xref: /openbmc/linux/fs/ext4/inode.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 			 struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 		ext4_evict_ea_inode(inode);
182 	if (inode->i_nlink) {
183 		truncate_inode_pages_final(&inode->i_data);
184 
185 		goto no_delete;
186 	}
187 
188 	if (is_bad_inode(inode))
189 		goto no_delete;
190 	dquot_initialize(inode);
191 
192 	if (ext4_should_order_data(inode))
193 		ext4_begin_ordered_truncate(inode, 0);
194 	truncate_inode_pages_final(&inode->i_data);
195 
196 	/*
197 	 * For inodes with journalled data, transaction commit could have
198 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
199 	 * extents converting worker could merge extents and also have dirtied
200 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
201 	 * we still need to remove the inode from the writeback lists.
202 	 */
203 	if (!list_empty_careful(&inode->i_io_list))
204 		inode_io_list_del(inode);
205 
206 	/*
207 	 * Protect us against freezing - iput() caller didn't have to have any
208 	 * protection against it. When we are in a running transaction though,
209 	 * we are already protected against freezing and we cannot grab further
210 	 * protection due to lock ordering constraints.
211 	 */
212 	if (!ext4_journal_current_handle()) {
213 		sb_start_intwrite(inode->i_sb);
214 		freeze_protected = true;
215 	}
216 
217 	if (!IS_NOQUOTA(inode))
218 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
219 
220 	/*
221 	 * Block bitmap, group descriptor, and inode are accounted in both
222 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
223 	 */
224 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
225 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
226 	if (IS_ERR(handle)) {
227 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
228 		/*
229 		 * If we're going to skip the normal cleanup, we still need to
230 		 * make sure that the in-core orphan linked list is properly
231 		 * cleaned up.
232 		 */
233 		ext4_orphan_del(NULL, inode);
234 		if (freeze_protected)
235 			sb_end_intwrite(inode->i_sb);
236 		goto no_delete;
237 	}
238 
239 	if (IS_SYNC(inode))
240 		ext4_handle_sync(handle);
241 
242 	/*
243 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
244 	 * special handling of symlinks here because i_size is used to
245 	 * determine whether ext4_inode_info->i_data contains symlink data or
246 	 * block mappings. Setting i_size to 0 will remove its fast symlink
247 	 * status. Erase i_data so that it becomes a valid empty block map.
248 	 */
249 	if (ext4_inode_is_fast_symlink(inode))
250 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
251 	inode->i_size = 0;
252 	err = ext4_mark_inode_dirty(handle, inode);
253 	if (err) {
254 		ext4_warning(inode->i_sb,
255 			     "couldn't mark inode dirty (err %d)", err);
256 		goto stop_handle;
257 	}
258 	if (inode->i_blocks) {
259 		err = ext4_truncate(inode);
260 		if (err) {
261 			ext4_error_err(inode->i_sb, -err,
262 				       "couldn't truncate inode %lu (err %d)",
263 				       inode->i_ino, err);
264 			goto stop_handle;
265 		}
266 	}
267 
268 	/* Remove xattr references. */
269 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
270 				      extra_credits);
271 	if (err) {
272 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
273 stop_handle:
274 		ext4_journal_stop(handle);
275 		ext4_orphan_del(NULL, inode);
276 		if (freeze_protected)
277 			sb_end_intwrite(inode->i_sb);
278 		ext4_xattr_inode_array_free(ea_inode_array);
279 		goto no_delete;
280 	}
281 
282 	/*
283 	 * Kill off the orphan record which ext4_truncate created.
284 	 * AKPM: I think this can be inside the above `if'.
285 	 * Note that ext4_orphan_del() has to be able to cope with the
286 	 * deletion of a non-existent orphan - this is because we don't
287 	 * know if ext4_truncate() actually created an orphan record.
288 	 * (Well, we could do this if we need to, but heck - it works)
289 	 */
290 	ext4_orphan_del(handle, inode);
291 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
292 
293 	/*
294 	 * One subtle ordering requirement: if anything has gone wrong
295 	 * (transaction abort, IO errors, whatever), then we can still
296 	 * do these next steps (the fs will already have been marked as
297 	 * having errors), but we can't free the inode if the mark_dirty
298 	 * fails.
299 	 */
300 	if (ext4_mark_inode_dirty(handle, inode))
301 		/* If that failed, just do the required in-core inode clear. */
302 		ext4_clear_inode(inode);
303 	else
304 		ext4_free_inode(handle, inode);
305 	ext4_journal_stop(handle);
306 	if (freeze_protected)
307 		sb_end_intwrite(inode->i_sb);
308 	ext4_xattr_inode_array_free(ea_inode_array);
309 	return;
310 no_delete:
311 	/*
312 	 * Check out some where else accidentally dirty the evicting inode,
313 	 * which may probably cause inode use-after-free issues later.
314 	 */
315 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
316 
317 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
318 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
319 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
320 }
321 
322 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)323 qsize_t *ext4_get_reserved_space(struct inode *inode)
324 {
325 	return &EXT4_I(inode)->i_reserved_quota;
326 }
327 #endif
328 
329 /*
330  * Called with i_data_sem down, which is important since we can call
331  * ext4_discard_preallocations() from here.
332  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)333 void ext4_da_update_reserve_space(struct inode *inode,
334 					int used, int quota_claim)
335 {
336 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
337 	struct ext4_inode_info *ei = EXT4_I(inode);
338 
339 	spin_lock(&ei->i_block_reservation_lock);
340 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
341 	if (unlikely(used > ei->i_reserved_data_blocks)) {
342 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
343 			 "with only %d reserved data blocks",
344 			 __func__, inode->i_ino, used,
345 			 ei->i_reserved_data_blocks);
346 		WARN_ON(1);
347 		used = ei->i_reserved_data_blocks;
348 	}
349 
350 	/* Update per-inode reservations */
351 	ei->i_reserved_data_blocks -= used;
352 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
353 
354 	spin_unlock(&ei->i_block_reservation_lock);
355 
356 	/* Update quota subsystem for data blocks */
357 	if (quota_claim)
358 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
359 	else {
360 		/*
361 		 * We did fallocate with an offset that is already delayed
362 		 * allocated. So on delayed allocated writeback we should
363 		 * not re-claim the quota for fallocated blocks.
364 		 */
365 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
366 	}
367 
368 	/*
369 	 * If we have done all the pending block allocations and if
370 	 * there aren't any writers on the inode, we can discard the
371 	 * inode's preallocations.
372 	 */
373 	if ((ei->i_reserved_data_blocks == 0) &&
374 	    !inode_is_open_for_write(inode))
375 		ext4_discard_preallocations(inode, 0);
376 }
377 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)378 static int __check_block_validity(struct inode *inode, const char *func,
379 				unsigned int line,
380 				struct ext4_map_blocks *map)
381 {
382 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
383 
384 	if (journal && inode == journal->j_inode)
385 		return 0;
386 
387 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
388 		ext4_error_inode(inode, func, line, map->m_pblk,
389 				 "lblock %lu mapped to illegal pblock %llu "
390 				 "(length %d)", (unsigned long) map->m_lblk,
391 				 map->m_pblk, map->m_len);
392 		return -EFSCORRUPTED;
393 	}
394 	return 0;
395 }
396 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)397 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
398 		       ext4_lblk_t len)
399 {
400 	int ret;
401 
402 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
403 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
404 
405 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
406 	if (ret > 0)
407 		ret = 0;
408 
409 	return ret;
410 }
411 
412 #define check_block_validity(inode, map)	\
413 	__check_block_validity((inode), __func__, __LINE__, (map))
414 
415 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)416 static void ext4_map_blocks_es_recheck(handle_t *handle,
417 				       struct inode *inode,
418 				       struct ext4_map_blocks *es_map,
419 				       struct ext4_map_blocks *map,
420 				       int flags)
421 {
422 	int retval;
423 
424 	map->m_flags = 0;
425 	/*
426 	 * There is a race window that the result is not the same.
427 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
428 	 * is that we lookup a block mapping in extent status tree with
429 	 * out taking i_data_sem.  So at the time the unwritten extent
430 	 * could be converted.
431 	 */
432 	down_read(&EXT4_I(inode)->i_data_sem);
433 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
434 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
437 	}
438 	up_read((&EXT4_I(inode)->i_data_sem));
439 
440 	/*
441 	 * We don't check m_len because extent will be collpased in status
442 	 * tree.  So the m_len might not equal.
443 	 */
444 	if (es_map->m_lblk != map->m_lblk ||
445 	    es_map->m_flags != map->m_flags ||
446 	    es_map->m_pblk != map->m_pblk) {
447 		printk("ES cache assertion failed for inode: %lu "
448 		       "es_cached ex [%d/%d/%llu/%x] != "
449 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
450 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
451 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
452 		       map->m_len, map->m_pblk, map->m_flags,
453 		       retval, flags);
454 	}
455 }
456 #endif /* ES_AGGRESSIVE_TEST */
457 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)458 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
459 				 struct ext4_map_blocks *map)
460 {
461 	unsigned int status;
462 	int retval;
463 
464 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
465 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
466 	else
467 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
468 
469 	if (retval <= 0)
470 		return retval;
471 
472 	if (unlikely(retval != map->m_len)) {
473 		ext4_warning(inode->i_sb,
474 			     "ES len assertion failed for inode "
475 			     "%lu: retval %d != map->m_len %d",
476 			     inode->i_ino, retval, map->m_len);
477 		WARN_ON(1);
478 	}
479 
480 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
481 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
482 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
483 			      map->m_pblk, status);
484 	return retval;
485 }
486 
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 		    struct ext4_map_blocks *map, int flags)
511 {
512 	struct extent_status es;
513 	int retval;
514 	int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 	struct ext4_map_blocks orig_map;
517 
518 	memcpy(&orig_map, map, sizeof(*map));
519 #endif
520 
521 	map->m_flags = 0;
522 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 		  flags, map->m_len, (unsigned long) map->m_lblk);
524 
525 	/*
526 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 	 */
528 	if (unlikely(map->m_len > INT_MAX))
529 		map->m_len = INT_MAX;
530 
531 	/* We can handle the block number less than EXT_MAX_BLOCKS */
532 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 		return -EFSCORRUPTED;
534 
535 	/* Lookup extent status tree firstly */
536 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 			map->m_pblk = ext4_es_pblock(&es) +
540 					map->m_lblk - es.es_lblk;
541 			map->m_flags |= ext4_es_is_written(&es) ?
542 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 			retval = es.es_len - (map->m_lblk - es.es_lblk);
544 			if (retval > map->m_len)
545 				retval = map->m_len;
546 			map->m_len = retval;
547 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 			map->m_pblk = 0;
549 			retval = es.es_len - (map->m_lblk - es.es_lblk);
550 			if (retval > map->m_len)
551 				retval = map->m_len;
552 			map->m_len = retval;
553 			retval = 0;
554 		} else {
555 			BUG();
556 		}
557 
558 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
559 			return retval;
560 #ifdef ES_AGGRESSIVE_TEST
561 		ext4_map_blocks_es_recheck(handle, inode, map,
562 					   &orig_map, flags);
563 #endif
564 		goto found;
565 	}
566 	/*
567 	 * In the query cache no-wait mode, nothing we can do more if we
568 	 * cannot find extent in the cache.
569 	 */
570 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
571 		return 0;
572 
573 	/*
574 	 * Try to see if we can get the block without requesting a new
575 	 * file system block.
576 	 */
577 	down_read(&EXT4_I(inode)->i_data_sem);
578 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
579 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
580 	} else {
581 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
582 	}
583 	if (retval > 0) {
584 		unsigned int status;
585 
586 		if (unlikely(retval != map->m_len)) {
587 			ext4_warning(inode->i_sb,
588 				     "ES len assertion failed for inode "
589 				     "%lu: retval %d != map->m_len %d",
590 				     inode->i_ino, retval, map->m_len);
591 			WARN_ON(1);
592 		}
593 
594 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
595 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
596 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
597 		    !(status & EXTENT_STATUS_WRITTEN) &&
598 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
599 				       map->m_lblk + map->m_len - 1))
600 			status |= EXTENT_STATUS_DELAYED;
601 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
602 				      map->m_pblk, status);
603 	}
604 	up_read((&EXT4_I(inode)->i_data_sem));
605 
606 found:
607 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
608 		ret = check_block_validity(inode, map);
609 		if (ret != 0)
610 			return ret;
611 	}
612 
613 	/* If it is only a block(s) look up */
614 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
615 		return retval;
616 
617 	/*
618 	 * Returns if the blocks have already allocated
619 	 *
620 	 * Note that if blocks have been preallocated
621 	 * ext4_ext_get_block() returns the create = 0
622 	 * with buffer head unmapped.
623 	 */
624 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
625 		/*
626 		 * If we need to convert extent to unwritten
627 		 * we continue and do the actual work in
628 		 * ext4_ext_map_blocks()
629 		 */
630 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
631 			return retval;
632 
633 	/*
634 	 * Here we clear m_flags because after allocating an new extent,
635 	 * it will be set again.
636 	 */
637 	map->m_flags &= ~EXT4_MAP_FLAGS;
638 
639 	/*
640 	 * New blocks allocate and/or writing to unwritten extent
641 	 * will possibly result in updating i_data, so we take
642 	 * the write lock of i_data_sem, and call get_block()
643 	 * with create == 1 flag.
644 	 */
645 	down_write(&EXT4_I(inode)->i_data_sem);
646 
647 	/*
648 	 * We need to check for EXT4 here because migrate
649 	 * could have changed the inode type in between
650 	 */
651 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
652 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
653 	} else {
654 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
655 
656 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
657 			/*
658 			 * We allocated new blocks which will result in
659 			 * i_data's format changing.  Force the migrate
660 			 * to fail by clearing migrate flags
661 			 */
662 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
663 		}
664 	}
665 
666 	if (retval > 0) {
667 		unsigned int status;
668 
669 		if (unlikely(retval != map->m_len)) {
670 			ext4_warning(inode->i_sb,
671 				     "ES len assertion failed for inode "
672 				     "%lu: retval %d != map->m_len %d",
673 				     inode->i_ino, retval, map->m_len);
674 			WARN_ON(1);
675 		}
676 
677 		/*
678 		 * We have to zeroout blocks before inserting them into extent
679 		 * status tree. Otherwise someone could look them up there and
680 		 * use them before they are really zeroed. We also have to
681 		 * unmap metadata before zeroing as otherwise writeback can
682 		 * overwrite zeros with stale data from block device.
683 		 */
684 		if (flags & EXT4_GET_BLOCKS_ZERO &&
685 		    map->m_flags & EXT4_MAP_MAPPED &&
686 		    map->m_flags & EXT4_MAP_NEW) {
687 			ret = ext4_issue_zeroout(inode, map->m_lblk,
688 						 map->m_pblk, map->m_len);
689 			if (ret) {
690 				retval = ret;
691 				goto out_sem;
692 			}
693 		}
694 
695 		/*
696 		 * If the extent has been zeroed out, we don't need to update
697 		 * extent status tree.
698 		 */
699 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
700 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
701 			if (ext4_es_is_written(&es))
702 				goto out_sem;
703 		}
704 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
705 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
706 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
707 		    !(status & EXTENT_STATUS_WRITTEN) &&
708 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
709 				       map->m_lblk + map->m_len - 1))
710 			status |= EXTENT_STATUS_DELAYED;
711 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
712 				      map->m_pblk, status);
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 	}
746 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747 				map->m_flags & EXT4_MAP_MAPPED))
748 		ext4_fc_track_range(handle, inode, map->m_lblk,
749 					map->m_lblk + map->m_len - 1);
750 	if (retval < 0)
751 		ext_debug(inode, "failed with err %d\n", retval);
752 	return retval;
753 }
754 
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761 	unsigned long old_state;
762 	unsigned long new_state;
763 
764 	flags &= EXT4_MAP_FLAGS;
765 
766 	/* Dummy buffer_head? Set non-atomically. */
767 	if (!bh->b_page) {
768 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 		return;
770 	}
771 	/*
772 	 * Someone else may be modifying b_state. Be careful! This is ugly but
773 	 * once we get rid of using bh as a container for mapping information
774 	 * to pass to / from get_block functions, this can go away.
775 	 */
776 	old_state = READ_ONCE(bh->b_state);
777 	do {
778 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
780 }
781 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	int ret = 0;
824 
825 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
826 		   inode->i_ino, create);
827 	ret = _ext4_get_block(inode, iblock, bh_result,
828 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
829 
830 	/*
831 	 * If the buffer is marked unwritten, mark it as new to make sure it is
832 	 * zeroed out correctly in case of partial writes. Otherwise, there is
833 	 * a chance of stale data getting exposed.
834 	 */
835 	if (ret == 0 && buffer_unwritten(bh_result))
836 		set_buffer_new(bh_result);
837 
838 	return ret;
839 }
840 
841 /* Maximum number of blocks we map for direct IO at once. */
842 #define DIO_MAX_BLOCKS 4096
843 
844 /*
845  * `handle' can be NULL if create is zero
846  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)847 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
848 				ext4_lblk_t block, int map_flags)
849 {
850 	struct ext4_map_blocks map;
851 	struct buffer_head *bh;
852 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
853 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
854 	int err;
855 
856 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
857 		    || handle != NULL || create == 0);
858 	ASSERT(create == 0 || !nowait);
859 
860 	map.m_lblk = block;
861 	map.m_len = 1;
862 	err = ext4_map_blocks(handle, inode, &map, map_flags);
863 
864 	if (err == 0)
865 		return create ? ERR_PTR(-ENOSPC) : NULL;
866 	if (err < 0)
867 		return ERR_PTR(err);
868 
869 	if (nowait)
870 		return sb_find_get_block(inode->i_sb, map.m_pblk);
871 
872 	bh = sb_getblk(inode->i_sb, map.m_pblk);
873 	if (unlikely(!bh))
874 		return ERR_PTR(-ENOMEM);
875 	if (map.m_flags & EXT4_MAP_NEW) {
876 		ASSERT(create != 0);
877 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
878 			    || (handle != NULL));
879 
880 		/*
881 		 * Now that we do not always journal data, we should
882 		 * keep in mind whether this should always journal the
883 		 * new buffer as metadata.  For now, regular file
884 		 * writes use ext4_get_block instead, so it's not a
885 		 * problem.
886 		 */
887 		lock_buffer(bh);
888 		BUFFER_TRACE(bh, "call get_create_access");
889 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
890 						     EXT4_JTR_NONE);
891 		if (unlikely(err)) {
892 			unlock_buffer(bh);
893 			goto errout;
894 		}
895 		if (!buffer_uptodate(bh)) {
896 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
897 			set_buffer_uptodate(bh);
898 		}
899 		unlock_buffer(bh);
900 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
901 		err = ext4_handle_dirty_metadata(handle, inode, bh);
902 		if (unlikely(err))
903 			goto errout;
904 	} else
905 		BUFFER_TRACE(bh, "not a new buffer");
906 	return bh;
907 errout:
908 	brelse(bh);
909 	return ERR_PTR(err);
910 }
911 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)912 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
913 			       ext4_lblk_t block, int map_flags)
914 {
915 	struct buffer_head *bh;
916 	int ret;
917 
918 	bh = ext4_getblk(handle, inode, block, map_flags);
919 	if (IS_ERR(bh))
920 		return bh;
921 	if (!bh || ext4_buffer_uptodate(bh))
922 		return bh;
923 
924 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
925 	if (ret) {
926 		put_bh(bh);
927 		return ERR_PTR(ret);
928 	}
929 	return bh;
930 }
931 
932 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)933 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
934 		     bool wait, struct buffer_head **bhs)
935 {
936 	int i, err;
937 
938 	for (i = 0; i < bh_count; i++) {
939 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
940 		if (IS_ERR(bhs[i])) {
941 			err = PTR_ERR(bhs[i]);
942 			bh_count = i;
943 			goto out_brelse;
944 		}
945 	}
946 
947 	for (i = 0; i < bh_count; i++)
948 		/* Note that NULL bhs[i] is valid because of holes. */
949 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
950 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
951 
952 	if (!wait)
953 		return 0;
954 
955 	for (i = 0; i < bh_count; i++)
956 		if (bhs[i])
957 			wait_on_buffer(bhs[i]);
958 
959 	for (i = 0; i < bh_count; i++) {
960 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
961 			err = -EIO;
962 			goto out_brelse;
963 		}
964 	}
965 	return 0;
966 
967 out_brelse:
968 	for (i = 0; i < bh_count; i++) {
969 		brelse(bhs[i]);
970 		bhs[i] = NULL;
971 	}
972 	return err;
973 }
974 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))975 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
976 			   struct buffer_head *head,
977 			   unsigned from,
978 			   unsigned to,
979 			   int *partial,
980 			   int (*fn)(handle_t *handle, struct inode *inode,
981 				     struct buffer_head *bh))
982 {
983 	struct buffer_head *bh;
984 	unsigned block_start, block_end;
985 	unsigned blocksize = head->b_size;
986 	int err, ret = 0;
987 	struct buffer_head *next;
988 
989 	for (bh = head, block_start = 0;
990 	     ret == 0 && (bh != head || !block_start);
991 	     block_start = block_end, bh = next) {
992 		next = bh->b_this_page;
993 		block_end = block_start + blocksize;
994 		if (block_end <= from || block_start >= to) {
995 			if (partial && !buffer_uptodate(bh))
996 				*partial = 1;
997 			continue;
998 		}
999 		err = (*fn)(handle, inode, bh);
1000 		if (!ret)
1001 			ret = err;
1002 	}
1003 	return ret;
1004 }
1005 
1006 /*
1007  * Helper for handling dirtying of journalled data. We also mark the folio as
1008  * dirty so that writeback code knows about this page (and inode) contains
1009  * dirty data. ext4_writepages() then commits appropriate transaction to
1010  * make data stable.
1011  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1012 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1013 {
1014 	struct folio *folio = bh->b_folio;
1015 	struct inode *inode = folio->mapping->host;
1016 
1017 	/* only regular files have a_ops */
1018 	if (S_ISREG(inode->i_mode))
1019 		folio_mark_dirty(folio);
1020 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1021 }
1022 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1023 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1024 				struct buffer_head *bh)
1025 {
1026 	int dirty = buffer_dirty(bh);
1027 	int ret;
1028 
1029 	if (!buffer_mapped(bh) || buffer_freed(bh))
1030 		return 0;
1031 	/*
1032 	 * __block_write_begin() could have dirtied some buffers. Clean
1033 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1034 	 * otherwise about fs integrity issues. Setting of the dirty bit
1035 	 * by __block_write_begin() isn't a real problem here as we clear
1036 	 * the bit before releasing a page lock and thus writeback cannot
1037 	 * ever write the buffer.
1038 	 */
1039 	if (dirty)
1040 		clear_buffer_dirty(bh);
1041 	BUFFER_TRACE(bh, "get write access");
1042 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1043 					    EXT4_JTR_NONE);
1044 	if (!ret && dirty)
1045 		ret = ext4_dirty_journalled_data(handle, bh);
1046 	return ret;
1047 }
1048 
1049 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1050 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1051 				  get_block_t *get_block)
1052 {
1053 	unsigned from = pos & (PAGE_SIZE - 1);
1054 	unsigned to = from + len;
1055 	struct inode *inode = folio->mapping->host;
1056 	unsigned block_start, block_end;
1057 	sector_t block;
1058 	int err = 0;
1059 	unsigned blocksize = inode->i_sb->s_blocksize;
1060 	unsigned bbits;
1061 	struct buffer_head *bh, *head, *wait[2];
1062 	int nr_wait = 0;
1063 	int i;
1064 
1065 	BUG_ON(!folio_test_locked(folio));
1066 	BUG_ON(from > PAGE_SIZE);
1067 	BUG_ON(to > PAGE_SIZE);
1068 	BUG_ON(from > to);
1069 
1070 	head = folio_buffers(folio);
1071 	if (!head) {
1072 		create_empty_buffers(&folio->page, blocksize, 0);
1073 		head = folio_buffers(folio);
1074 	}
1075 	bbits = ilog2(blocksize);
1076 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1077 
1078 	for (bh = head, block_start = 0; bh != head || !block_start;
1079 	    block++, block_start = block_end, bh = bh->b_this_page) {
1080 		block_end = block_start + blocksize;
1081 		if (block_end <= from || block_start >= to) {
1082 			if (folio_test_uptodate(folio)) {
1083 				set_buffer_uptodate(bh);
1084 			}
1085 			continue;
1086 		}
1087 		if (buffer_new(bh))
1088 			clear_buffer_new(bh);
1089 		if (!buffer_mapped(bh)) {
1090 			WARN_ON(bh->b_size != blocksize);
1091 			err = get_block(inode, block, bh, 1);
1092 			if (err)
1093 				break;
1094 			if (buffer_new(bh)) {
1095 				if (folio_test_uptodate(folio)) {
1096 					clear_buffer_new(bh);
1097 					set_buffer_uptodate(bh);
1098 					mark_buffer_dirty(bh);
1099 					continue;
1100 				}
1101 				if (block_end > to || block_start < from)
1102 					folio_zero_segments(folio, to,
1103 							    block_end,
1104 							    block_start, from);
1105 				continue;
1106 			}
1107 		}
1108 		if (folio_test_uptodate(folio)) {
1109 			set_buffer_uptodate(bh);
1110 			continue;
1111 		}
1112 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113 		    !buffer_unwritten(bh) &&
1114 		    (block_start < from || block_end > to)) {
1115 			ext4_read_bh_lock(bh, 0, false);
1116 			wait[nr_wait++] = bh;
1117 		}
1118 	}
1119 	/*
1120 	 * If we issued read requests, let them complete.
1121 	 */
1122 	for (i = 0; i < nr_wait; i++) {
1123 		wait_on_buffer(wait[i]);
1124 		if (!buffer_uptodate(wait[i]))
1125 			err = -EIO;
1126 	}
1127 	if (unlikely(err)) {
1128 		folio_zero_new_buffers(folio, from, to);
1129 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1130 		for (i = 0; i < nr_wait; i++) {
1131 			int err2;
1132 
1133 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1134 						blocksize, bh_offset(wait[i]));
1135 			if (err2) {
1136 				clear_buffer_uptodate(wait[i]);
1137 				err = err2;
1138 			}
1139 		}
1140 	}
1141 
1142 	return err;
1143 }
1144 #endif
1145 
1146 /*
1147  * To preserve ordering, it is essential that the hole instantiation and
1148  * the data write be encapsulated in a single transaction.  We cannot
1149  * close off a transaction and start a new one between the ext4_get_block()
1150  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1151  * ext4_write_begin() is the right place.
1152  */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1153 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1154 			    loff_t pos, unsigned len,
1155 			    struct page **pagep, void **fsdata)
1156 {
1157 	struct inode *inode = mapping->host;
1158 	int ret, needed_blocks;
1159 	handle_t *handle;
1160 	int retries = 0;
1161 	struct folio *folio;
1162 	pgoff_t index;
1163 	unsigned from, to;
1164 
1165 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1166 		return -EIO;
1167 
1168 	trace_ext4_write_begin(inode, pos, len);
1169 	/*
1170 	 * Reserve one block more for addition to orphan list in case
1171 	 * we allocate blocks but write fails for some reason
1172 	 */
1173 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1174 	index = pos >> PAGE_SHIFT;
1175 	from = pos & (PAGE_SIZE - 1);
1176 	to = from + len;
1177 
1178 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1179 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1180 						    pagep);
1181 		if (ret < 0)
1182 			return ret;
1183 		if (ret == 1)
1184 			return 0;
1185 	}
1186 
1187 	/*
1188 	 * __filemap_get_folio() can take a long time if the
1189 	 * system is thrashing due to memory pressure, or if the folio
1190 	 * is being written back.  So grab it first before we start
1191 	 * the transaction handle.  This also allows us to allocate
1192 	 * the folio (if needed) without using GFP_NOFS.
1193 	 */
1194 retry_grab:
1195 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1196 					mapping_gfp_mask(mapping));
1197 	if (IS_ERR(folio))
1198 		return PTR_ERR(folio);
1199 	/*
1200 	 * The same as page allocation, we prealloc buffer heads before
1201 	 * starting the handle.
1202 	 */
1203 	if (!folio_buffers(folio))
1204 		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1205 
1206 	folio_unlock(folio);
1207 
1208 retry_journal:
1209 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1210 	if (IS_ERR(handle)) {
1211 		folio_put(folio);
1212 		return PTR_ERR(handle);
1213 	}
1214 
1215 	folio_lock(folio);
1216 	if (folio->mapping != mapping) {
1217 		/* The folio got truncated from under us */
1218 		folio_unlock(folio);
1219 		folio_put(folio);
1220 		ext4_journal_stop(handle);
1221 		goto retry_grab;
1222 	}
1223 	/* In case writeback began while the folio was unlocked */
1224 	folio_wait_stable(folio);
1225 
1226 #ifdef CONFIG_FS_ENCRYPTION
1227 	if (ext4_should_dioread_nolock(inode))
1228 		ret = ext4_block_write_begin(folio, pos, len,
1229 					     ext4_get_block_unwritten);
1230 	else
1231 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1232 #else
1233 	if (ext4_should_dioread_nolock(inode))
1234 		ret = __block_write_begin(&folio->page, pos, len,
1235 					  ext4_get_block_unwritten);
1236 	else
1237 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1238 #endif
1239 	if (!ret && ext4_should_journal_data(inode)) {
1240 		ret = ext4_walk_page_buffers(handle, inode,
1241 					     folio_buffers(folio), from, to,
1242 					     NULL, do_journal_get_write_access);
1243 	}
1244 
1245 	if (ret) {
1246 		bool extended = (pos + len > inode->i_size) &&
1247 				!ext4_verity_in_progress(inode);
1248 
1249 		folio_unlock(folio);
1250 		/*
1251 		 * __block_write_begin may have instantiated a few blocks
1252 		 * outside i_size.  Trim these off again. Don't need
1253 		 * i_size_read because we hold i_rwsem.
1254 		 *
1255 		 * Add inode to orphan list in case we crash before
1256 		 * truncate finishes
1257 		 */
1258 		if (extended && ext4_can_truncate(inode))
1259 			ext4_orphan_add(handle, inode);
1260 
1261 		ext4_journal_stop(handle);
1262 		if (extended) {
1263 			ext4_truncate_failed_write(inode);
1264 			/*
1265 			 * If truncate failed early the inode might
1266 			 * still be on the orphan list; we need to
1267 			 * make sure the inode is removed from the
1268 			 * orphan list in that case.
1269 			 */
1270 			if (inode->i_nlink)
1271 				ext4_orphan_del(NULL, inode);
1272 		}
1273 
1274 		if (ret == -ENOSPC &&
1275 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1276 			goto retry_journal;
1277 		folio_put(folio);
1278 		return ret;
1279 	}
1280 	*pagep = &folio->page;
1281 	return ret;
1282 }
1283 
1284 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1285 static int write_end_fn(handle_t *handle, struct inode *inode,
1286 			struct buffer_head *bh)
1287 {
1288 	int ret;
1289 	if (!buffer_mapped(bh) || buffer_freed(bh))
1290 		return 0;
1291 	set_buffer_uptodate(bh);
1292 	ret = ext4_dirty_journalled_data(handle, bh);
1293 	clear_buffer_meta(bh);
1294 	clear_buffer_prio(bh);
1295 	return ret;
1296 }
1297 
1298 /*
1299  * We need to pick up the new inode size which generic_commit_write gave us
1300  * `file' can be NULL - eg, when called from page_symlink().
1301  *
1302  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1303  * buffers are managed internally.
1304  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1305 static int ext4_write_end(struct file *file,
1306 			  struct address_space *mapping,
1307 			  loff_t pos, unsigned len, unsigned copied,
1308 			  struct page *page, void *fsdata)
1309 {
1310 	struct folio *folio = page_folio(page);
1311 	handle_t *handle = ext4_journal_current_handle();
1312 	struct inode *inode = mapping->host;
1313 	loff_t old_size = inode->i_size;
1314 	int ret = 0, ret2;
1315 	int i_size_changed = 0;
1316 	bool verity = ext4_verity_in_progress(inode);
1317 
1318 	trace_ext4_write_end(inode, pos, len, copied);
1319 
1320 	if (ext4_has_inline_data(inode) &&
1321 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1322 		return ext4_write_inline_data_end(inode, pos, len, copied,
1323 						  folio);
1324 
1325 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1326 	/*
1327 	 * it's important to update i_size while still holding folio lock:
1328 	 * page writeout could otherwise come in and zero beyond i_size.
1329 	 *
1330 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1331 	 * blocks are being written past EOF, so skip the i_size update.
1332 	 */
1333 	if (!verity)
1334 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1335 	folio_unlock(folio);
1336 	folio_put(folio);
1337 
1338 	if (old_size < pos && !verity) {
1339 		pagecache_isize_extended(inode, old_size, pos);
1340 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1341 	}
1342 	/*
1343 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1344 	 * makes the holding time of folio lock longer. Second, it forces lock
1345 	 * ordering of folio lock and transaction start for journaling
1346 	 * filesystems.
1347 	 */
1348 	if (i_size_changed)
1349 		ret = ext4_mark_inode_dirty(handle, inode);
1350 
1351 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1352 		/* if we have allocated more blocks and copied
1353 		 * less. We will have blocks allocated outside
1354 		 * inode->i_size. So truncate them
1355 		 */
1356 		ext4_orphan_add(handle, inode);
1357 
1358 	ret2 = ext4_journal_stop(handle);
1359 	if (!ret)
1360 		ret = ret2;
1361 
1362 	if (pos + len > inode->i_size && !verity) {
1363 		ext4_truncate_failed_write(inode);
1364 		/*
1365 		 * If truncate failed early the inode might still be
1366 		 * on the orphan list; we need to make sure the inode
1367 		 * is removed from the orphan list in that case.
1368 		 */
1369 		if (inode->i_nlink)
1370 			ext4_orphan_del(NULL, inode);
1371 	}
1372 
1373 	return ret ? ret : copied;
1374 }
1375 
1376 /*
1377  * This is a private version of folio_zero_new_buffers() which doesn't
1378  * set the buffer to be dirty, since in data=journalled mode we need
1379  * to call ext4_dirty_journalled_data() instead.
1380  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1381 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1382 					    struct inode *inode,
1383 					    struct folio *folio,
1384 					    unsigned from, unsigned to)
1385 {
1386 	unsigned int block_start = 0, block_end;
1387 	struct buffer_head *head, *bh;
1388 
1389 	bh = head = folio_buffers(folio);
1390 	do {
1391 		block_end = block_start + bh->b_size;
1392 		if (buffer_new(bh)) {
1393 			if (block_end > from && block_start < to) {
1394 				if (!folio_test_uptodate(folio)) {
1395 					unsigned start, size;
1396 
1397 					start = max(from, block_start);
1398 					size = min(to, block_end) - start;
1399 
1400 					folio_zero_range(folio, start, size);
1401 					write_end_fn(handle, inode, bh);
1402 				}
1403 				clear_buffer_new(bh);
1404 			}
1405 		}
1406 		block_start = block_end;
1407 		bh = bh->b_this_page;
1408 	} while (bh != head);
1409 }
1410 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1411 static int ext4_journalled_write_end(struct file *file,
1412 				     struct address_space *mapping,
1413 				     loff_t pos, unsigned len, unsigned copied,
1414 				     struct page *page, void *fsdata)
1415 {
1416 	struct folio *folio = page_folio(page);
1417 	handle_t *handle = ext4_journal_current_handle();
1418 	struct inode *inode = mapping->host;
1419 	loff_t old_size = inode->i_size;
1420 	int ret = 0, ret2;
1421 	int partial = 0;
1422 	unsigned from, to;
1423 	int size_changed = 0;
1424 	bool verity = ext4_verity_in_progress(inode);
1425 
1426 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1427 	from = pos & (PAGE_SIZE - 1);
1428 	to = from + len;
1429 
1430 	BUG_ON(!ext4_handle_valid(handle));
1431 
1432 	if (ext4_has_inline_data(inode))
1433 		return ext4_write_inline_data_end(inode, pos, len, copied,
1434 						  folio);
1435 
1436 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1437 		copied = 0;
1438 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1439 						 from, to);
1440 	} else {
1441 		if (unlikely(copied < len))
1442 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1443 							 from + copied, to);
1444 		ret = ext4_walk_page_buffers(handle, inode,
1445 					     folio_buffers(folio),
1446 					     from, from + copied, &partial,
1447 					     write_end_fn);
1448 		if (!partial)
1449 			folio_mark_uptodate(folio);
1450 	}
1451 	if (!verity)
1452 		size_changed = ext4_update_inode_size(inode, pos + copied);
1453 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1454 	folio_unlock(folio);
1455 	folio_put(folio);
1456 
1457 	if (old_size < pos && !verity) {
1458 		pagecache_isize_extended(inode, old_size, pos);
1459 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1460 	}
1461 
1462 	if (size_changed) {
1463 		ret2 = ext4_mark_inode_dirty(handle, inode);
1464 		if (!ret)
1465 			ret = ret2;
1466 	}
1467 
1468 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1469 		/* if we have allocated more blocks and copied
1470 		 * less. We will have blocks allocated outside
1471 		 * inode->i_size. So truncate them
1472 		 */
1473 		ext4_orphan_add(handle, inode);
1474 
1475 	ret2 = ext4_journal_stop(handle);
1476 	if (!ret)
1477 		ret = ret2;
1478 	if (pos + len > inode->i_size && !verity) {
1479 		ext4_truncate_failed_write(inode);
1480 		/*
1481 		 * If truncate failed early the inode might still be
1482 		 * on the orphan list; we need to make sure the inode
1483 		 * is removed from the orphan list in that case.
1484 		 */
1485 		if (inode->i_nlink)
1486 			ext4_orphan_del(NULL, inode);
1487 	}
1488 
1489 	return ret ? ret : copied;
1490 }
1491 
1492 /*
1493  * Reserve space for a single cluster
1494  */
ext4_da_reserve_space(struct inode * inode)1495 static int ext4_da_reserve_space(struct inode *inode)
1496 {
1497 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1498 	struct ext4_inode_info *ei = EXT4_I(inode);
1499 	int ret;
1500 
1501 	/*
1502 	 * We will charge metadata quota at writeout time; this saves
1503 	 * us from metadata over-estimation, though we may go over by
1504 	 * a small amount in the end.  Here we just reserve for data.
1505 	 */
1506 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1507 	if (ret)
1508 		return ret;
1509 
1510 	spin_lock(&ei->i_block_reservation_lock);
1511 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1512 		spin_unlock(&ei->i_block_reservation_lock);
1513 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1514 		return -ENOSPC;
1515 	}
1516 	ei->i_reserved_data_blocks++;
1517 	trace_ext4_da_reserve_space(inode);
1518 	spin_unlock(&ei->i_block_reservation_lock);
1519 
1520 	return 0;       /* success */
1521 }
1522 
ext4_da_release_space(struct inode * inode,int to_free)1523 void ext4_da_release_space(struct inode *inode, int to_free)
1524 {
1525 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1526 	struct ext4_inode_info *ei = EXT4_I(inode);
1527 
1528 	if (!to_free)
1529 		return;		/* Nothing to release, exit */
1530 
1531 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1532 
1533 	trace_ext4_da_release_space(inode, to_free);
1534 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1535 		/*
1536 		 * if there aren't enough reserved blocks, then the
1537 		 * counter is messed up somewhere.  Since this
1538 		 * function is called from invalidate page, it's
1539 		 * harmless to return without any action.
1540 		 */
1541 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1542 			 "ino %lu, to_free %d with only %d reserved "
1543 			 "data blocks", inode->i_ino, to_free,
1544 			 ei->i_reserved_data_blocks);
1545 		WARN_ON(1);
1546 		to_free = ei->i_reserved_data_blocks;
1547 	}
1548 	ei->i_reserved_data_blocks -= to_free;
1549 
1550 	/* update fs dirty data blocks counter */
1551 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1552 
1553 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1554 
1555 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1556 }
1557 
1558 /*
1559  * Delayed allocation stuff
1560  */
1561 
1562 struct mpage_da_data {
1563 	/* These are input fields for ext4_do_writepages() */
1564 	struct inode *inode;
1565 	struct writeback_control *wbc;
1566 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1567 
1568 	/* These are internal state of ext4_do_writepages() */
1569 	pgoff_t first_page;	/* The first page to write */
1570 	pgoff_t next_page;	/* Current page to examine */
1571 	pgoff_t last_page;	/* Last page to examine */
1572 	/*
1573 	 * Extent to map - this can be after first_page because that can be
1574 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1575 	 * is delalloc or unwritten.
1576 	 */
1577 	struct ext4_map_blocks map;
1578 	struct ext4_io_submit io_submit;	/* IO submission data */
1579 	unsigned int do_map:1;
1580 	unsigned int scanned_until_end:1;
1581 	unsigned int journalled_more_data:1;
1582 };
1583 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1584 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1585 				       bool invalidate)
1586 {
1587 	unsigned nr, i;
1588 	pgoff_t index, end;
1589 	struct folio_batch fbatch;
1590 	struct inode *inode = mpd->inode;
1591 	struct address_space *mapping = inode->i_mapping;
1592 
1593 	/* This is necessary when next_page == 0. */
1594 	if (mpd->first_page >= mpd->next_page)
1595 		return;
1596 
1597 	mpd->scanned_until_end = 0;
1598 	index = mpd->first_page;
1599 	end   = mpd->next_page - 1;
1600 	if (invalidate) {
1601 		ext4_lblk_t start, last;
1602 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1603 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1604 
1605 		/*
1606 		 * avoid racing with extent status tree scans made by
1607 		 * ext4_insert_delayed_block()
1608 		 */
1609 		down_write(&EXT4_I(inode)->i_data_sem);
1610 		ext4_es_remove_extent(inode, start, last - start + 1);
1611 		up_write(&EXT4_I(inode)->i_data_sem);
1612 	}
1613 
1614 	folio_batch_init(&fbatch);
1615 	while (index <= end) {
1616 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1617 		if (nr == 0)
1618 			break;
1619 		for (i = 0; i < nr; i++) {
1620 			struct folio *folio = fbatch.folios[i];
1621 
1622 			if (folio->index < mpd->first_page)
1623 				continue;
1624 			if (folio_next_index(folio) - 1 > end)
1625 				continue;
1626 			BUG_ON(!folio_test_locked(folio));
1627 			BUG_ON(folio_test_writeback(folio));
1628 			if (invalidate) {
1629 				if (folio_mapped(folio))
1630 					folio_clear_dirty_for_io(folio);
1631 				block_invalidate_folio(folio, 0,
1632 						folio_size(folio));
1633 				folio_clear_uptodate(folio);
1634 			}
1635 			folio_unlock(folio);
1636 		}
1637 		folio_batch_release(&fbatch);
1638 	}
1639 }
1640 
ext4_print_free_blocks(struct inode * inode)1641 static void ext4_print_free_blocks(struct inode *inode)
1642 {
1643 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1644 	struct super_block *sb = inode->i_sb;
1645 	struct ext4_inode_info *ei = EXT4_I(inode);
1646 
1647 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1648 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1649 			ext4_count_free_clusters(sb)));
1650 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1651 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1652 	       (long long) EXT4_C2B(EXT4_SB(sb),
1653 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1654 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1655 	       (long long) EXT4_C2B(EXT4_SB(sb),
1656 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1657 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1658 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1659 		 ei->i_reserved_data_blocks);
1660 	return;
1661 }
1662 
1663 /*
1664  * ext4_insert_delayed_block - adds a delayed block to the extents status
1665  *                             tree, incrementing the reserved cluster/block
1666  *                             count or making a pending reservation
1667  *                             where needed
1668  *
1669  * @inode - file containing the newly added block
1670  * @lblk - logical block to be added
1671  *
1672  * Returns 0 on success, negative error code on failure.
1673  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1674 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1675 {
1676 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1677 	int ret;
1678 	bool allocated = false;
1679 
1680 	/*
1681 	 * If the cluster containing lblk is shared with a delayed,
1682 	 * written, or unwritten extent in a bigalloc file system, it's
1683 	 * already been accounted for and does not need to be reserved.
1684 	 * A pending reservation must be made for the cluster if it's
1685 	 * shared with a written or unwritten extent and doesn't already
1686 	 * have one.  Written and unwritten extents can be purged from the
1687 	 * extents status tree if the system is under memory pressure, so
1688 	 * it's necessary to examine the extent tree if a search of the
1689 	 * extents status tree doesn't get a match.
1690 	 */
1691 	if (sbi->s_cluster_ratio == 1) {
1692 		ret = ext4_da_reserve_space(inode);
1693 		if (ret != 0)   /* ENOSPC */
1694 			return ret;
1695 	} else {   /* bigalloc */
1696 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1697 			if (!ext4_es_scan_clu(inode,
1698 					      &ext4_es_is_mapped, lblk)) {
1699 				ret = ext4_clu_mapped(inode,
1700 						      EXT4_B2C(sbi, lblk));
1701 				if (ret < 0)
1702 					return ret;
1703 				if (ret == 0) {
1704 					ret = ext4_da_reserve_space(inode);
1705 					if (ret != 0)   /* ENOSPC */
1706 						return ret;
1707 				} else {
1708 					allocated = true;
1709 				}
1710 			} else {
1711 				allocated = true;
1712 			}
1713 		}
1714 	}
1715 
1716 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1717 	return 0;
1718 }
1719 
1720 /*
1721  * This function is grabs code from the very beginning of
1722  * ext4_map_blocks, but assumes that the caller is from delayed write
1723  * time. This function looks up the requested blocks and sets the
1724  * buffer delay bit under the protection of i_data_sem.
1725  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1726 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1727 			      struct ext4_map_blocks *map,
1728 			      struct buffer_head *bh)
1729 {
1730 	struct extent_status es;
1731 	int retval;
1732 	sector_t invalid_block = ~((sector_t) 0xffff);
1733 #ifdef ES_AGGRESSIVE_TEST
1734 	struct ext4_map_blocks orig_map;
1735 
1736 	memcpy(&orig_map, map, sizeof(*map));
1737 #endif
1738 
1739 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1740 		invalid_block = ~0;
1741 
1742 	map->m_flags = 0;
1743 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1744 		  (unsigned long) map->m_lblk);
1745 
1746 	/* Lookup extent status tree firstly */
1747 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1748 		if (ext4_es_is_hole(&es))
1749 			goto add_delayed;
1750 
1751 found:
1752 		/*
1753 		 * Delayed extent could be allocated by fallocate.
1754 		 * So we need to check it.
1755 		 */
1756 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1757 			map_bh(bh, inode->i_sb, invalid_block);
1758 			set_buffer_new(bh);
1759 			set_buffer_delay(bh);
1760 			return 0;
1761 		}
1762 
1763 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1764 		retval = es.es_len - (iblock - es.es_lblk);
1765 		if (retval > map->m_len)
1766 			retval = map->m_len;
1767 		map->m_len = retval;
1768 		if (ext4_es_is_written(&es))
1769 			map->m_flags |= EXT4_MAP_MAPPED;
1770 		else if (ext4_es_is_unwritten(&es))
1771 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1772 		else
1773 			BUG();
1774 
1775 #ifdef ES_AGGRESSIVE_TEST
1776 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1777 #endif
1778 		return retval;
1779 	}
1780 
1781 	/*
1782 	 * Try to see if we can get the block without requesting a new
1783 	 * file system block.
1784 	 */
1785 	down_read(&EXT4_I(inode)->i_data_sem);
1786 	if (ext4_has_inline_data(inode))
1787 		retval = 0;
1788 	else
1789 		retval = ext4_map_query_blocks(NULL, inode, map);
1790 	up_read(&EXT4_I(inode)->i_data_sem);
1791 	if (retval)
1792 		return retval;
1793 
1794 add_delayed:
1795 	down_write(&EXT4_I(inode)->i_data_sem);
1796 	/*
1797 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1798 	 * and fallocate path (no folio lock) can race. Make sure we
1799 	 * lookup the extent status tree here again while i_data_sem
1800 	 * is held in write mode, before inserting a new da entry in
1801 	 * the extent status tree.
1802 	 */
1803 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1804 		if (!ext4_es_is_hole(&es)) {
1805 			up_write(&EXT4_I(inode)->i_data_sem);
1806 			goto found;
1807 		}
1808 	} else if (!ext4_has_inline_data(inode)) {
1809 		retval = ext4_map_query_blocks(NULL, inode, map);
1810 		if (retval) {
1811 			up_write(&EXT4_I(inode)->i_data_sem);
1812 			return retval;
1813 		}
1814 	}
1815 
1816 	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1817 	up_write(&EXT4_I(inode)->i_data_sem);
1818 	if (retval)
1819 		return retval;
1820 
1821 	map_bh(bh, inode->i_sb, invalid_block);
1822 	set_buffer_new(bh);
1823 	set_buffer_delay(bh);
1824 	return retval;
1825 }
1826 
1827 /*
1828  * This is a special get_block_t callback which is used by
1829  * ext4_da_write_begin().  It will either return mapped block or
1830  * reserve space for a single block.
1831  *
1832  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1833  * We also have b_blocknr = -1 and b_bdev initialized properly
1834  *
1835  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1836  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1837  * initialized properly.
1838  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1839 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1840 			   struct buffer_head *bh, int create)
1841 {
1842 	struct ext4_map_blocks map;
1843 	int ret = 0;
1844 
1845 	BUG_ON(create == 0);
1846 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1847 
1848 	map.m_lblk = iblock;
1849 	map.m_len = 1;
1850 
1851 	/*
1852 	 * first, we need to know whether the block is allocated already
1853 	 * preallocated blocks are unmapped but should treated
1854 	 * the same as allocated blocks.
1855 	 */
1856 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1857 	if (ret <= 0)
1858 		return ret;
1859 
1860 	map_bh(bh, inode->i_sb, map.m_pblk);
1861 	ext4_update_bh_state(bh, map.m_flags);
1862 
1863 	if (buffer_unwritten(bh)) {
1864 		/* A delayed write to unwritten bh should be marked
1865 		 * new and mapped.  Mapped ensures that we don't do
1866 		 * get_block multiple times when we write to the same
1867 		 * offset and new ensures that we do proper zero out
1868 		 * for partial write.
1869 		 */
1870 		set_buffer_new(bh);
1871 		set_buffer_mapped(bh);
1872 	}
1873 	return 0;
1874 }
1875 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1876 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1877 {
1878 	mpd->first_page += folio_nr_pages(folio);
1879 	folio_unlock(folio);
1880 }
1881 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1882 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1883 {
1884 	size_t len;
1885 	loff_t size;
1886 	int err;
1887 
1888 	BUG_ON(folio->index != mpd->first_page);
1889 	folio_clear_dirty_for_io(folio);
1890 	/*
1891 	 * We have to be very careful here!  Nothing protects writeback path
1892 	 * against i_size changes and the page can be writeably mapped into
1893 	 * page tables. So an application can be growing i_size and writing
1894 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1895 	 * write-protects our page in page tables and the page cannot get
1896 	 * written to again until we release folio lock. So only after
1897 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1898 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1899 	 * on the barrier provided by folio_test_clear_dirty() in
1900 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1901 	 * after page tables are updated.
1902 	 */
1903 	size = i_size_read(mpd->inode);
1904 	len = folio_size(folio);
1905 	if (folio_pos(folio) + len > size &&
1906 	    !ext4_verity_in_progress(mpd->inode))
1907 		len = size & ~PAGE_MASK;
1908 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1909 	if (!err)
1910 		mpd->wbc->nr_to_write--;
1911 
1912 	return err;
1913 }
1914 
1915 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1916 
1917 /*
1918  * mballoc gives us at most this number of blocks...
1919  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1920  * The rest of mballoc seems to handle chunks up to full group size.
1921  */
1922 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1923 
1924 /*
1925  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1926  *
1927  * @mpd - extent of blocks
1928  * @lblk - logical number of the block in the file
1929  * @bh - buffer head we want to add to the extent
1930  *
1931  * The function is used to collect contig. blocks in the same state. If the
1932  * buffer doesn't require mapping for writeback and we haven't started the
1933  * extent of buffers to map yet, the function returns 'true' immediately - the
1934  * caller can write the buffer right away. Otherwise the function returns true
1935  * if the block has been added to the extent, false if the block couldn't be
1936  * added.
1937  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1938 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1939 				   struct buffer_head *bh)
1940 {
1941 	struct ext4_map_blocks *map = &mpd->map;
1942 
1943 	/* Buffer that doesn't need mapping for writeback? */
1944 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1945 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1946 		/* So far no extent to map => we write the buffer right away */
1947 		if (map->m_len == 0)
1948 			return true;
1949 		return false;
1950 	}
1951 
1952 	/* First block in the extent? */
1953 	if (map->m_len == 0) {
1954 		/* We cannot map unless handle is started... */
1955 		if (!mpd->do_map)
1956 			return false;
1957 		map->m_lblk = lblk;
1958 		map->m_len = 1;
1959 		map->m_flags = bh->b_state & BH_FLAGS;
1960 		return true;
1961 	}
1962 
1963 	/* Don't go larger than mballoc is willing to allocate */
1964 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965 		return false;
1966 
1967 	/* Can we merge the block to our big extent? */
1968 	if (lblk == map->m_lblk + map->m_len &&
1969 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1970 		map->m_len++;
1971 		return true;
1972 	}
1973 	return false;
1974 }
1975 
1976 /*
1977  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978  *
1979  * @mpd - extent of blocks for mapping
1980  * @head - the first buffer in the page
1981  * @bh - buffer we should start processing from
1982  * @lblk - logical number of the block in the file corresponding to @bh
1983  *
1984  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985  * the page for IO if all buffers in this page were mapped and there's no
1986  * accumulated extent of buffers to map or add buffers in the page to the
1987  * extent of buffers to map. The function returns 1 if the caller can continue
1988  * by processing the next page, 0 if it should stop adding buffers to the
1989  * extent to map because we cannot extend it anymore. It can also return value
1990  * < 0 in case of error during IO submission.
1991  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993 				   struct buffer_head *head,
1994 				   struct buffer_head *bh,
1995 				   ext4_lblk_t lblk)
1996 {
1997 	struct inode *inode = mpd->inode;
1998 	int err;
1999 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2000 							>> inode->i_blkbits;
2001 
2002 	if (ext4_verity_in_progress(inode))
2003 		blocks = EXT_MAX_BLOCKS;
2004 
2005 	do {
2006 		BUG_ON(buffer_locked(bh));
2007 
2008 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2009 			/* Found extent to map? */
2010 			if (mpd->map.m_len)
2011 				return 0;
2012 			/* Buffer needs mapping and handle is not started? */
2013 			if (!mpd->do_map)
2014 				return 0;
2015 			/* Everything mapped so far and we hit EOF */
2016 			break;
2017 		}
2018 	} while (lblk++, (bh = bh->b_this_page) != head);
2019 	/* So far everything mapped? Submit the page for IO. */
2020 	if (mpd->map.m_len == 0) {
2021 		err = mpage_submit_folio(mpd, head->b_folio);
2022 		if (err < 0)
2023 			return err;
2024 		mpage_folio_done(mpd, head->b_folio);
2025 	}
2026 	if (lblk >= blocks) {
2027 		mpd->scanned_until_end = 1;
2028 		return 0;
2029 	}
2030 	return 1;
2031 }
2032 
2033 /*
2034  * mpage_process_folio - update folio buffers corresponding to changed extent
2035  *			 and may submit fully mapped page for IO
2036  * @mpd: description of extent to map, on return next extent to map
2037  * @folio: Contains these buffers.
2038  * @m_lblk: logical block mapping.
2039  * @m_pblk: corresponding physical mapping.
2040  * @map_bh: determines on return whether this page requires any further
2041  *		  mapping or not.
2042  *
2043  * Scan given folio buffers corresponding to changed extent and update buffer
2044  * state according to new extent state.
2045  * We map delalloc buffers to their physical location, clear unwritten bits.
2046  * If the given folio is not fully mapped, we update @mpd to the next extent in
2047  * the given folio that needs mapping & return @map_bh as true.
2048  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2049 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2050 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2051 			      bool *map_bh)
2052 {
2053 	struct buffer_head *head, *bh;
2054 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2055 	ext4_lblk_t lblk = *m_lblk;
2056 	ext4_fsblk_t pblock = *m_pblk;
2057 	int err = 0;
2058 	int blkbits = mpd->inode->i_blkbits;
2059 	ssize_t io_end_size = 0;
2060 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2061 
2062 	bh = head = folio_buffers(folio);
2063 	do {
2064 		if (lblk < mpd->map.m_lblk)
2065 			continue;
2066 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2067 			/*
2068 			 * Buffer after end of mapped extent.
2069 			 * Find next buffer in the folio to map.
2070 			 */
2071 			mpd->map.m_len = 0;
2072 			mpd->map.m_flags = 0;
2073 			io_end_vec->size += io_end_size;
2074 
2075 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2076 			if (err > 0)
2077 				err = 0;
2078 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2079 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2080 				if (IS_ERR(io_end_vec)) {
2081 					err = PTR_ERR(io_end_vec);
2082 					goto out;
2083 				}
2084 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2085 			}
2086 			*map_bh = true;
2087 			goto out;
2088 		}
2089 		if (buffer_delay(bh)) {
2090 			clear_buffer_delay(bh);
2091 			bh->b_blocknr = pblock++;
2092 		}
2093 		clear_buffer_unwritten(bh);
2094 		io_end_size += (1 << blkbits);
2095 	} while (lblk++, (bh = bh->b_this_page) != head);
2096 
2097 	io_end_vec->size += io_end_size;
2098 	*map_bh = false;
2099 out:
2100 	*m_lblk = lblk;
2101 	*m_pblk = pblock;
2102 	return err;
2103 }
2104 
2105 /*
2106  * mpage_map_buffers - update buffers corresponding to changed extent and
2107  *		       submit fully mapped pages for IO
2108  *
2109  * @mpd - description of extent to map, on return next extent to map
2110  *
2111  * Scan buffers corresponding to changed extent (we expect corresponding pages
2112  * to be already locked) and update buffer state according to new extent state.
2113  * We map delalloc buffers to their physical location, clear unwritten bits,
2114  * and mark buffers as uninit when we perform writes to unwritten extents
2115  * and do extent conversion after IO is finished. If the last page is not fully
2116  * mapped, we update @map to the next extent in the last page that needs
2117  * mapping. Otherwise we submit the page for IO.
2118  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2119 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2120 {
2121 	struct folio_batch fbatch;
2122 	unsigned nr, i;
2123 	struct inode *inode = mpd->inode;
2124 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2125 	pgoff_t start, end;
2126 	ext4_lblk_t lblk;
2127 	ext4_fsblk_t pblock;
2128 	int err;
2129 	bool map_bh = false;
2130 
2131 	start = mpd->map.m_lblk >> bpp_bits;
2132 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2133 	lblk = start << bpp_bits;
2134 	pblock = mpd->map.m_pblk;
2135 
2136 	folio_batch_init(&fbatch);
2137 	while (start <= end) {
2138 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2139 		if (nr == 0)
2140 			break;
2141 		for (i = 0; i < nr; i++) {
2142 			struct folio *folio = fbatch.folios[i];
2143 
2144 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2145 						 &map_bh);
2146 			/*
2147 			 * If map_bh is true, means page may require further bh
2148 			 * mapping, or maybe the page was submitted for IO.
2149 			 * So we return to call further extent mapping.
2150 			 */
2151 			if (err < 0 || map_bh)
2152 				goto out;
2153 			/* Page fully mapped - let IO run! */
2154 			err = mpage_submit_folio(mpd, folio);
2155 			if (err < 0)
2156 				goto out;
2157 			mpage_folio_done(mpd, folio);
2158 		}
2159 		folio_batch_release(&fbatch);
2160 	}
2161 	/* Extent fully mapped and matches with page boundary. We are done. */
2162 	mpd->map.m_len = 0;
2163 	mpd->map.m_flags = 0;
2164 	return 0;
2165 out:
2166 	folio_batch_release(&fbatch);
2167 	return err;
2168 }
2169 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2170 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2171 {
2172 	struct inode *inode = mpd->inode;
2173 	struct ext4_map_blocks *map = &mpd->map;
2174 	int get_blocks_flags;
2175 	int err, dioread_nolock;
2176 
2177 	trace_ext4_da_write_pages_extent(inode, map);
2178 	/*
2179 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2180 	 * to convert an unwritten extent to be initialized (in the case
2181 	 * where we have written into one or more preallocated blocks).  It is
2182 	 * possible that we're going to need more metadata blocks than
2183 	 * previously reserved. However we must not fail because we're in
2184 	 * writeback and there is nothing we can do about it so it might result
2185 	 * in data loss.  So use reserved blocks to allocate metadata if
2186 	 * possible.
2187 	 *
2188 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2189 	 * the blocks in question are delalloc blocks.  This indicates
2190 	 * that the blocks and quotas has already been checked when
2191 	 * the data was copied into the page cache.
2192 	 */
2193 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2194 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2195 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2196 	dioread_nolock = ext4_should_dioread_nolock(inode);
2197 	if (dioread_nolock)
2198 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2199 	if (map->m_flags & BIT(BH_Delay))
2200 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2201 
2202 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2203 	if (err < 0)
2204 		return err;
2205 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2206 		if (!mpd->io_submit.io_end->handle &&
2207 		    ext4_handle_valid(handle)) {
2208 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2209 			handle->h_rsv_handle = NULL;
2210 		}
2211 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2212 	}
2213 
2214 	BUG_ON(map->m_len == 0);
2215 	return 0;
2216 }
2217 
2218 /*
2219  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2220  *				 mpd->len and submit pages underlying it for IO
2221  *
2222  * @handle - handle for journal operations
2223  * @mpd - extent to map
2224  * @give_up_on_write - we set this to true iff there is a fatal error and there
2225  *                     is no hope of writing the data. The caller should discard
2226  *                     dirty pages to avoid infinite loops.
2227  *
2228  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2229  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2230  * them to initialized or split the described range from larger unwritten
2231  * extent. Note that we need not map all the described range since allocation
2232  * can return less blocks or the range is covered by more unwritten extents. We
2233  * cannot map more because we are limited by reserved transaction credits. On
2234  * the other hand we always make sure that the last touched page is fully
2235  * mapped so that it can be written out (and thus forward progress is
2236  * guaranteed). After mapping we submit all mapped pages for IO.
2237  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2238 static int mpage_map_and_submit_extent(handle_t *handle,
2239 				       struct mpage_da_data *mpd,
2240 				       bool *give_up_on_write)
2241 {
2242 	struct inode *inode = mpd->inode;
2243 	struct ext4_map_blocks *map = &mpd->map;
2244 	int err;
2245 	loff_t disksize;
2246 	int progress = 0;
2247 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248 	struct ext4_io_end_vec *io_end_vec;
2249 
2250 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2251 	if (IS_ERR(io_end_vec))
2252 		return PTR_ERR(io_end_vec);
2253 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2254 	do {
2255 		err = mpage_map_one_extent(handle, mpd);
2256 		if (err < 0) {
2257 			struct super_block *sb = inode->i_sb;
2258 
2259 			if (ext4_forced_shutdown(sb))
2260 				goto invalidate_dirty_pages;
2261 			/*
2262 			 * Let the uper layers retry transient errors.
2263 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2264 			 * is non-zero, a commit should free up blocks.
2265 			 */
2266 			if ((err == -ENOMEM) ||
2267 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2268 				if (progress)
2269 					goto update_disksize;
2270 				return err;
2271 			}
2272 			ext4_msg(sb, KERN_CRIT,
2273 				 "Delayed block allocation failed for "
2274 				 "inode %lu at logical offset %llu with"
2275 				 " max blocks %u with error %d",
2276 				 inode->i_ino,
2277 				 (unsigned long long)map->m_lblk,
2278 				 (unsigned)map->m_len, -err);
2279 			ext4_msg(sb, KERN_CRIT,
2280 				 "This should not happen!! Data will "
2281 				 "be lost\n");
2282 			if (err == -ENOSPC)
2283 				ext4_print_free_blocks(inode);
2284 		invalidate_dirty_pages:
2285 			*give_up_on_write = true;
2286 			return err;
2287 		}
2288 		progress = 1;
2289 		/*
2290 		 * Update buffer state, submit mapped pages, and get us new
2291 		 * extent to map
2292 		 */
2293 		err = mpage_map_and_submit_buffers(mpd);
2294 		if (err < 0)
2295 			goto update_disksize;
2296 	} while (map->m_len);
2297 
2298 update_disksize:
2299 	/*
2300 	 * Update on-disk size after IO is submitted.  Races with
2301 	 * truncate are avoided by checking i_size under i_data_sem.
2302 	 */
2303 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2304 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2305 		int err2;
2306 		loff_t i_size;
2307 
2308 		down_write(&EXT4_I(inode)->i_data_sem);
2309 		i_size = i_size_read(inode);
2310 		if (disksize > i_size)
2311 			disksize = i_size;
2312 		if (disksize > EXT4_I(inode)->i_disksize)
2313 			EXT4_I(inode)->i_disksize = disksize;
2314 		up_write(&EXT4_I(inode)->i_data_sem);
2315 		err2 = ext4_mark_inode_dirty(handle, inode);
2316 		if (err2) {
2317 			ext4_error_err(inode->i_sb, -err2,
2318 				       "Failed to mark inode %lu dirty",
2319 				       inode->i_ino);
2320 		}
2321 		if (!err)
2322 			err = err2;
2323 	}
2324 	return err;
2325 }
2326 
2327 /*
2328  * Calculate the total number of credits to reserve for one writepages
2329  * iteration. This is called from ext4_writepages(). We map an extent of
2330  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2331  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2332  * bpp - 1 blocks in bpp different extents.
2333  */
ext4_da_writepages_trans_blocks(struct inode * inode)2334 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2335 {
2336 	int bpp = ext4_journal_blocks_per_page(inode);
2337 
2338 	return ext4_meta_trans_blocks(inode,
2339 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2340 }
2341 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2342 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2343 				     size_t len)
2344 {
2345 	struct buffer_head *page_bufs = folio_buffers(folio);
2346 	struct inode *inode = folio->mapping->host;
2347 	int ret, err;
2348 
2349 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2350 				     NULL, do_journal_get_write_access);
2351 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2352 				     NULL, write_end_fn);
2353 	if (ret == 0)
2354 		ret = err;
2355 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2356 	if (ret == 0)
2357 		ret = err;
2358 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2359 
2360 	return ret;
2361 }
2362 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2363 static int mpage_journal_page_buffers(handle_t *handle,
2364 				      struct mpage_da_data *mpd,
2365 				      struct folio *folio)
2366 {
2367 	struct inode *inode = mpd->inode;
2368 	loff_t size = i_size_read(inode);
2369 	size_t len = folio_size(folio);
2370 
2371 	folio_clear_checked(folio);
2372 	mpd->wbc->nr_to_write--;
2373 
2374 	if (folio_pos(folio) + len > size &&
2375 	    !ext4_verity_in_progress(inode))
2376 		len = size & (len - 1);
2377 
2378 	return ext4_journal_folio_buffers(handle, folio, len);
2379 }
2380 
2381 /*
2382  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2383  * 				 needing mapping, submit mapped pages
2384  *
2385  * @mpd - where to look for pages
2386  *
2387  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2388  * IO immediately. If we cannot map blocks, we submit just already mapped
2389  * buffers in the page for IO and keep page dirty. When we can map blocks and
2390  * we find a page which isn't mapped we start accumulating extent of buffers
2391  * underlying these pages that needs mapping (formed by either delayed or
2392  * unwritten buffers). We also lock the pages containing these buffers. The
2393  * extent found is returned in @mpd structure (starting at mpd->lblk with
2394  * length mpd->len blocks).
2395  *
2396  * Note that this function can attach bios to one io_end structure which are
2397  * neither logically nor physically contiguous. Although it may seem as an
2398  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2399  * case as we need to track IO to all buffers underlying a page in one io_end.
2400  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2401 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2402 {
2403 	struct address_space *mapping = mpd->inode->i_mapping;
2404 	struct folio_batch fbatch;
2405 	unsigned int nr_folios;
2406 	pgoff_t index = mpd->first_page;
2407 	pgoff_t end = mpd->last_page;
2408 	xa_mark_t tag;
2409 	int i, err = 0;
2410 	int blkbits = mpd->inode->i_blkbits;
2411 	ext4_lblk_t lblk;
2412 	struct buffer_head *head;
2413 	handle_t *handle = NULL;
2414 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2415 
2416 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2417 		tag = PAGECACHE_TAG_TOWRITE;
2418 	else
2419 		tag = PAGECACHE_TAG_DIRTY;
2420 
2421 	mpd->map.m_len = 0;
2422 	mpd->next_page = index;
2423 	if (ext4_should_journal_data(mpd->inode)) {
2424 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2425 					    bpp);
2426 		if (IS_ERR(handle))
2427 			return PTR_ERR(handle);
2428 	}
2429 	folio_batch_init(&fbatch);
2430 	while (index <= end) {
2431 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2432 				tag, &fbatch);
2433 		if (nr_folios == 0)
2434 			break;
2435 
2436 		for (i = 0; i < nr_folios; i++) {
2437 			struct folio *folio = fbatch.folios[i];
2438 
2439 			/*
2440 			 * Accumulated enough dirty pages? This doesn't apply
2441 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2442 			 * keep going because someone may be concurrently
2443 			 * dirtying pages, and we might have synced a lot of
2444 			 * newly appeared dirty pages, but have not synced all
2445 			 * of the old dirty pages.
2446 			 */
2447 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2448 			    mpd->wbc->nr_to_write <=
2449 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2450 				goto out;
2451 
2452 			/* If we can't merge this page, we are done. */
2453 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2454 				goto out;
2455 
2456 			if (handle) {
2457 				err = ext4_journal_ensure_credits(handle, bpp,
2458 								  0);
2459 				if (err < 0)
2460 					goto out;
2461 			}
2462 
2463 			folio_lock(folio);
2464 			/*
2465 			 * If the page is no longer dirty, or its mapping no
2466 			 * longer corresponds to inode we are writing (which
2467 			 * means it has been truncated or invalidated), or the
2468 			 * page is already under writeback and we are not doing
2469 			 * a data integrity writeback, skip the page
2470 			 */
2471 			if (!folio_test_dirty(folio) ||
2472 			    (folio_test_writeback(folio) &&
2473 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2474 			    unlikely(folio->mapping != mapping)) {
2475 				folio_unlock(folio);
2476 				continue;
2477 			}
2478 
2479 			folio_wait_writeback(folio);
2480 			BUG_ON(folio_test_writeback(folio));
2481 
2482 			/*
2483 			 * Should never happen but for buggy code in
2484 			 * other subsystems that call
2485 			 * set_page_dirty() without properly warning
2486 			 * the file system first.  See [1] for more
2487 			 * information.
2488 			 *
2489 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2490 			 */
2491 			if (!folio_buffers(folio)) {
2492 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2493 				folio_clear_dirty(folio);
2494 				folio_unlock(folio);
2495 				continue;
2496 			}
2497 
2498 			if (mpd->map.m_len == 0)
2499 				mpd->first_page = folio->index;
2500 			mpd->next_page = folio_next_index(folio);
2501 			/*
2502 			 * Writeout when we cannot modify metadata is simple.
2503 			 * Just submit the page. For data=journal mode we
2504 			 * first handle writeout of the page for checkpoint and
2505 			 * only after that handle delayed page dirtying. This
2506 			 * makes sure current data is checkpointed to the final
2507 			 * location before possibly journalling it again which
2508 			 * is desirable when the page is frequently dirtied
2509 			 * through a pin.
2510 			 */
2511 			if (!mpd->can_map) {
2512 				err = mpage_submit_folio(mpd, folio);
2513 				if (err < 0)
2514 					goto out;
2515 				/* Pending dirtying of journalled data? */
2516 				if (folio_test_checked(folio)) {
2517 					err = mpage_journal_page_buffers(handle,
2518 						mpd, folio);
2519 					if (err < 0)
2520 						goto out;
2521 					mpd->journalled_more_data = 1;
2522 				}
2523 				mpage_folio_done(mpd, folio);
2524 			} else {
2525 				/* Add all dirty buffers to mpd */
2526 				lblk = ((ext4_lblk_t)folio->index) <<
2527 					(PAGE_SHIFT - blkbits);
2528 				head = folio_buffers(folio);
2529 				err = mpage_process_page_bufs(mpd, head, head,
2530 						lblk);
2531 				if (err <= 0)
2532 					goto out;
2533 				err = 0;
2534 			}
2535 		}
2536 		folio_batch_release(&fbatch);
2537 		cond_resched();
2538 	}
2539 	mpd->scanned_until_end = 1;
2540 	if (handle)
2541 		ext4_journal_stop(handle);
2542 	return 0;
2543 out:
2544 	folio_batch_release(&fbatch);
2545 	if (handle)
2546 		ext4_journal_stop(handle);
2547 	return err;
2548 }
2549 
ext4_do_writepages(struct mpage_da_data * mpd)2550 static int ext4_do_writepages(struct mpage_da_data *mpd)
2551 {
2552 	struct writeback_control *wbc = mpd->wbc;
2553 	pgoff_t	writeback_index = 0;
2554 	long nr_to_write = wbc->nr_to_write;
2555 	int range_whole = 0;
2556 	int cycled = 1;
2557 	handle_t *handle = NULL;
2558 	struct inode *inode = mpd->inode;
2559 	struct address_space *mapping = inode->i_mapping;
2560 	int needed_blocks, rsv_blocks = 0, ret = 0;
2561 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2562 	struct blk_plug plug;
2563 	bool give_up_on_write = false;
2564 
2565 	trace_ext4_writepages(inode, wbc);
2566 
2567 	/*
2568 	 * No pages to write? This is mainly a kludge to avoid starting
2569 	 * a transaction for special inodes like journal inode on last iput()
2570 	 * because that could violate lock ordering on umount
2571 	 */
2572 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2573 		goto out_writepages;
2574 
2575 	/*
2576 	 * If the filesystem has aborted, it is read-only, so return
2577 	 * right away instead of dumping stack traces later on that
2578 	 * will obscure the real source of the problem.  We test
2579 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2580 	 * the latter could be true if the filesystem is mounted
2581 	 * read-only, and in that case, ext4_writepages should
2582 	 * *never* be called, so if that ever happens, we would want
2583 	 * the stack trace.
2584 	 */
2585 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2586 		ret = -EROFS;
2587 		goto out_writepages;
2588 	}
2589 
2590 	/*
2591 	 * If we have inline data and arrive here, it means that
2592 	 * we will soon create the block for the 1st page, so
2593 	 * we'd better clear the inline data here.
2594 	 */
2595 	if (ext4_has_inline_data(inode)) {
2596 		/* Just inode will be modified... */
2597 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2598 		if (IS_ERR(handle)) {
2599 			ret = PTR_ERR(handle);
2600 			goto out_writepages;
2601 		}
2602 		BUG_ON(ext4_test_inode_state(inode,
2603 				EXT4_STATE_MAY_INLINE_DATA));
2604 		ext4_destroy_inline_data(handle, inode);
2605 		ext4_journal_stop(handle);
2606 	}
2607 
2608 	/*
2609 	 * data=journal mode does not do delalloc so we just need to writeout /
2610 	 * journal already mapped buffers. On the other hand we need to commit
2611 	 * transaction to make data stable. We expect all the data to be
2612 	 * already in the journal (the only exception are DMA pinned pages
2613 	 * dirtied behind our back) so we commit transaction here and run the
2614 	 * writeback loop to checkpoint them. The checkpointing is not actually
2615 	 * necessary to make data persistent *but* quite a few places (extent
2616 	 * shifting operations, fsverity, ...) depend on being able to drop
2617 	 * pagecache pages after calling filemap_write_and_wait() and for that
2618 	 * checkpointing needs to happen.
2619 	 */
2620 	if (ext4_should_journal_data(inode)) {
2621 		mpd->can_map = 0;
2622 		if (wbc->sync_mode == WB_SYNC_ALL)
2623 			ext4_fc_commit(sbi->s_journal,
2624 				       EXT4_I(inode)->i_datasync_tid);
2625 	}
2626 	mpd->journalled_more_data = 0;
2627 
2628 	if (ext4_should_dioread_nolock(inode)) {
2629 		/*
2630 		 * We may need to convert up to one extent per block in
2631 		 * the page and we may dirty the inode.
2632 		 */
2633 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2634 						PAGE_SIZE >> inode->i_blkbits);
2635 	}
2636 
2637 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2638 		range_whole = 1;
2639 
2640 	if (wbc->range_cyclic) {
2641 		writeback_index = mapping->writeback_index;
2642 		if (writeback_index)
2643 			cycled = 0;
2644 		mpd->first_page = writeback_index;
2645 		mpd->last_page = -1;
2646 	} else {
2647 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2648 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2649 	}
2650 
2651 	ext4_io_submit_init(&mpd->io_submit, wbc);
2652 retry:
2653 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2654 		tag_pages_for_writeback(mapping, mpd->first_page,
2655 					mpd->last_page);
2656 	blk_start_plug(&plug);
2657 
2658 	/*
2659 	 * First writeback pages that don't need mapping - we can avoid
2660 	 * starting a transaction unnecessarily and also avoid being blocked
2661 	 * in the block layer on device congestion while having transaction
2662 	 * started.
2663 	 */
2664 	mpd->do_map = 0;
2665 	mpd->scanned_until_end = 0;
2666 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2667 	if (!mpd->io_submit.io_end) {
2668 		ret = -ENOMEM;
2669 		goto unplug;
2670 	}
2671 	ret = mpage_prepare_extent_to_map(mpd);
2672 	/* Unlock pages we didn't use */
2673 	mpage_release_unused_pages(mpd, false);
2674 	/* Submit prepared bio */
2675 	ext4_io_submit(&mpd->io_submit);
2676 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2677 	mpd->io_submit.io_end = NULL;
2678 	if (ret < 0)
2679 		goto unplug;
2680 
2681 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2682 		/* For each extent of pages we use new io_end */
2683 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684 		if (!mpd->io_submit.io_end) {
2685 			ret = -ENOMEM;
2686 			break;
2687 		}
2688 
2689 		WARN_ON_ONCE(!mpd->can_map);
2690 		/*
2691 		 * We have two constraints: We find one extent to map and we
2692 		 * must always write out whole page (makes a difference when
2693 		 * blocksize < pagesize) so that we don't block on IO when we
2694 		 * try to write out the rest of the page. Journalled mode is
2695 		 * not supported by delalloc.
2696 		 */
2697 		BUG_ON(ext4_should_journal_data(inode));
2698 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2699 
2700 		/* start a new transaction */
2701 		handle = ext4_journal_start_with_reserve(inode,
2702 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2703 		if (IS_ERR(handle)) {
2704 			ret = PTR_ERR(handle);
2705 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2706 			       "%ld pages, ino %lu; err %d", __func__,
2707 				wbc->nr_to_write, inode->i_ino, ret);
2708 			/* Release allocated io_end */
2709 			ext4_put_io_end(mpd->io_submit.io_end);
2710 			mpd->io_submit.io_end = NULL;
2711 			break;
2712 		}
2713 		mpd->do_map = 1;
2714 
2715 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2716 		ret = mpage_prepare_extent_to_map(mpd);
2717 		if (!ret && mpd->map.m_len)
2718 			ret = mpage_map_and_submit_extent(handle, mpd,
2719 					&give_up_on_write);
2720 		/*
2721 		 * Caution: If the handle is synchronous,
2722 		 * ext4_journal_stop() can wait for transaction commit
2723 		 * to finish which may depend on writeback of pages to
2724 		 * complete or on page lock to be released.  In that
2725 		 * case, we have to wait until after we have
2726 		 * submitted all the IO, released page locks we hold,
2727 		 * and dropped io_end reference (for extent conversion
2728 		 * to be able to complete) before stopping the handle.
2729 		 */
2730 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2731 			ext4_journal_stop(handle);
2732 			handle = NULL;
2733 			mpd->do_map = 0;
2734 		}
2735 		/* Unlock pages we didn't use */
2736 		mpage_release_unused_pages(mpd, give_up_on_write);
2737 		/* Submit prepared bio */
2738 		ext4_io_submit(&mpd->io_submit);
2739 
2740 		/*
2741 		 * Drop our io_end reference we got from init. We have
2742 		 * to be careful and use deferred io_end finishing if
2743 		 * we are still holding the transaction as we can
2744 		 * release the last reference to io_end which may end
2745 		 * up doing unwritten extent conversion.
2746 		 */
2747 		if (handle) {
2748 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2749 			ext4_journal_stop(handle);
2750 		} else
2751 			ext4_put_io_end(mpd->io_submit.io_end);
2752 		mpd->io_submit.io_end = NULL;
2753 
2754 		if (ret == -ENOSPC && sbi->s_journal) {
2755 			/*
2756 			 * Commit the transaction which would
2757 			 * free blocks released in the transaction
2758 			 * and try again
2759 			 */
2760 			jbd2_journal_force_commit_nested(sbi->s_journal);
2761 			ret = 0;
2762 			continue;
2763 		}
2764 		/* Fatal error - ENOMEM, EIO... */
2765 		if (ret)
2766 			break;
2767 	}
2768 unplug:
2769 	blk_finish_plug(&plug);
2770 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2771 		cycled = 1;
2772 		mpd->last_page = writeback_index - 1;
2773 		mpd->first_page = 0;
2774 		goto retry;
2775 	}
2776 
2777 	/* Update index */
2778 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2779 		/*
2780 		 * Set the writeback_index so that range_cyclic
2781 		 * mode will write it back later
2782 		 */
2783 		mapping->writeback_index = mpd->first_page;
2784 
2785 out_writepages:
2786 	trace_ext4_writepages_result(inode, wbc, ret,
2787 				     nr_to_write - wbc->nr_to_write);
2788 	return ret;
2789 }
2790 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2791 static int ext4_writepages(struct address_space *mapping,
2792 			   struct writeback_control *wbc)
2793 {
2794 	struct super_block *sb = mapping->host->i_sb;
2795 	struct mpage_da_data mpd = {
2796 		.inode = mapping->host,
2797 		.wbc = wbc,
2798 		.can_map = 1,
2799 	};
2800 	int ret;
2801 	int alloc_ctx;
2802 
2803 	if (unlikely(ext4_forced_shutdown(sb)))
2804 		return -EIO;
2805 
2806 	alloc_ctx = ext4_writepages_down_read(sb);
2807 	ret = ext4_do_writepages(&mpd);
2808 	/*
2809 	 * For data=journal writeback we could have come across pages marked
2810 	 * for delayed dirtying (PageChecked) which were just added to the
2811 	 * running transaction. Try once more to get them to stable storage.
2812 	 */
2813 	if (!ret && mpd.journalled_more_data)
2814 		ret = ext4_do_writepages(&mpd);
2815 	ext4_writepages_up_read(sb, alloc_ctx);
2816 
2817 	return ret;
2818 }
2819 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2820 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2821 {
2822 	struct writeback_control wbc = {
2823 		.sync_mode = WB_SYNC_ALL,
2824 		.nr_to_write = LONG_MAX,
2825 		.range_start = jinode->i_dirty_start,
2826 		.range_end = jinode->i_dirty_end,
2827 	};
2828 	struct mpage_da_data mpd = {
2829 		.inode = jinode->i_vfs_inode,
2830 		.wbc = &wbc,
2831 		.can_map = 0,
2832 	};
2833 	return ext4_do_writepages(&mpd);
2834 }
2835 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2836 static int ext4_dax_writepages(struct address_space *mapping,
2837 			       struct writeback_control *wbc)
2838 {
2839 	int ret;
2840 	long nr_to_write = wbc->nr_to_write;
2841 	struct inode *inode = mapping->host;
2842 	int alloc_ctx;
2843 
2844 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2845 		return -EIO;
2846 
2847 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2848 	trace_ext4_writepages(inode, wbc);
2849 
2850 	ret = dax_writeback_mapping_range(mapping,
2851 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2852 	trace_ext4_writepages_result(inode, wbc, ret,
2853 				     nr_to_write - wbc->nr_to_write);
2854 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2855 	return ret;
2856 }
2857 
ext4_nonda_switch(struct super_block * sb)2858 static int ext4_nonda_switch(struct super_block *sb)
2859 {
2860 	s64 free_clusters, dirty_clusters;
2861 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2862 
2863 	/*
2864 	 * switch to non delalloc mode if we are running low
2865 	 * on free block. The free block accounting via percpu
2866 	 * counters can get slightly wrong with percpu_counter_batch getting
2867 	 * accumulated on each CPU without updating global counters
2868 	 * Delalloc need an accurate free block accounting. So switch
2869 	 * to non delalloc when we are near to error range.
2870 	 */
2871 	free_clusters =
2872 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2873 	dirty_clusters =
2874 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2875 	/*
2876 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2877 	 */
2878 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2879 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2880 
2881 	if (2 * free_clusters < 3 * dirty_clusters ||
2882 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2883 		/*
2884 		 * free block count is less than 150% of dirty blocks
2885 		 * or free blocks is less than watermark
2886 		 */
2887 		return 1;
2888 	}
2889 	return 0;
2890 }
2891 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2892 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2893 			       loff_t pos, unsigned len,
2894 			       struct page **pagep, void **fsdata)
2895 {
2896 	int ret, retries = 0;
2897 	struct folio *folio;
2898 	pgoff_t index;
2899 	struct inode *inode = mapping->host;
2900 
2901 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2902 		return -EIO;
2903 
2904 	index = pos >> PAGE_SHIFT;
2905 
2906 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2907 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 		return ext4_write_begin(file, mapping, pos,
2909 					len, pagep, fsdata);
2910 	}
2911 	*fsdata = (void *)0;
2912 	trace_ext4_da_write_begin(inode, pos, len);
2913 
2914 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2916 						      pagep, fsdata);
2917 		if (ret < 0)
2918 			return ret;
2919 		if (ret == 1)
2920 			return 0;
2921 	}
2922 
2923 retry:
2924 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2925 			mapping_gfp_mask(mapping));
2926 	if (IS_ERR(folio))
2927 		return PTR_ERR(folio);
2928 
2929 #ifdef CONFIG_FS_ENCRYPTION
2930 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2931 #else
2932 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2933 #endif
2934 	if (ret < 0) {
2935 		folio_unlock(folio);
2936 		folio_put(folio);
2937 		/*
2938 		 * block_write_begin may have instantiated a few blocks
2939 		 * outside i_size.  Trim these off again. Don't need
2940 		 * i_size_read because we hold inode lock.
2941 		 */
2942 		if (pos + len > inode->i_size)
2943 			ext4_truncate_failed_write(inode);
2944 
2945 		if (ret == -ENOSPC &&
2946 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2947 			goto retry;
2948 		return ret;
2949 	}
2950 
2951 	*pagep = &folio->page;
2952 	return ret;
2953 }
2954 
2955 /*
2956  * Check if we should update i_disksize
2957  * when write to the end of file but not require block allocation
2958  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2959 static int ext4_da_should_update_i_disksize(struct folio *folio,
2960 					    unsigned long offset)
2961 {
2962 	struct buffer_head *bh;
2963 	struct inode *inode = folio->mapping->host;
2964 	unsigned int idx;
2965 	int i;
2966 
2967 	bh = folio_buffers(folio);
2968 	idx = offset >> inode->i_blkbits;
2969 
2970 	for (i = 0; i < idx; i++)
2971 		bh = bh->b_this_page;
2972 
2973 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2974 		return 0;
2975 	return 1;
2976 }
2977 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2978 static int ext4_da_do_write_end(struct address_space *mapping,
2979 			loff_t pos, unsigned len, unsigned copied,
2980 			struct folio *folio)
2981 {
2982 	struct inode *inode = mapping->host;
2983 	loff_t old_size = inode->i_size;
2984 	bool disksize_changed = false;
2985 	loff_t new_i_size, zero_len = 0;
2986 	handle_t *handle;
2987 
2988 	if (unlikely(!folio_buffers(folio))) {
2989 		folio_unlock(folio);
2990 		folio_put(folio);
2991 		return -EIO;
2992 	}
2993 	/*
2994 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2995 	 * flag, which all that's needed to trigger page writeback.
2996 	 */
2997 	copied = block_write_end(NULL, mapping, pos, len, copied,
2998 			&folio->page, NULL);
2999 	new_i_size = pos + copied;
3000 
3001 	/*
3002 	 * It's important to update i_size while still holding folio lock,
3003 	 * because folio writeout could otherwise come in and zero beyond
3004 	 * i_size.
3005 	 *
3006 	 * Since we are holding inode lock, we are sure i_disksize <=
3007 	 * i_size. We also know that if i_disksize < i_size, there are
3008 	 * delalloc writes pending in the range up to i_size. If the end of
3009 	 * the current write is <= i_size, there's no need to touch
3010 	 * i_disksize since writeback will push i_disksize up to i_size
3011 	 * eventually. If the end of the current write is > i_size and
3012 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3013 	 * checked, we need to update i_disksize here as certain
3014 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3015 	 */
3016 	if (new_i_size > inode->i_size) {
3017 		unsigned long end;
3018 
3019 		i_size_write(inode, new_i_size);
3020 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3021 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3022 			ext4_update_i_disksize(inode, new_i_size);
3023 			disksize_changed = true;
3024 		}
3025 	}
3026 
3027 	folio_unlock(folio);
3028 	folio_put(folio);
3029 
3030 	if (pos > old_size) {
3031 		pagecache_isize_extended(inode, old_size, pos);
3032 		zero_len = pos - old_size;
3033 	}
3034 
3035 	if (!disksize_changed && !zero_len)
3036 		return copied;
3037 
3038 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3039 	if (IS_ERR(handle))
3040 		return PTR_ERR(handle);
3041 	if (zero_len)
3042 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3043 	ext4_mark_inode_dirty(handle, inode);
3044 	ext4_journal_stop(handle);
3045 
3046 	return copied;
3047 }
3048 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3049 static int ext4_da_write_end(struct file *file,
3050 			     struct address_space *mapping,
3051 			     loff_t pos, unsigned len, unsigned copied,
3052 			     struct page *page, void *fsdata)
3053 {
3054 	struct inode *inode = mapping->host;
3055 	int write_mode = (int)(unsigned long)fsdata;
3056 	struct folio *folio = page_folio(page);
3057 
3058 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059 		return ext4_write_end(file, mapping, pos,
3060 				      len, copied, &folio->page, fsdata);
3061 
3062 	trace_ext4_da_write_end(inode, pos, len, copied);
3063 
3064 	if (write_mode != CONVERT_INLINE_DATA &&
3065 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3066 	    ext4_has_inline_data(inode))
3067 		return ext4_write_inline_data_end(inode, pos, len, copied,
3068 						  folio);
3069 
3070 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3071 		copied = 0;
3072 
3073 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3074 }
3075 
3076 /*
3077  * Force all delayed allocation blocks to be allocated for a given inode.
3078  */
ext4_alloc_da_blocks(struct inode * inode)3079 int ext4_alloc_da_blocks(struct inode *inode)
3080 {
3081 	trace_ext4_alloc_da_blocks(inode);
3082 
3083 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3084 		return 0;
3085 
3086 	/*
3087 	 * We do something simple for now.  The filemap_flush() will
3088 	 * also start triggering a write of the data blocks, which is
3089 	 * not strictly speaking necessary (and for users of
3090 	 * laptop_mode, not even desirable).  However, to do otherwise
3091 	 * would require replicating code paths in:
3092 	 *
3093 	 * ext4_writepages() ->
3094 	 *    write_cache_pages() ---> (via passed in callback function)
3095 	 *        __mpage_da_writepage() -->
3096 	 *           mpage_add_bh_to_extent()
3097 	 *           mpage_da_map_blocks()
3098 	 *
3099 	 * The problem is that write_cache_pages(), located in
3100 	 * mm/page-writeback.c, marks pages clean in preparation for
3101 	 * doing I/O, which is not desirable if we're not planning on
3102 	 * doing I/O at all.
3103 	 *
3104 	 * We could call write_cache_pages(), and then redirty all of
3105 	 * the pages by calling redirty_page_for_writepage() but that
3106 	 * would be ugly in the extreme.  So instead we would need to
3107 	 * replicate parts of the code in the above functions,
3108 	 * simplifying them because we wouldn't actually intend to
3109 	 * write out the pages, but rather only collect contiguous
3110 	 * logical block extents, call the multi-block allocator, and
3111 	 * then update the buffer heads with the block allocations.
3112 	 *
3113 	 * For now, though, we'll cheat by calling filemap_flush(),
3114 	 * which will map the blocks, and start the I/O, but not
3115 	 * actually wait for the I/O to complete.
3116 	 */
3117 	return filemap_flush(inode->i_mapping);
3118 }
3119 
3120 /*
3121  * bmap() is special.  It gets used by applications such as lilo and by
3122  * the swapper to find the on-disk block of a specific piece of data.
3123  *
3124  * Naturally, this is dangerous if the block concerned is still in the
3125  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3126  * filesystem and enables swap, then they may get a nasty shock when the
3127  * data getting swapped to that swapfile suddenly gets overwritten by
3128  * the original zero's written out previously to the journal and
3129  * awaiting writeback in the kernel's buffer cache.
3130  *
3131  * So, if we see any bmap calls here on a modified, data-journaled file,
3132  * take extra steps to flush any blocks which might be in the cache.
3133  */
ext4_bmap(struct address_space * mapping,sector_t block)3134 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3135 {
3136 	struct inode *inode = mapping->host;
3137 	sector_t ret = 0;
3138 
3139 	inode_lock_shared(inode);
3140 	/*
3141 	 * We can get here for an inline file via the FIBMAP ioctl
3142 	 */
3143 	if (ext4_has_inline_data(inode))
3144 		goto out;
3145 
3146 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3147 	    (test_opt(inode->i_sb, DELALLOC) ||
3148 	     ext4_should_journal_data(inode))) {
3149 		/*
3150 		 * With delalloc or journalled data we want to sync the file so
3151 		 * that we can make sure we allocate blocks for file and data
3152 		 * is in place for the user to see it
3153 		 */
3154 		filemap_write_and_wait(mapping);
3155 	}
3156 
3157 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3158 
3159 out:
3160 	inode_unlock_shared(inode);
3161 	return ret;
3162 }
3163 
ext4_read_folio(struct file * file,struct folio * folio)3164 static int ext4_read_folio(struct file *file, struct folio *folio)
3165 {
3166 	int ret = -EAGAIN;
3167 	struct inode *inode = folio->mapping->host;
3168 
3169 	trace_ext4_read_folio(inode, folio);
3170 
3171 	if (ext4_has_inline_data(inode))
3172 		ret = ext4_readpage_inline(inode, folio);
3173 
3174 	if (ret == -EAGAIN)
3175 		return ext4_mpage_readpages(inode, NULL, folio);
3176 
3177 	return ret;
3178 }
3179 
ext4_readahead(struct readahead_control * rac)3180 static void ext4_readahead(struct readahead_control *rac)
3181 {
3182 	struct inode *inode = rac->mapping->host;
3183 
3184 	/* If the file has inline data, no need to do readahead. */
3185 	if (ext4_has_inline_data(inode))
3186 		return;
3187 
3188 	ext4_mpage_readpages(inode, rac, NULL);
3189 }
3190 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3191 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3192 				size_t length)
3193 {
3194 	trace_ext4_invalidate_folio(folio, offset, length);
3195 
3196 	/* No journalling happens on data buffers when this function is used */
3197 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3198 
3199 	block_invalidate_folio(folio, offset, length);
3200 }
3201 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3202 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3203 					    size_t offset, size_t length)
3204 {
3205 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3206 
3207 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3208 
3209 	/*
3210 	 * If it's a full truncate we just forget about the pending dirtying
3211 	 */
3212 	if (offset == 0 && length == folio_size(folio))
3213 		folio_clear_checked(folio);
3214 
3215 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3216 }
3217 
3218 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3219 static void ext4_journalled_invalidate_folio(struct folio *folio,
3220 					   size_t offset,
3221 					   size_t length)
3222 {
3223 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3224 }
3225 
ext4_release_folio(struct folio * folio,gfp_t wait)3226 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3227 {
3228 	struct inode *inode = folio->mapping->host;
3229 	journal_t *journal = EXT4_JOURNAL(inode);
3230 
3231 	trace_ext4_release_folio(inode, folio);
3232 
3233 	/* Page has dirty journalled data -> cannot release */
3234 	if (folio_test_checked(folio))
3235 		return false;
3236 	if (journal)
3237 		return jbd2_journal_try_to_free_buffers(journal, folio);
3238 	else
3239 		return try_to_free_buffers(folio);
3240 }
3241 
ext4_inode_datasync_dirty(struct inode * inode)3242 static bool ext4_inode_datasync_dirty(struct inode *inode)
3243 {
3244 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3245 
3246 	if (journal) {
3247 		if (jbd2_transaction_committed(journal,
3248 			EXT4_I(inode)->i_datasync_tid))
3249 			return false;
3250 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3251 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3252 		return true;
3253 	}
3254 
3255 	/* Any metadata buffers to write? */
3256 	if (!list_empty(&inode->i_mapping->private_list))
3257 		return true;
3258 	return inode->i_state & I_DIRTY_DATASYNC;
3259 }
3260 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3261 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3262 			   struct ext4_map_blocks *map, loff_t offset,
3263 			   loff_t length, unsigned int flags)
3264 {
3265 	u8 blkbits = inode->i_blkbits;
3266 
3267 	/*
3268 	 * Writes that span EOF might trigger an I/O size update on completion,
3269 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3270 	 * there is no other metadata changes being made or are pending.
3271 	 */
3272 	iomap->flags = 0;
3273 	if (ext4_inode_datasync_dirty(inode) ||
3274 	    offset + length > i_size_read(inode))
3275 		iomap->flags |= IOMAP_F_DIRTY;
3276 
3277 	if (map->m_flags & EXT4_MAP_NEW)
3278 		iomap->flags |= IOMAP_F_NEW;
3279 
3280 	if (flags & IOMAP_DAX)
3281 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3282 	else
3283 		iomap->bdev = inode->i_sb->s_bdev;
3284 	iomap->offset = (u64) map->m_lblk << blkbits;
3285 	iomap->length = (u64) map->m_len << blkbits;
3286 
3287 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3288 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3289 		iomap->flags |= IOMAP_F_MERGED;
3290 
3291 	/*
3292 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3293 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3294 	 * set. In order for any allocated unwritten extents to be converted
3295 	 * into written extents correctly within the ->end_io() handler, we
3296 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3297 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3298 	 * been set first.
3299 	 */
3300 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3301 		iomap->type = IOMAP_UNWRITTEN;
3302 		iomap->addr = (u64) map->m_pblk << blkbits;
3303 		if (flags & IOMAP_DAX)
3304 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3305 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3306 		iomap->type = IOMAP_MAPPED;
3307 		iomap->addr = (u64) map->m_pblk << blkbits;
3308 		if (flags & IOMAP_DAX)
3309 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3310 	} else {
3311 		iomap->type = IOMAP_HOLE;
3312 		iomap->addr = IOMAP_NULL_ADDR;
3313 	}
3314 }
3315 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3316 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3317 			    unsigned int flags)
3318 {
3319 	handle_t *handle;
3320 	u8 blkbits = inode->i_blkbits;
3321 	int ret, dio_credits, m_flags = 0, retries = 0;
3322 
3323 	/*
3324 	 * Trim the mapping request to the maximum value that we can map at
3325 	 * once for direct I/O.
3326 	 */
3327 	if (map->m_len > DIO_MAX_BLOCKS)
3328 		map->m_len = DIO_MAX_BLOCKS;
3329 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3330 
3331 retry:
3332 	/*
3333 	 * Either we allocate blocks and then don't get an unwritten extent, so
3334 	 * in that case we have reserved enough credits. Or, the blocks are
3335 	 * already allocated and unwritten. In that case, the extent conversion
3336 	 * fits into the credits as well.
3337 	 */
3338 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3339 	if (IS_ERR(handle))
3340 		return PTR_ERR(handle);
3341 
3342 	/*
3343 	 * DAX and direct I/O are the only two operations that are currently
3344 	 * supported with IOMAP_WRITE.
3345 	 */
3346 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3347 	if (flags & IOMAP_DAX)
3348 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3349 	/*
3350 	 * We use i_size instead of i_disksize here because delalloc writeback
3351 	 * can complete at any point during the I/O and subsequently push the
3352 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3353 	 * happening and thus expose allocated blocks to direct I/O reads.
3354 	 */
3355 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3356 		m_flags = EXT4_GET_BLOCKS_CREATE;
3357 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3358 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3359 
3360 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3361 
3362 	/*
3363 	 * We cannot fill holes in indirect tree based inodes as that could
3364 	 * expose stale data in the case of a crash. Use the magic error code
3365 	 * to fallback to buffered I/O.
3366 	 */
3367 	if (!m_flags && !ret)
3368 		ret = -ENOTBLK;
3369 
3370 	ext4_journal_stop(handle);
3371 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3372 		goto retry;
3373 
3374 	return ret;
3375 }
3376 
3377 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3378 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3379 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3380 {
3381 	int ret;
3382 	struct ext4_map_blocks map;
3383 	u8 blkbits = inode->i_blkbits;
3384 
3385 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3386 		return -EINVAL;
3387 
3388 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3389 		return -ERANGE;
3390 
3391 	/*
3392 	 * Calculate the first and last logical blocks respectively.
3393 	 */
3394 	map.m_lblk = offset >> blkbits;
3395 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3396 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3397 
3398 	if (flags & IOMAP_WRITE) {
3399 		/*
3400 		 * We check here if the blocks are already allocated, then we
3401 		 * don't need to start a journal txn and we can directly return
3402 		 * the mapping information. This could boost performance
3403 		 * especially in multi-threaded overwrite requests.
3404 		 */
3405 		if (offset + length <= i_size_read(inode)) {
3406 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3407 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3408 				goto out;
3409 		}
3410 		ret = ext4_iomap_alloc(inode, &map, flags);
3411 	} else {
3412 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3413 	}
3414 
3415 	if (ret < 0)
3416 		return ret;
3417 out:
3418 	/*
3419 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3420 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3421 	 * limiting the length of the mapping returned.
3422 	 */
3423 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3424 
3425 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3426 
3427 	return 0;
3428 }
3429 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3430 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3431 		loff_t length, unsigned flags, struct iomap *iomap,
3432 		struct iomap *srcmap)
3433 {
3434 	int ret;
3435 
3436 	/*
3437 	 * Even for writes we don't need to allocate blocks, so just pretend
3438 	 * we are reading to save overhead of starting a transaction.
3439 	 */
3440 	flags &= ~IOMAP_WRITE;
3441 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3442 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3443 	return ret;
3444 }
3445 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3446 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3447 			  ssize_t written, unsigned flags, struct iomap *iomap)
3448 {
3449 	/*
3450 	 * Check to see whether an error occurred while writing out the data to
3451 	 * the allocated blocks. If so, return the magic error code so that we
3452 	 * fallback to buffered I/O and attempt to complete the remainder of
3453 	 * the I/O. Any blocks that may have been allocated in preparation for
3454 	 * the direct I/O will be reused during buffered I/O.
3455 	 */
3456 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3457 		return -ENOTBLK;
3458 
3459 	return 0;
3460 }
3461 
3462 const struct iomap_ops ext4_iomap_ops = {
3463 	.iomap_begin		= ext4_iomap_begin,
3464 	.iomap_end		= ext4_iomap_end,
3465 };
3466 
3467 const struct iomap_ops ext4_iomap_overwrite_ops = {
3468 	.iomap_begin		= ext4_iomap_overwrite_begin,
3469 	.iomap_end		= ext4_iomap_end,
3470 };
3471 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3472 static bool ext4_iomap_is_delalloc(struct inode *inode,
3473 				   struct ext4_map_blocks *map)
3474 {
3475 	struct extent_status es;
3476 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3477 
3478 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3479 				  map->m_lblk, end, &es);
3480 
3481 	if (!es.es_len || es.es_lblk > end)
3482 		return false;
3483 
3484 	if (es.es_lblk > map->m_lblk) {
3485 		map->m_len = es.es_lblk - map->m_lblk;
3486 		return false;
3487 	}
3488 
3489 	offset = map->m_lblk - es.es_lblk;
3490 	map->m_len = es.es_len - offset;
3491 
3492 	return true;
3493 }
3494 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3495 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3496 				   loff_t length, unsigned int flags,
3497 				   struct iomap *iomap, struct iomap *srcmap)
3498 {
3499 	int ret;
3500 	bool delalloc = false;
3501 	struct ext4_map_blocks map;
3502 	u8 blkbits = inode->i_blkbits;
3503 
3504 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3505 		return -EINVAL;
3506 
3507 	if (ext4_has_inline_data(inode)) {
3508 		ret = ext4_inline_data_iomap(inode, iomap);
3509 		if (ret != -EAGAIN) {
3510 			if (ret == 0 && offset >= iomap->length)
3511 				ret = -ENOENT;
3512 			return ret;
3513 		}
3514 	}
3515 
3516 	/*
3517 	 * Calculate the first and last logical block respectively.
3518 	 */
3519 	map.m_lblk = offset >> blkbits;
3520 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3521 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3522 
3523 	/*
3524 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3525 	 * So handle it here itself instead of querying ext4_map_blocks().
3526 	 * Since ext4_map_blocks() will warn about it and will return
3527 	 * -EIO error.
3528 	 */
3529 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3530 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3531 
3532 		if (offset >= sbi->s_bitmap_maxbytes) {
3533 			map.m_flags = 0;
3534 			goto set_iomap;
3535 		}
3536 	}
3537 
3538 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3539 	if (ret < 0)
3540 		return ret;
3541 	if (ret == 0)
3542 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3543 
3544 set_iomap:
3545 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3546 	if (delalloc && iomap->type == IOMAP_HOLE)
3547 		iomap->type = IOMAP_DELALLOC;
3548 
3549 	return 0;
3550 }
3551 
3552 const struct iomap_ops ext4_iomap_report_ops = {
3553 	.iomap_begin = ext4_iomap_begin_report,
3554 };
3555 
3556 /*
3557  * For data=journal mode, folio should be marked dirty only when it was
3558  * writeably mapped. When that happens, it was already attached to the
3559  * transaction and marked as jbddirty (we take care of this in
3560  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3561  * so we should have nothing to do here, except for the case when someone
3562  * had the page pinned and dirtied the page through this pin (e.g. by doing
3563  * direct IO to it). In that case we'd need to attach buffers here to the
3564  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3565  * folio and leave attached buffers clean, because the buffers' dirty state is
3566  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3567  * the journalling code will explode.  So what we do is to mark the folio
3568  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3569  * to the transaction appropriately.
3570  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3571 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3572 		struct folio *folio)
3573 {
3574 	WARN_ON_ONCE(!folio_buffers(folio));
3575 	if (folio_maybe_dma_pinned(folio))
3576 		folio_set_checked(folio);
3577 	return filemap_dirty_folio(mapping, folio);
3578 }
3579 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3580 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3581 {
3582 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3583 	WARN_ON_ONCE(!folio_buffers(folio));
3584 	return block_dirty_folio(mapping, folio);
3585 }
3586 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3587 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3588 				    struct file *file, sector_t *span)
3589 {
3590 	return iomap_swapfile_activate(sis, file, span,
3591 				       &ext4_iomap_report_ops);
3592 }
3593 
3594 static const struct address_space_operations ext4_aops = {
3595 	.read_folio		= ext4_read_folio,
3596 	.readahead		= ext4_readahead,
3597 	.writepages		= ext4_writepages,
3598 	.write_begin		= ext4_write_begin,
3599 	.write_end		= ext4_write_end,
3600 	.dirty_folio		= ext4_dirty_folio,
3601 	.bmap			= ext4_bmap,
3602 	.invalidate_folio	= ext4_invalidate_folio,
3603 	.release_folio		= ext4_release_folio,
3604 	.direct_IO		= noop_direct_IO,
3605 	.migrate_folio		= buffer_migrate_folio,
3606 	.is_partially_uptodate  = block_is_partially_uptodate,
3607 	.error_remove_page	= generic_error_remove_page,
3608 	.swap_activate		= ext4_iomap_swap_activate,
3609 };
3610 
3611 static const struct address_space_operations ext4_journalled_aops = {
3612 	.read_folio		= ext4_read_folio,
3613 	.readahead		= ext4_readahead,
3614 	.writepages		= ext4_writepages,
3615 	.write_begin		= ext4_write_begin,
3616 	.write_end		= ext4_journalled_write_end,
3617 	.dirty_folio		= ext4_journalled_dirty_folio,
3618 	.bmap			= ext4_bmap,
3619 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3620 	.release_folio		= ext4_release_folio,
3621 	.direct_IO		= noop_direct_IO,
3622 	.migrate_folio		= buffer_migrate_folio_norefs,
3623 	.is_partially_uptodate  = block_is_partially_uptodate,
3624 	.error_remove_page	= generic_error_remove_page,
3625 	.swap_activate		= ext4_iomap_swap_activate,
3626 };
3627 
3628 static const struct address_space_operations ext4_da_aops = {
3629 	.read_folio		= ext4_read_folio,
3630 	.readahead		= ext4_readahead,
3631 	.writepages		= ext4_writepages,
3632 	.write_begin		= ext4_da_write_begin,
3633 	.write_end		= ext4_da_write_end,
3634 	.dirty_folio		= ext4_dirty_folio,
3635 	.bmap			= ext4_bmap,
3636 	.invalidate_folio	= ext4_invalidate_folio,
3637 	.release_folio		= ext4_release_folio,
3638 	.direct_IO		= noop_direct_IO,
3639 	.migrate_folio		= buffer_migrate_folio,
3640 	.is_partially_uptodate  = block_is_partially_uptodate,
3641 	.error_remove_page	= generic_error_remove_page,
3642 	.swap_activate		= ext4_iomap_swap_activate,
3643 };
3644 
3645 static const struct address_space_operations ext4_dax_aops = {
3646 	.writepages		= ext4_dax_writepages,
3647 	.direct_IO		= noop_direct_IO,
3648 	.dirty_folio		= noop_dirty_folio,
3649 	.bmap			= ext4_bmap,
3650 	.swap_activate		= ext4_iomap_swap_activate,
3651 };
3652 
ext4_set_aops(struct inode * inode)3653 void ext4_set_aops(struct inode *inode)
3654 {
3655 	switch (ext4_inode_journal_mode(inode)) {
3656 	case EXT4_INODE_ORDERED_DATA_MODE:
3657 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658 		break;
3659 	case EXT4_INODE_JOURNAL_DATA_MODE:
3660 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661 		return;
3662 	default:
3663 		BUG();
3664 	}
3665 	if (IS_DAX(inode))
3666 		inode->i_mapping->a_ops = &ext4_dax_aops;
3667 	else if (test_opt(inode->i_sb, DELALLOC))
3668 		inode->i_mapping->a_ops = &ext4_da_aops;
3669 	else
3670 		inode->i_mapping->a_ops = &ext4_aops;
3671 }
3672 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3673 static int __ext4_block_zero_page_range(handle_t *handle,
3674 		struct address_space *mapping, loff_t from, loff_t length)
3675 {
3676 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3677 	unsigned offset = from & (PAGE_SIZE-1);
3678 	unsigned blocksize, pos;
3679 	ext4_lblk_t iblock;
3680 	struct inode *inode = mapping->host;
3681 	struct buffer_head *bh;
3682 	struct folio *folio;
3683 	int err = 0;
3684 
3685 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3686 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3687 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3688 	if (IS_ERR(folio))
3689 		return PTR_ERR(folio);
3690 
3691 	blocksize = inode->i_sb->s_blocksize;
3692 
3693 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3694 
3695 	bh = folio_buffers(folio);
3696 	if (!bh) {
3697 		create_empty_buffers(&folio->page, blocksize, 0);
3698 		bh = folio_buffers(folio);
3699 	}
3700 
3701 	/* Find the buffer that contains "offset" */
3702 	pos = blocksize;
3703 	while (offset >= pos) {
3704 		bh = bh->b_this_page;
3705 		iblock++;
3706 		pos += blocksize;
3707 	}
3708 	if (buffer_freed(bh)) {
3709 		BUFFER_TRACE(bh, "freed: skip");
3710 		goto unlock;
3711 	}
3712 	if (!buffer_mapped(bh)) {
3713 		BUFFER_TRACE(bh, "unmapped");
3714 		ext4_get_block(inode, iblock, bh, 0);
3715 		/* unmapped? It's a hole - nothing to do */
3716 		if (!buffer_mapped(bh)) {
3717 			BUFFER_TRACE(bh, "still unmapped");
3718 			goto unlock;
3719 		}
3720 	}
3721 
3722 	/* Ok, it's mapped. Make sure it's up-to-date */
3723 	if (folio_test_uptodate(folio))
3724 		set_buffer_uptodate(bh);
3725 
3726 	if (!buffer_uptodate(bh)) {
3727 		err = ext4_read_bh_lock(bh, 0, true);
3728 		if (err)
3729 			goto unlock;
3730 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3731 			/* We expect the key to be set. */
3732 			BUG_ON(!fscrypt_has_encryption_key(inode));
3733 			err = fscrypt_decrypt_pagecache_blocks(folio,
3734 							       blocksize,
3735 							       bh_offset(bh));
3736 			if (err) {
3737 				clear_buffer_uptodate(bh);
3738 				goto unlock;
3739 			}
3740 		}
3741 	}
3742 	if (ext4_should_journal_data(inode)) {
3743 		BUFFER_TRACE(bh, "get write access");
3744 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3745 						    EXT4_JTR_NONE);
3746 		if (err)
3747 			goto unlock;
3748 	}
3749 	folio_zero_range(folio, offset, length);
3750 	BUFFER_TRACE(bh, "zeroed end of block");
3751 
3752 	if (ext4_should_journal_data(inode)) {
3753 		err = ext4_dirty_journalled_data(handle, bh);
3754 	} else {
3755 		err = 0;
3756 		mark_buffer_dirty(bh);
3757 		if (ext4_should_order_data(inode))
3758 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3759 					length);
3760 	}
3761 
3762 unlock:
3763 	folio_unlock(folio);
3764 	folio_put(folio);
3765 	return err;
3766 }
3767 
3768 /*
3769  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3770  * starting from file offset 'from'.  The range to be zero'd must
3771  * be contained with in one block.  If the specified range exceeds
3772  * the end of the block it will be shortened to end of the block
3773  * that corresponds to 'from'
3774  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3775 static int ext4_block_zero_page_range(handle_t *handle,
3776 		struct address_space *mapping, loff_t from, loff_t length)
3777 {
3778 	struct inode *inode = mapping->host;
3779 	unsigned offset = from & (PAGE_SIZE-1);
3780 	unsigned blocksize = inode->i_sb->s_blocksize;
3781 	unsigned max = blocksize - (offset & (blocksize - 1));
3782 
3783 	/*
3784 	 * correct length if it does not fall between
3785 	 * 'from' and the end of the block
3786 	 */
3787 	if (length > max || length < 0)
3788 		length = max;
3789 
3790 	if (IS_DAX(inode)) {
3791 		return dax_zero_range(inode, from, length, NULL,
3792 				      &ext4_iomap_ops);
3793 	}
3794 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3795 }
3796 
3797 /*
3798  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3799  * up to the end of the block which corresponds to `from'.
3800  * This required during truncate. We need to physically zero the tail end
3801  * of that block so it doesn't yield old data if the file is later grown.
3802  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3803 static int ext4_block_truncate_page(handle_t *handle,
3804 		struct address_space *mapping, loff_t from)
3805 {
3806 	unsigned offset = from & (PAGE_SIZE-1);
3807 	unsigned length;
3808 	unsigned blocksize;
3809 	struct inode *inode = mapping->host;
3810 
3811 	/* If we are processing an encrypted inode during orphan list handling */
3812 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3813 		return 0;
3814 
3815 	blocksize = inode->i_sb->s_blocksize;
3816 	length = blocksize - (offset & (blocksize - 1));
3817 
3818 	return ext4_block_zero_page_range(handle, mapping, from, length);
3819 }
3820 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3821 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3822 			     loff_t lstart, loff_t length)
3823 {
3824 	struct super_block *sb = inode->i_sb;
3825 	struct address_space *mapping = inode->i_mapping;
3826 	unsigned partial_start, partial_end;
3827 	ext4_fsblk_t start, end;
3828 	loff_t byte_end = (lstart + length - 1);
3829 	int err = 0;
3830 
3831 	partial_start = lstart & (sb->s_blocksize - 1);
3832 	partial_end = byte_end & (sb->s_blocksize - 1);
3833 
3834 	start = lstart >> sb->s_blocksize_bits;
3835 	end = byte_end >> sb->s_blocksize_bits;
3836 
3837 	/* Handle partial zero within the single block */
3838 	if (start == end &&
3839 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3840 		err = ext4_block_zero_page_range(handle, mapping,
3841 						 lstart, length);
3842 		return err;
3843 	}
3844 	/* Handle partial zero out on the start of the range */
3845 	if (partial_start) {
3846 		err = ext4_block_zero_page_range(handle, mapping,
3847 						 lstart, sb->s_blocksize);
3848 		if (err)
3849 			return err;
3850 	}
3851 	/* Handle partial zero out on the end of the range */
3852 	if (partial_end != sb->s_blocksize - 1)
3853 		err = ext4_block_zero_page_range(handle, mapping,
3854 						 byte_end - partial_end,
3855 						 partial_end + 1);
3856 	return err;
3857 }
3858 
ext4_can_truncate(struct inode * inode)3859 int ext4_can_truncate(struct inode *inode)
3860 {
3861 	if (S_ISREG(inode->i_mode))
3862 		return 1;
3863 	if (S_ISDIR(inode->i_mode))
3864 		return 1;
3865 	if (S_ISLNK(inode->i_mode))
3866 		return !ext4_inode_is_fast_symlink(inode);
3867 	return 0;
3868 }
3869 
3870 /*
3871  * We have to make sure i_disksize gets properly updated before we truncate
3872  * page cache due to hole punching or zero range. Otherwise i_disksize update
3873  * can get lost as it may have been postponed to submission of writeback but
3874  * that will never happen after we truncate page cache.
3875  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3876 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3877 				      loff_t len)
3878 {
3879 	handle_t *handle;
3880 	int ret;
3881 
3882 	loff_t size = i_size_read(inode);
3883 
3884 	WARN_ON(!inode_is_locked(inode));
3885 	if (offset > size || offset + len < size)
3886 		return 0;
3887 
3888 	if (EXT4_I(inode)->i_disksize >= size)
3889 		return 0;
3890 
3891 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3892 	if (IS_ERR(handle))
3893 		return PTR_ERR(handle);
3894 	ext4_update_i_disksize(inode, size);
3895 	ret = ext4_mark_inode_dirty(handle, inode);
3896 	ext4_journal_stop(handle);
3897 
3898 	return ret;
3899 }
3900 
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)3901 static inline void ext4_truncate_folio(struct inode *inode,
3902 				       loff_t start, loff_t end)
3903 {
3904 	unsigned long blocksize = i_blocksize(inode);
3905 	struct folio *folio;
3906 
3907 	/* Nothing to be done if no complete block needs to be truncated. */
3908 	if (round_up(start, blocksize) >= round_down(end, blocksize))
3909 		return;
3910 
3911 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3912 	if (IS_ERR(folio))
3913 		return;
3914 
3915 	if (folio_mkclean(folio))
3916 		folio_mark_dirty(folio);
3917 	folio_unlock(folio);
3918 	folio_put(folio);
3919 }
3920 
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)3921 int ext4_truncate_page_cache_block_range(struct inode *inode,
3922 					 loff_t start, loff_t end)
3923 {
3924 	unsigned long blocksize = i_blocksize(inode);
3925 	int ret;
3926 
3927 	/*
3928 	 * For journalled data we need to write (and checkpoint) pages
3929 	 * before discarding page cache to avoid inconsitent data on disk
3930 	 * in case of crash before freeing or unwritten converting trans
3931 	 * is committed.
3932 	 */
3933 	if (ext4_should_journal_data(inode)) {
3934 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
3935 						   end - 1);
3936 		if (ret)
3937 			return ret;
3938 		goto truncate_pagecache;
3939 	}
3940 
3941 	/*
3942 	 * If the block size is less than the page size, the file's mapped
3943 	 * blocks within one page could be freed or converted to unwritten.
3944 	 * So it's necessary to remove writable userspace mappings, and then
3945 	 * ext4_page_mkwrite() can be called during subsequent write access
3946 	 * to these partial folios.
3947 	 */
3948 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3949 	    blocksize < PAGE_SIZE && start < inode->i_size) {
3950 		loff_t page_boundary = round_up(start, PAGE_SIZE);
3951 
3952 		ext4_truncate_folio(inode, start, min(page_boundary, end));
3953 		if (end > page_boundary)
3954 			ext4_truncate_folio(inode,
3955 					    round_down(end, PAGE_SIZE), end);
3956 	}
3957 
3958 truncate_pagecache:
3959 	truncate_pagecache_range(inode, start, end - 1);
3960 	return 0;
3961 }
3962 
ext4_wait_dax_page(struct inode * inode)3963 static void ext4_wait_dax_page(struct inode *inode)
3964 {
3965 	filemap_invalidate_unlock(inode->i_mapping);
3966 	schedule();
3967 	filemap_invalidate_lock(inode->i_mapping);
3968 }
3969 
ext4_break_layouts(struct inode * inode)3970 int ext4_break_layouts(struct inode *inode)
3971 {
3972 	struct page *page;
3973 	int error;
3974 
3975 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3976 		return -EINVAL;
3977 
3978 	do {
3979 		page = dax_layout_busy_page(inode->i_mapping);
3980 		if (!page)
3981 			return 0;
3982 
3983 		error = ___wait_var_event(&page->_refcount,
3984 				atomic_read(&page->_refcount) == 1,
3985 				TASK_INTERRUPTIBLE, 0, 0,
3986 				ext4_wait_dax_page(inode));
3987 	} while (error == 0);
3988 
3989 	return error;
3990 }
3991 
3992 /*
3993  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3994  * associated with the given offset and length
3995  *
3996  * @inode:  File inode
3997  * @offset: The offset where the hole will begin
3998  * @len:    The length of the hole
3999  *
4000  * Returns: 0 on success or negative on failure
4001  */
4002 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4003 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4004 {
4005 	struct inode *inode = file_inode(file);
4006 	struct super_block *sb = inode->i_sb;
4007 	ext4_lblk_t first_block, stop_block;
4008 	struct address_space *mapping = inode->i_mapping;
4009 	loff_t first_block_offset, last_block_offset, max_length;
4010 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4011 	handle_t *handle;
4012 	unsigned int credits;
4013 	int ret = 0, ret2 = 0;
4014 
4015 	trace_ext4_punch_hole(inode, offset, length, 0);
4016 
4017 	inode_lock(inode);
4018 
4019 	/* No need to punch hole beyond i_size */
4020 	if (offset >= inode->i_size)
4021 		goto out_mutex;
4022 
4023 	/*
4024 	 * If the hole extends beyond i_size, set the hole
4025 	 * to end after the page that contains i_size
4026 	 */
4027 	if (offset + length > inode->i_size) {
4028 		length = inode->i_size +
4029 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4030 		   offset;
4031 	}
4032 
4033 	/*
4034 	 * For punch hole the length + offset needs to be within one block
4035 	 * before last range. Adjust the length if it goes beyond that limit.
4036 	 */
4037 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4038 	if (offset + length > max_length)
4039 		length = max_length - offset;
4040 
4041 	if (offset & (sb->s_blocksize - 1) ||
4042 	    (offset + length) & (sb->s_blocksize - 1)) {
4043 		/*
4044 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4045 		 * partial block
4046 		 */
4047 		ret = ext4_inode_attach_jinode(inode);
4048 		if (ret < 0)
4049 			goto out_mutex;
4050 
4051 	}
4052 
4053 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4054 	inode_dio_wait(inode);
4055 
4056 	ret = file_modified(file);
4057 	if (ret)
4058 		goto out_mutex;
4059 
4060 	/*
4061 	 * Prevent page faults from reinstantiating pages we have released from
4062 	 * page cache.
4063 	 */
4064 	filemap_invalidate_lock(mapping);
4065 
4066 	ret = ext4_break_layouts(inode);
4067 	if (ret)
4068 		goto out_dio;
4069 
4070 	first_block_offset = round_up(offset, sb->s_blocksize);
4071 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4072 
4073 	/* Now release the pages and zero block aligned part of pages*/
4074 	if (last_block_offset > first_block_offset) {
4075 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4076 		if (ret)
4077 			goto out_dio;
4078 
4079 		ret = ext4_truncate_page_cache_block_range(inode,
4080 				first_block_offset, last_block_offset + 1);
4081 		if (ret)
4082 			goto out_dio;
4083 	}
4084 
4085 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4086 		credits = ext4_writepage_trans_blocks(inode);
4087 	else
4088 		credits = ext4_blocks_for_truncate(inode);
4089 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4090 	if (IS_ERR(handle)) {
4091 		ret = PTR_ERR(handle);
4092 		ext4_std_error(sb, ret);
4093 		goto out_dio;
4094 	}
4095 
4096 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4097 				       length);
4098 	if (ret)
4099 		goto out_stop;
4100 
4101 	first_block = (offset + sb->s_blocksize - 1) >>
4102 		EXT4_BLOCK_SIZE_BITS(sb);
4103 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4104 
4105 	/* If there are blocks to remove, do it */
4106 	if (stop_block > first_block) {
4107 
4108 		down_write(&EXT4_I(inode)->i_data_sem);
4109 		ext4_discard_preallocations(inode, 0);
4110 
4111 		ext4_es_remove_extent(inode, first_block,
4112 				      stop_block - first_block);
4113 
4114 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115 			ret = ext4_ext_remove_space(inode, first_block,
4116 						    stop_block - 1);
4117 		else
4118 			ret = ext4_ind_remove_space(handle, inode, first_block,
4119 						    stop_block);
4120 
4121 		up_write(&EXT4_I(inode)->i_data_sem);
4122 	}
4123 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4124 	if (IS_SYNC(inode))
4125 		ext4_handle_sync(handle);
4126 
4127 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4128 	ret2 = ext4_mark_inode_dirty(handle, inode);
4129 	if (unlikely(ret2))
4130 		ret = ret2;
4131 	if (ret >= 0)
4132 		ext4_update_inode_fsync_trans(handle, inode, 1);
4133 out_stop:
4134 	ext4_journal_stop(handle);
4135 out_dio:
4136 	filemap_invalidate_unlock(mapping);
4137 out_mutex:
4138 	inode_unlock(inode);
4139 	return ret;
4140 }
4141 
ext4_inode_attach_jinode(struct inode * inode)4142 int ext4_inode_attach_jinode(struct inode *inode)
4143 {
4144 	struct ext4_inode_info *ei = EXT4_I(inode);
4145 	struct jbd2_inode *jinode;
4146 
4147 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148 		return 0;
4149 
4150 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4151 	spin_lock(&inode->i_lock);
4152 	if (!ei->jinode) {
4153 		if (!jinode) {
4154 			spin_unlock(&inode->i_lock);
4155 			return -ENOMEM;
4156 		}
4157 		ei->jinode = jinode;
4158 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159 		jinode = NULL;
4160 	}
4161 	spin_unlock(&inode->i_lock);
4162 	if (unlikely(jinode != NULL))
4163 		jbd2_free_inode(jinode);
4164 	return 0;
4165 }
4166 
4167 /*
4168  * ext4_truncate()
4169  *
4170  * We block out ext4_get_block() block instantiations across the entire
4171  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172  * simultaneously on behalf of the same inode.
4173  *
4174  * As we work through the truncate and commit bits of it to the journal there
4175  * is one core, guiding principle: the file's tree must always be consistent on
4176  * disk.  We must be able to restart the truncate after a crash.
4177  *
4178  * The file's tree may be transiently inconsistent in memory (although it
4179  * probably isn't), but whenever we close off and commit a journal transaction,
4180  * the contents of (the filesystem + the journal) must be consistent and
4181  * restartable.  It's pretty simple, really: bottom up, right to left (although
4182  * left-to-right works OK too).
4183  *
4184  * Note that at recovery time, journal replay occurs *before* the restart of
4185  * truncate against the orphan inode list.
4186  *
4187  * The committed inode has the new, desired i_size (which is the same as
4188  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4189  * that this inode's truncate did not complete and it will again call
4190  * ext4_truncate() to have another go.  So there will be instantiated blocks
4191  * to the right of the truncation point in a crashed ext4 filesystem.  But
4192  * that's fine - as long as they are linked from the inode, the post-crash
4193  * ext4_truncate() run will find them and release them.
4194  */
ext4_truncate(struct inode * inode)4195 int ext4_truncate(struct inode *inode)
4196 {
4197 	struct ext4_inode_info *ei = EXT4_I(inode);
4198 	unsigned int credits;
4199 	int err = 0, err2;
4200 	handle_t *handle;
4201 	struct address_space *mapping = inode->i_mapping;
4202 
4203 	/*
4204 	 * There is a possibility that we're either freeing the inode
4205 	 * or it's a completely new inode. In those cases we might not
4206 	 * have i_rwsem locked because it's not necessary.
4207 	 */
4208 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4209 		WARN_ON(!inode_is_locked(inode));
4210 	trace_ext4_truncate_enter(inode);
4211 
4212 	if (!ext4_can_truncate(inode))
4213 		goto out_trace;
4214 
4215 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217 
4218 	if (ext4_has_inline_data(inode)) {
4219 		int has_inline = 1;
4220 
4221 		err = ext4_inline_data_truncate(inode, &has_inline);
4222 		if (err || has_inline)
4223 			goto out_trace;
4224 	}
4225 
4226 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228 		err = ext4_inode_attach_jinode(inode);
4229 		if (err)
4230 			goto out_trace;
4231 	}
4232 
4233 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4234 		credits = ext4_writepage_trans_blocks(inode);
4235 	else
4236 		credits = ext4_blocks_for_truncate(inode);
4237 
4238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4239 	if (IS_ERR(handle)) {
4240 		err = PTR_ERR(handle);
4241 		goto out_trace;
4242 	}
4243 
4244 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4245 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4246 
4247 	/*
4248 	 * We add the inode to the orphan list, so that if this
4249 	 * truncate spans multiple transactions, and we crash, we will
4250 	 * resume the truncate when the filesystem recovers.  It also
4251 	 * marks the inode dirty, to catch the new size.
4252 	 *
4253 	 * Implication: the file must always be in a sane, consistent
4254 	 * truncatable state while each transaction commits.
4255 	 */
4256 	err = ext4_orphan_add(handle, inode);
4257 	if (err)
4258 		goto out_stop;
4259 
4260 	down_write(&EXT4_I(inode)->i_data_sem);
4261 
4262 	ext4_discard_preallocations(inode, 0);
4263 
4264 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4265 		err = ext4_ext_truncate(handle, inode);
4266 	else
4267 		ext4_ind_truncate(handle, inode);
4268 
4269 	up_write(&ei->i_data_sem);
4270 	if (err)
4271 		goto out_stop;
4272 
4273 	if (IS_SYNC(inode))
4274 		ext4_handle_sync(handle);
4275 
4276 out_stop:
4277 	/*
4278 	 * If this was a simple ftruncate() and the file will remain alive,
4279 	 * then we need to clear up the orphan record which we created above.
4280 	 * However, if this was a real unlink then we were called by
4281 	 * ext4_evict_inode(), and we allow that function to clean up the
4282 	 * orphan info for us.
4283 	 */
4284 	if (inode->i_nlink)
4285 		ext4_orphan_del(handle, inode);
4286 
4287 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4288 	err2 = ext4_mark_inode_dirty(handle, inode);
4289 	if (unlikely(err2 && !err))
4290 		err = err2;
4291 	ext4_journal_stop(handle);
4292 
4293 out_trace:
4294 	trace_ext4_truncate_exit(inode);
4295 	return err;
4296 }
4297 
ext4_inode_peek_iversion(const struct inode * inode)4298 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4299 {
4300 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4301 		return inode_peek_iversion_raw(inode);
4302 	else
4303 		return inode_peek_iversion(inode);
4304 }
4305 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4306 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4307 				 struct ext4_inode_info *ei)
4308 {
4309 	struct inode *inode = &(ei->vfs_inode);
4310 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4311 	struct super_block *sb = inode->i_sb;
4312 
4313 	if (i_blocks <= ~0U) {
4314 		/*
4315 		 * i_blocks can be represented in a 32 bit variable
4316 		 * as multiple of 512 bytes
4317 		 */
4318 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4319 		raw_inode->i_blocks_high = 0;
4320 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4321 		return 0;
4322 	}
4323 
4324 	/*
4325 	 * This should never happen since sb->s_maxbytes should not have
4326 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4327 	 * feature in ext4_fill_super().
4328 	 */
4329 	if (!ext4_has_feature_huge_file(sb))
4330 		return -EFSCORRUPTED;
4331 
4332 	if (i_blocks <= 0xffffffffffffULL) {
4333 		/*
4334 		 * i_blocks can be represented in a 48 bit variable
4335 		 * as multiple of 512 bytes
4336 		 */
4337 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4338 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4339 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4340 	} else {
4341 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4342 		/* i_block is stored in file system block size */
4343 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4344 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4345 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4346 	}
4347 	return 0;
4348 }
4349 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4350 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4351 {
4352 	struct ext4_inode_info *ei = EXT4_I(inode);
4353 	uid_t i_uid;
4354 	gid_t i_gid;
4355 	projid_t i_projid;
4356 	int block;
4357 	int err;
4358 
4359 	err = ext4_inode_blocks_set(raw_inode, ei);
4360 
4361 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4362 	i_uid = i_uid_read(inode);
4363 	i_gid = i_gid_read(inode);
4364 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4365 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4366 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4367 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4368 		/*
4369 		 * Fix up interoperability with old kernels. Otherwise,
4370 		 * old inodes get re-used with the upper 16 bits of the
4371 		 * uid/gid intact.
4372 		 */
4373 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4374 			raw_inode->i_uid_high = 0;
4375 			raw_inode->i_gid_high = 0;
4376 		} else {
4377 			raw_inode->i_uid_high =
4378 				cpu_to_le16(high_16_bits(i_uid));
4379 			raw_inode->i_gid_high =
4380 				cpu_to_le16(high_16_bits(i_gid));
4381 		}
4382 	} else {
4383 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4384 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4385 		raw_inode->i_uid_high = 0;
4386 		raw_inode->i_gid_high = 0;
4387 	}
4388 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4389 
4390 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4391 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4392 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4393 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4394 
4395 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4396 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4397 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4398 		raw_inode->i_file_acl_high =
4399 			cpu_to_le16(ei->i_file_acl >> 32);
4400 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4401 	ext4_isize_set(raw_inode, ei->i_disksize);
4402 
4403 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4404 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4405 		if (old_valid_dev(inode->i_rdev)) {
4406 			raw_inode->i_block[0] =
4407 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4408 			raw_inode->i_block[1] = 0;
4409 		} else {
4410 			raw_inode->i_block[0] = 0;
4411 			raw_inode->i_block[1] =
4412 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4413 			raw_inode->i_block[2] = 0;
4414 		}
4415 	} else if (!ext4_has_inline_data(inode)) {
4416 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4417 			raw_inode->i_block[block] = ei->i_data[block];
4418 	}
4419 
4420 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4421 		u64 ivers = ext4_inode_peek_iversion(inode);
4422 
4423 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4424 		if (ei->i_extra_isize) {
4425 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4426 				raw_inode->i_version_hi =
4427 					cpu_to_le32(ivers >> 32);
4428 			raw_inode->i_extra_isize =
4429 				cpu_to_le16(ei->i_extra_isize);
4430 		}
4431 	}
4432 
4433 	if (i_projid != EXT4_DEF_PROJID &&
4434 	    !ext4_has_feature_project(inode->i_sb))
4435 		err = err ?: -EFSCORRUPTED;
4436 
4437 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4438 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4439 		raw_inode->i_projid = cpu_to_le32(i_projid);
4440 
4441 	ext4_inode_csum_set(inode, raw_inode, ei);
4442 	return err;
4443 }
4444 
4445 /*
4446  * ext4_get_inode_loc returns with an extra refcount against the inode's
4447  * underlying buffer_head on success. If we pass 'inode' and it does not
4448  * have in-inode xattr, we have all inode data in memory that is needed
4449  * to recreate the on-disk version of this inode.
4450  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4451 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4452 				struct inode *inode, struct ext4_iloc *iloc,
4453 				ext4_fsblk_t *ret_block)
4454 {
4455 	struct ext4_group_desc	*gdp;
4456 	struct buffer_head	*bh;
4457 	ext4_fsblk_t		block;
4458 	struct blk_plug		plug;
4459 	int			inodes_per_block, inode_offset;
4460 
4461 	iloc->bh = NULL;
4462 	if (ino < EXT4_ROOT_INO ||
4463 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4464 		return -EFSCORRUPTED;
4465 
4466 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4467 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4468 	if (!gdp)
4469 		return -EIO;
4470 
4471 	/*
4472 	 * Figure out the offset within the block group inode table
4473 	 */
4474 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4475 	inode_offset = ((ino - 1) %
4476 			EXT4_INODES_PER_GROUP(sb));
4477 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4478 
4479 	block = ext4_inode_table(sb, gdp);
4480 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4481 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4482 		ext4_error(sb, "Invalid inode table block %llu in "
4483 			   "block_group %u", block, iloc->block_group);
4484 		return -EFSCORRUPTED;
4485 	}
4486 	block += (inode_offset / inodes_per_block);
4487 
4488 	bh = sb_getblk(sb, block);
4489 	if (unlikely(!bh))
4490 		return -ENOMEM;
4491 	if (ext4_buffer_uptodate(bh))
4492 		goto has_buffer;
4493 
4494 	lock_buffer(bh);
4495 	if (ext4_buffer_uptodate(bh)) {
4496 		/* Someone brought it uptodate while we waited */
4497 		unlock_buffer(bh);
4498 		goto has_buffer;
4499 	}
4500 
4501 	/*
4502 	 * If we have all information of the inode in memory and this
4503 	 * is the only valid inode in the block, we need not read the
4504 	 * block.
4505 	 */
4506 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4507 		struct buffer_head *bitmap_bh;
4508 		int i, start;
4509 
4510 		start = inode_offset & ~(inodes_per_block - 1);
4511 
4512 		/* Is the inode bitmap in cache? */
4513 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4514 		if (unlikely(!bitmap_bh))
4515 			goto make_io;
4516 
4517 		/*
4518 		 * If the inode bitmap isn't in cache then the
4519 		 * optimisation may end up performing two reads instead
4520 		 * of one, so skip it.
4521 		 */
4522 		if (!buffer_uptodate(bitmap_bh)) {
4523 			brelse(bitmap_bh);
4524 			goto make_io;
4525 		}
4526 		for (i = start; i < start + inodes_per_block; i++) {
4527 			if (i == inode_offset)
4528 				continue;
4529 			if (ext4_test_bit(i, bitmap_bh->b_data))
4530 				break;
4531 		}
4532 		brelse(bitmap_bh);
4533 		if (i == start + inodes_per_block) {
4534 			struct ext4_inode *raw_inode =
4535 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4536 
4537 			/* all other inodes are free, so skip I/O */
4538 			memset(bh->b_data, 0, bh->b_size);
4539 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4540 				ext4_fill_raw_inode(inode, raw_inode);
4541 			set_buffer_uptodate(bh);
4542 			unlock_buffer(bh);
4543 			goto has_buffer;
4544 		}
4545 	}
4546 
4547 make_io:
4548 	/*
4549 	 * If we need to do any I/O, try to pre-readahead extra
4550 	 * blocks from the inode table.
4551 	 */
4552 	blk_start_plug(&plug);
4553 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4554 		ext4_fsblk_t b, end, table;
4555 		unsigned num;
4556 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4557 
4558 		table = ext4_inode_table(sb, gdp);
4559 		/* s_inode_readahead_blks is always a power of 2 */
4560 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4561 		if (table > b)
4562 			b = table;
4563 		end = b + ra_blks;
4564 		num = EXT4_INODES_PER_GROUP(sb);
4565 		if (ext4_has_group_desc_csum(sb))
4566 			num -= ext4_itable_unused_count(sb, gdp);
4567 		table += num / inodes_per_block;
4568 		if (end > table)
4569 			end = table;
4570 		while (b <= end)
4571 			ext4_sb_breadahead_unmovable(sb, b++);
4572 	}
4573 
4574 	/*
4575 	 * There are other valid inodes in the buffer, this inode
4576 	 * has in-inode xattrs, or we don't have this inode in memory.
4577 	 * Read the block from disk.
4578 	 */
4579 	trace_ext4_load_inode(sb, ino);
4580 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4581 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4582 	blk_finish_plug(&plug);
4583 	wait_on_buffer(bh);
4584 	if (!buffer_uptodate(bh)) {
4585 		if (ret_block)
4586 			*ret_block = block;
4587 		brelse(bh);
4588 		return -EIO;
4589 	}
4590 has_buffer:
4591 	iloc->bh = bh;
4592 	return 0;
4593 }
4594 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4595 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4596 					struct ext4_iloc *iloc)
4597 {
4598 	ext4_fsblk_t err_blk = 0;
4599 	int ret;
4600 
4601 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4602 					&err_blk);
4603 
4604 	if (ret == -EIO)
4605 		ext4_error_inode_block(inode, err_blk, EIO,
4606 					"unable to read itable block");
4607 
4608 	return ret;
4609 }
4610 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4611 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4612 {
4613 	ext4_fsblk_t err_blk = 0;
4614 	int ret;
4615 
4616 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4617 					&err_blk);
4618 
4619 	if (ret == -EIO)
4620 		ext4_error_inode_block(inode, err_blk, EIO,
4621 					"unable to read itable block");
4622 
4623 	return ret;
4624 }
4625 
4626 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4627 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4628 			  struct ext4_iloc *iloc)
4629 {
4630 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4631 }
4632 
ext4_should_enable_dax(struct inode * inode)4633 static bool ext4_should_enable_dax(struct inode *inode)
4634 {
4635 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4636 
4637 	if (test_opt2(inode->i_sb, DAX_NEVER))
4638 		return false;
4639 	if (!S_ISREG(inode->i_mode))
4640 		return false;
4641 	if (ext4_should_journal_data(inode))
4642 		return false;
4643 	if (ext4_has_inline_data(inode))
4644 		return false;
4645 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4646 		return false;
4647 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4648 		return false;
4649 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4650 		return false;
4651 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4652 		return true;
4653 
4654 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4655 }
4656 
ext4_set_inode_flags(struct inode * inode,bool init)4657 void ext4_set_inode_flags(struct inode *inode, bool init)
4658 {
4659 	unsigned int flags = EXT4_I(inode)->i_flags;
4660 	unsigned int new_fl = 0;
4661 
4662 	WARN_ON_ONCE(IS_DAX(inode) && init);
4663 
4664 	if (flags & EXT4_SYNC_FL)
4665 		new_fl |= S_SYNC;
4666 	if (flags & EXT4_APPEND_FL)
4667 		new_fl |= S_APPEND;
4668 	if (flags & EXT4_IMMUTABLE_FL)
4669 		new_fl |= S_IMMUTABLE;
4670 	if (flags & EXT4_NOATIME_FL)
4671 		new_fl |= S_NOATIME;
4672 	if (flags & EXT4_DIRSYNC_FL)
4673 		new_fl |= S_DIRSYNC;
4674 
4675 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4676 	 * here if already set. */
4677 	new_fl |= (inode->i_flags & S_DAX);
4678 	if (init && ext4_should_enable_dax(inode))
4679 		new_fl |= S_DAX;
4680 
4681 	if (flags & EXT4_ENCRYPT_FL)
4682 		new_fl |= S_ENCRYPTED;
4683 	if (flags & EXT4_CASEFOLD_FL)
4684 		new_fl |= S_CASEFOLD;
4685 	if (flags & EXT4_VERITY_FL)
4686 		new_fl |= S_VERITY;
4687 	inode_set_flags(inode, new_fl,
4688 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4689 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4690 }
4691 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4692 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4693 				  struct ext4_inode_info *ei)
4694 {
4695 	blkcnt_t i_blocks ;
4696 	struct inode *inode = &(ei->vfs_inode);
4697 	struct super_block *sb = inode->i_sb;
4698 
4699 	if (ext4_has_feature_huge_file(sb)) {
4700 		/* we are using combined 48 bit field */
4701 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4702 					le32_to_cpu(raw_inode->i_blocks_lo);
4703 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4704 			/* i_blocks represent file system block size */
4705 			return i_blocks  << (inode->i_blkbits - 9);
4706 		} else {
4707 			return i_blocks;
4708 		}
4709 	} else {
4710 		return le32_to_cpu(raw_inode->i_blocks_lo);
4711 	}
4712 }
4713 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4714 static inline int ext4_iget_extra_inode(struct inode *inode,
4715 					 struct ext4_inode *raw_inode,
4716 					 struct ext4_inode_info *ei)
4717 {
4718 	__le32 *magic = (void *)raw_inode +
4719 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4720 
4721 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4722 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4723 		int err;
4724 
4725 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4726 		err = ext4_find_inline_data_nolock(inode);
4727 		if (!err && ext4_has_inline_data(inode))
4728 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4729 		return err;
4730 	} else
4731 		EXT4_I(inode)->i_inline_off = 0;
4732 	return 0;
4733 }
4734 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4735 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4736 {
4737 	if (!ext4_has_feature_project(inode->i_sb))
4738 		return -EOPNOTSUPP;
4739 	*projid = EXT4_I(inode)->i_projid;
4740 	return 0;
4741 }
4742 
4743 /*
4744  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4745  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4746  * set.
4747  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4748 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4749 {
4750 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4751 		inode_set_iversion_raw(inode, val);
4752 	else
4753 		inode_set_iversion_queried(inode, val);
4754 }
4755 
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)4756 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
4757 			    const char *function, unsigned int line)
4758 {
4759 	const char *err_str;
4760 
4761 	if (flags & EXT4_IGET_EA_INODE) {
4762 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4763 			err_str = "missing EA_INODE flag";
4764 			goto error;
4765 		}
4766 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4767 		    EXT4_I(inode)->i_file_acl) {
4768 			err_str = "ea_inode with extended attributes";
4769 			goto error;
4770 		}
4771 	} else {
4772 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4773 			/*
4774 			 * open_by_handle_at() could provide an old inode number
4775 			 * that has since been reused for an ea_inode; this does
4776 			 * not indicate filesystem corruption
4777 			 */
4778 			if (flags & EXT4_IGET_HANDLE)
4779 				return -ESTALE;
4780 			err_str = "unexpected EA_INODE flag";
4781 			goto error;
4782 		}
4783 	}
4784 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4785 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
4786 		goto error;
4787 	}
4788 	return 0;
4789 
4790 error:
4791 	ext4_error_inode(inode, function, line, 0, err_str);
4792 	return -EFSCORRUPTED;
4793 }
4794 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4795 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4796 			  ext4_iget_flags flags, const char *function,
4797 			  unsigned int line)
4798 {
4799 	struct ext4_iloc iloc;
4800 	struct ext4_inode *raw_inode;
4801 	struct ext4_inode_info *ei;
4802 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4803 	struct inode *inode;
4804 	journal_t *journal = EXT4_SB(sb)->s_journal;
4805 	long ret;
4806 	loff_t size;
4807 	int block;
4808 	uid_t i_uid;
4809 	gid_t i_gid;
4810 	projid_t i_projid;
4811 
4812 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4813 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4814 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4815 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4816 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4817 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4818 	    (ino < EXT4_ROOT_INO) ||
4819 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4820 		if (flags & EXT4_IGET_HANDLE)
4821 			return ERR_PTR(-ESTALE);
4822 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4823 			     "inode #%lu: comm %s: iget: illegal inode #",
4824 			     ino, current->comm);
4825 		return ERR_PTR(-EFSCORRUPTED);
4826 	}
4827 
4828 	inode = iget_locked(sb, ino);
4829 	if (!inode)
4830 		return ERR_PTR(-ENOMEM);
4831 	if (!(inode->i_state & I_NEW)) {
4832 		ret = check_igot_inode(inode, flags, function, line);
4833 		if (ret) {
4834 			iput(inode);
4835 			return ERR_PTR(ret);
4836 		}
4837 		return inode;
4838 	}
4839 
4840 	ei = EXT4_I(inode);
4841 	iloc.bh = NULL;
4842 
4843 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4844 	if (ret < 0)
4845 		goto bad_inode;
4846 	raw_inode = ext4_raw_inode(&iloc);
4847 
4848 	if ((flags & EXT4_IGET_HANDLE) &&
4849 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4850 		ret = -ESTALE;
4851 		goto bad_inode;
4852 	}
4853 
4854 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4855 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4856 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4857 			EXT4_INODE_SIZE(inode->i_sb) ||
4858 		    (ei->i_extra_isize & 3)) {
4859 			ext4_error_inode(inode, function, line, 0,
4860 					 "iget: bad extra_isize %u "
4861 					 "(inode size %u)",
4862 					 ei->i_extra_isize,
4863 					 EXT4_INODE_SIZE(inode->i_sb));
4864 			ret = -EFSCORRUPTED;
4865 			goto bad_inode;
4866 		}
4867 	} else
4868 		ei->i_extra_isize = 0;
4869 
4870 	/* Precompute checksum seed for inode metadata */
4871 	if (ext4_has_metadata_csum(sb)) {
4872 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4873 		__u32 csum;
4874 		__le32 inum = cpu_to_le32(inode->i_ino);
4875 		__le32 gen = raw_inode->i_generation;
4876 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4877 				   sizeof(inum));
4878 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4879 					      sizeof(gen));
4880 	}
4881 
4882 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4883 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4884 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4885 		ext4_error_inode_err(inode, function, line, 0,
4886 				EFSBADCRC, "iget: checksum invalid");
4887 		ret = -EFSBADCRC;
4888 		goto bad_inode;
4889 	}
4890 
4891 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4892 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4893 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4894 	if (ext4_has_feature_project(sb) &&
4895 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4896 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4897 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4898 	else
4899 		i_projid = EXT4_DEF_PROJID;
4900 
4901 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4902 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4903 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4904 	}
4905 	i_uid_write(inode, i_uid);
4906 	i_gid_write(inode, i_gid);
4907 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4908 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4909 
4910 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4911 	ei->i_inline_off = 0;
4912 	ei->i_dir_start_lookup = 0;
4913 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4914 	/* We now have enough fields to check if the inode was active or not.
4915 	 * This is needed because nfsd might try to access dead inodes
4916 	 * the test is that same one that e2fsck uses
4917 	 * NeilBrown 1999oct15
4918 	 */
4919 	if (inode->i_nlink == 0) {
4920 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4921 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4922 		    ino != EXT4_BOOT_LOADER_INO) {
4923 			/* this inode is deleted or unallocated */
4924 			if (flags & EXT4_IGET_SPECIAL) {
4925 				ext4_error_inode(inode, function, line, 0,
4926 						 "iget: special inode unallocated");
4927 				ret = -EFSCORRUPTED;
4928 			} else
4929 				ret = -ESTALE;
4930 			goto bad_inode;
4931 		}
4932 		/* The only unlinked inodes we let through here have
4933 		 * valid i_mode and are being read by the orphan
4934 		 * recovery code: that's fine, we're about to complete
4935 		 * the process of deleting those.
4936 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4937 		 * not initialized on a new filesystem. */
4938 	}
4939 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4940 	ext4_set_inode_flags(inode, true);
4941 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4942 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4943 	if (ext4_has_feature_64bit(sb))
4944 		ei->i_file_acl |=
4945 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4946 	inode->i_size = ext4_isize(sb, raw_inode);
4947 	size = i_size_read(inode);
4948 	if (size < 0 || size > ext4_get_maxbytes(inode)) {
4949 		ext4_error_inode(inode, function, line, 0,
4950 				 "iget: bad i_size value: %lld", size);
4951 		ret = -EFSCORRUPTED;
4952 		goto bad_inode;
4953 	}
4954 	/*
4955 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4956 	 * we'd normally treat htree data as empty space. But with metadata
4957 	 * checksumming that corrupts checksums so forbid that.
4958 	 */
4959 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4960 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4961 		ext4_error_inode(inode, function, line, 0,
4962 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4963 		ret = -EFSCORRUPTED;
4964 		goto bad_inode;
4965 	}
4966 	ei->i_disksize = inode->i_size;
4967 #ifdef CONFIG_QUOTA
4968 	ei->i_reserved_quota = 0;
4969 #endif
4970 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4971 	ei->i_block_group = iloc.block_group;
4972 	ei->i_last_alloc_group = ~0;
4973 	/*
4974 	 * NOTE! The in-memory inode i_data array is in little-endian order
4975 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4976 	 */
4977 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4978 		ei->i_data[block] = raw_inode->i_block[block];
4979 	INIT_LIST_HEAD(&ei->i_orphan);
4980 	ext4_fc_init_inode(&ei->vfs_inode);
4981 
4982 	/*
4983 	 * Set transaction id's of transactions that have to be committed
4984 	 * to finish f[data]sync. We set them to currently running transaction
4985 	 * as we cannot be sure that the inode or some of its metadata isn't
4986 	 * part of the transaction - the inode could have been reclaimed and
4987 	 * now it is reread from disk.
4988 	 */
4989 	if (journal) {
4990 		transaction_t *transaction;
4991 		tid_t tid;
4992 
4993 		read_lock(&journal->j_state_lock);
4994 		if (journal->j_running_transaction)
4995 			transaction = journal->j_running_transaction;
4996 		else
4997 			transaction = journal->j_committing_transaction;
4998 		if (transaction)
4999 			tid = transaction->t_tid;
5000 		else
5001 			tid = journal->j_commit_sequence;
5002 		read_unlock(&journal->j_state_lock);
5003 		ei->i_sync_tid = tid;
5004 		ei->i_datasync_tid = tid;
5005 	}
5006 
5007 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5008 		if (ei->i_extra_isize == 0) {
5009 			/* The extra space is currently unused. Use it. */
5010 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5011 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5012 					    EXT4_GOOD_OLD_INODE_SIZE;
5013 		} else {
5014 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5015 			if (ret)
5016 				goto bad_inode;
5017 		}
5018 	}
5019 
5020 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5021 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5022 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5023 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5024 
5025 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5026 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5027 
5028 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5029 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5030 				ivers |=
5031 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5032 		}
5033 		ext4_inode_set_iversion_queried(inode, ivers);
5034 	}
5035 
5036 	ret = 0;
5037 	if (ei->i_file_acl &&
5038 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5039 		ext4_error_inode(inode, function, line, 0,
5040 				 "iget: bad extended attribute block %llu",
5041 				 ei->i_file_acl);
5042 		ret = -EFSCORRUPTED;
5043 		goto bad_inode;
5044 	} else if (!ext4_has_inline_data(inode)) {
5045 		/* validate the block references in the inode */
5046 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5047 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5048 			(S_ISLNK(inode->i_mode) &&
5049 			!ext4_inode_is_fast_symlink(inode)))) {
5050 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5051 				ret = ext4_ext_check_inode(inode);
5052 			else
5053 				ret = ext4_ind_check_inode(inode);
5054 		}
5055 	}
5056 	if (ret)
5057 		goto bad_inode;
5058 
5059 	if (S_ISREG(inode->i_mode)) {
5060 		inode->i_op = &ext4_file_inode_operations;
5061 		inode->i_fop = &ext4_file_operations;
5062 		ext4_set_aops(inode);
5063 	} else if (S_ISDIR(inode->i_mode)) {
5064 		inode->i_op = &ext4_dir_inode_operations;
5065 		inode->i_fop = &ext4_dir_operations;
5066 	} else if (S_ISLNK(inode->i_mode)) {
5067 		/* VFS does not allow setting these so must be corruption */
5068 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5069 			ext4_error_inode(inode, function, line, 0,
5070 					 "iget: immutable or append flags "
5071 					 "not allowed on symlinks");
5072 			ret = -EFSCORRUPTED;
5073 			goto bad_inode;
5074 		}
5075 		if (IS_ENCRYPTED(inode)) {
5076 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5077 		} else if (ext4_inode_is_fast_symlink(inode)) {
5078 			inode->i_link = (char *)ei->i_data;
5079 			inode->i_op = &ext4_fast_symlink_inode_operations;
5080 			nd_terminate_link(ei->i_data, inode->i_size,
5081 				sizeof(ei->i_data) - 1);
5082 		} else {
5083 			inode->i_op = &ext4_symlink_inode_operations;
5084 		}
5085 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5086 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5087 		inode->i_op = &ext4_special_inode_operations;
5088 		if (raw_inode->i_block[0])
5089 			init_special_inode(inode, inode->i_mode,
5090 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5091 		else
5092 			init_special_inode(inode, inode->i_mode,
5093 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5094 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5095 		make_bad_inode(inode);
5096 	} else {
5097 		ret = -EFSCORRUPTED;
5098 		ext4_error_inode(inode, function, line, 0,
5099 				 "iget: bogus i_mode (%o)", inode->i_mode);
5100 		goto bad_inode;
5101 	}
5102 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5103 		ext4_error_inode(inode, function, line, 0,
5104 				 "casefold flag without casefold feature");
5105 		ret = -EFSCORRUPTED;
5106 		goto bad_inode;
5107 	}
5108 	ret = check_igot_inode(inode, flags, function, line);
5109 	/*
5110 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5111 	 * it's just not an inode we can return for an fhandle lookup.
5112 	 */
5113 	if (ret == -ESTALE) {
5114 		brelse(iloc.bh);
5115 		unlock_new_inode(inode);
5116 		iput(inode);
5117 		return ERR_PTR(-ESTALE);
5118 	}
5119 	if (ret)
5120 		goto bad_inode;
5121 	brelse(iloc.bh);
5122 
5123 	unlock_new_inode(inode);
5124 	return inode;
5125 
5126 bad_inode:
5127 	brelse(iloc.bh);
5128 	iget_failed(inode);
5129 	return ERR_PTR(ret);
5130 }
5131 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5132 static void __ext4_update_other_inode_time(struct super_block *sb,
5133 					   unsigned long orig_ino,
5134 					   unsigned long ino,
5135 					   struct ext4_inode *raw_inode)
5136 {
5137 	struct inode *inode;
5138 
5139 	inode = find_inode_by_ino_rcu(sb, ino);
5140 	if (!inode)
5141 		return;
5142 
5143 	if (!inode_is_dirtytime_only(inode))
5144 		return;
5145 
5146 	spin_lock(&inode->i_lock);
5147 	if (inode_is_dirtytime_only(inode)) {
5148 		struct ext4_inode_info	*ei = EXT4_I(inode);
5149 
5150 		inode->i_state &= ~I_DIRTY_TIME;
5151 		spin_unlock(&inode->i_lock);
5152 
5153 		spin_lock(&ei->i_raw_lock);
5154 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5155 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5156 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5157 		ext4_inode_csum_set(inode, raw_inode, ei);
5158 		spin_unlock(&ei->i_raw_lock);
5159 		trace_ext4_other_inode_update_time(inode, orig_ino);
5160 		return;
5161 	}
5162 	spin_unlock(&inode->i_lock);
5163 }
5164 
5165 /*
5166  * Opportunistically update the other time fields for other inodes in
5167  * the same inode table block.
5168  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5169 static void ext4_update_other_inodes_time(struct super_block *sb,
5170 					  unsigned long orig_ino, char *buf)
5171 {
5172 	unsigned long ino;
5173 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5174 	int inode_size = EXT4_INODE_SIZE(sb);
5175 
5176 	/*
5177 	 * Calculate the first inode in the inode table block.  Inode
5178 	 * numbers are one-based.  That is, the first inode in a block
5179 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5180 	 */
5181 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5182 	rcu_read_lock();
5183 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5184 		if (ino == orig_ino)
5185 			continue;
5186 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5187 					       (struct ext4_inode *)buf);
5188 	}
5189 	rcu_read_unlock();
5190 }
5191 
5192 /*
5193  * Post the struct inode info into an on-disk inode location in the
5194  * buffer-cache.  This gobbles the caller's reference to the
5195  * buffer_head in the inode location struct.
5196  *
5197  * The caller must have write access to iloc->bh.
5198  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5199 static int ext4_do_update_inode(handle_t *handle,
5200 				struct inode *inode,
5201 				struct ext4_iloc *iloc)
5202 {
5203 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5204 	struct ext4_inode_info *ei = EXT4_I(inode);
5205 	struct buffer_head *bh = iloc->bh;
5206 	struct super_block *sb = inode->i_sb;
5207 	int err;
5208 	int need_datasync = 0, set_large_file = 0;
5209 
5210 	spin_lock(&ei->i_raw_lock);
5211 
5212 	/*
5213 	 * For fields not tracked in the in-memory inode, initialise them
5214 	 * to zero for new inodes.
5215 	 */
5216 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5217 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5218 
5219 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5220 		need_datasync = 1;
5221 	if (ei->i_disksize > 0x7fffffffULL) {
5222 		if (!ext4_has_feature_large_file(sb) ||
5223 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5224 			set_large_file = 1;
5225 	}
5226 
5227 	err = ext4_fill_raw_inode(inode, raw_inode);
5228 	spin_unlock(&ei->i_raw_lock);
5229 	if (err) {
5230 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5231 		goto out_brelse;
5232 	}
5233 
5234 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5235 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5236 					      bh->b_data);
5237 
5238 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5239 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5240 	if (err)
5241 		goto out_error;
5242 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5243 	if (set_large_file) {
5244 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5245 		err = ext4_journal_get_write_access(handle, sb,
5246 						    EXT4_SB(sb)->s_sbh,
5247 						    EXT4_JTR_NONE);
5248 		if (err)
5249 			goto out_error;
5250 		lock_buffer(EXT4_SB(sb)->s_sbh);
5251 		ext4_set_feature_large_file(sb);
5252 		ext4_superblock_csum_set(sb);
5253 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5254 		ext4_handle_sync(handle);
5255 		err = ext4_handle_dirty_metadata(handle, NULL,
5256 						 EXT4_SB(sb)->s_sbh);
5257 	}
5258 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5259 out_error:
5260 	ext4_std_error(inode->i_sb, err);
5261 out_brelse:
5262 	brelse(bh);
5263 	return err;
5264 }
5265 
5266 /*
5267  * ext4_write_inode()
5268  *
5269  * We are called from a few places:
5270  *
5271  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5272  *   Here, there will be no transaction running. We wait for any running
5273  *   transaction to commit.
5274  *
5275  * - Within flush work (sys_sync(), kupdate and such).
5276  *   We wait on commit, if told to.
5277  *
5278  * - Within iput_final() -> write_inode_now()
5279  *   We wait on commit, if told to.
5280  *
5281  * In all cases it is actually safe for us to return without doing anything,
5282  * because the inode has been copied into a raw inode buffer in
5283  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5284  * writeback.
5285  *
5286  * Note that we are absolutely dependent upon all inode dirtiers doing the
5287  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5288  * which we are interested.
5289  *
5290  * It would be a bug for them to not do this.  The code:
5291  *
5292  *	mark_inode_dirty(inode)
5293  *	stuff();
5294  *	inode->i_size = expr;
5295  *
5296  * is in error because write_inode() could occur while `stuff()' is running,
5297  * and the new i_size will be lost.  Plus the inode will no longer be on the
5298  * superblock's dirty inode list.
5299  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5300 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5301 {
5302 	int err;
5303 
5304 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5305 		return 0;
5306 
5307 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5308 		return -EIO;
5309 
5310 	if (EXT4_SB(inode->i_sb)->s_journal) {
5311 		if (ext4_journal_current_handle()) {
5312 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5313 			dump_stack();
5314 			return -EIO;
5315 		}
5316 
5317 		/*
5318 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5319 		 * ext4_sync_fs() will force the commit after everything is
5320 		 * written.
5321 		 */
5322 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5323 			return 0;
5324 
5325 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5326 						EXT4_I(inode)->i_sync_tid);
5327 	} else {
5328 		struct ext4_iloc iloc;
5329 
5330 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5331 		if (err)
5332 			return err;
5333 		/*
5334 		 * sync(2) will flush the whole buffer cache. No need to do
5335 		 * it here separately for each inode.
5336 		 */
5337 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5338 			sync_dirty_buffer(iloc.bh);
5339 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5340 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5341 					       "IO error syncing inode");
5342 			err = -EIO;
5343 		}
5344 		brelse(iloc.bh);
5345 	}
5346 	return err;
5347 }
5348 
5349 /*
5350  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5351  * buffers that are attached to a folio straddling i_size and are undergoing
5352  * commit. In that case we have to wait for commit to finish and try again.
5353  */
ext4_wait_for_tail_page_commit(struct inode * inode)5354 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5355 {
5356 	unsigned offset;
5357 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5358 	tid_t commit_tid;
5359 	int ret;
5360 	bool has_transaction;
5361 
5362 	offset = inode->i_size & (PAGE_SIZE - 1);
5363 	/*
5364 	 * If the folio is fully truncated, we don't need to wait for any commit
5365 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5366 	 * strip all buffers from the folio but keep the folio dirty which can then
5367 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5368 	 * buffers). Also we don't need to wait for any commit if all buffers in
5369 	 * the folio remain valid. This is most beneficial for the common case of
5370 	 * blocksize == PAGESIZE.
5371 	 */
5372 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5373 		return;
5374 	while (1) {
5375 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5376 				      inode->i_size >> PAGE_SHIFT);
5377 		if (IS_ERR(folio))
5378 			return;
5379 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5380 						folio_size(folio) - offset);
5381 		folio_unlock(folio);
5382 		folio_put(folio);
5383 		if (ret != -EBUSY)
5384 			return;
5385 		has_transaction = false;
5386 		read_lock(&journal->j_state_lock);
5387 		if (journal->j_committing_transaction) {
5388 			commit_tid = journal->j_committing_transaction->t_tid;
5389 			has_transaction = true;
5390 		}
5391 		read_unlock(&journal->j_state_lock);
5392 		if (has_transaction)
5393 			jbd2_log_wait_commit(journal, commit_tid);
5394 	}
5395 }
5396 
5397 /*
5398  * ext4_setattr()
5399  *
5400  * Called from notify_change.
5401  *
5402  * We want to trap VFS attempts to truncate the file as soon as
5403  * possible.  In particular, we want to make sure that when the VFS
5404  * shrinks i_size, we put the inode on the orphan list and modify
5405  * i_disksize immediately, so that during the subsequent flushing of
5406  * dirty pages and freeing of disk blocks, we can guarantee that any
5407  * commit will leave the blocks being flushed in an unused state on
5408  * disk.  (On recovery, the inode will get truncated and the blocks will
5409  * be freed, so we have a strong guarantee that no future commit will
5410  * leave these blocks visible to the user.)
5411  *
5412  * Another thing we have to assure is that if we are in ordered mode
5413  * and inode is still attached to the committing transaction, we must
5414  * we start writeout of all the dirty pages which are being truncated.
5415  * This way we are sure that all the data written in the previous
5416  * transaction are already on disk (truncate waits for pages under
5417  * writeback).
5418  *
5419  * Called with inode->i_rwsem down.
5420  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5421 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5422 		 struct iattr *attr)
5423 {
5424 	struct inode *inode = d_inode(dentry);
5425 	int error, rc = 0;
5426 	int orphan = 0;
5427 	const unsigned int ia_valid = attr->ia_valid;
5428 	bool inc_ivers = true;
5429 
5430 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5431 		return -EIO;
5432 
5433 	if (unlikely(IS_IMMUTABLE(inode)))
5434 		return -EPERM;
5435 
5436 	if (unlikely(IS_APPEND(inode) &&
5437 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5438 				  ATTR_GID | ATTR_TIMES_SET))))
5439 		return -EPERM;
5440 
5441 	error = setattr_prepare(idmap, dentry, attr);
5442 	if (error)
5443 		return error;
5444 
5445 	error = fscrypt_prepare_setattr(dentry, attr);
5446 	if (error)
5447 		return error;
5448 
5449 	error = fsverity_prepare_setattr(dentry, attr);
5450 	if (error)
5451 		return error;
5452 
5453 	if (is_quota_modification(idmap, inode, attr)) {
5454 		error = dquot_initialize(inode);
5455 		if (error)
5456 			return error;
5457 	}
5458 
5459 	if (i_uid_needs_update(idmap, attr, inode) ||
5460 	    i_gid_needs_update(idmap, attr, inode)) {
5461 		handle_t *handle;
5462 
5463 		/* (user+group)*(old+new) structure, inode write (sb,
5464 		 * inode block, ? - but truncate inode update has it) */
5465 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5466 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5467 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5468 		if (IS_ERR(handle)) {
5469 			error = PTR_ERR(handle);
5470 			goto err_out;
5471 		}
5472 
5473 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5474 		 * counts xattr inode references.
5475 		 */
5476 		down_read(&EXT4_I(inode)->xattr_sem);
5477 		error = dquot_transfer(idmap, inode, attr);
5478 		up_read(&EXT4_I(inode)->xattr_sem);
5479 
5480 		if (error) {
5481 			ext4_journal_stop(handle);
5482 			return error;
5483 		}
5484 		/* Update corresponding info in inode so that everything is in
5485 		 * one transaction */
5486 		i_uid_update(idmap, attr, inode);
5487 		i_gid_update(idmap, attr, inode);
5488 		error = ext4_mark_inode_dirty(handle, inode);
5489 		ext4_journal_stop(handle);
5490 		if (unlikely(error)) {
5491 			return error;
5492 		}
5493 	}
5494 
5495 	if (attr->ia_valid & ATTR_SIZE) {
5496 		handle_t *handle;
5497 		loff_t oldsize = inode->i_size;
5498 		loff_t old_disksize;
5499 		int shrink = (attr->ia_size < inode->i_size);
5500 
5501 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5502 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5503 
5504 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5505 				return -EFBIG;
5506 			}
5507 		}
5508 		if (!S_ISREG(inode->i_mode)) {
5509 			return -EINVAL;
5510 		}
5511 
5512 		if (attr->ia_size == inode->i_size)
5513 			inc_ivers = false;
5514 
5515 		if (shrink) {
5516 			if (ext4_should_order_data(inode)) {
5517 				error = ext4_begin_ordered_truncate(inode,
5518 							    attr->ia_size);
5519 				if (error)
5520 					goto err_out;
5521 			}
5522 			/*
5523 			 * Blocks are going to be removed from the inode. Wait
5524 			 * for dio in flight.
5525 			 */
5526 			inode_dio_wait(inode);
5527 		}
5528 
5529 		filemap_invalidate_lock(inode->i_mapping);
5530 
5531 		rc = ext4_break_layouts(inode);
5532 		if (rc) {
5533 			filemap_invalidate_unlock(inode->i_mapping);
5534 			goto err_out;
5535 		}
5536 
5537 		if (attr->ia_size != inode->i_size) {
5538 			/* attach jbd2 jinode for EOF folio tail zeroing */
5539 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5540 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5541 				error = ext4_inode_attach_jinode(inode);
5542 				if (error)
5543 					goto out_mmap_sem;
5544 			}
5545 
5546 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5547 			if (IS_ERR(handle)) {
5548 				error = PTR_ERR(handle);
5549 				goto out_mmap_sem;
5550 			}
5551 			if (ext4_handle_valid(handle) && shrink) {
5552 				error = ext4_orphan_add(handle, inode);
5553 				orphan = 1;
5554 			}
5555 			/*
5556 			 * Update c/mtime and tail zero the EOF folio on
5557 			 * truncate up. ext4_truncate() handles the shrink case
5558 			 * below.
5559 			 */
5560 			if (!shrink) {
5561 				inode_set_mtime_to_ts(inode,
5562 						      inode_set_ctime_current(inode));
5563 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5564 					ext4_block_truncate_page(handle,
5565 							inode->i_mapping, oldsize);
5566 			}
5567 
5568 			if (shrink)
5569 				ext4_fc_track_range(handle, inode,
5570 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5571 					inode->i_sb->s_blocksize_bits,
5572 					EXT_MAX_BLOCKS - 1);
5573 			else
5574 				ext4_fc_track_range(
5575 					handle, inode,
5576 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5577 					inode->i_sb->s_blocksize_bits,
5578 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5579 					inode->i_sb->s_blocksize_bits);
5580 
5581 			down_write(&EXT4_I(inode)->i_data_sem);
5582 			old_disksize = EXT4_I(inode)->i_disksize;
5583 			EXT4_I(inode)->i_disksize = attr->ia_size;
5584 			rc = ext4_mark_inode_dirty(handle, inode);
5585 			if (!error)
5586 				error = rc;
5587 			/*
5588 			 * We have to update i_size under i_data_sem together
5589 			 * with i_disksize to avoid races with writeback code
5590 			 * running ext4_wb_update_i_disksize().
5591 			 */
5592 			if (!error)
5593 				i_size_write(inode, attr->ia_size);
5594 			else
5595 				EXT4_I(inode)->i_disksize = old_disksize;
5596 			up_write(&EXT4_I(inode)->i_data_sem);
5597 			ext4_journal_stop(handle);
5598 			if (error)
5599 				goto out_mmap_sem;
5600 			if (!shrink) {
5601 				pagecache_isize_extended(inode, oldsize,
5602 							 inode->i_size);
5603 			} else if (ext4_should_journal_data(inode)) {
5604 				ext4_wait_for_tail_page_commit(inode);
5605 			}
5606 		}
5607 
5608 		/*
5609 		 * Truncate pagecache after we've waited for commit
5610 		 * in data=journal mode to make pages freeable.
5611 		 */
5612 		truncate_pagecache(inode, inode->i_size);
5613 		/*
5614 		 * Call ext4_truncate() even if i_size didn't change to
5615 		 * truncate possible preallocated blocks.
5616 		 */
5617 		if (attr->ia_size <= oldsize) {
5618 			rc = ext4_truncate(inode);
5619 			if (rc)
5620 				error = rc;
5621 		}
5622 out_mmap_sem:
5623 		filemap_invalidate_unlock(inode->i_mapping);
5624 	}
5625 
5626 	if (!error) {
5627 		if (inc_ivers)
5628 			inode_inc_iversion(inode);
5629 		setattr_copy(idmap, inode, attr);
5630 		mark_inode_dirty(inode);
5631 	}
5632 
5633 	/*
5634 	 * If the call to ext4_truncate failed to get a transaction handle at
5635 	 * all, we need to clean up the in-core orphan list manually.
5636 	 */
5637 	if (orphan && inode->i_nlink)
5638 		ext4_orphan_del(NULL, inode);
5639 
5640 	if (!error && (ia_valid & ATTR_MODE))
5641 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5642 
5643 err_out:
5644 	if  (error)
5645 		ext4_std_error(inode->i_sb, error);
5646 	if (!error)
5647 		error = rc;
5648 	return error;
5649 }
5650 
ext4_dio_alignment(struct inode * inode)5651 u32 ext4_dio_alignment(struct inode *inode)
5652 {
5653 	if (fsverity_active(inode))
5654 		return 0;
5655 	if (ext4_should_journal_data(inode))
5656 		return 0;
5657 	if (ext4_has_inline_data(inode))
5658 		return 0;
5659 	if (IS_ENCRYPTED(inode)) {
5660 		if (!fscrypt_dio_supported(inode))
5661 			return 0;
5662 		return i_blocksize(inode);
5663 	}
5664 	return 1; /* use the iomap defaults */
5665 }
5666 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5667 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5668 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5669 {
5670 	struct inode *inode = d_inode(path->dentry);
5671 	struct ext4_inode *raw_inode;
5672 	struct ext4_inode_info *ei = EXT4_I(inode);
5673 	unsigned int flags;
5674 
5675 	if ((request_mask & STATX_BTIME) &&
5676 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5677 		stat->result_mask |= STATX_BTIME;
5678 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5679 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5680 	}
5681 
5682 	/*
5683 	 * Return the DIO alignment restrictions if requested.  We only return
5684 	 * this information when requested, since on encrypted files it might
5685 	 * take a fair bit of work to get if the file wasn't opened recently.
5686 	 */
5687 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5688 		u32 dio_align = ext4_dio_alignment(inode);
5689 
5690 		stat->result_mask |= STATX_DIOALIGN;
5691 		if (dio_align == 1) {
5692 			struct block_device *bdev = inode->i_sb->s_bdev;
5693 
5694 			/* iomap defaults */
5695 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5696 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5697 		} else {
5698 			stat->dio_mem_align = dio_align;
5699 			stat->dio_offset_align = dio_align;
5700 		}
5701 	}
5702 
5703 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5704 	if (flags & EXT4_APPEND_FL)
5705 		stat->attributes |= STATX_ATTR_APPEND;
5706 	if (flags & EXT4_COMPR_FL)
5707 		stat->attributes |= STATX_ATTR_COMPRESSED;
5708 	if (flags & EXT4_ENCRYPT_FL)
5709 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5710 	if (flags & EXT4_IMMUTABLE_FL)
5711 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5712 	if (flags & EXT4_NODUMP_FL)
5713 		stat->attributes |= STATX_ATTR_NODUMP;
5714 	if (flags & EXT4_VERITY_FL)
5715 		stat->attributes |= STATX_ATTR_VERITY;
5716 
5717 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5718 				  STATX_ATTR_COMPRESSED |
5719 				  STATX_ATTR_ENCRYPTED |
5720 				  STATX_ATTR_IMMUTABLE |
5721 				  STATX_ATTR_NODUMP |
5722 				  STATX_ATTR_VERITY);
5723 
5724 	generic_fillattr(idmap, request_mask, inode, stat);
5725 	return 0;
5726 }
5727 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5728 int ext4_file_getattr(struct mnt_idmap *idmap,
5729 		      const struct path *path, struct kstat *stat,
5730 		      u32 request_mask, unsigned int query_flags)
5731 {
5732 	struct inode *inode = d_inode(path->dentry);
5733 	u64 delalloc_blocks;
5734 
5735 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5736 
5737 	/*
5738 	 * If there is inline data in the inode, the inode will normally not
5739 	 * have data blocks allocated (it may have an external xattr block).
5740 	 * Report at least one sector for such files, so tools like tar, rsync,
5741 	 * others don't incorrectly think the file is completely sparse.
5742 	 */
5743 	if (unlikely(ext4_has_inline_data(inode)))
5744 		stat->blocks += (stat->size + 511) >> 9;
5745 
5746 	/*
5747 	 * We can't update i_blocks if the block allocation is delayed
5748 	 * otherwise in the case of system crash before the real block
5749 	 * allocation is done, we will have i_blocks inconsistent with
5750 	 * on-disk file blocks.
5751 	 * We always keep i_blocks updated together with real
5752 	 * allocation. But to not confuse with user, stat
5753 	 * will return the blocks that include the delayed allocation
5754 	 * blocks for this file.
5755 	 */
5756 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5757 				   EXT4_I(inode)->i_reserved_data_blocks);
5758 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5759 	return 0;
5760 }
5761 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5762 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5763 				   int pextents)
5764 {
5765 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5766 		return ext4_ind_trans_blocks(inode, lblocks);
5767 	return ext4_ext_index_trans_blocks(inode, pextents);
5768 }
5769 
5770 /*
5771  * Account for index blocks, block groups bitmaps and block group
5772  * descriptor blocks if modify datablocks and index blocks
5773  * worse case, the indexs blocks spread over different block groups
5774  *
5775  * If datablocks are discontiguous, they are possible to spread over
5776  * different block groups too. If they are contiguous, with flexbg,
5777  * they could still across block group boundary.
5778  *
5779  * Also account for superblock, inode, quota and xattr blocks
5780  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5781 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5782 				  int pextents)
5783 {
5784 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5785 	int gdpblocks;
5786 	int idxblocks;
5787 	int ret;
5788 
5789 	/*
5790 	 * How many index blocks need to touch to map @lblocks logical blocks
5791 	 * to @pextents physical extents?
5792 	 */
5793 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5794 
5795 	ret = idxblocks;
5796 
5797 	/*
5798 	 * Now let's see how many group bitmaps and group descriptors need
5799 	 * to account
5800 	 */
5801 	groups = idxblocks + pextents;
5802 	gdpblocks = groups;
5803 	if (groups > ngroups)
5804 		groups = ngroups;
5805 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5806 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5807 
5808 	/* bitmaps and block group descriptor blocks */
5809 	ret += groups + gdpblocks;
5810 
5811 	/* Blocks for super block, inode, quota and xattr blocks */
5812 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5813 
5814 	return ret;
5815 }
5816 
5817 /*
5818  * Calculate the total number of credits to reserve to fit
5819  * the modification of a single pages into a single transaction,
5820  * which may include multiple chunks of block allocations.
5821  *
5822  * This could be called via ext4_write_begin()
5823  *
5824  * We need to consider the worse case, when
5825  * one new block per extent.
5826  */
ext4_writepage_trans_blocks(struct inode * inode)5827 int ext4_writepage_trans_blocks(struct inode *inode)
5828 {
5829 	int bpp = ext4_journal_blocks_per_page(inode);
5830 	int ret;
5831 
5832 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5833 
5834 	/* Account for data blocks for journalled mode */
5835 	if (ext4_should_journal_data(inode))
5836 		ret += bpp;
5837 	return ret;
5838 }
5839 
5840 /*
5841  * Calculate the journal credits for a chunk of data modification.
5842  *
5843  * This is called from DIO, fallocate or whoever calling
5844  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5845  *
5846  * journal buffers for data blocks are not included here, as DIO
5847  * and fallocate do no need to journal data buffers.
5848  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5849 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5850 {
5851 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5852 }
5853 
5854 /*
5855  * The caller must have previously called ext4_reserve_inode_write().
5856  * Give this, we know that the caller already has write access to iloc->bh.
5857  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5858 int ext4_mark_iloc_dirty(handle_t *handle,
5859 			 struct inode *inode, struct ext4_iloc *iloc)
5860 {
5861 	int err = 0;
5862 
5863 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5864 		put_bh(iloc->bh);
5865 		return -EIO;
5866 	}
5867 	ext4_fc_track_inode(handle, inode);
5868 
5869 	/* the do_update_inode consumes one bh->b_count */
5870 	get_bh(iloc->bh);
5871 
5872 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5873 	err = ext4_do_update_inode(handle, inode, iloc);
5874 	put_bh(iloc->bh);
5875 	return err;
5876 }
5877 
5878 /*
5879  * On success, We end up with an outstanding reference count against
5880  * iloc->bh.  This _must_ be cleaned up later.
5881  */
5882 
5883 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5884 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5885 			 struct ext4_iloc *iloc)
5886 {
5887 	int err;
5888 
5889 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5890 		return -EIO;
5891 
5892 	err = ext4_get_inode_loc(inode, iloc);
5893 	if (!err) {
5894 		BUFFER_TRACE(iloc->bh, "get_write_access");
5895 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5896 						    iloc->bh, EXT4_JTR_NONE);
5897 		if (err) {
5898 			brelse(iloc->bh);
5899 			iloc->bh = NULL;
5900 		}
5901 	}
5902 	ext4_std_error(inode->i_sb, err);
5903 	return err;
5904 }
5905 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5906 static int __ext4_expand_extra_isize(struct inode *inode,
5907 				     unsigned int new_extra_isize,
5908 				     struct ext4_iloc *iloc,
5909 				     handle_t *handle, int *no_expand)
5910 {
5911 	struct ext4_inode *raw_inode;
5912 	struct ext4_xattr_ibody_header *header;
5913 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5914 	struct ext4_inode_info *ei = EXT4_I(inode);
5915 	int error;
5916 
5917 	/* this was checked at iget time, but double check for good measure */
5918 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5919 	    (ei->i_extra_isize & 3)) {
5920 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5921 				 ei->i_extra_isize,
5922 				 EXT4_INODE_SIZE(inode->i_sb));
5923 		return -EFSCORRUPTED;
5924 	}
5925 	if ((new_extra_isize < ei->i_extra_isize) ||
5926 	    (new_extra_isize < 4) ||
5927 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5928 		return -EINVAL;	/* Should never happen */
5929 
5930 	raw_inode = ext4_raw_inode(iloc);
5931 
5932 	header = IHDR(inode, raw_inode);
5933 
5934 	/* No extended attributes present */
5935 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5936 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5937 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5938 		       EXT4_I(inode)->i_extra_isize, 0,
5939 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5940 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5941 		return 0;
5942 	}
5943 
5944 	/*
5945 	 * We may need to allocate external xattr block so we need quotas
5946 	 * initialized. Here we can be called with various locks held so we
5947 	 * cannot affort to initialize quotas ourselves. So just bail.
5948 	 */
5949 	if (dquot_initialize_needed(inode))
5950 		return -EAGAIN;
5951 
5952 	/* try to expand with EAs present */
5953 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5954 					   raw_inode, handle);
5955 	if (error) {
5956 		/*
5957 		 * Inode size expansion failed; don't try again
5958 		 */
5959 		*no_expand = 1;
5960 	}
5961 
5962 	return error;
5963 }
5964 
5965 /*
5966  * Expand an inode by new_extra_isize bytes.
5967  * Returns 0 on success or negative error number on failure.
5968  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5969 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5970 					  unsigned int new_extra_isize,
5971 					  struct ext4_iloc iloc,
5972 					  handle_t *handle)
5973 {
5974 	int no_expand;
5975 	int error;
5976 
5977 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5978 		return -EOVERFLOW;
5979 
5980 	/*
5981 	 * In nojournal mode, we can immediately attempt to expand
5982 	 * the inode.  When journaled, we first need to obtain extra
5983 	 * buffer credits since we may write into the EA block
5984 	 * with this same handle. If journal_extend fails, then it will
5985 	 * only result in a minor loss of functionality for that inode.
5986 	 * If this is felt to be critical, then e2fsck should be run to
5987 	 * force a large enough s_min_extra_isize.
5988 	 */
5989 	if (ext4_journal_extend(handle,
5990 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5991 		return -ENOSPC;
5992 
5993 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5994 		return -EBUSY;
5995 
5996 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5997 					  handle, &no_expand);
5998 	ext4_write_unlock_xattr(inode, &no_expand);
5999 
6000 	return error;
6001 }
6002 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6003 int ext4_expand_extra_isize(struct inode *inode,
6004 			    unsigned int new_extra_isize,
6005 			    struct ext4_iloc *iloc)
6006 {
6007 	handle_t *handle;
6008 	int no_expand;
6009 	int error, rc;
6010 
6011 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6012 		brelse(iloc->bh);
6013 		return -EOVERFLOW;
6014 	}
6015 
6016 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6017 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6018 	if (IS_ERR(handle)) {
6019 		error = PTR_ERR(handle);
6020 		brelse(iloc->bh);
6021 		return error;
6022 	}
6023 
6024 	ext4_write_lock_xattr(inode, &no_expand);
6025 
6026 	BUFFER_TRACE(iloc->bh, "get_write_access");
6027 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6028 					      EXT4_JTR_NONE);
6029 	if (error) {
6030 		brelse(iloc->bh);
6031 		goto out_unlock;
6032 	}
6033 
6034 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6035 					  handle, &no_expand);
6036 
6037 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6038 	if (!error)
6039 		error = rc;
6040 
6041 out_unlock:
6042 	ext4_write_unlock_xattr(inode, &no_expand);
6043 	ext4_journal_stop(handle);
6044 	return error;
6045 }
6046 
6047 /*
6048  * What we do here is to mark the in-core inode as clean with respect to inode
6049  * dirtiness (it may still be data-dirty).
6050  * This means that the in-core inode may be reaped by prune_icache
6051  * without having to perform any I/O.  This is a very good thing,
6052  * because *any* task may call prune_icache - even ones which
6053  * have a transaction open against a different journal.
6054  *
6055  * Is this cheating?  Not really.  Sure, we haven't written the
6056  * inode out, but prune_icache isn't a user-visible syncing function.
6057  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6058  * we start and wait on commits.
6059  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6060 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6061 				const char *func, unsigned int line)
6062 {
6063 	struct ext4_iloc iloc;
6064 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6065 	int err;
6066 
6067 	might_sleep();
6068 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6069 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6070 	if (err)
6071 		goto out;
6072 
6073 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6074 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6075 					       iloc, handle);
6076 
6077 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6078 out:
6079 	if (unlikely(err))
6080 		ext4_error_inode_err(inode, func, line, 0, err,
6081 					"mark_inode_dirty error");
6082 	return err;
6083 }
6084 
6085 /*
6086  * ext4_dirty_inode() is called from __mark_inode_dirty()
6087  *
6088  * We're really interested in the case where a file is being extended.
6089  * i_size has been changed by generic_commit_write() and we thus need
6090  * to include the updated inode in the current transaction.
6091  *
6092  * Also, dquot_alloc_block() will always dirty the inode when blocks
6093  * are allocated to the file.
6094  *
6095  * If the inode is marked synchronous, we don't honour that here - doing
6096  * so would cause a commit on atime updates, which we don't bother doing.
6097  * We handle synchronous inodes at the highest possible level.
6098  */
ext4_dirty_inode(struct inode * inode,int flags)6099 void ext4_dirty_inode(struct inode *inode, int flags)
6100 {
6101 	handle_t *handle;
6102 
6103 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6104 	if (IS_ERR(handle))
6105 		return;
6106 	ext4_mark_inode_dirty(handle, inode);
6107 	ext4_journal_stop(handle);
6108 }
6109 
ext4_change_inode_journal_flag(struct inode * inode,int val)6110 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6111 {
6112 	journal_t *journal;
6113 	handle_t *handle;
6114 	int err;
6115 	int alloc_ctx;
6116 
6117 	/*
6118 	 * We have to be very careful here: changing a data block's
6119 	 * journaling status dynamically is dangerous.  If we write a
6120 	 * data block to the journal, change the status and then delete
6121 	 * that block, we risk forgetting to revoke the old log record
6122 	 * from the journal and so a subsequent replay can corrupt data.
6123 	 * So, first we make sure that the journal is empty and that
6124 	 * nobody is changing anything.
6125 	 */
6126 
6127 	journal = EXT4_JOURNAL(inode);
6128 	if (!journal)
6129 		return 0;
6130 	if (is_journal_aborted(journal))
6131 		return -EROFS;
6132 
6133 	/* Wait for all existing dio workers */
6134 	inode_dio_wait(inode);
6135 
6136 	/*
6137 	 * Before flushing the journal and switching inode's aops, we have
6138 	 * to flush all dirty data the inode has. There can be outstanding
6139 	 * delayed allocations, there can be unwritten extents created by
6140 	 * fallocate or buffered writes in dioread_nolock mode covered by
6141 	 * dirty data which can be converted only after flushing the dirty
6142 	 * data (and journalled aops don't know how to handle these cases).
6143 	 */
6144 	if (val) {
6145 		filemap_invalidate_lock(inode->i_mapping);
6146 		err = filemap_write_and_wait(inode->i_mapping);
6147 		if (err < 0) {
6148 			filemap_invalidate_unlock(inode->i_mapping);
6149 			return err;
6150 		}
6151 	}
6152 
6153 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6154 	jbd2_journal_lock_updates(journal);
6155 
6156 	/*
6157 	 * OK, there are no updates running now, and all cached data is
6158 	 * synced to disk.  We are now in a completely consistent state
6159 	 * which doesn't have anything in the journal, and we know that
6160 	 * no filesystem updates are running, so it is safe to modify
6161 	 * the inode's in-core data-journaling state flag now.
6162 	 */
6163 
6164 	if (val)
6165 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6166 	else {
6167 		err = jbd2_journal_flush(journal, 0);
6168 		if (err < 0) {
6169 			jbd2_journal_unlock_updates(journal);
6170 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6171 			return err;
6172 		}
6173 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6174 	}
6175 	ext4_set_aops(inode);
6176 
6177 	jbd2_journal_unlock_updates(journal);
6178 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6179 
6180 	if (val)
6181 		filemap_invalidate_unlock(inode->i_mapping);
6182 
6183 	/* Finally we can mark the inode as dirty. */
6184 
6185 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6186 	if (IS_ERR(handle))
6187 		return PTR_ERR(handle);
6188 
6189 	ext4_fc_mark_ineligible(inode->i_sb,
6190 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6191 	err = ext4_mark_inode_dirty(handle, inode);
6192 	ext4_handle_sync(handle);
6193 	ext4_journal_stop(handle);
6194 	ext4_std_error(inode->i_sb, err);
6195 
6196 	return err;
6197 }
6198 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6199 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6200 			    struct buffer_head *bh)
6201 {
6202 	return !buffer_mapped(bh);
6203 }
6204 
ext4_page_mkwrite(struct vm_fault * vmf)6205 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6206 {
6207 	struct vm_area_struct *vma = vmf->vma;
6208 	struct folio *folio = page_folio(vmf->page);
6209 	loff_t size;
6210 	unsigned long len;
6211 	int err;
6212 	vm_fault_t ret;
6213 	struct file *file = vma->vm_file;
6214 	struct inode *inode = file_inode(file);
6215 	struct address_space *mapping = inode->i_mapping;
6216 	handle_t *handle;
6217 	get_block_t *get_block;
6218 	int retries = 0;
6219 
6220 	if (unlikely(IS_IMMUTABLE(inode)))
6221 		return VM_FAULT_SIGBUS;
6222 
6223 	sb_start_pagefault(inode->i_sb);
6224 	file_update_time(vma->vm_file);
6225 
6226 	filemap_invalidate_lock_shared(mapping);
6227 
6228 	err = ext4_convert_inline_data(inode);
6229 	if (err)
6230 		goto out_ret;
6231 
6232 	/*
6233 	 * On data journalling we skip straight to the transaction handle:
6234 	 * there's no delalloc; page truncated will be checked later; the
6235 	 * early return w/ all buffers mapped (calculates size/len) can't
6236 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6237 	 */
6238 	if (ext4_should_journal_data(inode))
6239 		goto retry_alloc;
6240 
6241 	/* Delalloc case is easy... */
6242 	if (test_opt(inode->i_sb, DELALLOC) &&
6243 	    !ext4_nonda_switch(inode->i_sb)) {
6244 		do {
6245 			err = block_page_mkwrite(vma, vmf,
6246 						   ext4_da_get_block_prep);
6247 		} while (err == -ENOSPC &&
6248 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6249 		goto out_ret;
6250 	}
6251 
6252 	folio_lock(folio);
6253 	size = i_size_read(inode);
6254 	/* Page got truncated from under us? */
6255 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6256 		folio_unlock(folio);
6257 		ret = VM_FAULT_NOPAGE;
6258 		goto out;
6259 	}
6260 
6261 	len = folio_size(folio);
6262 	if (folio_pos(folio) + len > size)
6263 		len = size - folio_pos(folio);
6264 	/*
6265 	 * Return if we have all the buffers mapped. This avoids the need to do
6266 	 * journal_start/journal_stop which can block and take a long time
6267 	 *
6268 	 * This cannot be done for data journalling, as we have to add the
6269 	 * inode to the transaction's list to writeprotect pages on commit.
6270 	 */
6271 	if (folio_buffers(folio)) {
6272 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6273 					    0, len, NULL,
6274 					    ext4_bh_unmapped)) {
6275 			/* Wait so that we don't change page under IO */
6276 			folio_wait_stable(folio);
6277 			ret = VM_FAULT_LOCKED;
6278 			goto out;
6279 		}
6280 	}
6281 	folio_unlock(folio);
6282 	/* OK, we need to fill the hole... */
6283 	if (ext4_should_dioread_nolock(inode))
6284 		get_block = ext4_get_block_unwritten;
6285 	else
6286 		get_block = ext4_get_block;
6287 retry_alloc:
6288 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6289 				    ext4_writepage_trans_blocks(inode));
6290 	if (IS_ERR(handle)) {
6291 		ret = VM_FAULT_SIGBUS;
6292 		goto out;
6293 	}
6294 	/*
6295 	 * Data journalling can't use block_page_mkwrite() because it
6296 	 * will set_buffer_dirty() before do_journal_get_write_access()
6297 	 * thus might hit warning messages for dirty metadata buffers.
6298 	 */
6299 	if (!ext4_should_journal_data(inode)) {
6300 		err = block_page_mkwrite(vma, vmf, get_block);
6301 	} else {
6302 		folio_lock(folio);
6303 		size = i_size_read(inode);
6304 		/* Page got truncated from under us? */
6305 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6306 			ret = VM_FAULT_NOPAGE;
6307 			goto out_error;
6308 		}
6309 
6310 		len = folio_size(folio);
6311 		if (folio_pos(folio) + len > size)
6312 			len = size - folio_pos(folio);
6313 
6314 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6315 		if (!err) {
6316 			ret = VM_FAULT_SIGBUS;
6317 			if (ext4_journal_folio_buffers(handle, folio, len))
6318 				goto out_error;
6319 		} else {
6320 			folio_unlock(folio);
6321 		}
6322 	}
6323 	ext4_journal_stop(handle);
6324 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6325 		goto retry_alloc;
6326 out_ret:
6327 	ret = vmf_fs_error(err);
6328 out:
6329 	filemap_invalidate_unlock_shared(mapping);
6330 	sb_end_pagefault(inode->i_sb);
6331 	return ret;
6332 out_error:
6333 	folio_unlock(folio);
6334 	ext4_journal_stop(handle);
6335 	goto out;
6336 }
6337