1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io, bool simu_fail)
165 {
166 if (simu_fail) {
167 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 return;
170 }
171
172 /*
173 * buffer's verified bit is no longer valid after reading from
174 * disk again due to write out error, clear it to make sure we
175 * recheck the buffer contents.
176 */
177 clear_buffer_verified(bh);
178
179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 get_bh(bh);
181 submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 bh_end_io_t *end_io, bool simu_fail)
186 {
187 BUG_ON(!buffer_locked(bh));
188
189 if (ext4_buffer_uptodate(bh)) {
190 unlock_buffer(bh);
191 return;
192 }
193 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 bh_end_io_t *end_io, bool simu_fail)
198 {
199 BUG_ON(!buffer_locked(bh));
200
201 if (ext4_buffer_uptodate(bh)) {
202 unlock_buffer(bh);
203 return 0;
204 }
205
206 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
207
208 wait_on_buffer(bh);
209 if (buffer_uptodate(bh))
210 return 0;
211 return -EIO;
212 }
213
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 lock_buffer(bh);
217 if (!wait) {
218 ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 return 0;
220 }
221 return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223
224 /*
225 * This works like __bread_gfp() except it uses ERR_PTR for error
226 * returns. Currently with sb_bread it's impossible to distinguish
227 * between ENOMEM and EIO situations (since both result in a NULL
228 * return.
229 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 sector_t block,
232 blk_opf_t op_flags, gfp_t gfp)
233 {
234 struct buffer_head *bh;
235 int ret;
236
237 bh = sb_getblk_gfp(sb, block, gfp);
238 if (bh == NULL)
239 return ERR_PTR(-ENOMEM);
240 if (ext4_buffer_uptodate(bh))
241 return bh;
242
243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 if (ret) {
245 put_bh(bh);
246 return ERR_PTR(ret);
247 }
248 return bh;
249 }
250
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 blk_opf_t op_flags)
253 {
254 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
255 }
256
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)257 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
258 sector_t block)
259 {
260 return __ext4_sb_bread_gfp(sb, block, 0, 0);
261 }
262
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)263 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 {
265 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
266
267 if (likely(bh)) {
268 if (trylock_buffer(bh))
269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
270 brelse(bh);
271 }
272 }
273
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)274 static int ext4_verify_csum_type(struct super_block *sb,
275 struct ext4_super_block *es)
276 {
277 if (!ext4_has_feature_metadata_csum(sb))
278 return 1;
279
280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)283 __le32 ext4_superblock_csum(struct super_block *sb,
284 struct ext4_super_block *es)
285 {
286 struct ext4_sb_info *sbi = EXT4_SB(sb);
287 int offset = offsetof(struct ext4_super_block, s_checksum);
288 __u32 csum;
289
290 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291
292 return cpu_to_le32(csum);
293 }
294
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 struct ext4_super_block *es)
297 {
298 if (!ext4_has_metadata_csum(sb))
299 return 1;
300
301 return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303
ext4_superblock_csum_set(struct super_block * sb)304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 if (!ext4_has_metadata_csum(sb))
309 return;
310
311 es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le32_to_cpu(bg->bg_inode_table_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
352 }
353
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 struct ext4_group_desc *bg)
364 {
365 return le16_to_cpu(bg->bg_itable_unused_lo) |
366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_block_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_bitmap_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)386 void ext4_inode_table_set(struct super_block *sb,
387 struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_group_clusters_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_free_inodes_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
408 }
409
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_used_dirs_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)418 void ext4_itable_unused_set(struct super_block *sb,
419 struct ext4_group_desc *bg, __u32 count)
420 {
421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 now = clamp_val(now, 0, (1ull << 40) - 1);
429
430 *lo = cpu_to_le32(lower_32_bits(now));
431 *hi = upper_32_bits(now);
432 }
433
__ext4_get_tstamp(__le32 * lo,__u8 * hi)434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446
447 /*
448 * The ext4_maybe_update_superblock() function checks and updates the
449 * superblock if needed.
450 *
451 * This function is designed to update the on-disk superblock only under
452 * certain conditions to prevent excessive disk writes and unnecessary
453 * waking of the disk from sleep. The superblock will be updated if:
454 * 1. More than an hour has passed since the last superblock update, and
455 * 2. More than 16MB have been written since the last superblock update.
456 *
457 * @sb: The superblock
458 */
ext4_maybe_update_superblock(struct super_block * sb)459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 struct ext4_super_block *es = sbi->s_es;
463 journal_t *journal = sbi->s_journal;
464 time64_t now;
465 __u64 last_update;
466 __u64 lifetime_write_kbytes;
467 __u64 diff_size;
468
469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 !journal || (journal->j_flags & JBD2_UNMOUNT))
471 return;
472
473 now = ktime_get_real_seconds();
474 last_update = ext4_get_tstamp(es, s_wtime);
475
476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 return;
478
479 lifetime_write_kbytes = sbi->s_kbytes_written +
480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 sbi->s_sectors_written_start) >> 1);
482
483 /* Get the number of kilobytes not written to disk to account
484 * for statistics and compare with a multiple of 16 MB. This
485 * is used to determine when the next superblock commit should
486 * occur (i.e. not more often than once per 16MB if there was
487 * less written in an hour).
488 */
489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490
491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494
495 /*
496 * The del_gendisk() function uninitializes the disk-specific data
497 * structures, including the bdi structure, without telling anyone
498 * else. Once this happens, any attempt to call mark_buffer_dirty()
499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
500 * This is a kludge to prevent these oops until we can put in a proper
501 * hook in del_gendisk() to inform the VFS and file system layers.
502 */
block_device_ejected(struct super_block * sb)503 static int block_device_ejected(struct super_block *sb)
504 {
505 struct inode *bd_inode = sb->s_bdev->bd_inode;
506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507
508 return bdi->dev == NULL;
509 }
510
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 struct super_block *sb = journal->j_private;
514 struct ext4_sb_info *sbi = EXT4_SB(sb);
515 int error = is_journal_aborted(journal);
516 struct ext4_journal_cb_entry *jce;
517
518 BUG_ON(txn->t_state == T_FINISHED);
519
520 ext4_process_freed_data(sb, txn->t_tid);
521 ext4_maybe_update_superblock(sb);
522
523 spin_lock(&sbi->s_md_lock);
524 while (!list_empty(&txn->t_private_list)) {
525 jce = list_entry(txn->t_private_list.next,
526 struct ext4_journal_cb_entry, jce_list);
527 list_del_init(&jce->jce_list);
528 spin_unlock(&sbi->s_md_lock);
529 jce->jce_func(sb, jce, error);
530 spin_lock(&sbi->s_md_lock);
531 }
532 spin_unlock(&sbi->s_md_lock);
533 }
534
535 /*
536 * This writepage callback for write_cache_pages()
537 * takes care of a few cases after page cleaning.
538 *
539 * write_cache_pages() already checks for dirty pages
540 * and calls clear_page_dirty_for_io(), which we want,
541 * to write protect the pages.
542 *
543 * However, we may have to redirty a page (see below.)
544 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 struct writeback_control *wbc,
547 void *data)
548 {
549 transaction_t *transaction = (transaction_t *) data;
550 struct buffer_head *bh, *head;
551 struct journal_head *jh;
552
553 bh = head = folio_buffers(folio);
554 do {
555 /*
556 * We have to redirty a page in these cases:
557 * 1) If buffer is dirty, it means the page was dirty because it
558 * contains a buffer that needs checkpointing. So the dirty bit
559 * needs to be preserved so that checkpointing writes the buffer
560 * properly.
561 * 2) If buffer is not part of the committing transaction
562 * (we may have just accidentally come across this buffer because
563 * inode range tracking is not exact) or if the currently running
564 * transaction already contains this buffer as well, dirty bit
565 * needs to be preserved so that the buffer gets writeprotected
566 * properly on running transaction's commit.
567 */
568 jh = bh2jh(bh);
569 if (buffer_dirty(bh) ||
570 (jh && (jh->b_transaction != transaction ||
571 jh->b_next_transaction))) {
572 folio_redirty_for_writepage(wbc, folio);
573 goto out;
574 }
575 } while ((bh = bh->b_this_page) != head);
576
577 out:
578 return AOP_WRITEPAGE_ACTIVATE;
579 }
580
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_ALL,
586 .nr_to_write = LONG_MAX,
587 .range_start = jinode->i_dirty_start,
588 .range_end = jinode->i_dirty_end,
589 };
590
591 return write_cache_pages(mapping, &wbc,
592 ext4_journalled_writepage_callback,
593 jinode->i_transaction);
594 }
595
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 int ret;
599
600 if (ext4_should_journal_data(jinode->i_vfs_inode))
601 ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 else
603 ret = ext4_normal_submit_inode_data_buffers(jinode);
604 return ret;
605 }
606
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 int ret = 0;
610
611 if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 ret = jbd2_journal_finish_inode_data_buffers(jinode);
613
614 return ret;
615 }
616
system_going_down(void)617 static bool system_going_down(void)
618 {
619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 || system_state == SYSTEM_RESTART;
621 }
622
623 struct ext4_err_translation {
624 int code;
625 int errno;
626 };
627
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629
630 static struct ext4_err_translation err_translation[] = {
631 EXT4_ERR_TRANSLATE(EIO),
632 EXT4_ERR_TRANSLATE(ENOMEM),
633 EXT4_ERR_TRANSLATE(EFSBADCRC),
634 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 EXT4_ERR_TRANSLATE(ENOSPC),
636 EXT4_ERR_TRANSLATE(ENOKEY),
637 EXT4_ERR_TRANSLATE(EROFS),
638 EXT4_ERR_TRANSLATE(EFBIG),
639 EXT4_ERR_TRANSLATE(EEXIST),
640 EXT4_ERR_TRANSLATE(ERANGE),
641 EXT4_ERR_TRANSLATE(EOVERFLOW),
642 EXT4_ERR_TRANSLATE(EBUSY),
643 EXT4_ERR_TRANSLATE(ENOTDIR),
644 EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 EXT4_ERR_TRANSLATE(EFAULT),
647 };
648
ext4_errno_to_code(int errno)649 static int ext4_errno_to_code(int errno)
650 {
651 int i;
652
653 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 if (err_translation[i].errno == errno)
655 return err_translation[i].code;
656 return EXT4_ERR_UNKNOWN;
657 }
658
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)659 static void save_error_info(struct super_block *sb, int error,
660 __u32 ino, __u64 block,
661 const char *func, unsigned int line)
662 {
663 struct ext4_sb_info *sbi = EXT4_SB(sb);
664
665 /* We default to EFSCORRUPTED error... */
666 if (error == 0)
667 error = EFSCORRUPTED;
668
669 spin_lock(&sbi->s_error_lock);
670 sbi->s_add_error_count++;
671 sbi->s_last_error_code = error;
672 sbi->s_last_error_line = line;
673 sbi->s_last_error_ino = ino;
674 sbi->s_last_error_block = block;
675 sbi->s_last_error_func = func;
676 sbi->s_last_error_time = ktime_get_real_seconds();
677 if (!sbi->s_first_error_time) {
678 sbi->s_first_error_code = error;
679 sbi->s_first_error_line = line;
680 sbi->s_first_error_ino = ino;
681 sbi->s_first_error_block = block;
682 sbi->s_first_error_func = func;
683 sbi->s_first_error_time = sbi->s_last_error_time;
684 }
685 spin_unlock(&sbi->s_error_lock);
686 }
687
688 /* Deal with the reporting of failure conditions on a filesystem such as
689 * inconsistencies detected or read IO failures.
690 *
691 * On ext2, we can store the error state of the filesystem in the
692 * superblock. That is not possible on ext4, because we may have other
693 * write ordering constraints on the superblock which prevent us from
694 * writing it out straight away; and given that the journal is about to
695 * be aborted, we can't rely on the current, or future, transactions to
696 * write out the superblock safely.
697 *
698 * We'll just use the jbd2_journal_abort() error code to record an error in
699 * the journal instead. On recovery, the journal will complain about
700 * that error until we've noted it down and cleared it.
701 *
702 * If force_ro is set, we unconditionally force the filesystem into an
703 * ABORT|READONLY state, unless the error response on the fs has been set to
704 * panic in which case we take the easy way out and panic immediately. This is
705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706 * at a critical moment in log management.
707 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 __u32 ino, __u64 block,
710 const char *func, unsigned int line)
711 {
712 journal_t *journal = EXT4_SB(sb)->s_journal;
713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714
715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 if (test_opt(sb, WARN_ON_ERROR))
717 WARN_ON_ONCE(1);
718
719 if (!continue_fs && !sb_rdonly(sb)) {
720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 if (journal)
722 jbd2_journal_abort(journal, -EIO);
723 }
724
725 if (!bdev_read_only(sb->s_bdev)) {
726 save_error_info(sb, error, ino, block, func, line);
727 /*
728 * In case the fs should keep running, we need to writeout
729 * superblock through the journal. Due to lock ordering
730 * constraints, it may not be safe to do it right here so we
731 * defer superblock flushing to a workqueue.
732 */
733 if (continue_fs && journal)
734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 else
736 ext4_commit_super(sb);
737 }
738
739 /*
740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 * could panic during 'reboot -f' as the underlying device got already
742 * disabled.
743 */
744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 panic("EXT4-fs (device %s): panic forced after error\n",
746 sb->s_id);
747 }
748
749 if (sb_rdonly(sb) || continue_fs)
750 return;
751
752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 /*
754 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
755 * modifications. We don't set SB_RDONLY because that requires
756 * sb->s_umount semaphore and setting it without proper remount
757 * procedure is confusing code such as freeze_super() leading to
758 * deadlocks and other problems.
759 */
760 }
761
update_super_work(struct work_struct * work)762 static void update_super_work(struct work_struct *work)
763 {
764 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
765 s_sb_upd_work);
766 journal_t *journal = sbi->s_journal;
767 handle_t *handle;
768
769 /*
770 * If the journal is still running, we have to write out superblock
771 * through the journal to avoid collisions of other journalled sb
772 * updates.
773 *
774 * We use directly jbd2 functions here to avoid recursing back into
775 * ext4 error handling code during handling of previous errors.
776 */
777 if (!sb_rdonly(sbi->s_sb) && journal) {
778 struct buffer_head *sbh = sbi->s_sbh;
779 bool call_notify_err = false;
780
781 handle = jbd2_journal_start(journal, 1);
782 if (IS_ERR(handle))
783 goto write_directly;
784 if (jbd2_journal_get_write_access(handle, sbh)) {
785 jbd2_journal_stop(handle);
786 goto write_directly;
787 }
788
789 if (sbi->s_add_error_count > 0)
790 call_notify_err = true;
791
792 ext4_update_super(sbi->s_sb);
793 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
794 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
795 "superblock detected");
796 clear_buffer_write_io_error(sbh);
797 set_buffer_uptodate(sbh);
798 }
799
800 if (jbd2_journal_dirty_metadata(handle, sbh)) {
801 jbd2_journal_stop(handle);
802 goto write_directly;
803 }
804 jbd2_journal_stop(handle);
805
806 if (call_notify_err)
807 ext4_notify_error_sysfs(sbi);
808
809 return;
810 }
811 write_directly:
812 /*
813 * Write through journal failed. Write sb directly to get error info
814 * out and hope for the best.
815 */
816 ext4_commit_super(sbi->s_sb);
817 ext4_notify_error_sysfs(sbi);
818 }
819
820 #define ext4_error_ratelimit(sb) \
821 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
822 "EXT4-fs error")
823
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)824 void __ext4_error(struct super_block *sb, const char *function,
825 unsigned int line, bool force_ro, int error, __u64 block,
826 const char *fmt, ...)
827 {
828 struct va_format vaf;
829 va_list args;
830
831 if (unlikely(ext4_forced_shutdown(sb)))
832 return;
833
834 trace_ext4_error(sb, function, line);
835 if (ext4_error_ratelimit(sb)) {
836 va_start(args, fmt);
837 vaf.fmt = fmt;
838 vaf.va = &args;
839 printk(KERN_CRIT
840 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
841 sb->s_id, function, line, current->comm, &vaf);
842 va_end(args);
843 }
844 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
845
846 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
847 }
848
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)849 void __ext4_error_inode(struct inode *inode, const char *function,
850 unsigned int line, ext4_fsblk_t block, int error,
851 const char *fmt, ...)
852 {
853 va_list args;
854 struct va_format vaf;
855
856 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
857 return;
858
859 trace_ext4_error(inode->i_sb, function, line);
860 if (ext4_error_ratelimit(inode->i_sb)) {
861 va_start(args, fmt);
862 vaf.fmt = fmt;
863 vaf.va = &args;
864 if (block)
865 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
866 "inode #%lu: block %llu: comm %s: %pV\n",
867 inode->i_sb->s_id, function, line, inode->i_ino,
868 block, current->comm, &vaf);
869 else
870 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
871 "inode #%lu: comm %s: %pV\n",
872 inode->i_sb->s_id, function, line, inode->i_ino,
873 current->comm, &vaf);
874 va_end(args);
875 }
876 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
877
878 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
879 function, line);
880 }
881
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)882 void __ext4_error_file(struct file *file, const char *function,
883 unsigned int line, ext4_fsblk_t block,
884 const char *fmt, ...)
885 {
886 va_list args;
887 struct va_format vaf;
888 struct inode *inode = file_inode(file);
889 char pathname[80], *path;
890
891 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
892 return;
893
894 trace_ext4_error(inode->i_sb, function, line);
895 if (ext4_error_ratelimit(inode->i_sb)) {
896 path = file_path(file, pathname, sizeof(pathname));
897 if (IS_ERR(path))
898 path = "(unknown)";
899 va_start(args, fmt);
900 vaf.fmt = fmt;
901 vaf.va = &args;
902 if (block)
903 printk(KERN_CRIT
904 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
905 "block %llu: comm %s: path %s: %pV\n",
906 inode->i_sb->s_id, function, line, inode->i_ino,
907 block, current->comm, path, &vaf);
908 else
909 printk(KERN_CRIT
910 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
911 "comm %s: path %s: %pV\n",
912 inode->i_sb->s_id, function, line, inode->i_ino,
913 current->comm, path, &vaf);
914 va_end(args);
915 }
916 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
917
918 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
919 function, line);
920 }
921
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])922 const char *ext4_decode_error(struct super_block *sb, int errno,
923 char nbuf[16])
924 {
925 char *errstr = NULL;
926
927 switch (errno) {
928 case -EFSCORRUPTED:
929 errstr = "Corrupt filesystem";
930 break;
931 case -EFSBADCRC:
932 errstr = "Filesystem failed CRC";
933 break;
934 case -EIO:
935 errstr = "IO failure";
936 break;
937 case -ENOMEM:
938 errstr = "Out of memory";
939 break;
940 case -EROFS:
941 if (!sb || (EXT4_SB(sb)->s_journal &&
942 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
943 errstr = "Journal has aborted";
944 else
945 errstr = "Readonly filesystem";
946 break;
947 default:
948 /* If the caller passed in an extra buffer for unknown
949 * errors, textualise them now. Else we just return
950 * NULL. */
951 if (nbuf) {
952 /* Check for truncated error codes... */
953 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
954 errstr = nbuf;
955 }
956 break;
957 }
958
959 return errstr;
960 }
961
962 /* __ext4_std_error decodes expected errors from journaling functions
963 * automatically and invokes the appropriate error response. */
964
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)965 void __ext4_std_error(struct super_block *sb, const char *function,
966 unsigned int line, int errno)
967 {
968 char nbuf[16];
969 const char *errstr;
970
971 if (unlikely(ext4_forced_shutdown(sb)))
972 return;
973
974 /* Special case: if the error is EROFS, and we're not already
975 * inside a transaction, then there's really no point in logging
976 * an error. */
977 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
978 return;
979
980 if (ext4_error_ratelimit(sb)) {
981 errstr = ext4_decode_error(sb, errno, nbuf);
982 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
983 sb->s_id, function, line, errstr);
984 }
985 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
986
987 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
988 }
989
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)990 void __ext4_msg(struct super_block *sb,
991 const char *prefix, const char *fmt, ...)
992 {
993 struct va_format vaf;
994 va_list args;
995
996 if (sb) {
997 atomic_inc(&EXT4_SB(sb)->s_msg_count);
998 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
999 "EXT4-fs"))
1000 return;
1001 }
1002
1003 va_start(args, fmt);
1004 vaf.fmt = fmt;
1005 vaf.va = &args;
1006 if (sb)
1007 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1008 else
1009 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1010 va_end(args);
1011 }
1012
ext4_warning_ratelimit(struct super_block * sb)1013 static int ext4_warning_ratelimit(struct super_block *sb)
1014 {
1015 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1016 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1017 "EXT4-fs warning");
1018 }
1019
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1020 void __ext4_warning(struct super_block *sb, const char *function,
1021 unsigned int line, const char *fmt, ...)
1022 {
1023 struct va_format vaf;
1024 va_list args;
1025
1026 if (!ext4_warning_ratelimit(sb))
1027 return;
1028
1029 va_start(args, fmt);
1030 vaf.fmt = fmt;
1031 vaf.va = &args;
1032 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1033 sb->s_id, function, line, &vaf);
1034 va_end(args);
1035 }
1036
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1037 void __ext4_warning_inode(const struct inode *inode, const char *function,
1038 unsigned int line, const char *fmt, ...)
1039 {
1040 struct va_format vaf;
1041 va_list args;
1042
1043 if (!ext4_warning_ratelimit(inode->i_sb))
1044 return;
1045
1046 va_start(args, fmt);
1047 vaf.fmt = fmt;
1048 vaf.va = &args;
1049 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1050 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1051 function, line, inode->i_ino, current->comm, &vaf);
1052 va_end(args);
1053 }
1054
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1055 void __ext4_grp_locked_error(const char *function, unsigned int line,
1056 struct super_block *sb, ext4_group_t grp,
1057 unsigned long ino, ext4_fsblk_t block,
1058 const char *fmt, ...)
1059 __releases(bitlock)
1060 __acquires(bitlock)
1061 {
1062 struct va_format vaf;
1063 va_list args;
1064
1065 if (unlikely(ext4_forced_shutdown(sb)))
1066 return;
1067
1068 trace_ext4_error(sb, function, line);
1069 if (ext4_error_ratelimit(sb)) {
1070 va_start(args, fmt);
1071 vaf.fmt = fmt;
1072 vaf.va = &args;
1073 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1074 sb->s_id, function, line, grp);
1075 if (ino)
1076 printk(KERN_CONT "inode %lu: ", ino);
1077 if (block)
1078 printk(KERN_CONT "block %llu:",
1079 (unsigned long long) block);
1080 printk(KERN_CONT "%pV\n", &vaf);
1081 va_end(args);
1082 }
1083
1084 if (test_opt(sb, ERRORS_CONT)) {
1085 if (test_opt(sb, WARN_ON_ERROR))
1086 WARN_ON_ONCE(1);
1087 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1088 if (!bdev_read_only(sb->s_bdev)) {
1089 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1090 line);
1091 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1092 }
1093 return;
1094 }
1095 ext4_unlock_group(sb, grp);
1096 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1097 /*
1098 * We only get here in the ERRORS_RO case; relocking the group
1099 * may be dangerous, but nothing bad will happen since the
1100 * filesystem will have already been marked read/only and the
1101 * journal has been aborted. We return 1 as a hint to callers
1102 * who might what to use the return value from
1103 * ext4_grp_locked_error() to distinguish between the
1104 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1105 * aggressively from the ext4 function in question, with a
1106 * more appropriate error code.
1107 */
1108 ext4_lock_group(sb, grp);
1109 return;
1110 }
1111
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1112 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1113 ext4_group_t group,
1114 unsigned int flags)
1115 {
1116 struct ext4_sb_info *sbi = EXT4_SB(sb);
1117 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1118 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1119 int ret;
1120
1121 if (!grp || !gdp)
1122 return;
1123 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1124 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1125 &grp->bb_state);
1126 if (!ret)
1127 percpu_counter_sub(&sbi->s_freeclusters_counter,
1128 grp->bb_free);
1129 }
1130
1131 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1132 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1133 &grp->bb_state);
1134 if (!ret && gdp) {
1135 int count;
1136
1137 count = ext4_free_inodes_count(sb, gdp);
1138 percpu_counter_sub(&sbi->s_freeinodes_counter,
1139 count);
1140 }
1141 }
1142 }
1143
ext4_update_dynamic_rev(struct super_block * sb)1144 void ext4_update_dynamic_rev(struct super_block *sb)
1145 {
1146 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1147
1148 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1149 return;
1150
1151 ext4_warning(sb,
1152 "updating to rev %d because of new feature flag, "
1153 "running e2fsck is recommended",
1154 EXT4_DYNAMIC_REV);
1155
1156 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1157 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1158 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1159 /* leave es->s_feature_*compat flags alone */
1160 /* es->s_uuid will be set by e2fsck if empty */
1161
1162 /*
1163 * The rest of the superblock fields should be zero, and if not it
1164 * means they are likely already in use, so leave them alone. We
1165 * can leave it up to e2fsck to clean up any inconsistencies there.
1166 */
1167 }
1168
orphan_list_entry(struct list_head * l)1169 static inline struct inode *orphan_list_entry(struct list_head *l)
1170 {
1171 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1172 }
1173
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1174 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1175 {
1176 struct list_head *l;
1177
1178 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1179 le32_to_cpu(sbi->s_es->s_last_orphan));
1180
1181 printk(KERN_ERR "sb_info orphan list:\n");
1182 list_for_each(l, &sbi->s_orphan) {
1183 struct inode *inode = orphan_list_entry(l);
1184 printk(KERN_ERR " "
1185 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1186 inode->i_sb->s_id, inode->i_ino, inode,
1187 inode->i_mode, inode->i_nlink,
1188 NEXT_ORPHAN(inode));
1189 }
1190 }
1191
1192 #ifdef CONFIG_QUOTA
1193 static int ext4_quota_off(struct super_block *sb, int type);
1194
ext4_quotas_off(struct super_block * sb,int type)1195 static inline void ext4_quotas_off(struct super_block *sb, int type)
1196 {
1197 BUG_ON(type > EXT4_MAXQUOTAS);
1198
1199 /* Use our quota_off function to clear inode flags etc. */
1200 for (type--; type >= 0; type--)
1201 ext4_quota_off(sb, type);
1202 }
1203
1204 /*
1205 * This is a helper function which is used in the mount/remount
1206 * codepaths (which holds s_umount) to fetch the quota file name.
1207 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1208 static inline char *get_qf_name(struct super_block *sb,
1209 struct ext4_sb_info *sbi,
1210 int type)
1211 {
1212 return rcu_dereference_protected(sbi->s_qf_names[type],
1213 lockdep_is_held(&sb->s_umount));
1214 }
1215 #else
ext4_quotas_off(struct super_block * sb,int type)1216 static inline void ext4_quotas_off(struct super_block *sb, int type)
1217 {
1218 }
1219 #endif
1220
ext4_percpu_param_init(struct ext4_sb_info * sbi)1221 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1222 {
1223 ext4_fsblk_t block;
1224 int err;
1225
1226 block = ext4_count_free_clusters(sbi->s_sb);
1227 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1228 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1229 GFP_KERNEL);
1230 if (!err) {
1231 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1232 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1233 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1234 GFP_KERNEL);
1235 }
1236 if (!err)
1237 err = percpu_counter_init(&sbi->s_dirs_counter,
1238 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1239 if (!err)
1240 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1241 GFP_KERNEL);
1242 if (!err)
1243 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1244 GFP_KERNEL);
1245 if (!err)
1246 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1247
1248 if (err)
1249 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1250
1251 return err;
1252 }
1253
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1254 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1255 {
1256 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1257 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1258 percpu_counter_destroy(&sbi->s_dirs_counter);
1259 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1260 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1261 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1262 }
1263
ext4_group_desc_free(struct ext4_sb_info * sbi)1264 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1265 {
1266 struct buffer_head **group_desc;
1267 int i;
1268
1269 rcu_read_lock();
1270 group_desc = rcu_dereference(sbi->s_group_desc);
1271 for (i = 0; i < sbi->s_gdb_count; i++)
1272 brelse(group_desc[i]);
1273 kvfree(group_desc);
1274 rcu_read_unlock();
1275 }
1276
ext4_flex_groups_free(struct ext4_sb_info * sbi)1277 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1278 {
1279 struct flex_groups **flex_groups;
1280 int i;
1281
1282 rcu_read_lock();
1283 flex_groups = rcu_dereference(sbi->s_flex_groups);
1284 if (flex_groups) {
1285 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1286 kvfree(flex_groups[i]);
1287 kvfree(flex_groups);
1288 }
1289 rcu_read_unlock();
1290 }
1291
ext4_put_super(struct super_block * sb)1292 static void ext4_put_super(struct super_block *sb)
1293 {
1294 struct ext4_sb_info *sbi = EXT4_SB(sb);
1295 struct ext4_super_block *es = sbi->s_es;
1296 int aborted = 0;
1297 int err;
1298
1299 /*
1300 * Unregister sysfs before destroying jbd2 journal.
1301 * Since we could still access attr_journal_task attribute via sysfs
1302 * path which could have sbi->s_journal->j_task as NULL
1303 * Unregister sysfs before flush sbi->s_sb_upd_work.
1304 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1305 * read metadata verify failed then will queue error work.
1306 * update_super_work will call start_this_handle may trigger
1307 * BUG_ON.
1308 */
1309 ext4_unregister_sysfs(sb);
1310
1311 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1312 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1313 &sb->s_uuid);
1314
1315 ext4_unregister_li_request(sb);
1316 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1317
1318 flush_work(&sbi->s_sb_upd_work);
1319 destroy_workqueue(sbi->rsv_conversion_wq);
1320 ext4_release_orphan_info(sb);
1321
1322 if (sbi->s_journal) {
1323 aborted = is_journal_aborted(sbi->s_journal);
1324 err = jbd2_journal_destroy(sbi->s_journal);
1325 sbi->s_journal = NULL;
1326 if ((err < 0) && !aborted) {
1327 ext4_abort(sb, -err, "Couldn't clean up the journal");
1328 }
1329 }
1330
1331 ext4_es_unregister_shrinker(sbi);
1332 timer_shutdown_sync(&sbi->s_err_report);
1333 ext4_release_system_zone(sb);
1334 ext4_mb_release(sb);
1335 ext4_ext_release(sb);
1336
1337 if (!sb_rdonly(sb) && !aborted) {
1338 ext4_clear_feature_journal_needs_recovery(sb);
1339 ext4_clear_feature_orphan_present(sb);
1340 es->s_state = cpu_to_le16(sbi->s_mount_state);
1341 }
1342 if (!sb_rdonly(sb))
1343 ext4_commit_super(sb);
1344
1345 ext4_group_desc_free(sbi);
1346 ext4_flex_groups_free(sbi);
1347 ext4_percpu_param_destroy(sbi);
1348 #ifdef CONFIG_QUOTA
1349 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1350 kfree(get_qf_name(sb, sbi, i));
1351 #endif
1352
1353 /* Debugging code just in case the in-memory inode orphan list
1354 * isn't empty. The on-disk one can be non-empty if we've
1355 * detected an error and taken the fs readonly, but the
1356 * in-memory list had better be clean by this point. */
1357 if (!list_empty(&sbi->s_orphan))
1358 dump_orphan_list(sb, sbi);
1359 ASSERT(list_empty(&sbi->s_orphan));
1360
1361 sync_blockdev(sb->s_bdev);
1362 invalidate_bdev(sb->s_bdev);
1363 if (sbi->s_journal_bdev) {
1364 /*
1365 * Invalidate the journal device's buffers. We don't want them
1366 * floating about in memory - the physical journal device may
1367 * hotswapped, and it breaks the `ro-after' testing code.
1368 */
1369 sync_blockdev(sbi->s_journal_bdev);
1370 invalidate_bdev(sbi->s_journal_bdev);
1371 }
1372
1373 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1374 sbi->s_ea_inode_cache = NULL;
1375
1376 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1377 sbi->s_ea_block_cache = NULL;
1378
1379 ext4_stop_mmpd(sbi);
1380
1381 brelse(sbi->s_sbh);
1382 sb->s_fs_info = NULL;
1383 /*
1384 * Now that we are completely done shutting down the
1385 * superblock, we need to actually destroy the kobject.
1386 */
1387 kobject_put(&sbi->s_kobj);
1388 wait_for_completion(&sbi->s_kobj_unregister);
1389 if (sbi->s_chksum_driver)
1390 crypto_free_shash(sbi->s_chksum_driver);
1391 kfree(sbi->s_blockgroup_lock);
1392 fs_put_dax(sbi->s_daxdev, NULL);
1393 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1394 #if IS_ENABLED(CONFIG_UNICODE)
1395 utf8_unload(sb->s_encoding);
1396 #endif
1397 kfree(sbi);
1398 }
1399
1400 static struct kmem_cache *ext4_inode_cachep;
1401
1402 /*
1403 * Called inside transaction, so use GFP_NOFS
1404 */
ext4_alloc_inode(struct super_block * sb)1405 static struct inode *ext4_alloc_inode(struct super_block *sb)
1406 {
1407 struct ext4_inode_info *ei;
1408
1409 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1410 if (!ei)
1411 return NULL;
1412
1413 inode_set_iversion(&ei->vfs_inode, 1);
1414 ei->i_flags = 0;
1415 spin_lock_init(&ei->i_raw_lock);
1416 ei->i_prealloc_node = RB_ROOT;
1417 atomic_set(&ei->i_prealloc_active, 0);
1418 rwlock_init(&ei->i_prealloc_lock);
1419 ext4_es_init_tree(&ei->i_es_tree);
1420 rwlock_init(&ei->i_es_lock);
1421 INIT_LIST_HEAD(&ei->i_es_list);
1422 ei->i_es_all_nr = 0;
1423 ei->i_es_shk_nr = 0;
1424 ei->i_es_shrink_lblk = 0;
1425 ei->i_reserved_data_blocks = 0;
1426 spin_lock_init(&(ei->i_block_reservation_lock));
1427 ext4_init_pending_tree(&ei->i_pending_tree);
1428 #ifdef CONFIG_QUOTA
1429 ei->i_reserved_quota = 0;
1430 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1431 #endif
1432 ei->jinode = NULL;
1433 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1434 spin_lock_init(&ei->i_completed_io_lock);
1435 ei->i_sync_tid = 0;
1436 ei->i_datasync_tid = 0;
1437 atomic_set(&ei->i_unwritten, 0);
1438 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1439 ext4_fc_init_inode(&ei->vfs_inode);
1440 mutex_init(&ei->i_fc_lock);
1441 return &ei->vfs_inode;
1442 }
1443
ext4_drop_inode(struct inode * inode)1444 static int ext4_drop_inode(struct inode *inode)
1445 {
1446 int drop = generic_drop_inode(inode);
1447
1448 if (!drop)
1449 drop = fscrypt_drop_inode(inode);
1450
1451 trace_ext4_drop_inode(inode, drop);
1452 return drop;
1453 }
1454
ext4_free_in_core_inode(struct inode * inode)1455 static void ext4_free_in_core_inode(struct inode *inode)
1456 {
1457 fscrypt_free_inode(inode);
1458 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1459 pr_warn("%s: inode %ld still in fc list",
1460 __func__, inode->i_ino);
1461 }
1462 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1463 }
1464
ext4_destroy_inode(struct inode * inode)1465 static void ext4_destroy_inode(struct inode *inode)
1466 {
1467 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1468 ext4_msg(inode->i_sb, KERN_ERR,
1469 "Inode %lu (%p): orphan list check failed!",
1470 inode->i_ino, EXT4_I(inode));
1471 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1472 EXT4_I(inode), sizeof(struct ext4_inode_info),
1473 true);
1474 dump_stack();
1475 }
1476
1477 if (EXT4_I(inode)->i_reserved_data_blocks)
1478 ext4_msg(inode->i_sb, KERN_ERR,
1479 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1480 inode->i_ino, EXT4_I(inode),
1481 EXT4_I(inode)->i_reserved_data_blocks);
1482 }
1483
ext4_shutdown(struct super_block * sb)1484 static void ext4_shutdown(struct super_block *sb)
1485 {
1486 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1487 }
1488
init_once(void * foo)1489 static void init_once(void *foo)
1490 {
1491 struct ext4_inode_info *ei = foo;
1492
1493 INIT_LIST_HEAD(&ei->i_orphan);
1494 init_rwsem(&ei->xattr_sem);
1495 init_rwsem(&ei->i_data_sem);
1496 inode_init_once(&ei->vfs_inode);
1497 ext4_fc_init_inode(&ei->vfs_inode);
1498 }
1499
init_inodecache(void)1500 static int __init init_inodecache(void)
1501 {
1502 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1503 sizeof(struct ext4_inode_info), 0,
1504 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1505 SLAB_ACCOUNT),
1506 offsetof(struct ext4_inode_info, i_data),
1507 sizeof_field(struct ext4_inode_info, i_data),
1508 init_once);
1509 if (ext4_inode_cachep == NULL)
1510 return -ENOMEM;
1511 return 0;
1512 }
1513
destroy_inodecache(void)1514 static void destroy_inodecache(void)
1515 {
1516 /*
1517 * Make sure all delayed rcu free inodes are flushed before we
1518 * destroy cache.
1519 */
1520 rcu_barrier();
1521 kmem_cache_destroy(ext4_inode_cachep);
1522 }
1523
ext4_clear_inode(struct inode * inode)1524 void ext4_clear_inode(struct inode *inode)
1525 {
1526 ext4_fc_del(inode);
1527 invalidate_inode_buffers(inode);
1528 clear_inode(inode);
1529 ext4_discard_preallocations(inode, 0);
1530 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1531 dquot_drop(inode);
1532 if (EXT4_I(inode)->jinode) {
1533 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1534 EXT4_I(inode)->jinode);
1535 jbd2_free_inode(EXT4_I(inode)->jinode);
1536 EXT4_I(inode)->jinode = NULL;
1537 }
1538 fscrypt_put_encryption_info(inode);
1539 fsverity_cleanup_inode(inode);
1540 }
1541
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1542 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1543 u64 ino, u32 generation)
1544 {
1545 struct inode *inode;
1546
1547 /*
1548 * Currently we don't know the generation for parent directory, so
1549 * a generation of 0 means "accept any"
1550 */
1551 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1552 if (IS_ERR(inode))
1553 return ERR_CAST(inode);
1554 if (generation && inode->i_generation != generation) {
1555 iput(inode);
1556 return ERR_PTR(-ESTALE);
1557 }
1558
1559 return inode;
1560 }
1561
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1562 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1563 int fh_len, int fh_type)
1564 {
1565 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1566 ext4_nfs_get_inode);
1567 }
1568
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1569 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1570 int fh_len, int fh_type)
1571 {
1572 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1573 ext4_nfs_get_inode);
1574 }
1575
ext4_nfs_commit_metadata(struct inode * inode)1576 static int ext4_nfs_commit_metadata(struct inode *inode)
1577 {
1578 struct writeback_control wbc = {
1579 .sync_mode = WB_SYNC_ALL
1580 };
1581
1582 trace_ext4_nfs_commit_metadata(inode);
1583 return ext4_write_inode(inode, &wbc);
1584 }
1585
1586 #ifdef CONFIG_QUOTA
1587 static const char * const quotatypes[] = INITQFNAMES;
1588 #define QTYPE2NAME(t) (quotatypes[t])
1589
1590 static int ext4_write_dquot(struct dquot *dquot);
1591 static int ext4_acquire_dquot(struct dquot *dquot);
1592 static int ext4_release_dquot(struct dquot *dquot);
1593 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1594 static int ext4_write_info(struct super_block *sb, int type);
1595 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1596 const struct path *path);
1597 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1598 size_t len, loff_t off);
1599 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1600 const char *data, size_t len, loff_t off);
1601 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1602 unsigned int flags);
1603
ext4_get_dquots(struct inode * inode)1604 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1605 {
1606 return EXT4_I(inode)->i_dquot;
1607 }
1608
1609 static const struct dquot_operations ext4_quota_operations = {
1610 .get_reserved_space = ext4_get_reserved_space,
1611 .write_dquot = ext4_write_dquot,
1612 .acquire_dquot = ext4_acquire_dquot,
1613 .release_dquot = ext4_release_dquot,
1614 .mark_dirty = ext4_mark_dquot_dirty,
1615 .write_info = ext4_write_info,
1616 .alloc_dquot = dquot_alloc,
1617 .destroy_dquot = dquot_destroy,
1618 .get_projid = ext4_get_projid,
1619 .get_inode_usage = ext4_get_inode_usage,
1620 .get_next_id = dquot_get_next_id,
1621 };
1622
1623 static const struct quotactl_ops ext4_qctl_operations = {
1624 .quota_on = ext4_quota_on,
1625 .quota_off = ext4_quota_off,
1626 .quota_sync = dquot_quota_sync,
1627 .get_state = dquot_get_state,
1628 .set_info = dquot_set_dqinfo,
1629 .get_dqblk = dquot_get_dqblk,
1630 .set_dqblk = dquot_set_dqblk,
1631 .get_nextdqblk = dquot_get_next_dqblk,
1632 };
1633 #endif
1634
1635 static const struct super_operations ext4_sops = {
1636 .alloc_inode = ext4_alloc_inode,
1637 .free_inode = ext4_free_in_core_inode,
1638 .destroy_inode = ext4_destroy_inode,
1639 .write_inode = ext4_write_inode,
1640 .dirty_inode = ext4_dirty_inode,
1641 .drop_inode = ext4_drop_inode,
1642 .evict_inode = ext4_evict_inode,
1643 .put_super = ext4_put_super,
1644 .sync_fs = ext4_sync_fs,
1645 .freeze_fs = ext4_freeze,
1646 .unfreeze_fs = ext4_unfreeze,
1647 .statfs = ext4_statfs,
1648 .show_options = ext4_show_options,
1649 .shutdown = ext4_shutdown,
1650 #ifdef CONFIG_QUOTA
1651 .quota_read = ext4_quota_read,
1652 .quota_write = ext4_quota_write,
1653 .get_dquots = ext4_get_dquots,
1654 #endif
1655 };
1656
1657 static const struct export_operations ext4_export_ops = {
1658 .fh_to_dentry = ext4_fh_to_dentry,
1659 .fh_to_parent = ext4_fh_to_parent,
1660 .get_parent = ext4_get_parent,
1661 .commit_metadata = ext4_nfs_commit_metadata,
1662 };
1663
1664 enum {
1665 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1666 Opt_resgid, Opt_resuid, Opt_sb,
1667 Opt_nouid32, Opt_debug, Opt_removed,
1668 Opt_user_xattr, Opt_acl,
1669 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1670 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1671 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1672 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1673 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1674 Opt_inlinecrypt,
1675 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1676 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1678 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1681 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682 Opt_inode_readahead_blks, Opt_journal_ioprio,
1683 Opt_dioread_nolock, Opt_dioread_lock,
1684 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1687 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1688 #ifdef CONFIG_EXT4_DEBUG
1689 Opt_fc_debug_max_replay, Opt_fc_debug_force
1690 #endif
1691 };
1692
1693 static const struct constant_table ext4_param_errors[] = {
1694 {"continue", EXT4_MOUNT_ERRORS_CONT},
1695 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1696 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1697 {}
1698 };
1699
1700 static const struct constant_table ext4_param_data[] = {
1701 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1702 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1703 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1704 {}
1705 };
1706
1707 static const struct constant_table ext4_param_data_err[] = {
1708 {"abort", Opt_data_err_abort},
1709 {"ignore", Opt_data_err_ignore},
1710 {}
1711 };
1712
1713 static const struct constant_table ext4_param_jqfmt[] = {
1714 {"vfsold", QFMT_VFS_OLD},
1715 {"vfsv0", QFMT_VFS_V0},
1716 {"vfsv1", QFMT_VFS_V1},
1717 {}
1718 };
1719
1720 static const struct constant_table ext4_param_dax[] = {
1721 {"always", Opt_dax_always},
1722 {"inode", Opt_dax_inode},
1723 {"never", Opt_dax_never},
1724 {}
1725 };
1726
1727 /* String parameter that allows empty argument */
1728 #define fsparam_string_empty(NAME, OPT) \
1729 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1730
1731 /*
1732 * Mount option specification
1733 * We don't use fsparam_flag_no because of the way we set the
1734 * options and the way we show them in _ext4_show_options(). To
1735 * keep the changes to a minimum, let's keep the negative options
1736 * separate for now.
1737 */
1738 static const struct fs_parameter_spec ext4_param_specs[] = {
1739 fsparam_flag ("bsddf", Opt_bsd_df),
1740 fsparam_flag ("minixdf", Opt_minix_df),
1741 fsparam_flag ("grpid", Opt_grpid),
1742 fsparam_flag ("bsdgroups", Opt_grpid),
1743 fsparam_flag ("nogrpid", Opt_nogrpid),
1744 fsparam_flag ("sysvgroups", Opt_nogrpid),
1745 fsparam_u32 ("resgid", Opt_resgid),
1746 fsparam_u32 ("resuid", Opt_resuid),
1747 fsparam_u32 ("sb", Opt_sb),
1748 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1749 fsparam_flag ("nouid32", Opt_nouid32),
1750 fsparam_flag ("debug", Opt_debug),
1751 fsparam_flag ("oldalloc", Opt_removed),
1752 fsparam_flag ("orlov", Opt_removed),
1753 fsparam_flag ("user_xattr", Opt_user_xattr),
1754 fsparam_flag ("acl", Opt_acl),
1755 fsparam_flag ("norecovery", Opt_noload),
1756 fsparam_flag ("noload", Opt_noload),
1757 fsparam_flag ("bh", Opt_removed),
1758 fsparam_flag ("nobh", Opt_removed),
1759 fsparam_u32 ("commit", Opt_commit),
1760 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1761 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1762 fsparam_u32 ("journal_dev", Opt_journal_dev),
1763 fsparam_bdev ("journal_path", Opt_journal_path),
1764 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1765 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1766 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1767 fsparam_flag ("abort", Opt_abort),
1768 fsparam_enum ("data", Opt_data, ext4_param_data),
1769 fsparam_enum ("data_err", Opt_data_err,
1770 ext4_param_data_err),
1771 fsparam_string_empty
1772 ("usrjquota", Opt_usrjquota),
1773 fsparam_string_empty
1774 ("grpjquota", Opt_grpjquota),
1775 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1776 fsparam_flag ("grpquota", Opt_grpquota),
1777 fsparam_flag ("quota", Opt_quota),
1778 fsparam_flag ("noquota", Opt_noquota),
1779 fsparam_flag ("usrquota", Opt_usrquota),
1780 fsparam_flag ("prjquota", Opt_prjquota),
1781 fsparam_flag ("barrier", Opt_barrier),
1782 fsparam_u32 ("barrier", Opt_barrier),
1783 fsparam_flag ("nobarrier", Opt_nobarrier),
1784 fsparam_flag ("i_version", Opt_removed),
1785 fsparam_flag ("dax", Opt_dax),
1786 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1787 fsparam_u32 ("stripe", Opt_stripe),
1788 fsparam_flag ("delalloc", Opt_delalloc),
1789 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1790 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1791 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1792 fsparam_u32 ("debug_want_extra_isize",
1793 Opt_debug_want_extra_isize),
1794 fsparam_flag ("mblk_io_submit", Opt_removed),
1795 fsparam_flag ("nomblk_io_submit", Opt_removed),
1796 fsparam_flag ("block_validity", Opt_block_validity),
1797 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1798 fsparam_u32 ("inode_readahead_blks",
1799 Opt_inode_readahead_blks),
1800 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1801 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1802 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1803 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1804 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1805 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1806 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1807 fsparam_flag ("discard", Opt_discard),
1808 fsparam_flag ("nodiscard", Opt_nodiscard),
1809 fsparam_u32 ("init_itable", Opt_init_itable),
1810 fsparam_flag ("init_itable", Opt_init_itable),
1811 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1812 #ifdef CONFIG_EXT4_DEBUG
1813 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1814 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1815 #endif
1816 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1817 fsparam_flag ("test_dummy_encryption",
1818 Opt_test_dummy_encryption),
1819 fsparam_string ("test_dummy_encryption",
1820 Opt_test_dummy_encryption),
1821 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1822 fsparam_flag ("nombcache", Opt_nombcache),
1823 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1824 fsparam_flag ("prefetch_block_bitmaps",
1825 Opt_removed),
1826 fsparam_flag ("no_prefetch_block_bitmaps",
1827 Opt_no_prefetch_block_bitmaps),
1828 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1829 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1830 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1831 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1832 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1833 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1834 {}
1835 };
1836
1837 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1838
1839 #define MOPT_SET 0x0001
1840 #define MOPT_CLEAR 0x0002
1841 #define MOPT_NOSUPPORT 0x0004
1842 #define MOPT_EXPLICIT 0x0008
1843 #ifdef CONFIG_QUOTA
1844 #define MOPT_Q 0
1845 #define MOPT_QFMT 0x0010
1846 #else
1847 #define MOPT_Q MOPT_NOSUPPORT
1848 #define MOPT_QFMT MOPT_NOSUPPORT
1849 #endif
1850 #define MOPT_NO_EXT2 0x0020
1851 #define MOPT_NO_EXT3 0x0040
1852 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1853 #define MOPT_SKIP 0x0080
1854 #define MOPT_2 0x0100
1855
1856 static const struct mount_opts {
1857 int token;
1858 int mount_opt;
1859 int flags;
1860 } ext4_mount_opts[] = {
1861 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1862 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1863 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1864 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1865 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1866 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1867 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1868 MOPT_EXT4_ONLY | MOPT_SET},
1869 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1870 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1872 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1873 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1874 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1876 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1878 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1879 {Opt_commit, 0, MOPT_NO_EXT2},
1880 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1881 MOPT_EXT4_ONLY | MOPT_CLEAR},
1882 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1883 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1884 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1885 EXT4_MOUNT_JOURNAL_CHECKSUM),
1886 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1888 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1889 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1890 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1891 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1892 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1893 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1894 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1895 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1896 {Opt_journal_path, 0, MOPT_NO_EXT2},
1897 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1898 {Opt_data, 0, MOPT_NO_EXT2},
1899 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1900 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1901 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1902 #else
1903 {Opt_acl, 0, MOPT_NOSUPPORT},
1904 #endif
1905 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1906 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1907 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1908 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1909 MOPT_SET | MOPT_Q},
1910 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1911 MOPT_SET | MOPT_Q},
1912 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1913 MOPT_SET | MOPT_Q},
1914 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1915 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1916 MOPT_CLEAR | MOPT_Q},
1917 {Opt_usrjquota, 0, MOPT_Q},
1918 {Opt_grpjquota, 0, MOPT_Q},
1919 {Opt_jqfmt, 0, MOPT_QFMT},
1920 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1921 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1922 MOPT_SET},
1923 #ifdef CONFIG_EXT4_DEBUG
1924 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1925 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1926 #endif
1927 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1928 {Opt_err, 0, 0}
1929 };
1930
1931 #if IS_ENABLED(CONFIG_UNICODE)
1932 static const struct ext4_sb_encodings {
1933 __u16 magic;
1934 char *name;
1935 unsigned int version;
1936 } ext4_sb_encoding_map[] = {
1937 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1938 };
1939
1940 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1941 ext4_sb_read_encoding(const struct ext4_super_block *es)
1942 {
1943 __u16 magic = le16_to_cpu(es->s_encoding);
1944 int i;
1945
1946 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1947 if (magic == ext4_sb_encoding_map[i].magic)
1948 return &ext4_sb_encoding_map[i];
1949
1950 return NULL;
1951 }
1952 #endif
1953
1954 #define EXT4_SPEC_JQUOTA (1 << 0)
1955 #define EXT4_SPEC_JQFMT (1 << 1)
1956 #define EXT4_SPEC_DATAJ (1 << 2)
1957 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1958 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1959 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1960 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1961 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1962 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1963 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1964 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1965 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1966 #define EXT4_SPEC_s_stripe (1 << 13)
1967 #define EXT4_SPEC_s_resuid (1 << 14)
1968 #define EXT4_SPEC_s_resgid (1 << 15)
1969 #define EXT4_SPEC_s_commit_interval (1 << 16)
1970 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1971 #define EXT4_SPEC_s_sb_block (1 << 18)
1972 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1973
1974 struct ext4_fs_context {
1975 char *s_qf_names[EXT4_MAXQUOTAS];
1976 struct fscrypt_dummy_policy dummy_enc_policy;
1977 int s_jquota_fmt; /* Format of quota to use */
1978 #ifdef CONFIG_EXT4_DEBUG
1979 int s_fc_debug_max_replay;
1980 #endif
1981 unsigned short qname_spec;
1982 unsigned long vals_s_flags; /* Bits to set in s_flags */
1983 unsigned long mask_s_flags; /* Bits changed in s_flags */
1984 unsigned long journal_devnum;
1985 unsigned long s_commit_interval;
1986 unsigned long s_stripe;
1987 unsigned int s_inode_readahead_blks;
1988 unsigned int s_want_extra_isize;
1989 unsigned int s_li_wait_mult;
1990 unsigned int s_max_dir_size_kb;
1991 unsigned int journal_ioprio;
1992 unsigned int vals_s_mount_opt;
1993 unsigned int mask_s_mount_opt;
1994 unsigned int vals_s_mount_opt2;
1995 unsigned int mask_s_mount_opt2;
1996 unsigned int opt_flags; /* MOPT flags */
1997 unsigned int spec;
1998 u32 s_max_batch_time;
1999 u32 s_min_batch_time;
2000 kuid_t s_resuid;
2001 kgid_t s_resgid;
2002 ext4_fsblk_t s_sb_block;
2003 };
2004
ext4_fc_free(struct fs_context * fc)2005 static void ext4_fc_free(struct fs_context *fc)
2006 {
2007 struct ext4_fs_context *ctx = fc->fs_private;
2008 int i;
2009
2010 if (!ctx)
2011 return;
2012
2013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2014 kfree(ctx->s_qf_names[i]);
2015
2016 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2017 kfree(ctx);
2018 }
2019
ext4_init_fs_context(struct fs_context * fc)2020 int ext4_init_fs_context(struct fs_context *fc)
2021 {
2022 struct ext4_fs_context *ctx;
2023
2024 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2025 if (!ctx)
2026 return -ENOMEM;
2027
2028 fc->fs_private = ctx;
2029 fc->ops = &ext4_context_ops;
2030
2031 return 0;
2032 }
2033
2034 #ifdef CONFIG_QUOTA
2035 /*
2036 * Note the name of the specified quota file.
2037 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2038 static int note_qf_name(struct fs_context *fc, int qtype,
2039 struct fs_parameter *param)
2040 {
2041 struct ext4_fs_context *ctx = fc->fs_private;
2042 char *qname;
2043
2044 if (param->size < 1) {
2045 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2046 return -EINVAL;
2047 }
2048 if (strchr(param->string, '/')) {
2049 ext4_msg(NULL, KERN_ERR,
2050 "quotafile must be on filesystem root");
2051 return -EINVAL;
2052 }
2053 if (ctx->s_qf_names[qtype]) {
2054 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2055 ext4_msg(NULL, KERN_ERR,
2056 "%s quota file already specified",
2057 QTYPE2NAME(qtype));
2058 return -EINVAL;
2059 }
2060 return 0;
2061 }
2062
2063 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2064 if (!qname) {
2065 ext4_msg(NULL, KERN_ERR,
2066 "Not enough memory for storing quotafile name");
2067 return -ENOMEM;
2068 }
2069 ctx->s_qf_names[qtype] = qname;
2070 ctx->qname_spec |= 1 << qtype;
2071 ctx->spec |= EXT4_SPEC_JQUOTA;
2072 return 0;
2073 }
2074
2075 /*
2076 * Clear the name of the specified quota file.
2077 */
unnote_qf_name(struct fs_context * fc,int qtype)2078 static int unnote_qf_name(struct fs_context *fc, int qtype)
2079 {
2080 struct ext4_fs_context *ctx = fc->fs_private;
2081
2082 if (ctx->s_qf_names[qtype])
2083 kfree(ctx->s_qf_names[qtype]);
2084
2085 ctx->s_qf_names[qtype] = NULL;
2086 ctx->qname_spec |= 1 << qtype;
2087 ctx->spec |= EXT4_SPEC_JQUOTA;
2088 return 0;
2089 }
2090 #endif
2091
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2092 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2093 struct ext4_fs_context *ctx)
2094 {
2095 int err;
2096
2097 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2098 ext4_msg(NULL, KERN_WARNING,
2099 "test_dummy_encryption option not supported");
2100 return -EINVAL;
2101 }
2102 err = fscrypt_parse_test_dummy_encryption(param,
2103 &ctx->dummy_enc_policy);
2104 if (err == -EINVAL) {
2105 ext4_msg(NULL, KERN_WARNING,
2106 "Value of option \"%s\" is unrecognized", param->key);
2107 } else if (err == -EEXIST) {
2108 ext4_msg(NULL, KERN_WARNING,
2109 "Conflicting test_dummy_encryption options");
2110 return -EINVAL;
2111 }
2112 return err;
2113 }
2114
2115 #define EXT4_SET_CTX(name) \
2116 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2117 unsigned long flag) \
2118 { \
2119 ctx->mask_s_##name |= flag; \
2120 ctx->vals_s_##name |= flag; \
2121 }
2122
2123 #define EXT4_CLEAR_CTX(name) \
2124 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2125 unsigned long flag) \
2126 { \
2127 ctx->mask_s_##name |= flag; \
2128 ctx->vals_s_##name &= ~flag; \
2129 }
2130
2131 #define EXT4_TEST_CTX(name) \
2132 static inline unsigned long \
2133 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2134 { \
2135 return (ctx->vals_s_##name & flag); \
2136 }
2137
2138 EXT4_SET_CTX(flags); /* set only */
2139 EXT4_SET_CTX(mount_opt);
2140 EXT4_CLEAR_CTX(mount_opt);
2141 EXT4_TEST_CTX(mount_opt);
2142 EXT4_SET_CTX(mount_opt2);
2143 EXT4_CLEAR_CTX(mount_opt2);
2144 EXT4_TEST_CTX(mount_opt2);
2145
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2146 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2147 {
2148 struct ext4_fs_context *ctx = fc->fs_private;
2149 struct fs_parse_result result;
2150 const struct mount_opts *m;
2151 int is_remount;
2152 kuid_t uid;
2153 kgid_t gid;
2154 int token;
2155
2156 token = fs_parse(fc, ext4_param_specs, param, &result);
2157 if (token < 0)
2158 return token;
2159 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2160
2161 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162 if (token == m->token)
2163 break;
2164
2165 ctx->opt_flags |= m->flags;
2166
2167 if (m->flags & MOPT_EXPLICIT) {
2168 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2169 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2170 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2171 ctx_set_mount_opt2(ctx,
2172 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2173 } else
2174 return -EINVAL;
2175 }
2176
2177 if (m->flags & MOPT_NOSUPPORT) {
2178 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2179 param->key);
2180 return 0;
2181 }
2182
2183 switch (token) {
2184 #ifdef CONFIG_QUOTA
2185 case Opt_usrjquota:
2186 if (!*param->string)
2187 return unnote_qf_name(fc, USRQUOTA);
2188 else
2189 return note_qf_name(fc, USRQUOTA, param);
2190 case Opt_grpjquota:
2191 if (!*param->string)
2192 return unnote_qf_name(fc, GRPQUOTA);
2193 else
2194 return note_qf_name(fc, GRPQUOTA, param);
2195 #endif
2196 case Opt_sb:
2197 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2198 ext4_msg(NULL, KERN_WARNING,
2199 "Ignoring %s option on remount", param->key);
2200 } else {
2201 ctx->s_sb_block = result.uint_32;
2202 ctx->spec |= EXT4_SPEC_s_sb_block;
2203 }
2204 return 0;
2205 case Opt_removed:
2206 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2207 param->key);
2208 return 0;
2209 case Opt_inlinecrypt:
2210 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2211 ctx_set_flags(ctx, SB_INLINECRYPT);
2212 #else
2213 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2214 #endif
2215 return 0;
2216 case Opt_errors:
2217 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2218 ctx_set_mount_opt(ctx, result.uint_32);
2219 return 0;
2220 #ifdef CONFIG_QUOTA
2221 case Opt_jqfmt:
2222 ctx->s_jquota_fmt = result.uint_32;
2223 ctx->spec |= EXT4_SPEC_JQFMT;
2224 return 0;
2225 #endif
2226 case Opt_data:
2227 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2228 ctx_set_mount_opt(ctx, result.uint_32);
2229 ctx->spec |= EXT4_SPEC_DATAJ;
2230 return 0;
2231 case Opt_commit:
2232 if (result.uint_32 == 0)
2233 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2234 else if (result.uint_32 > INT_MAX / HZ) {
2235 ext4_msg(NULL, KERN_ERR,
2236 "Invalid commit interval %d, "
2237 "must be smaller than %d",
2238 result.uint_32, INT_MAX / HZ);
2239 return -EINVAL;
2240 }
2241 ctx->s_commit_interval = HZ * result.uint_32;
2242 ctx->spec |= EXT4_SPEC_s_commit_interval;
2243 return 0;
2244 case Opt_debug_want_extra_isize:
2245 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Invalid want_extra_isize %d", result.uint_32);
2248 return -EINVAL;
2249 }
2250 ctx->s_want_extra_isize = result.uint_32;
2251 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2252 return 0;
2253 case Opt_max_batch_time:
2254 ctx->s_max_batch_time = result.uint_32;
2255 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2256 return 0;
2257 case Opt_min_batch_time:
2258 ctx->s_min_batch_time = result.uint_32;
2259 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2260 return 0;
2261 case Opt_inode_readahead_blks:
2262 if (result.uint_32 &&
2263 (result.uint_32 > (1 << 30) ||
2264 !is_power_of_2(result.uint_32))) {
2265 ext4_msg(NULL, KERN_ERR,
2266 "EXT4-fs: inode_readahead_blks must be "
2267 "0 or a power of 2 smaller than 2^31");
2268 return -EINVAL;
2269 }
2270 ctx->s_inode_readahead_blks = result.uint_32;
2271 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2272 return 0;
2273 case Opt_init_itable:
2274 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2275 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2276 if (param->type == fs_value_is_string)
2277 ctx->s_li_wait_mult = result.uint_32;
2278 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2279 return 0;
2280 case Opt_max_dir_size_kb:
2281 ctx->s_max_dir_size_kb = result.uint_32;
2282 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2283 return 0;
2284 #ifdef CONFIG_EXT4_DEBUG
2285 case Opt_fc_debug_max_replay:
2286 ctx->s_fc_debug_max_replay = result.uint_32;
2287 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2288 return 0;
2289 #endif
2290 case Opt_stripe:
2291 ctx->s_stripe = result.uint_32;
2292 ctx->spec |= EXT4_SPEC_s_stripe;
2293 return 0;
2294 case Opt_resuid:
2295 uid = make_kuid(current_user_ns(), result.uint_32);
2296 if (!uid_valid(uid)) {
2297 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2298 result.uint_32);
2299 return -EINVAL;
2300 }
2301 ctx->s_resuid = uid;
2302 ctx->spec |= EXT4_SPEC_s_resuid;
2303 return 0;
2304 case Opt_resgid:
2305 gid = make_kgid(current_user_ns(), result.uint_32);
2306 if (!gid_valid(gid)) {
2307 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2308 result.uint_32);
2309 return -EINVAL;
2310 }
2311 ctx->s_resgid = gid;
2312 ctx->spec |= EXT4_SPEC_s_resgid;
2313 return 0;
2314 case Opt_journal_dev:
2315 if (is_remount) {
2316 ext4_msg(NULL, KERN_ERR,
2317 "Cannot specify journal on remount");
2318 return -EINVAL;
2319 }
2320 ctx->journal_devnum = result.uint_32;
2321 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2322 return 0;
2323 case Opt_journal_path:
2324 {
2325 struct inode *journal_inode;
2326 struct path path;
2327 int error;
2328
2329 if (is_remount) {
2330 ext4_msg(NULL, KERN_ERR,
2331 "Cannot specify journal on remount");
2332 return -EINVAL;
2333 }
2334
2335 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2336 if (error) {
2337 ext4_msg(NULL, KERN_ERR, "error: could not find "
2338 "journal device path");
2339 return -EINVAL;
2340 }
2341
2342 journal_inode = d_inode(path.dentry);
2343 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2344 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2345 path_put(&path);
2346 return 0;
2347 }
2348 case Opt_journal_ioprio:
2349 if (result.uint_32 > 7) {
2350 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2351 " (must be 0-7)");
2352 return -EINVAL;
2353 }
2354 ctx->journal_ioprio =
2355 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2356 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2357 return 0;
2358 case Opt_test_dummy_encryption:
2359 return ext4_parse_test_dummy_encryption(param, ctx);
2360 case Opt_dax:
2361 case Opt_dax_type:
2362 #ifdef CONFIG_FS_DAX
2363 {
2364 int type = (token == Opt_dax) ?
2365 Opt_dax : result.uint_32;
2366
2367 switch (type) {
2368 case Opt_dax:
2369 case Opt_dax_always:
2370 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372 break;
2373 case Opt_dax_never:
2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2376 break;
2377 case Opt_dax_inode:
2378 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2380 /* Strictly for printing options */
2381 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2382 break;
2383 }
2384 return 0;
2385 }
2386 #else
2387 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2388 return -EINVAL;
2389 #endif
2390 case Opt_data_err:
2391 if (result.uint_32 == Opt_data_err_abort)
2392 ctx_set_mount_opt(ctx, m->mount_opt);
2393 else if (result.uint_32 == Opt_data_err_ignore)
2394 ctx_clear_mount_opt(ctx, m->mount_opt);
2395 return 0;
2396 case Opt_mb_optimize_scan:
2397 if (result.int_32 == 1) {
2398 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2399 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2400 } else if (result.int_32 == 0) {
2401 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403 } else {
2404 ext4_msg(NULL, KERN_WARNING,
2405 "mb_optimize_scan should be set to 0 or 1.");
2406 return -EINVAL;
2407 }
2408 return 0;
2409 }
2410
2411 /*
2412 * At this point we should only be getting options requiring MOPT_SET,
2413 * or MOPT_CLEAR. Anything else is a bug
2414 */
2415 if (m->token == Opt_err) {
2416 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2417 param->key);
2418 WARN_ON(1);
2419 return -EINVAL;
2420 }
2421
2422 else {
2423 unsigned int set = 0;
2424
2425 if ((param->type == fs_value_is_flag) ||
2426 result.uint_32 > 0)
2427 set = 1;
2428
2429 if (m->flags & MOPT_CLEAR)
2430 set = !set;
2431 else if (unlikely(!(m->flags & MOPT_SET))) {
2432 ext4_msg(NULL, KERN_WARNING,
2433 "buggy handling of option %s",
2434 param->key);
2435 WARN_ON(1);
2436 return -EINVAL;
2437 }
2438 if (m->flags & MOPT_2) {
2439 if (set != 0)
2440 ctx_set_mount_opt2(ctx, m->mount_opt);
2441 else
2442 ctx_clear_mount_opt2(ctx, m->mount_opt);
2443 } else {
2444 if (set != 0)
2445 ctx_set_mount_opt(ctx, m->mount_opt);
2446 else
2447 ctx_clear_mount_opt(ctx, m->mount_opt);
2448 }
2449 }
2450
2451 return 0;
2452 }
2453
parse_options(struct fs_context * fc,char * options)2454 static int parse_options(struct fs_context *fc, char *options)
2455 {
2456 struct fs_parameter param;
2457 int ret;
2458 char *key;
2459
2460 if (!options)
2461 return 0;
2462
2463 while ((key = strsep(&options, ",")) != NULL) {
2464 if (*key) {
2465 size_t v_len = 0;
2466 char *value = strchr(key, '=');
2467
2468 param.type = fs_value_is_flag;
2469 param.string = NULL;
2470
2471 if (value) {
2472 if (value == key)
2473 continue;
2474
2475 *value++ = 0;
2476 v_len = strlen(value);
2477 param.string = kmemdup_nul(value, v_len,
2478 GFP_KERNEL);
2479 if (!param.string)
2480 return -ENOMEM;
2481 param.type = fs_value_is_string;
2482 }
2483
2484 param.key = key;
2485 param.size = v_len;
2486
2487 ret = ext4_parse_param(fc, ¶m);
2488 if (param.string)
2489 kfree(param.string);
2490 if (ret < 0)
2491 return ret;
2492 }
2493 }
2494
2495 ret = ext4_validate_options(fc);
2496 if (ret < 0)
2497 return ret;
2498
2499 return 0;
2500 }
2501
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2502 static int parse_apply_sb_mount_options(struct super_block *sb,
2503 struct ext4_fs_context *m_ctx)
2504 {
2505 struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 char *s_mount_opts = NULL;
2507 struct ext4_fs_context *s_ctx = NULL;
2508 struct fs_context *fc = NULL;
2509 int ret = -ENOMEM;
2510
2511 if (!sbi->s_es->s_mount_opts[0])
2512 return 0;
2513
2514 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2515 sizeof(sbi->s_es->s_mount_opts),
2516 GFP_KERNEL);
2517 if (!s_mount_opts)
2518 return ret;
2519
2520 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2521 if (!fc)
2522 goto out_free;
2523
2524 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2525 if (!s_ctx)
2526 goto out_free;
2527
2528 fc->fs_private = s_ctx;
2529 fc->s_fs_info = sbi;
2530
2531 ret = parse_options(fc, s_mount_opts);
2532 if (ret < 0)
2533 goto parse_failed;
2534
2535 ret = ext4_check_opt_consistency(fc, sb);
2536 if (ret < 0) {
2537 parse_failed:
2538 ext4_msg(sb, KERN_WARNING,
2539 "failed to parse options in superblock: %s",
2540 s_mount_opts);
2541 ret = 0;
2542 goto out_free;
2543 }
2544
2545 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2546 m_ctx->journal_devnum = s_ctx->journal_devnum;
2547 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2548 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2549
2550 ext4_apply_options(fc, sb);
2551 ret = 0;
2552
2553 out_free:
2554 if (fc) {
2555 ext4_fc_free(fc);
2556 kfree(fc);
2557 }
2558 kfree(s_mount_opts);
2559 return ret;
2560 }
2561
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2562 static void ext4_apply_quota_options(struct fs_context *fc,
2563 struct super_block *sb)
2564 {
2565 #ifdef CONFIG_QUOTA
2566 bool quota_feature = ext4_has_feature_quota(sb);
2567 struct ext4_fs_context *ctx = fc->fs_private;
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 char *qname;
2570 int i;
2571
2572 if (quota_feature)
2573 return;
2574
2575 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2576 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2577 if (!(ctx->qname_spec & (1 << i)))
2578 continue;
2579
2580 qname = ctx->s_qf_names[i]; /* May be NULL */
2581 if (qname)
2582 set_opt(sb, QUOTA);
2583 ctx->s_qf_names[i] = NULL;
2584 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2585 lockdep_is_held(&sb->s_umount));
2586 if (qname)
2587 kfree_rcu_mightsleep(qname);
2588 }
2589 }
2590
2591 if (ctx->spec & EXT4_SPEC_JQFMT)
2592 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2593 #endif
2594 }
2595
2596 /*
2597 * Check quota settings consistency.
2598 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2599 static int ext4_check_quota_consistency(struct fs_context *fc,
2600 struct super_block *sb)
2601 {
2602 #ifdef CONFIG_QUOTA
2603 struct ext4_fs_context *ctx = fc->fs_private;
2604 struct ext4_sb_info *sbi = EXT4_SB(sb);
2605 bool quota_feature = ext4_has_feature_quota(sb);
2606 bool quota_loaded = sb_any_quota_loaded(sb);
2607 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2608 int quota_flags, i;
2609
2610 /*
2611 * We do the test below only for project quotas. 'usrquota' and
2612 * 'grpquota' mount options are allowed even without quota feature
2613 * to support legacy quotas in quota files.
2614 */
2615 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2616 !ext4_has_feature_project(sb)) {
2617 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2618 "Cannot enable project quota enforcement.");
2619 return -EINVAL;
2620 }
2621
2622 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2623 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2624 if (quota_loaded &&
2625 ctx->mask_s_mount_opt & quota_flags &&
2626 !ctx_test_mount_opt(ctx, quota_flags))
2627 goto err_quota_change;
2628
2629 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2630
2631 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2632 if (!(ctx->qname_spec & (1 << i)))
2633 continue;
2634
2635 if (quota_loaded &&
2636 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2637 goto err_jquota_change;
2638
2639 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2640 strcmp(get_qf_name(sb, sbi, i),
2641 ctx->s_qf_names[i]) != 0)
2642 goto err_jquota_specified;
2643 }
2644
2645 if (quota_feature) {
2646 ext4_msg(NULL, KERN_INFO,
2647 "Journaled quota options ignored when "
2648 "QUOTA feature is enabled");
2649 return 0;
2650 }
2651 }
2652
2653 if (ctx->spec & EXT4_SPEC_JQFMT) {
2654 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2655 goto err_jquota_change;
2656 if (quota_feature) {
2657 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2658 "ignored when QUOTA feature is enabled");
2659 return 0;
2660 }
2661 }
2662
2663 /* Make sure we don't mix old and new quota format */
2664 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2665 ctx->s_qf_names[USRQUOTA]);
2666 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2667 ctx->s_qf_names[GRPQUOTA]);
2668
2669 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2670 test_opt(sb, USRQUOTA));
2671
2672 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2673 test_opt(sb, GRPQUOTA));
2674
2675 if (usr_qf_name) {
2676 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2677 usrquota = false;
2678 }
2679 if (grp_qf_name) {
2680 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2681 grpquota = false;
2682 }
2683
2684 if (usr_qf_name || grp_qf_name) {
2685 if (usrquota || grpquota) {
2686 ext4_msg(NULL, KERN_ERR, "old and new quota "
2687 "format mixing");
2688 return -EINVAL;
2689 }
2690
2691 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2692 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2693 "not specified");
2694 return -EINVAL;
2695 }
2696 }
2697
2698 return 0;
2699
2700 err_quota_change:
2701 ext4_msg(NULL, KERN_ERR,
2702 "Cannot change quota options when quota turned on");
2703 return -EINVAL;
2704 err_jquota_change:
2705 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2706 "options when quota turned on");
2707 return -EINVAL;
2708 err_jquota_specified:
2709 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2710 QTYPE2NAME(i));
2711 return -EINVAL;
2712 #else
2713 return 0;
2714 #endif
2715 }
2716
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2717 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2718 struct super_block *sb)
2719 {
2720 const struct ext4_fs_context *ctx = fc->fs_private;
2721 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2722
2723 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2724 return 0;
2725
2726 if (!ext4_has_feature_encrypt(sb)) {
2727 ext4_msg(NULL, KERN_WARNING,
2728 "test_dummy_encryption requires encrypt feature");
2729 return -EINVAL;
2730 }
2731 /*
2732 * This mount option is just for testing, and it's not worthwhile to
2733 * implement the extra complexity (e.g. RCU protection) that would be
2734 * needed to allow it to be set or changed during remount. We do allow
2735 * it to be specified during remount, but only if there is no change.
2736 */
2737 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2738 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2739 &ctx->dummy_enc_policy))
2740 return 0;
2741 ext4_msg(NULL, KERN_WARNING,
2742 "Can't set or change test_dummy_encryption on remount");
2743 return -EINVAL;
2744 }
2745 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2746 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2747 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2748 &ctx->dummy_enc_policy))
2749 return 0;
2750 ext4_msg(NULL, KERN_WARNING,
2751 "Conflicting test_dummy_encryption options");
2752 return -EINVAL;
2753 }
2754 return 0;
2755 }
2756
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2757 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2758 struct super_block *sb)
2759 {
2760 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2761 /* if already set, it was already verified to be the same */
2762 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2763 return;
2764 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2765 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2766 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2767 }
2768
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2769 static int ext4_check_opt_consistency(struct fs_context *fc,
2770 struct super_block *sb)
2771 {
2772 struct ext4_fs_context *ctx = fc->fs_private;
2773 struct ext4_sb_info *sbi = fc->s_fs_info;
2774 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2775 int err;
2776
2777 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2778 ext4_msg(NULL, KERN_ERR,
2779 "Mount option(s) incompatible with ext2");
2780 return -EINVAL;
2781 }
2782 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2783 ext4_msg(NULL, KERN_ERR,
2784 "Mount option(s) incompatible with ext3");
2785 return -EINVAL;
2786 }
2787
2788 if (ctx->s_want_extra_isize >
2789 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2790 ext4_msg(NULL, KERN_ERR,
2791 "Invalid want_extra_isize %d",
2792 ctx->s_want_extra_isize);
2793 return -EINVAL;
2794 }
2795
2796 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2797 int blocksize =
2798 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2799 if (blocksize < PAGE_SIZE)
2800 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2801 "experimental mount option 'dioread_nolock' "
2802 "for blocksize < PAGE_SIZE");
2803 }
2804
2805 err = ext4_check_test_dummy_encryption(fc, sb);
2806 if (err)
2807 return err;
2808
2809 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2810 if (!sbi->s_journal) {
2811 ext4_msg(NULL, KERN_WARNING,
2812 "Remounting file system with no journal "
2813 "so ignoring journalled data option");
2814 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2815 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2816 test_opt(sb, DATA_FLAGS)) {
2817 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2818 "on remount");
2819 return -EINVAL;
2820 }
2821 }
2822
2823 if (is_remount) {
2824 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2825 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2826 ext4_msg(NULL, KERN_ERR, "can't mount with "
2827 "both data=journal and dax");
2828 return -EINVAL;
2829 }
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2832 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2833 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2834 fail_dax_change_remount:
2835 ext4_msg(NULL, KERN_ERR, "can't change "
2836 "dax mount option while remounting");
2837 return -EINVAL;
2838 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2839 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2840 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2841 goto fail_dax_change_remount;
2842 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2843 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2844 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2845 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2846 goto fail_dax_change_remount;
2847 }
2848 }
2849
2850 return ext4_check_quota_consistency(fc, sb);
2851 }
2852
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2853 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2854 {
2855 struct ext4_fs_context *ctx = fc->fs_private;
2856 struct ext4_sb_info *sbi = fc->s_fs_info;
2857
2858 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2859 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2860 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2861 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2862 sb->s_flags &= ~ctx->mask_s_flags;
2863 sb->s_flags |= ctx->vals_s_flags;
2864
2865 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2866 APPLY(s_commit_interval);
2867 APPLY(s_stripe);
2868 APPLY(s_max_batch_time);
2869 APPLY(s_min_batch_time);
2870 APPLY(s_want_extra_isize);
2871 APPLY(s_inode_readahead_blks);
2872 APPLY(s_max_dir_size_kb);
2873 APPLY(s_li_wait_mult);
2874 APPLY(s_resgid);
2875 APPLY(s_resuid);
2876
2877 #ifdef CONFIG_EXT4_DEBUG
2878 APPLY(s_fc_debug_max_replay);
2879 #endif
2880
2881 ext4_apply_quota_options(fc, sb);
2882 ext4_apply_test_dummy_encryption(ctx, sb);
2883 }
2884
2885
ext4_validate_options(struct fs_context * fc)2886 static int ext4_validate_options(struct fs_context *fc)
2887 {
2888 #ifdef CONFIG_QUOTA
2889 struct ext4_fs_context *ctx = fc->fs_private;
2890 char *usr_qf_name, *grp_qf_name;
2891
2892 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2893 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2894
2895 if (usr_qf_name || grp_qf_name) {
2896 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2897 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2898
2899 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2900 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2901
2902 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2903 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2904 ext4_msg(NULL, KERN_ERR, "old and new quota "
2905 "format mixing");
2906 return -EINVAL;
2907 }
2908 }
2909 #endif
2910 return 1;
2911 }
2912
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2913 static inline void ext4_show_quota_options(struct seq_file *seq,
2914 struct super_block *sb)
2915 {
2916 #if defined(CONFIG_QUOTA)
2917 struct ext4_sb_info *sbi = EXT4_SB(sb);
2918 char *usr_qf_name, *grp_qf_name;
2919
2920 if (sbi->s_jquota_fmt) {
2921 char *fmtname = "";
2922
2923 switch (sbi->s_jquota_fmt) {
2924 case QFMT_VFS_OLD:
2925 fmtname = "vfsold";
2926 break;
2927 case QFMT_VFS_V0:
2928 fmtname = "vfsv0";
2929 break;
2930 case QFMT_VFS_V1:
2931 fmtname = "vfsv1";
2932 break;
2933 }
2934 seq_printf(seq, ",jqfmt=%s", fmtname);
2935 }
2936
2937 rcu_read_lock();
2938 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2939 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2940 if (usr_qf_name)
2941 seq_show_option(seq, "usrjquota", usr_qf_name);
2942 if (grp_qf_name)
2943 seq_show_option(seq, "grpjquota", grp_qf_name);
2944 rcu_read_unlock();
2945 #endif
2946 }
2947
token2str(int token)2948 static const char *token2str(int token)
2949 {
2950 const struct fs_parameter_spec *spec;
2951
2952 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2953 if (spec->opt == token && !spec->type)
2954 break;
2955 return spec->name;
2956 }
2957
2958 /*
2959 * Show an option if
2960 * - it's set to a non-default value OR
2961 * - if the per-sb default is different from the global default
2962 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2963 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2964 int nodefs)
2965 {
2966 struct ext4_sb_info *sbi = EXT4_SB(sb);
2967 struct ext4_super_block *es = sbi->s_es;
2968 int def_errors;
2969 const struct mount_opts *m;
2970 char sep = nodefs ? '\n' : ',';
2971
2972 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2973 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2974
2975 if (sbi->s_sb_block != 1)
2976 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2977
2978 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2979 int want_set = m->flags & MOPT_SET;
2980 int opt_2 = m->flags & MOPT_2;
2981 unsigned int mount_opt, def_mount_opt;
2982
2983 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2984 m->flags & MOPT_SKIP)
2985 continue;
2986
2987 if (opt_2) {
2988 mount_opt = sbi->s_mount_opt2;
2989 def_mount_opt = sbi->s_def_mount_opt2;
2990 } else {
2991 mount_opt = sbi->s_mount_opt;
2992 def_mount_opt = sbi->s_def_mount_opt;
2993 }
2994 /* skip if same as the default */
2995 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2996 continue;
2997 /* select Opt_noFoo vs Opt_Foo */
2998 if ((want_set &&
2999 (mount_opt & m->mount_opt) != m->mount_opt) ||
3000 (!want_set && (mount_opt & m->mount_opt)))
3001 continue;
3002 SEQ_OPTS_PRINT("%s", token2str(m->token));
3003 }
3004
3005 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3006 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3007 SEQ_OPTS_PRINT("resuid=%u",
3008 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3009 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3010 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3011 SEQ_OPTS_PRINT("resgid=%u",
3012 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3013 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3014 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3015 SEQ_OPTS_PUTS("errors=remount-ro");
3016 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3017 SEQ_OPTS_PUTS("errors=continue");
3018 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3019 SEQ_OPTS_PUTS("errors=panic");
3020 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3021 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3022 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3023 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3024 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3025 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3026 if (nodefs || sbi->s_stripe)
3027 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3028 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3029 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3030 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3031 SEQ_OPTS_PUTS("data=journal");
3032 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3033 SEQ_OPTS_PUTS("data=ordered");
3034 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3035 SEQ_OPTS_PUTS("data=writeback");
3036 }
3037 if (nodefs ||
3038 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3039 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3040 sbi->s_inode_readahead_blks);
3041
3042 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3043 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3044 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3045 if (nodefs || sbi->s_max_dir_size_kb)
3046 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3047 if (test_opt(sb, DATA_ERR_ABORT))
3048 SEQ_OPTS_PUTS("data_err=abort");
3049
3050 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3051
3052 if (sb->s_flags & SB_INLINECRYPT)
3053 SEQ_OPTS_PUTS("inlinecrypt");
3054
3055 if (test_opt(sb, DAX_ALWAYS)) {
3056 if (IS_EXT2_SB(sb))
3057 SEQ_OPTS_PUTS("dax");
3058 else
3059 SEQ_OPTS_PUTS("dax=always");
3060 } else if (test_opt2(sb, DAX_NEVER)) {
3061 SEQ_OPTS_PUTS("dax=never");
3062 } else if (test_opt2(sb, DAX_INODE)) {
3063 SEQ_OPTS_PUTS("dax=inode");
3064 }
3065
3066 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3067 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3068 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3069 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3070 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3071 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3072 }
3073
3074 ext4_show_quota_options(seq, sb);
3075 return 0;
3076 }
3077
ext4_show_options(struct seq_file * seq,struct dentry * root)3078 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3079 {
3080 return _ext4_show_options(seq, root->d_sb, 0);
3081 }
3082
ext4_seq_options_show(struct seq_file * seq,void * offset)3083 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3084 {
3085 struct super_block *sb = seq->private;
3086 int rc;
3087
3088 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3089 rc = _ext4_show_options(seq, sb, 1);
3090 seq_puts(seq, "\n");
3091 return rc;
3092 }
3093
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3094 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3095 int read_only)
3096 {
3097 struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 int err = 0;
3099
3100 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3101 ext4_msg(sb, KERN_ERR, "revision level too high, "
3102 "forcing read-only mode");
3103 err = -EROFS;
3104 goto done;
3105 }
3106 if (read_only)
3107 goto done;
3108 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3109 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3110 "running e2fsck is recommended");
3111 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3112 ext4_msg(sb, KERN_WARNING,
3113 "warning: mounting fs with errors, "
3114 "running e2fsck is recommended");
3115 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3116 le16_to_cpu(es->s_mnt_count) >=
3117 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3118 ext4_msg(sb, KERN_WARNING,
3119 "warning: maximal mount count reached, "
3120 "running e2fsck is recommended");
3121 else if (le32_to_cpu(es->s_checkinterval) &&
3122 (ext4_get_tstamp(es, s_lastcheck) +
3123 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3124 ext4_msg(sb, KERN_WARNING,
3125 "warning: checktime reached, "
3126 "running e2fsck is recommended");
3127 if (!sbi->s_journal)
3128 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3129 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3130 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3131 le16_add_cpu(&es->s_mnt_count, 1);
3132 ext4_update_tstamp(es, s_mtime);
3133 if (sbi->s_journal) {
3134 ext4_set_feature_journal_needs_recovery(sb);
3135 if (ext4_has_feature_orphan_file(sb))
3136 ext4_set_feature_orphan_present(sb);
3137 }
3138
3139 err = ext4_commit_super(sb);
3140 done:
3141 if (test_opt(sb, DEBUG))
3142 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3143 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3144 sb->s_blocksize,
3145 sbi->s_groups_count,
3146 EXT4_BLOCKS_PER_GROUP(sb),
3147 EXT4_INODES_PER_GROUP(sb),
3148 sbi->s_mount_opt, sbi->s_mount_opt2);
3149 return err;
3150 }
3151
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3152 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3153 {
3154 struct ext4_sb_info *sbi = EXT4_SB(sb);
3155 struct flex_groups **old_groups, **new_groups;
3156 int size, i, j;
3157
3158 if (!sbi->s_log_groups_per_flex)
3159 return 0;
3160
3161 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3162 if (size <= sbi->s_flex_groups_allocated)
3163 return 0;
3164
3165 new_groups = kvzalloc(roundup_pow_of_two(size *
3166 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3167 if (!new_groups) {
3168 ext4_msg(sb, KERN_ERR,
3169 "not enough memory for %d flex group pointers", size);
3170 return -ENOMEM;
3171 }
3172 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3173 new_groups[i] = kvzalloc(roundup_pow_of_two(
3174 sizeof(struct flex_groups)),
3175 GFP_KERNEL);
3176 if (!new_groups[i]) {
3177 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3178 kvfree(new_groups[j]);
3179 kvfree(new_groups);
3180 ext4_msg(sb, KERN_ERR,
3181 "not enough memory for %d flex groups", size);
3182 return -ENOMEM;
3183 }
3184 }
3185 rcu_read_lock();
3186 old_groups = rcu_dereference(sbi->s_flex_groups);
3187 if (old_groups)
3188 memcpy(new_groups, old_groups,
3189 (sbi->s_flex_groups_allocated *
3190 sizeof(struct flex_groups *)));
3191 rcu_read_unlock();
3192 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3193 sbi->s_flex_groups_allocated = size;
3194 if (old_groups)
3195 ext4_kvfree_array_rcu(old_groups);
3196 return 0;
3197 }
3198
ext4_fill_flex_info(struct super_block * sb)3199 static int ext4_fill_flex_info(struct super_block *sb)
3200 {
3201 struct ext4_sb_info *sbi = EXT4_SB(sb);
3202 struct ext4_group_desc *gdp = NULL;
3203 struct flex_groups *fg;
3204 ext4_group_t flex_group;
3205 int i, err;
3206
3207 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3208 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3209 sbi->s_log_groups_per_flex = 0;
3210 return 1;
3211 }
3212
3213 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3214 if (err)
3215 goto failed;
3216
3217 for (i = 0; i < sbi->s_groups_count; i++) {
3218 gdp = ext4_get_group_desc(sb, i, NULL);
3219
3220 flex_group = ext4_flex_group(sbi, i);
3221 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3222 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3223 atomic64_add(ext4_free_group_clusters(sb, gdp),
3224 &fg->free_clusters);
3225 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3226 }
3227
3228 return 1;
3229 failed:
3230 return 0;
3231 }
3232
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3234 struct ext4_group_desc *gdp)
3235 {
3236 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3237 __u16 crc = 0;
3238 __le32 le_group = cpu_to_le32(block_group);
3239 struct ext4_sb_info *sbi = EXT4_SB(sb);
3240
3241 if (ext4_has_metadata_csum(sbi->s_sb)) {
3242 /* Use new metadata_csum algorithm */
3243 __u32 csum32;
3244 __u16 dummy_csum = 0;
3245
3246 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3247 sizeof(le_group));
3248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3250 sizeof(dummy_csum));
3251 offset += sizeof(dummy_csum);
3252 if (offset < sbi->s_desc_size)
3253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3254 sbi->s_desc_size - offset);
3255
3256 crc = csum32 & 0xFFFF;
3257 goto out;
3258 }
3259
3260 /* old crc16 code */
3261 if (!ext4_has_feature_gdt_csum(sb))
3262 return 0;
3263
3264 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3265 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3266 crc = crc16(crc, (__u8 *)gdp, offset);
3267 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3268 /* for checksum of struct ext4_group_desc do the rest...*/
3269 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3270 crc = crc16(crc, (__u8 *)gdp + offset,
3271 sbi->s_desc_size - offset);
3272
3273 out:
3274 return cpu_to_le16(crc);
3275 }
3276
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3277 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3278 struct ext4_group_desc *gdp)
3279 {
3280 if (ext4_has_group_desc_csum(sb) &&
3281 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3282 return 0;
3283
3284 return 1;
3285 }
3286
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3287 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3288 struct ext4_group_desc *gdp)
3289 {
3290 if (!ext4_has_group_desc_csum(sb))
3291 return;
3292 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3293 }
3294
3295 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3296 static int ext4_check_descriptors(struct super_block *sb,
3297 ext4_fsblk_t sb_block,
3298 ext4_group_t *first_not_zeroed)
3299 {
3300 struct ext4_sb_info *sbi = EXT4_SB(sb);
3301 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3302 ext4_fsblk_t last_block;
3303 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3304 ext4_fsblk_t block_bitmap;
3305 ext4_fsblk_t inode_bitmap;
3306 ext4_fsblk_t inode_table;
3307 int flexbg_flag = 0;
3308 ext4_group_t i, grp = sbi->s_groups_count;
3309
3310 if (ext4_has_feature_flex_bg(sb))
3311 flexbg_flag = 1;
3312
3313 ext4_debug("Checking group descriptors");
3314
3315 for (i = 0; i < sbi->s_groups_count; i++) {
3316 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3317
3318 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3319 last_block = ext4_blocks_count(sbi->s_es) - 1;
3320 else
3321 last_block = first_block +
3322 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3323
3324 if ((grp == sbi->s_groups_count) &&
3325 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3326 grp = i;
3327
3328 block_bitmap = ext4_block_bitmap(sb, gdp);
3329 if (block_bitmap == sb_block) {
3330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3331 "Block bitmap for group %u overlaps "
3332 "superblock", i);
3333 if (!sb_rdonly(sb))
3334 return 0;
3335 }
3336 if (block_bitmap >= sb_block + 1 &&
3337 block_bitmap <= last_bg_block) {
3338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3339 "Block bitmap for group %u overlaps "
3340 "block group descriptors", i);
3341 if (!sb_rdonly(sb))
3342 return 0;
3343 }
3344 if (block_bitmap < first_block || block_bitmap > last_block) {
3345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3346 "Block bitmap for group %u not in group "
3347 "(block %llu)!", i, block_bitmap);
3348 return 0;
3349 }
3350 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3351 if (inode_bitmap == sb_block) {
3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353 "Inode bitmap for group %u overlaps "
3354 "superblock", i);
3355 if (!sb_rdonly(sb))
3356 return 0;
3357 }
3358 if (inode_bitmap >= sb_block + 1 &&
3359 inode_bitmap <= last_bg_block) {
3360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3361 "Inode bitmap for group %u overlaps "
3362 "block group descriptors", i);
3363 if (!sb_rdonly(sb))
3364 return 0;
3365 }
3366 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Inode bitmap for group %u not in group "
3369 "(block %llu)!", i, inode_bitmap);
3370 return 0;
3371 }
3372 inode_table = ext4_inode_table(sb, gdp);
3373 if (inode_table == sb_block) {
3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 "Inode table for group %u overlaps "
3376 "superblock", i);
3377 if (!sb_rdonly(sb))
3378 return 0;
3379 }
3380 if (inode_table >= sb_block + 1 &&
3381 inode_table <= last_bg_block) {
3382 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3383 "Inode table for group %u overlaps "
3384 "block group descriptors", i);
3385 if (!sb_rdonly(sb))
3386 return 0;
3387 }
3388 if (inode_table < first_block ||
3389 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3390 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3391 "Inode table for group %u not in group "
3392 "(block %llu)!", i, inode_table);
3393 return 0;
3394 }
3395 ext4_lock_group(sb, i);
3396 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3397 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3398 "Checksum for group %u failed (%u!=%u)",
3399 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3400 gdp)), le16_to_cpu(gdp->bg_checksum));
3401 if (!sb_rdonly(sb)) {
3402 ext4_unlock_group(sb, i);
3403 return 0;
3404 }
3405 }
3406 ext4_unlock_group(sb, i);
3407 if (!flexbg_flag)
3408 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3409 }
3410 if (NULL != first_not_zeroed)
3411 *first_not_zeroed = grp;
3412 return 1;
3413 }
3414
3415 /*
3416 * Maximal extent format file size.
3417 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3418 * extent format containers, within a sector_t, and within i_blocks
3419 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3420 * so that won't be a limiting factor.
3421 *
3422 * However there is other limiting factor. We do store extents in the form
3423 * of starting block and length, hence the resulting length of the extent
3424 * covering maximum file size must fit into on-disk format containers as
3425 * well. Given that length is always by 1 unit bigger than max unit (because
3426 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3427 *
3428 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3429 */
ext4_max_size(int blkbits,int has_huge_files)3430 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3431 {
3432 loff_t res;
3433 loff_t upper_limit = MAX_LFS_FILESIZE;
3434
3435 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3436
3437 if (!has_huge_files) {
3438 upper_limit = (1LL << 32) - 1;
3439
3440 /* total blocks in file system block size */
3441 upper_limit >>= (blkbits - 9);
3442 upper_limit <<= blkbits;
3443 }
3444
3445 /*
3446 * 32-bit extent-start container, ee_block. We lower the maxbytes
3447 * by one fs block, so ee_len can cover the extent of maximum file
3448 * size
3449 */
3450 res = (1LL << 32) - 1;
3451 res <<= blkbits;
3452
3453 /* Sanity check against vm- & vfs- imposed limits */
3454 if (res > upper_limit)
3455 res = upper_limit;
3456
3457 return res;
3458 }
3459
3460 /*
3461 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3462 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3463 * We need to be 1 filesystem block less than the 2^48 sector limit.
3464 */
ext4_max_bitmap_size(int bits,int has_huge_files)3465 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3466 {
3467 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3468 int meta_blocks;
3469 unsigned int ppb = 1 << (bits - 2);
3470
3471 /*
3472 * This is calculated to be the largest file size for a dense, block
3473 * mapped file such that the file's total number of 512-byte sectors,
3474 * including data and all indirect blocks, does not exceed (2^48 - 1).
3475 *
3476 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3477 * number of 512-byte sectors of the file.
3478 */
3479 if (!has_huge_files) {
3480 /*
3481 * !has_huge_files or implies that the inode i_block field
3482 * represents total file blocks in 2^32 512-byte sectors ==
3483 * size of vfs inode i_blocks * 8
3484 */
3485 upper_limit = (1LL << 32) - 1;
3486
3487 /* total blocks in file system block size */
3488 upper_limit >>= (bits - 9);
3489
3490 } else {
3491 /*
3492 * We use 48 bit ext4_inode i_blocks
3493 * With EXT4_HUGE_FILE_FL set the i_blocks
3494 * represent total number of blocks in
3495 * file system block size
3496 */
3497 upper_limit = (1LL << 48) - 1;
3498
3499 }
3500
3501 /* Compute how many blocks we can address by block tree */
3502 res += ppb;
3503 res += ppb * ppb;
3504 res += ((loff_t)ppb) * ppb * ppb;
3505 /* Compute how many metadata blocks are needed */
3506 meta_blocks = 1;
3507 meta_blocks += 1 + ppb;
3508 meta_blocks += 1 + ppb + ppb * ppb;
3509 /* Does block tree limit file size? */
3510 if (res + meta_blocks <= upper_limit)
3511 goto check_lfs;
3512
3513 res = upper_limit;
3514 /* How many metadata blocks are needed for addressing upper_limit? */
3515 upper_limit -= EXT4_NDIR_BLOCKS;
3516 /* indirect blocks */
3517 meta_blocks = 1;
3518 upper_limit -= ppb;
3519 /* double indirect blocks */
3520 if (upper_limit < ppb * ppb) {
3521 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3522 res -= meta_blocks;
3523 goto check_lfs;
3524 }
3525 meta_blocks += 1 + ppb;
3526 upper_limit -= ppb * ppb;
3527 /* tripple indirect blocks for the rest */
3528 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3529 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3530 res -= meta_blocks;
3531 check_lfs:
3532 res <<= bits;
3533 if (res > MAX_LFS_FILESIZE)
3534 res = MAX_LFS_FILESIZE;
3535
3536 return res;
3537 }
3538
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3539 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3540 ext4_fsblk_t logical_sb_block, int nr)
3541 {
3542 struct ext4_sb_info *sbi = EXT4_SB(sb);
3543 ext4_group_t bg, first_meta_bg;
3544 int has_super = 0;
3545
3546 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3547
3548 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3549 return logical_sb_block + nr + 1;
3550 bg = sbi->s_desc_per_block * nr;
3551 if (ext4_bg_has_super(sb, bg))
3552 has_super = 1;
3553
3554 /*
3555 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3556 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3557 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3558 * compensate.
3559 */
3560 if (sb->s_blocksize == 1024 && nr == 0 &&
3561 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3562 has_super++;
3563
3564 return (has_super + ext4_group_first_block_no(sb, bg));
3565 }
3566
3567 /**
3568 * ext4_get_stripe_size: Get the stripe size.
3569 * @sbi: In memory super block info
3570 *
3571 * If we have specified it via mount option, then
3572 * use the mount option value. If the value specified at mount time is
3573 * greater than the blocks per group use the super block value.
3574 * If the super block value is greater than blocks per group return 0.
3575 * Allocator needs it be less than blocks per group.
3576 *
3577 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3578 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3579 {
3580 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3581 unsigned long stripe_width =
3582 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3583 int ret;
3584
3585 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3586 ret = sbi->s_stripe;
3587 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3588 ret = stripe_width;
3589 else if (stride && stride <= sbi->s_blocks_per_group)
3590 ret = stride;
3591 else
3592 ret = 0;
3593
3594 /*
3595 * If the stripe width is 1, this makes no sense and
3596 * we set it to 0 to turn off stripe handling code.
3597 */
3598 if (ret <= 1)
3599 ret = 0;
3600
3601 return ret;
3602 }
3603
3604 /*
3605 * Check whether this filesystem can be mounted based on
3606 * the features present and the RDONLY/RDWR mount requested.
3607 * Returns 1 if this filesystem can be mounted as requested,
3608 * 0 if it cannot be.
3609 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3610 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3611 {
3612 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3613 ext4_msg(sb, KERN_ERR,
3614 "Couldn't mount because of "
3615 "unsupported optional features (%x)",
3616 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3617 ~EXT4_FEATURE_INCOMPAT_SUPP));
3618 return 0;
3619 }
3620
3621 #if !IS_ENABLED(CONFIG_UNICODE)
3622 if (ext4_has_feature_casefold(sb)) {
3623 ext4_msg(sb, KERN_ERR,
3624 "Filesystem with casefold feature cannot be "
3625 "mounted without CONFIG_UNICODE");
3626 return 0;
3627 }
3628 #endif
3629
3630 if (readonly)
3631 return 1;
3632
3633 if (ext4_has_feature_readonly(sb)) {
3634 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3635 sb->s_flags |= SB_RDONLY;
3636 return 1;
3637 }
3638
3639 /* Check that feature set is OK for a read-write mount */
3640 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3641 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3642 "unsupported optional features (%x)",
3643 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3644 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3645 return 0;
3646 }
3647 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3648 ext4_msg(sb, KERN_ERR,
3649 "Can't support bigalloc feature without "
3650 "extents feature\n");
3651 return 0;
3652 }
3653
3654 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3655 if (!readonly && (ext4_has_feature_quota(sb) ||
3656 ext4_has_feature_project(sb))) {
3657 ext4_msg(sb, KERN_ERR,
3658 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3659 return 0;
3660 }
3661 #endif /* CONFIG_QUOTA */
3662 return 1;
3663 }
3664
3665 /*
3666 * This function is called once a day if we have errors logged
3667 * on the file system
3668 */
print_daily_error_info(struct timer_list * t)3669 static void print_daily_error_info(struct timer_list *t)
3670 {
3671 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3672 struct super_block *sb = sbi->s_sb;
3673 struct ext4_super_block *es = sbi->s_es;
3674
3675 if (es->s_error_count)
3676 /* fsck newer than v1.41.13 is needed to clean this condition. */
3677 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3678 le32_to_cpu(es->s_error_count));
3679 if (es->s_first_error_time) {
3680 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3681 sb->s_id,
3682 ext4_get_tstamp(es, s_first_error_time),
3683 (int) sizeof(es->s_first_error_func),
3684 es->s_first_error_func,
3685 le32_to_cpu(es->s_first_error_line));
3686 if (es->s_first_error_ino)
3687 printk(KERN_CONT ": inode %u",
3688 le32_to_cpu(es->s_first_error_ino));
3689 if (es->s_first_error_block)
3690 printk(KERN_CONT ": block %llu", (unsigned long long)
3691 le64_to_cpu(es->s_first_error_block));
3692 printk(KERN_CONT "\n");
3693 }
3694 if (es->s_last_error_time) {
3695 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3696 sb->s_id,
3697 ext4_get_tstamp(es, s_last_error_time),
3698 (int) sizeof(es->s_last_error_func),
3699 es->s_last_error_func,
3700 le32_to_cpu(es->s_last_error_line));
3701 if (es->s_last_error_ino)
3702 printk(KERN_CONT ": inode %u",
3703 le32_to_cpu(es->s_last_error_ino));
3704 if (es->s_last_error_block)
3705 printk(KERN_CONT ": block %llu", (unsigned long long)
3706 le64_to_cpu(es->s_last_error_block));
3707 printk(KERN_CONT "\n");
3708 }
3709 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3710 }
3711
3712 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3713 static int ext4_run_li_request(struct ext4_li_request *elr)
3714 {
3715 struct ext4_group_desc *gdp = NULL;
3716 struct super_block *sb = elr->lr_super;
3717 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3718 ext4_group_t group = elr->lr_next_group;
3719 unsigned int prefetch_ios = 0;
3720 int ret = 0;
3721 int nr = EXT4_SB(sb)->s_mb_prefetch;
3722 u64 start_time;
3723
3724 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3725 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3726 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3727 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3728 if (group >= elr->lr_next_group) {
3729 ret = 1;
3730 if (elr->lr_first_not_zeroed != ngroups &&
3731 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3732 elr->lr_next_group = elr->lr_first_not_zeroed;
3733 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3734 ret = 0;
3735 }
3736 }
3737 return ret;
3738 }
3739
3740 for (; group < ngroups; group++) {
3741 gdp = ext4_get_group_desc(sb, group, NULL);
3742 if (!gdp) {
3743 ret = 1;
3744 break;
3745 }
3746
3747 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3748 break;
3749 }
3750
3751 if (group >= ngroups)
3752 ret = 1;
3753
3754 if (!ret) {
3755 start_time = ktime_get_real_ns();
3756 ret = ext4_init_inode_table(sb, group,
3757 elr->lr_timeout ? 0 : 1);
3758 trace_ext4_lazy_itable_init(sb, group);
3759 if (elr->lr_timeout == 0) {
3760 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3761 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3762 }
3763 elr->lr_next_sched = jiffies + elr->lr_timeout;
3764 elr->lr_next_group = group + 1;
3765 }
3766 return ret;
3767 }
3768
3769 /*
3770 * Remove lr_request from the list_request and free the
3771 * request structure. Should be called with li_list_mtx held
3772 */
ext4_remove_li_request(struct ext4_li_request * elr)3773 static void ext4_remove_li_request(struct ext4_li_request *elr)
3774 {
3775 if (!elr)
3776 return;
3777
3778 list_del(&elr->lr_request);
3779 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3780 kfree(elr);
3781 }
3782
ext4_unregister_li_request(struct super_block * sb)3783 static void ext4_unregister_li_request(struct super_block *sb)
3784 {
3785 mutex_lock(&ext4_li_mtx);
3786 if (!ext4_li_info) {
3787 mutex_unlock(&ext4_li_mtx);
3788 return;
3789 }
3790
3791 mutex_lock(&ext4_li_info->li_list_mtx);
3792 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3793 mutex_unlock(&ext4_li_info->li_list_mtx);
3794 mutex_unlock(&ext4_li_mtx);
3795 }
3796
3797 static struct task_struct *ext4_lazyinit_task;
3798
3799 /*
3800 * This is the function where ext4lazyinit thread lives. It walks
3801 * through the request list searching for next scheduled filesystem.
3802 * When such a fs is found, run the lazy initialization request
3803 * (ext4_rn_li_request) and keep track of the time spend in this
3804 * function. Based on that time we compute next schedule time of
3805 * the request. When walking through the list is complete, compute
3806 * next waking time and put itself into sleep.
3807 */
ext4_lazyinit_thread(void * arg)3808 static int ext4_lazyinit_thread(void *arg)
3809 {
3810 struct ext4_lazy_init *eli = arg;
3811 struct list_head *pos, *n;
3812 struct ext4_li_request *elr;
3813 unsigned long next_wakeup, cur;
3814
3815 BUG_ON(NULL == eli);
3816 set_freezable();
3817
3818 cont_thread:
3819 while (true) {
3820 next_wakeup = MAX_JIFFY_OFFSET;
3821
3822 mutex_lock(&eli->li_list_mtx);
3823 if (list_empty(&eli->li_request_list)) {
3824 mutex_unlock(&eli->li_list_mtx);
3825 goto exit_thread;
3826 }
3827 list_for_each_safe(pos, n, &eli->li_request_list) {
3828 int err = 0;
3829 int progress = 0;
3830 elr = list_entry(pos, struct ext4_li_request,
3831 lr_request);
3832
3833 if (time_before(jiffies, elr->lr_next_sched)) {
3834 if (time_before(elr->lr_next_sched, next_wakeup))
3835 next_wakeup = elr->lr_next_sched;
3836 continue;
3837 }
3838 if (down_read_trylock(&elr->lr_super->s_umount)) {
3839 if (sb_start_write_trylock(elr->lr_super)) {
3840 progress = 1;
3841 /*
3842 * We hold sb->s_umount, sb can not
3843 * be removed from the list, it is
3844 * now safe to drop li_list_mtx
3845 */
3846 mutex_unlock(&eli->li_list_mtx);
3847 err = ext4_run_li_request(elr);
3848 sb_end_write(elr->lr_super);
3849 mutex_lock(&eli->li_list_mtx);
3850 n = pos->next;
3851 }
3852 up_read((&elr->lr_super->s_umount));
3853 }
3854 /* error, remove the lazy_init job */
3855 if (err) {
3856 ext4_remove_li_request(elr);
3857 continue;
3858 }
3859 if (!progress) {
3860 elr->lr_next_sched = jiffies +
3861 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3862 }
3863 if (time_before(elr->lr_next_sched, next_wakeup))
3864 next_wakeup = elr->lr_next_sched;
3865 }
3866 mutex_unlock(&eli->li_list_mtx);
3867
3868 try_to_freeze();
3869
3870 cur = jiffies;
3871 if ((time_after_eq(cur, next_wakeup)) ||
3872 (MAX_JIFFY_OFFSET == next_wakeup)) {
3873 cond_resched();
3874 continue;
3875 }
3876
3877 schedule_timeout_interruptible(next_wakeup - cur);
3878
3879 if (kthread_should_stop()) {
3880 ext4_clear_request_list();
3881 goto exit_thread;
3882 }
3883 }
3884
3885 exit_thread:
3886 /*
3887 * It looks like the request list is empty, but we need
3888 * to check it under the li_list_mtx lock, to prevent any
3889 * additions into it, and of course we should lock ext4_li_mtx
3890 * to atomically free the list and ext4_li_info, because at
3891 * this point another ext4 filesystem could be registering
3892 * new one.
3893 */
3894 mutex_lock(&ext4_li_mtx);
3895 mutex_lock(&eli->li_list_mtx);
3896 if (!list_empty(&eli->li_request_list)) {
3897 mutex_unlock(&eli->li_list_mtx);
3898 mutex_unlock(&ext4_li_mtx);
3899 goto cont_thread;
3900 }
3901 mutex_unlock(&eli->li_list_mtx);
3902 kfree(ext4_li_info);
3903 ext4_li_info = NULL;
3904 mutex_unlock(&ext4_li_mtx);
3905
3906 return 0;
3907 }
3908
ext4_clear_request_list(void)3909 static void ext4_clear_request_list(void)
3910 {
3911 struct list_head *pos, *n;
3912 struct ext4_li_request *elr;
3913
3914 mutex_lock(&ext4_li_info->li_list_mtx);
3915 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3916 elr = list_entry(pos, struct ext4_li_request,
3917 lr_request);
3918 ext4_remove_li_request(elr);
3919 }
3920 mutex_unlock(&ext4_li_info->li_list_mtx);
3921 }
3922
ext4_run_lazyinit_thread(void)3923 static int ext4_run_lazyinit_thread(void)
3924 {
3925 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3926 ext4_li_info, "ext4lazyinit");
3927 if (IS_ERR(ext4_lazyinit_task)) {
3928 int err = PTR_ERR(ext4_lazyinit_task);
3929 ext4_clear_request_list();
3930 kfree(ext4_li_info);
3931 ext4_li_info = NULL;
3932 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3933 "initialization thread\n",
3934 err);
3935 return err;
3936 }
3937 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3938 return 0;
3939 }
3940
3941 /*
3942 * Check whether it make sense to run itable init. thread or not.
3943 * If there is at least one uninitialized inode table, return
3944 * corresponding group number, else the loop goes through all
3945 * groups and return total number of groups.
3946 */
ext4_has_uninit_itable(struct super_block * sb)3947 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3948 {
3949 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3950 struct ext4_group_desc *gdp = NULL;
3951
3952 if (!ext4_has_group_desc_csum(sb))
3953 return ngroups;
3954
3955 for (group = 0; group < ngroups; group++) {
3956 gdp = ext4_get_group_desc(sb, group, NULL);
3957 if (!gdp)
3958 continue;
3959
3960 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3961 break;
3962 }
3963
3964 return group;
3965 }
3966
ext4_li_info_new(void)3967 static int ext4_li_info_new(void)
3968 {
3969 struct ext4_lazy_init *eli = NULL;
3970
3971 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3972 if (!eli)
3973 return -ENOMEM;
3974
3975 INIT_LIST_HEAD(&eli->li_request_list);
3976 mutex_init(&eli->li_list_mtx);
3977
3978 eli->li_state |= EXT4_LAZYINIT_QUIT;
3979
3980 ext4_li_info = eli;
3981
3982 return 0;
3983 }
3984
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3985 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3986 ext4_group_t start)
3987 {
3988 struct ext4_li_request *elr;
3989
3990 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3991 if (!elr)
3992 return NULL;
3993
3994 elr->lr_super = sb;
3995 elr->lr_first_not_zeroed = start;
3996 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3997 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3998 elr->lr_next_group = start;
3999 } else {
4000 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4001 }
4002
4003 /*
4004 * Randomize first schedule time of the request to
4005 * spread the inode table initialization requests
4006 * better.
4007 */
4008 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4009 return elr;
4010 }
4011
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4012 int ext4_register_li_request(struct super_block *sb,
4013 ext4_group_t first_not_zeroed)
4014 {
4015 struct ext4_sb_info *sbi = EXT4_SB(sb);
4016 struct ext4_li_request *elr = NULL;
4017 ext4_group_t ngroups = sbi->s_groups_count;
4018 int ret = 0;
4019
4020 mutex_lock(&ext4_li_mtx);
4021 if (sbi->s_li_request != NULL) {
4022 /*
4023 * Reset timeout so it can be computed again, because
4024 * s_li_wait_mult might have changed.
4025 */
4026 sbi->s_li_request->lr_timeout = 0;
4027 goto out;
4028 }
4029
4030 if (sb_rdonly(sb) ||
4031 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4032 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4033 goto out;
4034
4035 elr = ext4_li_request_new(sb, first_not_zeroed);
4036 if (!elr) {
4037 ret = -ENOMEM;
4038 goto out;
4039 }
4040
4041 if (NULL == ext4_li_info) {
4042 ret = ext4_li_info_new();
4043 if (ret)
4044 goto out;
4045 }
4046
4047 mutex_lock(&ext4_li_info->li_list_mtx);
4048 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4049 mutex_unlock(&ext4_li_info->li_list_mtx);
4050
4051 sbi->s_li_request = elr;
4052 /*
4053 * set elr to NULL here since it has been inserted to
4054 * the request_list and the removal and free of it is
4055 * handled by ext4_clear_request_list from now on.
4056 */
4057 elr = NULL;
4058
4059 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4060 ret = ext4_run_lazyinit_thread();
4061 if (ret)
4062 goto out;
4063 }
4064 out:
4065 mutex_unlock(&ext4_li_mtx);
4066 if (ret)
4067 kfree(elr);
4068 return ret;
4069 }
4070
4071 /*
4072 * We do not need to lock anything since this is called on
4073 * module unload.
4074 */
ext4_destroy_lazyinit_thread(void)4075 static void ext4_destroy_lazyinit_thread(void)
4076 {
4077 /*
4078 * If thread exited earlier
4079 * there's nothing to be done.
4080 */
4081 if (!ext4_li_info || !ext4_lazyinit_task)
4082 return;
4083
4084 kthread_stop(ext4_lazyinit_task);
4085 }
4086
set_journal_csum_feature_set(struct super_block * sb)4087 static int set_journal_csum_feature_set(struct super_block *sb)
4088 {
4089 int ret = 1;
4090 int compat, incompat;
4091 struct ext4_sb_info *sbi = EXT4_SB(sb);
4092
4093 if (ext4_has_metadata_csum(sb)) {
4094 /* journal checksum v3 */
4095 compat = 0;
4096 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4097 } else {
4098 /* journal checksum v1 */
4099 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4100 incompat = 0;
4101 }
4102
4103 jbd2_journal_clear_features(sbi->s_journal,
4104 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4105 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4106 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4107 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4108 ret = jbd2_journal_set_features(sbi->s_journal,
4109 compat, 0,
4110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4111 incompat);
4112 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4113 ret = jbd2_journal_set_features(sbi->s_journal,
4114 compat, 0,
4115 incompat);
4116 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4117 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4118 } else {
4119 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4120 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4121 }
4122
4123 return ret;
4124 }
4125
4126 /*
4127 * Note: calculating the overhead so we can be compatible with
4128 * historical BSD practice is quite difficult in the face of
4129 * clusters/bigalloc. This is because multiple metadata blocks from
4130 * different block group can end up in the same allocation cluster.
4131 * Calculating the exact overhead in the face of clustered allocation
4132 * requires either O(all block bitmaps) in memory or O(number of block
4133 * groups**2) in time. We will still calculate the superblock for
4134 * older file systems --- and if we come across with a bigalloc file
4135 * system with zero in s_overhead_clusters the estimate will be close to
4136 * correct especially for very large cluster sizes --- but for newer
4137 * file systems, it's better to calculate this figure once at mkfs
4138 * time, and store it in the superblock. If the superblock value is
4139 * present (even for non-bigalloc file systems), we will use it.
4140 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4141 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4142 char *buf)
4143 {
4144 struct ext4_sb_info *sbi = EXT4_SB(sb);
4145 struct ext4_group_desc *gdp;
4146 ext4_fsblk_t first_block, last_block, b;
4147 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4148 int s, j, count = 0;
4149 int has_super = ext4_bg_has_super(sb, grp);
4150
4151 if (!ext4_has_feature_bigalloc(sb))
4152 return (has_super + ext4_bg_num_gdb(sb, grp) +
4153 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4154 sbi->s_itb_per_group + 2);
4155
4156 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4157 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4158 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4159 for (i = 0; i < ngroups; i++) {
4160 gdp = ext4_get_group_desc(sb, i, NULL);
4161 b = ext4_block_bitmap(sb, gdp);
4162 if (b >= first_block && b <= last_block) {
4163 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4164 count++;
4165 }
4166 b = ext4_inode_bitmap(sb, gdp);
4167 if (b >= first_block && b <= last_block) {
4168 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4169 count++;
4170 }
4171 b = ext4_inode_table(sb, gdp);
4172 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4173 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4174 int c = EXT4_B2C(sbi, b - first_block);
4175 ext4_set_bit(c, buf);
4176 count++;
4177 }
4178 if (i != grp)
4179 continue;
4180 s = 0;
4181 if (ext4_bg_has_super(sb, grp)) {
4182 ext4_set_bit(s++, buf);
4183 count++;
4184 }
4185 j = ext4_bg_num_gdb(sb, grp);
4186 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4187 ext4_error(sb, "Invalid number of block group "
4188 "descriptor blocks: %d", j);
4189 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4190 }
4191 count += j;
4192 for (; j > 0; j--)
4193 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4194 }
4195 if (!count)
4196 return 0;
4197 return EXT4_CLUSTERS_PER_GROUP(sb) -
4198 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4199 }
4200
4201 /*
4202 * Compute the overhead and stash it in sbi->s_overhead
4203 */
ext4_calculate_overhead(struct super_block * sb)4204 int ext4_calculate_overhead(struct super_block *sb)
4205 {
4206 struct ext4_sb_info *sbi = EXT4_SB(sb);
4207 struct ext4_super_block *es = sbi->s_es;
4208 struct inode *j_inode;
4209 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4210 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4211 ext4_fsblk_t overhead = 0;
4212 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4213
4214 if (!buf)
4215 return -ENOMEM;
4216
4217 /*
4218 * Compute the overhead (FS structures). This is constant
4219 * for a given filesystem unless the number of block groups
4220 * changes so we cache the previous value until it does.
4221 */
4222
4223 /*
4224 * All of the blocks before first_data_block are overhead
4225 */
4226 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4227
4228 /*
4229 * Add the overhead found in each block group
4230 */
4231 for (i = 0; i < ngroups; i++) {
4232 int blks;
4233
4234 blks = count_overhead(sb, i, buf);
4235 overhead += blks;
4236 if (blks)
4237 memset(buf, 0, PAGE_SIZE);
4238 cond_resched();
4239 }
4240
4241 /*
4242 * Add the internal journal blocks whether the journal has been
4243 * loaded or not
4244 */
4245 if (sbi->s_journal && !sbi->s_journal_bdev)
4246 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4247 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4248 /* j_inum for internal journal is non-zero */
4249 j_inode = ext4_get_journal_inode(sb, j_inum);
4250 if (!IS_ERR(j_inode)) {
4251 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4252 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4253 iput(j_inode);
4254 } else {
4255 ext4_msg(sb, KERN_ERR, "can't get journal size");
4256 }
4257 }
4258 sbi->s_overhead = overhead;
4259 smp_wmb();
4260 free_page((unsigned long) buf);
4261 return 0;
4262 }
4263
ext4_set_resv_clusters(struct super_block * sb)4264 static void ext4_set_resv_clusters(struct super_block *sb)
4265 {
4266 ext4_fsblk_t resv_clusters;
4267 struct ext4_sb_info *sbi = EXT4_SB(sb);
4268
4269 /*
4270 * There's no need to reserve anything when we aren't using extents.
4271 * The space estimates are exact, there are no unwritten extents,
4272 * hole punching doesn't need new metadata... This is needed especially
4273 * to keep ext2/3 backward compatibility.
4274 */
4275 if (!ext4_has_feature_extents(sb))
4276 return;
4277 /*
4278 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4279 * This should cover the situations where we can not afford to run
4280 * out of space like for example punch hole, or converting
4281 * unwritten extents in delalloc path. In most cases such
4282 * allocation would require 1, or 2 blocks, higher numbers are
4283 * very rare.
4284 */
4285 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4286 sbi->s_cluster_bits);
4287
4288 do_div(resv_clusters, 50);
4289 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4290
4291 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4292 }
4293
ext4_quota_mode(struct super_block * sb)4294 static const char *ext4_quota_mode(struct super_block *sb)
4295 {
4296 #ifdef CONFIG_QUOTA
4297 if (!ext4_quota_capable(sb))
4298 return "none";
4299
4300 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4301 return "journalled";
4302 else
4303 return "writeback";
4304 #else
4305 return "disabled";
4306 #endif
4307 }
4308
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4309 static void ext4_setup_csum_trigger(struct super_block *sb,
4310 enum ext4_journal_trigger_type type,
4311 void (*trigger)(
4312 struct jbd2_buffer_trigger_type *type,
4313 struct buffer_head *bh,
4314 void *mapped_data,
4315 size_t size))
4316 {
4317 struct ext4_sb_info *sbi = EXT4_SB(sb);
4318
4319 sbi->s_journal_triggers[type].sb = sb;
4320 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4321 }
4322
ext4_free_sbi(struct ext4_sb_info * sbi)4323 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4324 {
4325 if (!sbi)
4326 return;
4327
4328 kfree(sbi->s_blockgroup_lock);
4329 fs_put_dax(sbi->s_daxdev, NULL);
4330 kfree(sbi);
4331 }
4332
ext4_alloc_sbi(struct super_block * sb)4333 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4334 {
4335 struct ext4_sb_info *sbi;
4336
4337 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4338 if (!sbi)
4339 return NULL;
4340
4341 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4342 NULL, NULL);
4343
4344 sbi->s_blockgroup_lock =
4345 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4346
4347 if (!sbi->s_blockgroup_lock)
4348 goto err_out;
4349
4350 sb->s_fs_info = sbi;
4351 sbi->s_sb = sb;
4352 return sbi;
4353 err_out:
4354 fs_put_dax(sbi->s_daxdev, NULL);
4355 kfree(sbi);
4356 return NULL;
4357 }
4358
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4359 static void ext4_set_def_opts(struct super_block *sb,
4360 struct ext4_super_block *es)
4361 {
4362 unsigned long def_mount_opts;
4363
4364 /* Set defaults before we parse the mount options */
4365 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4366 set_opt(sb, INIT_INODE_TABLE);
4367 if (def_mount_opts & EXT4_DEFM_DEBUG)
4368 set_opt(sb, DEBUG);
4369 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4370 set_opt(sb, GRPID);
4371 if (def_mount_opts & EXT4_DEFM_UID16)
4372 set_opt(sb, NO_UID32);
4373 /* xattr user namespace & acls are now defaulted on */
4374 set_opt(sb, XATTR_USER);
4375 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4376 set_opt(sb, POSIX_ACL);
4377 #endif
4378 if (ext4_has_feature_fast_commit(sb))
4379 set_opt2(sb, JOURNAL_FAST_COMMIT);
4380 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4381 if (ext4_has_metadata_csum(sb))
4382 set_opt(sb, JOURNAL_CHECKSUM);
4383
4384 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4385 set_opt(sb, JOURNAL_DATA);
4386 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4387 set_opt(sb, ORDERED_DATA);
4388 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4389 set_opt(sb, WRITEBACK_DATA);
4390
4391 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4392 set_opt(sb, ERRORS_PANIC);
4393 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4394 set_opt(sb, ERRORS_CONT);
4395 else
4396 set_opt(sb, ERRORS_RO);
4397 /* block_validity enabled by default; disable with noblock_validity */
4398 set_opt(sb, BLOCK_VALIDITY);
4399 if (def_mount_opts & EXT4_DEFM_DISCARD)
4400 set_opt(sb, DISCARD);
4401
4402 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4403 set_opt(sb, BARRIER);
4404
4405 /*
4406 * enable delayed allocation by default
4407 * Use -o nodelalloc to turn it off
4408 */
4409 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4410 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4411 set_opt(sb, DELALLOC);
4412
4413 if (sb->s_blocksize == PAGE_SIZE)
4414 set_opt(sb, DIOREAD_NOLOCK);
4415 }
4416
ext4_handle_clustersize(struct super_block * sb)4417 static int ext4_handle_clustersize(struct super_block *sb)
4418 {
4419 struct ext4_sb_info *sbi = EXT4_SB(sb);
4420 struct ext4_super_block *es = sbi->s_es;
4421 int clustersize;
4422
4423 /* Handle clustersize */
4424 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4425 if (ext4_has_feature_bigalloc(sb)) {
4426 if (clustersize < sb->s_blocksize) {
4427 ext4_msg(sb, KERN_ERR,
4428 "cluster size (%d) smaller than "
4429 "block size (%lu)", clustersize, sb->s_blocksize);
4430 return -EINVAL;
4431 }
4432 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4433 le32_to_cpu(es->s_log_block_size);
4434 sbi->s_clusters_per_group =
4435 le32_to_cpu(es->s_clusters_per_group);
4436 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4437 ext4_msg(sb, KERN_ERR,
4438 "#clusters per group too big: %lu",
4439 sbi->s_clusters_per_group);
4440 return -EINVAL;
4441 }
4442 if (sbi->s_blocks_per_group !=
4443 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4444 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4445 "clusters per group (%lu) inconsistent",
4446 sbi->s_blocks_per_group,
4447 sbi->s_clusters_per_group);
4448 return -EINVAL;
4449 }
4450 } else {
4451 if (clustersize != sb->s_blocksize) {
4452 ext4_msg(sb, KERN_ERR,
4453 "fragment/cluster size (%d) != "
4454 "block size (%lu)", clustersize, sb->s_blocksize);
4455 return -EINVAL;
4456 }
4457 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4458 ext4_msg(sb, KERN_ERR,
4459 "#blocks per group too big: %lu",
4460 sbi->s_blocks_per_group);
4461 return -EINVAL;
4462 }
4463 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4464 sbi->s_cluster_bits = 0;
4465 }
4466 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4467
4468 /* Do we have standard group size of clustersize * 8 blocks ? */
4469 if (sbi->s_blocks_per_group == clustersize << 3)
4470 set_opt2(sb, STD_GROUP_SIZE);
4471
4472 return 0;
4473 }
4474
ext4_fast_commit_init(struct super_block * sb)4475 static void ext4_fast_commit_init(struct super_block *sb)
4476 {
4477 struct ext4_sb_info *sbi = EXT4_SB(sb);
4478
4479 /* Initialize fast commit stuff */
4480 atomic_set(&sbi->s_fc_subtid, 0);
4481 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4482 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4483 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4484 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4485 sbi->s_fc_bytes = 0;
4486 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4487 sbi->s_fc_ineligible_tid = 0;
4488 spin_lock_init(&sbi->s_fc_lock);
4489 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4490 sbi->s_fc_replay_state.fc_regions = NULL;
4491 sbi->s_fc_replay_state.fc_regions_size = 0;
4492 sbi->s_fc_replay_state.fc_regions_used = 0;
4493 sbi->s_fc_replay_state.fc_regions_valid = 0;
4494 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4495 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4496 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4497 }
4498
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4499 static int ext4_inode_info_init(struct super_block *sb,
4500 struct ext4_super_block *es)
4501 {
4502 struct ext4_sb_info *sbi = EXT4_SB(sb);
4503
4504 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4505 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4506 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4507 } else {
4508 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4509 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4510 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4511 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4512 sbi->s_first_ino);
4513 return -EINVAL;
4514 }
4515 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4516 (!is_power_of_2(sbi->s_inode_size)) ||
4517 (sbi->s_inode_size > sb->s_blocksize)) {
4518 ext4_msg(sb, KERN_ERR,
4519 "unsupported inode size: %d",
4520 sbi->s_inode_size);
4521 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4522 return -EINVAL;
4523 }
4524 /*
4525 * i_atime_extra is the last extra field available for
4526 * [acm]times in struct ext4_inode. Checking for that
4527 * field should suffice to ensure we have extra space
4528 * for all three.
4529 */
4530 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4531 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4532 sb->s_time_gran = 1;
4533 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4534 } else {
4535 sb->s_time_gran = NSEC_PER_SEC;
4536 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4537 }
4538 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4539 }
4540
4541 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4542 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4543 EXT4_GOOD_OLD_INODE_SIZE;
4544 if (ext4_has_feature_extra_isize(sb)) {
4545 unsigned v, max = (sbi->s_inode_size -
4546 EXT4_GOOD_OLD_INODE_SIZE);
4547
4548 v = le16_to_cpu(es->s_want_extra_isize);
4549 if (v > max) {
4550 ext4_msg(sb, KERN_ERR,
4551 "bad s_want_extra_isize: %d", v);
4552 return -EINVAL;
4553 }
4554 if (sbi->s_want_extra_isize < v)
4555 sbi->s_want_extra_isize = v;
4556
4557 v = le16_to_cpu(es->s_min_extra_isize);
4558 if (v > max) {
4559 ext4_msg(sb, KERN_ERR,
4560 "bad s_min_extra_isize: %d", v);
4561 return -EINVAL;
4562 }
4563 if (sbi->s_want_extra_isize < v)
4564 sbi->s_want_extra_isize = v;
4565 }
4566 }
4567
4568 return 0;
4569 }
4570
4571 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4572 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4573 {
4574 const struct ext4_sb_encodings *encoding_info;
4575 struct unicode_map *encoding;
4576 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4577
4578 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4579 return 0;
4580
4581 encoding_info = ext4_sb_read_encoding(es);
4582 if (!encoding_info) {
4583 ext4_msg(sb, KERN_ERR,
4584 "Encoding requested by superblock is unknown");
4585 return -EINVAL;
4586 }
4587
4588 encoding = utf8_load(encoding_info->version);
4589 if (IS_ERR(encoding)) {
4590 ext4_msg(sb, KERN_ERR,
4591 "can't mount with superblock charset: %s-%u.%u.%u "
4592 "not supported by the kernel. flags: 0x%x.",
4593 encoding_info->name,
4594 unicode_major(encoding_info->version),
4595 unicode_minor(encoding_info->version),
4596 unicode_rev(encoding_info->version),
4597 encoding_flags);
4598 return -EINVAL;
4599 }
4600 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4601 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4602 unicode_major(encoding_info->version),
4603 unicode_minor(encoding_info->version),
4604 unicode_rev(encoding_info->version),
4605 encoding_flags);
4606
4607 sb->s_encoding = encoding;
4608 sb->s_encoding_flags = encoding_flags;
4609
4610 return 0;
4611 }
4612 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4613 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4614 {
4615 return 0;
4616 }
4617 #endif
4618
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4619 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4620 {
4621 struct ext4_sb_info *sbi = EXT4_SB(sb);
4622
4623 /* Warn if metadata_csum and gdt_csum are both set. */
4624 if (ext4_has_feature_metadata_csum(sb) &&
4625 ext4_has_feature_gdt_csum(sb))
4626 ext4_warning(sb, "metadata_csum and uninit_bg are "
4627 "redundant flags; please run fsck.");
4628
4629 /* Check for a known checksum algorithm */
4630 if (!ext4_verify_csum_type(sb, es)) {
4631 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4632 "unknown checksum algorithm.");
4633 return -EINVAL;
4634 }
4635 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4636 ext4_orphan_file_block_trigger);
4637
4638 /* Load the checksum driver */
4639 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4640 if (IS_ERR(sbi->s_chksum_driver)) {
4641 int ret = PTR_ERR(sbi->s_chksum_driver);
4642 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4643 sbi->s_chksum_driver = NULL;
4644 return ret;
4645 }
4646
4647 /* Check superblock checksum */
4648 if (!ext4_superblock_csum_verify(sb, es)) {
4649 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4650 "invalid superblock checksum. Run e2fsck?");
4651 return -EFSBADCRC;
4652 }
4653
4654 /* Precompute checksum seed for all metadata */
4655 if (ext4_has_feature_csum_seed(sb))
4656 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4657 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4658 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4659 sizeof(es->s_uuid));
4660 return 0;
4661 }
4662
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4663 static int ext4_check_feature_compatibility(struct super_block *sb,
4664 struct ext4_super_block *es,
4665 int silent)
4666 {
4667 struct ext4_sb_info *sbi = EXT4_SB(sb);
4668
4669 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4670 (ext4_has_compat_features(sb) ||
4671 ext4_has_ro_compat_features(sb) ||
4672 ext4_has_incompat_features(sb)))
4673 ext4_msg(sb, KERN_WARNING,
4674 "feature flags set on rev 0 fs, "
4675 "running e2fsck is recommended");
4676
4677 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4678 set_opt2(sb, HURD_COMPAT);
4679 if (ext4_has_feature_64bit(sb)) {
4680 ext4_msg(sb, KERN_ERR,
4681 "The Hurd can't support 64-bit file systems");
4682 return -EINVAL;
4683 }
4684
4685 /*
4686 * ea_inode feature uses l_i_version field which is not
4687 * available in HURD_COMPAT mode.
4688 */
4689 if (ext4_has_feature_ea_inode(sb)) {
4690 ext4_msg(sb, KERN_ERR,
4691 "ea_inode feature is not supported for Hurd");
4692 return -EINVAL;
4693 }
4694 }
4695
4696 if (IS_EXT2_SB(sb)) {
4697 if (ext2_feature_set_ok(sb))
4698 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4699 "using the ext4 subsystem");
4700 else {
4701 /*
4702 * If we're probing be silent, if this looks like
4703 * it's actually an ext[34] filesystem.
4704 */
4705 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4706 return -EINVAL;
4707 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4708 "to feature incompatibilities");
4709 return -EINVAL;
4710 }
4711 }
4712
4713 if (IS_EXT3_SB(sb)) {
4714 if (ext3_feature_set_ok(sb))
4715 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4716 "using the ext4 subsystem");
4717 else {
4718 /*
4719 * If we're probing be silent, if this looks like
4720 * it's actually an ext4 filesystem.
4721 */
4722 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4723 return -EINVAL;
4724 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4725 "to feature incompatibilities");
4726 return -EINVAL;
4727 }
4728 }
4729
4730 /*
4731 * Check feature flags regardless of the revision level, since we
4732 * previously didn't change the revision level when setting the flags,
4733 * so there is a chance incompat flags are set on a rev 0 filesystem.
4734 */
4735 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4736 return -EINVAL;
4737
4738 if (sbi->s_daxdev) {
4739 if (sb->s_blocksize == PAGE_SIZE)
4740 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4741 else
4742 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4743 }
4744
4745 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4746 if (ext4_has_feature_inline_data(sb)) {
4747 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4748 " that may contain inline data");
4749 return -EINVAL;
4750 }
4751 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4752 ext4_msg(sb, KERN_ERR,
4753 "DAX unsupported by block device.");
4754 return -EINVAL;
4755 }
4756 }
4757
4758 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4759 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4760 es->s_encryption_level);
4761 return -EINVAL;
4762 }
4763
4764 return 0;
4765 }
4766
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4767 static int ext4_check_geometry(struct super_block *sb,
4768 struct ext4_super_block *es)
4769 {
4770 struct ext4_sb_info *sbi = EXT4_SB(sb);
4771 __u64 blocks_count;
4772 int err;
4773
4774 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4775 ext4_msg(sb, KERN_ERR,
4776 "Number of reserved GDT blocks insanely large: %d",
4777 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4778 return -EINVAL;
4779 }
4780 /*
4781 * Test whether we have more sectors than will fit in sector_t,
4782 * and whether the max offset is addressable by the page cache.
4783 */
4784 err = generic_check_addressable(sb->s_blocksize_bits,
4785 ext4_blocks_count(es));
4786 if (err) {
4787 ext4_msg(sb, KERN_ERR, "filesystem"
4788 " too large to mount safely on this system");
4789 return err;
4790 }
4791
4792 /* check blocks count against device size */
4793 blocks_count = sb_bdev_nr_blocks(sb);
4794 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4795 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4796 "exceeds size of device (%llu blocks)",
4797 ext4_blocks_count(es), blocks_count);
4798 return -EINVAL;
4799 }
4800
4801 /*
4802 * It makes no sense for the first data block to be beyond the end
4803 * of the filesystem.
4804 */
4805 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4806 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807 "block %u is beyond end of filesystem (%llu)",
4808 le32_to_cpu(es->s_first_data_block),
4809 ext4_blocks_count(es));
4810 return -EINVAL;
4811 }
4812 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4813 (sbi->s_cluster_ratio == 1)) {
4814 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4815 "block is 0 with a 1k block and cluster size");
4816 return -EINVAL;
4817 }
4818
4819 blocks_count = (ext4_blocks_count(es) -
4820 le32_to_cpu(es->s_first_data_block) +
4821 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4822 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4823 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4824 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4825 "(block count %llu, first data block %u, "
4826 "blocks per group %lu)", blocks_count,
4827 ext4_blocks_count(es),
4828 le32_to_cpu(es->s_first_data_block),
4829 EXT4_BLOCKS_PER_GROUP(sb));
4830 return -EINVAL;
4831 }
4832 sbi->s_groups_count = blocks_count;
4833 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4834 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4835 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4836 le32_to_cpu(es->s_inodes_count)) {
4837 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4838 le32_to_cpu(es->s_inodes_count),
4839 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4840 return -EINVAL;
4841 }
4842
4843 return 0;
4844 }
4845
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4846 static int ext4_group_desc_init(struct super_block *sb,
4847 struct ext4_super_block *es,
4848 ext4_fsblk_t logical_sb_block,
4849 ext4_group_t *first_not_zeroed)
4850 {
4851 struct ext4_sb_info *sbi = EXT4_SB(sb);
4852 unsigned int db_count;
4853 ext4_fsblk_t block;
4854 int i;
4855
4856 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4857 EXT4_DESC_PER_BLOCK(sb);
4858 if (ext4_has_feature_meta_bg(sb)) {
4859 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4860 ext4_msg(sb, KERN_WARNING,
4861 "first meta block group too large: %u "
4862 "(group descriptor block count %u)",
4863 le32_to_cpu(es->s_first_meta_bg), db_count);
4864 return -EINVAL;
4865 }
4866 }
4867 rcu_assign_pointer(sbi->s_group_desc,
4868 kvmalloc_array(db_count,
4869 sizeof(struct buffer_head *),
4870 GFP_KERNEL));
4871 if (sbi->s_group_desc == NULL) {
4872 ext4_msg(sb, KERN_ERR, "not enough memory");
4873 return -ENOMEM;
4874 }
4875
4876 bgl_lock_init(sbi->s_blockgroup_lock);
4877
4878 /* Pre-read the descriptors into the buffer cache */
4879 for (i = 0; i < db_count; i++) {
4880 block = descriptor_loc(sb, logical_sb_block, i);
4881 ext4_sb_breadahead_unmovable(sb, block);
4882 }
4883
4884 for (i = 0; i < db_count; i++) {
4885 struct buffer_head *bh;
4886
4887 block = descriptor_loc(sb, logical_sb_block, i);
4888 bh = ext4_sb_bread_unmovable(sb, block);
4889 if (IS_ERR(bh)) {
4890 ext4_msg(sb, KERN_ERR,
4891 "can't read group descriptor %d", i);
4892 sbi->s_gdb_count = i;
4893 return PTR_ERR(bh);
4894 }
4895 rcu_read_lock();
4896 rcu_dereference(sbi->s_group_desc)[i] = bh;
4897 rcu_read_unlock();
4898 }
4899 sbi->s_gdb_count = db_count;
4900 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4901 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4902 return -EFSCORRUPTED;
4903 }
4904
4905 return 0;
4906 }
4907
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4908 static int ext4_load_and_init_journal(struct super_block *sb,
4909 struct ext4_super_block *es,
4910 struct ext4_fs_context *ctx)
4911 {
4912 struct ext4_sb_info *sbi = EXT4_SB(sb);
4913 int err;
4914
4915 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4916 if (err)
4917 return err;
4918
4919 if (ext4_has_feature_64bit(sb) &&
4920 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4921 JBD2_FEATURE_INCOMPAT_64BIT)) {
4922 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4923 goto out;
4924 }
4925
4926 if (!set_journal_csum_feature_set(sb)) {
4927 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4928 "feature set");
4929 goto out;
4930 }
4931
4932 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4933 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4934 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4935 ext4_msg(sb, KERN_ERR,
4936 "Failed to set fast commit journal feature");
4937 goto out;
4938 }
4939
4940 /* We have now updated the journal if required, so we can
4941 * validate the data journaling mode. */
4942 switch (test_opt(sb, DATA_FLAGS)) {
4943 case 0:
4944 /* No mode set, assume a default based on the journal
4945 * capabilities: ORDERED_DATA if the journal can
4946 * cope, else JOURNAL_DATA
4947 */
4948 if (jbd2_journal_check_available_features
4949 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4950 set_opt(sb, ORDERED_DATA);
4951 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4952 } else {
4953 set_opt(sb, JOURNAL_DATA);
4954 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4955 }
4956 break;
4957
4958 case EXT4_MOUNT_ORDERED_DATA:
4959 case EXT4_MOUNT_WRITEBACK_DATA:
4960 if (!jbd2_journal_check_available_features
4961 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4962 ext4_msg(sb, KERN_ERR, "Journal does not support "
4963 "requested data journaling mode");
4964 goto out;
4965 }
4966 break;
4967 default:
4968 break;
4969 }
4970
4971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4972 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4973 ext4_msg(sb, KERN_ERR, "can't mount with "
4974 "journal_async_commit in data=ordered mode");
4975 goto out;
4976 }
4977
4978 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4979
4980 sbi->s_journal->j_submit_inode_data_buffers =
4981 ext4_journal_submit_inode_data_buffers;
4982 sbi->s_journal->j_finish_inode_data_buffers =
4983 ext4_journal_finish_inode_data_buffers;
4984
4985 return 0;
4986
4987 out:
4988 /* flush s_sb_upd_work before destroying the journal. */
4989 flush_work(&sbi->s_sb_upd_work);
4990 jbd2_journal_destroy(sbi->s_journal);
4991 sbi->s_journal = NULL;
4992 return -EINVAL;
4993 }
4994
ext4_check_journal_data_mode(struct super_block * sb)4995 static int ext4_check_journal_data_mode(struct super_block *sb)
4996 {
4997 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4998 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4999 "data=journal disables delayed allocation, "
5000 "dioread_nolock, O_DIRECT and fast_commit support!\n");
5001 /* can't mount with both data=journal and dioread_nolock. */
5002 clear_opt(sb, DIOREAD_NOLOCK);
5003 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5004 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5005 ext4_msg(sb, KERN_ERR, "can't mount with "
5006 "both data=journal and delalloc");
5007 return -EINVAL;
5008 }
5009 if (test_opt(sb, DAX_ALWAYS)) {
5010 ext4_msg(sb, KERN_ERR, "can't mount with "
5011 "both data=journal and dax");
5012 return -EINVAL;
5013 }
5014 if (ext4_has_feature_encrypt(sb)) {
5015 ext4_msg(sb, KERN_WARNING,
5016 "encrypted files will use data=ordered "
5017 "instead of data journaling mode");
5018 }
5019 if (test_opt(sb, DELALLOC))
5020 clear_opt(sb, DELALLOC);
5021 } else {
5022 sb->s_iflags |= SB_I_CGROUPWB;
5023 }
5024
5025 return 0;
5026 }
5027
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5028 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5029 int silent)
5030 {
5031 struct ext4_sb_info *sbi = EXT4_SB(sb);
5032 struct ext4_super_block *es;
5033 ext4_fsblk_t logical_sb_block;
5034 unsigned long offset = 0;
5035 struct buffer_head *bh;
5036 int ret = -EINVAL;
5037 int blocksize;
5038
5039 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5040 if (!blocksize) {
5041 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5042 return -EINVAL;
5043 }
5044
5045 /*
5046 * The ext4 superblock will not be buffer aligned for other than 1kB
5047 * block sizes. We need to calculate the offset from buffer start.
5048 */
5049 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5050 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5051 offset = do_div(logical_sb_block, blocksize);
5052 } else {
5053 logical_sb_block = sbi->s_sb_block;
5054 }
5055
5056 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5057 if (IS_ERR(bh)) {
5058 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5059 return PTR_ERR(bh);
5060 }
5061 /*
5062 * Note: s_es must be initialized as soon as possible because
5063 * some ext4 macro-instructions depend on its value
5064 */
5065 es = (struct ext4_super_block *) (bh->b_data + offset);
5066 sbi->s_es = es;
5067 sb->s_magic = le16_to_cpu(es->s_magic);
5068 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5069 if (!silent)
5070 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5071 goto out;
5072 }
5073
5074 if (le32_to_cpu(es->s_log_block_size) >
5075 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5076 ext4_msg(sb, KERN_ERR,
5077 "Invalid log block size: %u",
5078 le32_to_cpu(es->s_log_block_size));
5079 goto out;
5080 }
5081 if (le32_to_cpu(es->s_log_cluster_size) >
5082 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5083 ext4_msg(sb, KERN_ERR,
5084 "Invalid log cluster size: %u",
5085 le32_to_cpu(es->s_log_cluster_size));
5086 goto out;
5087 }
5088
5089 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5090
5091 /*
5092 * If the default block size is not the same as the real block size,
5093 * we need to reload it.
5094 */
5095 if (sb->s_blocksize == blocksize) {
5096 *lsb = logical_sb_block;
5097 sbi->s_sbh = bh;
5098 return 0;
5099 }
5100
5101 /*
5102 * bh must be released before kill_bdev(), otherwise
5103 * it won't be freed and its page also. kill_bdev()
5104 * is called by sb_set_blocksize().
5105 */
5106 brelse(bh);
5107 /* Validate the filesystem blocksize */
5108 if (!sb_set_blocksize(sb, blocksize)) {
5109 ext4_msg(sb, KERN_ERR, "bad block size %d",
5110 blocksize);
5111 bh = NULL;
5112 goto out;
5113 }
5114
5115 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5116 offset = do_div(logical_sb_block, blocksize);
5117 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5118 if (IS_ERR(bh)) {
5119 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5120 ret = PTR_ERR(bh);
5121 bh = NULL;
5122 goto out;
5123 }
5124 es = (struct ext4_super_block *)(bh->b_data + offset);
5125 sbi->s_es = es;
5126 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5127 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5128 goto out;
5129 }
5130 *lsb = logical_sb_block;
5131 sbi->s_sbh = bh;
5132 return 0;
5133 out:
5134 brelse(bh);
5135 return ret;
5136 }
5137
ext4_hash_info_init(struct super_block * sb)5138 static void ext4_hash_info_init(struct super_block *sb)
5139 {
5140 struct ext4_sb_info *sbi = EXT4_SB(sb);
5141 struct ext4_super_block *es = sbi->s_es;
5142 unsigned int i;
5143
5144 for (i = 0; i < 4; i++)
5145 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5146
5147 sbi->s_def_hash_version = es->s_def_hash_version;
5148 if (ext4_has_feature_dir_index(sb)) {
5149 i = le32_to_cpu(es->s_flags);
5150 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5151 sbi->s_hash_unsigned = 3;
5152 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5153 #ifdef __CHAR_UNSIGNED__
5154 if (!sb_rdonly(sb))
5155 es->s_flags |=
5156 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5157 sbi->s_hash_unsigned = 3;
5158 #else
5159 if (!sb_rdonly(sb))
5160 es->s_flags |=
5161 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5162 #endif
5163 }
5164 }
5165 }
5166
ext4_block_group_meta_init(struct super_block * sb,int silent)5167 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5168 {
5169 struct ext4_sb_info *sbi = EXT4_SB(sb);
5170 struct ext4_super_block *es = sbi->s_es;
5171 int has_huge_files;
5172
5173 has_huge_files = ext4_has_feature_huge_file(sb);
5174 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5175 has_huge_files);
5176 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5177
5178 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5179 if (ext4_has_feature_64bit(sb)) {
5180 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5181 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5182 !is_power_of_2(sbi->s_desc_size)) {
5183 ext4_msg(sb, KERN_ERR,
5184 "unsupported descriptor size %lu",
5185 sbi->s_desc_size);
5186 return -EINVAL;
5187 }
5188 } else
5189 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5190
5191 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5192 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5193
5194 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5195 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5196 if (!silent)
5197 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5198 return -EINVAL;
5199 }
5200 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5201 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5202 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5203 sbi->s_inodes_per_group);
5204 return -EINVAL;
5205 }
5206 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5207 sbi->s_inodes_per_block;
5208 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5209 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5210 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5211 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5212
5213 return 0;
5214 }
5215
5216 /*
5217 * It's hard to get stripe aligned blocks if stripe is not aligned with
5218 * cluster, just disable stripe and alert user to simplify code and avoid
5219 * stripe aligned allocation which will rarely succeed.
5220 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5221 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5222 {
5223 struct ext4_sb_info *sbi = EXT4_SB(sb);
5224 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5225 stripe % sbi->s_cluster_ratio != 0);
5226 }
5227
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5228 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5229 {
5230 struct ext4_super_block *es = NULL;
5231 struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 ext4_fsblk_t logical_sb_block;
5233 struct inode *root;
5234 int needs_recovery;
5235 int err;
5236 ext4_group_t first_not_zeroed;
5237 struct ext4_fs_context *ctx = fc->fs_private;
5238 int silent = fc->sb_flags & SB_SILENT;
5239
5240 /* Set defaults for the variables that will be set during parsing */
5241 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5242 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5243
5244 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5245 sbi->s_sectors_written_start =
5246 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5247
5248 err = ext4_load_super(sb, &logical_sb_block, silent);
5249 if (err)
5250 goto out_fail;
5251
5252 es = sbi->s_es;
5253 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5254
5255 err = ext4_init_metadata_csum(sb, es);
5256 if (err)
5257 goto failed_mount;
5258
5259 ext4_set_def_opts(sb, es);
5260
5261 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5262 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5263 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5264 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5265 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5266
5267 /*
5268 * set default s_li_wait_mult for lazyinit, for the case there is
5269 * no mount option specified.
5270 */
5271 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5272
5273 err = ext4_inode_info_init(sb, es);
5274 if (err)
5275 goto failed_mount;
5276
5277 err = parse_apply_sb_mount_options(sb, ctx);
5278 if (err < 0)
5279 goto failed_mount;
5280
5281 sbi->s_def_mount_opt = sbi->s_mount_opt;
5282 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5283
5284 err = ext4_check_opt_consistency(fc, sb);
5285 if (err < 0)
5286 goto failed_mount;
5287
5288 ext4_apply_options(fc, sb);
5289
5290 err = ext4_encoding_init(sb, es);
5291 if (err)
5292 goto failed_mount;
5293
5294 err = ext4_check_journal_data_mode(sb);
5295 if (err)
5296 goto failed_mount;
5297
5298 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5299 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5300
5301 /* i_version is always enabled now */
5302 sb->s_flags |= SB_I_VERSION;
5303
5304 err = ext4_check_feature_compatibility(sb, es, silent);
5305 if (err)
5306 goto failed_mount;
5307
5308 err = ext4_block_group_meta_init(sb, silent);
5309 if (err)
5310 goto failed_mount;
5311
5312 ext4_hash_info_init(sb);
5313
5314 err = ext4_handle_clustersize(sb);
5315 if (err)
5316 goto failed_mount;
5317
5318 err = ext4_check_geometry(sb, es);
5319 if (err)
5320 goto failed_mount;
5321
5322 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5323 spin_lock_init(&sbi->s_error_lock);
5324 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5325
5326 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5327 if (err)
5328 goto failed_mount3;
5329
5330 err = ext4_es_register_shrinker(sbi);
5331 if (err)
5332 goto failed_mount3;
5333
5334 sbi->s_stripe = ext4_get_stripe_size(sbi);
5335 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5336 ext4_msg(sb, KERN_WARNING,
5337 "stripe (%lu) is not aligned with cluster size (%u), "
5338 "stripe is disabled",
5339 sbi->s_stripe, sbi->s_cluster_ratio);
5340 sbi->s_stripe = 0;
5341 }
5342 sbi->s_extent_max_zeroout_kb = 32;
5343
5344 /*
5345 * set up enough so that it can read an inode
5346 */
5347 sb->s_op = &ext4_sops;
5348 sb->s_export_op = &ext4_export_ops;
5349 sb->s_xattr = ext4_xattr_handlers;
5350 #ifdef CONFIG_FS_ENCRYPTION
5351 sb->s_cop = &ext4_cryptops;
5352 #endif
5353 #ifdef CONFIG_FS_VERITY
5354 sb->s_vop = &ext4_verityops;
5355 #endif
5356 #ifdef CONFIG_QUOTA
5357 sb->dq_op = &ext4_quota_operations;
5358 if (ext4_has_feature_quota(sb))
5359 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5360 else
5361 sb->s_qcop = &ext4_qctl_operations;
5362 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5363 #endif
5364 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5365
5366 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5367 mutex_init(&sbi->s_orphan_lock);
5368
5369 ext4_fast_commit_init(sb);
5370
5371 sb->s_root = NULL;
5372
5373 needs_recovery = (es->s_last_orphan != 0 ||
5374 ext4_has_feature_orphan_present(sb) ||
5375 ext4_has_feature_journal_needs_recovery(sb));
5376
5377 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5378 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5379 if (err)
5380 goto failed_mount3a;
5381 }
5382
5383 err = -EINVAL;
5384 /*
5385 * The first inode we look at is the journal inode. Don't try
5386 * root first: it may be modified in the journal!
5387 */
5388 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5389 err = ext4_load_and_init_journal(sb, es, ctx);
5390 if (err)
5391 goto failed_mount3a;
5392 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5393 ext4_has_feature_journal_needs_recovery(sb)) {
5394 ext4_msg(sb, KERN_ERR, "required journal recovery "
5395 "suppressed and not mounted read-only");
5396 goto failed_mount3a;
5397 } else {
5398 /* Nojournal mode, all journal mount options are illegal */
5399 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5400 ext4_msg(sb, KERN_ERR, "can't mount with "
5401 "journal_async_commit, fs mounted w/o journal");
5402 goto failed_mount3a;
5403 }
5404
5405 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5406 ext4_msg(sb, KERN_ERR, "can't mount with "
5407 "journal_checksum, fs mounted w/o journal");
5408 goto failed_mount3a;
5409 }
5410 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5411 ext4_msg(sb, KERN_ERR, "can't mount with "
5412 "commit=%lu, fs mounted w/o journal",
5413 sbi->s_commit_interval / HZ);
5414 goto failed_mount3a;
5415 }
5416 if (EXT4_MOUNT_DATA_FLAGS &
5417 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5418 ext4_msg(sb, KERN_ERR, "can't mount with "
5419 "data=, fs mounted w/o journal");
5420 goto failed_mount3a;
5421 }
5422 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5423 clear_opt(sb, JOURNAL_CHECKSUM);
5424 clear_opt(sb, DATA_FLAGS);
5425 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5426 sbi->s_journal = NULL;
5427 needs_recovery = 0;
5428 }
5429
5430 if (!test_opt(sb, NO_MBCACHE)) {
5431 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5432 if (!sbi->s_ea_block_cache) {
5433 ext4_msg(sb, KERN_ERR,
5434 "Failed to create ea_block_cache");
5435 err = -EINVAL;
5436 goto failed_mount_wq;
5437 }
5438
5439 if (ext4_has_feature_ea_inode(sb)) {
5440 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5441 if (!sbi->s_ea_inode_cache) {
5442 ext4_msg(sb, KERN_ERR,
5443 "Failed to create ea_inode_cache");
5444 err = -EINVAL;
5445 goto failed_mount_wq;
5446 }
5447 }
5448 }
5449
5450 /*
5451 * Get the # of file system overhead blocks from the
5452 * superblock if present.
5453 */
5454 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5455 /* ignore the precalculated value if it is ridiculous */
5456 if (sbi->s_overhead > ext4_blocks_count(es))
5457 sbi->s_overhead = 0;
5458 /*
5459 * If the bigalloc feature is not enabled recalculating the
5460 * overhead doesn't take long, so we might as well just redo
5461 * it to make sure we are using the correct value.
5462 */
5463 if (!ext4_has_feature_bigalloc(sb))
5464 sbi->s_overhead = 0;
5465 if (sbi->s_overhead == 0) {
5466 err = ext4_calculate_overhead(sb);
5467 if (err)
5468 goto failed_mount_wq;
5469 }
5470
5471 /*
5472 * The maximum number of concurrent works can be high and
5473 * concurrency isn't really necessary. Limit it to 1.
5474 */
5475 EXT4_SB(sb)->rsv_conversion_wq =
5476 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5477 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5478 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5479 err = -ENOMEM;
5480 goto failed_mount4;
5481 }
5482
5483 /*
5484 * The jbd2_journal_load will have done any necessary log recovery,
5485 * so we can safely mount the rest of the filesystem now.
5486 */
5487
5488 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5489 if (IS_ERR(root)) {
5490 ext4_msg(sb, KERN_ERR, "get root inode failed");
5491 err = PTR_ERR(root);
5492 root = NULL;
5493 goto failed_mount4;
5494 }
5495 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5496 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5497 iput(root);
5498 err = -EFSCORRUPTED;
5499 goto failed_mount4;
5500 }
5501
5502 sb->s_root = d_make_root(root);
5503 if (!sb->s_root) {
5504 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5505 err = -ENOMEM;
5506 goto failed_mount4;
5507 }
5508
5509 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5510 if (err == -EROFS) {
5511 sb->s_flags |= SB_RDONLY;
5512 } else if (err)
5513 goto failed_mount4a;
5514
5515 ext4_set_resv_clusters(sb);
5516
5517 if (test_opt(sb, BLOCK_VALIDITY)) {
5518 err = ext4_setup_system_zone(sb);
5519 if (err) {
5520 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5521 "zone (%d)", err);
5522 goto failed_mount4a;
5523 }
5524 }
5525 ext4_fc_replay_cleanup(sb);
5526
5527 ext4_ext_init(sb);
5528
5529 /*
5530 * Enable optimize_scan if number of groups is > threshold. This can be
5531 * turned off by passing "mb_optimize_scan=0". This can also be
5532 * turned on forcefully by passing "mb_optimize_scan=1".
5533 */
5534 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5535 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5536 set_opt2(sb, MB_OPTIMIZE_SCAN);
5537 else
5538 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5539 }
5540
5541 err = ext4_mb_init(sb);
5542 if (err) {
5543 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5544 err);
5545 goto failed_mount5;
5546 }
5547
5548 /*
5549 * We can only set up the journal commit callback once
5550 * mballoc is initialized
5551 */
5552 if (sbi->s_journal)
5553 sbi->s_journal->j_commit_callback =
5554 ext4_journal_commit_callback;
5555
5556 err = ext4_percpu_param_init(sbi);
5557 if (err)
5558 goto failed_mount6;
5559
5560 if (ext4_has_feature_flex_bg(sb))
5561 if (!ext4_fill_flex_info(sb)) {
5562 ext4_msg(sb, KERN_ERR,
5563 "unable to initialize "
5564 "flex_bg meta info!");
5565 err = -ENOMEM;
5566 goto failed_mount6;
5567 }
5568
5569 err = ext4_register_li_request(sb, first_not_zeroed);
5570 if (err)
5571 goto failed_mount6;
5572
5573 err = ext4_init_orphan_info(sb);
5574 if (err)
5575 goto failed_mount7;
5576 #ifdef CONFIG_QUOTA
5577 /* Enable quota usage during mount. */
5578 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5579 err = ext4_enable_quotas(sb);
5580 if (err)
5581 goto failed_mount8;
5582 }
5583 #endif /* CONFIG_QUOTA */
5584
5585 /*
5586 * Save the original bdev mapping's wb_err value which could be
5587 * used to detect the metadata async write error.
5588 */
5589 spin_lock_init(&sbi->s_bdev_wb_lock);
5590 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5591 &sbi->s_bdev_wb_err);
5592 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5593 ext4_orphan_cleanup(sb, es);
5594 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5595 /*
5596 * Update the checksum after updating free space/inode counters and
5597 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5598 * checksum in the buffer cache until it is written out and
5599 * e2fsprogs programs trying to open a file system immediately
5600 * after it is mounted can fail.
5601 */
5602 ext4_superblock_csum_set(sb);
5603 if (needs_recovery) {
5604 ext4_msg(sb, KERN_INFO, "recovery complete");
5605 err = ext4_mark_recovery_complete(sb, es);
5606 if (err)
5607 goto failed_mount9;
5608 }
5609
5610 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5611 ext4_msg(sb, KERN_WARNING,
5612 "mounting with \"discard\" option, but the device does not support discard");
5613
5614 if (es->s_error_count)
5615 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5616
5617 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5618 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5619 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5620 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5621 atomic_set(&sbi->s_warning_count, 0);
5622 atomic_set(&sbi->s_msg_count, 0);
5623
5624 /* Register sysfs after all initializations are complete. */
5625 err = ext4_register_sysfs(sb);
5626 if (err)
5627 goto failed_mount9;
5628
5629 return 0;
5630
5631 failed_mount9:
5632 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5633 failed_mount8: __maybe_unused
5634 ext4_release_orphan_info(sb);
5635 failed_mount7:
5636 ext4_unregister_li_request(sb);
5637 failed_mount6:
5638 ext4_mb_release(sb);
5639 ext4_flex_groups_free(sbi);
5640 ext4_percpu_param_destroy(sbi);
5641 failed_mount5:
5642 ext4_ext_release(sb);
5643 ext4_release_system_zone(sb);
5644 failed_mount4a:
5645 dput(sb->s_root);
5646 sb->s_root = NULL;
5647 failed_mount4:
5648 ext4_msg(sb, KERN_ERR, "mount failed");
5649 if (EXT4_SB(sb)->rsv_conversion_wq)
5650 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5651 failed_mount_wq:
5652 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5653 sbi->s_ea_inode_cache = NULL;
5654
5655 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5656 sbi->s_ea_block_cache = NULL;
5657
5658 if (sbi->s_journal) {
5659 /* flush s_sb_upd_work before journal destroy. */
5660 flush_work(&sbi->s_sb_upd_work);
5661 jbd2_journal_destroy(sbi->s_journal);
5662 sbi->s_journal = NULL;
5663 }
5664 failed_mount3a:
5665 ext4_es_unregister_shrinker(sbi);
5666 failed_mount3:
5667 /* flush s_sb_upd_work before sbi destroy */
5668 flush_work(&sbi->s_sb_upd_work);
5669 ext4_stop_mmpd(sbi);
5670 del_timer_sync(&sbi->s_err_report);
5671 ext4_group_desc_free(sbi);
5672 failed_mount:
5673 if (sbi->s_chksum_driver)
5674 crypto_free_shash(sbi->s_chksum_driver);
5675
5676 #if IS_ENABLED(CONFIG_UNICODE)
5677 utf8_unload(sb->s_encoding);
5678 #endif
5679
5680 #ifdef CONFIG_QUOTA
5681 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5682 kfree(get_qf_name(sb, sbi, i));
5683 #endif
5684 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5685 brelse(sbi->s_sbh);
5686 if (sbi->s_journal_bdev) {
5687 invalidate_bdev(sbi->s_journal_bdev);
5688 blkdev_put(sbi->s_journal_bdev, sb);
5689 }
5690 out_fail:
5691 invalidate_bdev(sb->s_bdev);
5692 sb->s_fs_info = NULL;
5693 return err;
5694 }
5695
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5696 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5697 {
5698 struct ext4_fs_context *ctx = fc->fs_private;
5699 struct ext4_sb_info *sbi;
5700 const char *descr;
5701 int ret;
5702
5703 sbi = ext4_alloc_sbi(sb);
5704 if (!sbi)
5705 return -ENOMEM;
5706
5707 fc->s_fs_info = sbi;
5708
5709 /* Cleanup superblock name */
5710 strreplace(sb->s_id, '/', '!');
5711
5712 sbi->s_sb_block = 1; /* Default super block location */
5713 if (ctx->spec & EXT4_SPEC_s_sb_block)
5714 sbi->s_sb_block = ctx->s_sb_block;
5715
5716 ret = __ext4_fill_super(fc, sb);
5717 if (ret < 0)
5718 goto free_sbi;
5719
5720 if (sbi->s_journal) {
5721 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5722 descr = " journalled data mode";
5723 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5724 descr = " ordered data mode";
5725 else
5726 descr = " writeback data mode";
5727 } else
5728 descr = "out journal";
5729
5730 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5731 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5732 "Quota mode: %s.", &sb->s_uuid,
5733 sb_rdonly(sb) ? "ro" : "r/w", descr,
5734 ext4_quota_mode(sb));
5735
5736 /* Update the s_overhead_clusters if necessary */
5737 ext4_update_overhead(sb, false);
5738 return 0;
5739
5740 free_sbi:
5741 ext4_free_sbi(sbi);
5742 fc->s_fs_info = NULL;
5743 return ret;
5744 }
5745
ext4_get_tree(struct fs_context * fc)5746 static int ext4_get_tree(struct fs_context *fc)
5747 {
5748 return get_tree_bdev(fc, ext4_fill_super);
5749 }
5750
5751 /*
5752 * Setup any per-fs journal parameters now. We'll do this both on
5753 * initial mount, once the journal has been initialised but before we've
5754 * done any recovery; and again on any subsequent remount.
5755 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5756 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5757 {
5758 struct ext4_sb_info *sbi = EXT4_SB(sb);
5759
5760 journal->j_commit_interval = sbi->s_commit_interval;
5761 journal->j_min_batch_time = sbi->s_min_batch_time;
5762 journal->j_max_batch_time = sbi->s_max_batch_time;
5763 ext4_fc_init(sb, journal);
5764
5765 write_lock(&journal->j_state_lock);
5766 if (test_opt(sb, BARRIER))
5767 journal->j_flags |= JBD2_BARRIER;
5768 else
5769 journal->j_flags &= ~JBD2_BARRIER;
5770 if (test_opt(sb, DATA_ERR_ABORT))
5771 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5772 else
5773 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5774 /*
5775 * Always enable journal cycle record option, letting the journal
5776 * records log transactions continuously between each mount.
5777 */
5778 journal->j_flags |= JBD2_CYCLE_RECORD;
5779 write_unlock(&journal->j_state_lock);
5780 }
5781
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5782 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5783 unsigned int journal_inum)
5784 {
5785 struct inode *journal_inode;
5786
5787 /*
5788 * Test for the existence of a valid inode on disk. Bad things
5789 * happen if we iget() an unused inode, as the subsequent iput()
5790 * will try to delete it.
5791 */
5792 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5793 if (IS_ERR(journal_inode)) {
5794 ext4_msg(sb, KERN_ERR, "no journal found");
5795 return ERR_CAST(journal_inode);
5796 }
5797 if (!journal_inode->i_nlink) {
5798 make_bad_inode(journal_inode);
5799 iput(journal_inode);
5800 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5801 return ERR_PTR(-EFSCORRUPTED);
5802 }
5803 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5804 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5805 iput(journal_inode);
5806 return ERR_PTR(-EFSCORRUPTED);
5807 }
5808
5809 ext4_debug("Journal inode found at %p: %lld bytes\n",
5810 journal_inode, journal_inode->i_size);
5811 return journal_inode;
5812 }
5813
ext4_journal_bmap(journal_t * journal,sector_t * block)5814 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5815 {
5816 struct ext4_map_blocks map;
5817 int ret;
5818
5819 if (journal->j_inode == NULL)
5820 return 0;
5821
5822 map.m_lblk = *block;
5823 map.m_len = 1;
5824 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5825 if (ret <= 0) {
5826 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5827 "journal bmap failed: block %llu ret %d\n",
5828 *block, ret);
5829 jbd2_journal_abort(journal, ret ? ret : -EIO);
5830 return ret;
5831 }
5832 *block = map.m_pblk;
5833 return 0;
5834 }
5835
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5836 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5837 unsigned int journal_inum)
5838 {
5839 struct inode *journal_inode;
5840 journal_t *journal;
5841
5842 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5843 if (IS_ERR(journal_inode))
5844 return ERR_CAST(journal_inode);
5845
5846 journal = jbd2_journal_init_inode(journal_inode);
5847 if (IS_ERR(journal)) {
5848 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5849 iput(journal_inode);
5850 return ERR_CAST(journal);
5851 }
5852 journal->j_private = sb;
5853 journal->j_bmap = ext4_journal_bmap;
5854 ext4_init_journal_params(sb, journal);
5855 return journal;
5856 }
5857
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5858 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5859 dev_t j_dev, ext4_fsblk_t *j_start,
5860 ext4_fsblk_t *j_len)
5861 {
5862 struct buffer_head *bh;
5863 struct block_device *bdev;
5864 int hblock, blocksize;
5865 ext4_fsblk_t sb_block;
5866 unsigned long offset;
5867 struct ext4_super_block *es;
5868 int errno;
5869
5870 /* see get_tree_bdev why this is needed and safe */
5871 up_write(&sb->s_umount);
5872 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5873 &fs_holder_ops);
5874 down_write(&sb->s_umount);
5875 if (IS_ERR(bdev)) {
5876 ext4_msg(sb, KERN_ERR,
5877 "failed to open journal device unknown-block(%u,%u) %ld",
5878 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5879 return ERR_CAST(bdev);
5880 }
5881
5882 blocksize = sb->s_blocksize;
5883 hblock = bdev_logical_block_size(bdev);
5884 if (blocksize < hblock) {
5885 ext4_msg(sb, KERN_ERR,
5886 "blocksize too small for journal device");
5887 errno = -EINVAL;
5888 goto out_bdev;
5889 }
5890
5891 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5892 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5893 set_blocksize(bdev, blocksize);
5894 bh = __bread(bdev, sb_block, blocksize);
5895 if (!bh) {
5896 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5897 "external journal");
5898 errno = -EINVAL;
5899 goto out_bdev;
5900 }
5901
5902 es = (struct ext4_super_block *) (bh->b_data + offset);
5903 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5904 !(le32_to_cpu(es->s_feature_incompat) &
5905 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5906 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5907 errno = -EFSCORRUPTED;
5908 goto out_bh;
5909 }
5910
5911 if ((le32_to_cpu(es->s_feature_ro_compat) &
5912 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5913 es->s_checksum != ext4_superblock_csum(sb, es)) {
5914 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5915 errno = -EFSCORRUPTED;
5916 goto out_bh;
5917 }
5918
5919 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5920 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5921 errno = -EFSCORRUPTED;
5922 goto out_bh;
5923 }
5924
5925 *j_start = sb_block + 1;
5926 *j_len = ext4_blocks_count(es);
5927 brelse(bh);
5928 return bdev;
5929
5930 out_bh:
5931 brelse(bh);
5932 out_bdev:
5933 blkdev_put(bdev, sb);
5934 return ERR_PTR(errno);
5935 }
5936
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5937 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5938 dev_t j_dev)
5939 {
5940 journal_t *journal;
5941 ext4_fsblk_t j_start;
5942 ext4_fsblk_t j_len;
5943 struct block_device *journal_bdev;
5944 int errno = 0;
5945
5946 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5947 if (IS_ERR(journal_bdev))
5948 return ERR_CAST(journal_bdev);
5949
5950 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5951 j_len, sb->s_blocksize);
5952 if (IS_ERR(journal)) {
5953 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5954 errno = PTR_ERR(journal);
5955 goto out_bdev;
5956 }
5957 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5958 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5959 "user (unsupported) - %d",
5960 be32_to_cpu(journal->j_superblock->s_nr_users));
5961 errno = -EINVAL;
5962 goto out_journal;
5963 }
5964 journal->j_private = sb;
5965 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5966 ext4_init_journal_params(sb, journal);
5967 return journal;
5968
5969 out_journal:
5970 jbd2_journal_destroy(journal);
5971 out_bdev:
5972 blkdev_put(journal_bdev, sb);
5973 return ERR_PTR(errno);
5974 }
5975
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5976 static int ext4_load_journal(struct super_block *sb,
5977 struct ext4_super_block *es,
5978 unsigned long journal_devnum)
5979 {
5980 journal_t *journal;
5981 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5982 dev_t journal_dev;
5983 int err = 0;
5984 int really_read_only;
5985 int journal_dev_ro;
5986
5987 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5988 return -EFSCORRUPTED;
5989
5990 if (journal_devnum &&
5991 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5992 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5993 "numbers have changed");
5994 journal_dev = new_decode_dev(journal_devnum);
5995 } else
5996 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5997
5998 if (journal_inum && journal_dev) {
5999 ext4_msg(sb, KERN_ERR,
6000 "filesystem has both journal inode and journal device!");
6001 return -EINVAL;
6002 }
6003
6004 if (journal_inum) {
6005 journal = ext4_open_inode_journal(sb, journal_inum);
6006 if (IS_ERR(journal))
6007 return PTR_ERR(journal);
6008 } else {
6009 journal = ext4_open_dev_journal(sb, journal_dev);
6010 if (IS_ERR(journal))
6011 return PTR_ERR(journal);
6012 }
6013
6014 journal_dev_ro = bdev_read_only(journal->j_dev);
6015 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6016
6017 if (journal_dev_ro && !sb_rdonly(sb)) {
6018 ext4_msg(sb, KERN_ERR,
6019 "journal device read-only, try mounting with '-o ro'");
6020 err = -EROFS;
6021 goto err_out;
6022 }
6023
6024 /*
6025 * Are we loading a blank journal or performing recovery after a
6026 * crash? For recovery, we need to check in advance whether we
6027 * can get read-write access to the device.
6028 */
6029 if (ext4_has_feature_journal_needs_recovery(sb)) {
6030 if (sb_rdonly(sb)) {
6031 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6032 "required on readonly filesystem");
6033 if (really_read_only) {
6034 ext4_msg(sb, KERN_ERR, "write access "
6035 "unavailable, cannot proceed "
6036 "(try mounting with noload)");
6037 err = -EROFS;
6038 goto err_out;
6039 }
6040 ext4_msg(sb, KERN_INFO, "write access will "
6041 "be enabled during recovery");
6042 }
6043 }
6044
6045 if (!(journal->j_flags & JBD2_BARRIER))
6046 ext4_msg(sb, KERN_INFO, "barriers disabled");
6047
6048 if (!ext4_has_feature_journal_needs_recovery(sb))
6049 err = jbd2_journal_wipe(journal, !really_read_only);
6050 if (!err) {
6051 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6052 __le16 orig_state;
6053 bool changed = false;
6054
6055 if (save)
6056 memcpy(save, ((char *) es) +
6057 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6058 err = jbd2_journal_load(journal);
6059 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6060 save, EXT4_S_ERR_LEN)) {
6061 memcpy(((char *) es) + EXT4_S_ERR_START,
6062 save, EXT4_S_ERR_LEN);
6063 changed = true;
6064 }
6065 kfree(save);
6066 orig_state = es->s_state;
6067 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6068 EXT4_ERROR_FS);
6069 if (orig_state != es->s_state)
6070 changed = true;
6071 /* Write out restored error information to the superblock */
6072 if (changed && !really_read_only) {
6073 int err2;
6074 err2 = ext4_commit_super(sb);
6075 err = err ? : err2;
6076 }
6077 }
6078
6079 if (err) {
6080 ext4_msg(sb, KERN_ERR, "error loading journal");
6081 goto err_out;
6082 }
6083
6084 EXT4_SB(sb)->s_journal = journal;
6085 err = ext4_clear_journal_err(sb, es);
6086 if (err) {
6087 EXT4_SB(sb)->s_journal = NULL;
6088 jbd2_journal_destroy(journal);
6089 return err;
6090 }
6091
6092 if (!really_read_only && journal_devnum &&
6093 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6094 es->s_journal_dev = cpu_to_le32(journal_devnum);
6095 ext4_commit_super(sb);
6096 }
6097 if (!really_read_only && journal_inum &&
6098 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6099 es->s_journal_inum = cpu_to_le32(journal_inum);
6100 ext4_commit_super(sb);
6101 }
6102
6103 return 0;
6104
6105 err_out:
6106 jbd2_journal_destroy(journal);
6107 return err;
6108 }
6109
6110 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6111 static void ext4_update_super(struct super_block *sb)
6112 {
6113 struct ext4_sb_info *sbi = EXT4_SB(sb);
6114 struct ext4_super_block *es = sbi->s_es;
6115 struct buffer_head *sbh = sbi->s_sbh;
6116
6117 lock_buffer(sbh);
6118 /*
6119 * If the file system is mounted read-only, don't update the
6120 * superblock write time. This avoids updating the superblock
6121 * write time when we are mounting the root file system
6122 * read/only but we need to replay the journal; at that point,
6123 * for people who are east of GMT and who make their clock
6124 * tick in localtime for Windows bug-for-bug compatibility,
6125 * the clock is set in the future, and this will cause e2fsck
6126 * to complain and force a full file system check.
6127 */
6128 if (!sb_rdonly(sb))
6129 ext4_update_tstamp(es, s_wtime);
6130 es->s_kbytes_written =
6131 cpu_to_le64(sbi->s_kbytes_written +
6132 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6133 sbi->s_sectors_written_start) >> 1));
6134 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6135 ext4_free_blocks_count_set(es,
6136 EXT4_C2B(sbi, percpu_counter_sum_positive(
6137 &sbi->s_freeclusters_counter)));
6138 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6139 es->s_free_inodes_count =
6140 cpu_to_le32(percpu_counter_sum_positive(
6141 &sbi->s_freeinodes_counter));
6142 /* Copy error information to the on-disk superblock */
6143 spin_lock(&sbi->s_error_lock);
6144 if (sbi->s_add_error_count > 0) {
6145 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6146 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6147 __ext4_update_tstamp(&es->s_first_error_time,
6148 &es->s_first_error_time_hi,
6149 sbi->s_first_error_time);
6150 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6151 sizeof(es->s_first_error_func));
6152 es->s_first_error_line =
6153 cpu_to_le32(sbi->s_first_error_line);
6154 es->s_first_error_ino =
6155 cpu_to_le32(sbi->s_first_error_ino);
6156 es->s_first_error_block =
6157 cpu_to_le64(sbi->s_first_error_block);
6158 es->s_first_error_errcode =
6159 ext4_errno_to_code(sbi->s_first_error_code);
6160 }
6161 __ext4_update_tstamp(&es->s_last_error_time,
6162 &es->s_last_error_time_hi,
6163 sbi->s_last_error_time);
6164 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6165 sizeof(es->s_last_error_func));
6166 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6167 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6168 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6169 es->s_last_error_errcode =
6170 ext4_errno_to_code(sbi->s_last_error_code);
6171 /*
6172 * Start the daily error reporting function if it hasn't been
6173 * started already
6174 */
6175 if (!es->s_error_count)
6176 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6177 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6178 sbi->s_add_error_count = 0;
6179 }
6180 spin_unlock(&sbi->s_error_lock);
6181
6182 ext4_superblock_csum_set(sb);
6183 unlock_buffer(sbh);
6184 }
6185
ext4_commit_super(struct super_block * sb)6186 static int ext4_commit_super(struct super_block *sb)
6187 {
6188 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6189
6190 if (!sbh)
6191 return -EINVAL;
6192 if (block_device_ejected(sb))
6193 return -ENODEV;
6194
6195 ext4_update_super(sb);
6196
6197 lock_buffer(sbh);
6198 /* Buffer got discarded which means block device got invalidated */
6199 if (!buffer_mapped(sbh)) {
6200 unlock_buffer(sbh);
6201 return -EIO;
6202 }
6203
6204 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6205 /*
6206 * Oh, dear. A previous attempt to write the
6207 * superblock failed. This could happen because the
6208 * USB device was yanked out. Or it could happen to
6209 * be a transient write error and maybe the block will
6210 * be remapped. Nothing we can do but to retry the
6211 * write and hope for the best.
6212 */
6213 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6214 "superblock detected");
6215 clear_buffer_write_io_error(sbh);
6216 set_buffer_uptodate(sbh);
6217 }
6218 get_bh(sbh);
6219 /* Clear potential dirty bit if it was journalled update */
6220 clear_buffer_dirty(sbh);
6221 sbh->b_end_io = end_buffer_write_sync;
6222 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6223 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6224 wait_on_buffer(sbh);
6225 if (buffer_write_io_error(sbh)) {
6226 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6227 "superblock");
6228 clear_buffer_write_io_error(sbh);
6229 set_buffer_uptodate(sbh);
6230 return -EIO;
6231 }
6232 return 0;
6233 }
6234
6235 /*
6236 * Have we just finished recovery? If so, and if we are mounting (or
6237 * remounting) the filesystem readonly, then we will end up with a
6238 * consistent fs on disk. Record that fact.
6239 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6240 static int ext4_mark_recovery_complete(struct super_block *sb,
6241 struct ext4_super_block *es)
6242 {
6243 int err;
6244 journal_t *journal = EXT4_SB(sb)->s_journal;
6245
6246 if (!ext4_has_feature_journal(sb)) {
6247 if (journal != NULL) {
6248 ext4_error(sb, "Journal got removed while the fs was "
6249 "mounted!");
6250 return -EFSCORRUPTED;
6251 }
6252 return 0;
6253 }
6254 jbd2_journal_lock_updates(journal);
6255 err = jbd2_journal_flush(journal, 0);
6256 if (err < 0)
6257 goto out;
6258
6259 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6260 ext4_has_feature_orphan_present(sb))) {
6261 if (!ext4_orphan_file_empty(sb)) {
6262 ext4_error(sb, "Orphan file not empty on read-only fs.");
6263 err = -EFSCORRUPTED;
6264 goto out;
6265 }
6266 ext4_clear_feature_journal_needs_recovery(sb);
6267 ext4_clear_feature_orphan_present(sb);
6268 ext4_commit_super(sb);
6269 }
6270 out:
6271 jbd2_journal_unlock_updates(journal);
6272 return err;
6273 }
6274
6275 /*
6276 * If we are mounting (or read-write remounting) a filesystem whose journal
6277 * has recorded an error from a previous lifetime, move that error to the
6278 * main filesystem now.
6279 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6280 static int ext4_clear_journal_err(struct super_block *sb,
6281 struct ext4_super_block *es)
6282 {
6283 journal_t *journal;
6284 int j_errno;
6285 const char *errstr;
6286
6287 if (!ext4_has_feature_journal(sb)) {
6288 ext4_error(sb, "Journal got removed while the fs was mounted!");
6289 return -EFSCORRUPTED;
6290 }
6291
6292 journal = EXT4_SB(sb)->s_journal;
6293
6294 /*
6295 * Now check for any error status which may have been recorded in the
6296 * journal by a prior ext4_error() or ext4_abort()
6297 */
6298
6299 j_errno = jbd2_journal_errno(journal);
6300 if (j_errno) {
6301 char nbuf[16];
6302
6303 errstr = ext4_decode_error(sb, j_errno, nbuf);
6304 ext4_warning(sb, "Filesystem error recorded "
6305 "from previous mount: %s", errstr);
6306
6307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6309 j_errno = ext4_commit_super(sb);
6310 if (j_errno)
6311 return j_errno;
6312 ext4_warning(sb, "Marked fs in need of filesystem check.");
6313
6314 jbd2_journal_clear_err(journal);
6315 jbd2_journal_update_sb_errno(journal);
6316 }
6317 return 0;
6318 }
6319
6320 /*
6321 * Force the running and committing transactions to commit,
6322 * and wait on the commit.
6323 */
ext4_force_commit(struct super_block * sb)6324 int ext4_force_commit(struct super_block *sb)
6325 {
6326 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6327 }
6328
ext4_sync_fs(struct super_block * sb,int wait)6329 static int ext4_sync_fs(struct super_block *sb, int wait)
6330 {
6331 int ret = 0;
6332 tid_t target;
6333 bool needs_barrier = false;
6334 struct ext4_sb_info *sbi = EXT4_SB(sb);
6335
6336 if (unlikely(ext4_forced_shutdown(sb)))
6337 return 0;
6338
6339 trace_ext4_sync_fs(sb, wait);
6340 flush_workqueue(sbi->rsv_conversion_wq);
6341 /*
6342 * Writeback quota in non-journalled quota case - journalled quota has
6343 * no dirty dquots
6344 */
6345 dquot_writeback_dquots(sb, -1);
6346 /*
6347 * Data writeback is possible w/o journal transaction, so barrier must
6348 * being sent at the end of the function. But we can skip it if
6349 * transaction_commit will do it for us.
6350 */
6351 if (sbi->s_journal) {
6352 target = jbd2_get_latest_transaction(sbi->s_journal);
6353 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6354 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6355 needs_barrier = true;
6356
6357 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6358 if (wait)
6359 ret = jbd2_log_wait_commit(sbi->s_journal,
6360 target);
6361 }
6362 } else if (wait && test_opt(sb, BARRIER))
6363 needs_barrier = true;
6364 if (needs_barrier) {
6365 int err;
6366 err = blkdev_issue_flush(sb->s_bdev);
6367 if (!ret)
6368 ret = err;
6369 }
6370
6371 return ret;
6372 }
6373
6374 /*
6375 * LVM calls this function before a (read-only) snapshot is created. This
6376 * gives us a chance to flush the journal completely and mark the fs clean.
6377 *
6378 * Note that only this function cannot bring a filesystem to be in a clean
6379 * state independently. It relies on upper layer to stop all data & metadata
6380 * modifications.
6381 */
ext4_freeze(struct super_block * sb)6382 static int ext4_freeze(struct super_block *sb)
6383 {
6384 int error = 0;
6385 journal_t *journal = EXT4_SB(sb)->s_journal;
6386
6387 if (journal) {
6388 /* Now we set up the journal barrier. */
6389 jbd2_journal_lock_updates(journal);
6390
6391 /*
6392 * Don't clear the needs_recovery flag if we failed to
6393 * flush the journal.
6394 */
6395 error = jbd2_journal_flush(journal, 0);
6396 if (error < 0)
6397 goto out;
6398
6399 /* Journal blocked and flushed, clear needs_recovery flag. */
6400 ext4_clear_feature_journal_needs_recovery(sb);
6401 if (ext4_orphan_file_empty(sb))
6402 ext4_clear_feature_orphan_present(sb);
6403 }
6404
6405 error = ext4_commit_super(sb);
6406 out:
6407 if (journal)
6408 /* we rely on upper layer to stop further updates */
6409 jbd2_journal_unlock_updates(journal);
6410 return error;
6411 }
6412
6413 /*
6414 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6415 * flag here, even though the filesystem is not technically dirty yet.
6416 */
ext4_unfreeze(struct super_block * sb)6417 static int ext4_unfreeze(struct super_block *sb)
6418 {
6419 if (ext4_forced_shutdown(sb))
6420 return 0;
6421
6422 if (EXT4_SB(sb)->s_journal) {
6423 /* Reset the needs_recovery flag before the fs is unlocked. */
6424 ext4_set_feature_journal_needs_recovery(sb);
6425 if (ext4_has_feature_orphan_file(sb))
6426 ext4_set_feature_orphan_present(sb);
6427 }
6428
6429 ext4_commit_super(sb);
6430 return 0;
6431 }
6432
6433 /*
6434 * Structure to save mount options for ext4_remount's benefit
6435 */
6436 struct ext4_mount_options {
6437 unsigned long s_mount_opt;
6438 unsigned long s_mount_opt2;
6439 kuid_t s_resuid;
6440 kgid_t s_resgid;
6441 unsigned long s_commit_interval;
6442 u32 s_min_batch_time, s_max_batch_time;
6443 #ifdef CONFIG_QUOTA
6444 int s_jquota_fmt;
6445 char *s_qf_names[EXT4_MAXQUOTAS];
6446 #endif
6447 };
6448
__ext4_remount(struct fs_context * fc,struct super_block * sb)6449 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6450 {
6451 struct ext4_fs_context *ctx = fc->fs_private;
6452 struct ext4_super_block *es;
6453 struct ext4_sb_info *sbi = EXT4_SB(sb);
6454 unsigned long old_sb_flags;
6455 struct ext4_mount_options old_opts;
6456 ext4_group_t g;
6457 int err = 0;
6458 int alloc_ctx;
6459 #ifdef CONFIG_QUOTA
6460 int enable_quota = 0;
6461 int i, j;
6462 char *to_free[EXT4_MAXQUOTAS];
6463 #endif
6464
6465
6466 /* Store the original options */
6467 old_sb_flags = sb->s_flags;
6468 old_opts.s_mount_opt = sbi->s_mount_opt;
6469 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6470 old_opts.s_resuid = sbi->s_resuid;
6471 old_opts.s_resgid = sbi->s_resgid;
6472 old_opts.s_commit_interval = sbi->s_commit_interval;
6473 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6474 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6475 #ifdef CONFIG_QUOTA
6476 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6477 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6478 if (sbi->s_qf_names[i]) {
6479 char *qf_name = get_qf_name(sb, sbi, i);
6480
6481 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6482 if (!old_opts.s_qf_names[i]) {
6483 for (j = 0; j < i; j++)
6484 kfree(old_opts.s_qf_names[j]);
6485 return -ENOMEM;
6486 }
6487 } else
6488 old_opts.s_qf_names[i] = NULL;
6489 #endif
6490 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6491 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6492 ctx->journal_ioprio =
6493 sbi->s_journal->j_task->io_context->ioprio;
6494 else
6495 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6496
6497 }
6498
6499 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6500 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6501 ext4_msg(sb, KERN_WARNING,
6502 "stripe (%lu) is not aligned with cluster size (%u), "
6503 "stripe is disabled",
6504 ctx->s_stripe, sbi->s_cluster_ratio);
6505 ctx->s_stripe = 0;
6506 }
6507
6508 /*
6509 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6510 * two calls to ext4_should_dioread_nolock() to return inconsistent
6511 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6512 * here s_writepages_rwsem to avoid race between writepages ops and
6513 * remount.
6514 */
6515 alloc_ctx = ext4_writepages_down_write(sb);
6516 ext4_apply_options(fc, sb);
6517 ext4_writepages_up_write(sb, alloc_ctx);
6518
6519 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6520 test_opt(sb, JOURNAL_CHECKSUM)) {
6521 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6522 "during remount not supported; ignoring");
6523 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6524 }
6525
6526 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6527 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6528 ext4_msg(sb, KERN_ERR, "can't mount with "
6529 "both data=journal and delalloc");
6530 err = -EINVAL;
6531 goto restore_opts;
6532 }
6533 if (test_opt(sb, DIOREAD_NOLOCK)) {
6534 ext4_msg(sb, KERN_ERR, "can't mount with "
6535 "both data=journal and dioread_nolock");
6536 err = -EINVAL;
6537 goto restore_opts;
6538 }
6539 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6540 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6541 ext4_msg(sb, KERN_ERR, "can't mount with "
6542 "journal_async_commit in data=ordered mode");
6543 err = -EINVAL;
6544 goto restore_opts;
6545 }
6546 }
6547
6548 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6549 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6550 err = -EINVAL;
6551 goto restore_opts;
6552 }
6553
6554 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6555 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6556
6557 es = sbi->s_es;
6558
6559 if (sbi->s_journal) {
6560 ext4_init_journal_params(sb, sbi->s_journal);
6561 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6562 }
6563
6564 /* Flush outstanding errors before changing fs state */
6565 flush_work(&sbi->s_sb_upd_work);
6566
6567 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6568 if (ext4_forced_shutdown(sb)) {
6569 err = -EROFS;
6570 goto restore_opts;
6571 }
6572
6573 if (fc->sb_flags & SB_RDONLY) {
6574 err = sync_filesystem(sb);
6575 if (err < 0)
6576 goto restore_opts;
6577 err = dquot_suspend(sb, -1);
6578 if (err < 0)
6579 goto restore_opts;
6580
6581 /*
6582 * First of all, the unconditional stuff we have to do
6583 * to disable replay of the journal when we next remount
6584 */
6585 sb->s_flags |= SB_RDONLY;
6586
6587 /*
6588 * OK, test if we are remounting a valid rw partition
6589 * readonly, and if so set the rdonly flag and then
6590 * mark the partition as valid again.
6591 */
6592 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6593 (sbi->s_mount_state & EXT4_VALID_FS))
6594 es->s_state = cpu_to_le16(sbi->s_mount_state);
6595
6596 if (sbi->s_journal) {
6597 /*
6598 * We let remount-ro finish even if marking fs
6599 * as clean failed...
6600 */
6601 ext4_mark_recovery_complete(sb, es);
6602 }
6603 } else {
6604 /* Make sure we can mount this feature set readwrite */
6605 if (ext4_has_feature_readonly(sb) ||
6606 !ext4_feature_set_ok(sb, 0)) {
6607 err = -EROFS;
6608 goto restore_opts;
6609 }
6610 /*
6611 * Make sure the group descriptor checksums
6612 * are sane. If they aren't, refuse to remount r/w.
6613 */
6614 for (g = 0; g < sbi->s_groups_count; g++) {
6615 struct ext4_group_desc *gdp =
6616 ext4_get_group_desc(sb, g, NULL);
6617
6618 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6619 ext4_msg(sb, KERN_ERR,
6620 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6621 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6622 le16_to_cpu(gdp->bg_checksum));
6623 err = -EFSBADCRC;
6624 goto restore_opts;
6625 }
6626 }
6627
6628 /*
6629 * If we have an unprocessed orphan list hanging
6630 * around from a previously readonly bdev mount,
6631 * require a full umount/remount for now.
6632 */
6633 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6634 ext4_msg(sb, KERN_WARNING, "Couldn't "
6635 "remount RDWR because of unprocessed "
6636 "orphan inode list. Please "
6637 "umount/remount instead");
6638 err = -EINVAL;
6639 goto restore_opts;
6640 }
6641
6642 /*
6643 * Mounting a RDONLY partition read-write, so reread
6644 * and store the current valid flag. (It may have
6645 * been changed by e2fsck since we originally mounted
6646 * the partition.)
6647 */
6648 if (sbi->s_journal) {
6649 err = ext4_clear_journal_err(sb, es);
6650 if (err)
6651 goto restore_opts;
6652 }
6653 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6654 ~EXT4_FC_REPLAY);
6655
6656 err = ext4_setup_super(sb, es, 0);
6657 if (err)
6658 goto restore_opts;
6659
6660 sb->s_flags &= ~SB_RDONLY;
6661 if (ext4_has_feature_mmp(sb)) {
6662 err = ext4_multi_mount_protect(sb,
6663 le64_to_cpu(es->s_mmp_block));
6664 if (err)
6665 goto restore_opts;
6666 }
6667 #ifdef CONFIG_QUOTA
6668 enable_quota = 1;
6669 #endif
6670 }
6671 }
6672
6673 /*
6674 * Handle creation of system zone data early because it can fail.
6675 * Releasing of existing data is done when we are sure remount will
6676 * succeed.
6677 */
6678 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6679 err = ext4_setup_system_zone(sb);
6680 if (err)
6681 goto restore_opts;
6682 }
6683
6684 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6685 err = ext4_commit_super(sb);
6686 if (err)
6687 goto restore_opts;
6688 }
6689
6690 #ifdef CONFIG_QUOTA
6691 if (enable_quota) {
6692 if (sb_any_quota_suspended(sb))
6693 dquot_resume(sb, -1);
6694 else if (ext4_has_feature_quota(sb)) {
6695 err = ext4_enable_quotas(sb);
6696 if (err)
6697 goto restore_opts;
6698 }
6699 }
6700 /* Release old quota file names */
6701 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6702 kfree(old_opts.s_qf_names[i]);
6703 #endif
6704 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6705 ext4_release_system_zone(sb);
6706
6707 /*
6708 * Reinitialize lazy itable initialization thread based on
6709 * current settings
6710 */
6711 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6712 ext4_unregister_li_request(sb);
6713 else {
6714 ext4_group_t first_not_zeroed;
6715 first_not_zeroed = ext4_has_uninit_itable(sb);
6716 ext4_register_li_request(sb, first_not_zeroed);
6717 }
6718
6719 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6720 ext4_stop_mmpd(sbi);
6721
6722 /*
6723 * Handle aborting the filesystem as the last thing during remount to
6724 * avoid obsure errors during remount when some option changes fail to
6725 * apply due to shutdown filesystem.
6726 */
6727 if (test_opt2(sb, ABORT))
6728 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6729
6730 return 0;
6731
6732 restore_opts:
6733 /*
6734 * If there was a failing r/w to ro transition, we may need to
6735 * re-enable quota
6736 */
6737 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6738 sb_any_quota_suspended(sb))
6739 dquot_resume(sb, -1);
6740
6741 alloc_ctx = ext4_writepages_down_write(sb);
6742 sb->s_flags = old_sb_flags;
6743 sbi->s_mount_opt = old_opts.s_mount_opt;
6744 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6745 sbi->s_resuid = old_opts.s_resuid;
6746 sbi->s_resgid = old_opts.s_resgid;
6747 sbi->s_commit_interval = old_opts.s_commit_interval;
6748 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6749 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6750 ext4_writepages_up_write(sb, alloc_ctx);
6751
6752 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6753 ext4_release_system_zone(sb);
6754 #ifdef CONFIG_QUOTA
6755 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6756 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6757 to_free[i] = get_qf_name(sb, sbi, i);
6758 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6759 }
6760 synchronize_rcu();
6761 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6762 kfree(to_free[i]);
6763 #endif
6764 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6765 ext4_stop_mmpd(sbi);
6766 return err;
6767 }
6768
ext4_reconfigure(struct fs_context * fc)6769 static int ext4_reconfigure(struct fs_context *fc)
6770 {
6771 struct super_block *sb = fc->root->d_sb;
6772 int ret;
6773
6774 fc->s_fs_info = EXT4_SB(sb);
6775
6776 ret = ext4_check_opt_consistency(fc, sb);
6777 if (ret < 0)
6778 return ret;
6779
6780 ret = __ext4_remount(fc, sb);
6781 if (ret < 0)
6782 return ret;
6783
6784 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6785 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6786 ext4_quota_mode(sb));
6787
6788 return 0;
6789 }
6790
6791 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6792 static int ext4_statfs_project(struct super_block *sb,
6793 kprojid_t projid, struct kstatfs *buf)
6794 {
6795 struct kqid qid;
6796 struct dquot *dquot;
6797 u64 limit;
6798 u64 curblock;
6799
6800 qid = make_kqid_projid(projid);
6801 dquot = dqget(sb, qid);
6802 if (IS_ERR(dquot))
6803 return PTR_ERR(dquot);
6804 spin_lock(&dquot->dq_dqb_lock);
6805
6806 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6807 dquot->dq_dqb.dqb_bhardlimit);
6808 limit >>= sb->s_blocksize_bits;
6809
6810 if (limit && buf->f_blocks > limit) {
6811 curblock = (dquot->dq_dqb.dqb_curspace +
6812 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6813 buf->f_blocks = limit;
6814 buf->f_bfree = buf->f_bavail =
6815 (buf->f_blocks > curblock) ?
6816 (buf->f_blocks - curblock) : 0;
6817 }
6818
6819 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6820 dquot->dq_dqb.dqb_ihardlimit);
6821 if (limit && buf->f_files > limit) {
6822 buf->f_files = limit;
6823 buf->f_ffree =
6824 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6825 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6826 }
6827
6828 spin_unlock(&dquot->dq_dqb_lock);
6829 dqput(dquot);
6830 return 0;
6831 }
6832 #endif
6833
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6834 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6835 {
6836 struct super_block *sb = dentry->d_sb;
6837 struct ext4_sb_info *sbi = EXT4_SB(sb);
6838 struct ext4_super_block *es = sbi->s_es;
6839 ext4_fsblk_t overhead = 0, resv_blocks;
6840 s64 bfree;
6841 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6842
6843 if (!test_opt(sb, MINIX_DF))
6844 overhead = sbi->s_overhead;
6845
6846 buf->f_type = EXT4_SUPER_MAGIC;
6847 buf->f_bsize = sb->s_blocksize;
6848 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6849 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6850 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6851 /* prevent underflow in case that few free space is available */
6852 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6853 buf->f_bavail = buf->f_bfree -
6854 (ext4_r_blocks_count(es) + resv_blocks);
6855 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6856 buf->f_bavail = 0;
6857 buf->f_files = le32_to_cpu(es->s_inodes_count);
6858 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6859 buf->f_namelen = EXT4_NAME_LEN;
6860 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6861
6862 #ifdef CONFIG_QUOTA
6863 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6864 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6865 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6866 #endif
6867 return 0;
6868 }
6869
6870
6871 #ifdef CONFIG_QUOTA
6872
6873 /*
6874 * Helper functions so that transaction is started before we acquire dqio_sem
6875 * to keep correct lock ordering of transaction > dqio_sem
6876 */
dquot_to_inode(struct dquot * dquot)6877 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6878 {
6879 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6880 }
6881
ext4_write_dquot(struct dquot * dquot)6882 static int ext4_write_dquot(struct dquot *dquot)
6883 {
6884 int ret, err;
6885 handle_t *handle;
6886 struct inode *inode;
6887
6888 inode = dquot_to_inode(dquot);
6889 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6890 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6891 if (IS_ERR(handle))
6892 return PTR_ERR(handle);
6893 ret = dquot_commit(dquot);
6894 if (ret < 0)
6895 ext4_error_err(dquot->dq_sb, -ret,
6896 "Failed to commit dquot type %d",
6897 dquot->dq_id.type);
6898 err = ext4_journal_stop(handle);
6899 if (!ret)
6900 ret = err;
6901 return ret;
6902 }
6903
ext4_acquire_dquot(struct dquot * dquot)6904 static int ext4_acquire_dquot(struct dquot *dquot)
6905 {
6906 int ret, err;
6907 handle_t *handle;
6908
6909 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6910 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6911 if (IS_ERR(handle))
6912 return PTR_ERR(handle);
6913 ret = dquot_acquire(dquot);
6914 if (ret < 0)
6915 ext4_error_err(dquot->dq_sb, -ret,
6916 "Failed to acquire dquot type %d",
6917 dquot->dq_id.type);
6918 err = ext4_journal_stop(handle);
6919 if (!ret)
6920 ret = err;
6921 return ret;
6922 }
6923
ext4_release_dquot(struct dquot * dquot)6924 static int ext4_release_dquot(struct dquot *dquot)
6925 {
6926 int ret, err;
6927 handle_t *handle;
6928
6929 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6930 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6931 if (IS_ERR(handle)) {
6932 /* Release dquot anyway to avoid endless cycle in dqput() */
6933 dquot_release(dquot);
6934 return PTR_ERR(handle);
6935 }
6936 ret = dquot_release(dquot);
6937 if (ret < 0)
6938 ext4_error_err(dquot->dq_sb, -ret,
6939 "Failed to release dquot type %d",
6940 dquot->dq_id.type);
6941 err = ext4_journal_stop(handle);
6942 if (!ret)
6943 ret = err;
6944 return ret;
6945 }
6946
ext4_mark_dquot_dirty(struct dquot * dquot)6947 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6948 {
6949 struct super_block *sb = dquot->dq_sb;
6950
6951 if (ext4_is_quota_journalled(sb)) {
6952 dquot_mark_dquot_dirty(dquot);
6953 return ext4_write_dquot(dquot);
6954 } else {
6955 return dquot_mark_dquot_dirty(dquot);
6956 }
6957 }
6958
ext4_write_info(struct super_block * sb,int type)6959 static int ext4_write_info(struct super_block *sb, int type)
6960 {
6961 int ret, err;
6962 handle_t *handle;
6963
6964 /* Data block + inode block */
6965 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6966 if (IS_ERR(handle))
6967 return PTR_ERR(handle);
6968 ret = dquot_commit_info(sb, type);
6969 err = ext4_journal_stop(handle);
6970 if (!ret)
6971 ret = err;
6972 return ret;
6973 }
6974
lockdep_set_quota_inode(struct inode * inode,int subclass)6975 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6976 {
6977 struct ext4_inode_info *ei = EXT4_I(inode);
6978
6979 /* The first argument of lockdep_set_subclass has to be
6980 * *exactly* the same as the argument to init_rwsem() --- in
6981 * this case, in init_once() --- or lockdep gets unhappy
6982 * because the name of the lock is set using the
6983 * stringification of the argument to init_rwsem().
6984 */
6985 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6986 lockdep_set_subclass(&ei->i_data_sem, subclass);
6987 }
6988
6989 /*
6990 * Standard function to be called on quota_on
6991 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6992 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6993 const struct path *path)
6994 {
6995 int err;
6996
6997 if (!test_opt(sb, QUOTA))
6998 return -EINVAL;
6999
7000 /* Quotafile not on the same filesystem? */
7001 if (path->dentry->d_sb != sb)
7002 return -EXDEV;
7003
7004 /* Quota already enabled for this file? */
7005 if (IS_NOQUOTA(d_inode(path->dentry)))
7006 return -EBUSY;
7007
7008 /* Journaling quota? */
7009 if (EXT4_SB(sb)->s_qf_names[type]) {
7010 /* Quotafile not in fs root? */
7011 if (path->dentry->d_parent != sb->s_root)
7012 ext4_msg(sb, KERN_WARNING,
7013 "Quota file not on filesystem root. "
7014 "Journaled quota will not work");
7015 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7016 } else {
7017 /*
7018 * Clear the flag just in case mount options changed since
7019 * last time.
7020 */
7021 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7022 }
7023
7024 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7025 err = dquot_quota_on(sb, type, format_id, path);
7026 if (!err) {
7027 struct inode *inode = d_inode(path->dentry);
7028 handle_t *handle;
7029
7030 /*
7031 * Set inode flags to prevent userspace from messing with quota
7032 * files. If this fails, we return success anyway since quotas
7033 * are already enabled and this is not a hard failure.
7034 */
7035 inode_lock(inode);
7036 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7037 if (IS_ERR(handle))
7038 goto unlock_inode;
7039 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7040 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7041 S_NOATIME | S_IMMUTABLE);
7042 err = ext4_mark_inode_dirty(handle, inode);
7043 ext4_journal_stop(handle);
7044 unlock_inode:
7045 inode_unlock(inode);
7046 if (err)
7047 dquot_quota_off(sb, type);
7048 }
7049 if (err)
7050 lockdep_set_quota_inode(path->dentry->d_inode,
7051 I_DATA_SEM_NORMAL);
7052 return err;
7053 }
7054
ext4_check_quota_inum(int type,unsigned long qf_inum)7055 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7056 {
7057 switch (type) {
7058 case USRQUOTA:
7059 return qf_inum == EXT4_USR_QUOTA_INO;
7060 case GRPQUOTA:
7061 return qf_inum == EXT4_GRP_QUOTA_INO;
7062 case PRJQUOTA:
7063 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7064 default:
7065 BUG();
7066 }
7067 }
7068
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7070 unsigned int flags)
7071 {
7072 int err;
7073 struct inode *qf_inode;
7074 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7075 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7076 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7077 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7078 };
7079
7080 BUG_ON(!ext4_has_feature_quota(sb));
7081
7082 if (!qf_inums[type])
7083 return -EPERM;
7084
7085 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7086 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7087 qf_inums[type], type);
7088 return -EUCLEAN;
7089 }
7090
7091 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7092 if (IS_ERR(qf_inode)) {
7093 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7094 qf_inums[type], type);
7095 return PTR_ERR(qf_inode);
7096 }
7097
7098 /* Don't account quota for quota files to avoid recursion */
7099 qf_inode->i_flags |= S_NOQUOTA;
7100 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7101 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7102 if (err)
7103 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7104 iput(qf_inode);
7105
7106 return err;
7107 }
7108
7109 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7110 int ext4_enable_quotas(struct super_block *sb)
7111 {
7112 int type, err = 0;
7113 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7114 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7115 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7116 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7117 };
7118 bool quota_mopt[EXT4_MAXQUOTAS] = {
7119 test_opt(sb, USRQUOTA),
7120 test_opt(sb, GRPQUOTA),
7121 test_opt(sb, PRJQUOTA),
7122 };
7123
7124 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7125 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7126 if (qf_inums[type]) {
7127 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7128 DQUOT_USAGE_ENABLED |
7129 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7130 if (err) {
7131 ext4_warning(sb,
7132 "Failed to enable quota tracking "
7133 "(type=%d, err=%d, ino=%lu). "
7134 "Please run e2fsck to fix.", type,
7135 err, qf_inums[type]);
7136
7137 ext4_quotas_off(sb, type);
7138 return err;
7139 }
7140 }
7141 }
7142 return 0;
7143 }
7144
ext4_quota_off(struct super_block * sb,int type)7145 static int ext4_quota_off(struct super_block *sb, int type)
7146 {
7147 struct inode *inode = sb_dqopt(sb)->files[type];
7148 handle_t *handle;
7149 int err;
7150
7151 /* Force all delayed allocation blocks to be allocated.
7152 * Caller already holds s_umount sem */
7153 if (test_opt(sb, DELALLOC))
7154 sync_filesystem(sb);
7155
7156 if (!inode || !igrab(inode))
7157 goto out;
7158
7159 err = dquot_quota_off(sb, type);
7160 if (err || ext4_has_feature_quota(sb))
7161 goto out_put;
7162 /*
7163 * When the filesystem was remounted read-only first, we cannot cleanup
7164 * inode flags here. Bad luck but people should be using QUOTA feature
7165 * these days anyway.
7166 */
7167 if (sb_rdonly(sb))
7168 goto out_put;
7169
7170 inode_lock(inode);
7171 /*
7172 * Update modification times of quota files when userspace can
7173 * start looking at them. If we fail, we return success anyway since
7174 * this is not a hard failure and quotas are already disabled.
7175 */
7176 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7177 if (IS_ERR(handle)) {
7178 err = PTR_ERR(handle);
7179 goto out_unlock;
7180 }
7181 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7182 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7183 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7184 err = ext4_mark_inode_dirty(handle, inode);
7185 ext4_journal_stop(handle);
7186 out_unlock:
7187 inode_unlock(inode);
7188 out_put:
7189 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7190 iput(inode);
7191 return err;
7192 out:
7193 return dquot_quota_off(sb, type);
7194 }
7195
7196 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7197 * acquiring the locks... As quota files are never truncated and quota code
7198 * itself serializes the operations (and no one else should touch the files)
7199 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7200 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7201 size_t len, loff_t off)
7202 {
7203 struct inode *inode = sb_dqopt(sb)->files[type];
7204 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7205 int offset = off & (sb->s_blocksize - 1);
7206 int tocopy;
7207 size_t toread;
7208 struct buffer_head *bh;
7209 loff_t i_size = i_size_read(inode);
7210
7211 if (off > i_size)
7212 return 0;
7213 if (off+len > i_size)
7214 len = i_size-off;
7215 toread = len;
7216 while (toread > 0) {
7217 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7218 bh = ext4_bread(NULL, inode, blk, 0);
7219 if (IS_ERR(bh))
7220 return PTR_ERR(bh);
7221 if (!bh) /* A hole? */
7222 memset(data, 0, tocopy);
7223 else
7224 memcpy(data, bh->b_data+offset, tocopy);
7225 brelse(bh);
7226 offset = 0;
7227 toread -= tocopy;
7228 data += tocopy;
7229 blk++;
7230 }
7231 return len;
7232 }
7233
7234 /* Write to quotafile (we know the transaction is already started and has
7235 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7236 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7237 const char *data, size_t len, loff_t off)
7238 {
7239 struct inode *inode = sb_dqopt(sb)->files[type];
7240 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7241 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7242 int retries = 0;
7243 struct buffer_head *bh;
7244 handle_t *handle = journal_current_handle();
7245
7246 if (!handle) {
7247 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7248 " cancelled because transaction is not started",
7249 (unsigned long long)off, (unsigned long long)len);
7250 return -EIO;
7251 }
7252 /*
7253 * Since we account only one data block in transaction credits,
7254 * then it is impossible to cross a block boundary.
7255 */
7256 if (sb->s_blocksize - offset < len) {
7257 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7258 " cancelled because not block aligned",
7259 (unsigned long long)off, (unsigned long long)len);
7260 return -EIO;
7261 }
7262
7263 do {
7264 bh = ext4_bread(handle, inode, blk,
7265 EXT4_GET_BLOCKS_CREATE |
7266 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7267 } while (PTR_ERR(bh) == -ENOSPC &&
7268 ext4_should_retry_alloc(inode->i_sb, &retries));
7269 if (IS_ERR(bh))
7270 return PTR_ERR(bh);
7271 if (!bh)
7272 goto out;
7273 BUFFER_TRACE(bh, "get write access");
7274 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7275 if (err) {
7276 brelse(bh);
7277 return err;
7278 }
7279 lock_buffer(bh);
7280 memcpy(bh->b_data+offset, data, len);
7281 flush_dcache_page(bh->b_page);
7282 unlock_buffer(bh);
7283 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7284 brelse(bh);
7285 out:
7286 if (inode->i_size < off + len) {
7287 i_size_write(inode, off + len);
7288 EXT4_I(inode)->i_disksize = inode->i_size;
7289 err2 = ext4_mark_inode_dirty(handle, inode);
7290 if (unlikely(err2 && !err))
7291 err = err2;
7292 }
7293 return err ? err : len;
7294 }
7295 #endif
7296
7297 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7298 static inline void register_as_ext2(void)
7299 {
7300 int err = register_filesystem(&ext2_fs_type);
7301 if (err)
7302 printk(KERN_WARNING
7303 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7304 }
7305
unregister_as_ext2(void)7306 static inline void unregister_as_ext2(void)
7307 {
7308 unregister_filesystem(&ext2_fs_type);
7309 }
7310
ext2_feature_set_ok(struct super_block * sb)7311 static inline int ext2_feature_set_ok(struct super_block *sb)
7312 {
7313 if (ext4_has_unknown_ext2_incompat_features(sb))
7314 return 0;
7315 if (sb_rdonly(sb))
7316 return 1;
7317 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7318 return 0;
7319 return 1;
7320 }
7321 #else
register_as_ext2(void)7322 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7323 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7324 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7325 #endif
7326
register_as_ext3(void)7327 static inline void register_as_ext3(void)
7328 {
7329 int err = register_filesystem(&ext3_fs_type);
7330 if (err)
7331 printk(KERN_WARNING
7332 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7333 }
7334
unregister_as_ext3(void)7335 static inline void unregister_as_ext3(void)
7336 {
7337 unregister_filesystem(&ext3_fs_type);
7338 }
7339
ext3_feature_set_ok(struct super_block * sb)7340 static inline int ext3_feature_set_ok(struct super_block *sb)
7341 {
7342 if (ext4_has_unknown_ext3_incompat_features(sb))
7343 return 0;
7344 if (!ext4_has_feature_journal(sb))
7345 return 0;
7346 if (sb_rdonly(sb))
7347 return 1;
7348 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7349 return 0;
7350 return 1;
7351 }
7352
ext4_kill_sb(struct super_block * sb)7353 static void ext4_kill_sb(struct super_block *sb)
7354 {
7355 struct ext4_sb_info *sbi = EXT4_SB(sb);
7356 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7357
7358 kill_block_super(sb);
7359
7360 if (journal_bdev)
7361 blkdev_put(journal_bdev, sb);
7362 }
7363
7364 static struct file_system_type ext4_fs_type = {
7365 .owner = THIS_MODULE,
7366 .name = "ext4",
7367 .init_fs_context = ext4_init_fs_context,
7368 .parameters = ext4_param_specs,
7369 .kill_sb = ext4_kill_sb,
7370 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7371 };
7372 MODULE_ALIAS_FS("ext4");
7373
7374 /* Shared across all ext4 file systems */
7375 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7376
ext4_init_fs(void)7377 static int __init ext4_init_fs(void)
7378 {
7379 int i, err;
7380
7381 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7382 ext4_li_info = NULL;
7383
7384 /* Build-time check for flags consistency */
7385 ext4_check_flag_values();
7386
7387 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7388 init_waitqueue_head(&ext4__ioend_wq[i]);
7389
7390 err = ext4_init_es();
7391 if (err)
7392 return err;
7393
7394 err = ext4_init_pending();
7395 if (err)
7396 goto out7;
7397
7398 err = ext4_init_post_read_processing();
7399 if (err)
7400 goto out6;
7401
7402 err = ext4_init_pageio();
7403 if (err)
7404 goto out5;
7405
7406 err = ext4_init_system_zone();
7407 if (err)
7408 goto out4;
7409
7410 err = ext4_init_sysfs();
7411 if (err)
7412 goto out3;
7413
7414 err = ext4_init_mballoc();
7415 if (err)
7416 goto out2;
7417 err = init_inodecache();
7418 if (err)
7419 goto out1;
7420
7421 err = ext4_fc_init_dentry_cache();
7422 if (err)
7423 goto out05;
7424
7425 register_as_ext3();
7426 register_as_ext2();
7427 err = register_filesystem(&ext4_fs_type);
7428 if (err)
7429 goto out;
7430
7431 return 0;
7432 out:
7433 unregister_as_ext2();
7434 unregister_as_ext3();
7435 ext4_fc_destroy_dentry_cache();
7436 out05:
7437 destroy_inodecache();
7438 out1:
7439 ext4_exit_mballoc();
7440 out2:
7441 ext4_exit_sysfs();
7442 out3:
7443 ext4_exit_system_zone();
7444 out4:
7445 ext4_exit_pageio();
7446 out5:
7447 ext4_exit_post_read_processing();
7448 out6:
7449 ext4_exit_pending();
7450 out7:
7451 ext4_exit_es();
7452
7453 return err;
7454 }
7455
ext4_exit_fs(void)7456 static void __exit ext4_exit_fs(void)
7457 {
7458 ext4_destroy_lazyinit_thread();
7459 unregister_as_ext2();
7460 unregister_as_ext3();
7461 unregister_filesystem(&ext4_fs_type);
7462 ext4_fc_destroy_dentry_cache();
7463 destroy_inodecache();
7464 ext4_exit_mballoc();
7465 ext4_exit_sysfs();
7466 ext4_exit_system_zone();
7467 ext4_exit_pageio();
7468 ext4_exit_post_read_processing();
7469 ext4_exit_es();
7470 ext4_exit_pending();
7471 }
7472
7473 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7474 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7475 MODULE_LICENSE("GPL");
7476 MODULE_SOFTDEP("pre: crc32c");
7477 module_init(ext4_init_fs)
7478 module_exit(ext4_exit_fs)
7479