoff;
3750 	unsigned char old_alloc_type;
3751 
3752 	segno = GET_SEGNO(sbi, new_blkaddr);
3753 	se = get_seg_entry(sbi, segno);
3754 	type = se->type;
3755 
3756 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3757 
3758 	if (!recover_curseg) {
3759 		/* for recovery flow */
3760 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3761 			if (old_blkaddr == NULL_ADDR)
3762 				type = CURSEG_COLD_DATA;
3763 			else
3764 				type = CURSEG_WARM_DATA;
3765 		}
3766 	} else {
3767 		if (IS_CURSEG(sbi, segno)) {
3768 			/* se->type is volatile as SSR allocation */
3769 			type = __f2fs_get_curseg(sbi, segno);
3770 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3771 		} else {
3772 			type = CURSEG_WARM_DATA;
3773 		}
3774 	}
3775 
3776 	curseg = CURSEG_I(sbi, type);
3777 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
3778 
3779 	mutex_lock(&curseg->curseg_mutex);
3780 	down_write(&sit_i->sentry_lock);
3781 
3782 	old_cursegno = curseg->segno;
3783 	old_blkoff = curseg->next_blkoff;
3784 	old_alloc_type = curseg->alloc_type;
3785 
3786 	/* change the current segment */
3787 	if (segno != curseg->segno) {
3788 		curseg->next_segno = segno;
3789 		change_curseg(sbi, type);
3790 	}
3791 
3792 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3793 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3794 
3795 	if (!recover_curseg || recover_newaddr) {
3796 		if (!from_gc)
3797 			update_segment_mtime(sbi, new_blkaddr, 0);
3798 		update_sit_entry(sbi, new_blkaddr, 1);
3799 	}
3800 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3801 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3802 		if (!from_gc)
3803 			update_segment_mtime(sbi, old_blkaddr, 0);
3804 		update_sit_entry(sbi, old_blkaddr, -1);
3805 	}
3806 
3807 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3808 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3809 
3810 	locate_dirty_segment(sbi, old_cursegno);
3811 
3812 	if (recover_curseg) {
3813 		if (old_cursegno != curseg->segno) {
3814 			curseg->next_segno = old_cursegno;
3815 			change_curseg(sbi, type);
3816 		}
3817 		curseg->next_blkoff = old_blkoff;
3818 		curseg->alloc_type = old_alloc_type;
3819 	}
3820 
3821 	up_write(&sit_i->sentry_lock);
3822 	mutex_unlock(&curseg->curseg_mutex);
3823 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3824 }
3825 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3826 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3827 				block_t old_addr, block_t new_addr,
3828 				unsigned char version, bool recover_curseg,
3829 				bool recover_newaddr)
3830 {
3831 	struct f2fs_summary sum;
3832 
3833 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3834 
3835 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3836 					recover_curseg, recover_newaddr, false);
3837 
3838 	f2fs_update_data_blkaddr(dn, new_addr);
3839 }
3840 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3841 void f2fs_wait_on_page_writeback(struct page *page,
3842 				enum page_type type, bool ordered, bool locked)
3843 {
3844 	if (PageWriteback(page)) {
3845 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3846 
3847 		/* submit cached LFS IO */
3848 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3849 		/* submit cached IPU IO */
3850 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3851 		if (ordered) {
3852 			wait_on_page_writeback(page);
3853 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3854 		} else {
3855 			wait_for_stable_page(page);
3856 		}
3857 	}
3858 }
3859 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3860 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3861 {
3862 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3863 	struct page *cpage;
3864 
3865 	if (!f2fs_meta_inode_gc_required(inode))
3866 		return;
3867 
3868 	if (!__is_valid_data_blkaddr(blkaddr))
3869 		return;
3870 
3871 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3872 	if (cpage) {
3873 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3874 		f2fs_put_page(cpage, 1);
3875 	}
3876 }
3877 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3878 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3879 								block_t len)
3880 {
3881 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3882 	block_t i;
3883 
3884 	if (!f2fs_meta_inode_gc_required(inode))
3885 		return;
3886 
3887 	for (i = 0; i < len; i++)
3888 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3889 
3890 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3891 }
3892 
read_compacted_summaries(struct f2fs_sb_info * sbi)3893 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3894 {
3895 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3896 	struct curseg_info *seg_i;
3897 	unsigned char *kaddr;
3898 	struct page *page;
3899 	block_t start;
3900 	int i, j, offset;
3901 
3902 	start = start_sum_block(sbi);
3903 
3904 	page = f2fs_get_meta_page(sbi, start++);
3905 	if (IS_ERR(page))
3906 		return PTR_ERR(page);
3907 	kaddr = (unsigned char *)page_address(page);
3908 
3909 	/* Step 1: restore nat cache */
3910 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3911 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3912 
3913 	/* Step 2: restore sit cache */
3914 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3915 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3916 	offset = 2 * SUM_JOURNAL_SIZE;
3917 
3918 	/* Step 3: restore summary entries */
3919 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3920 		unsigned short blk_off;
3921 		unsigned int segno;
3922 
3923 		seg_i = CURSEG_I(sbi, i);
3924 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3925 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3926 		seg_i->next_segno = segno;
3927 		reset_curseg(sbi, i, 0);
3928 		seg_i->alloc_type = ckpt->alloc_type[i];
3929 		seg_i->next_blkoff = blk_off;
3930 
3931 		if (seg_i->alloc_type == SSR)
3932 			blk_off = BLKS_PER_SEG(sbi);
3933 
3934 		for (j = 0; j < blk_off; j++) {
3935 			struct f2fs_summary *s;
3936 
3937 			s = (struct f2fs_summary *)(kaddr + offset);
3938 			seg_i->sum_blk->entries[j] = *s;
3939 			offset += SUMMARY_SIZE;
3940 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3941 						SUM_FOOTER_SIZE)
3942 				continue;
3943 
3944 			f2fs_put_page(page, 1);
3945 			page = NULL;
3946 
3947 			page = f2fs_get_meta_page(sbi, start++);
3948 			if (IS_ERR(page))
3949 				return PTR_ERR(page);
3950 			kaddr = (unsigned char *)page_address(page);
3951 			offset = 0;
3952 		}
3953 	}
3954 	f2fs_put_page(page, 1);
3955 	return 0;
3956 }
3957 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3958 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3959 {
3960 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3961 	struct f2fs_summary_block *sum;
3962 	struct curseg_info *curseg;
3963 	struct page *new;
3964 	unsigned short blk_off;
3965 	unsigned int segno = 0;
3966 	block_t blk_addr = 0;
3967 	int err = 0;
3968 
3969 	/* get segment number and block addr */
3970 	if (IS_DATASEG(type)) {
3971 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3972 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3973 							CURSEG_HOT_DATA]);
3974 		if (__exist_node_summaries(sbi))
3975 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3976 		else
3977 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3978 	} else {
3979 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3980 							CURSEG_HOT_NODE]);
3981 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3982 							CURSEG_HOT_NODE]);
3983 		if (__exist_node_summaries(sbi))
3984 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3985 							type - CURSEG_HOT_NODE);
3986 		else
3987 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3988 	}
3989 
3990 	new = f2fs_get_meta_page(sbi, blk_addr);
3991 	if (IS_ERR(new))
3992 		return PTR_ERR(new);
3993 	sum = (struct f2fs_summary_block *)page_address(new);
3994 
3995 	if (IS_NODESEG(type)) {
3996 		if (__exist_node_summaries(sbi)) {
3997 			struct f2fs_summary *ns = &sum->entries[0];
3998 			int i;
3999 
4000 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4001 				ns->version = 0;
4002 				ns->ofs_in_node = 0;
4003 			}
4004 		} else {
4005 			err = f2fs_restore_node_summary(sbi, segno, sum);
4006 			if (err)
4007 				goto out;
4008 		}
4009 	}
4010 
4011 	/* set uncompleted segment to curseg */
4012 	curseg = CURSEG_I(sbi, type);
4013 	mutex_lock(&curseg->curseg_mutex);
4014 
4015 	/* update journal info */
4016 	down_write(&curseg->journal_rwsem);
4017 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4018 	up_write(&curseg->journal_rwsem);
4019 
4020 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4021 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4022 	curseg->next_segno = segno;
4023 	reset_curseg(sbi, type, 0);
4024 	curseg->alloc_type = ckpt->alloc_type[type];
4025 	curseg->next_blkoff = blk_off;
4026 	mutex_unlock(&curseg->curseg_mutex);
4027 out:
4028 	f2fs_put_page(new, 1);
4029 	return err;
4030 }
4031 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4032 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4033 {
4034 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4035 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4036 	int type = CURSEG_HOT_DATA;
4037 	int err;
4038 
4039 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4040 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4041 
4042 		if (npages >= 2)
4043 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4044 							META_CP, true);
4045 
4046 		/* restore for compacted data summary */
4047 		err = read_compacted_summaries(sbi);
4048 		if (err)
4049 			return err;
4050 		type = CURSEG_HOT_NODE;
4051 	}
4052 
4053 	if (__exist_node_summaries(sbi))
4054 		f2fs_ra_meta_pages(sbi,
4055 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4056 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4057 
4058 	for (; type <= CURSEG_COLD_NODE; type++) {
4059 		err = read_normal_summaries(sbi, type);
4060 		if (err)
4061 			return err;
4062 	}
4063 
4064 	/* sanity check for summary blocks */
4065 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4066 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4067 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4068 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4069 		return -EINVAL;
4070 	}
4071 
4072 	return 0;
4073 }
4074 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4075 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4076 {
4077 	struct page *page;
4078 	unsigned char *kaddr;
4079 	struct f2fs_summary *summary;
4080 	struct curseg_info *seg_i;
4081 	int written_size = 0;
4082 	int i, j;
4083 
4084 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4085 	kaddr = (unsigned char *)page_address(page);
4086 	memset(kaddr, 0, PAGE_SIZE);
4087 
4088 	/* Step 1: write nat cache */
4089 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4090 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4091 	written_size += SUM_JOURNAL_SIZE;
4092 
4093 	/* Step 2: write sit cache */
4094 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4095 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4096 	written_size += SUM_JOURNAL_SIZE;
4097 
4098 	/* Step 3: write summary entries */
4099 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4100 		seg_i = CURSEG_I(sbi, i);
4101 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4102 			if (!page) {
4103 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4104 				kaddr = (unsigned char *)page_address(page);
4105 				memset(kaddr, 0, PAGE_SIZE);
4106 				written_size = 0;
4107 			}
4108 			summary = (struct f2fs_summary *)(kaddr + written_size);
4109 			*summary = seg_i->sum_blk->entries[j];
4110 			written_size += SUMMARY_SIZE;
4111 
4112 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4113 							SUM_FOOTER_SIZE)
4114 				continue;
4115 
4116 			set_page_dirty(page);
4117 			f2fs_put_page(page, 1);
4118 			page = NULL;
4119 		}
4120 	}
4121 	if (page) {
4122 		set_page_dirty(page);
4123 		f2fs_put_page(page, 1);
4124 	}
4125 }
4126 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4127 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4128 					block_t blkaddr, int type)
4129 {
4130 	int i, end;
4131 
4132 	if (IS_DATASEG(type))
4133 		end = type + NR_CURSEG_DATA_TYPE;
4134 	else
4135 		end = type + NR_CURSEG_NODE_TYPE;
4136 
4137 	for (i = type; i < end; i++)
4138 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4139 }
4140 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4141 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4142 {
4143 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4144 		write_compacted_summaries(sbi, start_blk);
4145 	else
4146 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4147 }
4148 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4149 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4150 {
4151 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4152 }
4153 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4154 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4155 					unsigned int val, int alloc)
4156 {
4157 	int i;
4158 
4159 	if (type == NAT_JOURNAL) {
4160 		for (i = 0; i < nats_in_cursum(journal); i++) {
4161 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4162 				return i;
4163 		}
4164 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4165 			return update_nats_in_cursum(journal, 1);
4166 	} else if (type == SIT_JOURNAL) {
4167 		for (i = 0; i < sits_in_cursum(journal); i++)
4168 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4169 				return i;
4170 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4171 			return update_sits_in_cursum(journal, 1);
4172 	}
4173 	return -1;
4174 }
4175 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4176 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4177 					unsigned int segno)
4178 {
4179 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4180 }
4181 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4182 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4183 					unsigned int start)
4184 {
4185 	struct sit_info *sit_i = SIT_I(sbi);
4186 	struct page *page;
4187 	pgoff_t src_off, dst_off;
4188 
4189 	src_off = current_sit_addr(sbi, start);
4190 	dst_off = next_sit_addr(sbi, src_off);
4191 
4192 	page = f2fs_grab_meta_page(sbi, dst_off);
4193 	seg_info_to_sit_page(sbi, page, start);
4194 
4195 	set_page_dirty(page);
4196 	set_to_next_sit(sit_i, start);
4197 
4198 	return page;
4199 }
4200 
grab_sit_entry_set(void)4201 static struct sit_entry_set *grab_sit_entry_set(void)
4202 {
4203 	struct sit_entry_set *ses =
4204 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4205 						GFP_NOFS, true, NULL);
4206 
4207 	ses->entry_cnt = 0;
4208 	INIT_LIST_HEAD(&ses->set_list);
4209 	return ses;
4210 }
4211 
release_sit_entry_set(struct sit_entry_set * ses)4212 static void release_sit_entry_set(struct sit_entry_set *ses)
4213 {
4214 	list_del(&ses->set_list);
4215 	kmem_cache_free(sit_entry_set_slab, ses);
4216 }
4217 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4218 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4219 						struct list_head *head)
4220 {
4221 	struct sit_entry_set *next = ses;
4222 
4223 	if (list_is_last(&ses->set_list, head))
4224 		return;
4225 
4226 	list_for_each_entry_continue(next, head, set_list)
4227 		if (ses->entry_cnt <= next->entry_cnt) {
4228 			list_move_tail(&ses->set_list, &next->set_list);
4229 			return;
4230 		}
4231 
4232 	list_move_tail(&ses->set_list, head);
4233 }
4234 
add_sit_entry(unsigned int segno,struct list_head * head)4235 static void add_sit_entry(unsigned int segno, struct list_head *head)
4236 {
4237 	struct sit_entry_set *ses;
4238 	unsigned int start_segno = START_SEGNO(segno);
4239 
4240 	list_for_each_entry(ses, head, set_list) {
4241 		if (ses->start_segno == start_segno) {
4242 			ses->entry_cnt++;
4243 			adjust_sit_entry_set(ses, head);
4244 			return;
4245 		}
4246 	}
4247 
4248 	ses = grab_sit_entry_set();
4249 
4250 	ses->start_segno = start_segno;
4251 	ses->entry_cnt++;
4252 	list_add(&ses->set_list, head);
4253 }
4254 
add_sits_in_set(struct f2fs_sb_info * sbi)4255 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4256 {
4257 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4258 	struct list_head *set_list = &sm_info->sit_entry_set;
4259 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4260 	unsigned int segno;
4261 
4262 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4263 		add_sit_entry(segno, set_list);
4264 }
4265 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4266 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4267 {
4268 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4269 	struct f2fs_journal *journal = curseg->journal;
4270 	int i;
4271 
4272 	down_write(&curseg->journal_rwsem);
4273 	for (i = 0; i < sits_in_cursum(journal); i++) {
4274 		unsigned int segno;
4275 		bool dirtied;
4276 
4277 		segno = le32_to_cpu(segno_in_journal(journal, i));
4278 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4279 
4280 		if (!dirtied)
4281 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4282 	}
4283 	update_sits_in_cursum(journal, -i);
4284 	up_write(&curseg->journal_rwsem);
4285 }
4286 
4287 /*
4288  * CP calls this function, which flushes SIT entries including sit_journal,
4289  * and moves prefree segs to free segs.
4290  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4291 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4292 {
4293 	struct sit_info *sit_i = SIT_I(sbi);
4294 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4295 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4296 	struct f2fs_journal *journal = curseg->journal;
4297 	struct sit_entry_set *ses, *tmp;
4298 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4299 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4300 	struct seg_entry *se;
4301 
4302 	down_write(&sit_i->sentry_lock);
4303 
4304 	if (!sit_i->dirty_sentries)
4305 		goto out;
4306 
4307 	/*
4308 	 * add and account sit entries of dirty bitmap in sit entry
4309 	 * set temporarily
4310 	 */
4311 	add_sits_in_set(sbi);
4312 
4313 	/*
4314 	 * if there are no enough space in journal to store dirty sit
4315 	 * entries, remove all entries from journal and add and account
4316 	 * them in sit entry set.
4317 	 */
4318 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4319 								!to_journal)
4320 		remove_sits_in_journal(sbi);
4321 
4322 	/*
4323 	 * there are two steps to flush sit entries:
4324 	 * #1, flush sit entries to journal in current cold data summary block.
4325 	 * #2, flush sit entries to sit page.
4326 	 */
4327 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4328 		struct page *page = NULL;
4329 		struct f2fs_sit_block *raw_sit = NULL;
4330 		unsigned int start_segno = ses->start_segno;
4331 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4332 						(unsigned long)MAIN_SEGS(sbi));
4333 		unsigned int segno = start_segno;
4334 
4335 		if (to_journal &&
4336 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4337 			to_journal = false;
4338 
4339 		if (to_journal) {
4340 			down_write(&curseg->journal_rwsem);
4341 		} else {
4342 			page = get_next_sit_page(sbi, start_segno);
4343 			raw_sit = page_address(page);
4344 		}
4345 
4346 		/* flush dirty sit entries in region of current sit set */
4347 		for_each_set_bit_from(segno, bitmap, end) {
4348 			int offset, sit_offset;
4349 
4350 			se = get_seg_entry(sbi, segno);
4351 #ifdef CONFIG_F2FS_CHECK_FS
4352 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4353 						SIT_VBLOCK_MAP_SIZE))
4354 				f2fs_bug_on(sbi, 1);
4355 #endif
4356 
4357 			/* add discard candidates */
4358 			if (!(cpc->reason & CP_DISCARD)) {
4359 				cpc->trim_start = segno;
4360 				add_discard_addrs(sbi, cpc, false);
4361 			}
4362 
4363 			if (to_journal) {
4364 				offset = f2fs_lookup_journal_in_cursum(journal,
4365 							SIT_JOURNAL, segno, 1);
4366 				f2fs_bug_on(sbi, offset < 0);
4367 				segno_in_journal(journal, offset) =
4368 							cpu_to_le32(segno);
4369 				seg_info_to_raw_sit(se,
4370 					&sit_in_journal(journal, offset));
4371 				check_block_count(sbi, segno,
4372 					&sit_in_journal(journal, offset));
4373 			} else {
4374 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4375 				seg_info_to_raw_sit(se,
4376 						&raw_sit->entries[sit_offset]);
4377 				check_block_count(sbi, segno,
4378 						&raw_sit->entries[sit_offset]);
4379 			}
4380 
4381 			__clear_bit(segno, bitmap);
4382 			sit_i->dirty_sentries--;
4383 			ses->entry_cnt--;
4384 		}
4385 
4386 		if (to_journal)
4387 			up_write(&curseg->journal_rwsem);
4388 		else
4389 			f2fs_put_page(page, 1);
4390 
4391 		f2fs_bug_on(sbi, ses->entry_cnt);
4392 		release_sit_entry_set(ses);
4393 	}
4394 
4395 	f2fs_bug_on(sbi, !list_empty(head));
4396 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4397 out:
4398 	if (cpc->reason & CP_DISCARD) {
4399 		__u64 trim_start = cpc->trim_start;
4400 
4401 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4402 			add_discard_addrs(sbi, cpc, false);
4403 
4404 		cpc->trim_start = trim_start;
4405 	}
4406 	up_write(&sit_i->sentry_lock);
4407 
4408 	set_prefree_as_free_segments(sbi);
4409 }
4410 
build_sit_info(struct f2fs_sb_info * sbi)4411 static int build_sit_info(struct f2fs_sb_info *sbi)
4412 {
4413 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4414 	struct sit_info *sit_i;
4415 	unsigned int sit_segs, start;
4416 	char *src_bitmap, *bitmap;
4417 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4418 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4419 
4420 	/* allocate memory for SIT information */
4421 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4422 	if (!sit_i)
4423 		return -ENOMEM;
4424 
4425 	SM_I(sbi)->sit_info = sit_i;
4426 
4427 	sit_i->sentries =
4428 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4429 					      MAIN_SEGS(sbi)),
4430 			      GFP_KERNEL);
4431 	if (!sit_i->sentries)
4432 		return -ENOMEM;
4433 
4434 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4435 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4436 								GFP_KERNEL);
4437 	if (!sit_i->dirty_sentries_bitmap)
4438 		return -ENOMEM;
4439 
4440 #ifdef CONFIG_F2FS_CHECK_FS
4441 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4442 #else
4443 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4444 #endif
4445 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4446 	if (!sit_i->bitmap)
4447 		return -ENOMEM;
4448 
4449 	bitmap = sit_i->bitmap;
4450 
4451 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4452 		sit_i->sentries[start].cur_valid_map = bitmap;
4453 		bitmap += SIT_VBLOCK_MAP_SIZE;
4454 
4455 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4456 		bitmap += SIT_VBLOCK_MAP_SIZE;
4457 
4458 #ifdef CONFIG_F2FS_CHECK_FS
4459 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4460 		bitmap += SIT_VBLOCK_MAP_SIZE;
4461 #endif
4462 
4463 		if (discard_map) {
4464 			sit_i->sentries[start].discard_map = bitmap;
4465 			bitmap += SIT_VBLOCK_MAP_SIZE;
4466 		}
4467 	}
4468 
4469 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4470 	if (!sit_i->tmp_map)
4471 		return -ENOMEM;
4472 
4473 	if (__is_large_section(sbi)) {
4474 		sit_i->sec_entries =
4475 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4476 						      MAIN_SECS(sbi)),
4477 				      GFP_KERNEL);
4478 		if (!sit_i->sec_entries)
4479 			return -ENOMEM;
4480 	}
4481 
4482 	/* get information related with SIT */
4483 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4484 
4485 	/* setup SIT bitmap from ckeckpoint pack */
4486 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4487 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4488 
4489 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4490 	if (!sit_i->sit_bitmap)
4491 		return -ENOMEM;
4492 
4493 #ifdef CONFIG_F2FS_CHECK_FS
4494 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4495 					sit_bitmap_size, GFP_KERNEL);
4496 	if (!sit_i->sit_bitmap_mir)
4497 		return -ENOMEM;
4498 
4499 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4500 					main_bitmap_size, GFP_KERNEL);
4501 	if (!sit_i->invalid_segmap)
4502 		return -ENOMEM;
4503 #endif
4504 
4505 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4506 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4507 	sit_i->written_valid_blocks = 0;
4508 	sit_i->bitmap_size = sit_bitmap_size;
4509 	sit_i->dirty_sentries = 0;
4510 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4511 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4512 	sit_i->mounted_time = ktime_get_boottime_seconds();
4513 	init_rwsem(&sit_i->sentry_lock);
4514 	return 0;
4515 }
4516 
build_free_segmap(struct f2fs_sb_info * sbi)4517 static int build_free_segmap(struct f2fs_sb_info *sbi)
4518 {
4519 	struct free_segmap_info *free_i;
4520 	unsigned int bitmap_size, sec_bitmap_size;
4521 
4522 	/* allocate memory for free segmap information */
4523 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4524 	if (!free_i)
4525 		return -ENOMEM;
4526 
4527 	SM_I(sbi)->free_info = free_i;
4528 
4529 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4530 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4531 	if (!free_i->free_segmap)
4532 		return -ENOMEM;
4533 
4534 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4535 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4536 	if (!free_i->free_secmap)
4537 		return -ENOMEM;
4538 
4539 	/* set all segments as dirty temporarily */
4540 	memset(free_i->free_segmap, 0xff, bitmap_size);
4541 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4542 
4543 	/* init free segmap information */
4544 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4545 	free_i->free_segments = 0;
4546 	free_i->free_sections = 0;
4547 	spin_lock_init(&free_i->segmap_lock);
4548 	return 0;
4549 }
4550 
build_curseg(struct f2fs_sb_info * sbi)4551 static int build_curseg(struct f2fs_sb_info *sbi)
4552 {
4553 	struct curseg_info *array;
4554 	int i;
4555 
4556 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4557 					sizeof(*array)), GFP_KERNEL);
4558 	if (!array)
4559 		return -ENOMEM;
4560 
4561 	SM_I(sbi)->curseg_array = array;
4562 
4563 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4564 		mutex_init(&array[i].curseg_mutex);
4565 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4566 		if (!array[i].sum_blk)
4567 			return -ENOMEM;
4568 		init_rwsem(&array[i].journal_rwsem);
4569 		array[i].journal = f2fs_kzalloc(sbi,
4570 				sizeof(struct f2fs_journal), GFP_KERNEL);
4571 		if (!array[i].journal)
4572 			return -ENOMEM;
4573 		if (i < NR_PERSISTENT_LOG)
4574 			array[i].seg_type = CURSEG_HOT_DATA + i;
4575 		else if (i == CURSEG_COLD_DATA_PINNED)
4576 			array[i].seg_type = CURSEG_COLD_DATA;
4577 		else if (i == CURSEG_ALL_DATA_ATGC)
4578 			array[i].seg_type = CURSEG_COLD_DATA;
4579 		array[i].segno = NULL_SEGNO;
4580 		array[i].next_blkoff = 0;
4581 		array[i].inited = false;
4582 	}
4583 	return restore_curseg_summaries(sbi);
4584 }
4585 
build_sit_entries(struct f2fs_sb_info * sbi)4586 static int build_sit_entries(struct f2fs_sb_info *sbi)
4587 {
4588 	struct sit_info *sit_i = SIT_I(sbi);
4589 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4590 	struct f2fs_journal *journal = curseg->journal;
4591 	struct seg_entry *se;
4592 	struct f2fs_sit_entry sit;
4593 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4594 	unsigned int i, start, end;
4595 	unsigned int readed, start_blk = 0;
4596 	int err = 0;
4597 	block_t sit_valid_blocks[2] = {0, 0};
4598 
4599 	do {
4600 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4601 							META_SIT, true);
4602 
4603 		start = start_blk * sit_i->sents_per_block;
4604 		end = (start_blk + readed) * sit_i->sents_per_block;
4605 
4606 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4607 			struct f2fs_sit_block *sit_blk;
4608 			struct page *page;
4609 
4610 			se = &sit_i->sentries[start];
4611 			page = get_current_sit_page(sbi, start);
4612 			if (IS_ERR(page))
4613 				return PTR_ERR(page);
4614 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4615 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4616 			f2fs_put_page(page, 1);
4617 
4618 			err = check_block_count(sbi, start, &sit);
4619 			if (err)
4620 				return err;
4621 			seg_info_from_raw_sit(se, &sit);
4622 
4623 			if (se->type >= NR_PERSISTENT_LOG) {
4624 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4625 							se->type, start);
4626 				f2fs_handle_error(sbi,
4627 						ERROR_INCONSISTENT_SUM_TYPE);
4628 				return -EFSCORRUPTED;
4629 			}
4630 
4631 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4632 
4633 			if (!f2fs_block_unit_discard(sbi))
4634 				goto init_discard_map_done;
4635 
4636 			/* build discard map only one time */
4637 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4638 				memset(se->discard_map, 0xff,
4639 						SIT_VBLOCK_MAP_SIZE);
4640 				goto init_discard_map_done;
4641 			}
4642 			memcpy(se->discard_map, se->cur_valid_map,
4643 						SIT_VBLOCK_MAP_SIZE);
4644 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4645 						se->valid_blocks;
4646 init_discard_map_done:
4647 			if (__is_large_section(sbi))
4648 				get_sec_entry(sbi, start)->valid_blocks +=
4649 							se->valid_blocks;
4650 		}
4651 		start_blk += readed;
4652 	} while (start_blk < sit_blk_cnt);
4653 
4654 	down_read(&curseg->journal_rwsem);
4655 	for (i = 0; i < sits_in_cursum(journal); i++) {
4656 		unsigned int old_valid_blocks;
4657 
4658 		start = le32_to_cpu(segno_in_journal(journal, i));
4659 		if (start >= MAIN_SEGS(sbi)) {
4660 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4661 				 start);
4662 			err = -EFSCORRUPTED;
4663 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4664 			break;
4665 		}
4666 
4667 		se = &sit_i->sentries[start];
4668 		sit = sit_in_journal(journal, i);
4669 
4670 		old_valid_blocks = se->valid_blocks;
4671 
4672 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4673 
4674 		err = check_block_count(sbi, start, &sit);
4675 		if (err)
4676 			break;
4677 		seg_info_from_raw_sit(se, &sit);
4678 
4679 		if (se->type >= NR_PERSISTENT_LOG) {
4680 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4681 							se->type, start);
4682 			err = -EFSCORRUPTED;
4683 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4684 			break;
4685 		}
4686 
4687 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4688 
4689 		if (f2fs_block_unit_discard(sbi)) {
4690 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4691 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4692 			} else {
4693 				memcpy(se->discard_map, se->cur_valid_map,
4694 							SIT_VBLOCK_MAP_SIZE);
4695 				sbi->discard_blks += old_valid_blocks;
4696 				sbi->discard_blks -= se->valid_blocks;
4697 			}
4698 		}
4699 
4700 		if (__is_large_section(sbi)) {
4701 			get_sec_entry(sbi, start)->valid_blocks +=
4702 							se->valid_blocks;
4703 			get_sec_entry(sbi, start)->valid_blocks -=
4704 							old_valid_blocks;
4705 		}
4706 	}
4707 	up_read(&curseg->journal_rwsem);
4708 
4709 	if (err)
4710 		return err;
4711 
4712 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4713 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4714 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4715 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4716 		return -EFSCORRUPTED;
4717 	}
4718 
4719 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4720 				valid_user_blocks(sbi)) {
4721 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4722 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4723 			 valid_user_blocks(sbi));
4724 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4725 		return -EFSCORRUPTED;
4726 	}
4727 
4728 	return 0;
4729 }
4730 
init_free_segmap(struct f2fs_sb_info * sbi)4731 static void init_free_segmap(struct f2fs_sb_info *sbi)
4732 {
4733 	unsigned int start;
4734 	int type;
4735 	struct seg_entry *sentry;
4736 
4737 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4738 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4739 			continue;
4740 		sentry = get_seg_entry(sbi, start);
4741 		if (!sentry->valid_blocks)
4742 			__set_free(sbi, start);
4743 		else
4744 			SIT_I(sbi)->written_valid_blocks +=
4745 						sentry->valid_blocks;
4746 	}
4747 
4748 	/* set use the current segments */
4749 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4750 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4751 
4752 		__set_test_and_inuse(sbi, curseg_t->segno);
4753 	}
4754 }
4755 
init_dirty_segmap(struct f2fs_sb_info * sbi)4756 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4757 {
4758 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4759 	struct free_segmap_info *free_i = FREE_I(sbi);
4760 	unsigned int segno = 0, offset = 0, secno;
4761 	block_t valid_blocks, usable_blks_in_seg;
4762 
4763 	while (1) {
4764 		/* find dirty segment based on free segmap */
4765 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4766 		if (segno >= MAIN_SEGS(sbi))
4767 			break;
4768 		offset = segno + 1;
4769 		valid_blocks = get_valid_blocks(sbi, segno, false);
4770 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4771 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4772 			continue;
4773 		if (valid_blocks > usable_blks_in_seg) {
4774 			f2fs_bug_on(sbi, 1);
4775 			continue;
4776 		}
4777 		mutex_lock(&dirty_i->seglist_lock);
4778 		__locate_dirty_segment(sbi, segno, DIRTY);
4779 		mutex_unlock(&dirty_i->seglist_lock);
4780 	}
4781 
4782 	if (!__is_large_section(sbi))
4783 		return;
4784 
4785 	mutex_lock(&dirty_i->seglist_lock);
4786 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4787 		valid_blocks = get_valid_blocks(sbi, segno, true);
4788 		secno = GET_SEC_FROM_SEG(sbi, segno);
4789 
4790 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4791 			continue;
4792 		if (IS_CURSEC(sbi, secno))
4793 			continue;
4794 		set_bit(secno, dirty_i->dirty_secmap);
4795 	}
4796 	mutex_unlock(&dirty_i->seglist_lock);
4797 }
4798 
init_victim_secmap(struct f2fs_sb_info * sbi)4799 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4800 {
4801 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4802 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4803 
4804 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4805 	if (!dirty_i->victim_secmap)
4806 		return -ENOMEM;
4807 
4808 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4809 	if (!dirty_i->pinned_secmap)
4810 		return -ENOMEM;
4811 
4812 	dirty_i->pinned_secmap_cnt = 0;
4813 	dirty_i->enable_pin_section = true;
4814 	return 0;
4815 }
4816 
build_dirty_segmap(struct f2fs_sb_info * sbi)4817 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4818 {
4819 	struct dirty_seglist_info *dirty_i;
4820 	unsigned int bitmap_size, i;
4821 
4822 	/* allocate memory for dirty segments list information */
4823 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4824 								GFP_KERNEL);
4825 	if (!dirty_i)
4826 		return -ENOMEM;
4827 
4828 	SM_I(sbi)->dirty_info = dirty_i;
4829 	mutex_init(&dirty_i->seglist_lock);
4830 
4831 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4832 
4833 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4834 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4835 								GFP_KERNEL);
4836 		if (!dirty_i->dirty_segmap[i])
4837 			return -ENOMEM;
4838 	}
4839 
4840 	if (__is_large_section(sbi)) {
4841 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4842 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4843 						bitmap_size, GFP_KERNEL);
4844 		if (!dirty_i->dirty_secmap)
4845 			return -ENOMEM;
4846 	}
4847 
4848 	init_dirty_segmap(sbi);
4849 	return init_victim_secmap(sbi);
4850 }
4851 
sanity_check_curseg(struct f2fs_sb_info * sbi)4852 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4853 {
4854 	int i;
4855 
4856 	/*
4857 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4858 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4859 	 */
4860 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4861 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4862 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4863 		unsigned int blkofs = curseg->next_blkoff;
4864 
4865 		if (f2fs_sb_has_readonly(sbi) &&
4866 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4867 			continue;
4868 
4869 		sanity_check_seg_type(sbi, curseg->seg_type);
4870 
4871 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4872 			f2fs_err(sbi,
4873 				 "Current segment has invalid alloc_type:%d",
4874 				 curseg->alloc_type);
4875 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4876 			return -EFSCORRUPTED;
4877 		}
4878 
4879 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4880 			goto out;
4881 
4882 		if (curseg->alloc_type == SSR)
4883 			continue;
4884 
4885 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4886 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4887 				continue;
4888 out:
4889 			f2fs_err(sbi,
4890 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4891 				 i, curseg->segno, curseg->alloc_type,
4892 				 curseg->next_blkoff, blkofs);
4893 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4894 			return -EFSCORRUPTED;
4895 		}
4896 	}
4897 	return 0;
4898 }
4899 
4900 #ifdef CONFIG_BLK_DEV_ZONED
4901 
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4902 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4903 				    struct f2fs_dev_info *fdev,
4904 				    struct blk_zone *zone)
4905 {
4906 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4907 	block_t zone_block, wp_block, last_valid_block;
4908 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4909 	int i, s, b, ret;
4910 	struct seg_entry *se;
4911 
4912 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4913 		return 0;
4914 
4915 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4916 	wp_segno = GET_SEGNO(sbi, wp_block);
4917 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4918 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4919 	zone_segno = GET_SEGNO(sbi, zone_block);
4920 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4921 
4922 	if (zone_segno >= MAIN_SEGS(sbi))
4923 		return 0;
4924 
4925 	/*
4926 	 * Skip check of zones cursegs point to, since
4927 	 * fix_curseg_write_pointer() checks them.
4928 	 */
4929 	for (i = 0; i < NO_CHECK_TYPE; i++)
4930 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4931 						   CURSEG_I(sbi, i)->segno))
4932 			return 0;
4933 
4934 	/*
4935 	 * Get last valid block of the zone.
4936 	 */
4937 	last_valid_block = zone_block - 1;
4938 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4939 		segno = zone_segno + s;
4940 		se = get_seg_entry(sbi, segno);
4941 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4942 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4943 				last_valid_block = START_BLOCK(sbi, segno) + b;
4944 				break;
4945 			}
4946 		if (last_valid_block >= zone_block)
4947 			break;
4948 	}
4949 
4950 	/*
4951 	 * The write pointer matches with the valid blocks or
4952 	 * already points to the end of the zone.
4953 	 */
4954 	if ((last_valid_block + 1 == wp_block) ||
4955 			(zone->wp == zone->start + zone->len))
4956 		return 0;
4957 
4958 	if (last_valid_block + 1 == zone_block) {
4959 		/*
4960 		 * If there is no valid block in the zone and if write pointer
4961 		 * is not at zone start, reset the write pointer.
4962 		 */
4963 		f2fs_notice(sbi,
4964 			    "Zone without valid block has non-zero write "
4965 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4966 			    wp_segno, wp_blkoff);
4967 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4968 					zone->len >> log_sectors_per_block);
4969 		if (ret)
4970 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4971 				 fdev->path, ret);
4972 
4973 		return ret;
4974 	}
4975 
4976 	/*
4977 	 * If there are valid blocks and the write pointer doesn't
4978 	 * match with them, we need to report the inconsistency and
4979 	 * fill the zone till the end to close the zone. This inconsistency
4980 	 * does not cause write error because the zone will not be selected
4981 	 * for write operation until it get discarded.
4982 	 */
4983 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4984 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4985 		    GET_SEGNO(sbi, last_valid_block),
4986 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4987 		    wp_segno, wp_blkoff);
4988 
4989 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4990 				zone->start, zone->len, GFP_NOFS);
4991 	if (ret == -EOPNOTSUPP) {
4992 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4993 					zone->len - (zone->wp - zone->start),
4994 					GFP_NOFS, 0);
4995 		if (ret)
4996 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4997 					fdev->path, ret);
4998 	} else if (ret) {
4999 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5000 				fdev->path, ret);
5001 	}
5002 
5003 	return ret;
5004 }
5005 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5006 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5007 						  block_t zone_blkaddr)
5008 {
5009 	int i;
5010 
5011 	for (i = 0; i < sbi->s_ndevs; i++) {
5012 		if (!bdev_is_zoned(FDEV(i).bdev))
5013 			continue;
5014 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5015 				zone_blkaddr <= FDEV(i).end_blk))
5016 			return &FDEV(i);
5017 	}
5018 
5019 	return NULL;
5020 }
5021 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5022 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5023 			      void *data)
5024 {
5025 	memcpy(data, zone, sizeof(struct blk_zone));
5026 	return 0;
5027 }
5028 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5029 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5030 {
5031 	struct curseg_info *cs = CURSEG_I(sbi, type);
5032 	struct f2fs_dev_info *zbd;
5033 	struct blk_zone zone;
5034 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5035 	block_t cs_zone_block, wp_block;
5036 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5037 	sector_t zone_sector;
5038 	int err;
5039 
5040 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5041 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5042 
5043 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5044 	if (!zbd)
5045 		return 0;
5046 
5047 	/* report zone for the sector the curseg points to */
5048 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5049 		<< log_sectors_per_block;
5050 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5051 				  report_one_zone_cb, &zone);
5052 	if (err != 1) {
5053 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5054 			 zbd->path, err);
5055 		return err;
5056 	}
5057 
5058 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5059 		return 0;
5060 
5061 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5062 	wp_segno = GET_SEGNO(sbi, wp_block);
5063 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5064 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5065 
5066 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5067 		wp_sector_off == 0)
5068 		return 0;
5069 
5070 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5071 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5072 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5073 
5074 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5075 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5076 
5077 	f2fs_allocate_new_section(sbi, type, true);
5078 
5079 	/* check consistency of the zone curseg pointed to */
5080 	if (check_zone_write_pointer(sbi, zbd, &zone))
5081 		return -EIO;
5082 
5083 	/* check newly assigned zone */
5084 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5085 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5086 
5087 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5088 	if (!zbd)
5089 		return 0;
5090 
5091 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5092 		<< log_sectors_per_block;
5093 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5094 				  report_one_zone_cb, &zone);
5095 	if (err != 1) {
5096 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5097 			 zbd->path, err);
5098 		return err;
5099 	}
5100 
5101 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5102 		return 0;
5103 
5104 	if (zone.wp != zone.start) {
5105 		f2fs_notice(sbi,
5106 			    "New zone for curseg[%d] is not yet discarded. "
5107 			    "Reset the zone: curseg[0x%x,0x%x]",
5108 			    type, cs->segno, cs->next_blkoff);
5109 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5110 					zone.len >> log_sectors_per_block);
5111 		if (err) {
5112 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5113 				 zbd->path, err);
5114 			return err;
5115 		}
5116 	}
5117 
5118 	return 0;
5119 }
5120 
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5121 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5122 {
5123 	int i, ret;
5124 
5125 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5126 		ret = fix_curseg_write_pointer(sbi, i);
5127 		if (ret)
5128 			return ret;
5129 	}
5130 
5131 	return 0;
5132 }
5133 
5134 struct check_zone_write_pointer_args {
5135 	struct f2fs_sb_info *sbi;
5136 	struct f2fs_dev_info *fdev;
5137 };
5138 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5139 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5140 				      void *data)
5141 {
5142 	struct check_zone_write_pointer_args *args;
5143 
5144 	args = (struct check_zone_write_pointer_args *)data;
5145 
5146 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5147 }
5148 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5149 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5150 {
5151 	int i, ret;
5152 	struct check_zone_write_pointer_args args;
5153 
5154 	for (i = 0; i < sbi->s_ndevs; i++) {
5155 		if (!bdev_is_zoned(FDEV(i).bdev))
5156 			continue;
5157 
5158 		args.sbi = sbi;
5159 		args.fdev = &FDEV(i);
5160 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5161 					  check_zone_write_pointer_cb, &args);
5162 		if (ret < 0)
5163 			return ret;
5164 	}
5165 
5166 	return 0;
5167 }
5168 
5169 /*
5170  * Return the number of usable blocks in a segment. The number of blocks
5171  * returned is always equal to the number of blocks in a segment for
5172  * segments fully contained within a sequential zone capacity or a
5173  * conventional zone. For segments partially contained in a sequential
5174  * zone capacity, the number of usable blocks up to the zone capacity
5175  * is returned. 0 is returned in all other cases.
5176  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5177 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5178 			struct f2fs_sb_info *sbi, unsigned int segno)
5179 {
5180 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5181 	unsigned int secno;
5182 
5183 	if (!sbi->unusable_blocks_per_sec)
5184 		return BLKS_PER_SEG(sbi);
5185 
5186 	secno = GET_SEC_FROM_SEG(sbi, segno);
5187 	seg_start = START_BLOCK(sbi, segno);
5188 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5189 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5190 
5191 	/*
5192 	 * If segment starts before zone capacity and spans beyond
5193 	 * zone capacity, then usable blocks are from seg start to
5194 	 * zone capacity. If the segment starts after the zone capacity,
5195 	 * then there are no usable blocks.
5196 	 */
5197 	if (seg_start >= sec_cap_blkaddr)
5198 		return 0;
5199 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5200 		return sec_cap_blkaddr - seg_start;
5201 
5202 	return BLKS_PER_SEG(sbi);
5203 }
5204 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5205 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5206 {
5207 	return 0;
5208 }
5209 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5210 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5211 {
5212 	return 0;
5213 }
5214 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5215 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5216 							unsigned int segno)
5217 {
5218 	return 0;
5219 }
5220 
5221 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5222 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5223 					unsigned int segno)
5224 {
5225 	if (f2fs_sb_has_blkzoned(sbi))
5226 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5227 
5228 	return BLKS_PER_SEG(sbi);
5229 }
5230 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5231 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5232 					unsigned int segno)
5233 {
5234 	if (f2fs_sb_has_blkzoned(sbi))
5235 		return CAP_SEGS_PER_SEC(sbi);
5236 
5237 	return SEGS_PER_SEC(sbi);
5238 }
5239 
5240 /*
5241  * Update min, max modified time for cost-benefit GC algorithm
5242  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5243 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5244 {
5245 	struct sit_info *sit_i = SIT_I(sbi);
5246 	unsigned int segno;
5247 
5248 	down_write(&sit_i->sentry_lock);
5249 
5250 	sit_i->min_mtime = ULLONG_MAX;
5251 
5252 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5253 		unsigned int i;
5254 		unsigned long long mtime = 0;
5255 
5256 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5257 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5258 
5259 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5260 
5261 		if (sit_i->min_mtime > mtime)
5262 			sit_i->min_mtime = mtime;
5263 	}
5264 	sit_i->max_mtime = get_mtime(sbi, false);
5265 	sit_i->dirty_max_mtime = 0;
5266 	up_write(&sit_i->sentry_lock);
5267 }
5268 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5269 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5270 {
5271 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5272 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5273 	struct f2fs_sm_info *sm_info;
5274 	int err;
5275 
5276 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5277 	if (!sm_info)
5278 		return -ENOMEM;
5279 
5280 	/* init sm info */
5281 	sbi->sm_info = sm_info;
5282 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5283 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5284 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5285 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5286 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5287 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5288 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5289 	sm_info->rec_prefree_segments = sm_info->main_segments *
5290 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5291 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5292 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5293 
5294 	if (!f2fs_lfs_mode(sbi))
5295 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5296 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5297 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5298 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5299 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5300 	sm_info->min_ssr_sections = reserved_sections(sbi);
5301 
5302 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5303 
5304 	init_f2fs_rwsem(&sm_info->curseg_lock);
5305 
5306 	err = f2fs_create_flush_cmd_control(sbi);
5307 	if (err)
5308 		return err;
5309 
5310 	err = create_discard_cmd_control(sbi);
5311 	if (err)
5312 		return err;
5313 
5314 	err = build_sit_info(sbi);
5315 	if (err)
5316 		return err;
5317 	err = build_free_segmap(sbi);
5318 	if (err)
5319 		return err;
5320 	err = build_curseg(sbi);
5321 	if (err)
5322 		return err;
5323 
5324 	/* reinit free segmap based on SIT */
5325 	err = build_sit_entries(sbi);
5326 	if (err)
5327 		return err;
5328 
5329 	init_free_segmap(sbi);
5330 	err = build_dirty_segmap(sbi);
5331 	if (err)
5332 		return err;
5333 
5334 	err = sanity_check_curseg(sbi);
5335 	if (err)
5336 		return err;
5337 
5338 	init_min_max_mtime(sbi);
5339 	return 0;
5340 }
5341 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5342 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5343 		enum dirty_type dirty_type)
5344 {
5345 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5346 
5347 	mutex_lock(&dirty_i->seglist_lock);
5348 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5349 	dirty_i->nr_dirty[dirty_type] = 0;
5350 	mutex_unlock(&dirty_i->seglist_lock);
5351 }
5352 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5353 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5354 {
5355 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5356 
5357 	kvfree(dirty_i->pinned_secmap);
5358 	kvfree(dirty_i->victim_secmap);
5359 }
5360 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5361 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5362 {
5363 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5364 	int i;
5365 
5366 	if (!dirty_i)
5367 		return;
5368 
5369 	/* discard pre-free/dirty segments list */
5370 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5371 		discard_dirty_segmap(sbi, i);
5372 
5373 	if (__is_large_section(sbi)) {
5374 		mutex_lock(&dirty_i->seglist_lock);
5375 		kvfree(dirty_i->dirty_secmap);
5376 		mutex_unlock(&dirty_i->seglist_lock);
5377 	}
5378 
5379 	destroy_victim_secmap(sbi);
5380 	SM_I(sbi)->dirty_info = NULL;
5381 	kfree(dirty_i);
5382 }
5383 
destroy_curseg(struct f2fs_sb_info * sbi)5384 static void destroy_curseg(struct f2fs_sb_info *sbi)
5385 {
5386 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5387 	int i;
5388 
5389 	if (!array)
5390 		return;
5391 	SM_I(sbi)->curseg_array = NULL;
5392 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5393 		kfree(array[i].sum_blk);
5394 		kfree(array[i].journal);
5395 	}
5396 	kfree(array);
5397 }
5398 
destroy_free_segmap(struct f2fs_sb_info * sbi)5399 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5400 {
5401 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5402 
5403 	if (!free_i)
5404 		return;
5405 	SM_I(sbi)->free_info = NULL;
5406 	kvfree(free_i->free_segmap);
5407 	kvfree(free_i->free_secmap);
5408 	kfree(free_i);
5409 }
5410 
destroy_sit_info(struct f2fs_sb_info * sbi)5411 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5412 {
5413 	struct sit_info *sit_i = SIT_I(sbi);
5414 
5415 	if (!sit_i)
5416 		return;
5417 
5418 	if (sit_i->sentries)
5419 		kvfree(sit_i->bitmap);
5420 	kfree(sit_i->tmp_map);
5421 
5422 	kvfree(sit_i->sentries);
5423 	kvfree(sit_i->sec_entries);
5424 	kvfree(sit_i->dirty_sentries_bitmap);
5425 
5426 	SM_I(sbi)->sit_info = NULL;
5427 	kvfree(sit_i->sit_bitmap);
5428 #ifdef CONFIG_F2FS_CHECK_FS
5429 	kvfree(sit_i->sit_bitmap_mir);
5430 	kvfree(sit_i->invalid_segmap);
5431 #endif
5432 	kfree(sit_i);
5433 }
5434 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5435 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5436 {
5437 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5438 
5439 	if (!sm_info)
5440 		return;
5441 	f2fs_destroy_flush_cmd_control(sbi, true);
5442 	destroy_discard_cmd_control(sbi);
5443 	destroy_dirty_segmap(sbi);
5444 	destroy_curseg(sbi);
5445 	destroy_free_segmap(sbi);
5446 	destroy_sit_info(sbi);
5447 	sbi->sm_info = NULL;
5448 	kfree(sm_info);
5449 }
5450 
f2fs_create_segment_manager_caches(void)5451 int __init f2fs_create_segment_manager_caches(void)
5452 {
5453 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5454 			sizeof(struct discard_entry));
5455 	if (!discard_entry_slab)
5456 		goto fail;
5457 
5458 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5459 			sizeof(struct discard_cmd));
5460 	if (!discard_cmd_slab)
5461 		goto destroy_discard_entry;
5462 
5463 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5464 			sizeof(struct sit_entry_set));
5465 	if (!sit_entry_set_slab)
5466 		goto destroy_discard_cmd;
5467 
5468 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5469 			sizeof(struct revoke_entry));
5470 	if (!revoke_entry_slab)
5471 		goto destroy_sit_entry_set;
5472 	return 0;
5473 
5474 destroy_sit_entry_set:
5475 	kmem_cache_destroy(sit_entry_set_slab);
5476 destroy_discard_cmd:
5477 	kmem_cache_destroy(discard_cmd_slab);
5478 destroy_discard_entry:
5479 	kmem_cache_destroy(discard_entry_slab);
5480 fail:
5481 	return -ENOMEM;
5482 }
5483 
f2fs_destroy_segment_manager_caches(void)5484 void f2fs_destroy_segment_manager_caches(void)
5485 {
5486 	kmem_cache_destroy(sit_entry_set_slab);
5487 	kmem_cache_destroy(discard_cmd_slab);
5488 	kmem_cache_destroy(discard_entry_slab);
5489 	kmem_cache_destroy(revoke_entry_slab);
5490 }
5491