xref: /openbmc/linux/fs/ext4/inode.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 			 struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 		ext4_evict_ea_inode(inode);
182 	if (inode->i_nlink) {
183 		truncate_inode_pages_final(&inode->i_data);
184 
185 		goto no_delete;
186 	}
187 
188 	if (is_bad_inode(inode))
189 		goto no_delete;
190 	dquot_initialize(inode);
191 
192 	if (ext4_should_order_data(inode))
193 		ext4_begin_ordered_truncate(inode, 0);
194 	truncate_inode_pages_final(&inode->i_data);
195 
196 	/*
197 	 * For inodes with journalled data, transaction commit could have
198 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
199 	 * extents converting worker could merge extents and also have dirtied
200 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
201 	 * we still need to remove the inode from the writeback lists.
202 	 */
203 	if (!list_empty_careful(&inode->i_io_list))
204 		inode_io_list_del(inode);
205 
206 	/*
207 	 * Protect us against freezing - iput() caller didn't have to have any
208 	 * protection against it. When we are in a running transaction though,
209 	 * we are already protected against freezing and we cannot grab further
210 	 * protection due to lock ordering constraints.
211 	 */
212 	if (!ext4_journal_current_handle()) {
213 		sb_start_intwrite(inode->i_sb);
214 		freeze_protected = true;
215 	}
216 
217 	if (!IS_NOQUOTA(inode))
218 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
219 
220 	/*
221 	 * Block bitmap, group descriptor, and inode are accounted in both
222 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
223 	 */
224 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
225 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
226 	if (IS_ERR(handle)) {
227 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
228 		/*
229 		 * If we're going to skip the normal cleanup, we still need to
230 		 * make sure that the in-core orphan linked list is properly
231 		 * cleaned up.
232 		 */
233 		ext4_orphan_del(NULL, inode);
234 		if (freeze_protected)
235 			sb_end_intwrite(inode->i_sb);
236 		goto no_delete;
237 	}
238 
239 	if (IS_SYNC(inode))
240 		ext4_handle_sync(handle);
241 
242 	/*
243 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
244 	 * special handling of symlinks here because i_size is used to
245 	 * determine whether ext4_inode_info->i_data contains symlink data or
246 	 * block mappings. Setting i_size to 0 will remove its fast symlink
247 	 * status. Erase i_data so that it becomes a valid empty block map.
248 	 */
249 	if (ext4_inode_is_fast_symlink(inode))
250 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
251 	inode->i_size = 0;
252 	err = ext4_mark_inode_dirty(handle, inode);
253 	if (err) {
254 		ext4_warning(inode->i_sb,
255 			     "couldn't mark inode dirty (err %d)", err);
256 		goto stop_handle;
257 	}
258 	if (inode->i_blocks) {
259 		err = ext4_truncate(inode);
260 		if (err) {
261 			ext4_error_err(inode->i_sb, -err,
262 				       "couldn't truncate inode %lu (err %d)",
263 				       inode->i_ino, err);
264 			goto stop_handle;
265 		}
266 	}
267 
268 	/* Remove xattr references. */
269 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
270 				      extra_credits);
271 	if (err) {
272 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
273 stop_handle:
274 		ext4_journal_stop(handle);
275 		ext4_orphan_del(NULL, inode);
276 		if (freeze_protected)
277 			sb_end_intwrite(inode->i_sb);
278 		ext4_xattr_inode_array_free(ea_inode_array);
279 		goto no_delete;
280 	}
281 
282 	/*
283 	 * Kill off the orphan record which ext4_truncate created.
284 	 * AKPM: I think this can be inside the above `if'.
285 	 * Note that ext4_orphan_del() has to be able to cope with the
286 	 * deletion of a non-existent orphan - this is because we don't
287 	 * know if ext4_truncate() actually created an orphan record.
288 	 * (Well, we could do this if we need to, but heck - it works)
289 	 */
290 	ext4_orphan_del(handle, inode);
291 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
292 
293 	/*
294 	 * One subtle ordering requirement: if anything has gone wrong
295 	 * (transaction abort, IO errors, whatever), then we can still
296 	 * do these next steps (the fs will already have been marked as
297 	 * having errors), but we can't free the inode if the mark_dirty
298 	 * fails.
299 	 */
300 	if (ext4_mark_inode_dirty(handle, inode))
301 		/* If that failed, just do the required in-core inode clear. */
302 		ext4_clear_inode(inode);
303 	else
304 		ext4_free_inode(handle, inode);
305 	ext4_journal_stop(handle);
306 	if (freeze_protected)
307 		sb_end_intwrite(inode->i_sb);
308 	ext4_xattr_inode_array_free(ea_inode_array);
309 	return;
310 no_delete:
311 	/*
312 	 * Check out some where else accidentally dirty the evicting inode,
313 	 * which may probably cause inode use-after-free issues later.
314 	 */
315 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
316 
317 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
318 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
319 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
320 }
321 
322 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)323 qsize_t *ext4_get_reserved_space(struct inode *inode)
324 {
325 	return &EXT4_I(inode)->i_reserved_quota;
326 }
327 #endif
328 
329 /*
330  * Called with i_data_sem down, which is important since we can call
331  * ext4_discard_preallocations() from here.
332  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)333 void ext4_da_update_reserve_space(struct inode *inode,
334 					int used, int quota_claim)
335 {
336 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
337 	struct ext4_inode_info *ei = EXT4_I(inode);
338 
339 	spin_lock(&ei->i_block_reservation_lock);
340 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
341 	if (unlikely(used > ei->i_reserved_data_blocks)) {
342 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
343 			 "with only %d reserved data blocks",
344 			 __func__, inode->i_ino, used,
345 			 ei->i_reserved_data_blocks);
346 		WARN_ON(1);
347 		used = ei->i_reserved_data_blocks;
348 	}
349 
350 	/* Update per-inode reservations */
351 	ei->i_reserved_data_blocks -= used;
352 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
353 
354 	spin_unlock(&ei->i_block_reservation_lock);
355 
356 	/* Update quota subsystem for data blocks */
357 	if (quota_claim)
358 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
359 	else {
360 		/*
361 		 * We did fallocate with an offset that is already delayed
362 		 * allocated. So on delayed allocated writeback we should
363 		 * not re-claim the quota for fallocated blocks.
364 		 */
365 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
366 	}
367 
368 	/*
369 	 * If we have done all the pending block allocations and if
370 	 * there aren't any writers on the inode, we can discard the
371 	 * inode's preallocations.
372 	 */
373 	if ((ei->i_reserved_data_blocks == 0) &&
374 	    !inode_is_open_for_write(inode))
375 		ext4_discard_preallocations(inode, 0);
376 }
377 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)378 static int __check_block_validity(struct inode *inode, const char *func,
379 				unsigned int line,
380 				struct ext4_map_blocks *map)
381 {
382 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
383 
384 	if (journal && inode == journal->j_inode)
385 		return 0;
386 
387 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
388 		ext4_error_inode(inode, func, line, map->m_pblk,
389 				 "lblock %lu mapped to illegal pblock %llu "
390 				 "(length %d)", (unsigned long) map->m_lblk,
391 				 map->m_pblk, map->m_len);
392 		return -EFSCORRUPTED;
393 	}
394 	return 0;
395 }
396 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)397 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
398 		       ext4_lblk_t len)
399 {
400 	int ret;
401 
402 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
403 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
404 
405 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
406 	if (ret > 0)
407 		ret = 0;
408 
409 	return ret;
410 }
411 
412 #define check_block_validity(inode, map)	\
413 	__check_block_validity((inode), __func__, __LINE__, (map))
414 
415 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)416 static void ext4_map_blocks_es_recheck(handle_t *handle,
417 				       struct inode *inode,
418 				       struct ext4_map_blocks *es_map,
419 				       struct ext4_map_blocks *map,
420 				       int flags)
421 {
422 	int retval;
423 
424 	map->m_flags = 0;
425 	/*
426 	 * There is a race window that the result is not the same.
427 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
428 	 * is that we lookup a block mapping in extent status tree with
429 	 * out taking i_data_sem.  So at the time the unwritten extent
430 	 * could be converted.
431 	 */
432 	down_read(&EXT4_I(inode)->i_data_sem);
433 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
434 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
437 	}
438 	up_read((&EXT4_I(inode)->i_data_sem));
439 
440 	/*
441 	 * We don't check m_len because extent will be collpased in status
442 	 * tree.  So the m_len might not equal.
443 	 */
444 	if (es_map->m_lblk != map->m_lblk ||
445 	    es_map->m_flags != map->m_flags ||
446 	    es_map->m_pblk != map->m_pblk) {
447 		printk("ES cache assertion failed for inode: %lu "
448 		       "es_cached ex [%d/%d/%llu/%x] != "
449 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
450 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
451 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
452 		       map->m_len, map->m_pblk, map->m_flags,
453 		       retval, flags);
454 	}
455 }
456 #endif /* ES_AGGRESSIVE_TEST */
457 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)458 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
459 				 struct ext4_map_blocks *map)
460 {
461 	unsigned int status;
462 	int retval;
463 
464 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
465 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
466 	else
467 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
468 
469 	if (retval <= 0)
470 		return retval;
471 
472 	if (unlikely(retval != map->m_len)) {
473 		ext4_warning(inode->i_sb,
474 			     "ES len assertion failed for inode "
475 			     "%lu: retval %d != map->m_len %d",
476 			     inode->i_ino, retval, map->m_len);
477 		WARN_ON(1);
478 	}
479 
480 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
481 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
482 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
483 			      map->m_pblk, status);
484 	return retval;
485 }
486 
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 		    struct ext4_map_blocks *map, int flags)
511 {
512 	struct extent_status es;
513 	int retval;
514 	int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 	struct ext4_map_blocks orig_map;
517 
518 	memcpy(&orig_map, map, sizeof(*map));
519 #endif
520 
521 	map->m_flags = 0;
522 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 		  flags, map->m_len, (unsigned long) map->m_lblk);
524 
525 	/*
526 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 	 */
528 	if (unlikely(map->m_len > INT_MAX))
529 		map->m_len = INT_MAX;
530 
531 	/* We can handle the block number less than EXT_MAX_BLOCKS */
532 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 		return -EFSCORRUPTED;
534 
535 	/* Lookup extent status tree firstly */
536 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 			map->m_pblk = ext4_es_pblock(&es) +
540 					map->m_lblk - es.es_lblk;
541 			map->m_flags |= ext4_es_is_written(&es) ?
542 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 			retval = es.es_len - (map->m_lblk - es.es_lblk);
544 			if (retval > map->m_len)
545 				retval = map->m_len;
546 			map->m_len = retval;
547 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 			map->m_pblk = 0;
549 			retval = es.es_len - (map->m_lblk - es.es_lblk);
550 			if (retval > map->m_len)
551 				retval = map->m_len;
552 			map->m_len = retval;
553 			retval = 0;
554 		} else {
555 			BUG();
556 		}
557 
558 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
559 			return retval;
560 #ifdef ES_AGGRESSIVE_TEST
561 		ext4_map_blocks_es_recheck(handle, inode, map,
562 					   &orig_map, flags);
563 #endif
564 		goto found;
565 	}
566 	/*
567 	 * In the query cache no-wait mode, nothing we can do more if we
568 	 * cannot find extent in the cache.
569 	 */
570 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
571 		return 0;
572 
573 	/*
574 	 * Try to see if we can get the block without requesting a new
575 	 * file system block.
576 	 */
577 	down_read(&EXT4_I(inode)->i_data_sem);
578 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
579 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
580 	} else {
581 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
582 	}
583 	if (retval > 0) {
584 		unsigned int status;
585 
586 		if (unlikely(retval != map->m_len)) {
587 			ext4_warning(inode->i_sb,
588 				     "ES len assertion failed for inode "
589 				     "%lu: retval %d != map->m_len %d",
590 				     inode->i_ino, retval, map->m_len);
591 			WARN_ON(1);
592 		}
593 
594 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
595 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
596 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
597 		    !(status & EXTENT_STATUS_WRITTEN) &&
598 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
599 				       map->m_lblk + map->m_len - 1))
600 			status |= EXTENT_STATUS_DELAYED;
601 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
602 				      map->m_pblk, status);
603 	}
604 	up_read((&EXT4_I(inode)->i_data_sem));
605 
606 found:
607 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
608 		ret = check_block_validity(inode, map);
609 		if (ret != 0)
610 			return ret;
611 	}
612 
613 	/* If it is only a block(s) look up */
614 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
615 		return retval;
616 
617 	/*
618 	 * Returns if the blocks have already allocated
619 	 *
620 	 * Note that if blocks have been preallocated
621 	 * ext4_ext_get_block() returns the create = 0
622 	 * with buffer head unmapped.
623 	 */
624 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
625 		/*
626 		 * If we need to convert extent to unwritten
627 		 * we continue and do the actual work in
628 		 * ext4_ext_map_blocks()
629 		 */
630 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
631 			return retval;
632 
633 	/*
634 	 * Here we clear m_flags because after allocating an new extent,
635 	 * it will be set again.
636 	 */
637 	map->m_flags &= ~EXT4_MAP_FLAGS;
638 
639 	/*
640 	 * New blocks allocate and/or writing to unwritten extent
641 	 * will possibly result in updating i_data, so we take
642 	 * the write lock of i_data_sem, and call get_block()
643 	 * with create == 1 flag.
644 	 */
645 	down_write(&EXT4_I(inode)->i_data_sem);
646 
647 	/*
648 	 * We need to check for EXT4 here because migrate
649 	 * could have changed the inode type in between
650 	 */
651 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
652 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
653 	} else {
654 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
655 
656 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
657 			/*
658 			 * We allocated new blocks which will result in
659 			 * i_data's format changing.  Force the migrate
660 			 * to fail by clearing migrate flags
661 			 */
662 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
663 		}
664 	}
665 
666 	if (retval > 0) {
667 		unsigned int status;
668 
669 		if (unlikely(retval != map->m_len)) {
670 			ext4_warning(inode->i_sb,
671 				     "ES len assertion failed for inode "
672 				     "%lu: retval %d != map->m_len %d",
673 				     inode->i_ino, retval, map->m_len);
674 			WARN_ON(1);
675 		}
676 
677 		/*
678 		 * We have to zeroout blocks before inserting them into extent
679 		 * status tree. Otherwise someone could look them up there and
680 		 * use them before they are really zeroed. We also have to
681 		 * unmap metadata before zeroing as otherwise writeback can
682 		 * overwrite zeros with stale data from block device.
683 		 */
684 		if (flags & EXT4_GET_BLOCKS_ZERO &&
685 		    map->m_flags & EXT4_MAP_MAPPED &&
686 		    map->m_flags & EXT4_MAP_NEW) {
687 			ret = ext4_issue_zeroout(inode, map->m_lblk,
688 						 map->m_pblk, map->m_len);
689 			if (ret) {
690 				retval = ret;
691 				goto out_sem;
692 			}
693 		}
694 
695 		/*
696 		 * If the extent has been zeroed out, we don't need to update
697 		 * extent status tree.
698 		 */
699 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
700 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
701 			if (ext4_es_is_written(&es))
702 				goto out_sem;
703 		}
704 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
705 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
706 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
707 		    !(status & EXTENT_STATUS_WRITTEN) &&
708 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
709 				       map->m_lblk + map->m_len - 1))
710 			status |= EXTENT_STATUS_DELAYED;
711 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
712 				      map->m_pblk, status);
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 	}
746 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747 				map->m_flags & EXT4_MAP_MAPPED))
748 		ext4_fc_track_range(handle, inode, map->m_lblk,
749 					map->m_lblk + map->m_len - 1);
750 	if (retval < 0)
751 		ext_debug(inode, "failed with err %d\n", retval);
752 	return retval;
753 }
754 
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761 	unsigned long old_state;
762 	unsigned long new_state;
763 
764 	flags &= EXT4_MAP_FLAGS;
765 
766 	/* Dummy buffer_head? Set non-atomically. */
767 	if (!bh->b_page) {
768 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 		return;
770 	}
771 	/*
772 	 * Someone else may be modifying b_state. Be careful! This is ugly but
773 	 * once we get rid of using bh as a container for mapping information
774 	 * to pass to / from get_block functions, this can go away.
775 	 */
776 	old_state = READ_ONCE(bh->b_state);
777 	do {
778 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
780 }
781 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	int ret = 0;
824 
825 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
826 		   inode->i_ino, create);
827 	ret = _ext4_get_block(inode, iblock, bh_result,
828 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
829 
830 	/*
831 	 * If the buffer is marked unwritten, mark it as new to make sure it is
832 	 * zeroed out correctly in case of partial writes. Otherwise, there is
833 	 * a chance of stale data getting exposed.
834 	 */
835 	if (ret == 0 && buffer_unwritten(bh_result))
836 		set_buffer_new(bh_result);
837 
838 	return ret;
839 }
840 
841 /* Maximum number of blocks we map for direct IO at once. */
842 #define DIO_MAX_BLOCKS 4096
843 
844 /*
845  * `handle' can be NULL if create is zero
846  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)847 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
848 				ext4_lblk_t block, int map_flags)
849 {
850 	struct ext4_map_blocks map;
851 	struct buffer_head *bh;
852 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
853 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
854 	int err;
855 
856 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
857 		    || handle != NULL || create == 0);
858 	ASSERT(create == 0 || !nowait);
859 
860 	map.m_lblk = block;
861 	map.m_len = 1;
862 	err = ext4_map_blocks(handle, inode, &map, map_flags);
863 
864 	if (err == 0)
865 		return create ? ERR_PTR(-ENOSPC) : NULL;
866 	if (err < 0)
867 		return ERR_PTR(err);
868 
869 	if (nowait)
870 		return sb_find_get_block(inode->i_sb, map.m_pblk);
871 
872 	bh = sb_getblk(inode->i_sb, map.m_pblk);
873 	if (unlikely(!bh))
874 		return ERR_PTR(-ENOMEM);
875 	if (map.m_flags & EXT4_MAP_NEW) {
876 		ASSERT(create != 0);
877 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
878 			    || (handle != NULL));
879 
880 		/*
881 		 * Now that we do not always journal data, we should
882 		 * keep in mind whether this should always journal the
883 		 * new buffer as metadata.  For now, regular file
884 		 * writes use ext4_get_block instead, so it's not a
885 		 * problem.
886 		 */
887 		lock_buffer(bh);
888 		BUFFER_TRACE(bh, "call get_create_access");
889 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
890 						     EXT4_JTR_NONE);
891 		if (unlikely(err)) {
892 			unlock_buffer(bh);
893 			goto errout;
894 		}
895 		if (!buffer_uptodate(bh)) {
896 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
897 			set_buffer_uptodate(bh);
898 		}
899 		unlock_buffer(bh);
900 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
901 		err = ext4_handle_dirty_metadata(handle, inode, bh);
902 		if (unlikely(err))
903 			goto errout;
904 	} else
905 		BUFFER_TRACE(bh, "not a new buffer");
906 	return bh;
907 errout:
908 	brelse(bh);
909 	return ERR_PTR(err);
910 }
911 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)912 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
913 			       ext4_lblk_t block, int map_flags)
914 {
915 	struct buffer_head *bh;
916 	int ret;
917 
918 	bh = ext4_getblk(handle, inode, block, map_flags);
919 	if (IS_ERR(bh))
920 		return bh;
921 	if (!bh || ext4_buffer_uptodate(bh))
922 		return bh;
923 
924 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
925 	if (ret) {
926 		put_bh(bh);
927 		return ERR_PTR(ret);
928 	}
929 	return bh;
930 }
931 
932 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)933 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
934 		     bool wait, struct buffer_head **bhs)
935 {
936 	int i, err;
937 
938 	for (i = 0; i < bh_count; i++) {
939 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
940 		if (IS_ERR(bhs[i])) {
941 			err = PTR_ERR(bhs[i]);
942 			bh_count = i;
943 			goto out_brelse;
944 		}
945 	}
946 
947 	for (i = 0; i < bh_count; i++)
948 		/* Note that NULL bhs[i] is valid because of holes. */
949 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
950 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
951 
952 	if (!wait)
953 		return 0;
954 
955 	for (i = 0; i < bh_count; i++)
956 		if (bhs[i])
957 			wait_on_buffer(bhs[i]);
958 
959 	for (i = 0; i < bh_count; i++) {
960 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
961 			err = -EIO;
962 			goto out_brelse;
963 		}
964 	}
965 	return 0;
966 
967 out_brelse:
968 	for (i = 0; i < bh_count; i++) {
969 		brelse(bhs[i]);
970 		bhs[i] = NULL;
971 	}
972 	return err;
973 }
974 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))975 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
976 			   struct buffer_head *head,
977 			   unsigned from,
978 			   unsigned to,
979 			   int *partial,
980 			   int (*fn)(handle_t *handle, struct inode *inode,
981 				     struct buffer_head *bh))
982 {
983 	struct buffer_head *bh;
984 	unsigned block_start, block_end;
985 	unsigned blocksize = head->b_size;
986 	int err, ret = 0;
987 	struct buffer_head *next;
988 
989 	for (bh = head, block_start = 0;
990 	     ret == 0 && (bh != head || !block_start);
991 	     block_start = block_end, bh = next) {
992 		next = bh->b_this_page;
993 		block_end = block_start + blocksize;
994 		if (block_end <= from || block_start >= to) {
995 			if (partial && !buffer_uptodate(bh))
996 				*partial = 1;
997 			continue;
998 		}
999 		err = (*fn)(handle, inode, bh);
1000 		if (!ret)
1001 			ret = err;
1002 	}
1003 	return ret;
1004 }
1005 
1006 /*
1007  * Helper for handling dirtying of journalled data. We also mark the folio as
1008  * dirty so that writeback code knows about this page (and inode) contains
1009  * dirty data. ext4_writepages() then commits appropriate transaction to
1010  * make data stable.
1011  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1012 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1013 {
1014 	folio_mark_dirty(bh->b_folio);
1015 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1016 }
1017 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1018 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1019 				struct buffer_head *bh)
1020 {
1021 	int dirty = buffer_dirty(bh);
1022 	int ret;
1023 
1024 	if (!buffer_mapped(bh) || buffer_freed(bh))
1025 		return 0;
1026 	/*
1027 	 * __block_write_begin() could have dirtied some buffers. Clean
1028 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1029 	 * otherwise about fs integrity issues. Setting of the dirty bit
1030 	 * by __block_write_begin() isn't a real problem here as we clear
1031 	 * the bit before releasing a page lock and thus writeback cannot
1032 	 * ever write the buffer.
1033 	 */
1034 	if (dirty)
1035 		clear_buffer_dirty(bh);
1036 	BUFFER_TRACE(bh, "get write access");
1037 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1038 					    EXT4_JTR_NONE);
1039 	if (!ret && dirty)
1040 		ret = ext4_dirty_journalled_data(handle, bh);
1041 	return ret;
1042 }
1043 
1044 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1045 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1046 				  get_block_t *get_block)
1047 {
1048 	unsigned from = pos & (PAGE_SIZE - 1);
1049 	unsigned to = from + len;
1050 	struct inode *inode = folio->mapping->host;
1051 	unsigned block_start, block_end;
1052 	sector_t block;
1053 	int err = 0;
1054 	unsigned blocksize = inode->i_sb->s_blocksize;
1055 	unsigned bbits;
1056 	struct buffer_head *bh, *head, *wait[2];
1057 	int nr_wait = 0;
1058 	int i;
1059 
1060 	BUG_ON(!folio_test_locked(folio));
1061 	BUG_ON(from > PAGE_SIZE);
1062 	BUG_ON(to > PAGE_SIZE);
1063 	BUG_ON(from > to);
1064 
1065 	head = folio_buffers(folio);
1066 	if (!head) {
1067 		create_empty_buffers(&folio->page, blocksize, 0);
1068 		head = folio_buffers(folio);
1069 	}
1070 	bbits = ilog2(blocksize);
1071 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1072 
1073 	for (bh = head, block_start = 0; bh != head || !block_start;
1074 	    block++, block_start = block_end, bh = bh->b_this_page) {
1075 		block_end = block_start + blocksize;
1076 		if (block_end <= from || block_start >= to) {
1077 			if (folio_test_uptodate(folio)) {
1078 				set_buffer_uptodate(bh);
1079 			}
1080 			continue;
1081 		}
1082 		if (buffer_new(bh))
1083 			clear_buffer_new(bh);
1084 		if (!buffer_mapped(bh)) {
1085 			WARN_ON(bh->b_size != blocksize);
1086 			err = get_block(inode, block, bh, 1);
1087 			if (err)
1088 				break;
1089 			if (buffer_new(bh)) {
1090 				if (folio_test_uptodate(folio)) {
1091 					clear_buffer_new(bh);
1092 					set_buffer_uptodate(bh);
1093 					mark_buffer_dirty(bh);
1094 					continue;
1095 				}
1096 				if (block_end > to || block_start < from)
1097 					folio_zero_segments(folio, to,
1098 							    block_end,
1099 							    block_start, from);
1100 				continue;
1101 			}
1102 		}
1103 		if (folio_test_uptodate(folio)) {
1104 			set_buffer_uptodate(bh);
1105 			continue;
1106 		}
1107 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1108 		    !buffer_unwritten(bh) &&
1109 		    (block_start < from || block_end > to)) {
1110 			ext4_read_bh_lock(bh, 0, false);
1111 			wait[nr_wait++] = bh;
1112 		}
1113 	}
1114 	/*
1115 	 * If we issued read requests, let them complete.
1116 	 */
1117 	for (i = 0; i < nr_wait; i++) {
1118 		wait_on_buffer(wait[i]);
1119 		if (!buffer_uptodate(wait[i]))
1120 			err = -EIO;
1121 	}
1122 	if (unlikely(err)) {
1123 		folio_zero_new_buffers(folio, from, to);
1124 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1125 		for (i = 0; i < nr_wait; i++) {
1126 			int err2;
1127 
1128 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1129 						blocksize, bh_offset(wait[i]));
1130 			if (err2) {
1131 				clear_buffer_uptodate(wait[i]);
1132 				err = err2;
1133 			}
1134 		}
1135 	}
1136 
1137 	return err;
1138 }
1139 #endif
1140 
1141 /*
1142  * To preserve ordering, it is essential that the hole instantiation and
1143  * the data write be encapsulated in a single transaction.  We cannot
1144  * close off a transaction and start a new one between the ext4_get_block()
1145  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1146  * ext4_write_begin() is the right place.
1147  */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1148 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1149 			    loff_t pos, unsigned len,
1150 			    struct page **pagep, void **fsdata)
1151 {
1152 	struct inode *inode = mapping->host;
1153 	int ret, needed_blocks;
1154 	handle_t *handle;
1155 	int retries = 0;
1156 	struct folio *folio;
1157 	pgoff_t index;
1158 	unsigned from, to;
1159 
1160 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1161 		return -EIO;
1162 
1163 	trace_ext4_write_begin(inode, pos, len);
1164 	/*
1165 	 * Reserve one block more for addition to orphan list in case
1166 	 * we allocate blocks but write fails for some reason
1167 	 */
1168 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1169 	index = pos >> PAGE_SHIFT;
1170 	from = pos & (PAGE_SIZE - 1);
1171 	to = from + len;
1172 
1173 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1174 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1175 						    pagep);
1176 		if (ret < 0)
1177 			return ret;
1178 		if (ret == 1)
1179 			return 0;
1180 	}
1181 
1182 	/*
1183 	 * __filemap_get_folio() can take a long time if the
1184 	 * system is thrashing due to memory pressure, or if the folio
1185 	 * is being written back.  So grab it first before we start
1186 	 * the transaction handle.  This also allows us to allocate
1187 	 * the folio (if needed) without using GFP_NOFS.
1188 	 */
1189 retry_grab:
1190 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1191 					mapping_gfp_mask(mapping));
1192 	if (IS_ERR(folio))
1193 		return PTR_ERR(folio);
1194 	/*
1195 	 * The same as page allocation, we prealloc buffer heads before
1196 	 * starting the handle.
1197 	 */
1198 	if (!folio_buffers(folio))
1199 		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1200 
1201 	folio_unlock(folio);
1202 
1203 retry_journal:
1204 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1205 	if (IS_ERR(handle)) {
1206 		folio_put(folio);
1207 		return PTR_ERR(handle);
1208 	}
1209 
1210 	folio_lock(folio);
1211 	if (folio->mapping != mapping) {
1212 		/* The folio got truncated from under us */
1213 		folio_unlock(folio);
1214 		folio_put(folio);
1215 		ext4_journal_stop(handle);
1216 		goto retry_grab;
1217 	}
1218 	/* In case writeback began while the folio was unlocked */
1219 	folio_wait_stable(folio);
1220 
1221 #ifdef CONFIG_FS_ENCRYPTION
1222 	if (ext4_should_dioread_nolock(inode))
1223 		ret = ext4_block_write_begin(folio, pos, len,
1224 					     ext4_get_block_unwritten);
1225 	else
1226 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1227 #else
1228 	if (ext4_should_dioread_nolock(inode))
1229 		ret = __block_write_begin(&folio->page, pos, len,
1230 					  ext4_get_block_unwritten);
1231 	else
1232 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1233 #endif
1234 	if (!ret && ext4_should_journal_data(inode)) {
1235 		ret = ext4_walk_page_buffers(handle, inode,
1236 					     folio_buffers(folio), from, to,
1237 					     NULL, do_journal_get_write_access);
1238 	}
1239 
1240 	if (ret) {
1241 		bool extended = (pos + len > inode->i_size) &&
1242 				!ext4_verity_in_progress(inode);
1243 
1244 		folio_unlock(folio);
1245 		/*
1246 		 * __block_write_begin may have instantiated a few blocks
1247 		 * outside i_size.  Trim these off again. Don't need
1248 		 * i_size_read because we hold i_rwsem.
1249 		 *
1250 		 * Add inode to orphan list in case we crash before
1251 		 * truncate finishes
1252 		 */
1253 		if (extended && ext4_can_truncate(inode))
1254 			ext4_orphan_add(handle, inode);
1255 
1256 		ext4_journal_stop(handle);
1257 		if (extended) {
1258 			ext4_truncate_failed_write(inode);
1259 			/*
1260 			 * If truncate failed early the inode might
1261 			 * still be on the orphan list; we need to
1262 			 * make sure the inode is removed from the
1263 			 * orphan list in that case.
1264 			 */
1265 			if (inode->i_nlink)
1266 				ext4_orphan_del(NULL, inode);
1267 		}
1268 
1269 		if (ret == -ENOSPC &&
1270 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1271 			goto retry_journal;
1272 		folio_put(folio);
1273 		return ret;
1274 	}
1275 	*pagep = &folio->page;
1276 	return ret;
1277 }
1278 
1279 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1280 static int write_end_fn(handle_t *handle, struct inode *inode,
1281 			struct buffer_head *bh)
1282 {
1283 	int ret;
1284 	if (!buffer_mapped(bh) || buffer_freed(bh))
1285 		return 0;
1286 	set_buffer_uptodate(bh);
1287 	ret = ext4_dirty_journalled_data(handle, bh);
1288 	clear_buffer_meta(bh);
1289 	clear_buffer_prio(bh);
1290 	return ret;
1291 }
1292 
1293 /*
1294  * We need to pick up the new inode size which generic_commit_write gave us
1295  * `file' can be NULL - eg, when called from page_symlink().
1296  *
1297  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1298  * buffers are managed internally.
1299  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1300 static int ext4_write_end(struct file *file,
1301 			  struct address_space *mapping,
1302 			  loff_t pos, unsigned len, unsigned copied,
1303 			  struct page *page, void *fsdata)
1304 {
1305 	struct folio *folio = page_folio(page);
1306 	handle_t *handle = ext4_journal_current_handle();
1307 	struct inode *inode = mapping->host;
1308 	loff_t old_size = inode->i_size;
1309 	int ret = 0, ret2;
1310 	int i_size_changed = 0;
1311 	bool verity = ext4_verity_in_progress(inode);
1312 
1313 	trace_ext4_write_end(inode, pos, len, copied);
1314 
1315 	if (ext4_has_inline_data(inode) &&
1316 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1317 		return ext4_write_inline_data_end(inode, pos, len, copied,
1318 						  folio);
1319 
1320 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1321 	/*
1322 	 * it's important to update i_size while still holding folio lock:
1323 	 * page writeout could otherwise come in and zero beyond i_size.
1324 	 *
1325 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1326 	 * blocks are being written past EOF, so skip the i_size update.
1327 	 */
1328 	if (!verity)
1329 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1330 	folio_unlock(folio);
1331 	folio_put(folio);
1332 
1333 	if (old_size < pos && !verity) {
1334 		pagecache_isize_extended(inode, old_size, pos);
1335 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1336 	}
1337 	/*
1338 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1339 	 * makes the holding time of folio lock longer. Second, it forces lock
1340 	 * ordering of folio lock and transaction start for journaling
1341 	 * filesystems.
1342 	 */
1343 	if (i_size_changed)
1344 		ret = ext4_mark_inode_dirty(handle, inode);
1345 
1346 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347 		/* if we have allocated more blocks and copied
1348 		 * less. We will have blocks allocated outside
1349 		 * inode->i_size. So truncate them
1350 		 */
1351 		ext4_orphan_add(handle, inode);
1352 
1353 	ret2 = ext4_journal_stop(handle);
1354 	if (!ret)
1355 		ret = ret2;
1356 
1357 	if (pos + len > inode->i_size && !verity) {
1358 		ext4_truncate_failed_write(inode);
1359 		/*
1360 		 * If truncate failed early the inode might still be
1361 		 * on the orphan list; we need to make sure the inode
1362 		 * is removed from the orphan list in that case.
1363 		 */
1364 		if (inode->i_nlink)
1365 			ext4_orphan_del(NULL, inode);
1366 	}
1367 
1368 	return ret ? ret : copied;
1369 }
1370 
1371 /*
1372  * This is a private version of folio_zero_new_buffers() which doesn't
1373  * set the buffer to be dirty, since in data=journalled mode we need
1374  * to call ext4_dirty_journalled_data() instead.
1375  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1376 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377 					    struct inode *inode,
1378 					    struct folio *folio,
1379 					    unsigned from, unsigned to)
1380 {
1381 	unsigned int block_start = 0, block_end;
1382 	struct buffer_head *head, *bh;
1383 
1384 	bh = head = folio_buffers(folio);
1385 	do {
1386 		block_end = block_start + bh->b_size;
1387 		if (buffer_new(bh)) {
1388 			if (block_end > from && block_start < to) {
1389 				if (!folio_test_uptodate(folio)) {
1390 					unsigned start, size;
1391 
1392 					start = max(from, block_start);
1393 					size = min(to, block_end) - start;
1394 
1395 					folio_zero_range(folio, start, size);
1396 					write_end_fn(handle, inode, bh);
1397 				}
1398 				clear_buffer_new(bh);
1399 			}
1400 		}
1401 		block_start = block_end;
1402 		bh = bh->b_this_page;
1403 	} while (bh != head);
1404 }
1405 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1406 static int ext4_journalled_write_end(struct file *file,
1407 				     struct address_space *mapping,
1408 				     loff_t pos, unsigned len, unsigned copied,
1409 				     struct page *page, void *fsdata)
1410 {
1411 	struct folio *folio = page_folio(page);
1412 	handle_t *handle = ext4_journal_current_handle();
1413 	struct inode *inode = mapping->host;
1414 	loff_t old_size = inode->i_size;
1415 	int ret = 0, ret2;
1416 	int partial = 0;
1417 	unsigned from, to;
1418 	int size_changed = 0;
1419 	bool verity = ext4_verity_in_progress(inode);
1420 
1421 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1422 	from = pos & (PAGE_SIZE - 1);
1423 	to = from + len;
1424 
1425 	BUG_ON(!ext4_handle_valid(handle));
1426 
1427 	if (ext4_has_inline_data(inode))
1428 		return ext4_write_inline_data_end(inode, pos, len, copied,
1429 						  folio);
1430 
1431 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1432 		copied = 0;
1433 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1434 						 from, to);
1435 	} else {
1436 		if (unlikely(copied < len))
1437 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1438 							 from + copied, to);
1439 		ret = ext4_walk_page_buffers(handle, inode,
1440 					     folio_buffers(folio),
1441 					     from, from + copied, &partial,
1442 					     write_end_fn);
1443 		if (!partial)
1444 			folio_mark_uptodate(folio);
1445 	}
1446 	if (!verity)
1447 		size_changed = ext4_update_inode_size(inode, pos + copied);
1448 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1449 	folio_unlock(folio);
1450 	folio_put(folio);
1451 
1452 	if (old_size < pos && !verity) {
1453 		pagecache_isize_extended(inode, old_size, pos);
1454 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1455 	}
1456 
1457 	if (size_changed) {
1458 		ret2 = ext4_mark_inode_dirty(handle, inode);
1459 		if (!ret)
1460 			ret = ret2;
1461 	}
1462 
1463 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1464 		/* if we have allocated more blocks and copied
1465 		 * less. We will have blocks allocated outside
1466 		 * inode->i_size. So truncate them
1467 		 */
1468 		ext4_orphan_add(handle, inode);
1469 
1470 	ret2 = ext4_journal_stop(handle);
1471 	if (!ret)
1472 		ret = ret2;
1473 	if (pos + len > inode->i_size && !verity) {
1474 		ext4_truncate_failed_write(inode);
1475 		/*
1476 		 * If truncate failed early the inode might still be
1477 		 * on the orphan list; we need to make sure the inode
1478 		 * is removed from the orphan list in that case.
1479 		 */
1480 		if (inode->i_nlink)
1481 			ext4_orphan_del(NULL, inode);
1482 	}
1483 
1484 	return ret ? ret : copied;
1485 }
1486 
1487 /*
1488  * Reserve space for a single cluster
1489  */
ext4_da_reserve_space(struct inode * inode)1490 static int ext4_da_reserve_space(struct inode *inode)
1491 {
1492 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 	struct ext4_inode_info *ei = EXT4_I(inode);
1494 	int ret;
1495 
1496 	/*
1497 	 * We will charge metadata quota at writeout time; this saves
1498 	 * us from metadata over-estimation, though we may go over by
1499 	 * a small amount in the end.  Here we just reserve for data.
1500 	 */
1501 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1502 	if (ret)
1503 		return ret;
1504 
1505 	spin_lock(&ei->i_block_reservation_lock);
1506 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1507 		spin_unlock(&ei->i_block_reservation_lock);
1508 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1509 		return -ENOSPC;
1510 	}
1511 	ei->i_reserved_data_blocks++;
1512 	trace_ext4_da_reserve_space(inode);
1513 	spin_unlock(&ei->i_block_reservation_lock);
1514 
1515 	return 0;       /* success */
1516 }
1517 
ext4_da_release_space(struct inode * inode,int to_free)1518 void ext4_da_release_space(struct inode *inode, int to_free)
1519 {
1520 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1521 	struct ext4_inode_info *ei = EXT4_I(inode);
1522 
1523 	if (!to_free)
1524 		return;		/* Nothing to release, exit */
1525 
1526 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527 
1528 	trace_ext4_da_release_space(inode, to_free);
1529 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1530 		/*
1531 		 * if there aren't enough reserved blocks, then the
1532 		 * counter is messed up somewhere.  Since this
1533 		 * function is called from invalidate page, it's
1534 		 * harmless to return without any action.
1535 		 */
1536 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1537 			 "ino %lu, to_free %d with only %d reserved "
1538 			 "data blocks", inode->i_ino, to_free,
1539 			 ei->i_reserved_data_blocks);
1540 		WARN_ON(1);
1541 		to_free = ei->i_reserved_data_blocks;
1542 	}
1543 	ei->i_reserved_data_blocks -= to_free;
1544 
1545 	/* update fs dirty data blocks counter */
1546 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1547 
1548 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1549 
1550 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1551 }
1552 
1553 /*
1554  * Delayed allocation stuff
1555  */
1556 
1557 struct mpage_da_data {
1558 	/* These are input fields for ext4_do_writepages() */
1559 	struct inode *inode;
1560 	struct writeback_control *wbc;
1561 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1562 
1563 	/* These are internal state of ext4_do_writepages() */
1564 	pgoff_t first_page;	/* The first page to write */
1565 	pgoff_t next_page;	/* Current page to examine */
1566 	pgoff_t last_page;	/* Last page to examine */
1567 	/*
1568 	 * Extent to map - this can be after first_page because that can be
1569 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1570 	 * is delalloc or unwritten.
1571 	 */
1572 	struct ext4_map_blocks map;
1573 	struct ext4_io_submit io_submit;	/* IO submission data */
1574 	unsigned int do_map:1;
1575 	unsigned int scanned_until_end:1;
1576 	unsigned int journalled_more_data:1;
1577 };
1578 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1579 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1580 				       bool invalidate)
1581 {
1582 	unsigned nr, i;
1583 	pgoff_t index, end;
1584 	struct folio_batch fbatch;
1585 	struct inode *inode = mpd->inode;
1586 	struct address_space *mapping = inode->i_mapping;
1587 
1588 	/* This is necessary when next_page == 0. */
1589 	if (mpd->first_page >= mpd->next_page)
1590 		return;
1591 
1592 	mpd->scanned_until_end = 0;
1593 	index = mpd->first_page;
1594 	end   = mpd->next_page - 1;
1595 	if (invalidate) {
1596 		ext4_lblk_t start, last;
1597 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1598 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1599 
1600 		/*
1601 		 * avoid racing with extent status tree scans made by
1602 		 * ext4_insert_delayed_block()
1603 		 */
1604 		down_write(&EXT4_I(inode)->i_data_sem);
1605 		ext4_es_remove_extent(inode, start, last - start + 1);
1606 		up_write(&EXT4_I(inode)->i_data_sem);
1607 	}
1608 
1609 	folio_batch_init(&fbatch);
1610 	while (index <= end) {
1611 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1612 		if (nr == 0)
1613 			break;
1614 		for (i = 0; i < nr; i++) {
1615 			struct folio *folio = fbatch.folios[i];
1616 
1617 			if (folio->index < mpd->first_page)
1618 				continue;
1619 			if (folio_next_index(folio) - 1 > end)
1620 				continue;
1621 			BUG_ON(!folio_test_locked(folio));
1622 			BUG_ON(folio_test_writeback(folio));
1623 			if (invalidate) {
1624 				if (folio_mapped(folio))
1625 					folio_clear_dirty_for_io(folio);
1626 				block_invalidate_folio(folio, 0,
1627 						folio_size(folio));
1628 				folio_clear_uptodate(folio);
1629 			}
1630 			folio_unlock(folio);
1631 		}
1632 		folio_batch_release(&fbatch);
1633 	}
1634 }
1635 
ext4_print_free_blocks(struct inode * inode)1636 static void ext4_print_free_blocks(struct inode *inode)
1637 {
1638 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639 	struct super_block *sb = inode->i_sb;
1640 	struct ext4_inode_info *ei = EXT4_I(inode);
1641 
1642 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1643 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1644 			ext4_count_free_clusters(sb)));
1645 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1646 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1647 	       (long long) EXT4_C2B(EXT4_SB(sb),
1648 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1649 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1650 	       (long long) EXT4_C2B(EXT4_SB(sb),
1651 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1652 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1653 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1654 		 ei->i_reserved_data_blocks);
1655 	return;
1656 }
1657 
1658 /*
1659  * ext4_insert_delayed_block - adds a delayed block to the extents status
1660  *                             tree, incrementing the reserved cluster/block
1661  *                             count or making a pending reservation
1662  *                             where needed
1663  *
1664  * @inode - file containing the newly added block
1665  * @lblk - logical block to be added
1666  *
1667  * Returns 0 on success, negative error code on failure.
1668  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 {
1671 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 	int ret;
1673 	bool allocated = false;
1674 
1675 	/*
1676 	 * If the cluster containing lblk is shared with a delayed,
1677 	 * written, or unwritten extent in a bigalloc file system, it's
1678 	 * already been accounted for and does not need to be reserved.
1679 	 * A pending reservation must be made for the cluster if it's
1680 	 * shared with a written or unwritten extent and doesn't already
1681 	 * have one.  Written and unwritten extents can be purged from the
1682 	 * extents status tree if the system is under memory pressure, so
1683 	 * it's necessary to examine the extent tree if a search of the
1684 	 * extents status tree doesn't get a match.
1685 	 */
1686 	if (sbi->s_cluster_ratio == 1) {
1687 		ret = ext4_da_reserve_space(inode);
1688 		if (ret != 0)   /* ENOSPC */
1689 			return ret;
1690 	} else {   /* bigalloc */
1691 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1692 			if (!ext4_es_scan_clu(inode,
1693 					      &ext4_es_is_mapped, lblk)) {
1694 				ret = ext4_clu_mapped(inode,
1695 						      EXT4_B2C(sbi, lblk));
1696 				if (ret < 0)
1697 					return ret;
1698 				if (ret == 0) {
1699 					ret = ext4_da_reserve_space(inode);
1700 					if (ret != 0)   /* ENOSPC */
1701 						return ret;
1702 				} else {
1703 					allocated = true;
1704 				}
1705 			} else {
1706 				allocated = true;
1707 			}
1708 		}
1709 	}
1710 
1711 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1712 	return 0;
1713 }
1714 
1715 /*
1716  * This function is grabs code from the very beginning of
1717  * ext4_map_blocks, but assumes that the caller is from delayed write
1718  * time. This function looks up the requested blocks and sets the
1719  * buffer delay bit under the protection of i_data_sem.
1720  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1721 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1722 			      struct ext4_map_blocks *map,
1723 			      struct buffer_head *bh)
1724 {
1725 	struct extent_status es;
1726 	int retval;
1727 	sector_t invalid_block = ~((sector_t) 0xffff);
1728 #ifdef ES_AGGRESSIVE_TEST
1729 	struct ext4_map_blocks orig_map;
1730 
1731 	memcpy(&orig_map, map, sizeof(*map));
1732 #endif
1733 
1734 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1735 		invalid_block = ~0;
1736 
1737 	map->m_flags = 0;
1738 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1739 		  (unsigned long) map->m_lblk);
1740 
1741 	/* Lookup extent status tree firstly */
1742 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1743 		if (ext4_es_is_hole(&es))
1744 			goto add_delayed;
1745 
1746 found:
1747 		/*
1748 		 * Delayed extent could be allocated by fallocate.
1749 		 * So we need to check it.
1750 		 */
1751 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1752 			map_bh(bh, inode->i_sb, invalid_block);
1753 			set_buffer_new(bh);
1754 			set_buffer_delay(bh);
1755 			return 0;
1756 		}
1757 
1758 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1759 		retval = es.es_len - (iblock - es.es_lblk);
1760 		if (retval > map->m_len)
1761 			retval = map->m_len;
1762 		map->m_len = retval;
1763 		if (ext4_es_is_written(&es))
1764 			map->m_flags |= EXT4_MAP_MAPPED;
1765 		else if (ext4_es_is_unwritten(&es))
1766 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1767 		else
1768 			BUG();
1769 
1770 #ifdef ES_AGGRESSIVE_TEST
1771 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1772 #endif
1773 		return retval;
1774 	}
1775 
1776 	/*
1777 	 * Try to see if we can get the block without requesting a new
1778 	 * file system block.
1779 	 */
1780 	down_read(&EXT4_I(inode)->i_data_sem);
1781 	if (ext4_has_inline_data(inode))
1782 		retval = 0;
1783 	else
1784 		retval = ext4_map_query_blocks(NULL, inode, map);
1785 	up_read(&EXT4_I(inode)->i_data_sem);
1786 	if (retval)
1787 		return retval;
1788 
1789 add_delayed:
1790 	down_write(&EXT4_I(inode)->i_data_sem);
1791 	/*
1792 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1793 	 * and fallocate path (no folio lock) can race. Make sure we
1794 	 * lookup the extent status tree here again while i_data_sem
1795 	 * is held in write mode, before inserting a new da entry in
1796 	 * the extent status tree.
1797 	 */
1798 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1799 		if (!ext4_es_is_hole(&es)) {
1800 			up_write(&EXT4_I(inode)->i_data_sem);
1801 			goto found;
1802 		}
1803 	} else if (!ext4_has_inline_data(inode)) {
1804 		retval = ext4_map_query_blocks(NULL, inode, map);
1805 		if (retval) {
1806 			up_write(&EXT4_I(inode)->i_data_sem);
1807 			return retval;
1808 		}
1809 	}
1810 
1811 	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1812 	up_write(&EXT4_I(inode)->i_data_sem);
1813 	if (retval)
1814 		return retval;
1815 
1816 	map_bh(bh, inode->i_sb, invalid_block);
1817 	set_buffer_new(bh);
1818 	set_buffer_delay(bh);
1819 	return retval;
1820 }
1821 
1822 /*
1823  * This is a special get_block_t callback which is used by
1824  * ext4_da_write_begin().  It will either return mapped block or
1825  * reserve space for a single block.
1826  *
1827  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1828  * We also have b_blocknr = -1 and b_bdev initialized properly
1829  *
1830  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1831  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1832  * initialized properly.
1833  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1834 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1835 			   struct buffer_head *bh, int create)
1836 {
1837 	struct ext4_map_blocks map;
1838 	int ret = 0;
1839 
1840 	BUG_ON(create == 0);
1841 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1842 
1843 	map.m_lblk = iblock;
1844 	map.m_len = 1;
1845 
1846 	/*
1847 	 * first, we need to know whether the block is allocated already
1848 	 * preallocated blocks are unmapped but should treated
1849 	 * the same as allocated blocks.
1850 	 */
1851 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1852 	if (ret <= 0)
1853 		return ret;
1854 
1855 	map_bh(bh, inode->i_sb, map.m_pblk);
1856 	ext4_update_bh_state(bh, map.m_flags);
1857 
1858 	if (buffer_unwritten(bh)) {
1859 		/* A delayed write to unwritten bh should be marked
1860 		 * new and mapped.  Mapped ensures that we don't do
1861 		 * get_block multiple times when we write to the same
1862 		 * offset and new ensures that we do proper zero out
1863 		 * for partial write.
1864 		 */
1865 		set_buffer_new(bh);
1866 		set_buffer_mapped(bh);
1867 	}
1868 	return 0;
1869 }
1870 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1871 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1872 {
1873 	mpd->first_page += folio_nr_pages(folio);
1874 	folio_unlock(folio);
1875 }
1876 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1877 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1878 {
1879 	size_t len;
1880 	loff_t size;
1881 	int err;
1882 
1883 	BUG_ON(folio->index != mpd->first_page);
1884 	folio_clear_dirty_for_io(folio);
1885 	/*
1886 	 * We have to be very careful here!  Nothing protects writeback path
1887 	 * against i_size changes and the page can be writeably mapped into
1888 	 * page tables. So an application can be growing i_size and writing
1889 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1890 	 * write-protects our page in page tables and the page cannot get
1891 	 * written to again until we release folio lock. So only after
1892 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1893 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1894 	 * on the barrier provided by folio_test_clear_dirty() in
1895 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1896 	 * after page tables are updated.
1897 	 */
1898 	size = i_size_read(mpd->inode);
1899 	len = folio_size(folio);
1900 	if (folio_pos(folio) + len > size &&
1901 	    !ext4_verity_in_progress(mpd->inode))
1902 		len = size & ~PAGE_MASK;
1903 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1904 	if (!err)
1905 		mpd->wbc->nr_to_write--;
1906 
1907 	return err;
1908 }
1909 
1910 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1911 
1912 /*
1913  * mballoc gives us at most this number of blocks...
1914  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1915  * The rest of mballoc seems to handle chunks up to full group size.
1916  */
1917 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1918 
1919 /*
1920  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1921  *
1922  * @mpd - extent of blocks
1923  * @lblk - logical number of the block in the file
1924  * @bh - buffer head we want to add to the extent
1925  *
1926  * The function is used to collect contig. blocks in the same state. If the
1927  * buffer doesn't require mapping for writeback and we haven't started the
1928  * extent of buffers to map yet, the function returns 'true' immediately - the
1929  * caller can write the buffer right away. Otherwise the function returns true
1930  * if the block has been added to the extent, false if the block couldn't be
1931  * added.
1932  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1933 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1934 				   struct buffer_head *bh)
1935 {
1936 	struct ext4_map_blocks *map = &mpd->map;
1937 
1938 	/* Buffer that doesn't need mapping for writeback? */
1939 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1940 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1941 		/* So far no extent to map => we write the buffer right away */
1942 		if (map->m_len == 0)
1943 			return true;
1944 		return false;
1945 	}
1946 
1947 	/* First block in the extent? */
1948 	if (map->m_len == 0) {
1949 		/* We cannot map unless handle is started... */
1950 		if (!mpd->do_map)
1951 			return false;
1952 		map->m_lblk = lblk;
1953 		map->m_len = 1;
1954 		map->m_flags = bh->b_state & BH_FLAGS;
1955 		return true;
1956 	}
1957 
1958 	/* Don't go larger than mballoc is willing to allocate */
1959 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1960 		return false;
1961 
1962 	/* Can we merge the block to our big extent? */
1963 	if (lblk == map->m_lblk + map->m_len &&
1964 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1965 		map->m_len++;
1966 		return true;
1967 	}
1968 	return false;
1969 }
1970 
1971 /*
1972  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1973  *
1974  * @mpd - extent of blocks for mapping
1975  * @head - the first buffer in the page
1976  * @bh - buffer we should start processing from
1977  * @lblk - logical number of the block in the file corresponding to @bh
1978  *
1979  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1980  * the page for IO if all buffers in this page were mapped and there's no
1981  * accumulated extent of buffers to map or add buffers in the page to the
1982  * extent of buffers to map. The function returns 1 if the caller can continue
1983  * by processing the next page, 0 if it should stop adding buffers to the
1984  * extent to map because we cannot extend it anymore. It can also return value
1985  * < 0 in case of error during IO submission.
1986  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1987 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1988 				   struct buffer_head *head,
1989 				   struct buffer_head *bh,
1990 				   ext4_lblk_t lblk)
1991 {
1992 	struct inode *inode = mpd->inode;
1993 	int err;
1994 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1995 							>> inode->i_blkbits;
1996 
1997 	if (ext4_verity_in_progress(inode))
1998 		blocks = EXT_MAX_BLOCKS;
1999 
2000 	do {
2001 		BUG_ON(buffer_locked(bh));
2002 
2003 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2004 			/* Found extent to map? */
2005 			if (mpd->map.m_len)
2006 				return 0;
2007 			/* Buffer needs mapping and handle is not started? */
2008 			if (!mpd->do_map)
2009 				return 0;
2010 			/* Everything mapped so far and we hit EOF */
2011 			break;
2012 		}
2013 	} while (lblk++, (bh = bh->b_this_page) != head);
2014 	/* So far everything mapped? Submit the page for IO. */
2015 	if (mpd->map.m_len == 0) {
2016 		err = mpage_submit_folio(mpd, head->b_folio);
2017 		if (err < 0)
2018 			return err;
2019 		mpage_folio_done(mpd, head->b_folio);
2020 	}
2021 	if (lblk >= blocks) {
2022 		mpd->scanned_until_end = 1;
2023 		return 0;
2024 	}
2025 	return 1;
2026 }
2027 
2028 /*
2029  * mpage_process_folio - update folio buffers corresponding to changed extent
2030  *			 and may submit fully mapped page for IO
2031  * @mpd: description of extent to map, on return next extent to map
2032  * @folio: Contains these buffers.
2033  * @m_lblk: logical block mapping.
2034  * @m_pblk: corresponding physical mapping.
2035  * @map_bh: determines on return whether this page requires any further
2036  *		  mapping or not.
2037  *
2038  * Scan given folio buffers corresponding to changed extent and update buffer
2039  * state according to new extent state.
2040  * We map delalloc buffers to their physical location, clear unwritten bits.
2041  * If the given folio is not fully mapped, we update @mpd to the next extent in
2042  * the given folio that needs mapping & return @map_bh as true.
2043  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2044 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2045 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2046 			      bool *map_bh)
2047 {
2048 	struct buffer_head *head, *bh;
2049 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2050 	ext4_lblk_t lblk = *m_lblk;
2051 	ext4_fsblk_t pblock = *m_pblk;
2052 	int err = 0;
2053 	int blkbits = mpd->inode->i_blkbits;
2054 	ssize_t io_end_size = 0;
2055 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2056 
2057 	bh = head = folio_buffers(folio);
2058 	do {
2059 		if (lblk < mpd->map.m_lblk)
2060 			continue;
2061 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2062 			/*
2063 			 * Buffer after end of mapped extent.
2064 			 * Find next buffer in the folio to map.
2065 			 */
2066 			mpd->map.m_len = 0;
2067 			mpd->map.m_flags = 0;
2068 			io_end_vec->size += io_end_size;
2069 
2070 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2071 			if (err > 0)
2072 				err = 0;
2073 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2074 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2075 				if (IS_ERR(io_end_vec)) {
2076 					err = PTR_ERR(io_end_vec);
2077 					goto out;
2078 				}
2079 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2080 			}
2081 			*map_bh = true;
2082 			goto out;
2083 		}
2084 		if (buffer_delay(bh)) {
2085 			clear_buffer_delay(bh);
2086 			bh->b_blocknr = pblock++;
2087 		}
2088 		clear_buffer_unwritten(bh);
2089 		io_end_size += (1 << blkbits);
2090 	} while (lblk++, (bh = bh->b_this_page) != head);
2091 
2092 	io_end_vec->size += io_end_size;
2093 	*map_bh = false;
2094 out:
2095 	*m_lblk = lblk;
2096 	*m_pblk = pblock;
2097 	return err;
2098 }
2099 
2100 /*
2101  * mpage_map_buffers - update buffers corresponding to changed extent and
2102  *		       submit fully mapped pages for IO
2103  *
2104  * @mpd - description of extent to map, on return next extent to map
2105  *
2106  * Scan buffers corresponding to changed extent (we expect corresponding pages
2107  * to be already locked) and update buffer state according to new extent state.
2108  * We map delalloc buffers to their physical location, clear unwritten bits,
2109  * and mark buffers as uninit when we perform writes to unwritten extents
2110  * and do extent conversion after IO is finished. If the last page is not fully
2111  * mapped, we update @map to the next extent in the last page that needs
2112  * mapping. Otherwise we submit the page for IO.
2113  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2114 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2115 {
2116 	struct folio_batch fbatch;
2117 	unsigned nr, i;
2118 	struct inode *inode = mpd->inode;
2119 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2120 	pgoff_t start, end;
2121 	ext4_lblk_t lblk;
2122 	ext4_fsblk_t pblock;
2123 	int err;
2124 	bool map_bh = false;
2125 
2126 	start = mpd->map.m_lblk >> bpp_bits;
2127 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2128 	lblk = start << bpp_bits;
2129 	pblock = mpd->map.m_pblk;
2130 
2131 	folio_batch_init(&fbatch);
2132 	while (start <= end) {
2133 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2134 		if (nr == 0)
2135 			break;
2136 		for (i = 0; i < nr; i++) {
2137 			struct folio *folio = fbatch.folios[i];
2138 
2139 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2140 						 &map_bh);
2141 			/*
2142 			 * If map_bh is true, means page may require further bh
2143 			 * mapping, or maybe the page was submitted for IO.
2144 			 * So we return to call further extent mapping.
2145 			 */
2146 			if (err < 0 || map_bh)
2147 				goto out;
2148 			/* Page fully mapped - let IO run! */
2149 			err = mpage_submit_folio(mpd, folio);
2150 			if (err < 0)
2151 				goto out;
2152 			mpage_folio_done(mpd, folio);
2153 		}
2154 		folio_batch_release(&fbatch);
2155 	}
2156 	/* Extent fully mapped and matches with page boundary. We are done. */
2157 	mpd->map.m_len = 0;
2158 	mpd->map.m_flags = 0;
2159 	return 0;
2160 out:
2161 	folio_batch_release(&fbatch);
2162 	return err;
2163 }
2164 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2165 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2166 {
2167 	struct inode *inode = mpd->inode;
2168 	struct ext4_map_blocks *map = &mpd->map;
2169 	int get_blocks_flags;
2170 	int err, dioread_nolock;
2171 
2172 	trace_ext4_da_write_pages_extent(inode, map);
2173 	/*
2174 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2175 	 * to convert an unwritten extent to be initialized (in the case
2176 	 * where we have written into one or more preallocated blocks).  It is
2177 	 * possible that we're going to need more metadata blocks than
2178 	 * previously reserved. However we must not fail because we're in
2179 	 * writeback and there is nothing we can do about it so it might result
2180 	 * in data loss.  So use reserved blocks to allocate metadata if
2181 	 * possible.
2182 	 *
2183 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2184 	 * the blocks in question are delalloc blocks.  This indicates
2185 	 * that the blocks and quotas has already been checked when
2186 	 * the data was copied into the page cache.
2187 	 */
2188 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2189 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2190 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2191 	dioread_nolock = ext4_should_dioread_nolock(inode);
2192 	if (dioread_nolock)
2193 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194 	if (map->m_flags & BIT(BH_Delay))
2195 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196 
2197 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198 	if (err < 0)
2199 		return err;
2200 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2201 		if (!mpd->io_submit.io_end->handle &&
2202 		    ext4_handle_valid(handle)) {
2203 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204 			handle->h_rsv_handle = NULL;
2205 		}
2206 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2207 	}
2208 
2209 	BUG_ON(map->m_len == 0);
2210 	return 0;
2211 }
2212 
2213 /*
2214  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2215  *				 mpd->len and submit pages underlying it for IO
2216  *
2217  * @handle - handle for journal operations
2218  * @mpd - extent to map
2219  * @give_up_on_write - we set this to true iff there is a fatal error and there
2220  *                     is no hope of writing the data. The caller should discard
2221  *                     dirty pages to avoid infinite loops.
2222  *
2223  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2224  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2225  * them to initialized or split the described range from larger unwritten
2226  * extent. Note that we need not map all the described range since allocation
2227  * can return less blocks or the range is covered by more unwritten extents. We
2228  * cannot map more because we are limited by reserved transaction credits. On
2229  * the other hand we always make sure that the last touched page is fully
2230  * mapped so that it can be written out (and thus forward progress is
2231  * guaranteed). After mapping we submit all mapped pages for IO.
2232  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2233 static int mpage_map_and_submit_extent(handle_t *handle,
2234 				       struct mpage_da_data *mpd,
2235 				       bool *give_up_on_write)
2236 {
2237 	struct inode *inode = mpd->inode;
2238 	struct ext4_map_blocks *map = &mpd->map;
2239 	int err;
2240 	loff_t disksize;
2241 	int progress = 0;
2242 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2243 	struct ext4_io_end_vec *io_end_vec;
2244 
2245 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2246 	if (IS_ERR(io_end_vec))
2247 		return PTR_ERR(io_end_vec);
2248 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2249 	do {
2250 		err = mpage_map_one_extent(handle, mpd);
2251 		if (err < 0) {
2252 			struct super_block *sb = inode->i_sb;
2253 
2254 			if (ext4_forced_shutdown(sb))
2255 				goto invalidate_dirty_pages;
2256 			/*
2257 			 * Let the uper layers retry transient errors.
2258 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2259 			 * is non-zero, a commit should free up blocks.
2260 			 */
2261 			if ((err == -ENOMEM) ||
2262 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2263 				if (progress)
2264 					goto update_disksize;
2265 				return err;
2266 			}
2267 			ext4_msg(sb, KERN_CRIT,
2268 				 "Delayed block allocation failed for "
2269 				 "inode %lu at logical offset %llu with"
2270 				 " max blocks %u with error %d",
2271 				 inode->i_ino,
2272 				 (unsigned long long)map->m_lblk,
2273 				 (unsigned)map->m_len, -err);
2274 			ext4_msg(sb, KERN_CRIT,
2275 				 "This should not happen!! Data will "
2276 				 "be lost\n");
2277 			if (err == -ENOSPC)
2278 				ext4_print_free_blocks(inode);
2279 		invalidate_dirty_pages:
2280 			*give_up_on_write = true;
2281 			return err;
2282 		}
2283 		progress = 1;
2284 		/*
2285 		 * Update buffer state, submit mapped pages, and get us new
2286 		 * extent to map
2287 		 */
2288 		err = mpage_map_and_submit_buffers(mpd);
2289 		if (err < 0)
2290 			goto update_disksize;
2291 	} while (map->m_len);
2292 
2293 update_disksize:
2294 	/*
2295 	 * Update on-disk size after IO is submitted.  Races with
2296 	 * truncate are avoided by checking i_size under i_data_sem.
2297 	 */
2298 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2299 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2300 		int err2;
2301 		loff_t i_size;
2302 
2303 		down_write(&EXT4_I(inode)->i_data_sem);
2304 		i_size = i_size_read(inode);
2305 		if (disksize > i_size)
2306 			disksize = i_size;
2307 		if (disksize > EXT4_I(inode)->i_disksize)
2308 			EXT4_I(inode)->i_disksize = disksize;
2309 		up_write(&EXT4_I(inode)->i_data_sem);
2310 		err2 = ext4_mark_inode_dirty(handle, inode);
2311 		if (err2) {
2312 			ext4_error_err(inode->i_sb, -err2,
2313 				       "Failed to mark inode %lu dirty",
2314 				       inode->i_ino);
2315 		}
2316 		if (!err)
2317 			err = err2;
2318 	}
2319 	return err;
2320 }
2321 
2322 /*
2323  * Calculate the total number of credits to reserve for one writepages
2324  * iteration. This is called from ext4_writepages(). We map an extent of
2325  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2326  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2327  * bpp - 1 blocks in bpp different extents.
2328  */
ext4_da_writepages_trans_blocks(struct inode * inode)2329 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2330 {
2331 	int bpp = ext4_journal_blocks_per_page(inode);
2332 
2333 	return ext4_meta_trans_blocks(inode,
2334 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2335 }
2336 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2337 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2338 				     size_t len)
2339 {
2340 	struct buffer_head *page_bufs = folio_buffers(folio);
2341 	struct inode *inode = folio->mapping->host;
2342 	int ret, err;
2343 
2344 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2345 				     NULL, do_journal_get_write_access);
2346 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2347 				     NULL, write_end_fn);
2348 	if (ret == 0)
2349 		ret = err;
2350 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2351 	if (ret == 0)
2352 		ret = err;
2353 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2354 
2355 	return ret;
2356 }
2357 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2358 static int mpage_journal_page_buffers(handle_t *handle,
2359 				      struct mpage_da_data *mpd,
2360 				      struct folio *folio)
2361 {
2362 	struct inode *inode = mpd->inode;
2363 	loff_t size = i_size_read(inode);
2364 	size_t len = folio_size(folio);
2365 
2366 	folio_clear_checked(folio);
2367 	mpd->wbc->nr_to_write--;
2368 
2369 	if (folio_pos(folio) + len > size &&
2370 	    !ext4_verity_in_progress(inode))
2371 		len = size & (len - 1);
2372 
2373 	return ext4_journal_folio_buffers(handle, folio, len);
2374 }
2375 
2376 /*
2377  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2378  * 				 needing mapping, submit mapped pages
2379  *
2380  * @mpd - where to look for pages
2381  *
2382  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2383  * IO immediately. If we cannot map blocks, we submit just already mapped
2384  * buffers in the page for IO and keep page dirty. When we can map blocks and
2385  * we find a page which isn't mapped we start accumulating extent of buffers
2386  * underlying these pages that needs mapping (formed by either delayed or
2387  * unwritten buffers). We also lock the pages containing these buffers. The
2388  * extent found is returned in @mpd structure (starting at mpd->lblk with
2389  * length mpd->len blocks).
2390  *
2391  * Note that this function can attach bios to one io_end structure which are
2392  * neither logically nor physically contiguous. Although it may seem as an
2393  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2394  * case as we need to track IO to all buffers underlying a page in one io_end.
2395  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2396 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2397 {
2398 	struct address_space *mapping = mpd->inode->i_mapping;
2399 	struct folio_batch fbatch;
2400 	unsigned int nr_folios;
2401 	pgoff_t index = mpd->first_page;
2402 	pgoff_t end = mpd->last_page;
2403 	xa_mark_t tag;
2404 	int i, err = 0;
2405 	int blkbits = mpd->inode->i_blkbits;
2406 	ext4_lblk_t lblk;
2407 	struct buffer_head *head;
2408 	handle_t *handle = NULL;
2409 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2410 
2411 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2412 		tag = PAGECACHE_TAG_TOWRITE;
2413 	else
2414 		tag = PAGECACHE_TAG_DIRTY;
2415 
2416 	mpd->map.m_len = 0;
2417 	mpd->next_page = index;
2418 	if (ext4_should_journal_data(mpd->inode)) {
2419 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2420 					    bpp);
2421 		if (IS_ERR(handle))
2422 			return PTR_ERR(handle);
2423 	}
2424 	folio_batch_init(&fbatch);
2425 	while (index <= end) {
2426 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2427 				tag, &fbatch);
2428 		if (nr_folios == 0)
2429 			break;
2430 
2431 		for (i = 0; i < nr_folios; i++) {
2432 			struct folio *folio = fbatch.folios[i];
2433 
2434 			/*
2435 			 * Accumulated enough dirty pages? This doesn't apply
2436 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2437 			 * keep going because someone may be concurrently
2438 			 * dirtying pages, and we might have synced a lot of
2439 			 * newly appeared dirty pages, but have not synced all
2440 			 * of the old dirty pages.
2441 			 */
2442 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2443 			    mpd->wbc->nr_to_write <=
2444 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2445 				goto out;
2446 
2447 			/* If we can't merge this page, we are done. */
2448 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2449 				goto out;
2450 
2451 			if (handle) {
2452 				err = ext4_journal_ensure_credits(handle, bpp,
2453 								  0);
2454 				if (err < 0)
2455 					goto out;
2456 			}
2457 
2458 			folio_lock(folio);
2459 			/*
2460 			 * If the page is no longer dirty, or its mapping no
2461 			 * longer corresponds to inode we are writing (which
2462 			 * means it has been truncated or invalidated), or the
2463 			 * page is already under writeback and we are not doing
2464 			 * a data integrity writeback, skip the page
2465 			 */
2466 			if (!folio_test_dirty(folio) ||
2467 			    (folio_test_writeback(folio) &&
2468 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2469 			    unlikely(folio->mapping != mapping)) {
2470 				folio_unlock(folio);
2471 				continue;
2472 			}
2473 
2474 			folio_wait_writeback(folio);
2475 			BUG_ON(folio_test_writeback(folio));
2476 
2477 			/*
2478 			 * Should never happen but for buggy code in
2479 			 * other subsystems that call
2480 			 * set_page_dirty() without properly warning
2481 			 * the file system first.  See [1] for more
2482 			 * information.
2483 			 *
2484 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2485 			 */
2486 			if (!folio_buffers(folio)) {
2487 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2488 				folio_clear_dirty(folio);
2489 				folio_unlock(folio);
2490 				continue;
2491 			}
2492 
2493 			if (mpd->map.m_len == 0)
2494 				mpd->first_page = folio->index;
2495 			mpd->next_page = folio_next_index(folio);
2496 			/*
2497 			 * Writeout when we cannot modify metadata is simple.
2498 			 * Just submit the page. For data=journal mode we
2499 			 * first handle writeout of the page for checkpoint and
2500 			 * only after that handle delayed page dirtying. This
2501 			 * makes sure current data is checkpointed to the final
2502 			 * location before possibly journalling it again which
2503 			 * is desirable when the page is frequently dirtied
2504 			 * through a pin.
2505 			 */
2506 			if (!mpd->can_map) {
2507 				err = mpage_submit_folio(mpd, folio);
2508 				if (err < 0)
2509 					goto out;
2510 				/* Pending dirtying of journalled data? */
2511 				if (folio_test_checked(folio)) {
2512 					err = mpage_journal_page_buffers(handle,
2513 						mpd, folio);
2514 					if (err < 0)
2515 						goto out;
2516 					mpd->journalled_more_data = 1;
2517 				}
2518 				mpage_folio_done(mpd, folio);
2519 			} else {
2520 				/* Add all dirty buffers to mpd */
2521 				lblk = ((ext4_lblk_t)folio->index) <<
2522 					(PAGE_SHIFT - blkbits);
2523 				head = folio_buffers(folio);
2524 				err = mpage_process_page_bufs(mpd, head, head,
2525 						lblk);
2526 				if (err <= 0)
2527 					goto out;
2528 				err = 0;
2529 			}
2530 		}
2531 		folio_batch_release(&fbatch);
2532 		cond_resched();
2533 	}
2534 	mpd->scanned_until_end = 1;
2535 	if (handle)
2536 		ext4_journal_stop(handle);
2537 	return 0;
2538 out:
2539 	folio_batch_release(&fbatch);
2540 	if (handle)
2541 		ext4_journal_stop(handle);
2542 	return err;
2543 }
2544 
ext4_do_writepages(struct mpage_da_data * mpd)2545 static int ext4_do_writepages(struct mpage_da_data *mpd)
2546 {
2547 	struct writeback_control *wbc = mpd->wbc;
2548 	pgoff_t	writeback_index = 0;
2549 	long nr_to_write = wbc->nr_to_write;
2550 	int range_whole = 0;
2551 	int cycled = 1;
2552 	handle_t *handle = NULL;
2553 	struct inode *inode = mpd->inode;
2554 	struct address_space *mapping = inode->i_mapping;
2555 	int needed_blocks, rsv_blocks = 0, ret = 0;
2556 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2557 	struct blk_plug plug;
2558 	bool give_up_on_write = false;
2559 
2560 	trace_ext4_writepages(inode, wbc);
2561 
2562 	/*
2563 	 * No pages to write? This is mainly a kludge to avoid starting
2564 	 * a transaction for special inodes like journal inode on last iput()
2565 	 * because that could violate lock ordering on umount
2566 	 */
2567 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2568 		goto out_writepages;
2569 
2570 	/*
2571 	 * If the filesystem has aborted, it is read-only, so return
2572 	 * right away instead of dumping stack traces later on that
2573 	 * will obscure the real source of the problem.  We test
2574 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2575 	 * the latter could be true if the filesystem is mounted
2576 	 * read-only, and in that case, ext4_writepages should
2577 	 * *never* be called, so if that ever happens, we would want
2578 	 * the stack trace.
2579 	 */
2580 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2581 		ret = -EROFS;
2582 		goto out_writepages;
2583 	}
2584 
2585 	/*
2586 	 * If we have inline data and arrive here, it means that
2587 	 * we will soon create the block for the 1st page, so
2588 	 * we'd better clear the inline data here.
2589 	 */
2590 	if (ext4_has_inline_data(inode)) {
2591 		/* Just inode will be modified... */
2592 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2593 		if (IS_ERR(handle)) {
2594 			ret = PTR_ERR(handle);
2595 			goto out_writepages;
2596 		}
2597 		BUG_ON(ext4_test_inode_state(inode,
2598 				EXT4_STATE_MAY_INLINE_DATA));
2599 		ext4_destroy_inline_data(handle, inode);
2600 		ext4_journal_stop(handle);
2601 	}
2602 
2603 	/*
2604 	 * data=journal mode does not do delalloc so we just need to writeout /
2605 	 * journal already mapped buffers. On the other hand we need to commit
2606 	 * transaction to make data stable. We expect all the data to be
2607 	 * already in the journal (the only exception are DMA pinned pages
2608 	 * dirtied behind our back) so we commit transaction here and run the
2609 	 * writeback loop to checkpoint them. The checkpointing is not actually
2610 	 * necessary to make data persistent *but* quite a few places (extent
2611 	 * shifting operations, fsverity, ...) depend on being able to drop
2612 	 * pagecache pages after calling filemap_write_and_wait() and for that
2613 	 * checkpointing needs to happen.
2614 	 */
2615 	if (ext4_should_journal_data(inode)) {
2616 		mpd->can_map = 0;
2617 		if (wbc->sync_mode == WB_SYNC_ALL)
2618 			ext4_fc_commit(sbi->s_journal,
2619 				       EXT4_I(inode)->i_datasync_tid);
2620 	}
2621 	mpd->journalled_more_data = 0;
2622 
2623 	if (ext4_should_dioread_nolock(inode)) {
2624 		/*
2625 		 * We may need to convert up to one extent per block in
2626 		 * the page and we may dirty the inode.
2627 		 */
2628 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2629 						PAGE_SIZE >> inode->i_blkbits);
2630 	}
2631 
2632 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2633 		range_whole = 1;
2634 
2635 	if (wbc->range_cyclic) {
2636 		writeback_index = mapping->writeback_index;
2637 		if (writeback_index)
2638 			cycled = 0;
2639 		mpd->first_page = writeback_index;
2640 		mpd->last_page = -1;
2641 	} else {
2642 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2643 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2644 	}
2645 
2646 	ext4_io_submit_init(&mpd->io_submit, wbc);
2647 retry:
2648 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2649 		tag_pages_for_writeback(mapping, mpd->first_page,
2650 					mpd->last_page);
2651 	blk_start_plug(&plug);
2652 
2653 	/*
2654 	 * First writeback pages that don't need mapping - we can avoid
2655 	 * starting a transaction unnecessarily and also avoid being blocked
2656 	 * in the block layer on device congestion while having transaction
2657 	 * started.
2658 	 */
2659 	mpd->do_map = 0;
2660 	mpd->scanned_until_end = 0;
2661 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2662 	if (!mpd->io_submit.io_end) {
2663 		ret = -ENOMEM;
2664 		goto unplug;
2665 	}
2666 	ret = mpage_prepare_extent_to_map(mpd);
2667 	/* Unlock pages we didn't use */
2668 	mpage_release_unused_pages(mpd, false);
2669 	/* Submit prepared bio */
2670 	ext4_io_submit(&mpd->io_submit);
2671 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2672 	mpd->io_submit.io_end = NULL;
2673 	if (ret < 0)
2674 		goto unplug;
2675 
2676 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2677 		/* For each extent of pages we use new io_end */
2678 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2679 		if (!mpd->io_submit.io_end) {
2680 			ret = -ENOMEM;
2681 			break;
2682 		}
2683 
2684 		WARN_ON_ONCE(!mpd->can_map);
2685 		/*
2686 		 * We have two constraints: We find one extent to map and we
2687 		 * must always write out whole page (makes a difference when
2688 		 * blocksize < pagesize) so that we don't block on IO when we
2689 		 * try to write out the rest of the page. Journalled mode is
2690 		 * not supported by delalloc.
2691 		 */
2692 		BUG_ON(ext4_should_journal_data(inode));
2693 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2694 
2695 		/* start a new transaction */
2696 		handle = ext4_journal_start_with_reserve(inode,
2697 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2698 		if (IS_ERR(handle)) {
2699 			ret = PTR_ERR(handle);
2700 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2701 			       "%ld pages, ino %lu; err %d", __func__,
2702 				wbc->nr_to_write, inode->i_ino, ret);
2703 			/* Release allocated io_end */
2704 			ext4_put_io_end(mpd->io_submit.io_end);
2705 			mpd->io_submit.io_end = NULL;
2706 			break;
2707 		}
2708 		mpd->do_map = 1;
2709 
2710 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2711 		ret = mpage_prepare_extent_to_map(mpd);
2712 		if (!ret && mpd->map.m_len)
2713 			ret = mpage_map_and_submit_extent(handle, mpd,
2714 					&give_up_on_write);
2715 		/*
2716 		 * Caution: If the handle is synchronous,
2717 		 * ext4_journal_stop() can wait for transaction commit
2718 		 * to finish which may depend on writeback of pages to
2719 		 * complete or on page lock to be released.  In that
2720 		 * case, we have to wait until after we have
2721 		 * submitted all the IO, released page locks we hold,
2722 		 * and dropped io_end reference (for extent conversion
2723 		 * to be able to complete) before stopping the handle.
2724 		 */
2725 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2726 			ext4_journal_stop(handle);
2727 			handle = NULL;
2728 			mpd->do_map = 0;
2729 		}
2730 		/* Unlock pages we didn't use */
2731 		mpage_release_unused_pages(mpd, give_up_on_write);
2732 		/* Submit prepared bio */
2733 		ext4_io_submit(&mpd->io_submit);
2734 
2735 		/*
2736 		 * Drop our io_end reference we got from init. We have
2737 		 * to be careful and use deferred io_end finishing if
2738 		 * we are still holding the transaction as we can
2739 		 * release the last reference to io_end which may end
2740 		 * up doing unwritten extent conversion.
2741 		 */
2742 		if (handle) {
2743 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2744 			ext4_journal_stop(handle);
2745 		} else
2746 			ext4_put_io_end(mpd->io_submit.io_end);
2747 		mpd->io_submit.io_end = NULL;
2748 
2749 		if (ret == -ENOSPC && sbi->s_journal) {
2750 			/*
2751 			 * Commit the transaction which would
2752 			 * free blocks released in the transaction
2753 			 * and try again
2754 			 */
2755 			jbd2_journal_force_commit_nested(sbi->s_journal);
2756 			ret = 0;
2757 			continue;
2758 		}
2759 		/* Fatal error - ENOMEM, EIO... */
2760 		if (ret)
2761 			break;
2762 	}
2763 unplug:
2764 	blk_finish_plug(&plug);
2765 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2766 		cycled = 1;
2767 		mpd->last_page = writeback_index - 1;
2768 		mpd->first_page = 0;
2769 		goto retry;
2770 	}
2771 
2772 	/* Update index */
2773 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2774 		/*
2775 		 * Set the writeback_index so that range_cyclic
2776 		 * mode will write it back later
2777 		 */
2778 		mapping->writeback_index = mpd->first_page;
2779 
2780 out_writepages:
2781 	trace_ext4_writepages_result(inode, wbc, ret,
2782 				     nr_to_write - wbc->nr_to_write);
2783 	return ret;
2784 }
2785 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2786 static int ext4_writepages(struct address_space *mapping,
2787 			   struct writeback_control *wbc)
2788 {
2789 	struct super_block *sb = mapping->host->i_sb;
2790 	struct mpage_da_data mpd = {
2791 		.inode = mapping->host,
2792 		.wbc = wbc,
2793 		.can_map = 1,
2794 	};
2795 	int ret;
2796 	int alloc_ctx;
2797 
2798 	if (unlikely(ext4_forced_shutdown(sb)))
2799 		return -EIO;
2800 
2801 	alloc_ctx = ext4_writepages_down_read(sb);
2802 	ret = ext4_do_writepages(&mpd);
2803 	/*
2804 	 * For data=journal writeback we could have come across pages marked
2805 	 * for delayed dirtying (PageChecked) which were just added to the
2806 	 * running transaction. Try once more to get them to stable storage.
2807 	 */
2808 	if (!ret && mpd.journalled_more_data)
2809 		ret = ext4_do_writepages(&mpd);
2810 	ext4_writepages_up_read(sb, alloc_ctx);
2811 
2812 	return ret;
2813 }
2814 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2815 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2816 {
2817 	struct writeback_control wbc = {
2818 		.sync_mode = WB_SYNC_ALL,
2819 		.nr_to_write = LONG_MAX,
2820 		.range_start = jinode->i_dirty_start,
2821 		.range_end = jinode->i_dirty_end,
2822 	};
2823 	struct mpage_da_data mpd = {
2824 		.inode = jinode->i_vfs_inode,
2825 		.wbc = &wbc,
2826 		.can_map = 0,
2827 	};
2828 	return ext4_do_writepages(&mpd);
2829 }
2830 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2831 static int ext4_dax_writepages(struct address_space *mapping,
2832 			       struct writeback_control *wbc)
2833 {
2834 	int ret;
2835 	long nr_to_write = wbc->nr_to_write;
2836 	struct inode *inode = mapping->host;
2837 	int alloc_ctx;
2838 
2839 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2840 		return -EIO;
2841 
2842 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2843 	trace_ext4_writepages(inode, wbc);
2844 
2845 	ret = dax_writeback_mapping_range(mapping,
2846 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2847 	trace_ext4_writepages_result(inode, wbc, ret,
2848 				     nr_to_write - wbc->nr_to_write);
2849 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2850 	return ret;
2851 }
2852 
ext4_nonda_switch(struct super_block * sb)2853 static int ext4_nonda_switch(struct super_block *sb)
2854 {
2855 	s64 free_clusters, dirty_clusters;
2856 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2857 
2858 	/*
2859 	 * switch to non delalloc mode if we are running low
2860 	 * on free block. The free block accounting via percpu
2861 	 * counters can get slightly wrong with percpu_counter_batch getting
2862 	 * accumulated on each CPU without updating global counters
2863 	 * Delalloc need an accurate free block accounting. So switch
2864 	 * to non delalloc when we are near to error range.
2865 	 */
2866 	free_clusters =
2867 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2868 	dirty_clusters =
2869 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2870 	/*
2871 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2872 	 */
2873 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2874 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2875 
2876 	if (2 * free_clusters < 3 * dirty_clusters ||
2877 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2878 		/*
2879 		 * free block count is less than 150% of dirty blocks
2880 		 * or free blocks is less than watermark
2881 		 */
2882 		return 1;
2883 	}
2884 	return 0;
2885 }
2886 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2887 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2888 			       loff_t pos, unsigned len,
2889 			       struct page **pagep, void **fsdata)
2890 {
2891 	int ret, retries = 0;
2892 	struct folio *folio;
2893 	pgoff_t index;
2894 	struct inode *inode = mapping->host;
2895 
2896 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2897 		return -EIO;
2898 
2899 	index = pos >> PAGE_SHIFT;
2900 
2901 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2902 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2903 		return ext4_write_begin(file, mapping, pos,
2904 					len, pagep, fsdata);
2905 	}
2906 	*fsdata = (void *)0;
2907 	trace_ext4_da_write_begin(inode, pos, len);
2908 
2909 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2910 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2911 						      pagep, fsdata);
2912 		if (ret < 0)
2913 			return ret;
2914 		if (ret == 1)
2915 			return 0;
2916 	}
2917 
2918 retry:
2919 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2920 			mapping_gfp_mask(mapping));
2921 	if (IS_ERR(folio))
2922 		return PTR_ERR(folio);
2923 
2924 #ifdef CONFIG_FS_ENCRYPTION
2925 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2926 #else
2927 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2928 #endif
2929 	if (ret < 0) {
2930 		folio_unlock(folio);
2931 		folio_put(folio);
2932 		/*
2933 		 * block_write_begin may have instantiated a few blocks
2934 		 * outside i_size.  Trim these off again. Don't need
2935 		 * i_size_read because we hold inode lock.
2936 		 */
2937 		if (pos + len > inode->i_size)
2938 			ext4_truncate_failed_write(inode);
2939 
2940 		if (ret == -ENOSPC &&
2941 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2942 			goto retry;
2943 		return ret;
2944 	}
2945 
2946 	*pagep = &folio->page;
2947 	return ret;
2948 }
2949 
2950 /*
2951  * Check if we should update i_disksize
2952  * when write to the end of file but not require block allocation
2953  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2954 static int ext4_da_should_update_i_disksize(struct folio *folio,
2955 					    unsigned long offset)
2956 {
2957 	struct buffer_head *bh;
2958 	struct inode *inode = folio->mapping->host;
2959 	unsigned int idx;
2960 	int i;
2961 
2962 	bh = folio_buffers(folio);
2963 	idx = offset >> inode->i_blkbits;
2964 
2965 	for (i = 0; i < idx; i++)
2966 		bh = bh->b_this_page;
2967 
2968 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2969 		return 0;
2970 	return 1;
2971 }
2972 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2973 static int ext4_da_do_write_end(struct address_space *mapping,
2974 			loff_t pos, unsigned len, unsigned copied,
2975 			struct folio *folio)
2976 {
2977 	struct inode *inode = mapping->host;
2978 	loff_t old_size = inode->i_size;
2979 	bool disksize_changed = false;
2980 	loff_t new_i_size, zero_len = 0;
2981 	handle_t *handle;
2982 
2983 	if (unlikely(!folio_buffers(folio))) {
2984 		folio_unlock(folio);
2985 		folio_put(folio);
2986 		return -EIO;
2987 	}
2988 	/*
2989 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2990 	 * flag, which all that's needed to trigger page writeback.
2991 	 */
2992 	copied = block_write_end(NULL, mapping, pos, len, copied,
2993 			&folio->page, NULL);
2994 	new_i_size = pos + copied;
2995 
2996 	/*
2997 	 * It's important to update i_size while still holding folio lock,
2998 	 * because folio writeout could otherwise come in and zero beyond
2999 	 * i_size.
3000 	 *
3001 	 * Since we are holding inode lock, we are sure i_disksize <=
3002 	 * i_size. We also know that if i_disksize < i_size, there are
3003 	 * delalloc writes pending in the range up to i_size. If the end of
3004 	 * the current write is <= i_size, there's no need to touch
3005 	 * i_disksize since writeback will push i_disksize up to i_size
3006 	 * eventually. If the end of the current write is > i_size and
3007 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3008 	 * checked, we need to update i_disksize here as certain
3009 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3010 	 */
3011 	if (new_i_size > inode->i_size) {
3012 		unsigned long end;
3013 
3014 		i_size_write(inode, new_i_size);
3015 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3016 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3017 			ext4_update_i_disksize(inode, new_i_size);
3018 			disksize_changed = true;
3019 		}
3020 	}
3021 
3022 	folio_unlock(folio);
3023 	folio_put(folio);
3024 
3025 	if (pos > old_size) {
3026 		pagecache_isize_extended(inode, old_size, pos);
3027 		zero_len = pos - old_size;
3028 	}
3029 
3030 	if (!disksize_changed && !zero_len)
3031 		return copied;
3032 
3033 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3034 	if (IS_ERR(handle))
3035 		return PTR_ERR(handle);
3036 	if (zero_len)
3037 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3038 	ext4_mark_inode_dirty(handle, inode);
3039 	ext4_journal_stop(handle);
3040 
3041 	return copied;
3042 }
3043 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3044 static int ext4_da_write_end(struct file *file,
3045 			     struct address_space *mapping,
3046 			     loff_t pos, unsigned len, unsigned copied,
3047 			     struct page *page, void *fsdata)
3048 {
3049 	struct inode *inode = mapping->host;
3050 	int write_mode = (int)(unsigned long)fsdata;
3051 	struct folio *folio = page_folio(page);
3052 
3053 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3054 		return ext4_write_end(file, mapping, pos,
3055 				      len, copied, &folio->page, fsdata);
3056 
3057 	trace_ext4_da_write_end(inode, pos, len, copied);
3058 
3059 	if (write_mode != CONVERT_INLINE_DATA &&
3060 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3061 	    ext4_has_inline_data(inode))
3062 		return ext4_write_inline_data_end(inode, pos, len, copied,
3063 						  folio);
3064 
3065 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3066 		copied = 0;
3067 
3068 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3069 }
3070 
3071 /*
3072  * Force all delayed allocation blocks to be allocated for a given inode.
3073  */
ext4_alloc_da_blocks(struct inode * inode)3074 int ext4_alloc_da_blocks(struct inode *inode)
3075 {
3076 	trace_ext4_alloc_da_blocks(inode);
3077 
3078 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3079 		return 0;
3080 
3081 	/*
3082 	 * We do something simple for now.  The filemap_flush() will
3083 	 * also start triggering a write of the data blocks, which is
3084 	 * not strictly speaking necessary (and for users of
3085 	 * laptop_mode, not even desirable).  However, to do otherwise
3086 	 * would require replicating code paths in:
3087 	 *
3088 	 * ext4_writepages() ->
3089 	 *    write_cache_pages() ---> (via passed in callback function)
3090 	 *        __mpage_da_writepage() -->
3091 	 *           mpage_add_bh_to_extent()
3092 	 *           mpage_da_map_blocks()
3093 	 *
3094 	 * The problem is that write_cache_pages(), located in
3095 	 * mm/page-writeback.c, marks pages clean in preparation for
3096 	 * doing I/O, which is not desirable if we're not planning on
3097 	 * doing I/O at all.
3098 	 *
3099 	 * We could call write_cache_pages(), and then redirty all of
3100 	 * the pages by calling redirty_page_for_writepage() but that
3101 	 * would be ugly in the extreme.  So instead we would need to
3102 	 * replicate parts of the code in the above functions,
3103 	 * simplifying them because we wouldn't actually intend to
3104 	 * write out the pages, but rather only collect contiguous
3105 	 * logical block extents, call the multi-block allocator, and
3106 	 * then update the buffer heads with the block allocations.
3107 	 *
3108 	 * For now, though, we'll cheat by calling filemap_flush(),
3109 	 * which will map the blocks, and start the I/O, but not
3110 	 * actually wait for the I/O to complete.
3111 	 */
3112 	return filemap_flush(inode->i_mapping);
3113 }
3114 
3115 /*
3116  * bmap() is special.  It gets used by applications such as lilo and by
3117  * the swapper to find the on-disk block of a specific piece of data.
3118  *
3119  * Naturally, this is dangerous if the block concerned is still in the
3120  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3121  * filesystem and enables swap, then they may get a nasty shock when the
3122  * data getting swapped to that swapfile suddenly gets overwritten by
3123  * the original zero's written out previously to the journal and
3124  * awaiting writeback in the kernel's buffer cache.
3125  *
3126  * So, if we see any bmap calls here on a modified, data-journaled file,
3127  * take extra steps to flush any blocks which might be in the cache.
3128  */
ext4_bmap(struct address_space * mapping,sector_t block)3129 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3130 {
3131 	struct inode *inode = mapping->host;
3132 	sector_t ret = 0;
3133 
3134 	inode_lock_shared(inode);
3135 	/*
3136 	 * We can get here for an inline file via the FIBMAP ioctl
3137 	 */
3138 	if (ext4_has_inline_data(inode))
3139 		goto out;
3140 
3141 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3142 	    (test_opt(inode->i_sb, DELALLOC) ||
3143 	     ext4_should_journal_data(inode))) {
3144 		/*
3145 		 * With delalloc or journalled data we want to sync the file so
3146 		 * that we can make sure we allocate blocks for file and data
3147 		 * is in place for the user to see it
3148 		 */
3149 		filemap_write_and_wait(mapping);
3150 	}
3151 
3152 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3153 
3154 out:
3155 	inode_unlock_shared(inode);
3156 	return ret;
3157 }
3158 
ext4_read_folio(struct file * file,struct folio * folio)3159 static int ext4_read_folio(struct file *file, struct folio *folio)
3160 {
3161 	int ret = -EAGAIN;
3162 	struct inode *inode = folio->mapping->host;
3163 
3164 	trace_ext4_read_folio(inode, folio);
3165 
3166 	if (ext4_has_inline_data(inode))
3167 		ret = ext4_readpage_inline(inode, folio);
3168 
3169 	if (ret == -EAGAIN)
3170 		return ext4_mpage_readpages(inode, NULL, folio);
3171 
3172 	return ret;
3173 }
3174 
ext4_readahead(struct readahead_control * rac)3175 static void ext4_readahead(struct readahead_control *rac)
3176 {
3177 	struct inode *inode = rac->mapping->host;
3178 
3179 	/* If the file has inline data, no need to do readahead. */
3180 	if (ext4_has_inline_data(inode))
3181 		return;
3182 
3183 	ext4_mpage_readpages(inode, rac, NULL);
3184 }
3185 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3186 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3187 				size_t length)
3188 {
3189 	trace_ext4_invalidate_folio(folio, offset, length);
3190 
3191 	/* No journalling happens on data buffers when this function is used */
3192 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3193 
3194 	block_invalidate_folio(folio, offset, length);
3195 }
3196 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3197 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3198 					    size_t offset, size_t length)
3199 {
3200 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3201 
3202 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3203 
3204 	/*
3205 	 * If it's a full truncate we just forget about the pending dirtying
3206 	 */
3207 	if (offset == 0 && length == folio_size(folio))
3208 		folio_clear_checked(folio);
3209 
3210 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3211 }
3212 
3213 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3214 static void ext4_journalled_invalidate_folio(struct folio *folio,
3215 					   size_t offset,
3216 					   size_t length)
3217 {
3218 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3219 }
3220 
ext4_release_folio(struct folio * folio,gfp_t wait)3221 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3222 {
3223 	struct inode *inode = folio->mapping->host;
3224 	journal_t *journal = EXT4_JOURNAL(inode);
3225 
3226 	trace_ext4_release_folio(inode, folio);
3227 
3228 	/* Page has dirty journalled data -> cannot release */
3229 	if (folio_test_checked(folio))
3230 		return false;
3231 	if (journal)
3232 		return jbd2_journal_try_to_free_buffers(journal, folio);
3233 	else
3234 		return try_to_free_buffers(folio);
3235 }
3236 
ext4_inode_datasync_dirty(struct inode * inode)3237 static bool ext4_inode_datasync_dirty(struct inode *inode)
3238 {
3239 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3240 
3241 	if (journal) {
3242 		if (jbd2_transaction_committed(journal,
3243 			EXT4_I(inode)->i_datasync_tid))
3244 			return false;
3245 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3246 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3247 		return true;
3248 	}
3249 
3250 	/* Any metadata buffers to write? */
3251 	if (!list_empty(&inode->i_mapping->private_list))
3252 		return true;
3253 	return inode->i_state & I_DIRTY_DATASYNC;
3254 }
3255 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3256 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3257 			   struct ext4_map_blocks *map, loff_t offset,
3258 			   loff_t length, unsigned int flags)
3259 {
3260 	u8 blkbits = inode->i_blkbits;
3261 
3262 	/*
3263 	 * Writes that span EOF might trigger an I/O size update on completion,
3264 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3265 	 * there is no other metadata changes being made or are pending.
3266 	 */
3267 	iomap->flags = 0;
3268 	if (ext4_inode_datasync_dirty(inode) ||
3269 	    offset + length > i_size_read(inode))
3270 		iomap->flags |= IOMAP_F_DIRTY;
3271 
3272 	if (map->m_flags & EXT4_MAP_NEW)
3273 		iomap->flags |= IOMAP_F_NEW;
3274 
3275 	if (flags & IOMAP_DAX)
3276 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3277 	else
3278 		iomap->bdev = inode->i_sb->s_bdev;
3279 	iomap->offset = (u64) map->m_lblk << blkbits;
3280 	iomap->length = (u64) map->m_len << blkbits;
3281 
3282 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3283 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3284 		iomap->flags |= IOMAP_F_MERGED;
3285 
3286 	/*
3287 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3288 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3289 	 * set. In order for any allocated unwritten extents to be converted
3290 	 * into written extents correctly within the ->end_io() handler, we
3291 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3292 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3293 	 * been set first.
3294 	 */
3295 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3296 		iomap->type = IOMAP_UNWRITTEN;
3297 		iomap->addr = (u64) map->m_pblk << blkbits;
3298 		if (flags & IOMAP_DAX)
3299 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3300 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3301 		iomap->type = IOMAP_MAPPED;
3302 		iomap->addr = (u64) map->m_pblk << blkbits;
3303 		if (flags & IOMAP_DAX)
3304 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3305 	} else {
3306 		iomap->type = IOMAP_HOLE;
3307 		iomap->addr = IOMAP_NULL_ADDR;
3308 	}
3309 }
3310 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3311 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3312 			    unsigned int flags)
3313 {
3314 	handle_t *handle;
3315 	u8 blkbits = inode->i_blkbits;
3316 	int ret, dio_credits, m_flags = 0, retries = 0;
3317 
3318 	/*
3319 	 * Trim the mapping request to the maximum value that we can map at
3320 	 * once for direct I/O.
3321 	 */
3322 	if (map->m_len > DIO_MAX_BLOCKS)
3323 		map->m_len = DIO_MAX_BLOCKS;
3324 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3325 
3326 retry:
3327 	/*
3328 	 * Either we allocate blocks and then don't get an unwritten extent, so
3329 	 * in that case we have reserved enough credits. Or, the blocks are
3330 	 * already allocated and unwritten. In that case, the extent conversion
3331 	 * fits into the credits as well.
3332 	 */
3333 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3334 	if (IS_ERR(handle))
3335 		return PTR_ERR(handle);
3336 
3337 	/*
3338 	 * DAX and direct I/O are the only two operations that are currently
3339 	 * supported with IOMAP_WRITE.
3340 	 */
3341 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3342 	if (flags & IOMAP_DAX)
3343 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3344 	/*
3345 	 * We use i_size instead of i_disksize here because delalloc writeback
3346 	 * can complete at any point during the I/O and subsequently push the
3347 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3348 	 * happening and thus expose allocated blocks to direct I/O reads.
3349 	 */
3350 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3351 		m_flags = EXT4_GET_BLOCKS_CREATE;
3352 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3353 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3354 
3355 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3356 
3357 	/*
3358 	 * We cannot fill holes in indirect tree based inodes as that could
3359 	 * expose stale data in the case of a crash. Use the magic error code
3360 	 * to fallback to buffered I/O.
3361 	 */
3362 	if (!m_flags && !ret)
3363 		ret = -ENOTBLK;
3364 
3365 	ext4_journal_stop(handle);
3366 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3367 		goto retry;
3368 
3369 	return ret;
3370 }
3371 
3372 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3373 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3374 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3375 {
3376 	int ret;
3377 	struct ext4_map_blocks map;
3378 	u8 blkbits = inode->i_blkbits;
3379 
3380 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3381 		return -EINVAL;
3382 
3383 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3384 		return -ERANGE;
3385 
3386 	/*
3387 	 * Calculate the first and last logical blocks respectively.
3388 	 */
3389 	map.m_lblk = offset >> blkbits;
3390 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3391 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3392 
3393 	if (flags & IOMAP_WRITE) {
3394 		/*
3395 		 * We check here if the blocks are already allocated, then we
3396 		 * don't need to start a journal txn and we can directly return
3397 		 * the mapping information. This could boost performance
3398 		 * especially in multi-threaded overwrite requests.
3399 		 */
3400 		if (offset + length <= i_size_read(inode)) {
3401 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3402 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3403 				goto out;
3404 		}
3405 		ret = ext4_iomap_alloc(inode, &map, flags);
3406 	} else {
3407 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3408 	}
3409 
3410 	if (ret < 0)
3411 		return ret;
3412 out:
3413 	/*
3414 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3415 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3416 	 * limiting the length of the mapping returned.
3417 	 */
3418 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3419 
3420 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3421 
3422 	return 0;
3423 }
3424 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3425 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3426 		loff_t length, unsigned flags, struct iomap *iomap,
3427 		struct iomap *srcmap)
3428 {
3429 	int ret;
3430 
3431 	/*
3432 	 * Even for writes we don't need to allocate blocks, so just pretend
3433 	 * we are reading to save overhead of starting a transaction.
3434 	 */
3435 	flags &= ~IOMAP_WRITE;
3436 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3437 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3438 	return ret;
3439 }
3440 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3441 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3442 			  ssize_t written, unsigned flags, struct iomap *iomap)
3443 {
3444 	/*
3445 	 * Check to see whether an error occurred while writing out the data to
3446 	 * the allocated blocks. If so, return the magic error code so that we
3447 	 * fallback to buffered I/O and attempt to complete the remainder of
3448 	 * the I/O. Any blocks that may have been allocated in preparation for
3449 	 * the direct I/O will be reused during buffered I/O.
3450 	 */
3451 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3452 		return -ENOTBLK;
3453 
3454 	return 0;
3455 }
3456 
3457 const struct iomap_ops ext4_iomap_ops = {
3458 	.iomap_begin		= ext4_iomap_begin,
3459 	.iomap_end		= ext4_iomap_end,
3460 };
3461 
3462 const struct iomap_ops ext4_iomap_overwrite_ops = {
3463 	.iomap_begin		= ext4_iomap_overwrite_begin,
3464 	.iomap_end		= ext4_iomap_end,
3465 };
3466 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3467 static bool ext4_iomap_is_delalloc(struct inode *inode,
3468 				   struct ext4_map_blocks *map)
3469 {
3470 	struct extent_status es;
3471 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3472 
3473 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3474 				  map->m_lblk, end, &es);
3475 
3476 	if (!es.es_len || es.es_lblk > end)
3477 		return false;
3478 
3479 	if (es.es_lblk > map->m_lblk) {
3480 		map->m_len = es.es_lblk - map->m_lblk;
3481 		return false;
3482 	}
3483 
3484 	offset = map->m_lblk - es.es_lblk;
3485 	map->m_len = es.es_len - offset;
3486 
3487 	return true;
3488 }
3489 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3490 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3491 				   loff_t length, unsigned int flags,
3492 				   struct iomap *iomap, struct iomap *srcmap)
3493 {
3494 	int ret;
3495 	bool delalloc = false;
3496 	struct ext4_map_blocks map;
3497 	u8 blkbits = inode->i_blkbits;
3498 
3499 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3500 		return -EINVAL;
3501 
3502 	if (ext4_has_inline_data(inode)) {
3503 		ret = ext4_inline_data_iomap(inode, iomap);
3504 		if (ret != -EAGAIN) {
3505 			if (ret == 0 && offset >= iomap->length)
3506 				ret = -ENOENT;
3507 			return ret;
3508 		}
3509 	}
3510 
3511 	/*
3512 	 * Calculate the first and last logical block respectively.
3513 	 */
3514 	map.m_lblk = offset >> blkbits;
3515 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3516 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3517 
3518 	/*
3519 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3520 	 * So handle it here itself instead of querying ext4_map_blocks().
3521 	 * Since ext4_map_blocks() will warn about it and will return
3522 	 * -EIO error.
3523 	 */
3524 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3525 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3526 
3527 		if (offset >= sbi->s_bitmap_maxbytes) {
3528 			map.m_flags = 0;
3529 			goto set_iomap;
3530 		}
3531 	}
3532 
3533 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3534 	if (ret < 0)
3535 		return ret;
3536 	if (ret == 0)
3537 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3538 
3539 set_iomap:
3540 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3541 	if (delalloc && iomap->type == IOMAP_HOLE)
3542 		iomap->type = IOMAP_DELALLOC;
3543 
3544 	return 0;
3545 }
3546 
3547 const struct iomap_ops ext4_iomap_report_ops = {
3548 	.iomap_begin = ext4_iomap_begin_report,
3549 };
3550 
3551 /*
3552  * For data=journal mode, folio should be marked dirty only when it was
3553  * writeably mapped. When that happens, it was already attached to the
3554  * transaction and marked as jbddirty (we take care of this in
3555  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3556  * so we should have nothing to do here, except for the case when someone
3557  * had the page pinned and dirtied the page through this pin (e.g. by doing
3558  * direct IO to it). In that case we'd need to attach buffers here to the
3559  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3560  * folio and leave attached buffers clean, because the buffers' dirty state is
3561  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3562  * the journalling code will explode.  So what we do is to mark the folio
3563  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3564  * to the transaction appropriately.
3565  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3566 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3567 		struct folio *folio)
3568 {
3569 	WARN_ON_ONCE(!folio_buffers(folio));
3570 	if (folio_maybe_dma_pinned(folio))
3571 		folio_set_checked(folio);
3572 	return filemap_dirty_folio(mapping, folio);
3573 }
3574 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3575 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3576 {
3577 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3578 	WARN_ON_ONCE(!folio_buffers(folio));
3579 	return block_dirty_folio(mapping, folio);
3580 }
3581 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3582 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3583 				    struct file *file, sector_t *span)
3584 {
3585 	return iomap_swapfile_activate(sis, file, span,
3586 				       &ext4_iomap_report_ops);
3587 }
3588 
3589 static const struct address_space_operations ext4_aops = {
3590 	.read_folio		= ext4_read_folio,
3591 	.readahead		= ext4_readahead,
3592 	.writepages		= ext4_writepages,
3593 	.write_begin		= ext4_write_begin,
3594 	.write_end		= ext4_write_end,
3595 	.dirty_folio		= ext4_dirty_folio,
3596 	.bmap			= ext4_bmap,
3597 	.invalidate_folio	= ext4_invalidate_folio,
3598 	.release_folio		= ext4_release_folio,
3599 	.direct_IO		= noop_direct_IO,
3600 	.migrate_folio		= buffer_migrate_folio,
3601 	.is_partially_uptodate  = block_is_partially_uptodate,
3602 	.error_remove_page	= generic_error_remove_page,
3603 	.swap_activate		= ext4_iomap_swap_activate,
3604 };
3605 
3606 static const struct address_space_operations ext4_journalled_aops = {
3607 	.read_folio		= ext4_read_folio,
3608 	.readahead		= ext4_readahead,
3609 	.writepages		= ext4_writepages,
3610 	.write_begin		= ext4_write_begin,
3611 	.write_end		= ext4_journalled_write_end,
3612 	.dirty_folio		= ext4_journalled_dirty_folio,
3613 	.bmap			= ext4_bmap,
3614 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3615 	.release_folio		= ext4_release_folio,
3616 	.direct_IO		= noop_direct_IO,
3617 	.migrate_folio		= buffer_migrate_folio_norefs,
3618 	.is_partially_uptodate  = block_is_partially_uptodate,
3619 	.error_remove_page	= generic_error_remove_page,
3620 	.swap_activate		= ext4_iomap_swap_activate,
3621 };
3622 
3623 static const struct address_space_operations ext4_da_aops = {
3624 	.read_folio		= ext4_read_folio,
3625 	.readahead		= ext4_readahead,
3626 	.writepages		= ext4_writepages,
3627 	.write_begin		= ext4_da_write_begin,
3628 	.write_end		= ext4_da_write_end,
3629 	.dirty_folio		= ext4_dirty_folio,
3630 	.bmap			= ext4_bmap,
3631 	.invalidate_folio	= ext4_invalidate_folio,
3632 	.release_folio		= ext4_release_folio,
3633 	.direct_IO		= noop_direct_IO,
3634 	.migrate_folio		= buffer_migrate_folio,
3635 	.is_partially_uptodate  = block_is_partially_uptodate,
3636 	.error_remove_page	= generic_error_remove_page,
3637 	.swap_activate		= ext4_iomap_swap_activate,
3638 };
3639 
3640 static const struct address_space_operations ext4_dax_aops = {
3641 	.writepages		= ext4_dax_writepages,
3642 	.direct_IO		= noop_direct_IO,
3643 	.dirty_folio		= noop_dirty_folio,
3644 	.bmap			= ext4_bmap,
3645 	.swap_activate		= ext4_iomap_swap_activate,
3646 };
3647 
ext4_set_aops(struct inode * inode)3648 void ext4_set_aops(struct inode *inode)
3649 {
3650 	switch (ext4_inode_journal_mode(inode)) {
3651 	case EXT4_INODE_ORDERED_DATA_MODE:
3652 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3653 		break;
3654 	case EXT4_INODE_JOURNAL_DATA_MODE:
3655 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3656 		return;
3657 	default:
3658 		BUG();
3659 	}
3660 	if (IS_DAX(inode))
3661 		inode->i_mapping->a_ops = &ext4_dax_aops;
3662 	else if (test_opt(inode->i_sb, DELALLOC))
3663 		inode->i_mapping->a_ops = &ext4_da_aops;
3664 	else
3665 		inode->i_mapping->a_ops = &ext4_aops;
3666 }
3667 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3668 static int __ext4_block_zero_page_range(handle_t *handle,
3669 		struct address_space *mapping, loff_t from, loff_t length)
3670 {
3671 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3672 	unsigned offset = from & (PAGE_SIZE-1);
3673 	unsigned blocksize, pos;
3674 	ext4_lblk_t iblock;
3675 	struct inode *inode = mapping->host;
3676 	struct buffer_head *bh;
3677 	struct folio *folio;
3678 	int err = 0;
3679 
3680 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3681 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3682 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3683 	if (IS_ERR(folio))
3684 		return PTR_ERR(folio);
3685 
3686 	blocksize = inode->i_sb->s_blocksize;
3687 
3688 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3689 
3690 	bh = folio_buffers(folio);
3691 	if (!bh) {
3692 		create_empty_buffers(&folio->page, blocksize, 0);
3693 		bh = folio_buffers(folio);
3694 	}
3695 
3696 	/* Find the buffer that contains "offset" */
3697 	pos = blocksize;
3698 	while (offset >= pos) {
3699 		bh = bh->b_this_page;
3700 		iblock++;
3701 		pos += blocksize;
3702 	}
3703 	if (buffer_freed(bh)) {
3704 		BUFFER_TRACE(bh, "freed: skip");
3705 		goto unlock;
3706 	}
3707 	if (!buffer_mapped(bh)) {
3708 		BUFFER_TRACE(bh, "unmapped");
3709 		ext4_get_block(inode, iblock, bh, 0);
3710 		/* unmapped? It's a hole - nothing to do */
3711 		if (!buffer_mapped(bh)) {
3712 			BUFFER_TRACE(bh, "still unmapped");
3713 			goto unlock;
3714 		}
3715 	}
3716 
3717 	/* Ok, it's mapped. Make sure it's up-to-date */
3718 	if (folio_test_uptodate(folio))
3719 		set_buffer_uptodate(bh);
3720 
3721 	if (!buffer_uptodate(bh)) {
3722 		err = ext4_read_bh_lock(bh, 0, true);
3723 		if (err)
3724 			goto unlock;
3725 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3726 			/* We expect the key to be set. */
3727 			BUG_ON(!fscrypt_has_encryption_key(inode));
3728 			err = fscrypt_decrypt_pagecache_blocks(folio,
3729 							       blocksize,
3730 							       bh_offset(bh));
3731 			if (err) {
3732 				clear_buffer_uptodate(bh);
3733 				goto unlock;
3734 			}
3735 		}
3736 	}
3737 	if (ext4_should_journal_data(inode)) {
3738 		BUFFER_TRACE(bh, "get write access");
3739 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3740 						    EXT4_JTR_NONE);
3741 		if (err)
3742 			goto unlock;
3743 	}
3744 	folio_zero_range(folio, offset, length);
3745 	BUFFER_TRACE(bh, "zeroed end of block");
3746 
3747 	if (ext4_should_journal_data(inode)) {
3748 		err = ext4_dirty_journalled_data(handle, bh);
3749 	} else {
3750 		err = 0;
3751 		mark_buffer_dirty(bh);
3752 		if (ext4_should_order_data(inode))
3753 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3754 					length);
3755 	}
3756 
3757 unlock:
3758 	folio_unlock(folio);
3759 	folio_put(folio);
3760 	return err;
3761 }
3762 
3763 /*
3764  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3765  * starting from file offset 'from'.  The range to be zero'd must
3766  * be contained with in one block.  If the specified range exceeds
3767  * the end of the block it will be shortened to end of the block
3768  * that corresponds to 'from'
3769  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3770 static int ext4_block_zero_page_range(handle_t *handle,
3771 		struct address_space *mapping, loff_t from, loff_t length)
3772 {
3773 	struct inode *inode = mapping->host;
3774 	unsigned offset = from & (PAGE_SIZE-1);
3775 	unsigned blocksize = inode->i_sb->s_blocksize;
3776 	unsigned max = blocksize - (offset & (blocksize - 1));
3777 
3778 	/*
3779 	 * correct length if it does not fall between
3780 	 * 'from' and the end of the block
3781 	 */
3782 	if (length > max || length < 0)
3783 		length = max;
3784 
3785 	if (IS_DAX(inode)) {
3786 		return dax_zero_range(inode, from, length, NULL,
3787 				      &ext4_iomap_ops);
3788 	}
3789 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3790 }
3791 
3792 /*
3793  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3794  * up to the end of the block which corresponds to `from'.
3795  * This required during truncate. We need to physically zero the tail end
3796  * of that block so it doesn't yield old data if the file is later grown.
3797  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3798 static int ext4_block_truncate_page(handle_t *handle,
3799 		struct address_space *mapping, loff_t from)
3800 {
3801 	unsigned offset = from & (PAGE_SIZE-1);
3802 	unsigned length;
3803 	unsigned blocksize;
3804 	struct inode *inode = mapping->host;
3805 
3806 	/* If we are processing an encrypted inode during orphan list handling */
3807 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3808 		return 0;
3809 
3810 	blocksize = inode->i_sb->s_blocksize;
3811 	length = blocksize - (offset & (blocksize - 1));
3812 
3813 	return ext4_block_zero_page_range(handle, mapping, from, length);
3814 }
3815 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3816 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3817 			     loff_t lstart, loff_t length)
3818 {
3819 	struct super_block *sb = inode->i_sb;
3820 	struct address_space *mapping = inode->i_mapping;
3821 	unsigned partial_start, partial_end;
3822 	ext4_fsblk_t start, end;
3823 	loff_t byte_end = (lstart + length - 1);
3824 	int err = 0;
3825 
3826 	partial_start = lstart & (sb->s_blocksize - 1);
3827 	partial_end = byte_end & (sb->s_blocksize - 1);
3828 
3829 	start = lstart >> sb->s_blocksize_bits;
3830 	end = byte_end >> sb->s_blocksize_bits;
3831 
3832 	/* Handle partial zero within the single block */
3833 	if (start == end &&
3834 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3835 		err = ext4_block_zero_page_range(handle, mapping,
3836 						 lstart, length);
3837 		return err;
3838 	}
3839 	/* Handle partial zero out on the start of the range */
3840 	if (partial_start) {
3841 		err = ext4_block_zero_page_range(handle, mapping,
3842 						 lstart, sb->s_blocksize);
3843 		if (err)
3844 			return err;
3845 	}
3846 	/* Handle partial zero out on the end of the range */
3847 	if (partial_end != sb->s_blocksize - 1)
3848 		err = ext4_block_zero_page_range(handle, mapping,
3849 						 byte_end - partial_end,
3850 						 partial_end + 1);
3851 	return err;
3852 }
3853 
ext4_can_truncate(struct inode * inode)3854 int ext4_can_truncate(struct inode *inode)
3855 {
3856 	if (S_ISREG(inode->i_mode))
3857 		return 1;
3858 	if (S_ISDIR(inode->i_mode))
3859 		return 1;
3860 	if (S_ISLNK(inode->i_mode))
3861 		return !ext4_inode_is_fast_symlink(inode);
3862 	return 0;
3863 }
3864 
3865 /*
3866  * We have to make sure i_disksize gets properly updated before we truncate
3867  * page cache due to hole punching or zero range. Otherwise i_disksize update
3868  * can get lost as it may have been postponed to submission of writeback but
3869  * that will never happen after we truncate page cache.
3870  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3871 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3872 				      loff_t len)
3873 {
3874 	handle_t *handle;
3875 	int ret;
3876 
3877 	loff_t size = i_size_read(inode);
3878 
3879 	WARN_ON(!inode_is_locked(inode));
3880 	if (offset > size || offset + len < size)
3881 		return 0;
3882 
3883 	if (EXT4_I(inode)->i_disksize >= size)
3884 		return 0;
3885 
3886 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3887 	if (IS_ERR(handle))
3888 		return PTR_ERR(handle);
3889 	ext4_update_i_disksize(inode, size);
3890 	ret = ext4_mark_inode_dirty(handle, inode);
3891 	ext4_journal_stop(handle);
3892 
3893 	return ret;
3894 }
3895 
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)3896 static inline void ext4_truncate_folio(struct inode *inode,
3897 				       loff_t start, loff_t end)
3898 {
3899 	unsigned long blocksize = i_blocksize(inode);
3900 	struct folio *folio;
3901 
3902 	/* Nothing to be done if no complete block needs to be truncated. */
3903 	if (round_up(start, blocksize) >= round_down(end, blocksize))
3904 		return;
3905 
3906 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3907 	if (IS_ERR(folio))
3908 		return;
3909 
3910 	if (folio_mkclean(folio))
3911 		folio_mark_dirty(folio);
3912 	folio_unlock(folio);
3913 	folio_put(folio);
3914 }
3915 
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)3916 int ext4_truncate_page_cache_block_range(struct inode *inode,
3917 					 loff_t start, loff_t end)
3918 {
3919 	unsigned long blocksize = i_blocksize(inode);
3920 	int ret;
3921 
3922 	/*
3923 	 * For journalled data we need to write (and checkpoint) pages
3924 	 * before discarding page cache to avoid inconsitent data on disk
3925 	 * in case of crash before freeing or unwritten converting trans
3926 	 * is committed.
3927 	 */
3928 	if (ext4_should_journal_data(inode)) {
3929 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
3930 						   end - 1);
3931 		if (ret)
3932 			return ret;
3933 		goto truncate_pagecache;
3934 	}
3935 
3936 	/*
3937 	 * If the block size is less than the page size, the file's mapped
3938 	 * blocks within one page could be freed or converted to unwritten.
3939 	 * So it's necessary to remove writable userspace mappings, and then
3940 	 * ext4_page_mkwrite() can be called during subsequent write access
3941 	 * to these partial folios.
3942 	 */
3943 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3944 	    blocksize < PAGE_SIZE && start < inode->i_size) {
3945 		loff_t page_boundary = round_up(start, PAGE_SIZE);
3946 
3947 		ext4_truncate_folio(inode, start, min(page_boundary, end));
3948 		if (end > page_boundary)
3949 			ext4_truncate_folio(inode,
3950 					    round_down(end, PAGE_SIZE), end);
3951 	}
3952 
3953 truncate_pagecache:
3954 	truncate_pagecache_range(inode, start, end - 1);
3955 	return 0;
3956 }
3957 
ext4_wait_dax_page(struct inode * inode)3958 static void ext4_wait_dax_page(struct inode *inode)
3959 {
3960 	filemap_invalidate_unlock(inode->i_mapping);
3961 	schedule();
3962 	filemap_invalidate_lock(inode->i_mapping);
3963 }
3964 
ext4_break_layouts(struct inode * inode)3965 int ext4_break_layouts(struct inode *inode)
3966 {
3967 	struct page *page;
3968 	int error;
3969 
3970 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3971 		return -EINVAL;
3972 
3973 	do {
3974 		page = dax_layout_busy_page(inode->i_mapping);
3975 		if (!page)
3976 			return 0;
3977 
3978 		error = ___wait_var_event(&page->_refcount,
3979 				atomic_read(&page->_refcount) == 1,
3980 				TASK_INTERRUPTIBLE, 0, 0,
3981 				ext4_wait_dax_page(inode));
3982 	} while (error == 0);
3983 
3984 	return error;
3985 }
3986 
3987 /*
3988  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3989  * associated with the given offset and length
3990  *
3991  * @inode:  File inode
3992  * @offset: The offset where the hole will begin
3993  * @len:    The length of the hole
3994  *
3995  * Returns: 0 on success or negative on failure
3996  */
3997 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3998 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3999 {
4000 	struct inode *inode = file_inode(file);
4001 	struct super_block *sb = inode->i_sb;
4002 	ext4_lblk_t first_block, stop_block;
4003 	struct address_space *mapping = inode->i_mapping;
4004 	loff_t first_block_offset, last_block_offset, max_length;
4005 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4006 	handle_t *handle;
4007 	unsigned int credits;
4008 	int ret = 0, ret2 = 0;
4009 
4010 	trace_ext4_punch_hole(inode, offset, length, 0);
4011 
4012 	inode_lock(inode);
4013 
4014 	/* No need to punch hole beyond i_size */
4015 	if (offset >= inode->i_size)
4016 		goto out_mutex;
4017 
4018 	/*
4019 	 * If the hole extends beyond i_size, set the hole
4020 	 * to end after the page that contains i_size
4021 	 */
4022 	if (offset + length > inode->i_size) {
4023 		length = inode->i_size +
4024 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4025 		   offset;
4026 	}
4027 
4028 	/*
4029 	 * For punch hole the length + offset needs to be within one block
4030 	 * before last range. Adjust the length if it goes beyond that limit.
4031 	 */
4032 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4033 	if (offset + length > max_length)
4034 		length = max_length - offset;
4035 
4036 	if (offset & (sb->s_blocksize - 1) ||
4037 	    (offset + length) & (sb->s_blocksize - 1)) {
4038 		/*
4039 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4040 		 * partial block
4041 		 */
4042 		ret = ext4_inode_attach_jinode(inode);
4043 		if (ret < 0)
4044 			goto out_mutex;
4045 
4046 	}
4047 
4048 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4049 	inode_dio_wait(inode);
4050 
4051 	ret = file_modified(file);
4052 	if (ret)
4053 		goto out_mutex;
4054 
4055 	/*
4056 	 * Prevent page faults from reinstantiating pages we have released from
4057 	 * page cache.
4058 	 */
4059 	filemap_invalidate_lock(mapping);
4060 
4061 	ret = ext4_break_layouts(inode);
4062 	if (ret)
4063 		goto out_dio;
4064 
4065 	first_block_offset = round_up(offset, sb->s_blocksize);
4066 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4067 
4068 	/* Now release the pages and zero block aligned part of pages*/
4069 	if (last_block_offset > first_block_offset) {
4070 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4071 		if (ret)
4072 			goto out_dio;
4073 
4074 		ret = ext4_truncate_page_cache_block_range(inode,
4075 				first_block_offset, last_block_offset + 1);
4076 		if (ret)
4077 			goto out_dio;
4078 	}
4079 
4080 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4081 		credits = ext4_writepage_trans_blocks(inode);
4082 	else
4083 		credits = ext4_blocks_for_truncate(inode);
4084 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4085 	if (IS_ERR(handle)) {
4086 		ret = PTR_ERR(handle);
4087 		ext4_std_error(sb, ret);
4088 		goto out_dio;
4089 	}
4090 
4091 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4092 				       length);
4093 	if (ret)
4094 		goto out_stop;
4095 
4096 	first_block = (offset + sb->s_blocksize - 1) >>
4097 		EXT4_BLOCK_SIZE_BITS(sb);
4098 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4099 
4100 	/* If there are blocks to remove, do it */
4101 	if (stop_block > first_block) {
4102 
4103 		down_write(&EXT4_I(inode)->i_data_sem);
4104 		ext4_discard_preallocations(inode, 0);
4105 
4106 		ext4_es_remove_extent(inode, first_block,
4107 				      stop_block - first_block);
4108 
4109 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4110 			ret = ext4_ext_remove_space(inode, first_block,
4111 						    stop_block - 1);
4112 		else
4113 			ret = ext4_ind_remove_space(handle, inode, first_block,
4114 						    stop_block);
4115 
4116 		up_write(&EXT4_I(inode)->i_data_sem);
4117 	}
4118 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4119 	if (IS_SYNC(inode))
4120 		ext4_handle_sync(handle);
4121 
4122 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4123 	ret2 = ext4_mark_inode_dirty(handle, inode);
4124 	if (unlikely(ret2))
4125 		ret = ret2;
4126 	if (ret >= 0)
4127 		ext4_update_inode_fsync_trans(handle, inode, 1);
4128 out_stop:
4129 	ext4_journal_stop(handle);
4130 out_dio:
4131 	filemap_invalidate_unlock(mapping);
4132 out_mutex:
4133 	inode_unlock(inode);
4134 	return ret;
4135 }
4136 
ext4_inode_attach_jinode(struct inode * inode)4137 int ext4_inode_attach_jinode(struct inode *inode)
4138 {
4139 	struct ext4_inode_info *ei = EXT4_I(inode);
4140 	struct jbd2_inode *jinode;
4141 
4142 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4143 		return 0;
4144 
4145 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4146 	spin_lock(&inode->i_lock);
4147 	if (!ei->jinode) {
4148 		if (!jinode) {
4149 			spin_unlock(&inode->i_lock);
4150 			return -ENOMEM;
4151 		}
4152 		ei->jinode = jinode;
4153 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4154 		jinode = NULL;
4155 	}
4156 	spin_unlock(&inode->i_lock);
4157 	if (unlikely(jinode != NULL))
4158 		jbd2_free_inode(jinode);
4159 	return 0;
4160 }
4161 
4162 /*
4163  * ext4_truncate()
4164  *
4165  * We block out ext4_get_block() block instantiations across the entire
4166  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4167  * simultaneously on behalf of the same inode.
4168  *
4169  * As we work through the truncate and commit bits of it to the journal there
4170  * is one core, guiding principle: the file's tree must always be consistent on
4171  * disk.  We must be able to restart the truncate after a crash.
4172  *
4173  * The file's tree may be transiently inconsistent in memory (although it
4174  * probably isn't), but whenever we close off and commit a journal transaction,
4175  * the contents of (the filesystem + the journal) must be consistent and
4176  * restartable.  It's pretty simple, really: bottom up, right to left (although
4177  * left-to-right works OK too).
4178  *
4179  * Note that at recovery time, journal replay occurs *before* the restart of
4180  * truncate against the orphan inode list.
4181  *
4182  * The committed inode has the new, desired i_size (which is the same as
4183  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4184  * that this inode's truncate did not complete and it will again call
4185  * ext4_truncate() to have another go.  So there will be instantiated blocks
4186  * to the right of the truncation point in a crashed ext4 filesystem.  But
4187  * that's fine - as long as they are linked from the inode, the post-crash
4188  * ext4_truncate() run will find them and release them.
4189  */
ext4_truncate(struct inode * inode)4190 int ext4_truncate(struct inode *inode)
4191 {
4192 	struct ext4_inode_info *ei = EXT4_I(inode);
4193 	unsigned int credits;
4194 	int err = 0, err2;
4195 	handle_t *handle;
4196 	struct address_space *mapping = inode->i_mapping;
4197 
4198 	/*
4199 	 * There is a possibility that we're either freeing the inode
4200 	 * or it's a completely new inode. In those cases we might not
4201 	 * have i_rwsem locked because it's not necessary.
4202 	 */
4203 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4204 		WARN_ON(!inode_is_locked(inode));
4205 	trace_ext4_truncate_enter(inode);
4206 
4207 	if (!ext4_can_truncate(inode))
4208 		goto out_trace;
4209 
4210 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4211 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4212 
4213 	if (ext4_has_inline_data(inode)) {
4214 		int has_inline = 1;
4215 
4216 		err = ext4_inline_data_truncate(inode, &has_inline);
4217 		if (err || has_inline)
4218 			goto out_trace;
4219 	}
4220 
4221 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4222 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4223 		err = ext4_inode_attach_jinode(inode);
4224 		if (err)
4225 			goto out_trace;
4226 	}
4227 
4228 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4229 		credits = ext4_writepage_trans_blocks(inode);
4230 	else
4231 		credits = ext4_blocks_for_truncate(inode);
4232 
4233 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4234 	if (IS_ERR(handle)) {
4235 		err = PTR_ERR(handle);
4236 		goto out_trace;
4237 	}
4238 
4239 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4240 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4241 
4242 	/*
4243 	 * We add the inode to the orphan list, so that if this
4244 	 * truncate spans multiple transactions, and we crash, we will
4245 	 * resume the truncate when the filesystem recovers.  It also
4246 	 * marks the inode dirty, to catch the new size.
4247 	 *
4248 	 * Implication: the file must always be in a sane, consistent
4249 	 * truncatable state while each transaction commits.
4250 	 */
4251 	err = ext4_orphan_add(handle, inode);
4252 	if (err)
4253 		goto out_stop;
4254 
4255 	down_write(&EXT4_I(inode)->i_data_sem);
4256 
4257 	ext4_discard_preallocations(inode, 0);
4258 
4259 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4260 		err = ext4_ext_truncate(handle, inode);
4261 	else
4262 		ext4_ind_truncate(handle, inode);
4263 
4264 	up_write(&ei->i_data_sem);
4265 	if (err)
4266 		goto out_stop;
4267 
4268 	if (IS_SYNC(inode))
4269 		ext4_handle_sync(handle);
4270 
4271 out_stop:
4272 	/*
4273 	 * If this was a simple ftruncate() and the file will remain alive,
4274 	 * then we need to clear up the orphan record which we created above.
4275 	 * However, if this was a real unlink then we were called by
4276 	 * ext4_evict_inode(), and we allow that function to clean up the
4277 	 * orphan info for us.
4278 	 */
4279 	if (inode->i_nlink)
4280 		ext4_orphan_del(handle, inode);
4281 
4282 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4283 	err2 = ext4_mark_inode_dirty(handle, inode);
4284 	if (unlikely(err2 && !err))
4285 		err = err2;
4286 	ext4_journal_stop(handle);
4287 
4288 out_trace:
4289 	trace_ext4_truncate_exit(inode);
4290 	return err;
4291 }
4292 
ext4_inode_peek_iversion(const struct inode * inode)4293 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4294 {
4295 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4296 		return inode_peek_iversion_raw(inode);
4297 	else
4298 		return inode_peek_iversion(inode);
4299 }
4300 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4301 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4302 				 struct ext4_inode_info *ei)
4303 {
4304 	struct inode *inode = &(ei->vfs_inode);
4305 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4306 	struct super_block *sb = inode->i_sb;
4307 
4308 	if (i_blocks <= ~0U) {
4309 		/*
4310 		 * i_blocks can be represented in a 32 bit variable
4311 		 * as multiple of 512 bytes
4312 		 */
4313 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4314 		raw_inode->i_blocks_high = 0;
4315 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4316 		return 0;
4317 	}
4318 
4319 	/*
4320 	 * This should never happen since sb->s_maxbytes should not have
4321 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4322 	 * feature in ext4_fill_super().
4323 	 */
4324 	if (!ext4_has_feature_huge_file(sb))
4325 		return -EFSCORRUPTED;
4326 
4327 	if (i_blocks <= 0xffffffffffffULL) {
4328 		/*
4329 		 * i_blocks can be represented in a 48 bit variable
4330 		 * as multiple of 512 bytes
4331 		 */
4332 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4333 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4334 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4335 	} else {
4336 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4337 		/* i_block is stored in file system block size */
4338 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4339 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4340 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4341 	}
4342 	return 0;
4343 }
4344 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4345 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4346 {
4347 	struct ext4_inode_info *ei = EXT4_I(inode);
4348 	uid_t i_uid;
4349 	gid_t i_gid;
4350 	projid_t i_projid;
4351 	int block;
4352 	int err;
4353 
4354 	err = ext4_inode_blocks_set(raw_inode, ei);
4355 
4356 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4357 	i_uid = i_uid_read(inode);
4358 	i_gid = i_gid_read(inode);
4359 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4360 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4361 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4362 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4363 		/*
4364 		 * Fix up interoperability with old kernels. Otherwise,
4365 		 * old inodes get re-used with the upper 16 bits of the
4366 		 * uid/gid intact.
4367 		 */
4368 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4369 			raw_inode->i_uid_high = 0;
4370 			raw_inode->i_gid_high = 0;
4371 		} else {
4372 			raw_inode->i_uid_high =
4373 				cpu_to_le16(high_16_bits(i_uid));
4374 			raw_inode->i_gid_high =
4375 				cpu_to_le16(high_16_bits(i_gid));
4376 		}
4377 	} else {
4378 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4379 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4380 		raw_inode->i_uid_high = 0;
4381 		raw_inode->i_gid_high = 0;
4382 	}
4383 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4384 
4385 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4386 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4387 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4388 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4389 
4390 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4391 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4392 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4393 		raw_inode->i_file_acl_high =
4394 			cpu_to_le16(ei->i_file_acl >> 32);
4395 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4396 	ext4_isize_set(raw_inode, ei->i_disksize);
4397 
4398 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4399 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4400 		if (old_valid_dev(inode->i_rdev)) {
4401 			raw_inode->i_block[0] =
4402 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4403 			raw_inode->i_block[1] = 0;
4404 		} else {
4405 			raw_inode->i_block[0] = 0;
4406 			raw_inode->i_block[1] =
4407 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4408 			raw_inode->i_block[2] = 0;
4409 		}
4410 	} else if (!ext4_has_inline_data(inode)) {
4411 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4412 			raw_inode->i_block[block] = ei->i_data[block];
4413 	}
4414 
4415 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4416 		u64 ivers = ext4_inode_peek_iversion(inode);
4417 
4418 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4419 		if (ei->i_extra_isize) {
4420 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4421 				raw_inode->i_version_hi =
4422 					cpu_to_le32(ivers >> 32);
4423 			raw_inode->i_extra_isize =
4424 				cpu_to_le16(ei->i_extra_isize);
4425 		}
4426 	}
4427 
4428 	if (i_projid != EXT4_DEF_PROJID &&
4429 	    !ext4_has_feature_project(inode->i_sb))
4430 		err = err ?: -EFSCORRUPTED;
4431 
4432 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4433 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4434 		raw_inode->i_projid = cpu_to_le32(i_projid);
4435 
4436 	ext4_inode_csum_set(inode, raw_inode, ei);
4437 	return err;
4438 }
4439 
4440 /*
4441  * ext4_get_inode_loc returns with an extra refcount against the inode's
4442  * underlying buffer_head on success. If we pass 'inode' and it does not
4443  * have in-inode xattr, we have all inode data in memory that is needed
4444  * to recreate the on-disk version of this inode.
4445  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4446 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4447 				struct inode *inode, struct ext4_iloc *iloc,
4448 				ext4_fsblk_t *ret_block)
4449 {
4450 	struct ext4_group_desc	*gdp;
4451 	struct buffer_head	*bh;
4452 	ext4_fsblk_t		block;
4453 	struct blk_plug		plug;
4454 	int			inodes_per_block, inode_offset;
4455 
4456 	iloc->bh = NULL;
4457 	if (ino < EXT4_ROOT_INO ||
4458 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4459 		return -EFSCORRUPTED;
4460 
4461 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4462 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4463 	if (!gdp)
4464 		return -EIO;
4465 
4466 	/*
4467 	 * Figure out the offset within the block group inode table
4468 	 */
4469 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4470 	inode_offset = ((ino - 1) %
4471 			EXT4_INODES_PER_GROUP(sb));
4472 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4473 
4474 	block = ext4_inode_table(sb, gdp);
4475 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4476 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4477 		ext4_error(sb, "Invalid inode table block %llu in "
4478 			   "block_group %u", block, iloc->block_group);
4479 		return -EFSCORRUPTED;
4480 	}
4481 	block += (inode_offset / inodes_per_block);
4482 
4483 	bh = sb_getblk(sb, block);
4484 	if (unlikely(!bh))
4485 		return -ENOMEM;
4486 	if (ext4_buffer_uptodate(bh))
4487 		goto has_buffer;
4488 
4489 	lock_buffer(bh);
4490 	if (ext4_buffer_uptodate(bh)) {
4491 		/* Someone brought it uptodate while we waited */
4492 		unlock_buffer(bh);
4493 		goto has_buffer;
4494 	}
4495 
4496 	/*
4497 	 * If we have all information of the inode in memory and this
4498 	 * is the only valid inode in the block, we need not read the
4499 	 * block.
4500 	 */
4501 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4502 		struct buffer_head *bitmap_bh;
4503 		int i, start;
4504 
4505 		start = inode_offset & ~(inodes_per_block - 1);
4506 
4507 		/* Is the inode bitmap in cache? */
4508 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4509 		if (unlikely(!bitmap_bh))
4510 			goto make_io;
4511 
4512 		/*
4513 		 * If the inode bitmap isn't in cache then the
4514 		 * optimisation may end up performing two reads instead
4515 		 * of one, so skip it.
4516 		 */
4517 		if (!buffer_uptodate(bitmap_bh)) {
4518 			brelse(bitmap_bh);
4519 			goto make_io;
4520 		}
4521 		for (i = start; i < start + inodes_per_block; i++) {
4522 			if (i == inode_offset)
4523 				continue;
4524 			if (ext4_test_bit(i, bitmap_bh->b_data))
4525 				break;
4526 		}
4527 		brelse(bitmap_bh);
4528 		if (i == start + inodes_per_block) {
4529 			struct ext4_inode *raw_inode =
4530 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4531 
4532 			/* all other inodes are free, so skip I/O */
4533 			memset(bh->b_data, 0, bh->b_size);
4534 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4535 				ext4_fill_raw_inode(inode, raw_inode);
4536 			set_buffer_uptodate(bh);
4537 			unlock_buffer(bh);
4538 			goto has_buffer;
4539 		}
4540 	}
4541 
4542 make_io:
4543 	/*
4544 	 * If we need to do any I/O, try to pre-readahead extra
4545 	 * blocks from the inode table.
4546 	 */
4547 	blk_start_plug(&plug);
4548 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4549 		ext4_fsblk_t b, end, table;
4550 		unsigned num;
4551 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4552 
4553 		table = ext4_inode_table(sb, gdp);
4554 		/* s_inode_readahead_blks is always a power of 2 */
4555 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4556 		if (table > b)
4557 			b = table;
4558 		end = b + ra_blks;
4559 		num = EXT4_INODES_PER_GROUP(sb);
4560 		if (ext4_has_group_desc_csum(sb))
4561 			num -= ext4_itable_unused_count(sb, gdp);
4562 		table += num / inodes_per_block;
4563 		if (end > table)
4564 			end = table;
4565 		while (b <= end)
4566 			ext4_sb_breadahead_unmovable(sb, b++);
4567 	}
4568 
4569 	/*
4570 	 * There are other valid inodes in the buffer, this inode
4571 	 * has in-inode xattrs, or we don't have this inode in memory.
4572 	 * Read the block from disk.
4573 	 */
4574 	trace_ext4_load_inode(sb, ino);
4575 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4576 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4577 	blk_finish_plug(&plug);
4578 	wait_on_buffer(bh);
4579 	if (!buffer_uptodate(bh)) {
4580 		if (ret_block)
4581 			*ret_block = block;
4582 		brelse(bh);
4583 		return -EIO;
4584 	}
4585 has_buffer:
4586 	iloc->bh = bh;
4587 	return 0;
4588 }
4589 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4590 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4591 					struct ext4_iloc *iloc)
4592 {
4593 	ext4_fsblk_t err_blk = 0;
4594 	int ret;
4595 
4596 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4597 					&err_blk);
4598 
4599 	if (ret == -EIO)
4600 		ext4_error_inode_block(inode, err_blk, EIO,
4601 					"unable to read itable block");
4602 
4603 	return ret;
4604 }
4605 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4606 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4607 {
4608 	ext4_fsblk_t err_blk = 0;
4609 	int ret;
4610 
4611 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4612 					&err_blk);
4613 
4614 	if (ret == -EIO)
4615 		ext4_error_inode_block(inode, err_blk, EIO,
4616 					"unable to read itable block");
4617 
4618 	return ret;
4619 }
4620 
4621 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4622 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4623 			  struct ext4_iloc *iloc)
4624 {
4625 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4626 }
4627 
ext4_should_enable_dax(struct inode * inode)4628 static bool ext4_should_enable_dax(struct inode *inode)
4629 {
4630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4631 
4632 	if (test_opt2(inode->i_sb, DAX_NEVER))
4633 		return false;
4634 	if (!S_ISREG(inode->i_mode))
4635 		return false;
4636 	if (ext4_should_journal_data(inode))
4637 		return false;
4638 	if (ext4_has_inline_data(inode))
4639 		return false;
4640 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4641 		return false;
4642 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4643 		return false;
4644 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4645 		return false;
4646 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4647 		return true;
4648 
4649 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4650 }
4651 
ext4_set_inode_flags(struct inode * inode,bool init)4652 void ext4_set_inode_flags(struct inode *inode, bool init)
4653 {
4654 	unsigned int flags = EXT4_I(inode)->i_flags;
4655 	unsigned int new_fl = 0;
4656 
4657 	WARN_ON_ONCE(IS_DAX(inode) && init);
4658 
4659 	if (flags & EXT4_SYNC_FL)
4660 		new_fl |= S_SYNC;
4661 	if (flags & EXT4_APPEND_FL)
4662 		new_fl |= S_APPEND;
4663 	if (flags & EXT4_IMMUTABLE_FL)
4664 		new_fl |= S_IMMUTABLE;
4665 	if (flags & EXT4_NOATIME_FL)
4666 		new_fl |= S_NOATIME;
4667 	if (flags & EXT4_DIRSYNC_FL)
4668 		new_fl |= S_DIRSYNC;
4669 
4670 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4671 	 * here if already set. */
4672 	new_fl |= (inode->i_flags & S_DAX);
4673 	if (init && ext4_should_enable_dax(inode))
4674 		new_fl |= S_DAX;
4675 
4676 	if (flags & EXT4_ENCRYPT_FL)
4677 		new_fl |= S_ENCRYPTED;
4678 	if (flags & EXT4_CASEFOLD_FL)
4679 		new_fl |= S_CASEFOLD;
4680 	if (flags & EXT4_VERITY_FL)
4681 		new_fl |= S_VERITY;
4682 	inode_set_flags(inode, new_fl,
4683 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4684 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4685 }
4686 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4687 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4688 				  struct ext4_inode_info *ei)
4689 {
4690 	blkcnt_t i_blocks ;
4691 	struct inode *inode = &(ei->vfs_inode);
4692 	struct super_block *sb = inode->i_sb;
4693 
4694 	if (ext4_has_feature_huge_file(sb)) {
4695 		/* we are using combined 48 bit field */
4696 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4697 					le32_to_cpu(raw_inode->i_blocks_lo);
4698 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4699 			/* i_blocks represent file system block size */
4700 			return i_blocks  << (inode->i_blkbits - 9);
4701 		} else {
4702 			return i_blocks;
4703 		}
4704 	} else {
4705 		return le32_to_cpu(raw_inode->i_blocks_lo);
4706 	}
4707 }
4708 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4709 static inline int ext4_iget_extra_inode(struct inode *inode,
4710 					 struct ext4_inode *raw_inode,
4711 					 struct ext4_inode_info *ei)
4712 {
4713 	__le32 *magic = (void *)raw_inode +
4714 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4715 
4716 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4717 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4718 		int err;
4719 
4720 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4721 		err = ext4_find_inline_data_nolock(inode);
4722 		if (!err && ext4_has_inline_data(inode))
4723 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4724 		return err;
4725 	} else
4726 		EXT4_I(inode)->i_inline_off = 0;
4727 	return 0;
4728 }
4729 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4730 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4731 {
4732 	if (!ext4_has_feature_project(inode->i_sb))
4733 		return -EOPNOTSUPP;
4734 	*projid = EXT4_I(inode)->i_projid;
4735 	return 0;
4736 }
4737 
4738 /*
4739  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4740  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4741  * set.
4742  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4743 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4744 {
4745 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4746 		inode_set_iversion_raw(inode, val);
4747 	else
4748 		inode_set_iversion_queried(inode, val);
4749 }
4750 
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)4751 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
4752 			    const char *function, unsigned int line)
4753 {
4754 	const char *err_str;
4755 
4756 	if (flags & EXT4_IGET_EA_INODE) {
4757 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4758 			err_str = "missing EA_INODE flag";
4759 			goto error;
4760 		}
4761 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4762 		    EXT4_I(inode)->i_file_acl) {
4763 			err_str = "ea_inode with extended attributes";
4764 			goto error;
4765 		}
4766 	} else {
4767 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4768 			/*
4769 			 * open_by_handle_at() could provide an old inode number
4770 			 * that has since been reused for an ea_inode; this does
4771 			 * not indicate filesystem corruption
4772 			 */
4773 			if (flags & EXT4_IGET_HANDLE)
4774 				return -ESTALE;
4775 			err_str = "unexpected EA_INODE flag";
4776 			goto error;
4777 		}
4778 	}
4779 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4780 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
4781 		goto error;
4782 	}
4783 	return 0;
4784 
4785 error:
4786 	ext4_error_inode(inode, function, line, 0, err_str);
4787 	return -EFSCORRUPTED;
4788 }
4789 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4790 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4791 			  ext4_iget_flags flags, const char *function,
4792 			  unsigned int line)
4793 {
4794 	struct ext4_iloc iloc;
4795 	struct ext4_inode *raw_inode;
4796 	struct ext4_inode_info *ei;
4797 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4798 	struct inode *inode;
4799 	journal_t *journal = EXT4_SB(sb)->s_journal;
4800 	long ret;
4801 	loff_t size;
4802 	int block;
4803 	uid_t i_uid;
4804 	gid_t i_gid;
4805 	projid_t i_projid;
4806 
4807 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4808 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4809 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4810 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4811 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4812 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4813 	    (ino < EXT4_ROOT_INO) ||
4814 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4815 		if (flags & EXT4_IGET_HANDLE)
4816 			return ERR_PTR(-ESTALE);
4817 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4818 			     "inode #%lu: comm %s: iget: illegal inode #",
4819 			     ino, current->comm);
4820 		return ERR_PTR(-EFSCORRUPTED);
4821 	}
4822 
4823 	inode = iget_locked(sb, ino);
4824 	if (!inode)
4825 		return ERR_PTR(-ENOMEM);
4826 	if (!(inode->i_state & I_NEW)) {
4827 		ret = check_igot_inode(inode, flags, function, line);
4828 		if (ret) {
4829 			iput(inode);
4830 			return ERR_PTR(ret);
4831 		}
4832 		return inode;
4833 	}
4834 
4835 	ei = EXT4_I(inode);
4836 	iloc.bh = NULL;
4837 
4838 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4839 	if (ret < 0)
4840 		goto bad_inode;
4841 	raw_inode = ext4_raw_inode(&iloc);
4842 
4843 	if ((flags & EXT4_IGET_HANDLE) &&
4844 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4845 		ret = -ESTALE;
4846 		goto bad_inode;
4847 	}
4848 
4849 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4850 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4851 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4852 			EXT4_INODE_SIZE(inode->i_sb) ||
4853 		    (ei->i_extra_isize & 3)) {
4854 			ext4_error_inode(inode, function, line, 0,
4855 					 "iget: bad extra_isize %u "
4856 					 "(inode size %u)",
4857 					 ei->i_extra_isize,
4858 					 EXT4_INODE_SIZE(inode->i_sb));
4859 			ret = -EFSCORRUPTED;
4860 			goto bad_inode;
4861 		}
4862 	} else
4863 		ei->i_extra_isize = 0;
4864 
4865 	/* Precompute checksum seed for inode metadata */
4866 	if (ext4_has_metadata_csum(sb)) {
4867 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4868 		__u32 csum;
4869 		__le32 inum = cpu_to_le32(inode->i_ino);
4870 		__le32 gen = raw_inode->i_generation;
4871 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4872 				   sizeof(inum));
4873 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4874 					      sizeof(gen));
4875 	}
4876 
4877 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4878 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4879 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4880 		ext4_error_inode_err(inode, function, line, 0,
4881 				EFSBADCRC, "iget: checksum invalid");
4882 		ret = -EFSBADCRC;
4883 		goto bad_inode;
4884 	}
4885 
4886 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4887 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4888 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4889 	if (ext4_has_feature_project(sb) &&
4890 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4891 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4892 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4893 	else
4894 		i_projid = EXT4_DEF_PROJID;
4895 
4896 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4897 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4898 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4899 	}
4900 	i_uid_write(inode, i_uid);
4901 	i_gid_write(inode, i_gid);
4902 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4903 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4904 
4905 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4906 	ei->i_inline_off = 0;
4907 	ei->i_dir_start_lookup = 0;
4908 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4909 	/* We now have enough fields to check if the inode was active or not.
4910 	 * This is needed because nfsd might try to access dead inodes
4911 	 * the test is that same one that e2fsck uses
4912 	 * NeilBrown 1999oct15
4913 	 */
4914 	if (inode->i_nlink == 0) {
4915 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4916 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4917 		    ino != EXT4_BOOT_LOADER_INO) {
4918 			/* this inode is deleted or unallocated */
4919 			if (flags & EXT4_IGET_SPECIAL) {
4920 				ext4_error_inode(inode, function, line, 0,
4921 						 "iget: special inode unallocated");
4922 				ret = -EFSCORRUPTED;
4923 			} else
4924 				ret = -ESTALE;
4925 			goto bad_inode;
4926 		}
4927 		/* The only unlinked inodes we let through here have
4928 		 * valid i_mode and are being read by the orphan
4929 		 * recovery code: that's fine, we're about to complete
4930 		 * the process of deleting those.
4931 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4932 		 * not initialized on a new filesystem. */
4933 	}
4934 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4935 	ext4_set_inode_flags(inode, true);
4936 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4937 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4938 	if (ext4_has_feature_64bit(sb))
4939 		ei->i_file_acl |=
4940 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4941 	inode->i_size = ext4_isize(sb, raw_inode);
4942 	if ((size = i_size_read(inode)) < 0) {
4943 		ext4_error_inode(inode, function, line, 0,
4944 				 "iget: bad i_size value: %lld", size);
4945 		ret = -EFSCORRUPTED;
4946 		goto bad_inode;
4947 	}
4948 	/*
4949 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4950 	 * we'd normally treat htree data as empty space. But with metadata
4951 	 * checksumming that corrupts checksums so forbid that.
4952 	 */
4953 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4954 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4955 		ext4_error_inode(inode, function, line, 0,
4956 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4957 		ret = -EFSCORRUPTED;
4958 		goto bad_inode;
4959 	}
4960 	ei->i_disksize = inode->i_size;
4961 #ifdef CONFIG_QUOTA
4962 	ei->i_reserved_quota = 0;
4963 #endif
4964 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4965 	ei->i_block_group = iloc.block_group;
4966 	ei->i_last_alloc_group = ~0;
4967 	/*
4968 	 * NOTE! The in-memory inode i_data array is in little-endian order
4969 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4970 	 */
4971 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4972 		ei->i_data[block] = raw_inode->i_block[block];
4973 	INIT_LIST_HEAD(&ei->i_orphan);
4974 	ext4_fc_init_inode(&ei->vfs_inode);
4975 
4976 	/*
4977 	 * Set transaction id's of transactions that have to be committed
4978 	 * to finish f[data]sync. We set them to currently running transaction
4979 	 * as we cannot be sure that the inode or some of its metadata isn't
4980 	 * part of the transaction - the inode could have been reclaimed and
4981 	 * now it is reread from disk.
4982 	 */
4983 	if (journal) {
4984 		transaction_t *transaction;
4985 		tid_t tid;
4986 
4987 		read_lock(&journal->j_state_lock);
4988 		if (journal->j_running_transaction)
4989 			transaction = journal->j_running_transaction;
4990 		else
4991 			transaction = journal->j_committing_transaction;
4992 		if (transaction)
4993 			tid = transaction->t_tid;
4994 		else
4995 			tid = journal->j_commit_sequence;
4996 		read_unlock(&journal->j_state_lock);
4997 		ei->i_sync_tid = tid;
4998 		ei->i_datasync_tid = tid;
4999 	}
5000 
5001 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5002 		if (ei->i_extra_isize == 0) {
5003 			/* The extra space is currently unused. Use it. */
5004 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5005 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5006 					    EXT4_GOOD_OLD_INODE_SIZE;
5007 		} else {
5008 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5009 			if (ret)
5010 				goto bad_inode;
5011 		}
5012 	}
5013 
5014 	EXT4_INODE_GET_CTIME(inode, raw_inode);
5015 	EXT4_INODE_GET_ATIME(inode, raw_inode);
5016 	EXT4_INODE_GET_MTIME(inode, raw_inode);
5017 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5018 
5019 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5021 
5022 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5023 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5024 				ivers |=
5025 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5026 		}
5027 		ext4_inode_set_iversion_queried(inode, ivers);
5028 	}
5029 
5030 	ret = 0;
5031 	if (ei->i_file_acl &&
5032 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5033 		ext4_error_inode(inode, function, line, 0,
5034 				 "iget: bad extended attribute block %llu",
5035 				 ei->i_file_acl);
5036 		ret = -EFSCORRUPTED;
5037 		goto bad_inode;
5038 	} else if (!ext4_has_inline_data(inode)) {
5039 		/* validate the block references in the inode */
5040 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5041 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5042 			(S_ISLNK(inode->i_mode) &&
5043 			!ext4_inode_is_fast_symlink(inode)))) {
5044 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5045 				ret = ext4_ext_check_inode(inode);
5046 			else
5047 				ret = ext4_ind_check_inode(inode);
5048 		}
5049 	}
5050 	if (ret)
5051 		goto bad_inode;
5052 
5053 	if (S_ISREG(inode->i_mode)) {
5054 		inode->i_op = &ext4_file_inode_operations;
5055 		inode->i_fop = &ext4_file_operations;
5056 		ext4_set_aops(inode);
5057 	} else if (S_ISDIR(inode->i_mode)) {
5058 		inode->i_op = &ext4_dir_inode_operations;
5059 		inode->i_fop = &ext4_dir_operations;
5060 	} else if (S_ISLNK(inode->i_mode)) {
5061 		/* VFS does not allow setting these so must be corruption */
5062 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5063 			ext4_error_inode(inode, function, line, 0,
5064 					 "iget: immutable or append flags "
5065 					 "not allowed on symlinks");
5066 			ret = -EFSCORRUPTED;
5067 			goto bad_inode;
5068 		}
5069 		if (IS_ENCRYPTED(inode)) {
5070 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5071 		} else if (ext4_inode_is_fast_symlink(inode)) {
5072 			inode->i_link = (char *)ei->i_data;
5073 			inode->i_op = &ext4_fast_symlink_inode_operations;
5074 			nd_terminate_link(ei->i_data, inode->i_size,
5075 				sizeof(ei->i_data) - 1);
5076 		} else {
5077 			inode->i_op = &ext4_symlink_inode_operations;
5078 		}
5079 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5080 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5081 		inode->i_op = &ext4_special_inode_operations;
5082 		if (raw_inode->i_block[0])
5083 			init_special_inode(inode, inode->i_mode,
5084 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5085 		else
5086 			init_special_inode(inode, inode->i_mode,
5087 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5088 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5089 		make_bad_inode(inode);
5090 	} else {
5091 		ret = -EFSCORRUPTED;
5092 		ext4_error_inode(inode, function, line, 0,
5093 				 "iget: bogus i_mode (%o)", inode->i_mode);
5094 		goto bad_inode;
5095 	}
5096 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5097 		ext4_error_inode(inode, function, line, 0,
5098 				 "casefold flag without casefold feature");
5099 		ret = -EFSCORRUPTED;
5100 		goto bad_inode;
5101 	}
5102 	ret = check_igot_inode(inode, flags, function, line);
5103 	/*
5104 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5105 	 * it's just not an inode we can return for an fhandle lookup.
5106 	 */
5107 	if (ret == -ESTALE) {
5108 		brelse(iloc.bh);
5109 		unlock_new_inode(inode);
5110 		iput(inode);
5111 		return ERR_PTR(-ESTALE);
5112 	}
5113 	if (ret)
5114 		goto bad_inode;
5115 	brelse(iloc.bh);
5116 
5117 	unlock_new_inode(inode);
5118 	return inode;
5119 
5120 bad_inode:
5121 	brelse(iloc.bh);
5122 	iget_failed(inode);
5123 	return ERR_PTR(ret);
5124 }
5125 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5126 static void __ext4_update_other_inode_time(struct super_block *sb,
5127 					   unsigned long orig_ino,
5128 					   unsigned long ino,
5129 					   struct ext4_inode *raw_inode)
5130 {
5131 	struct inode *inode;
5132 
5133 	inode = find_inode_by_ino_rcu(sb, ino);
5134 	if (!inode)
5135 		return;
5136 
5137 	if (!inode_is_dirtytime_only(inode))
5138 		return;
5139 
5140 	spin_lock(&inode->i_lock);
5141 	if (inode_is_dirtytime_only(inode)) {
5142 		struct ext4_inode_info	*ei = EXT4_I(inode);
5143 
5144 		inode->i_state &= ~I_DIRTY_TIME;
5145 		spin_unlock(&inode->i_lock);
5146 
5147 		spin_lock(&ei->i_raw_lock);
5148 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5149 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5150 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5151 		ext4_inode_csum_set(inode, raw_inode, ei);
5152 		spin_unlock(&ei->i_raw_lock);
5153 		trace_ext4_other_inode_update_time(inode, orig_ino);
5154 		return;
5155 	}
5156 	spin_unlock(&inode->i_lock);
5157 }
5158 
5159 /*
5160  * Opportunistically update the other time fields for other inodes in
5161  * the same inode table block.
5162  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5163 static void ext4_update_other_inodes_time(struct super_block *sb,
5164 					  unsigned long orig_ino, char *buf)
5165 {
5166 	unsigned long ino;
5167 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5168 	int inode_size = EXT4_INODE_SIZE(sb);
5169 
5170 	/*
5171 	 * Calculate the first inode in the inode table block.  Inode
5172 	 * numbers are one-based.  That is, the first inode in a block
5173 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5174 	 */
5175 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5176 	rcu_read_lock();
5177 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5178 		if (ino == orig_ino)
5179 			continue;
5180 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5181 					       (struct ext4_inode *)buf);
5182 	}
5183 	rcu_read_unlock();
5184 }
5185 
5186 /*
5187  * Post the struct inode info into an on-disk inode location in the
5188  * buffer-cache.  This gobbles the caller's reference to the
5189  * buffer_head in the inode location struct.
5190  *
5191  * The caller must have write access to iloc->bh.
5192  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5193 static int ext4_do_update_inode(handle_t *handle,
5194 				struct inode *inode,
5195 				struct ext4_iloc *iloc)
5196 {
5197 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5198 	struct ext4_inode_info *ei = EXT4_I(inode);
5199 	struct buffer_head *bh = iloc->bh;
5200 	struct super_block *sb = inode->i_sb;
5201 	int err;
5202 	int need_datasync = 0, set_large_file = 0;
5203 
5204 	spin_lock(&ei->i_raw_lock);
5205 
5206 	/*
5207 	 * For fields not tracked in the in-memory inode, initialise them
5208 	 * to zero for new inodes.
5209 	 */
5210 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5211 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5212 
5213 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5214 		need_datasync = 1;
5215 	if (ei->i_disksize > 0x7fffffffULL) {
5216 		if (!ext4_has_feature_large_file(sb) ||
5217 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5218 			set_large_file = 1;
5219 	}
5220 
5221 	err = ext4_fill_raw_inode(inode, raw_inode);
5222 	spin_unlock(&ei->i_raw_lock);
5223 	if (err) {
5224 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5225 		goto out_brelse;
5226 	}
5227 
5228 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5229 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5230 					      bh->b_data);
5231 
5232 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5233 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5234 	if (err)
5235 		goto out_error;
5236 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5237 	if (set_large_file) {
5238 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5239 		err = ext4_journal_get_write_access(handle, sb,
5240 						    EXT4_SB(sb)->s_sbh,
5241 						    EXT4_JTR_NONE);
5242 		if (err)
5243 			goto out_error;
5244 		lock_buffer(EXT4_SB(sb)->s_sbh);
5245 		ext4_set_feature_large_file(sb);
5246 		ext4_superblock_csum_set(sb);
5247 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5248 		ext4_handle_sync(handle);
5249 		err = ext4_handle_dirty_metadata(handle, NULL,
5250 						 EXT4_SB(sb)->s_sbh);
5251 	}
5252 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5253 out_error:
5254 	ext4_std_error(inode->i_sb, err);
5255 out_brelse:
5256 	brelse(bh);
5257 	return err;
5258 }
5259 
5260 /*
5261  * ext4_write_inode()
5262  *
5263  * We are called from a few places:
5264  *
5265  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5266  *   Here, there will be no transaction running. We wait for any running
5267  *   transaction to commit.
5268  *
5269  * - Within flush work (sys_sync(), kupdate and such).
5270  *   We wait on commit, if told to.
5271  *
5272  * - Within iput_final() -> write_inode_now()
5273  *   We wait on commit, if told to.
5274  *
5275  * In all cases it is actually safe for us to return without doing anything,
5276  * because the inode has been copied into a raw inode buffer in
5277  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5278  * writeback.
5279  *
5280  * Note that we are absolutely dependent upon all inode dirtiers doing the
5281  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5282  * which we are interested.
5283  *
5284  * It would be a bug for them to not do this.  The code:
5285  *
5286  *	mark_inode_dirty(inode)
5287  *	stuff();
5288  *	inode->i_size = expr;
5289  *
5290  * is in error because write_inode() could occur while `stuff()' is running,
5291  * and the new i_size will be lost.  Plus the inode will no longer be on the
5292  * superblock's dirty inode list.
5293  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5294 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5295 {
5296 	int err;
5297 
5298 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5299 		return 0;
5300 
5301 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5302 		return -EIO;
5303 
5304 	if (EXT4_SB(inode->i_sb)->s_journal) {
5305 		if (ext4_journal_current_handle()) {
5306 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5307 			dump_stack();
5308 			return -EIO;
5309 		}
5310 
5311 		/*
5312 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5313 		 * ext4_sync_fs() will force the commit after everything is
5314 		 * written.
5315 		 */
5316 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5317 			return 0;
5318 
5319 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5320 						EXT4_I(inode)->i_sync_tid);
5321 	} else {
5322 		struct ext4_iloc iloc;
5323 
5324 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5325 		if (err)
5326 			return err;
5327 		/*
5328 		 * sync(2) will flush the whole buffer cache. No need to do
5329 		 * it here separately for each inode.
5330 		 */
5331 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5332 			sync_dirty_buffer(iloc.bh);
5333 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5334 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5335 					       "IO error syncing inode");
5336 			err = -EIO;
5337 		}
5338 		brelse(iloc.bh);
5339 	}
5340 	return err;
5341 }
5342 
5343 /*
5344  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5345  * buffers that are attached to a folio straddling i_size and are undergoing
5346  * commit. In that case we have to wait for commit to finish and try again.
5347  */
ext4_wait_for_tail_page_commit(struct inode * inode)5348 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5349 {
5350 	unsigned offset;
5351 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5352 	tid_t commit_tid;
5353 	int ret;
5354 	bool has_transaction;
5355 
5356 	offset = inode->i_size & (PAGE_SIZE - 1);
5357 	/*
5358 	 * If the folio is fully truncated, we don't need to wait for any commit
5359 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5360 	 * strip all buffers from the folio but keep the folio dirty which can then
5361 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5362 	 * buffers). Also we don't need to wait for any commit if all buffers in
5363 	 * the folio remain valid. This is most beneficial for the common case of
5364 	 * blocksize == PAGESIZE.
5365 	 */
5366 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5367 		return;
5368 	while (1) {
5369 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5370 				      inode->i_size >> PAGE_SHIFT);
5371 		if (IS_ERR(folio))
5372 			return;
5373 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5374 						folio_size(folio) - offset);
5375 		folio_unlock(folio);
5376 		folio_put(folio);
5377 		if (ret != -EBUSY)
5378 			return;
5379 		has_transaction = false;
5380 		read_lock(&journal->j_state_lock);
5381 		if (journal->j_committing_transaction) {
5382 			commit_tid = journal->j_committing_transaction->t_tid;
5383 			has_transaction = true;
5384 		}
5385 		read_unlock(&journal->j_state_lock);
5386 		if (has_transaction)
5387 			jbd2_log_wait_commit(journal, commit_tid);
5388 	}
5389 }
5390 
5391 /*
5392  * ext4_setattr()
5393  *
5394  * Called from notify_change.
5395  *
5396  * We want to trap VFS attempts to truncate the file as soon as
5397  * possible.  In particular, we want to make sure that when the VFS
5398  * shrinks i_size, we put the inode on the orphan list and modify
5399  * i_disksize immediately, so that during the subsequent flushing of
5400  * dirty pages and freeing of disk blocks, we can guarantee that any
5401  * commit will leave the blocks being flushed in an unused state on
5402  * disk.  (On recovery, the inode will get truncated and the blocks will
5403  * be freed, so we have a strong guarantee that no future commit will
5404  * leave these blocks visible to the user.)
5405  *
5406  * Another thing we have to assure is that if we are in ordered mode
5407  * and inode is still attached to the committing transaction, we must
5408  * we start writeout of all the dirty pages which are being truncated.
5409  * This way we are sure that all the data written in the previous
5410  * transaction are already on disk (truncate waits for pages under
5411  * writeback).
5412  *
5413  * Called with inode->i_rwsem down.
5414  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5415 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5416 		 struct iattr *attr)
5417 {
5418 	struct inode *inode = d_inode(dentry);
5419 	int error, rc = 0;
5420 	int orphan = 0;
5421 	const unsigned int ia_valid = attr->ia_valid;
5422 	bool inc_ivers = true;
5423 
5424 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5425 		return -EIO;
5426 
5427 	if (unlikely(IS_IMMUTABLE(inode)))
5428 		return -EPERM;
5429 
5430 	if (unlikely(IS_APPEND(inode) &&
5431 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5432 				  ATTR_GID | ATTR_TIMES_SET))))
5433 		return -EPERM;
5434 
5435 	error = setattr_prepare(idmap, dentry, attr);
5436 	if (error)
5437 		return error;
5438 
5439 	error = fscrypt_prepare_setattr(dentry, attr);
5440 	if (error)
5441 		return error;
5442 
5443 	error = fsverity_prepare_setattr(dentry, attr);
5444 	if (error)
5445 		return error;
5446 
5447 	if (is_quota_modification(idmap, inode, attr)) {
5448 		error = dquot_initialize(inode);
5449 		if (error)
5450 			return error;
5451 	}
5452 
5453 	if (i_uid_needs_update(idmap, attr, inode) ||
5454 	    i_gid_needs_update(idmap, attr, inode)) {
5455 		handle_t *handle;
5456 
5457 		/* (user+group)*(old+new) structure, inode write (sb,
5458 		 * inode block, ? - but truncate inode update has it) */
5459 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5460 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5461 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5462 		if (IS_ERR(handle)) {
5463 			error = PTR_ERR(handle);
5464 			goto err_out;
5465 		}
5466 
5467 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5468 		 * counts xattr inode references.
5469 		 */
5470 		down_read(&EXT4_I(inode)->xattr_sem);
5471 		error = dquot_transfer(idmap, inode, attr);
5472 		up_read(&EXT4_I(inode)->xattr_sem);
5473 
5474 		if (error) {
5475 			ext4_journal_stop(handle);
5476 			return error;
5477 		}
5478 		/* Update corresponding info in inode so that everything is in
5479 		 * one transaction */
5480 		i_uid_update(idmap, attr, inode);
5481 		i_gid_update(idmap, attr, inode);
5482 		error = ext4_mark_inode_dirty(handle, inode);
5483 		ext4_journal_stop(handle);
5484 		if (unlikely(error)) {
5485 			return error;
5486 		}
5487 	}
5488 
5489 	if (attr->ia_valid & ATTR_SIZE) {
5490 		handle_t *handle;
5491 		loff_t oldsize = inode->i_size;
5492 		loff_t old_disksize;
5493 		int shrink = (attr->ia_size < inode->i_size);
5494 
5495 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5496 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5497 
5498 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5499 				return -EFBIG;
5500 			}
5501 		}
5502 		if (!S_ISREG(inode->i_mode)) {
5503 			return -EINVAL;
5504 		}
5505 
5506 		if (attr->ia_size == inode->i_size)
5507 			inc_ivers = false;
5508 
5509 		if (shrink) {
5510 			if (ext4_should_order_data(inode)) {
5511 				error = ext4_begin_ordered_truncate(inode,
5512 							    attr->ia_size);
5513 				if (error)
5514 					goto err_out;
5515 			}
5516 			/*
5517 			 * Blocks are going to be removed from the inode. Wait
5518 			 * for dio in flight.
5519 			 */
5520 			inode_dio_wait(inode);
5521 		}
5522 
5523 		filemap_invalidate_lock(inode->i_mapping);
5524 
5525 		rc = ext4_break_layouts(inode);
5526 		if (rc) {
5527 			filemap_invalidate_unlock(inode->i_mapping);
5528 			goto err_out;
5529 		}
5530 
5531 		if (attr->ia_size != inode->i_size) {
5532 			/* attach jbd2 jinode for EOF folio tail zeroing */
5533 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5534 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5535 				error = ext4_inode_attach_jinode(inode);
5536 				if (error)
5537 					goto out_mmap_sem;
5538 			}
5539 
5540 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5541 			if (IS_ERR(handle)) {
5542 				error = PTR_ERR(handle);
5543 				goto out_mmap_sem;
5544 			}
5545 			if (ext4_handle_valid(handle) && shrink) {
5546 				error = ext4_orphan_add(handle, inode);
5547 				orphan = 1;
5548 			}
5549 			/*
5550 			 * Update c/mtime and tail zero the EOF folio on
5551 			 * truncate up. ext4_truncate() handles the shrink case
5552 			 * below.
5553 			 */
5554 			if (!shrink) {
5555 				inode_set_mtime_to_ts(inode,
5556 						      inode_set_ctime_current(inode));
5557 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5558 					ext4_block_truncate_page(handle,
5559 							inode->i_mapping, oldsize);
5560 			}
5561 
5562 			if (shrink)
5563 				ext4_fc_track_range(handle, inode,
5564 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5565 					inode->i_sb->s_blocksize_bits,
5566 					EXT_MAX_BLOCKS - 1);
5567 			else
5568 				ext4_fc_track_range(
5569 					handle, inode,
5570 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5571 					inode->i_sb->s_blocksize_bits,
5572 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5573 					inode->i_sb->s_blocksize_bits);
5574 
5575 			down_write(&EXT4_I(inode)->i_data_sem);
5576 			old_disksize = EXT4_I(inode)->i_disksize;
5577 			EXT4_I(inode)->i_disksize = attr->ia_size;
5578 			rc = ext4_mark_inode_dirty(handle, inode);
5579 			if (!error)
5580 				error = rc;
5581 			/*
5582 			 * We have to update i_size under i_data_sem together
5583 			 * with i_disksize to avoid races with writeback code
5584 			 * running ext4_wb_update_i_disksize().
5585 			 */
5586 			if (!error)
5587 				i_size_write(inode, attr->ia_size);
5588 			else
5589 				EXT4_I(inode)->i_disksize = old_disksize;
5590 			up_write(&EXT4_I(inode)->i_data_sem);
5591 			ext4_journal_stop(handle);
5592 			if (error)
5593 				goto out_mmap_sem;
5594 			if (!shrink) {
5595 				pagecache_isize_extended(inode, oldsize,
5596 							 inode->i_size);
5597 			} else if (ext4_should_journal_data(inode)) {
5598 				ext4_wait_for_tail_page_commit(inode);
5599 			}
5600 		}
5601 
5602 		/*
5603 		 * Truncate pagecache after we've waited for commit
5604 		 * in data=journal mode to make pages freeable.
5605 		 */
5606 		truncate_pagecache(inode, inode->i_size);
5607 		/*
5608 		 * Call ext4_truncate() even if i_size didn't change to
5609 		 * truncate possible preallocated blocks.
5610 		 */
5611 		if (attr->ia_size <= oldsize) {
5612 			rc = ext4_truncate(inode);
5613 			if (rc)
5614 				error = rc;
5615 		}
5616 out_mmap_sem:
5617 		filemap_invalidate_unlock(inode->i_mapping);
5618 	}
5619 
5620 	if (!error) {
5621 		if (inc_ivers)
5622 			inode_inc_iversion(inode);
5623 		setattr_copy(idmap, inode, attr);
5624 		mark_inode_dirty(inode);
5625 	}
5626 
5627 	/*
5628 	 * If the call to ext4_truncate failed to get a transaction handle at
5629 	 * all, we need to clean up the in-core orphan list manually.
5630 	 */
5631 	if (orphan && inode->i_nlink)
5632 		ext4_orphan_del(NULL, inode);
5633 
5634 	if (!error && (ia_valid & ATTR_MODE))
5635 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5636 
5637 err_out:
5638 	if  (error)
5639 		ext4_std_error(inode->i_sb, error);
5640 	if (!error)
5641 		error = rc;
5642 	return error;
5643 }
5644 
ext4_dio_alignment(struct inode * inode)5645 u32 ext4_dio_alignment(struct inode *inode)
5646 {
5647 	if (fsverity_active(inode))
5648 		return 0;
5649 	if (ext4_should_journal_data(inode))
5650 		return 0;
5651 	if (ext4_has_inline_data(inode))
5652 		return 0;
5653 	if (IS_ENCRYPTED(inode)) {
5654 		if (!fscrypt_dio_supported(inode))
5655 			return 0;
5656 		return i_blocksize(inode);
5657 	}
5658 	return 1; /* use the iomap defaults */
5659 }
5660 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5661 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5662 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5663 {
5664 	struct inode *inode = d_inode(path->dentry);
5665 	struct ext4_inode *raw_inode;
5666 	struct ext4_inode_info *ei = EXT4_I(inode);
5667 	unsigned int flags;
5668 
5669 	if ((request_mask & STATX_BTIME) &&
5670 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5671 		stat->result_mask |= STATX_BTIME;
5672 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5673 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5674 	}
5675 
5676 	/*
5677 	 * Return the DIO alignment restrictions if requested.  We only return
5678 	 * this information when requested, since on encrypted files it might
5679 	 * take a fair bit of work to get if the file wasn't opened recently.
5680 	 */
5681 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5682 		u32 dio_align = ext4_dio_alignment(inode);
5683 
5684 		stat->result_mask |= STATX_DIOALIGN;
5685 		if (dio_align == 1) {
5686 			struct block_device *bdev = inode->i_sb->s_bdev;
5687 
5688 			/* iomap defaults */
5689 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5690 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5691 		} else {
5692 			stat->dio_mem_align = dio_align;
5693 			stat->dio_offset_align = dio_align;
5694 		}
5695 	}
5696 
5697 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5698 	if (flags & EXT4_APPEND_FL)
5699 		stat->attributes |= STATX_ATTR_APPEND;
5700 	if (flags & EXT4_COMPR_FL)
5701 		stat->attributes |= STATX_ATTR_COMPRESSED;
5702 	if (flags & EXT4_ENCRYPT_FL)
5703 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5704 	if (flags & EXT4_IMMUTABLE_FL)
5705 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5706 	if (flags & EXT4_NODUMP_FL)
5707 		stat->attributes |= STATX_ATTR_NODUMP;
5708 	if (flags & EXT4_VERITY_FL)
5709 		stat->attributes |= STATX_ATTR_VERITY;
5710 
5711 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5712 				  STATX_ATTR_COMPRESSED |
5713 				  STATX_ATTR_ENCRYPTED |
5714 				  STATX_ATTR_IMMUTABLE |
5715 				  STATX_ATTR_NODUMP |
5716 				  STATX_ATTR_VERITY);
5717 
5718 	generic_fillattr(idmap, request_mask, inode, stat);
5719 	return 0;
5720 }
5721 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5722 int ext4_file_getattr(struct mnt_idmap *idmap,
5723 		      const struct path *path, struct kstat *stat,
5724 		      u32 request_mask, unsigned int query_flags)
5725 {
5726 	struct inode *inode = d_inode(path->dentry);
5727 	u64 delalloc_blocks;
5728 
5729 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5730 
5731 	/*
5732 	 * If there is inline data in the inode, the inode will normally not
5733 	 * have data blocks allocated (it may have an external xattr block).
5734 	 * Report at least one sector for such files, so tools like tar, rsync,
5735 	 * others don't incorrectly think the file is completely sparse.
5736 	 */
5737 	if (unlikely(ext4_has_inline_data(inode)))
5738 		stat->blocks += (stat->size + 511) >> 9;
5739 
5740 	/*
5741 	 * We can't update i_blocks if the block allocation is delayed
5742 	 * otherwise in the case of system crash before the real block
5743 	 * allocation is done, we will have i_blocks inconsistent with
5744 	 * on-disk file blocks.
5745 	 * We always keep i_blocks updated together with real
5746 	 * allocation. But to not confuse with user, stat
5747 	 * will return the blocks that include the delayed allocation
5748 	 * blocks for this file.
5749 	 */
5750 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5751 				   EXT4_I(inode)->i_reserved_data_blocks);
5752 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5753 	return 0;
5754 }
5755 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5756 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5757 				   int pextents)
5758 {
5759 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5760 		return ext4_ind_trans_blocks(inode, lblocks);
5761 	return ext4_ext_index_trans_blocks(inode, pextents);
5762 }
5763 
5764 /*
5765  * Account for index blocks, block groups bitmaps and block group
5766  * descriptor blocks if modify datablocks and index blocks
5767  * worse case, the indexs blocks spread over different block groups
5768  *
5769  * If datablocks are discontiguous, they are possible to spread over
5770  * different block groups too. If they are contiguous, with flexbg,
5771  * they could still across block group boundary.
5772  *
5773  * Also account for superblock, inode, quota and xattr blocks
5774  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5775 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5776 				  int pextents)
5777 {
5778 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5779 	int gdpblocks;
5780 	int idxblocks;
5781 	int ret;
5782 
5783 	/*
5784 	 * How many index blocks need to touch to map @lblocks logical blocks
5785 	 * to @pextents physical extents?
5786 	 */
5787 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5788 
5789 	ret = idxblocks;
5790 
5791 	/*
5792 	 * Now let's see how many group bitmaps and group descriptors need
5793 	 * to account
5794 	 */
5795 	groups = idxblocks + pextents;
5796 	gdpblocks = groups;
5797 	if (groups > ngroups)
5798 		groups = ngroups;
5799 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5800 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5801 
5802 	/* bitmaps and block group descriptor blocks */
5803 	ret += groups + gdpblocks;
5804 
5805 	/* Blocks for super block, inode, quota and xattr blocks */
5806 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5807 
5808 	return ret;
5809 }
5810 
5811 /*
5812  * Calculate the total number of credits to reserve to fit
5813  * the modification of a single pages into a single transaction,
5814  * which may include multiple chunks of block allocations.
5815  *
5816  * This could be called via ext4_write_begin()
5817  *
5818  * We need to consider the worse case, when
5819  * one new block per extent.
5820  */
ext4_writepage_trans_blocks(struct inode * inode)5821 int ext4_writepage_trans_blocks(struct inode *inode)
5822 {
5823 	int bpp = ext4_journal_blocks_per_page(inode);
5824 	int ret;
5825 
5826 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5827 
5828 	/* Account for data blocks for journalled mode */
5829 	if (ext4_should_journal_data(inode))
5830 		ret += bpp;
5831 	return ret;
5832 }
5833 
5834 /*
5835  * Calculate the journal credits for a chunk of data modification.
5836  *
5837  * This is called from DIO, fallocate or whoever calling
5838  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5839  *
5840  * journal buffers for data blocks are not included here, as DIO
5841  * and fallocate do no need to journal data buffers.
5842  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5843 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5844 {
5845 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5846 }
5847 
5848 /*
5849  * The caller must have previously called ext4_reserve_inode_write().
5850  * Give this, we know that the caller already has write access to iloc->bh.
5851  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5852 int ext4_mark_iloc_dirty(handle_t *handle,
5853 			 struct inode *inode, struct ext4_iloc *iloc)
5854 {
5855 	int err = 0;
5856 
5857 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5858 		put_bh(iloc->bh);
5859 		return -EIO;
5860 	}
5861 	ext4_fc_track_inode(handle, inode);
5862 
5863 	/* the do_update_inode consumes one bh->b_count */
5864 	get_bh(iloc->bh);
5865 
5866 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5867 	err = ext4_do_update_inode(handle, inode, iloc);
5868 	put_bh(iloc->bh);
5869 	return err;
5870 }
5871 
5872 /*
5873  * On success, We end up with an outstanding reference count against
5874  * iloc->bh.  This _must_ be cleaned up later.
5875  */
5876 
5877 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5878 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5879 			 struct ext4_iloc *iloc)
5880 {
5881 	int err;
5882 
5883 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5884 		return -EIO;
5885 
5886 	err = ext4_get_inode_loc(inode, iloc);
5887 	if (!err) {
5888 		BUFFER_TRACE(iloc->bh, "get_write_access");
5889 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5890 						    iloc->bh, EXT4_JTR_NONE);
5891 		if (err) {
5892 			brelse(iloc->bh);
5893 			iloc->bh = NULL;
5894 		}
5895 	}
5896 	ext4_std_error(inode->i_sb, err);
5897 	return err;
5898 }
5899 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5900 static int __ext4_expand_extra_isize(struct inode *inode,
5901 				     unsigned int new_extra_isize,
5902 				     struct ext4_iloc *iloc,
5903 				     handle_t *handle, int *no_expand)
5904 {
5905 	struct ext4_inode *raw_inode;
5906 	struct ext4_xattr_ibody_header *header;
5907 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5908 	struct ext4_inode_info *ei = EXT4_I(inode);
5909 	int error;
5910 
5911 	/* this was checked at iget time, but double check for good measure */
5912 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5913 	    (ei->i_extra_isize & 3)) {
5914 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5915 				 ei->i_extra_isize,
5916 				 EXT4_INODE_SIZE(inode->i_sb));
5917 		return -EFSCORRUPTED;
5918 	}
5919 	if ((new_extra_isize < ei->i_extra_isize) ||
5920 	    (new_extra_isize < 4) ||
5921 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5922 		return -EINVAL;	/* Should never happen */
5923 
5924 	raw_inode = ext4_raw_inode(iloc);
5925 
5926 	header = IHDR(inode, raw_inode);
5927 
5928 	/* No extended attributes present */
5929 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5930 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5931 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5932 		       EXT4_I(inode)->i_extra_isize, 0,
5933 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5934 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5935 		return 0;
5936 	}
5937 
5938 	/*
5939 	 * We may need to allocate external xattr block so we need quotas
5940 	 * initialized. Here we can be called with various locks held so we
5941 	 * cannot affort to initialize quotas ourselves. So just bail.
5942 	 */
5943 	if (dquot_initialize_needed(inode))
5944 		return -EAGAIN;
5945 
5946 	/* try to expand with EAs present */
5947 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5948 					   raw_inode, handle);
5949 	if (error) {
5950 		/*
5951 		 * Inode size expansion failed; don't try again
5952 		 */
5953 		*no_expand = 1;
5954 	}
5955 
5956 	return error;
5957 }
5958 
5959 /*
5960  * Expand an inode by new_extra_isize bytes.
5961  * Returns 0 on success or negative error number on failure.
5962  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5963 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5964 					  unsigned int new_extra_isize,
5965 					  struct ext4_iloc iloc,
5966 					  handle_t *handle)
5967 {
5968 	int no_expand;
5969 	int error;
5970 
5971 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5972 		return -EOVERFLOW;
5973 
5974 	/*
5975 	 * In nojournal mode, we can immediately attempt to expand
5976 	 * the inode.  When journaled, we first need to obtain extra
5977 	 * buffer credits since we may write into the EA block
5978 	 * with this same handle. If journal_extend fails, then it will
5979 	 * only result in a minor loss of functionality for that inode.
5980 	 * If this is felt to be critical, then e2fsck should be run to
5981 	 * force a large enough s_min_extra_isize.
5982 	 */
5983 	if (ext4_journal_extend(handle,
5984 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5985 		return -ENOSPC;
5986 
5987 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5988 		return -EBUSY;
5989 
5990 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5991 					  handle, &no_expand);
5992 	ext4_write_unlock_xattr(inode, &no_expand);
5993 
5994 	return error;
5995 }
5996 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5997 int ext4_expand_extra_isize(struct inode *inode,
5998 			    unsigned int new_extra_isize,
5999 			    struct ext4_iloc *iloc)
6000 {
6001 	handle_t *handle;
6002 	int no_expand;
6003 	int error, rc;
6004 
6005 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6006 		brelse(iloc->bh);
6007 		return -EOVERFLOW;
6008 	}
6009 
6010 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6011 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6012 	if (IS_ERR(handle)) {
6013 		error = PTR_ERR(handle);
6014 		brelse(iloc->bh);
6015 		return error;
6016 	}
6017 
6018 	ext4_write_lock_xattr(inode, &no_expand);
6019 
6020 	BUFFER_TRACE(iloc->bh, "get_write_access");
6021 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6022 					      EXT4_JTR_NONE);
6023 	if (error) {
6024 		brelse(iloc->bh);
6025 		goto out_unlock;
6026 	}
6027 
6028 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6029 					  handle, &no_expand);
6030 
6031 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6032 	if (!error)
6033 		error = rc;
6034 
6035 out_unlock:
6036 	ext4_write_unlock_xattr(inode, &no_expand);
6037 	ext4_journal_stop(handle);
6038 	return error;
6039 }
6040 
6041 /*
6042  * What we do here is to mark the in-core inode as clean with respect to inode
6043  * dirtiness (it may still be data-dirty).
6044  * This means that the in-core inode may be reaped by prune_icache
6045  * without having to perform any I/O.  This is a very good thing,
6046  * because *any* task may call prune_icache - even ones which
6047  * have a transaction open against a different journal.
6048  *
6049  * Is this cheating?  Not really.  Sure, we haven't written the
6050  * inode out, but prune_icache isn't a user-visible syncing function.
6051  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6052  * we start and wait on commits.
6053  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6054 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6055 				const char *func, unsigned int line)
6056 {
6057 	struct ext4_iloc iloc;
6058 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6059 	int err;
6060 
6061 	might_sleep();
6062 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6063 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6064 	if (err)
6065 		goto out;
6066 
6067 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6068 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6069 					       iloc, handle);
6070 
6071 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6072 out:
6073 	if (unlikely(err))
6074 		ext4_error_inode_err(inode, func, line, 0, err,
6075 					"mark_inode_dirty error");
6076 	return err;
6077 }
6078 
6079 /*
6080  * ext4_dirty_inode() is called from __mark_inode_dirty()
6081  *
6082  * We're really interested in the case where a file is being extended.
6083  * i_size has been changed by generic_commit_write() and we thus need
6084  * to include the updated inode in the current transaction.
6085  *
6086  * Also, dquot_alloc_block() will always dirty the inode when blocks
6087  * are allocated to the file.
6088  *
6089  * If the inode is marked synchronous, we don't honour that here - doing
6090  * so would cause a commit on atime updates, which we don't bother doing.
6091  * We handle synchronous inodes at the highest possible level.
6092  */
ext4_dirty_inode(struct inode * inode,int flags)6093 void ext4_dirty_inode(struct inode *inode, int flags)
6094 {
6095 	handle_t *handle;
6096 
6097 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6098 	if (IS_ERR(handle))
6099 		return;
6100 	ext4_mark_inode_dirty(handle, inode);
6101 	ext4_journal_stop(handle);
6102 }
6103 
ext4_change_inode_journal_flag(struct inode * inode,int val)6104 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6105 {
6106 	journal_t *journal;
6107 	handle_t *handle;
6108 	int err;
6109 	int alloc_ctx;
6110 
6111 	/*
6112 	 * We have to be very careful here: changing a data block's
6113 	 * journaling status dynamically is dangerous.  If we write a
6114 	 * data block to the journal, change the status and then delete
6115 	 * that block, we risk forgetting to revoke the old log record
6116 	 * from the journal and so a subsequent replay can corrupt data.
6117 	 * So, first we make sure that the journal is empty and that
6118 	 * nobody is changing anything.
6119 	 */
6120 
6121 	journal = EXT4_JOURNAL(inode);
6122 	if (!journal)
6123 		return 0;
6124 	if (is_journal_aborted(journal))
6125 		return -EROFS;
6126 
6127 	/* Wait for all existing dio workers */
6128 	inode_dio_wait(inode);
6129 
6130 	/*
6131 	 * Before flushing the journal and switching inode's aops, we have
6132 	 * to flush all dirty data the inode has. There can be outstanding
6133 	 * delayed allocations, there can be unwritten extents created by
6134 	 * fallocate or buffered writes in dioread_nolock mode covered by
6135 	 * dirty data which can be converted only after flushing the dirty
6136 	 * data (and journalled aops don't know how to handle these cases).
6137 	 */
6138 	if (val) {
6139 		filemap_invalidate_lock(inode->i_mapping);
6140 		err = filemap_write_and_wait(inode->i_mapping);
6141 		if (err < 0) {
6142 			filemap_invalidate_unlock(inode->i_mapping);
6143 			return err;
6144 		}
6145 	}
6146 
6147 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6148 	jbd2_journal_lock_updates(journal);
6149 
6150 	/*
6151 	 * OK, there are no updates running now, and all cached data is
6152 	 * synced to disk.  We are now in a completely consistent state
6153 	 * which doesn't have anything in the journal, and we know that
6154 	 * no filesystem updates are running, so it is safe to modify
6155 	 * the inode's in-core data-journaling state flag now.
6156 	 */
6157 
6158 	if (val)
6159 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6160 	else {
6161 		err = jbd2_journal_flush(journal, 0);
6162 		if (err < 0) {
6163 			jbd2_journal_unlock_updates(journal);
6164 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6165 			return err;
6166 		}
6167 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6168 	}
6169 	ext4_set_aops(inode);
6170 
6171 	jbd2_journal_unlock_updates(journal);
6172 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6173 
6174 	if (val)
6175 		filemap_invalidate_unlock(inode->i_mapping);
6176 
6177 	/* Finally we can mark the inode as dirty. */
6178 
6179 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6180 	if (IS_ERR(handle))
6181 		return PTR_ERR(handle);
6182 
6183 	ext4_fc_mark_ineligible(inode->i_sb,
6184 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6185 	err = ext4_mark_inode_dirty(handle, inode);
6186 	ext4_handle_sync(handle);
6187 	ext4_journal_stop(handle);
6188 	ext4_std_error(inode->i_sb, err);
6189 
6190 	return err;
6191 }
6192 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6193 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6194 			    struct buffer_head *bh)
6195 {
6196 	return !buffer_mapped(bh);
6197 }
6198 
ext4_page_mkwrite(struct vm_fault * vmf)6199 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6200 {
6201 	struct vm_area_struct *vma = vmf->vma;
6202 	struct folio *folio = page_folio(vmf->page);
6203 	loff_t size;
6204 	unsigned long len;
6205 	int err;
6206 	vm_fault_t ret;
6207 	struct file *file = vma->vm_file;
6208 	struct inode *inode = file_inode(file);
6209 	struct address_space *mapping = inode->i_mapping;
6210 	handle_t *handle;
6211 	get_block_t *get_block;
6212 	int retries = 0;
6213 
6214 	if (unlikely(IS_IMMUTABLE(inode)))
6215 		return VM_FAULT_SIGBUS;
6216 
6217 	sb_start_pagefault(inode->i_sb);
6218 	file_update_time(vma->vm_file);
6219 
6220 	filemap_invalidate_lock_shared(mapping);
6221 
6222 	err = ext4_convert_inline_data(inode);
6223 	if (err)
6224 		goto out_ret;
6225 
6226 	/*
6227 	 * On data journalling we skip straight to the transaction handle:
6228 	 * there's no delalloc; page truncated will be checked later; the
6229 	 * early return w/ all buffers mapped (calculates size/len) can't
6230 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6231 	 */
6232 	if (ext4_should_journal_data(inode))
6233 		goto retry_alloc;
6234 
6235 	/* Delalloc case is easy... */
6236 	if (test_opt(inode->i_sb, DELALLOC) &&
6237 	    !ext4_nonda_switch(inode->i_sb)) {
6238 		do {
6239 			err = block_page_mkwrite(vma, vmf,
6240 						   ext4_da_get_block_prep);
6241 		} while (err == -ENOSPC &&
6242 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6243 		goto out_ret;
6244 	}
6245 
6246 	folio_lock(folio);
6247 	size = i_size_read(inode);
6248 	/* Page got truncated from under us? */
6249 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6250 		folio_unlock(folio);
6251 		ret = VM_FAULT_NOPAGE;
6252 		goto out;
6253 	}
6254 
6255 	len = folio_size(folio);
6256 	if (folio_pos(folio) + len > size)
6257 		len = size - folio_pos(folio);
6258 	/*
6259 	 * Return if we have all the buffers mapped. This avoids the need to do
6260 	 * journal_start/journal_stop which can block and take a long time
6261 	 *
6262 	 * This cannot be done for data journalling, as we have to add the
6263 	 * inode to the transaction's list to writeprotect pages on commit.
6264 	 */
6265 	if (folio_buffers(folio)) {
6266 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6267 					    0, len, NULL,
6268 					    ext4_bh_unmapped)) {
6269 			/* Wait so that we don't change page under IO */
6270 			folio_wait_stable(folio);
6271 			ret = VM_FAULT_LOCKED;
6272 			goto out;
6273 		}
6274 	}
6275 	folio_unlock(folio);
6276 	/* OK, we need to fill the hole... */
6277 	if (ext4_should_dioread_nolock(inode))
6278 		get_block = ext4_get_block_unwritten;
6279 	else
6280 		get_block = ext4_get_block;
6281 retry_alloc:
6282 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6283 				    ext4_writepage_trans_blocks(inode));
6284 	if (IS_ERR(handle)) {
6285 		ret = VM_FAULT_SIGBUS;
6286 		goto out;
6287 	}
6288 	/*
6289 	 * Data journalling can't use block_page_mkwrite() because it
6290 	 * will set_buffer_dirty() before do_journal_get_write_access()
6291 	 * thus might hit warning messages for dirty metadata buffers.
6292 	 */
6293 	if (!ext4_should_journal_data(inode)) {
6294 		err = block_page_mkwrite(vma, vmf, get_block);
6295 	} else {
6296 		folio_lock(folio);
6297 		size = i_size_read(inode);
6298 		/* Page got truncated from under us? */
6299 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6300 			ret = VM_FAULT_NOPAGE;
6301 			goto out_error;
6302 		}
6303 
6304 		len = folio_size(folio);
6305 		if (folio_pos(folio) + len > size)
6306 			len = size - folio_pos(folio);
6307 
6308 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6309 		if (!err) {
6310 			ret = VM_FAULT_SIGBUS;
6311 			if (ext4_journal_folio_buffers(handle, folio, len))
6312 				goto out_error;
6313 		} else {
6314 			folio_unlock(folio);
6315 		}
6316 	}
6317 	ext4_journal_stop(handle);
6318 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6319 		goto retry_alloc;
6320 out_ret:
6321 	ret = vmf_fs_error(err);
6322 out:
6323 	filemap_invalidate_unlock_shared(mapping);
6324 	sb_end_pagefault(inode->i_sb);
6325 	return ret;
6326 out_error:
6327 	folio_unlock(folio);
6328 	ext4_journal_stop(handle);
6329 	goto out;
6330 }
6331