1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io, bool simu_fail)
165 {
166 if (simu_fail) {
167 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 return;
170 }
171
172 /*
173 * buffer's verified bit is no longer valid after reading from
174 * disk again due to write out error, clear it to make sure we
175 * recheck the buffer contents.
176 */
177 clear_buffer_verified(bh);
178
179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 get_bh(bh);
181 submit_bh(REQ_OP_READ | op_flags, bh);
182 }
183
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)184 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 bh_end_io_t *end_io, bool simu_fail)
186 {
187 BUG_ON(!buffer_locked(bh));
188
189 if (ext4_buffer_uptodate(bh)) {
190 unlock_buffer(bh);
191 return;
192 }
193 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
194 }
195
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io,bool simu_fail)196 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 bh_end_io_t *end_io, bool simu_fail)
198 {
199 BUG_ON(!buffer_locked(bh));
200
201 if (ext4_buffer_uptodate(bh)) {
202 unlock_buffer(bh);
203 return 0;
204 }
205
206 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
207
208 wait_on_buffer(bh);
209 if (buffer_uptodate(bh))
210 return 0;
211 return -EIO;
212 }
213
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)214 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215 {
216 lock_buffer(bh);
217 if (!wait) {
218 ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 return 0;
220 }
221 return ext4_read_bh(bh, op_flags, NULL, false);
222 }
223
224 /*
225 * This works like __bread_gfp() except it uses ERR_PTR for error
226 * returns. Currently with sb_bread it's impossible to distinguish
227 * between ENOMEM and EIO situations (since both result in a NULL
228 * return.
229 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)230 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 sector_t block,
232 blk_opf_t op_flags, gfp_t gfp)
233 {
234 struct buffer_head *bh;
235 int ret;
236
237 bh = sb_getblk_gfp(sb, block, gfp);
238 if (bh == NULL)
239 return ERR_PTR(-ENOMEM);
240 if (ext4_buffer_uptodate(bh))
241 return bh;
242
243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 if (ret) {
245 put_bh(bh);
246 return ERR_PTR(ret);
247 }
248 return bh;
249 }
250
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)251 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 blk_opf_t op_flags)
253 {
254 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
255 }
256
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)257 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
258 sector_t block)
259 {
260 return __ext4_sb_bread_gfp(sb, block, 0, 0);
261 }
262
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)263 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
264 {
265 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
266
267 if (likely(bh)) {
268 if (trylock_buffer(bh))
269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
270 brelse(bh);
271 }
272 }
273
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)274 static int ext4_verify_csum_type(struct super_block *sb,
275 struct ext4_super_block *es)
276 {
277 if (!ext4_has_feature_metadata_csum(sb))
278 return 1;
279
280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)283 __le32 ext4_superblock_csum(struct super_block *sb,
284 struct ext4_super_block *es)
285 {
286 struct ext4_sb_info *sbi = EXT4_SB(sb);
287 int offset = offsetof(struct ext4_super_block, s_checksum);
288 __u32 csum;
289
290 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291
292 return cpu_to_le32(csum);
293 }
294
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 struct ext4_super_block *es)
297 {
298 if (!ext4_has_metadata_csum(sb))
299 return 1;
300
301 return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303
ext4_superblock_csum_set(struct super_block * sb)304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 if (!ext4_has_metadata_csum(sb))
309 return;
310
311 es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le32_to_cpu(bg->bg_inode_table_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
352 }
353
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 struct ext4_group_desc *bg)
364 {
365 return le16_to_cpu(bg->bg_itable_unused_lo) |
366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_block_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_bitmap_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)386 void ext4_inode_table_set(struct super_block *sb,
387 struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_group_clusters_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_free_inodes_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
408 }
409
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_used_dirs_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)418 void ext4_itable_unused_set(struct super_block *sb,
419 struct ext4_group_desc *bg, __u32 count)
420 {
421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 now = clamp_val(now, 0, (1ull << 40) - 1);
429
430 *lo = cpu_to_le32(lower_32_bits(now));
431 *hi = upper_32_bits(now);
432 }
433
__ext4_get_tstamp(__le32 * lo,__u8 * hi)434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446
447 /*
448 * The ext4_maybe_update_superblock() function checks and updates the
449 * superblock if needed.
450 *
451 * This function is designed to update the on-disk superblock only under
452 * certain conditions to prevent excessive disk writes and unnecessary
453 * waking of the disk from sleep. The superblock will be updated if:
454 * 1. More than an hour has passed since the last superblock update, and
455 * 2. More than 16MB have been written since the last superblock update.
456 *
457 * @sb: The superblock
458 */
ext4_maybe_update_superblock(struct super_block * sb)459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 struct ext4_super_block *es = sbi->s_es;
463 journal_t *journal = sbi->s_journal;
464 time64_t now;
465 __u64 last_update;
466 __u64 lifetime_write_kbytes;
467 __u64 diff_size;
468
469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 !journal || (journal->j_flags & JBD2_UNMOUNT))
471 return;
472
473 now = ktime_get_real_seconds();
474 last_update = ext4_get_tstamp(es, s_wtime);
475
476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 return;
478
479 lifetime_write_kbytes = sbi->s_kbytes_written +
480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 sbi->s_sectors_written_start) >> 1);
482
483 /* Get the number of kilobytes not written to disk to account
484 * for statistics and compare with a multiple of 16 MB. This
485 * is used to determine when the next superblock commit should
486 * occur (i.e. not more often than once per 16MB if there was
487 * less written in an hour).
488 */
489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490
491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494
495 /*
496 * The del_gendisk() function uninitializes the disk-specific data
497 * structures, including the bdi structure, without telling anyone
498 * else. Once this happens, any attempt to call mark_buffer_dirty()
499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
500 * This is a kludge to prevent these oops until we can put in a proper
501 * hook in del_gendisk() to inform the VFS and file system layers.
502 */
block_device_ejected(struct super_block * sb)503 static int block_device_ejected(struct super_block *sb)
504 {
505 struct inode *bd_inode = sb->s_bdev->bd_inode;
506 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507
508 return bdi->dev == NULL;
509 }
510
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 struct super_block *sb = journal->j_private;
514 struct ext4_sb_info *sbi = EXT4_SB(sb);
515 int error = is_journal_aborted(journal);
516 struct ext4_journal_cb_entry *jce;
517
518 BUG_ON(txn->t_state == T_FINISHED);
519
520 ext4_process_freed_data(sb, txn->t_tid);
521 ext4_maybe_update_superblock(sb);
522
523 spin_lock(&sbi->s_md_lock);
524 while (!list_empty(&txn->t_private_list)) {
525 jce = list_entry(txn->t_private_list.next,
526 struct ext4_journal_cb_entry, jce_list);
527 list_del_init(&jce->jce_list);
528 spin_unlock(&sbi->s_md_lock);
529 jce->jce_func(sb, jce, error);
530 spin_lock(&sbi->s_md_lock);
531 }
532 spin_unlock(&sbi->s_md_lock);
533 }
534
535 /*
536 * This writepage callback for write_cache_pages()
537 * takes care of a few cases after page cleaning.
538 *
539 * write_cache_pages() already checks for dirty pages
540 * and calls clear_page_dirty_for_io(), which we want,
541 * to write protect the pages.
542 *
543 * However, we may have to redirty a page (see below.)
544 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 struct writeback_control *wbc,
547 void *data)
548 {
549 transaction_t *transaction = (transaction_t *) data;
550 struct buffer_head *bh, *head;
551 struct journal_head *jh;
552
553 bh = head = folio_buffers(folio);
554 do {
555 /*
556 * We have to redirty a page in these cases:
557 * 1) If buffer is dirty, it means the page was dirty because it
558 * contains a buffer that needs checkpointing. So the dirty bit
559 * needs to be preserved so that checkpointing writes the buffer
560 * properly.
561 * 2) If buffer is not part of the committing transaction
562 * (we may have just accidentally come across this buffer because
563 * inode range tracking is not exact) or if the currently running
564 * transaction already contains this buffer as well, dirty bit
565 * needs to be preserved so that the buffer gets writeprotected
566 * properly on running transaction's commit.
567 */
568 jh = bh2jh(bh);
569 if (buffer_dirty(bh) ||
570 (jh && (jh->b_transaction != transaction ||
571 jh->b_next_transaction))) {
572 folio_redirty_for_writepage(wbc, folio);
573 goto out;
574 }
575 } while ((bh = bh->b_this_page) != head);
576
577 out:
578 return AOP_WRITEPAGE_ACTIVATE;
579 }
580
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 struct writeback_control wbc = {
585 .sync_mode = WB_SYNC_ALL,
586 .nr_to_write = LONG_MAX,
587 .range_start = jinode->i_dirty_start,
588 .range_end = jinode->i_dirty_end,
589 };
590
591 return write_cache_pages(mapping, &wbc,
592 ext4_journalled_writepage_callback,
593 jinode->i_transaction);
594 }
595
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 int ret;
599
600 if (ext4_should_journal_data(jinode->i_vfs_inode))
601 ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 else
603 ret = ext4_normal_submit_inode_data_buffers(jinode);
604 return ret;
605 }
606
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 int ret = 0;
610
611 if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 ret = jbd2_journal_finish_inode_data_buffers(jinode);
613
614 return ret;
615 }
616
system_going_down(void)617 static bool system_going_down(void)
618 {
619 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 || system_state == SYSTEM_RESTART;
621 }
622
623 struct ext4_err_translation {
624 int code;
625 int errno;
626 };
627
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629
630 static struct ext4_err_translation err_translation[] = {
631 EXT4_ERR_TRANSLATE(EIO),
632 EXT4_ERR_TRANSLATE(ENOMEM),
633 EXT4_ERR_TRANSLATE(EFSBADCRC),
634 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 EXT4_ERR_TRANSLATE(ENOSPC),
636 EXT4_ERR_TRANSLATE(ENOKEY),
637 EXT4_ERR_TRANSLATE(EROFS),
638 EXT4_ERR_TRANSLATE(EFBIG),
639 EXT4_ERR_TRANSLATE(EEXIST),
640 EXT4_ERR_TRANSLATE(ERANGE),
641 EXT4_ERR_TRANSLATE(EOVERFLOW),
642 EXT4_ERR_TRANSLATE(EBUSY),
643 EXT4_ERR_TRANSLATE(ENOTDIR),
644 EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 EXT4_ERR_TRANSLATE(EFAULT),
647 };
648
ext4_errno_to_code(int errno)649 static int ext4_errno_to_code(int errno)
650 {
651 int i;
652
653 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 if (err_translation[i].errno == errno)
655 return err_translation[i].code;
656 return EXT4_ERR_UNKNOWN;
657 }
658
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)659 static void save_error_info(struct super_block *sb, int error,
660 __u32 ino, __u64 block,
661 const char *func, unsigned int line)
662 {
663 struct ext4_sb_info *sbi = EXT4_SB(sb);
664
665 /* We default to EFSCORRUPTED error... */
666 if (error == 0)
667 error = EFSCORRUPTED;
668
669 spin_lock(&sbi->s_error_lock);
670 sbi->s_add_error_count++;
671 sbi->s_last_error_code = error;
672 sbi->s_last_error_line = line;
673 sbi->s_last_error_ino = ino;
674 sbi->s_last_error_block = block;
675 sbi->s_last_error_func = func;
676 sbi->s_last_error_time = ktime_get_real_seconds();
677 if (!sbi->s_first_error_time) {
678 sbi->s_first_error_code = error;
679 sbi->s_first_error_line = line;
680 sbi->s_first_error_ino = ino;
681 sbi->s_first_error_block = block;
682 sbi->s_first_error_func = func;
683 sbi->s_first_error_time = sbi->s_last_error_time;
684 }
685 spin_unlock(&sbi->s_error_lock);
686 }
687
688 /* Deal with the reporting of failure conditions on a filesystem such as
689 * inconsistencies detected or read IO failures.
690 *
691 * On ext2, we can store the error state of the filesystem in the
692 * superblock. That is not possible on ext4, because we may have other
693 * write ordering constraints on the superblock which prevent us from
694 * writing it out straight away; and given that the journal is about to
695 * be aborted, we can't rely on the current, or future, transactions to
696 * write out the superblock safely.
697 *
698 * We'll just use the jbd2_journal_abort() error code to record an error in
699 * the journal instead. On recovery, the journal will complain about
700 * that error until we've noted it down and cleared it.
701 *
702 * If force_ro is set, we unconditionally force the filesystem into an
703 * ABORT|READONLY state, unless the error response on the fs has been set to
704 * panic in which case we take the easy way out and panic immediately. This is
705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706 * at a critical moment in log management.
707 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 __u32 ino, __u64 block,
710 const char *func, unsigned int line)
711 {
712 journal_t *journal = EXT4_SB(sb)->s_journal;
713 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714
715 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 if (test_opt(sb, WARN_ON_ERROR))
717 WARN_ON_ONCE(1);
718
719 if (!continue_fs && !sb_rdonly(sb)) {
720 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 if (journal)
722 jbd2_journal_abort(journal, -EIO);
723 }
724
725 if (!bdev_read_only(sb->s_bdev)) {
726 save_error_info(sb, error, ino, block, func, line);
727 /*
728 * In case the fs should keep running, we need to writeout
729 * superblock through the journal. Due to lock ordering
730 * constraints, it may not be safe to do it right here so we
731 * defer superblock flushing to a workqueue.
732 */
733 if (continue_fs && journal)
734 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 else
736 ext4_commit_super(sb);
737 }
738
739 /*
740 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 * could panic during 'reboot -f' as the underlying device got already
742 * disabled.
743 */
744 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 panic("EXT4-fs (device %s): panic forced after error\n",
746 sb->s_id);
747 }
748
749 if (sb_rdonly(sb) || continue_fs)
750 return;
751
752 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 /*
754 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
755 * modifications. We don't set SB_RDONLY because that requires
756 * sb->s_umount semaphore and setting it without proper remount
757 * procedure is confusing code such as freeze_super() leading to
758 * deadlocks and other problems.
759 */
760 }
761
update_super_work(struct work_struct * work)762 static void update_super_work(struct work_struct *work)
763 {
764 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
765 s_sb_upd_work);
766 journal_t *journal = sbi->s_journal;
767 handle_t *handle;
768
769 /*
770 * If the journal is still running, we have to write out superblock
771 * through the journal to avoid collisions of other journalled sb
772 * updates.
773 *
774 * We use directly jbd2 functions here to avoid recursing back into
775 * ext4 error handling code during handling of previous errors.
776 */
777 if (!sb_rdonly(sbi->s_sb) && journal) {
778 struct buffer_head *sbh = sbi->s_sbh;
779 bool call_notify_err = false;
780
781 handle = jbd2_journal_start(journal, 1);
782 if (IS_ERR(handle))
783 goto write_directly;
784 if (jbd2_journal_get_write_access(handle, sbh)) {
785 jbd2_journal_stop(handle);
786 goto write_directly;
787 }
788
789 if (sbi->s_add_error_count > 0)
790 call_notify_err = true;
791
792 ext4_update_super(sbi->s_sb);
793 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
794 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
795 "superblock detected");
796 clear_buffer_write_io_error(sbh);
797 set_buffer_uptodate(sbh);
798 }
799
800 if (jbd2_journal_dirty_metadata(handle, sbh)) {
801 jbd2_journal_stop(handle);
802 goto write_directly;
803 }
804 jbd2_journal_stop(handle);
805
806 if (call_notify_err)
807 ext4_notify_error_sysfs(sbi);
808
809 return;
810 }
811 write_directly:
812 /*
813 * Write through journal failed. Write sb directly to get error info
814 * out and hope for the best.
815 */
816 ext4_commit_super(sbi->s_sb);
817 ext4_notify_error_sysfs(sbi);
818 }
819
820 #define ext4_error_ratelimit(sb) \
821 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
822 "EXT4-fs error")
823
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)824 void __ext4_error(struct super_block *sb, const char *function,
825 unsigned int line, bool force_ro, int error, __u64 block,
826 const char *fmt, ...)
827 {
828 struct va_format vaf;
829 va_list args;
830
831 if (unlikely(ext4_forced_shutdown(sb)))
832 return;
833
834 trace_ext4_error(sb, function, line);
835 if (ext4_error_ratelimit(sb)) {
836 va_start(args, fmt);
837 vaf.fmt = fmt;
838 vaf.va = &args;
839 printk(KERN_CRIT
840 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
841 sb->s_id, function, line, current->comm, &vaf);
842 va_end(args);
843 }
844 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
845
846 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
847 }
848
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)849 void __ext4_error_inode(struct inode *inode, const char *function,
850 unsigned int line, ext4_fsblk_t block, int error,
851 const char *fmt, ...)
852 {
853 va_list args;
854 struct va_format vaf;
855
856 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
857 return;
858
859 trace_ext4_error(inode->i_sb, function, line);
860 if (ext4_error_ratelimit(inode->i_sb)) {
861 va_start(args, fmt);
862 vaf.fmt = fmt;
863 vaf.va = &args;
864 if (block)
865 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
866 "inode #%lu: block %llu: comm %s: %pV\n",
867 inode->i_sb->s_id, function, line, inode->i_ino,
868 block, current->comm, &vaf);
869 else
870 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
871 "inode #%lu: comm %s: %pV\n",
872 inode->i_sb->s_id, function, line, inode->i_ino,
873 current->comm, &vaf);
874 va_end(args);
875 }
876 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
877
878 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
879 function, line);
880 }
881
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)882 void __ext4_error_file(struct file *file, const char *function,
883 unsigned int line, ext4_fsblk_t block,
884 const char *fmt, ...)
885 {
886 va_list args;
887 struct va_format vaf;
888 struct inode *inode = file_inode(file);
889 char pathname[80], *path;
890
891 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
892 return;
893
894 trace_ext4_error(inode->i_sb, function, line);
895 if (ext4_error_ratelimit(inode->i_sb)) {
896 path = file_path(file, pathname, sizeof(pathname));
897 if (IS_ERR(path))
898 path = "(unknown)";
899 va_start(args, fmt);
900 vaf.fmt = fmt;
901 vaf.va = &args;
902 if (block)
903 printk(KERN_CRIT
904 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
905 "block %llu: comm %s: path %s: %pV\n",
906 inode->i_sb->s_id, function, line, inode->i_ino,
907 block, current->comm, path, &vaf);
908 else
909 printk(KERN_CRIT
910 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
911 "comm %s: path %s: %pV\n",
912 inode->i_sb->s_id, function, line, inode->i_ino,
913 current->comm, path, &vaf);
914 va_end(args);
915 }
916 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
917
918 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
919 function, line);
920 }
921
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])922 const char *ext4_decode_error(struct super_block *sb, int errno,
923 char nbuf[16])
924 {
925 char *errstr = NULL;
926
927 switch (errno) {
928 case -EFSCORRUPTED:
929 errstr = "Corrupt filesystem";
930 break;
931 case -EFSBADCRC:
932 errstr = "Filesystem failed CRC";
933 break;
934 case -EIO:
935 errstr = "IO failure";
936 break;
937 case -ENOMEM:
938 errstr = "Out of memory";
939 break;
940 case -EROFS:
941 if (!sb || (EXT4_SB(sb)->s_journal &&
942 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
943 errstr = "Journal has aborted";
944 else
945 errstr = "Readonly filesystem";
946 break;
947 default:
948 /* If the caller passed in an extra buffer for unknown
949 * errors, textualise them now. Else we just return
950 * NULL. */
951 if (nbuf) {
952 /* Check for truncated error codes... */
953 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
954 errstr = nbuf;
955 }
956 break;
957 }
958
959 return errstr;
960 }
961
962 /* __ext4_std_error decodes expected errors from journaling functions
963 * automatically and invokes the appropriate error response. */
964
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)965 void __ext4_std_error(struct super_block *sb, const char *function,
966 unsigned int line, int errno)
967 {
968 char nbuf[16];
969 const char *errstr;
970
971 if (unlikely(ext4_forced_shutdown(sb)))
972 return;
973
974 /* Special case: if the error is EROFS, and we're not already
975 * inside a transaction, then there's really no point in logging
976 * an error. */
977 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
978 return;
979
980 if (ext4_error_ratelimit(sb)) {
981 errstr = ext4_decode_error(sb, errno, nbuf);
982 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
983 sb->s_id, function, line, errstr);
984 }
985 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
986
987 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
988 }
989
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)990 void __ext4_msg(struct super_block *sb,
991 const char *prefix, const char *fmt, ...)
992 {
993 struct va_format vaf;
994 va_list args;
995
996 if (sb) {
997 atomic_inc(&EXT4_SB(sb)->s_msg_count);
998 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
999 "EXT4-fs"))
1000 return;
1001 }
1002
1003 va_start(args, fmt);
1004 vaf.fmt = fmt;
1005 vaf.va = &args;
1006 if (sb)
1007 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1008 else
1009 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1010 va_end(args);
1011 }
1012
ext4_warning_ratelimit(struct super_block * sb)1013 static int ext4_warning_ratelimit(struct super_block *sb)
1014 {
1015 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1016 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1017 "EXT4-fs warning");
1018 }
1019
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1020 void __ext4_warning(struct super_block *sb, const char *function,
1021 unsigned int line, const char *fmt, ...)
1022 {
1023 struct va_format vaf;
1024 va_list args;
1025
1026 if (!ext4_warning_ratelimit(sb))
1027 return;
1028
1029 va_start(args, fmt);
1030 vaf.fmt = fmt;
1031 vaf.va = &args;
1032 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1033 sb->s_id, function, line, &vaf);
1034 va_end(args);
1035 }
1036
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1037 void __ext4_warning_inode(const struct inode *inode, const char *function,
1038 unsigned int line, const char *fmt, ...)
1039 {
1040 struct va_format vaf;
1041 va_list args;
1042
1043 if (!ext4_warning_ratelimit(inode->i_sb))
1044 return;
1045
1046 va_start(args, fmt);
1047 vaf.fmt = fmt;
1048 vaf.va = &args;
1049 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1050 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1051 function, line, inode->i_ino, current->comm, &vaf);
1052 va_end(args);
1053 }
1054
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1055 void __ext4_grp_locked_error(const char *function, unsigned int line,
1056 struct super_block *sb, ext4_group_t grp,
1057 unsigned long ino, ext4_fsblk_t block,
1058 const char *fmt, ...)
1059 __releases(bitlock)
1060 __acquires(bitlock)
1061 {
1062 struct va_format vaf;
1063 va_list args;
1064
1065 if (unlikely(ext4_forced_shutdown(sb)))
1066 return;
1067
1068 trace_ext4_error(sb, function, line);
1069 if (ext4_error_ratelimit(sb)) {
1070 va_start(args, fmt);
1071 vaf.fmt = fmt;
1072 vaf.va = &args;
1073 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1074 sb->s_id, function, line, grp);
1075 if (ino)
1076 printk(KERN_CONT "inode %lu: ", ino);
1077 if (block)
1078 printk(KERN_CONT "block %llu:",
1079 (unsigned long long) block);
1080 printk(KERN_CONT "%pV\n", &vaf);
1081 va_end(args);
1082 }
1083
1084 if (test_opt(sb, ERRORS_CONT)) {
1085 if (test_opt(sb, WARN_ON_ERROR))
1086 WARN_ON_ONCE(1);
1087 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1088 if (!bdev_read_only(sb->s_bdev)) {
1089 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1090 line);
1091 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1092 }
1093 return;
1094 }
1095 ext4_unlock_group(sb, grp);
1096 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1097 /*
1098 * We only get here in the ERRORS_RO case; relocking the group
1099 * may be dangerous, but nothing bad will happen since the
1100 * filesystem will have already been marked read/only and the
1101 * journal has been aborted. We return 1 as a hint to callers
1102 * who might what to use the return value from
1103 * ext4_grp_locked_error() to distinguish between the
1104 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1105 * aggressively from the ext4 function in question, with a
1106 * more appropriate error code.
1107 */
1108 ext4_lock_group(sb, grp);
1109 return;
1110 }
1111
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1112 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1113 ext4_group_t group,
1114 unsigned int flags)
1115 {
1116 struct ext4_sb_info *sbi = EXT4_SB(sb);
1117 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1118 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1119 int ret;
1120
1121 if (!grp || !gdp)
1122 return;
1123 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1124 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1125 &grp->bb_state);
1126 if (!ret)
1127 percpu_counter_sub(&sbi->s_freeclusters_counter,
1128 grp->bb_free);
1129 }
1130
1131 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1132 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1133 &grp->bb_state);
1134 if (!ret && gdp) {
1135 int count;
1136
1137 count = ext4_free_inodes_count(sb, gdp);
1138 percpu_counter_sub(&sbi->s_freeinodes_counter,
1139 count);
1140 }
1141 }
1142 }
1143
ext4_update_dynamic_rev(struct super_block * sb)1144 void ext4_update_dynamic_rev(struct super_block *sb)
1145 {
1146 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1147
1148 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1149 return;
1150
1151 ext4_warning(sb,
1152 "updating to rev %d because of new feature flag, "
1153 "running e2fsck is recommended",
1154 EXT4_DYNAMIC_REV);
1155
1156 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1157 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1158 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1159 /* leave es->s_feature_*compat flags alone */
1160 /* es->s_uuid will be set by e2fsck if empty */
1161
1162 /*
1163 * The rest of the superblock fields should be zero, and if not it
1164 * means they are likely already in use, so leave them alone. We
1165 * can leave it up to e2fsck to clean up any inconsistencies there.
1166 */
1167 }
1168
orphan_list_entry(struct list_head * l)1169 static inline struct inode *orphan_list_entry(struct list_head *l)
1170 {
1171 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1172 }
1173
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1174 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1175 {
1176 struct list_head *l;
1177
1178 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1179 le32_to_cpu(sbi->s_es->s_last_orphan));
1180
1181 printk(KERN_ERR "sb_info orphan list:\n");
1182 list_for_each(l, &sbi->s_orphan) {
1183 struct inode *inode = orphan_list_entry(l);
1184 printk(KERN_ERR " "
1185 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1186 inode->i_sb->s_id, inode->i_ino, inode,
1187 inode->i_mode, inode->i_nlink,
1188 NEXT_ORPHAN(inode));
1189 }
1190 }
1191
1192 #ifdef CONFIG_QUOTA
1193 static int ext4_quota_off(struct super_block *sb, int type);
1194
ext4_quotas_off(struct super_block * sb,int type)1195 static inline void ext4_quotas_off(struct super_block *sb, int type)
1196 {
1197 BUG_ON(type > EXT4_MAXQUOTAS);
1198
1199 /* Use our quota_off function to clear inode flags etc. */
1200 for (type--; type >= 0; type--)
1201 ext4_quota_off(sb, type);
1202 }
1203
1204 /*
1205 * This is a helper function which is used in the mount/remount
1206 * codepaths (which holds s_umount) to fetch the quota file name.
1207 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1208 static inline char *get_qf_name(struct super_block *sb,
1209 struct ext4_sb_info *sbi,
1210 int type)
1211 {
1212 return rcu_dereference_protected(sbi->s_qf_names[type],
1213 lockdep_is_held(&sb->s_umount));
1214 }
1215 #else
ext4_quotas_off(struct super_block * sb,int type)1216 static inline void ext4_quotas_off(struct super_block *sb, int type)
1217 {
1218 }
1219 #endif
1220
ext4_percpu_param_init(struct ext4_sb_info * sbi)1221 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1222 {
1223 ext4_fsblk_t block;
1224 int err;
1225
1226 block = ext4_count_free_clusters(sbi->s_sb);
1227 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1228 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1229 GFP_KERNEL);
1230 if (!err) {
1231 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1232 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1233 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1234 GFP_KERNEL);
1235 }
1236 if (!err)
1237 err = percpu_counter_init(&sbi->s_dirs_counter,
1238 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1239 if (!err)
1240 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1241 GFP_KERNEL);
1242 if (!err)
1243 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1244 GFP_KERNEL);
1245 if (!err)
1246 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1247
1248 if (err)
1249 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1250
1251 return err;
1252 }
1253
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1254 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1255 {
1256 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1257 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1258 percpu_counter_destroy(&sbi->s_dirs_counter);
1259 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1260 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1261 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1262 }
1263
ext4_group_desc_free(struct ext4_sb_info * sbi)1264 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1265 {
1266 struct buffer_head **group_desc;
1267 int i;
1268
1269 rcu_read_lock();
1270 group_desc = rcu_dereference(sbi->s_group_desc);
1271 for (i = 0; i < sbi->s_gdb_count; i++)
1272 brelse(group_desc[i]);
1273 kvfree(group_desc);
1274 rcu_read_unlock();
1275 }
1276
ext4_flex_groups_free(struct ext4_sb_info * sbi)1277 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1278 {
1279 struct flex_groups **flex_groups;
1280 int i;
1281
1282 rcu_read_lock();
1283 flex_groups = rcu_dereference(sbi->s_flex_groups);
1284 if (flex_groups) {
1285 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1286 kvfree(flex_groups[i]);
1287 kvfree(flex_groups);
1288 }
1289 rcu_read_unlock();
1290 }
1291
ext4_put_super(struct super_block * sb)1292 static void ext4_put_super(struct super_block *sb)
1293 {
1294 struct ext4_sb_info *sbi = EXT4_SB(sb);
1295 struct ext4_super_block *es = sbi->s_es;
1296 int aborted = 0;
1297 int err;
1298
1299 /*
1300 * Unregister sysfs before destroying jbd2 journal.
1301 * Since we could still access attr_journal_task attribute via sysfs
1302 * path which could have sbi->s_journal->j_task as NULL
1303 * Unregister sysfs before flush sbi->s_sb_upd_work.
1304 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1305 * read metadata verify failed then will queue error work.
1306 * update_super_work will call start_this_handle may trigger
1307 * BUG_ON.
1308 */
1309 ext4_unregister_sysfs(sb);
1310
1311 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1312 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1313 &sb->s_uuid);
1314
1315 ext4_unregister_li_request(sb);
1316 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1317
1318 flush_work(&sbi->s_sb_upd_work);
1319 destroy_workqueue(sbi->rsv_conversion_wq);
1320 ext4_release_orphan_info(sb);
1321
1322 if (sbi->s_journal) {
1323 aborted = is_journal_aborted(sbi->s_journal);
1324 err = jbd2_journal_destroy(sbi->s_journal);
1325 sbi->s_journal = NULL;
1326 if ((err < 0) && !aborted) {
1327 ext4_abort(sb, -err, "Couldn't clean up the journal");
1328 }
1329 }
1330
1331 ext4_es_unregister_shrinker(sbi);
1332 timer_shutdown_sync(&sbi->s_err_report);
1333 ext4_release_system_zone(sb);
1334 ext4_mb_release(sb);
1335 ext4_ext_release(sb);
1336
1337 if (!sb_rdonly(sb) && !aborted) {
1338 ext4_clear_feature_journal_needs_recovery(sb);
1339 ext4_clear_feature_orphan_present(sb);
1340 es->s_state = cpu_to_le16(sbi->s_mount_state);
1341 }
1342 if (!sb_rdonly(sb))
1343 ext4_commit_super(sb);
1344
1345 ext4_group_desc_free(sbi);
1346 ext4_flex_groups_free(sbi);
1347 ext4_percpu_param_destroy(sbi);
1348 #ifdef CONFIG_QUOTA
1349 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1350 kfree(get_qf_name(sb, sbi, i));
1351 #endif
1352
1353 /* Debugging code just in case the in-memory inode orphan list
1354 * isn't empty. The on-disk one can be non-empty if we've
1355 * detected an error and taken the fs readonly, but the
1356 * in-memory list had better be clean by this point. */
1357 if (!list_empty(&sbi->s_orphan))
1358 dump_orphan_list(sb, sbi);
1359 ASSERT(list_empty(&sbi->s_orphan));
1360
1361 sync_blockdev(sb->s_bdev);
1362 invalidate_bdev(sb->s_bdev);
1363 if (sbi->s_journal_bdev) {
1364 /*
1365 * Invalidate the journal device's buffers. We don't want them
1366 * floating about in memory - the physical journal device may
1367 * hotswapped, and it breaks the `ro-after' testing code.
1368 */
1369 sync_blockdev(sbi->s_journal_bdev);
1370 invalidate_bdev(sbi->s_journal_bdev);
1371 }
1372
1373 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1374 sbi->s_ea_inode_cache = NULL;
1375
1376 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1377 sbi->s_ea_block_cache = NULL;
1378
1379 ext4_stop_mmpd(sbi);
1380
1381 brelse(sbi->s_sbh);
1382 sb->s_fs_info = NULL;
1383 /*
1384 * Now that we are completely done shutting down the
1385 * superblock, we need to actually destroy the kobject.
1386 */
1387 kobject_put(&sbi->s_kobj);
1388 wait_for_completion(&sbi->s_kobj_unregister);
1389 if (sbi->s_chksum_driver)
1390 crypto_free_shash(sbi->s_chksum_driver);
1391 kfree(sbi->s_blockgroup_lock);
1392 fs_put_dax(sbi->s_daxdev, NULL);
1393 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1394 #if IS_ENABLED(CONFIG_UNICODE)
1395 utf8_unload(sb->s_encoding);
1396 #endif
1397 kfree(sbi);
1398 }
1399
1400 static struct kmem_cache *ext4_inode_cachep;
1401
1402 /*
1403 * Called inside transaction, so use GFP_NOFS
1404 */
ext4_alloc_inode(struct super_block * sb)1405 static struct inode *ext4_alloc_inode(struct super_block *sb)
1406 {
1407 struct ext4_inode_info *ei;
1408
1409 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1410 if (!ei)
1411 return NULL;
1412
1413 inode_set_iversion(&ei->vfs_inode, 1);
1414 ei->i_flags = 0;
1415 spin_lock_init(&ei->i_raw_lock);
1416 ei->i_prealloc_node = RB_ROOT;
1417 atomic_set(&ei->i_prealloc_active, 0);
1418 rwlock_init(&ei->i_prealloc_lock);
1419 ext4_es_init_tree(&ei->i_es_tree);
1420 rwlock_init(&ei->i_es_lock);
1421 INIT_LIST_HEAD(&ei->i_es_list);
1422 ei->i_es_all_nr = 0;
1423 ei->i_es_shk_nr = 0;
1424 ei->i_es_shrink_lblk = 0;
1425 ei->i_reserved_data_blocks = 0;
1426 spin_lock_init(&(ei->i_block_reservation_lock));
1427 ext4_init_pending_tree(&ei->i_pending_tree);
1428 #ifdef CONFIG_QUOTA
1429 ei->i_reserved_quota = 0;
1430 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1431 #endif
1432 ei->jinode = NULL;
1433 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1434 spin_lock_init(&ei->i_completed_io_lock);
1435 ei->i_sync_tid = 0;
1436 ei->i_datasync_tid = 0;
1437 atomic_set(&ei->i_unwritten, 0);
1438 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1439 ext4_fc_init_inode(&ei->vfs_inode);
1440 mutex_init(&ei->i_fc_lock);
1441 return &ei->vfs_inode;
1442 }
1443
ext4_drop_inode(struct inode * inode)1444 static int ext4_drop_inode(struct inode *inode)
1445 {
1446 int drop = generic_drop_inode(inode);
1447
1448 if (!drop)
1449 drop = fscrypt_drop_inode(inode);
1450
1451 trace_ext4_drop_inode(inode, drop);
1452 return drop;
1453 }
1454
ext4_free_in_core_inode(struct inode * inode)1455 static void ext4_free_in_core_inode(struct inode *inode)
1456 {
1457 fscrypt_free_inode(inode);
1458 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1459 pr_warn("%s: inode %ld still in fc list",
1460 __func__, inode->i_ino);
1461 }
1462 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1463 }
1464
ext4_destroy_inode(struct inode * inode)1465 static void ext4_destroy_inode(struct inode *inode)
1466 {
1467 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1468 ext4_msg(inode->i_sb, KERN_ERR,
1469 "Inode %lu (%p): orphan list check failed!",
1470 inode->i_ino, EXT4_I(inode));
1471 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1472 EXT4_I(inode), sizeof(struct ext4_inode_info),
1473 true);
1474 dump_stack();
1475 }
1476
1477 if (EXT4_I(inode)->i_reserved_data_blocks)
1478 ext4_msg(inode->i_sb, KERN_ERR,
1479 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1480 inode->i_ino, EXT4_I(inode),
1481 EXT4_I(inode)->i_reserved_data_blocks);
1482 }
1483
ext4_shutdown(struct super_block * sb)1484 static void ext4_shutdown(struct super_block *sb)
1485 {
1486 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1487 }
1488
init_once(void * foo)1489 static void init_once(void *foo)
1490 {
1491 struct ext4_inode_info *ei = foo;
1492
1493 INIT_LIST_HEAD(&ei->i_orphan);
1494 init_rwsem(&ei->xattr_sem);
1495 init_rwsem(&ei->i_data_sem);
1496 inode_init_once(&ei->vfs_inode);
1497 ext4_fc_init_inode(&ei->vfs_inode);
1498 }
1499
init_inodecache(void)1500 static int __init init_inodecache(void)
1501 {
1502 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1503 sizeof(struct ext4_inode_info), 0,
1504 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1505 SLAB_ACCOUNT),
1506 offsetof(struct ext4_inode_info, i_data),
1507 sizeof_field(struct ext4_inode_info, i_data),
1508 init_once);
1509 if (ext4_inode_cachep == NULL)
1510 return -ENOMEM;
1511 return 0;
1512 }
1513
destroy_inodecache(void)1514 static void destroy_inodecache(void)
1515 {
1516 /*
1517 * Make sure all delayed rcu free inodes are flushed before we
1518 * destroy cache.
1519 */
1520 rcu_barrier();
1521 kmem_cache_destroy(ext4_inode_cachep);
1522 }
1523
ext4_clear_inode(struct inode * inode)1524 void ext4_clear_inode(struct inode *inode)
1525 {
1526 ext4_fc_del(inode);
1527 invalidate_inode_buffers(inode);
1528 clear_inode(inode);
1529 ext4_discard_preallocations(inode, 0);
1530 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1531 dquot_drop(inode);
1532 if (EXT4_I(inode)->jinode) {
1533 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1534 EXT4_I(inode)->jinode);
1535 jbd2_free_inode(EXT4_I(inode)->jinode);
1536 EXT4_I(inode)->jinode = NULL;
1537 }
1538 fscrypt_put_encryption_info(inode);
1539 fsverity_cleanup_inode(inode);
1540 }
1541
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1542 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1543 u64 ino, u32 generation)
1544 {
1545 struct inode *inode;
1546
1547 /*
1548 * Currently we don't know the generation for parent directory, so
1549 * a generation of 0 means "accept any"
1550 */
1551 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1552 if (IS_ERR(inode))
1553 return ERR_CAST(inode);
1554 if (generation && inode->i_generation != generation) {
1555 iput(inode);
1556 return ERR_PTR(-ESTALE);
1557 }
1558
1559 return inode;
1560 }
1561
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1562 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1563 int fh_len, int fh_type)
1564 {
1565 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1566 ext4_nfs_get_inode);
1567 }
1568
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1569 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1570 int fh_len, int fh_type)
1571 {
1572 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1573 ext4_nfs_get_inode);
1574 }
1575
ext4_nfs_commit_metadata(struct inode * inode)1576 static int ext4_nfs_commit_metadata(struct inode *inode)
1577 {
1578 struct writeback_control wbc = {
1579 .sync_mode = WB_SYNC_ALL
1580 };
1581
1582 trace_ext4_nfs_commit_metadata(inode);
1583 return ext4_write_inode(inode, &wbc);
1584 }
1585
1586 #ifdef CONFIG_QUOTA
1587 static const char * const quotatypes[] = INITQFNAMES;
1588 #define QTYPE2NAME(t) (quotatypes[t])
1589
1590 static int ext4_write_dquot(struct dquot *dquot);
1591 static int ext4_acquire_dquot(struct dquot *dquot);
1592 static int ext4_release_dquot(struct dquot *dquot);
1593 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1594 static int ext4_write_info(struct super_block *sb, int type);
1595 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1596 const struct path *path);
1597 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1598 size_t len, loff_t off);
1599 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1600 const char *data, size_t len, loff_t off);
1601 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1602 unsigned int flags);
1603
ext4_get_dquots(struct inode * inode)1604 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1605 {
1606 return EXT4_I(inode)->i_dquot;
1607 }
1608
1609 static const struct dquot_operations ext4_quota_operations = {
1610 .get_reserved_space = ext4_get_reserved_space,
1611 .write_dquot = ext4_write_dquot,
1612 .acquire_dquot = ext4_acquire_dquot,
1613 .release_dquot = ext4_release_dquot,
1614 .mark_dirty = ext4_mark_dquot_dirty,
1615 .write_info = ext4_write_info,
1616 .alloc_dquot = dquot_alloc,
1617 .destroy_dquot = dquot_destroy,
1618 .get_projid = ext4_get_projid,
1619 .get_inode_usage = ext4_get_inode_usage,
1620 .get_next_id = dquot_get_next_id,
1621 };
1622
1623 static const struct quotactl_ops ext4_qctl_operations = {
1624 .quota_on = ext4_quota_on,
1625 .quota_off = ext4_quota_off,
1626 .quota_sync = dquot_quota_sync,
1627 .get_state = dquot_get_state,
1628 .set_info = dquot_set_dqinfo,
1629 .get_dqblk = dquot_get_dqblk,
1630 .set_dqblk = dquot_set_dqblk,
1631 .get_nextdqblk = dquot_get_next_dqblk,
1632 };
1633 #endif
1634
1635 static const struct super_operations ext4_sops = {
1636 .alloc_inode = ext4_alloc_inode,
1637 .free_inode = ext4_free_in_core_inode,
1638 .destroy_inode = ext4_destroy_inode,
1639 .write_inode = ext4_write_inode,
1640 .dirty_inode = ext4_dirty_inode,
1641 .drop_inode = ext4_drop_inode,
1642 .evict_inode = ext4_evict_inode,
1643 .put_super = ext4_put_super,
1644 .sync_fs = ext4_sync_fs,
1645 .freeze_fs = ext4_freeze,
1646 .unfreeze_fs = ext4_unfreeze,
1647 .statfs = ext4_statfs,
1648 .show_options = ext4_show_options,
1649 .shutdown = ext4_shutdown,
1650 #ifdef CONFIG_QUOTA
1651 .quota_read = ext4_quota_read,
1652 .quota_write = ext4_quota_write,
1653 .get_dquots = ext4_get_dquots,
1654 #endif
1655 };
1656
1657 static const struct export_operations ext4_export_ops = {
1658 .fh_to_dentry = ext4_fh_to_dentry,
1659 .fh_to_parent = ext4_fh_to_parent,
1660 .get_parent = ext4_get_parent,
1661 .commit_metadata = ext4_nfs_commit_metadata,
1662 };
1663
1664 enum {
1665 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1666 Opt_resgid, Opt_resuid, Opt_sb,
1667 Opt_nouid32, Opt_debug, Opt_removed,
1668 Opt_user_xattr, Opt_acl,
1669 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1670 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1671 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1672 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1673 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1674 Opt_inlinecrypt,
1675 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1676 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1678 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1681 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682 Opt_inode_readahead_blks, Opt_journal_ioprio,
1683 Opt_dioread_nolock, Opt_dioread_lock,
1684 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1687 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1688 #ifdef CONFIG_EXT4_DEBUG
1689 Opt_fc_debug_max_replay, Opt_fc_debug_force
1690 #endif
1691 };
1692
1693 static const struct constant_table ext4_param_errors[] = {
1694 {"continue", EXT4_MOUNT_ERRORS_CONT},
1695 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1696 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1697 {}
1698 };
1699
1700 static const struct constant_table ext4_param_data[] = {
1701 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1702 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1703 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1704 {}
1705 };
1706
1707 static const struct constant_table ext4_param_data_err[] = {
1708 {"abort", Opt_data_err_abort},
1709 {"ignore", Opt_data_err_ignore},
1710 {}
1711 };
1712
1713 static const struct constant_table ext4_param_jqfmt[] = {
1714 {"vfsold", QFMT_VFS_OLD},
1715 {"vfsv0", QFMT_VFS_V0},
1716 {"vfsv1", QFMT_VFS_V1},
1717 {}
1718 };
1719
1720 static const struct constant_table ext4_param_dax[] = {
1721 {"always", Opt_dax_always},
1722 {"inode", Opt_dax_inode},
1723 {"never", Opt_dax_never},
1724 {}
1725 };
1726
1727 /* String parameter that allows empty argument */
1728 #define fsparam_string_empty(NAME, OPT) \
1729 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1730
1731 /*
1732 * Mount option specification
1733 * We don't use fsparam_flag_no because of the way we set the
1734 * options and the way we show them in _ext4_show_options(). To
1735 * keep the changes to a minimum, let's keep the negative options
1736 * separate for now.
1737 */
1738 static const struct fs_parameter_spec ext4_param_specs[] = {
1739 fsparam_flag ("bsddf", Opt_bsd_df),
1740 fsparam_flag ("minixdf", Opt_minix_df),
1741 fsparam_flag ("grpid", Opt_grpid),
1742 fsparam_flag ("bsdgroups", Opt_grpid),
1743 fsparam_flag ("nogrpid", Opt_nogrpid),
1744 fsparam_flag ("sysvgroups", Opt_nogrpid),
1745 fsparam_u32 ("resgid", Opt_resgid),
1746 fsparam_u32 ("resuid", Opt_resuid),
1747 fsparam_u32 ("sb", Opt_sb),
1748 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1749 fsparam_flag ("nouid32", Opt_nouid32),
1750 fsparam_flag ("debug", Opt_debug),
1751 fsparam_flag ("oldalloc", Opt_removed),
1752 fsparam_flag ("orlov", Opt_removed),
1753 fsparam_flag ("user_xattr", Opt_user_xattr),
1754 fsparam_flag ("acl", Opt_acl),
1755 fsparam_flag ("norecovery", Opt_noload),
1756 fsparam_flag ("noload", Opt_noload),
1757 fsparam_flag ("bh", Opt_removed),
1758 fsparam_flag ("nobh", Opt_removed),
1759 fsparam_u32 ("commit", Opt_commit),
1760 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1761 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1762 fsparam_u32 ("journal_dev", Opt_journal_dev),
1763 fsparam_bdev ("journal_path", Opt_journal_path),
1764 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1765 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1766 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1767 fsparam_flag ("abort", Opt_abort),
1768 fsparam_enum ("data", Opt_data, ext4_param_data),
1769 fsparam_enum ("data_err", Opt_data_err,
1770 ext4_param_data_err),
1771 fsparam_string_empty
1772 ("usrjquota", Opt_usrjquota),
1773 fsparam_string_empty
1774 ("grpjquota", Opt_grpjquota),
1775 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1776 fsparam_flag ("grpquota", Opt_grpquota),
1777 fsparam_flag ("quota", Opt_quota),
1778 fsparam_flag ("noquota", Opt_noquota),
1779 fsparam_flag ("usrquota", Opt_usrquota),
1780 fsparam_flag ("prjquota", Opt_prjquota),
1781 fsparam_flag ("barrier", Opt_barrier),
1782 fsparam_u32 ("barrier", Opt_barrier),
1783 fsparam_flag ("nobarrier", Opt_nobarrier),
1784 fsparam_flag ("i_version", Opt_removed),
1785 fsparam_flag ("dax", Opt_dax),
1786 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1787 fsparam_u32 ("stripe", Opt_stripe),
1788 fsparam_flag ("delalloc", Opt_delalloc),
1789 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1790 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1791 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1792 fsparam_u32 ("debug_want_extra_isize",
1793 Opt_debug_want_extra_isize),
1794 fsparam_flag ("mblk_io_submit", Opt_removed),
1795 fsparam_flag ("nomblk_io_submit", Opt_removed),
1796 fsparam_flag ("block_validity", Opt_block_validity),
1797 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1798 fsparam_u32 ("inode_readahead_blks",
1799 Opt_inode_readahead_blks),
1800 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1801 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1802 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1803 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1804 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1805 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1806 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1807 fsparam_flag ("discard", Opt_discard),
1808 fsparam_flag ("nodiscard", Opt_nodiscard),
1809 fsparam_u32 ("init_itable", Opt_init_itable),
1810 fsparam_flag ("init_itable", Opt_init_itable),
1811 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1812 #ifdef CONFIG_EXT4_DEBUG
1813 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1814 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1815 #endif
1816 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1817 fsparam_flag ("test_dummy_encryption",
1818 Opt_test_dummy_encryption),
1819 fsparam_string ("test_dummy_encryption",
1820 Opt_test_dummy_encryption),
1821 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1822 fsparam_flag ("nombcache", Opt_nombcache),
1823 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1824 fsparam_flag ("prefetch_block_bitmaps",
1825 Opt_removed),
1826 fsparam_flag ("no_prefetch_block_bitmaps",
1827 Opt_no_prefetch_block_bitmaps),
1828 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1829 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1830 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1831 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1832 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1833 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1834 {}
1835 };
1836
1837 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1838
1839 #define MOPT_SET 0x0001
1840 #define MOPT_CLEAR 0x0002
1841 #define MOPT_NOSUPPORT 0x0004
1842 #define MOPT_EXPLICIT 0x0008
1843 #ifdef CONFIG_QUOTA
1844 #define MOPT_Q 0
1845 #define MOPT_QFMT 0x0010
1846 #else
1847 #define MOPT_Q MOPT_NOSUPPORT
1848 #define MOPT_QFMT MOPT_NOSUPPORT
1849 #endif
1850 #define MOPT_NO_EXT2 0x0020
1851 #define MOPT_NO_EXT3 0x0040
1852 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1853 #define MOPT_SKIP 0x0080
1854 #define MOPT_2 0x0100
1855
1856 static const struct mount_opts {
1857 int token;
1858 int mount_opt;
1859 int flags;
1860 } ext4_mount_opts[] = {
1861 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1862 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1863 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1864 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1865 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1866 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1867 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1868 MOPT_EXT4_ONLY | MOPT_SET},
1869 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1870 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1872 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1873 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1874 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1876 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1878 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1879 {Opt_commit, 0, MOPT_NO_EXT2},
1880 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1881 MOPT_EXT4_ONLY | MOPT_CLEAR},
1882 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1883 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1884 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1885 EXT4_MOUNT_JOURNAL_CHECKSUM),
1886 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1888 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1889 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1890 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1891 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1892 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1893 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1894 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1895 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1896 {Opt_journal_path, 0, MOPT_NO_EXT2},
1897 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1898 {Opt_data, 0, MOPT_NO_EXT2},
1899 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1900 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1901 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1902 #else
1903 {Opt_acl, 0, MOPT_NOSUPPORT},
1904 #endif
1905 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1906 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1907 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1908 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1909 MOPT_SET | MOPT_Q},
1910 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1911 MOPT_SET | MOPT_Q},
1912 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1913 MOPT_SET | MOPT_Q},
1914 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1915 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1916 MOPT_CLEAR | MOPT_Q},
1917 {Opt_usrjquota, 0, MOPT_Q},
1918 {Opt_grpjquota, 0, MOPT_Q},
1919 {Opt_jqfmt, 0, MOPT_QFMT},
1920 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1921 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1922 MOPT_SET},
1923 #ifdef CONFIG_EXT4_DEBUG
1924 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1925 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1926 #endif
1927 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1928 {Opt_err, 0, 0}
1929 };
1930
1931 #if IS_ENABLED(CONFIG_UNICODE)
1932 static const struct ext4_sb_encodings {
1933 __u16 magic;
1934 char *name;
1935 unsigned int version;
1936 } ext4_sb_encoding_map[] = {
1937 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1938 };
1939
1940 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1941 ext4_sb_read_encoding(const struct ext4_super_block *es)
1942 {
1943 __u16 magic = le16_to_cpu(es->s_encoding);
1944 int i;
1945
1946 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1947 if (magic == ext4_sb_encoding_map[i].magic)
1948 return &ext4_sb_encoding_map[i];
1949
1950 return NULL;
1951 }
1952 #endif
1953
1954 #define EXT4_SPEC_JQUOTA (1 << 0)
1955 #define EXT4_SPEC_JQFMT (1 << 1)
1956 #define EXT4_SPEC_DATAJ (1 << 2)
1957 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1958 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1959 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1960 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1961 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1962 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1963 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1964 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1965 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1966 #define EXT4_SPEC_s_stripe (1 << 13)
1967 #define EXT4_SPEC_s_resuid (1 << 14)
1968 #define EXT4_SPEC_s_resgid (1 << 15)
1969 #define EXT4_SPEC_s_commit_interval (1 << 16)
1970 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1971 #define EXT4_SPEC_s_sb_block (1 << 18)
1972 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1973
1974 struct ext4_fs_context {
1975 char *s_qf_names[EXT4_MAXQUOTAS];
1976 struct fscrypt_dummy_policy dummy_enc_policy;
1977 int s_jquota_fmt; /* Format of quota to use */
1978 #ifdef CONFIG_EXT4_DEBUG
1979 int s_fc_debug_max_replay;
1980 #endif
1981 unsigned short qname_spec;
1982 unsigned long vals_s_flags; /* Bits to set in s_flags */
1983 unsigned long mask_s_flags; /* Bits changed in s_flags */
1984 unsigned long journal_devnum;
1985 unsigned long s_commit_interval;
1986 unsigned long s_stripe;
1987 unsigned int s_inode_readahead_blks;
1988 unsigned int s_want_extra_isize;
1989 unsigned int s_li_wait_mult;
1990 unsigned int s_max_dir_size_kb;
1991 unsigned int journal_ioprio;
1992 unsigned int vals_s_mount_opt;
1993 unsigned int mask_s_mount_opt;
1994 unsigned int vals_s_mount_opt2;
1995 unsigned int mask_s_mount_opt2;
1996 unsigned int opt_flags; /* MOPT flags */
1997 unsigned int spec;
1998 u32 s_max_batch_time;
1999 u32 s_min_batch_time;
2000 kuid_t s_resuid;
2001 kgid_t s_resgid;
2002 ext4_fsblk_t s_sb_block;
2003 };
2004
ext4_fc_free(struct fs_context * fc)2005 static void ext4_fc_free(struct fs_context *fc)
2006 {
2007 struct ext4_fs_context *ctx = fc->fs_private;
2008 int i;
2009
2010 if (!ctx)
2011 return;
2012
2013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2014 kfree(ctx->s_qf_names[i]);
2015
2016 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2017 kfree(ctx);
2018 }
2019
ext4_init_fs_context(struct fs_context * fc)2020 int ext4_init_fs_context(struct fs_context *fc)
2021 {
2022 struct ext4_fs_context *ctx;
2023
2024 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2025 if (!ctx)
2026 return -ENOMEM;
2027
2028 fc->fs_private = ctx;
2029 fc->ops = &ext4_context_ops;
2030
2031 return 0;
2032 }
2033
2034 #ifdef CONFIG_QUOTA
2035 /*
2036 * Note the name of the specified quota file.
2037 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2038 static int note_qf_name(struct fs_context *fc, int qtype,
2039 struct fs_parameter *param)
2040 {
2041 struct ext4_fs_context *ctx = fc->fs_private;
2042 char *qname;
2043
2044 if (param->size < 1) {
2045 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2046 return -EINVAL;
2047 }
2048 if (strchr(param->string, '/')) {
2049 ext4_msg(NULL, KERN_ERR,
2050 "quotafile must be on filesystem root");
2051 return -EINVAL;
2052 }
2053 if (ctx->s_qf_names[qtype]) {
2054 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2055 ext4_msg(NULL, KERN_ERR,
2056 "%s quota file already specified",
2057 QTYPE2NAME(qtype));
2058 return -EINVAL;
2059 }
2060 return 0;
2061 }
2062
2063 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2064 if (!qname) {
2065 ext4_msg(NULL, KERN_ERR,
2066 "Not enough memory for storing quotafile name");
2067 return -ENOMEM;
2068 }
2069 ctx->s_qf_names[qtype] = qname;
2070 ctx->qname_spec |= 1 << qtype;
2071 ctx->spec |= EXT4_SPEC_JQUOTA;
2072 return 0;
2073 }
2074
2075 /*
2076 * Clear the name of the specified quota file.
2077 */
unnote_qf_name(struct fs_context * fc,int qtype)2078 static int unnote_qf_name(struct fs_context *fc, int qtype)
2079 {
2080 struct ext4_fs_context *ctx = fc->fs_private;
2081
2082 if (ctx->s_qf_names[qtype])
2083 kfree(ctx->s_qf_names[qtype]);
2084
2085 ctx->s_qf_names[qtype] = NULL;
2086 ctx->qname_spec |= 1 << qtype;
2087 ctx->spec |= EXT4_SPEC_JQUOTA;
2088 return 0;
2089 }
2090 #endif
2091
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2092 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2093 struct ext4_fs_context *ctx)
2094 {
2095 int err;
2096
2097 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2098 ext4_msg(NULL, KERN_WARNING,
2099 "test_dummy_encryption option not supported");
2100 return -EINVAL;
2101 }
2102 err = fscrypt_parse_test_dummy_encryption(param,
2103 &ctx->dummy_enc_policy);
2104 if (err == -EINVAL) {
2105 ext4_msg(NULL, KERN_WARNING,
2106 "Value of option \"%s\" is unrecognized", param->key);
2107 } else if (err == -EEXIST) {
2108 ext4_msg(NULL, KERN_WARNING,
2109 "Conflicting test_dummy_encryption options");
2110 return -EINVAL;
2111 }
2112 return err;
2113 }
2114
2115 #define EXT4_SET_CTX(name) \
2116 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2117 unsigned long flag) \
2118 { \
2119 ctx->mask_s_##name |= flag; \
2120 ctx->vals_s_##name |= flag; \
2121 }
2122
2123 #define EXT4_CLEAR_CTX(name) \
2124 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2125 unsigned long flag) \
2126 { \
2127 ctx->mask_s_##name |= flag; \
2128 ctx->vals_s_##name &= ~flag; \
2129 }
2130
2131 #define EXT4_TEST_CTX(name) \
2132 static inline unsigned long \
2133 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2134 { \
2135 return (ctx->vals_s_##name & flag); \
2136 }
2137
2138 EXT4_SET_CTX(flags); /* set only */
2139 EXT4_SET_CTX(mount_opt);
2140 EXT4_CLEAR_CTX(mount_opt);
2141 EXT4_TEST_CTX(mount_opt);
2142 EXT4_SET_CTX(mount_opt2);
2143 EXT4_CLEAR_CTX(mount_opt2);
2144 EXT4_TEST_CTX(mount_opt2);
2145
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2146 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2147 {
2148 struct ext4_fs_context *ctx = fc->fs_private;
2149 struct fs_parse_result result;
2150 const struct mount_opts *m;
2151 int is_remount;
2152 kuid_t uid;
2153 kgid_t gid;
2154 int token;
2155
2156 token = fs_parse(fc, ext4_param_specs, param, &result);
2157 if (token < 0)
2158 return token;
2159 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2160
2161 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162 if (token == m->token)
2163 break;
2164
2165 ctx->opt_flags |= m->flags;
2166
2167 if (m->flags & MOPT_EXPLICIT) {
2168 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2169 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2170 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2171 ctx_set_mount_opt2(ctx,
2172 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2173 } else
2174 return -EINVAL;
2175 }
2176
2177 if (m->flags & MOPT_NOSUPPORT) {
2178 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2179 param->key);
2180 return 0;
2181 }
2182
2183 switch (token) {
2184 #ifdef CONFIG_QUOTA
2185 case Opt_usrjquota:
2186 if (!*param->string)
2187 return unnote_qf_name(fc, USRQUOTA);
2188 else
2189 return note_qf_name(fc, USRQUOTA, param);
2190 case Opt_grpjquota:
2191 if (!*param->string)
2192 return unnote_qf_name(fc, GRPQUOTA);
2193 else
2194 return note_qf_name(fc, GRPQUOTA, param);
2195 #endif
2196 case Opt_sb:
2197 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2198 ext4_msg(NULL, KERN_WARNING,
2199 "Ignoring %s option on remount", param->key);
2200 } else {
2201 ctx->s_sb_block = result.uint_32;
2202 ctx->spec |= EXT4_SPEC_s_sb_block;
2203 }
2204 return 0;
2205 case Opt_removed:
2206 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2207 param->key);
2208 return 0;
2209 case Opt_inlinecrypt:
2210 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2211 ctx_set_flags(ctx, SB_INLINECRYPT);
2212 #else
2213 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2214 #endif
2215 return 0;
2216 case Opt_errors:
2217 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2218 ctx_set_mount_opt(ctx, result.uint_32);
2219 return 0;
2220 #ifdef CONFIG_QUOTA
2221 case Opt_jqfmt:
2222 ctx->s_jquota_fmt = result.uint_32;
2223 ctx->spec |= EXT4_SPEC_JQFMT;
2224 return 0;
2225 #endif
2226 case Opt_data:
2227 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2228 ctx_set_mount_opt(ctx, result.uint_32);
2229 ctx->spec |= EXT4_SPEC_DATAJ;
2230 return 0;
2231 case Opt_commit:
2232 if (result.uint_32 == 0)
2233 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2234 else if (result.uint_32 > INT_MAX / HZ) {
2235 ext4_msg(NULL, KERN_ERR,
2236 "Invalid commit interval %d, "
2237 "must be smaller than %d",
2238 result.uint_32, INT_MAX / HZ);
2239 return -EINVAL;
2240 }
2241 ctx->s_commit_interval = HZ * result.uint_32;
2242 ctx->spec |= EXT4_SPEC_s_commit_interval;
2243 return 0;
2244 case Opt_debug_want_extra_isize:
2245 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Invalid want_extra_isize %d", result.uint_32);
2248 return -EINVAL;
2249 }
2250 ctx->s_want_extra_isize = result.uint_32;
2251 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2252 return 0;
2253 case Opt_max_batch_time:
2254 ctx->s_max_batch_time = result.uint_32;
2255 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2256 return 0;
2257 case Opt_min_batch_time:
2258 ctx->s_min_batch_time = result.uint_32;
2259 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2260 return 0;
2261 case Opt_inode_readahead_blks:
2262 if (result.uint_32 &&
2263 (result.uint_32 > (1 << 30) ||
2264 !is_power_of_2(result.uint_32))) {
2265 ext4_msg(NULL, KERN_ERR,
2266 "EXT4-fs: inode_readahead_blks must be "
2267 "0 or a power of 2 smaller than 2^31");
2268 return -EINVAL;
2269 }
2270 ctx->s_inode_readahead_blks = result.uint_32;
2271 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2272 return 0;
2273 case Opt_init_itable:
2274 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2275 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2276 if (param->type == fs_value_is_string)
2277 ctx->s_li_wait_mult = result.uint_32;
2278 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2279 return 0;
2280 case Opt_max_dir_size_kb:
2281 ctx->s_max_dir_size_kb = result.uint_32;
2282 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2283 return 0;
2284 #ifdef CONFIG_EXT4_DEBUG
2285 case Opt_fc_debug_max_replay:
2286 ctx->s_fc_debug_max_replay = result.uint_32;
2287 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2288 return 0;
2289 #endif
2290 case Opt_stripe:
2291 ctx->s_stripe = result.uint_32;
2292 ctx->spec |= EXT4_SPEC_s_stripe;
2293 return 0;
2294 case Opt_resuid:
2295 uid = make_kuid(current_user_ns(), result.uint_32);
2296 if (!uid_valid(uid)) {
2297 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2298 result.uint_32);
2299 return -EINVAL;
2300 }
2301 ctx->s_resuid = uid;
2302 ctx->spec |= EXT4_SPEC_s_resuid;
2303 return 0;
2304 case Opt_resgid:
2305 gid = make_kgid(current_user_ns(), result.uint_32);
2306 if (!gid_valid(gid)) {
2307 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2308 result.uint_32);
2309 return -EINVAL;
2310 }
2311 ctx->s_resgid = gid;
2312 ctx->spec |= EXT4_SPEC_s_resgid;
2313 return 0;
2314 case Opt_journal_dev:
2315 if (is_remount) {
2316 ext4_msg(NULL, KERN_ERR,
2317 "Cannot specify journal on remount");
2318 return -EINVAL;
2319 }
2320 ctx->journal_devnum = result.uint_32;
2321 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2322 return 0;
2323 case Opt_journal_path:
2324 {
2325 struct inode *journal_inode;
2326 struct path path;
2327 int error;
2328
2329 if (is_remount) {
2330 ext4_msg(NULL, KERN_ERR,
2331 "Cannot specify journal on remount");
2332 return -EINVAL;
2333 }
2334
2335 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2336 if (error) {
2337 ext4_msg(NULL, KERN_ERR, "error: could not find "
2338 "journal device path");
2339 return -EINVAL;
2340 }
2341
2342 journal_inode = d_inode(path.dentry);
2343 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2344 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2345 path_put(&path);
2346 return 0;
2347 }
2348 case Opt_journal_ioprio:
2349 if (result.uint_32 > 7) {
2350 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2351 " (must be 0-7)");
2352 return -EINVAL;
2353 }
2354 ctx->journal_ioprio =
2355 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2356 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2357 return 0;
2358 case Opt_test_dummy_encryption:
2359 return ext4_parse_test_dummy_encryption(param, ctx);
2360 case Opt_dax:
2361 case Opt_dax_type:
2362 #ifdef CONFIG_FS_DAX
2363 {
2364 int type = (token == Opt_dax) ?
2365 Opt_dax : result.uint_32;
2366
2367 switch (type) {
2368 case Opt_dax:
2369 case Opt_dax_always:
2370 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372 break;
2373 case Opt_dax_never:
2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2376 break;
2377 case Opt_dax_inode:
2378 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2380 /* Strictly for printing options */
2381 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2382 break;
2383 }
2384 return 0;
2385 }
2386 #else
2387 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2388 return -EINVAL;
2389 #endif
2390 case Opt_data_err:
2391 if (result.uint_32 == Opt_data_err_abort)
2392 ctx_set_mount_opt(ctx, m->mount_opt);
2393 else if (result.uint_32 == Opt_data_err_ignore)
2394 ctx_clear_mount_opt(ctx, m->mount_opt);
2395 return 0;
2396 case Opt_mb_optimize_scan:
2397 if (result.int_32 == 1) {
2398 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2399 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2400 } else if (result.int_32 == 0) {
2401 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403 } else {
2404 ext4_msg(NULL, KERN_WARNING,
2405 "mb_optimize_scan should be set to 0 or 1.");
2406 return -EINVAL;
2407 }
2408 return 0;
2409 }
2410
2411 /*
2412 * At this point we should only be getting options requiring MOPT_SET,
2413 * or MOPT_CLEAR. Anything else is a bug
2414 */
2415 if (m->token == Opt_err) {
2416 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2417 param->key);
2418 WARN_ON(1);
2419 return -EINVAL;
2420 }
2421
2422 else {
2423 unsigned int set = 0;
2424
2425 if ((param->type == fs_value_is_flag) ||
2426 result.uint_32 > 0)
2427 set = 1;
2428
2429 if (m->flags & MOPT_CLEAR)
2430 set = !set;
2431 else if (unlikely(!(m->flags & MOPT_SET))) {
2432 ext4_msg(NULL, KERN_WARNING,
2433 "buggy handling of option %s",
2434 param->key);
2435 WARN_ON(1);
2436 return -EINVAL;
2437 }
2438 if (m->flags & MOPT_2) {
2439 if (set != 0)
2440 ctx_set_mount_opt2(ctx, m->mount_opt);
2441 else
2442 ctx_clear_mount_opt2(ctx, m->mount_opt);
2443 } else {
2444 if (set != 0)
2445 ctx_set_mount_opt(ctx, m->mount_opt);
2446 else
2447 ctx_clear_mount_opt(ctx, m->mount_opt);
2448 }
2449 }
2450
2451 return 0;
2452 }
2453
parse_options(struct fs_context * fc,char * options)2454 static int parse_options(struct fs_context *fc, char *options)
2455 {
2456 struct fs_parameter param;
2457 int ret;
2458 char *key;
2459
2460 if (!options)
2461 return 0;
2462
2463 while ((key = strsep(&options, ",")) != NULL) {
2464 if (*key) {
2465 size_t v_len = 0;
2466 char *value = strchr(key, '=');
2467
2468 param.type = fs_value_is_flag;
2469 param.string = NULL;
2470
2471 if (value) {
2472 if (value == key)
2473 continue;
2474
2475 *value++ = 0;
2476 v_len = strlen(value);
2477 param.string = kmemdup_nul(value, v_len,
2478 GFP_KERNEL);
2479 if (!param.string)
2480 return -ENOMEM;
2481 param.type = fs_value_is_string;
2482 }
2483
2484 param.key = key;
2485 param.size = v_len;
2486
2487 ret = ext4_parse_param(fc, ¶m);
2488 if (param.string)
2489 kfree(param.string);
2490 if (ret < 0)
2491 return ret;
2492 }
2493 }
2494
2495 ret = ext4_validate_options(fc);
2496 if (ret < 0)
2497 return ret;
2498
2499 return 0;
2500 }
2501
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2502 static int parse_apply_sb_mount_options(struct super_block *sb,
2503 struct ext4_fs_context *m_ctx)
2504 {
2505 struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 char *s_mount_opts = NULL;
2507 struct ext4_fs_context *s_ctx = NULL;
2508 struct fs_context *fc = NULL;
2509 int ret = -ENOMEM;
2510
2511 if (!sbi->s_es->s_mount_opts[0])
2512 return 0;
2513
2514 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2515 sizeof(sbi->s_es->s_mount_opts),
2516 GFP_KERNEL);
2517 if (!s_mount_opts)
2518 return ret;
2519
2520 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2521 if (!fc)
2522 goto out_free;
2523
2524 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2525 if (!s_ctx)
2526 goto out_free;
2527
2528 fc->fs_private = s_ctx;
2529 fc->s_fs_info = sbi;
2530
2531 ret = parse_options(fc, s_mount_opts);
2532 if (ret < 0)
2533 goto parse_failed;
2534
2535 ret = ext4_check_opt_consistency(fc, sb);
2536 if (ret < 0) {
2537 parse_failed:
2538 ext4_msg(sb, KERN_WARNING,
2539 "failed to parse options in superblock: %s",
2540 s_mount_opts);
2541 ret = 0;
2542 goto out_free;
2543 }
2544
2545 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2546 m_ctx->journal_devnum = s_ctx->journal_devnum;
2547 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2548 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2549
2550 ext4_apply_options(fc, sb);
2551 ret = 0;
2552
2553 out_free:
2554 if (fc) {
2555 ext4_fc_free(fc);
2556 kfree(fc);
2557 }
2558 kfree(s_mount_opts);
2559 return ret;
2560 }
2561
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2562 static void ext4_apply_quota_options(struct fs_context *fc,
2563 struct super_block *sb)
2564 {
2565 #ifdef CONFIG_QUOTA
2566 bool quota_feature = ext4_has_feature_quota(sb);
2567 struct ext4_fs_context *ctx = fc->fs_private;
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 char *qname;
2570 int i;
2571
2572 if (quota_feature)
2573 return;
2574
2575 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2576 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2577 if (!(ctx->qname_spec & (1 << i)))
2578 continue;
2579
2580 qname = ctx->s_qf_names[i]; /* May be NULL */
2581 if (qname)
2582 set_opt(sb, QUOTA);
2583 ctx->s_qf_names[i] = NULL;
2584 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2585 lockdep_is_held(&sb->s_umount));
2586 if (qname)
2587 kfree_rcu_mightsleep(qname);
2588 }
2589 }
2590
2591 if (ctx->spec & EXT4_SPEC_JQFMT)
2592 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2593 #endif
2594 }
2595
2596 /*
2597 * Check quota settings consistency.
2598 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2599 static int ext4_check_quota_consistency(struct fs_context *fc,
2600 struct super_block *sb)
2601 {
2602 #ifdef CONFIG_QUOTA
2603 struct ext4_fs_context *ctx = fc->fs_private;
2604 struct ext4_sb_info *sbi = EXT4_SB(sb);
2605 bool quota_feature = ext4_has_feature_quota(sb);
2606 bool quota_loaded = sb_any_quota_loaded(sb);
2607 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2608 int quota_flags, i;
2609
2610 /*
2611 * We do the test below only for project quotas. 'usrquota' and
2612 * 'grpquota' mount options are allowed even without quota feature
2613 * to support legacy quotas in quota files.
2614 */
2615 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2616 !ext4_has_feature_project(sb)) {
2617 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2618 "Cannot enable project quota enforcement.");
2619 return -EINVAL;
2620 }
2621
2622 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2623 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2624 if (quota_loaded &&
2625 ctx->mask_s_mount_opt & quota_flags &&
2626 !ctx_test_mount_opt(ctx, quota_flags))
2627 goto err_quota_change;
2628
2629 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2630
2631 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2632 if (!(ctx->qname_spec & (1 << i)))
2633 continue;
2634
2635 if (quota_loaded &&
2636 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2637 goto err_jquota_change;
2638
2639 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2640 strcmp(get_qf_name(sb, sbi, i),
2641 ctx->s_qf_names[i]) != 0)
2642 goto err_jquota_specified;
2643 }
2644
2645 if (quota_feature) {
2646 ext4_msg(NULL, KERN_INFO,
2647 "Journaled quota options ignored when "
2648 "QUOTA feature is enabled");
2649 return 0;
2650 }
2651 }
2652
2653 if (ctx->spec & EXT4_SPEC_JQFMT) {
2654 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2655 goto err_jquota_change;
2656 if (quota_feature) {
2657 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2658 "ignored when QUOTA feature is enabled");
2659 return 0;
2660 }
2661 }
2662
2663 /* Make sure we don't mix old and new quota format */
2664 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2665 ctx->s_qf_names[USRQUOTA]);
2666 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2667 ctx->s_qf_names[GRPQUOTA]);
2668
2669 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2670 test_opt(sb, USRQUOTA));
2671
2672 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2673 test_opt(sb, GRPQUOTA));
2674
2675 if (usr_qf_name) {
2676 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2677 usrquota = false;
2678 }
2679 if (grp_qf_name) {
2680 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2681 grpquota = false;
2682 }
2683
2684 if (usr_qf_name || grp_qf_name) {
2685 if (usrquota || grpquota) {
2686 ext4_msg(NULL, KERN_ERR, "old and new quota "
2687 "format mixing");
2688 return -EINVAL;
2689 }
2690
2691 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2692 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2693 "not specified");
2694 return -EINVAL;
2695 }
2696 }
2697
2698 return 0;
2699
2700 err_quota_change:
2701 ext4_msg(NULL, KERN_ERR,
2702 "Cannot change quota options when quota turned on");
2703 return -EINVAL;
2704 err_jquota_change:
2705 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2706 "options when quota turned on");
2707 return -EINVAL;
2708 err_jquota_specified:
2709 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2710 QTYPE2NAME(i));
2711 return -EINVAL;
2712 #else
2713 return 0;
2714 #endif
2715 }
2716
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2717 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2718 struct super_block *sb)
2719 {
2720 const struct ext4_fs_context *ctx = fc->fs_private;
2721 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2722
2723 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2724 return 0;
2725
2726 if (!ext4_has_feature_encrypt(sb)) {
2727 ext4_msg(NULL, KERN_WARNING,
2728 "test_dummy_encryption requires encrypt feature");
2729 return -EINVAL;
2730 }
2731 /*
2732 * This mount option is just for testing, and it's not worthwhile to
2733 * implement the extra complexity (e.g. RCU protection) that would be
2734 * needed to allow it to be set or changed during remount. We do allow
2735 * it to be specified during remount, but only if there is no change.
2736 */
2737 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2738 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2739 &ctx->dummy_enc_policy))
2740 return 0;
2741 ext4_msg(NULL, KERN_WARNING,
2742 "Can't set or change test_dummy_encryption on remount");
2743 return -EINVAL;
2744 }
2745 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2746 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2747 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2748 &ctx->dummy_enc_policy))
2749 return 0;
2750 ext4_msg(NULL, KERN_WARNING,
2751 "Conflicting test_dummy_encryption options");
2752 return -EINVAL;
2753 }
2754 return 0;
2755 }
2756
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2757 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2758 struct super_block *sb)
2759 {
2760 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2761 /* if already set, it was already verified to be the same */
2762 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2763 return;
2764 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2765 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2766 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2767 }
2768
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2769 static int ext4_check_opt_consistency(struct fs_context *fc,
2770 struct super_block *sb)
2771 {
2772 struct ext4_fs_context *ctx = fc->fs_private;
2773 struct ext4_sb_info *sbi = fc->s_fs_info;
2774 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2775 int err;
2776
2777 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2778 ext4_msg(NULL, KERN_ERR,
2779 "Mount option(s) incompatible with ext2");
2780 return -EINVAL;
2781 }
2782 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2783 ext4_msg(NULL, KERN_ERR,
2784 "Mount option(s) incompatible with ext3");
2785 return -EINVAL;
2786 }
2787
2788 if (ctx->s_want_extra_isize >
2789 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2790 ext4_msg(NULL, KERN_ERR,
2791 "Invalid want_extra_isize %d",
2792 ctx->s_want_extra_isize);
2793 return -EINVAL;
2794 }
2795
2796 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2797 int blocksize =
2798 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2799 if (blocksize < PAGE_SIZE)
2800 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2801 "experimental mount option 'dioread_nolock' "
2802 "for blocksize < PAGE_SIZE");
2803 }
2804
2805 err = ext4_check_test_dummy_encryption(fc, sb);
2806 if (err)
2807 return err;
2808
2809 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2810 if (!sbi->s_journal) {
2811 ext4_msg(NULL, KERN_WARNING,
2812 "Remounting file system with no journal "
2813 "so ignoring journalled data option");
2814 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2815 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2816 test_opt(sb, DATA_FLAGS)) {
2817 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2818 "on remount");
2819 return -EINVAL;
2820 }
2821 }
2822
2823 if (is_remount) {
2824 if (!sbi->s_journal &&
2825 ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT)) {
2826 ext4_msg(NULL, KERN_WARNING,
2827 "Remounting fs w/o journal so ignoring data_err option");
2828 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_ERR_ABORT);
2829 }
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2832 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2833 ext4_msg(NULL, KERN_ERR, "can't mount with "
2834 "both data=journal and dax");
2835 return -EINVAL;
2836 }
2837
2838 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2839 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2840 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2841 fail_dax_change_remount:
2842 ext4_msg(NULL, KERN_ERR, "can't change "
2843 "dax mount option while remounting");
2844 return -EINVAL;
2845 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2846 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2847 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2848 goto fail_dax_change_remount;
2849 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2850 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2851 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2852 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2853 goto fail_dax_change_remount;
2854 }
2855 }
2856
2857 return ext4_check_quota_consistency(fc, sb);
2858 }
2859
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2860 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2861 {
2862 struct ext4_fs_context *ctx = fc->fs_private;
2863 struct ext4_sb_info *sbi = fc->s_fs_info;
2864
2865 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2866 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2867 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2868 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2869 sb->s_flags &= ~ctx->mask_s_flags;
2870 sb->s_flags |= ctx->vals_s_flags;
2871
2872 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2873 APPLY(s_commit_interval);
2874 APPLY(s_stripe);
2875 APPLY(s_max_batch_time);
2876 APPLY(s_min_batch_time);
2877 APPLY(s_want_extra_isize);
2878 APPLY(s_inode_readahead_blks);
2879 APPLY(s_max_dir_size_kb);
2880 APPLY(s_li_wait_mult);
2881 APPLY(s_resgid);
2882 APPLY(s_resuid);
2883
2884 #ifdef CONFIG_EXT4_DEBUG
2885 APPLY(s_fc_debug_max_replay);
2886 #endif
2887
2888 ext4_apply_quota_options(fc, sb);
2889 ext4_apply_test_dummy_encryption(ctx, sb);
2890 }
2891
2892
ext4_validate_options(struct fs_context * fc)2893 static int ext4_validate_options(struct fs_context *fc)
2894 {
2895 #ifdef CONFIG_QUOTA
2896 struct ext4_fs_context *ctx = fc->fs_private;
2897 char *usr_qf_name, *grp_qf_name;
2898
2899 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2900 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2901
2902 if (usr_qf_name || grp_qf_name) {
2903 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2904 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2905
2906 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2907 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2908
2909 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2910 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2911 ext4_msg(NULL, KERN_ERR, "old and new quota "
2912 "format mixing");
2913 return -EINVAL;
2914 }
2915 }
2916 #endif
2917 return 1;
2918 }
2919
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2920 static inline void ext4_show_quota_options(struct seq_file *seq,
2921 struct super_block *sb)
2922 {
2923 #if defined(CONFIG_QUOTA)
2924 struct ext4_sb_info *sbi = EXT4_SB(sb);
2925 char *usr_qf_name, *grp_qf_name;
2926
2927 if (sbi->s_jquota_fmt) {
2928 char *fmtname = "";
2929
2930 switch (sbi->s_jquota_fmt) {
2931 case QFMT_VFS_OLD:
2932 fmtname = "vfsold";
2933 break;
2934 case QFMT_VFS_V0:
2935 fmtname = "vfsv0";
2936 break;
2937 case QFMT_VFS_V1:
2938 fmtname = "vfsv1";
2939 break;
2940 }
2941 seq_printf(seq, ",jqfmt=%s", fmtname);
2942 }
2943
2944 rcu_read_lock();
2945 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2946 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2947 if (usr_qf_name)
2948 seq_show_option(seq, "usrjquota", usr_qf_name);
2949 if (grp_qf_name)
2950 seq_show_option(seq, "grpjquota", grp_qf_name);
2951 rcu_read_unlock();
2952 #endif
2953 }
2954
token2str(int token)2955 static const char *token2str(int token)
2956 {
2957 const struct fs_parameter_spec *spec;
2958
2959 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2960 if (spec->opt == token && !spec->type)
2961 break;
2962 return spec->name;
2963 }
2964
2965 /*
2966 * Show an option if
2967 * - it's set to a non-default value OR
2968 * - if the per-sb default is different from the global default
2969 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2970 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2971 int nodefs)
2972 {
2973 struct ext4_sb_info *sbi = EXT4_SB(sb);
2974 struct ext4_super_block *es = sbi->s_es;
2975 int def_errors;
2976 const struct mount_opts *m;
2977 char sep = nodefs ? '\n' : ',';
2978
2979 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2980 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2981
2982 if (sbi->s_sb_block != 1)
2983 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2984
2985 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2986 int want_set = m->flags & MOPT_SET;
2987 int opt_2 = m->flags & MOPT_2;
2988 unsigned int mount_opt, def_mount_opt;
2989
2990 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2991 m->flags & MOPT_SKIP)
2992 continue;
2993
2994 if (opt_2) {
2995 mount_opt = sbi->s_mount_opt2;
2996 def_mount_opt = sbi->s_def_mount_opt2;
2997 } else {
2998 mount_opt = sbi->s_mount_opt;
2999 def_mount_opt = sbi->s_def_mount_opt;
3000 }
3001 /* skip if same as the default */
3002 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
3003 continue;
3004 /* select Opt_noFoo vs Opt_Foo */
3005 if ((want_set &&
3006 (mount_opt & m->mount_opt) != m->mount_opt) ||
3007 (!want_set && (mount_opt & m->mount_opt)))
3008 continue;
3009 SEQ_OPTS_PRINT("%s", token2str(m->token));
3010 }
3011
3012 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3013 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3014 SEQ_OPTS_PRINT("resuid=%u",
3015 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3016 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3017 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3018 SEQ_OPTS_PRINT("resgid=%u",
3019 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3020 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3021 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3022 SEQ_OPTS_PUTS("errors=remount-ro");
3023 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3024 SEQ_OPTS_PUTS("errors=continue");
3025 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3026 SEQ_OPTS_PUTS("errors=panic");
3027 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3028 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3029 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3030 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3031 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3032 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3033 if (nodefs || sbi->s_stripe)
3034 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3035 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3036 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3037 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3038 SEQ_OPTS_PUTS("data=journal");
3039 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3040 SEQ_OPTS_PUTS("data=ordered");
3041 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3042 SEQ_OPTS_PUTS("data=writeback");
3043 }
3044 if (nodefs ||
3045 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3046 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3047 sbi->s_inode_readahead_blks);
3048
3049 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3050 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3051 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3052 if (nodefs || sbi->s_max_dir_size_kb)
3053 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3054 if (test_opt(sb, DATA_ERR_ABORT))
3055 SEQ_OPTS_PUTS("data_err=abort");
3056
3057 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3058
3059 if (sb->s_flags & SB_INLINECRYPT)
3060 SEQ_OPTS_PUTS("inlinecrypt");
3061
3062 if (test_opt(sb, DAX_ALWAYS)) {
3063 if (IS_EXT2_SB(sb))
3064 SEQ_OPTS_PUTS("dax");
3065 else
3066 SEQ_OPTS_PUTS("dax=always");
3067 } else if (test_opt2(sb, DAX_NEVER)) {
3068 SEQ_OPTS_PUTS("dax=never");
3069 } else if (test_opt2(sb, DAX_INODE)) {
3070 SEQ_OPTS_PUTS("dax=inode");
3071 }
3072
3073 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3074 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3075 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3076 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3077 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3078 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3079 }
3080
3081 ext4_show_quota_options(seq, sb);
3082 return 0;
3083 }
3084
ext4_show_options(struct seq_file * seq,struct dentry * root)3085 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3086 {
3087 return _ext4_show_options(seq, root->d_sb, 0);
3088 }
3089
ext4_seq_options_show(struct seq_file * seq,void * offset)3090 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3091 {
3092 struct super_block *sb = seq->private;
3093 int rc;
3094
3095 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3096 rc = _ext4_show_options(seq, sb, 1);
3097 seq_puts(seq, "\n");
3098 return rc;
3099 }
3100
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3101 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3102 int read_only)
3103 {
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 int err = 0;
3106
3107 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3108 ext4_msg(sb, KERN_ERR, "revision level too high, "
3109 "forcing read-only mode");
3110 err = -EROFS;
3111 goto done;
3112 }
3113 if (read_only)
3114 goto done;
3115 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3116 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3117 "running e2fsck is recommended");
3118 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3119 ext4_msg(sb, KERN_WARNING,
3120 "warning: mounting fs with errors, "
3121 "running e2fsck is recommended");
3122 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3123 le16_to_cpu(es->s_mnt_count) >=
3124 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3125 ext4_msg(sb, KERN_WARNING,
3126 "warning: maximal mount count reached, "
3127 "running e2fsck is recommended");
3128 else if (le32_to_cpu(es->s_checkinterval) &&
3129 (ext4_get_tstamp(es, s_lastcheck) +
3130 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3131 ext4_msg(sb, KERN_WARNING,
3132 "warning: checktime reached, "
3133 "running e2fsck is recommended");
3134 if (!sbi->s_journal)
3135 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3136 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3137 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3138 le16_add_cpu(&es->s_mnt_count, 1);
3139 ext4_update_tstamp(es, s_mtime);
3140 if (sbi->s_journal) {
3141 ext4_set_feature_journal_needs_recovery(sb);
3142 if (ext4_has_feature_orphan_file(sb))
3143 ext4_set_feature_orphan_present(sb);
3144 }
3145
3146 err = ext4_commit_super(sb);
3147 done:
3148 if (test_opt(sb, DEBUG))
3149 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3150 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3151 sb->s_blocksize,
3152 sbi->s_groups_count,
3153 EXT4_BLOCKS_PER_GROUP(sb),
3154 EXT4_INODES_PER_GROUP(sb),
3155 sbi->s_mount_opt, sbi->s_mount_opt2);
3156 return err;
3157 }
3158
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3159 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3160 {
3161 struct ext4_sb_info *sbi = EXT4_SB(sb);
3162 struct flex_groups **old_groups, **new_groups;
3163 int size, i, j;
3164
3165 if (!sbi->s_log_groups_per_flex)
3166 return 0;
3167
3168 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3169 if (size <= sbi->s_flex_groups_allocated)
3170 return 0;
3171
3172 new_groups = kvzalloc(roundup_pow_of_two(size *
3173 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3174 if (!new_groups) {
3175 ext4_msg(sb, KERN_ERR,
3176 "not enough memory for %d flex group pointers", size);
3177 return -ENOMEM;
3178 }
3179 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3180 new_groups[i] = kvzalloc(roundup_pow_of_two(
3181 sizeof(struct flex_groups)),
3182 GFP_KERNEL);
3183 if (!new_groups[i]) {
3184 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3185 kvfree(new_groups[j]);
3186 kvfree(new_groups);
3187 ext4_msg(sb, KERN_ERR,
3188 "not enough memory for %d flex groups", size);
3189 return -ENOMEM;
3190 }
3191 }
3192 rcu_read_lock();
3193 old_groups = rcu_dereference(sbi->s_flex_groups);
3194 if (old_groups)
3195 memcpy(new_groups, old_groups,
3196 (sbi->s_flex_groups_allocated *
3197 sizeof(struct flex_groups *)));
3198 rcu_read_unlock();
3199 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3200 sbi->s_flex_groups_allocated = size;
3201 if (old_groups)
3202 ext4_kvfree_array_rcu(old_groups);
3203 return 0;
3204 }
3205
ext4_fill_flex_info(struct super_block * sb)3206 static int ext4_fill_flex_info(struct super_block *sb)
3207 {
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3209 struct ext4_group_desc *gdp = NULL;
3210 struct flex_groups *fg;
3211 ext4_group_t flex_group;
3212 int i, err;
3213
3214 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3215 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3216 sbi->s_log_groups_per_flex = 0;
3217 return 1;
3218 }
3219
3220 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3221 if (err)
3222 goto failed;
3223
3224 for (i = 0; i < sbi->s_groups_count; i++) {
3225 gdp = ext4_get_group_desc(sb, i, NULL);
3226
3227 flex_group = ext4_flex_group(sbi, i);
3228 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3229 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3230 atomic64_add(ext4_free_group_clusters(sb, gdp),
3231 &fg->free_clusters);
3232 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3233 }
3234
3235 return 1;
3236 failed:
3237 return 0;
3238 }
3239
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3240 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3241 struct ext4_group_desc *gdp)
3242 {
3243 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3244 __u16 crc = 0;
3245 __le32 le_group = cpu_to_le32(block_group);
3246 struct ext4_sb_info *sbi = EXT4_SB(sb);
3247
3248 if (ext4_has_metadata_csum(sbi->s_sb)) {
3249 /* Use new metadata_csum algorithm */
3250 __u32 csum32;
3251 __u16 dummy_csum = 0;
3252
3253 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3254 sizeof(le_group));
3255 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3256 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3257 sizeof(dummy_csum));
3258 offset += sizeof(dummy_csum);
3259 if (offset < sbi->s_desc_size)
3260 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3261 sbi->s_desc_size - offset);
3262
3263 crc = csum32 & 0xFFFF;
3264 goto out;
3265 }
3266
3267 /* old crc16 code */
3268 if (!ext4_has_feature_gdt_csum(sb))
3269 return 0;
3270
3271 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3272 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3273 crc = crc16(crc, (__u8 *)gdp, offset);
3274 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3275 /* for checksum of struct ext4_group_desc do the rest...*/
3276 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3277 crc = crc16(crc, (__u8 *)gdp + offset,
3278 sbi->s_desc_size - offset);
3279
3280 out:
3281 return cpu_to_le16(crc);
3282 }
3283
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3284 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3285 struct ext4_group_desc *gdp)
3286 {
3287 if (ext4_has_group_desc_csum(sb) &&
3288 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3289 return 0;
3290
3291 return 1;
3292 }
3293
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3294 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3295 struct ext4_group_desc *gdp)
3296 {
3297 if (!ext4_has_group_desc_csum(sb))
3298 return;
3299 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3300 }
3301
3302 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3303 static int ext4_check_descriptors(struct super_block *sb,
3304 ext4_fsblk_t sb_block,
3305 ext4_group_t *first_not_zeroed)
3306 {
3307 struct ext4_sb_info *sbi = EXT4_SB(sb);
3308 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3309 ext4_fsblk_t last_block;
3310 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3311 ext4_fsblk_t block_bitmap;
3312 ext4_fsblk_t inode_bitmap;
3313 ext4_fsblk_t inode_table;
3314 int flexbg_flag = 0;
3315 ext4_group_t i, grp = sbi->s_groups_count;
3316
3317 if (ext4_has_feature_flex_bg(sb))
3318 flexbg_flag = 1;
3319
3320 ext4_debug("Checking group descriptors");
3321
3322 for (i = 0; i < sbi->s_groups_count; i++) {
3323 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3324
3325 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3326 last_block = ext4_blocks_count(sbi->s_es) - 1;
3327 else
3328 last_block = first_block +
3329 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3330
3331 if ((grp == sbi->s_groups_count) &&
3332 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3333 grp = i;
3334
3335 block_bitmap = ext4_block_bitmap(sb, gdp);
3336 if (block_bitmap == sb_block) {
3337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 "Block bitmap for group %u overlaps "
3339 "superblock", i);
3340 if (!sb_rdonly(sb))
3341 return 0;
3342 }
3343 if (block_bitmap >= sb_block + 1 &&
3344 block_bitmap <= last_bg_block) {
3345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3346 "Block bitmap for group %u overlaps "
3347 "block group descriptors", i);
3348 if (!sb_rdonly(sb))
3349 return 0;
3350 }
3351 if (block_bitmap < first_block || block_bitmap > last_block) {
3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353 "Block bitmap for group %u not in group "
3354 "(block %llu)!", i, block_bitmap);
3355 return 0;
3356 }
3357 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3358 if (inode_bitmap == sb_block) {
3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 "Inode bitmap for group %u overlaps "
3361 "superblock", i);
3362 if (!sb_rdonly(sb))
3363 return 0;
3364 }
3365 if (inode_bitmap >= sb_block + 1 &&
3366 inode_bitmap <= last_bg_block) {
3367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3368 "Inode bitmap for group %u overlaps "
3369 "block group descriptors", i);
3370 if (!sb_rdonly(sb))
3371 return 0;
3372 }
3373 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 "Inode bitmap for group %u not in group "
3376 "(block %llu)!", i, inode_bitmap);
3377 return 0;
3378 }
3379 inode_table = ext4_inode_table(sb, gdp);
3380 if (inode_table == sb_block) {
3381 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382 "Inode table for group %u overlaps "
3383 "superblock", i);
3384 if (!sb_rdonly(sb))
3385 return 0;
3386 }
3387 if (inode_table >= sb_block + 1 &&
3388 inode_table <= last_bg_block) {
3389 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3390 "Inode table for group %u overlaps "
3391 "block group descriptors", i);
3392 if (!sb_rdonly(sb))
3393 return 0;
3394 }
3395 if (inode_table < first_block ||
3396 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3397 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3398 "Inode table for group %u not in group "
3399 "(block %llu)!", i, inode_table);
3400 return 0;
3401 }
3402 ext4_lock_group(sb, i);
3403 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3404 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3405 "Checksum for group %u failed (%u!=%u)",
3406 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3407 gdp)), le16_to_cpu(gdp->bg_checksum));
3408 if (!sb_rdonly(sb)) {
3409 ext4_unlock_group(sb, i);
3410 return 0;
3411 }
3412 }
3413 ext4_unlock_group(sb, i);
3414 if (!flexbg_flag)
3415 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3416 }
3417 if (NULL != first_not_zeroed)
3418 *first_not_zeroed = grp;
3419 return 1;
3420 }
3421
3422 /*
3423 * Maximal extent format file size.
3424 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3425 * extent format containers, within a sector_t, and within i_blocks
3426 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3427 * so that won't be a limiting factor.
3428 *
3429 * However there is other limiting factor. We do store extents in the form
3430 * of starting block and length, hence the resulting length of the extent
3431 * covering maximum file size must fit into on-disk format containers as
3432 * well. Given that length is always by 1 unit bigger than max unit (because
3433 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3434 *
3435 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3436 */
ext4_max_size(int blkbits,int has_huge_files)3437 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3438 {
3439 loff_t res;
3440 loff_t upper_limit = MAX_LFS_FILESIZE;
3441
3442 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3443
3444 if (!has_huge_files) {
3445 upper_limit = (1LL << 32) - 1;
3446
3447 /* total blocks in file system block size */
3448 upper_limit >>= (blkbits - 9);
3449 upper_limit <<= blkbits;
3450 }
3451
3452 /*
3453 * 32-bit extent-start container, ee_block. We lower the maxbytes
3454 * by one fs block, so ee_len can cover the extent of maximum file
3455 * size
3456 */
3457 res = (1LL << 32) - 1;
3458 res <<= blkbits;
3459
3460 /* Sanity check against vm- & vfs- imposed limits */
3461 if (res > upper_limit)
3462 res = upper_limit;
3463
3464 return res;
3465 }
3466
3467 /*
3468 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3469 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3470 * We need to be 1 filesystem block less than the 2^48 sector limit.
3471 */
ext4_max_bitmap_size(int bits,int has_huge_files)3472 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3473 {
3474 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3475 int meta_blocks;
3476 unsigned int ppb = 1 << (bits - 2);
3477
3478 /*
3479 * This is calculated to be the largest file size for a dense, block
3480 * mapped file such that the file's total number of 512-byte sectors,
3481 * including data and all indirect blocks, does not exceed (2^48 - 1).
3482 *
3483 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3484 * number of 512-byte sectors of the file.
3485 */
3486 if (!has_huge_files) {
3487 /*
3488 * !has_huge_files or implies that the inode i_block field
3489 * represents total file blocks in 2^32 512-byte sectors ==
3490 * size of vfs inode i_blocks * 8
3491 */
3492 upper_limit = (1LL << 32) - 1;
3493
3494 /* total blocks in file system block size */
3495 upper_limit >>= (bits - 9);
3496
3497 } else {
3498 /*
3499 * We use 48 bit ext4_inode i_blocks
3500 * With EXT4_HUGE_FILE_FL set the i_blocks
3501 * represent total number of blocks in
3502 * file system block size
3503 */
3504 upper_limit = (1LL << 48) - 1;
3505
3506 }
3507
3508 /* Compute how many blocks we can address by block tree */
3509 res += ppb;
3510 res += ppb * ppb;
3511 res += ((loff_t)ppb) * ppb * ppb;
3512 /* Compute how many metadata blocks are needed */
3513 meta_blocks = 1;
3514 meta_blocks += 1 + ppb;
3515 meta_blocks += 1 + ppb + ppb * ppb;
3516 /* Does block tree limit file size? */
3517 if (res + meta_blocks <= upper_limit)
3518 goto check_lfs;
3519
3520 res = upper_limit;
3521 /* How many metadata blocks are needed for addressing upper_limit? */
3522 upper_limit -= EXT4_NDIR_BLOCKS;
3523 /* indirect blocks */
3524 meta_blocks = 1;
3525 upper_limit -= ppb;
3526 /* double indirect blocks */
3527 if (upper_limit < ppb * ppb) {
3528 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3529 res -= meta_blocks;
3530 goto check_lfs;
3531 }
3532 meta_blocks += 1 + ppb;
3533 upper_limit -= ppb * ppb;
3534 /* tripple indirect blocks for the rest */
3535 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3536 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3537 res -= meta_blocks;
3538 check_lfs:
3539 res <<= bits;
3540 if (res > MAX_LFS_FILESIZE)
3541 res = MAX_LFS_FILESIZE;
3542
3543 return res;
3544 }
3545
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3546 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3547 ext4_fsblk_t logical_sb_block, int nr)
3548 {
3549 struct ext4_sb_info *sbi = EXT4_SB(sb);
3550 ext4_group_t bg, first_meta_bg;
3551 int has_super = 0;
3552
3553 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3554
3555 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3556 return logical_sb_block + nr + 1;
3557 bg = sbi->s_desc_per_block * nr;
3558 if (ext4_bg_has_super(sb, bg))
3559 has_super = 1;
3560
3561 /*
3562 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3563 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3564 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3565 * compensate.
3566 */
3567 if (sb->s_blocksize == 1024 && nr == 0 &&
3568 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3569 has_super++;
3570
3571 return (has_super + ext4_group_first_block_no(sb, bg));
3572 }
3573
3574 /**
3575 * ext4_get_stripe_size: Get the stripe size.
3576 * @sbi: In memory super block info
3577 *
3578 * If we have specified it via mount option, then
3579 * use the mount option value. If the value specified at mount time is
3580 * greater than the blocks per group use the super block value.
3581 * If the super block value is greater than blocks per group return 0.
3582 * Allocator needs it be less than blocks per group.
3583 *
3584 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3585 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3586 {
3587 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3588 unsigned long stripe_width =
3589 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3590 int ret;
3591
3592 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3593 ret = sbi->s_stripe;
3594 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3595 ret = stripe_width;
3596 else if (stride && stride <= sbi->s_blocks_per_group)
3597 ret = stride;
3598 else
3599 ret = 0;
3600
3601 /*
3602 * If the stripe width is 1, this makes no sense and
3603 * we set it to 0 to turn off stripe handling code.
3604 */
3605 if (ret <= 1)
3606 ret = 0;
3607
3608 return ret;
3609 }
3610
3611 /*
3612 * Check whether this filesystem can be mounted based on
3613 * the features present and the RDONLY/RDWR mount requested.
3614 * Returns 1 if this filesystem can be mounted as requested,
3615 * 0 if it cannot be.
3616 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3617 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3618 {
3619 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3620 ext4_msg(sb, KERN_ERR,
3621 "Couldn't mount because of "
3622 "unsupported optional features (%x)",
3623 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3624 ~EXT4_FEATURE_INCOMPAT_SUPP));
3625 return 0;
3626 }
3627
3628 #if !IS_ENABLED(CONFIG_UNICODE)
3629 if (ext4_has_feature_casefold(sb)) {
3630 ext4_msg(sb, KERN_ERR,
3631 "Filesystem with casefold feature cannot be "
3632 "mounted without CONFIG_UNICODE");
3633 return 0;
3634 }
3635 #endif
3636
3637 if (readonly)
3638 return 1;
3639
3640 if (ext4_has_feature_readonly(sb)) {
3641 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3642 sb->s_flags |= SB_RDONLY;
3643 return 1;
3644 }
3645
3646 /* Check that feature set is OK for a read-write mount */
3647 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3648 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3649 "unsupported optional features (%x)",
3650 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3651 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3652 return 0;
3653 }
3654 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3655 ext4_msg(sb, KERN_ERR,
3656 "Can't support bigalloc feature without "
3657 "extents feature\n");
3658 return 0;
3659 }
3660
3661 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3662 if (!readonly && (ext4_has_feature_quota(sb) ||
3663 ext4_has_feature_project(sb))) {
3664 ext4_msg(sb, KERN_ERR,
3665 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3666 return 0;
3667 }
3668 #endif /* CONFIG_QUOTA */
3669 return 1;
3670 }
3671
3672 /*
3673 * This function is called once a day if we have errors logged
3674 * on the file system
3675 */
print_daily_error_info(struct timer_list * t)3676 static void print_daily_error_info(struct timer_list *t)
3677 {
3678 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3679 struct super_block *sb = sbi->s_sb;
3680 struct ext4_super_block *es = sbi->s_es;
3681
3682 if (es->s_error_count)
3683 /* fsck newer than v1.41.13 is needed to clean this condition. */
3684 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3685 le32_to_cpu(es->s_error_count));
3686 if (es->s_first_error_time) {
3687 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3688 sb->s_id,
3689 ext4_get_tstamp(es, s_first_error_time),
3690 (int) sizeof(es->s_first_error_func),
3691 es->s_first_error_func,
3692 le32_to_cpu(es->s_first_error_line));
3693 if (es->s_first_error_ino)
3694 printk(KERN_CONT ": inode %u",
3695 le32_to_cpu(es->s_first_error_ino));
3696 if (es->s_first_error_block)
3697 printk(KERN_CONT ": block %llu", (unsigned long long)
3698 le64_to_cpu(es->s_first_error_block));
3699 printk(KERN_CONT "\n");
3700 }
3701 if (es->s_last_error_time) {
3702 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3703 sb->s_id,
3704 ext4_get_tstamp(es, s_last_error_time),
3705 (int) sizeof(es->s_last_error_func),
3706 es->s_last_error_func,
3707 le32_to_cpu(es->s_last_error_line));
3708 if (es->s_last_error_ino)
3709 printk(KERN_CONT ": inode %u",
3710 le32_to_cpu(es->s_last_error_ino));
3711 if (es->s_last_error_block)
3712 printk(KERN_CONT ": block %llu", (unsigned long long)
3713 le64_to_cpu(es->s_last_error_block));
3714 printk(KERN_CONT "\n");
3715 }
3716 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3717 }
3718
3719 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3720 static int ext4_run_li_request(struct ext4_li_request *elr)
3721 {
3722 struct ext4_group_desc *gdp = NULL;
3723 struct super_block *sb = elr->lr_super;
3724 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3725 ext4_group_t group = elr->lr_next_group;
3726 unsigned int prefetch_ios = 0;
3727 int ret = 0;
3728 int nr = EXT4_SB(sb)->s_mb_prefetch;
3729 u64 start_time;
3730
3731 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3732 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3733 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3734 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3735 if (group >= elr->lr_next_group) {
3736 ret = 1;
3737 if (elr->lr_first_not_zeroed != ngroups &&
3738 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3739 elr->lr_next_group = elr->lr_first_not_zeroed;
3740 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3741 ret = 0;
3742 }
3743 }
3744 return ret;
3745 }
3746
3747 for (; group < ngroups; group++) {
3748 gdp = ext4_get_group_desc(sb, group, NULL);
3749 if (!gdp) {
3750 ret = 1;
3751 break;
3752 }
3753
3754 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3755 break;
3756 }
3757
3758 if (group >= ngroups)
3759 ret = 1;
3760
3761 if (!ret) {
3762 start_time = ktime_get_real_ns();
3763 ret = ext4_init_inode_table(sb, group,
3764 elr->lr_timeout ? 0 : 1);
3765 trace_ext4_lazy_itable_init(sb, group);
3766 if (elr->lr_timeout == 0) {
3767 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3768 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3769 }
3770 elr->lr_next_sched = jiffies + elr->lr_timeout;
3771 elr->lr_next_group = group + 1;
3772 }
3773 return ret;
3774 }
3775
3776 /*
3777 * Remove lr_request from the list_request and free the
3778 * request structure. Should be called with li_list_mtx held
3779 */
ext4_remove_li_request(struct ext4_li_request * elr)3780 static void ext4_remove_li_request(struct ext4_li_request *elr)
3781 {
3782 if (!elr)
3783 return;
3784
3785 list_del(&elr->lr_request);
3786 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3787 kfree(elr);
3788 }
3789
ext4_unregister_li_request(struct super_block * sb)3790 static void ext4_unregister_li_request(struct super_block *sb)
3791 {
3792 mutex_lock(&ext4_li_mtx);
3793 if (!ext4_li_info) {
3794 mutex_unlock(&ext4_li_mtx);
3795 return;
3796 }
3797
3798 mutex_lock(&ext4_li_info->li_list_mtx);
3799 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3800 mutex_unlock(&ext4_li_info->li_list_mtx);
3801 mutex_unlock(&ext4_li_mtx);
3802 }
3803
3804 static struct task_struct *ext4_lazyinit_task;
3805
3806 /*
3807 * This is the function where ext4lazyinit thread lives. It walks
3808 * through the request list searching for next scheduled filesystem.
3809 * When such a fs is found, run the lazy initialization request
3810 * (ext4_rn_li_request) and keep track of the time spend in this
3811 * function. Based on that time we compute next schedule time of
3812 * the request. When walking through the list is complete, compute
3813 * next waking time and put itself into sleep.
3814 */
ext4_lazyinit_thread(void * arg)3815 static int ext4_lazyinit_thread(void *arg)
3816 {
3817 struct ext4_lazy_init *eli = arg;
3818 struct list_head *pos, *n;
3819 struct ext4_li_request *elr;
3820 unsigned long next_wakeup, cur;
3821
3822 BUG_ON(NULL == eli);
3823 set_freezable();
3824
3825 cont_thread:
3826 while (true) {
3827 next_wakeup = MAX_JIFFY_OFFSET;
3828
3829 mutex_lock(&eli->li_list_mtx);
3830 if (list_empty(&eli->li_request_list)) {
3831 mutex_unlock(&eli->li_list_mtx);
3832 goto exit_thread;
3833 }
3834 list_for_each_safe(pos, n, &eli->li_request_list) {
3835 int err = 0;
3836 int progress = 0;
3837 elr = list_entry(pos, struct ext4_li_request,
3838 lr_request);
3839
3840 if (time_before(jiffies, elr->lr_next_sched)) {
3841 if (time_before(elr->lr_next_sched, next_wakeup))
3842 next_wakeup = elr->lr_next_sched;
3843 continue;
3844 }
3845 if (down_read_trylock(&elr->lr_super->s_umount)) {
3846 if (sb_start_write_trylock(elr->lr_super)) {
3847 progress = 1;
3848 /*
3849 * We hold sb->s_umount, sb can not
3850 * be removed from the list, it is
3851 * now safe to drop li_list_mtx
3852 */
3853 mutex_unlock(&eli->li_list_mtx);
3854 err = ext4_run_li_request(elr);
3855 sb_end_write(elr->lr_super);
3856 mutex_lock(&eli->li_list_mtx);
3857 n = pos->next;
3858 }
3859 up_read((&elr->lr_super->s_umount));
3860 }
3861 /* error, remove the lazy_init job */
3862 if (err) {
3863 ext4_remove_li_request(elr);
3864 continue;
3865 }
3866 if (!progress) {
3867 elr->lr_next_sched = jiffies +
3868 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3869 }
3870 if (time_before(elr->lr_next_sched, next_wakeup))
3871 next_wakeup = elr->lr_next_sched;
3872 }
3873 mutex_unlock(&eli->li_list_mtx);
3874
3875 try_to_freeze();
3876
3877 cur = jiffies;
3878 if ((time_after_eq(cur, next_wakeup)) ||
3879 (MAX_JIFFY_OFFSET == next_wakeup)) {
3880 cond_resched();
3881 continue;
3882 }
3883
3884 schedule_timeout_interruptible(next_wakeup - cur);
3885
3886 if (kthread_should_stop()) {
3887 ext4_clear_request_list();
3888 goto exit_thread;
3889 }
3890 }
3891
3892 exit_thread:
3893 /*
3894 * It looks like the request list is empty, but we need
3895 * to check it under the li_list_mtx lock, to prevent any
3896 * additions into it, and of course we should lock ext4_li_mtx
3897 * to atomically free the list and ext4_li_info, because at
3898 * this point another ext4 filesystem could be registering
3899 * new one.
3900 */
3901 mutex_lock(&ext4_li_mtx);
3902 mutex_lock(&eli->li_list_mtx);
3903 if (!list_empty(&eli->li_request_list)) {
3904 mutex_unlock(&eli->li_list_mtx);
3905 mutex_unlock(&ext4_li_mtx);
3906 goto cont_thread;
3907 }
3908 mutex_unlock(&eli->li_list_mtx);
3909 kfree(ext4_li_info);
3910 ext4_li_info = NULL;
3911 mutex_unlock(&ext4_li_mtx);
3912
3913 return 0;
3914 }
3915
ext4_clear_request_list(void)3916 static void ext4_clear_request_list(void)
3917 {
3918 struct list_head *pos, *n;
3919 struct ext4_li_request *elr;
3920
3921 mutex_lock(&ext4_li_info->li_list_mtx);
3922 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3923 elr = list_entry(pos, struct ext4_li_request,
3924 lr_request);
3925 ext4_remove_li_request(elr);
3926 }
3927 mutex_unlock(&ext4_li_info->li_list_mtx);
3928 }
3929
ext4_run_lazyinit_thread(void)3930 static int ext4_run_lazyinit_thread(void)
3931 {
3932 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3933 ext4_li_info, "ext4lazyinit");
3934 if (IS_ERR(ext4_lazyinit_task)) {
3935 int err = PTR_ERR(ext4_lazyinit_task);
3936 ext4_clear_request_list();
3937 kfree(ext4_li_info);
3938 ext4_li_info = NULL;
3939 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3940 "initialization thread\n",
3941 err);
3942 return err;
3943 }
3944 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3945 return 0;
3946 }
3947
3948 /*
3949 * Check whether it make sense to run itable init. thread or not.
3950 * If there is at least one uninitialized inode table, return
3951 * corresponding group number, else the loop goes through all
3952 * groups and return total number of groups.
3953 */
ext4_has_uninit_itable(struct super_block * sb)3954 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3955 {
3956 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3957 struct ext4_group_desc *gdp = NULL;
3958
3959 if (!ext4_has_group_desc_csum(sb))
3960 return ngroups;
3961
3962 for (group = 0; group < ngroups; group++) {
3963 gdp = ext4_get_group_desc(sb, group, NULL);
3964 if (!gdp)
3965 continue;
3966
3967 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3968 break;
3969 }
3970
3971 return group;
3972 }
3973
ext4_li_info_new(void)3974 static int ext4_li_info_new(void)
3975 {
3976 struct ext4_lazy_init *eli = NULL;
3977
3978 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3979 if (!eli)
3980 return -ENOMEM;
3981
3982 INIT_LIST_HEAD(&eli->li_request_list);
3983 mutex_init(&eli->li_list_mtx);
3984
3985 eli->li_state |= EXT4_LAZYINIT_QUIT;
3986
3987 ext4_li_info = eli;
3988
3989 return 0;
3990 }
3991
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3992 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3993 ext4_group_t start)
3994 {
3995 struct ext4_li_request *elr;
3996
3997 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3998 if (!elr)
3999 return NULL;
4000
4001 elr->lr_super = sb;
4002 elr->lr_first_not_zeroed = start;
4003 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
4004 elr->lr_mode = EXT4_LI_MODE_ITABLE;
4005 elr->lr_next_group = start;
4006 } else {
4007 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4008 }
4009
4010 /*
4011 * Randomize first schedule time of the request to
4012 * spread the inode table initialization requests
4013 * better.
4014 */
4015 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4016 return elr;
4017 }
4018
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4019 int ext4_register_li_request(struct super_block *sb,
4020 ext4_group_t first_not_zeroed)
4021 {
4022 struct ext4_sb_info *sbi = EXT4_SB(sb);
4023 struct ext4_li_request *elr = NULL;
4024 ext4_group_t ngroups = sbi->s_groups_count;
4025 int ret = 0;
4026
4027 mutex_lock(&ext4_li_mtx);
4028 if (sbi->s_li_request != NULL) {
4029 /*
4030 * Reset timeout so it can be computed again, because
4031 * s_li_wait_mult might have changed.
4032 */
4033 sbi->s_li_request->lr_timeout = 0;
4034 goto out;
4035 }
4036
4037 if (sb_rdonly(sb) ||
4038 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4039 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4040 goto out;
4041
4042 elr = ext4_li_request_new(sb, first_not_zeroed);
4043 if (!elr) {
4044 ret = -ENOMEM;
4045 goto out;
4046 }
4047
4048 if (NULL == ext4_li_info) {
4049 ret = ext4_li_info_new();
4050 if (ret)
4051 goto out;
4052 }
4053
4054 mutex_lock(&ext4_li_info->li_list_mtx);
4055 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4056 mutex_unlock(&ext4_li_info->li_list_mtx);
4057
4058 sbi->s_li_request = elr;
4059 /*
4060 * set elr to NULL here since it has been inserted to
4061 * the request_list and the removal and free of it is
4062 * handled by ext4_clear_request_list from now on.
4063 */
4064 elr = NULL;
4065
4066 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4067 ret = ext4_run_lazyinit_thread();
4068 if (ret)
4069 goto out;
4070 }
4071 out:
4072 mutex_unlock(&ext4_li_mtx);
4073 if (ret)
4074 kfree(elr);
4075 return ret;
4076 }
4077
4078 /*
4079 * We do not need to lock anything since this is called on
4080 * module unload.
4081 */
ext4_destroy_lazyinit_thread(void)4082 static void ext4_destroy_lazyinit_thread(void)
4083 {
4084 /*
4085 * If thread exited earlier
4086 * there's nothing to be done.
4087 */
4088 if (!ext4_li_info || !ext4_lazyinit_task)
4089 return;
4090
4091 kthread_stop(ext4_lazyinit_task);
4092 }
4093
set_journal_csum_feature_set(struct super_block * sb)4094 static int set_journal_csum_feature_set(struct super_block *sb)
4095 {
4096 int ret = 1;
4097 int compat, incompat;
4098 struct ext4_sb_info *sbi = EXT4_SB(sb);
4099
4100 if (ext4_has_metadata_csum(sb)) {
4101 /* journal checksum v3 */
4102 compat = 0;
4103 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4104 } else {
4105 /* journal checksum v1 */
4106 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4107 incompat = 0;
4108 }
4109
4110 jbd2_journal_clear_features(sbi->s_journal,
4111 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4112 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4113 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4114 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4115 ret = jbd2_journal_set_features(sbi->s_journal,
4116 compat, 0,
4117 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4118 incompat);
4119 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4120 ret = jbd2_journal_set_features(sbi->s_journal,
4121 compat, 0,
4122 incompat);
4123 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4124 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4125 } else {
4126 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4127 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4128 }
4129
4130 return ret;
4131 }
4132
4133 /*
4134 * Note: calculating the overhead so we can be compatible with
4135 * historical BSD practice is quite difficult in the face of
4136 * clusters/bigalloc. This is because multiple metadata blocks from
4137 * different block group can end up in the same allocation cluster.
4138 * Calculating the exact overhead in the face of clustered allocation
4139 * requires either O(all block bitmaps) in memory or O(number of block
4140 * groups**2) in time. We will still calculate the superblock for
4141 * older file systems --- and if we come across with a bigalloc file
4142 * system with zero in s_overhead_clusters the estimate will be close to
4143 * correct especially for very large cluster sizes --- but for newer
4144 * file systems, it's better to calculate this figure once at mkfs
4145 * time, and store it in the superblock. If the superblock value is
4146 * present (even for non-bigalloc file systems), we will use it.
4147 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4148 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4149 char *buf)
4150 {
4151 struct ext4_sb_info *sbi = EXT4_SB(sb);
4152 struct ext4_group_desc *gdp;
4153 ext4_fsblk_t first_block, last_block, b;
4154 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4155 int s, j, count = 0;
4156 int has_super = ext4_bg_has_super(sb, grp);
4157
4158 if (!ext4_has_feature_bigalloc(sb))
4159 return (has_super + ext4_bg_num_gdb(sb, grp) +
4160 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4161 sbi->s_itb_per_group + 2);
4162
4163 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4164 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4165 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4166 for (i = 0; i < ngroups; i++) {
4167 gdp = ext4_get_group_desc(sb, i, NULL);
4168 b = ext4_block_bitmap(sb, gdp);
4169 if (b >= first_block && b <= last_block) {
4170 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4171 count++;
4172 }
4173 b = ext4_inode_bitmap(sb, gdp);
4174 if (b >= first_block && b <= last_block) {
4175 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4176 count++;
4177 }
4178 b = ext4_inode_table(sb, gdp);
4179 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4180 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4181 int c = EXT4_B2C(sbi, b - first_block);
4182 ext4_set_bit(c, buf);
4183 count++;
4184 }
4185 if (i != grp)
4186 continue;
4187 s = 0;
4188 if (ext4_bg_has_super(sb, grp)) {
4189 ext4_set_bit(s++, buf);
4190 count++;
4191 }
4192 j = ext4_bg_num_gdb(sb, grp);
4193 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4194 ext4_error(sb, "Invalid number of block group "
4195 "descriptor blocks: %d", j);
4196 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4197 }
4198 count += j;
4199 for (; j > 0; j--)
4200 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4201 }
4202 if (!count)
4203 return 0;
4204 return EXT4_CLUSTERS_PER_GROUP(sb) -
4205 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4206 }
4207
4208 /*
4209 * Compute the overhead and stash it in sbi->s_overhead
4210 */
ext4_calculate_overhead(struct super_block * sb)4211 int ext4_calculate_overhead(struct super_block *sb)
4212 {
4213 struct ext4_sb_info *sbi = EXT4_SB(sb);
4214 struct ext4_super_block *es = sbi->s_es;
4215 struct inode *j_inode;
4216 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4217 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4218 ext4_fsblk_t overhead = 0;
4219 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4220
4221 if (!buf)
4222 return -ENOMEM;
4223
4224 /*
4225 * Compute the overhead (FS structures). This is constant
4226 * for a given filesystem unless the number of block groups
4227 * changes so we cache the previous value until it does.
4228 */
4229
4230 /*
4231 * All of the blocks before first_data_block are overhead
4232 */
4233 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4234
4235 /*
4236 * Add the overhead found in each block group
4237 */
4238 for (i = 0; i < ngroups; i++) {
4239 int blks;
4240
4241 blks = count_overhead(sb, i, buf);
4242 overhead += blks;
4243 if (blks)
4244 memset(buf, 0, PAGE_SIZE);
4245 cond_resched();
4246 }
4247
4248 /*
4249 * Add the internal journal blocks whether the journal has been
4250 * loaded or not
4251 */
4252 if (sbi->s_journal && !sbi->s_journal_bdev)
4253 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4254 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4255 /* j_inum for internal journal is non-zero */
4256 j_inode = ext4_get_journal_inode(sb, j_inum);
4257 if (!IS_ERR(j_inode)) {
4258 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4259 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4260 iput(j_inode);
4261 } else {
4262 ext4_msg(sb, KERN_ERR, "can't get journal size");
4263 }
4264 }
4265 sbi->s_overhead = overhead;
4266 smp_wmb();
4267 free_page((unsigned long) buf);
4268 return 0;
4269 }
4270
ext4_set_resv_clusters(struct super_block * sb)4271 static void ext4_set_resv_clusters(struct super_block *sb)
4272 {
4273 ext4_fsblk_t resv_clusters;
4274 struct ext4_sb_info *sbi = EXT4_SB(sb);
4275
4276 /*
4277 * There's no need to reserve anything when we aren't using extents.
4278 * The space estimates are exact, there are no unwritten extents,
4279 * hole punching doesn't need new metadata... This is needed especially
4280 * to keep ext2/3 backward compatibility.
4281 */
4282 if (!ext4_has_feature_extents(sb))
4283 return;
4284 /*
4285 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4286 * This should cover the situations where we can not afford to run
4287 * out of space like for example punch hole, or converting
4288 * unwritten extents in delalloc path. In most cases such
4289 * allocation would require 1, or 2 blocks, higher numbers are
4290 * very rare.
4291 */
4292 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4293 sbi->s_cluster_bits);
4294
4295 do_div(resv_clusters, 50);
4296 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4297
4298 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4299 }
4300
ext4_quota_mode(struct super_block * sb)4301 static const char *ext4_quota_mode(struct super_block *sb)
4302 {
4303 #ifdef CONFIG_QUOTA
4304 if (!ext4_quota_capable(sb))
4305 return "none";
4306
4307 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4308 return "journalled";
4309 else
4310 return "writeback";
4311 #else
4312 return "disabled";
4313 #endif
4314 }
4315
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4316 static void ext4_setup_csum_trigger(struct super_block *sb,
4317 enum ext4_journal_trigger_type type,
4318 void (*trigger)(
4319 struct jbd2_buffer_trigger_type *type,
4320 struct buffer_head *bh,
4321 void *mapped_data,
4322 size_t size))
4323 {
4324 struct ext4_sb_info *sbi = EXT4_SB(sb);
4325
4326 sbi->s_journal_triggers[type].sb = sb;
4327 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4328 }
4329
ext4_free_sbi(struct ext4_sb_info * sbi)4330 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4331 {
4332 if (!sbi)
4333 return;
4334
4335 kfree(sbi->s_blockgroup_lock);
4336 fs_put_dax(sbi->s_daxdev, NULL);
4337 kfree(sbi);
4338 }
4339
ext4_alloc_sbi(struct super_block * sb)4340 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4341 {
4342 struct ext4_sb_info *sbi;
4343
4344 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4345 if (!sbi)
4346 return NULL;
4347
4348 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4349 NULL, NULL);
4350
4351 sbi->s_blockgroup_lock =
4352 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4353
4354 if (!sbi->s_blockgroup_lock)
4355 goto err_out;
4356
4357 sb->s_fs_info = sbi;
4358 sbi->s_sb = sb;
4359 return sbi;
4360 err_out:
4361 fs_put_dax(sbi->s_daxdev, NULL);
4362 kfree(sbi);
4363 return NULL;
4364 }
4365
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4366 static void ext4_set_def_opts(struct super_block *sb,
4367 struct ext4_super_block *es)
4368 {
4369 unsigned long def_mount_opts;
4370
4371 /* Set defaults before we parse the mount options */
4372 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4373 set_opt(sb, INIT_INODE_TABLE);
4374 if (def_mount_opts & EXT4_DEFM_DEBUG)
4375 set_opt(sb, DEBUG);
4376 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4377 set_opt(sb, GRPID);
4378 if (def_mount_opts & EXT4_DEFM_UID16)
4379 set_opt(sb, NO_UID32);
4380 /* xattr user namespace & acls are now defaulted on */
4381 set_opt(sb, XATTR_USER);
4382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4383 set_opt(sb, POSIX_ACL);
4384 #endif
4385 if (ext4_has_feature_fast_commit(sb))
4386 set_opt2(sb, JOURNAL_FAST_COMMIT);
4387 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4388 if (ext4_has_metadata_csum(sb))
4389 set_opt(sb, JOURNAL_CHECKSUM);
4390
4391 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4392 set_opt(sb, JOURNAL_DATA);
4393 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4394 set_opt(sb, ORDERED_DATA);
4395 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4396 set_opt(sb, WRITEBACK_DATA);
4397
4398 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4399 set_opt(sb, ERRORS_PANIC);
4400 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4401 set_opt(sb, ERRORS_CONT);
4402 else
4403 set_opt(sb, ERRORS_RO);
4404 /* block_validity enabled by default; disable with noblock_validity */
4405 set_opt(sb, BLOCK_VALIDITY);
4406 if (def_mount_opts & EXT4_DEFM_DISCARD)
4407 set_opt(sb, DISCARD);
4408
4409 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4410 set_opt(sb, BARRIER);
4411
4412 /*
4413 * enable delayed allocation by default
4414 * Use -o nodelalloc to turn it off
4415 */
4416 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4417 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4418 set_opt(sb, DELALLOC);
4419
4420 if (sb->s_blocksize == PAGE_SIZE)
4421 set_opt(sb, DIOREAD_NOLOCK);
4422 }
4423
ext4_handle_clustersize(struct super_block * sb)4424 static int ext4_handle_clustersize(struct super_block *sb)
4425 {
4426 struct ext4_sb_info *sbi = EXT4_SB(sb);
4427 struct ext4_super_block *es = sbi->s_es;
4428 int clustersize;
4429
4430 /* Handle clustersize */
4431 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4432 if (ext4_has_feature_bigalloc(sb)) {
4433 if (clustersize < sb->s_blocksize) {
4434 ext4_msg(sb, KERN_ERR,
4435 "cluster size (%d) smaller than "
4436 "block size (%lu)", clustersize, sb->s_blocksize);
4437 return -EINVAL;
4438 }
4439 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4440 le32_to_cpu(es->s_log_block_size);
4441 sbi->s_clusters_per_group =
4442 le32_to_cpu(es->s_clusters_per_group);
4443 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4444 ext4_msg(sb, KERN_ERR,
4445 "#clusters per group too big: %lu",
4446 sbi->s_clusters_per_group);
4447 return -EINVAL;
4448 }
4449 if (sbi->s_blocks_per_group !=
4450 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4451 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4452 "clusters per group (%lu) inconsistent",
4453 sbi->s_blocks_per_group,
4454 sbi->s_clusters_per_group);
4455 return -EINVAL;
4456 }
4457 } else {
4458 if (clustersize != sb->s_blocksize) {
4459 ext4_msg(sb, KERN_ERR,
4460 "fragment/cluster size (%d) != "
4461 "block size (%lu)", clustersize, sb->s_blocksize);
4462 return -EINVAL;
4463 }
4464 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4465 ext4_msg(sb, KERN_ERR,
4466 "#blocks per group too big: %lu",
4467 sbi->s_blocks_per_group);
4468 return -EINVAL;
4469 }
4470 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4471 sbi->s_cluster_bits = 0;
4472 }
4473 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4474
4475 /* Do we have standard group size of clustersize * 8 blocks ? */
4476 if (sbi->s_blocks_per_group == clustersize << 3)
4477 set_opt2(sb, STD_GROUP_SIZE);
4478
4479 return 0;
4480 }
4481
ext4_fast_commit_init(struct super_block * sb)4482 static void ext4_fast_commit_init(struct super_block *sb)
4483 {
4484 struct ext4_sb_info *sbi = EXT4_SB(sb);
4485
4486 /* Initialize fast commit stuff */
4487 atomic_set(&sbi->s_fc_subtid, 0);
4488 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4489 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4490 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4491 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4492 sbi->s_fc_bytes = 0;
4493 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4494 sbi->s_fc_ineligible_tid = 0;
4495 spin_lock_init(&sbi->s_fc_lock);
4496 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4497 sbi->s_fc_replay_state.fc_regions = NULL;
4498 sbi->s_fc_replay_state.fc_regions_size = 0;
4499 sbi->s_fc_replay_state.fc_regions_used = 0;
4500 sbi->s_fc_replay_state.fc_regions_valid = 0;
4501 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4502 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4503 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4504 }
4505
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4506 static int ext4_inode_info_init(struct super_block *sb,
4507 struct ext4_super_block *es)
4508 {
4509 struct ext4_sb_info *sbi = EXT4_SB(sb);
4510
4511 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4512 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4513 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4514 } else {
4515 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4516 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4517 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4518 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4519 sbi->s_first_ino);
4520 return -EINVAL;
4521 }
4522 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4523 (!is_power_of_2(sbi->s_inode_size)) ||
4524 (sbi->s_inode_size > sb->s_blocksize)) {
4525 ext4_msg(sb, KERN_ERR,
4526 "unsupported inode size: %d",
4527 sbi->s_inode_size);
4528 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4529 return -EINVAL;
4530 }
4531 /*
4532 * i_atime_extra is the last extra field available for
4533 * [acm]times in struct ext4_inode. Checking for that
4534 * field should suffice to ensure we have extra space
4535 * for all three.
4536 */
4537 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4538 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4539 sb->s_time_gran = 1;
4540 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4541 } else {
4542 sb->s_time_gran = NSEC_PER_SEC;
4543 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4544 }
4545 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4546 }
4547
4548 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4549 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4550 EXT4_GOOD_OLD_INODE_SIZE;
4551 if (ext4_has_feature_extra_isize(sb)) {
4552 unsigned v, max = (sbi->s_inode_size -
4553 EXT4_GOOD_OLD_INODE_SIZE);
4554
4555 v = le16_to_cpu(es->s_want_extra_isize);
4556 if (v > max) {
4557 ext4_msg(sb, KERN_ERR,
4558 "bad s_want_extra_isize: %d", v);
4559 return -EINVAL;
4560 }
4561 if (sbi->s_want_extra_isize < v)
4562 sbi->s_want_extra_isize = v;
4563
4564 v = le16_to_cpu(es->s_min_extra_isize);
4565 if (v > max) {
4566 ext4_msg(sb, KERN_ERR,
4567 "bad s_min_extra_isize: %d", v);
4568 return -EINVAL;
4569 }
4570 if (sbi->s_want_extra_isize < v)
4571 sbi->s_want_extra_isize = v;
4572 }
4573 }
4574
4575 return 0;
4576 }
4577
4578 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4579 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4580 {
4581 const struct ext4_sb_encodings *encoding_info;
4582 struct unicode_map *encoding;
4583 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4584
4585 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4586 return 0;
4587
4588 encoding_info = ext4_sb_read_encoding(es);
4589 if (!encoding_info) {
4590 ext4_msg(sb, KERN_ERR,
4591 "Encoding requested by superblock is unknown");
4592 return -EINVAL;
4593 }
4594
4595 encoding = utf8_load(encoding_info->version);
4596 if (IS_ERR(encoding)) {
4597 ext4_msg(sb, KERN_ERR,
4598 "can't mount with superblock charset: %s-%u.%u.%u "
4599 "not supported by the kernel. flags: 0x%x.",
4600 encoding_info->name,
4601 unicode_major(encoding_info->version),
4602 unicode_minor(encoding_info->version),
4603 unicode_rev(encoding_info->version),
4604 encoding_flags);
4605 return -EINVAL;
4606 }
4607 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4608 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4609 unicode_major(encoding_info->version),
4610 unicode_minor(encoding_info->version),
4611 unicode_rev(encoding_info->version),
4612 encoding_flags);
4613
4614 sb->s_encoding = encoding;
4615 sb->s_encoding_flags = encoding_flags;
4616
4617 return 0;
4618 }
4619 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4620 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4621 {
4622 return 0;
4623 }
4624 #endif
4625
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4626 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4627 {
4628 struct ext4_sb_info *sbi = EXT4_SB(sb);
4629
4630 /* Warn if metadata_csum and gdt_csum are both set. */
4631 if (ext4_has_feature_metadata_csum(sb) &&
4632 ext4_has_feature_gdt_csum(sb))
4633 ext4_warning(sb, "metadata_csum and uninit_bg are "
4634 "redundant flags; please run fsck.");
4635
4636 /* Check for a known checksum algorithm */
4637 if (!ext4_verify_csum_type(sb, es)) {
4638 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4639 "unknown checksum algorithm.");
4640 return -EINVAL;
4641 }
4642 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4643 ext4_orphan_file_block_trigger);
4644
4645 /* Load the checksum driver */
4646 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4647 if (IS_ERR(sbi->s_chksum_driver)) {
4648 int ret = PTR_ERR(sbi->s_chksum_driver);
4649 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4650 sbi->s_chksum_driver = NULL;
4651 return ret;
4652 }
4653
4654 /* Check superblock checksum */
4655 if (!ext4_superblock_csum_verify(sb, es)) {
4656 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4657 "invalid superblock checksum. Run e2fsck?");
4658 return -EFSBADCRC;
4659 }
4660
4661 /* Precompute checksum seed for all metadata */
4662 if (ext4_has_feature_csum_seed(sb))
4663 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4664 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4665 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4666 sizeof(es->s_uuid));
4667 return 0;
4668 }
4669
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4670 static int ext4_check_feature_compatibility(struct super_block *sb,
4671 struct ext4_super_block *es,
4672 int silent)
4673 {
4674 struct ext4_sb_info *sbi = EXT4_SB(sb);
4675
4676 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4677 (ext4_has_compat_features(sb) ||
4678 ext4_has_ro_compat_features(sb) ||
4679 ext4_has_incompat_features(sb)))
4680 ext4_msg(sb, KERN_WARNING,
4681 "feature flags set on rev 0 fs, "
4682 "running e2fsck is recommended");
4683
4684 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4685 set_opt2(sb, HURD_COMPAT);
4686 if (ext4_has_feature_64bit(sb)) {
4687 ext4_msg(sb, KERN_ERR,
4688 "The Hurd can't support 64-bit file systems");
4689 return -EINVAL;
4690 }
4691
4692 /*
4693 * ea_inode feature uses l_i_version field which is not
4694 * available in HURD_COMPAT mode.
4695 */
4696 if (ext4_has_feature_ea_inode(sb)) {
4697 ext4_msg(sb, KERN_ERR,
4698 "ea_inode feature is not supported for Hurd");
4699 return -EINVAL;
4700 }
4701 }
4702
4703 if (IS_EXT2_SB(sb)) {
4704 if (ext2_feature_set_ok(sb))
4705 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4706 "using the ext4 subsystem");
4707 else {
4708 /*
4709 * If we're probing be silent, if this looks like
4710 * it's actually an ext[34] filesystem.
4711 */
4712 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4713 return -EINVAL;
4714 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4715 "to feature incompatibilities");
4716 return -EINVAL;
4717 }
4718 }
4719
4720 if (IS_EXT3_SB(sb)) {
4721 if (ext3_feature_set_ok(sb))
4722 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4723 "using the ext4 subsystem");
4724 else {
4725 /*
4726 * If we're probing be silent, if this looks like
4727 * it's actually an ext4 filesystem.
4728 */
4729 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4730 return -EINVAL;
4731 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4732 "to feature incompatibilities");
4733 return -EINVAL;
4734 }
4735 }
4736
4737 /*
4738 * Check feature flags regardless of the revision level, since we
4739 * previously didn't change the revision level when setting the flags,
4740 * so there is a chance incompat flags are set on a rev 0 filesystem.
4741 */
4742 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4743 return -EINVAL;
4744
4745 if (sbi->s_daxdev) {
4746 if (sb->s_blocksize == PAGE_SIZE)
4747 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4748 else
4749 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4750 }
4751
4752 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4753 if (ext4_has_feature_inline_data(sb)) {
4754 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4755 " that may contain inline data");
4756 return -EINVAL;
4757 }
4758 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4759 ext4_msg(sb, KERN_ERR,
4760 "DAX unsupported by block device.");
4761 return -EINVAL;
4762 }
4763 }
4764
4765 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4766 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4767 es->s_encryption_level);
4768 return -EINVAL;
4769 }
4770
4771 return 0;
4772 }
4773
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4774 static int ext4_check_geometry(struct super_block *sb,
4775 struct ext4_super_block *es)
4776 {
4777 struct ext4_sb_info *sbi = EXT4_SB(sb);
4778 __u64 blocks_count;
4779 int err;
4780
4781 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4782 ext4_msg(sb, KERN_ERR,
4783 "Number of reserved GDT blocks insanely large: %d",
4784 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4785 return -EINVAL;
4786 }
4787 /*
4788 * Test whether we have more sectors than will fit in sector_t,
4789 * and whether the max offset is addressable by the page cache.
4790 */
4791 err = generic_check_addressable(sb->s_blocksize_bits,
4792 ext4_blocks_count(es));
4793 if (err) {
4794 ext4_msg(sb, KERN_ERR, "filesystem"
4795 " too large to mount safely on this system");
4796 return err;
4797 }
4798
4799 /* check blocks count against device size */
4800 blocks_count = sb_bdev_nr_blocks(sb);
4801 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4802 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4803 "exceeds size of device (%llu blocks)",
4804 ext4_blocks_count(es), blocks_count);
4805 return -EINVAL;
4806 }
4807
4808 /*
4809 * It makes no sense for the first data block to be beyond the end
4810 * of the filesystem.
4811 */
4812 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4813 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4814 "block %u is beyond end of filesystem (%llu)",
4815 le32_to_cpu(es->s_first_data_block),
4816 ext4_blocks_count(es));
4817 return -EINVAL;
4818 }
4819 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4820 (sbi->s_cluster_ratio == 1)) {
4821 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4822 "block is 0 with a 1k block and cluster size");
4823 return -EINVAL;
4824 }
4825
4826 blocks_count = (ext4_blocks_count(es) -
4827 le32_to_cpu(es->s_first_data_block) +
4828 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4829 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4830 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4831 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4832 "(block count %llu, first data block %u, "
4833 "blocks per group %lu)", blocks_count,
4834 ext4_blocks_count(es),
4835 le32_to_cpu(es->s_first_data_block),
4836 EXT4_BLOCKS_PER_GROUP(sb));
4837 return -EINVAL;
4838 }
4839 sbi->s_groups_count = blocks_count;
4840 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4841 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4842 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4843 le32_to_cpu(es->s_inodes_count)) {
4844 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4845 le32_to_cpu(es->s_inodes_count),
4846 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4847 return -EINVAL;
4848 }
4849
4850 return 0;
4851 }
4852
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4853 static int ext4_group_desc_init(struct super_block *sb,
4854 struct ext4_super_block *es,
4855 ext4_fsblk_t logical_sb_block,
4856 ext4_group_t *first_not_zeroed)
4857 {
4858 struct ext4_sb_info *sbi = EXT4_SB(sb);
4859 unsigned int db_count;
4860 ext4_fsblk_t block;
4861 int i;
4862
4863 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4864 EXT4_DESC_PER_BLOCK(sb);
4865 if (ext4_has_feature_meta_bg(sb)) {
4866 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4867 ext4_msg(sb, KERN_WARNING,
4868 "first meta block group too large: %u "
4869 "(group descriptor block count %u)",
4870 le32_to_cpu(es->s_first_meta_bg), db_count);
4871 return -EINVAL;
4872 }
4873 }
4874 rcu_assign_pointer(sbi->s_group_desc,
4875 kvmalloc_array(db_count,
4876 sizeof(struct buffer_head *),
4877 GFP_KERNEL));
4878 if (sbi->s_group_desc == NULL) {
4879 ext4_msg(sb, KERN_ERR, "not enough memory");
4880 return -ENOMEM;
4881 }
4882
4883 bgl_lock_init(sbi->s_blockgroup_lock);
4884
4885 /* Pre-read the descriptors into the buffer cache */
4886 for (i = 0; i < db_count; i++) {
4887 block = descriptor_loc(sb, logical_sb_block, i);
4888 ext4_sb_breadahead_unmovable(sb, block);
4889 }
4890
4891 for (i = 0; i < db_count; i++) {
4892 struct buffer_head *bh;
4893
4894 block = descriptor_loc(sb, logical_sb_block, i);
4895 bh = ext4_sb_bread_unmovable(sb, block);
4896 if (IS_ERR(bh)) {
4897 ext4_msg(sb, KERN_ERR,
4898 "can't read group descriptor %d", i);
4899 sbi->s_gdb_count = i;
4900 return PTR_ERR(bh);
4901 }
4902 rcu_read_lock();
4903 rcu_dereference(sbi->s_group_desc)[i] = bh;
4904 rcu_read_unlock();
4905 }
4906 sbi->s_gdb_count = db_count;
4907 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4908 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4909 return -EFSCORRUPTED;
4910 }
4911
4912 return 0;
4913 }
4914
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4915 static int ext4_load_and_init_journal(struct super_block *sb,
4916 struct ext4_super_block *es,
4917 struct ext4_fs_context *ctx)
4918 {
4919 struct ext4_sb_info *sbi = EXT4_SB(sb);
4920 int err;
4921
4922 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4923 if (err)
4924 return err;
4925
4926 if (ext4_has_feature_64bit(sb) &&
4927 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4928 JBD2_FEATURE_INCOMPAT_64BIT)) {
4929 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4930 goto out;
4931 }
4932
4933 if (!set_journal_csum_feature_set(sb)) {
4934 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4935 "feature set");
4936 goto out;
4937 }
4938
4939 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4940 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4941 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4942 ext4_msg(sb, KERN_ERR,
4943 "Failed to set fast commit journal feature");
4944 goto out;
4945 }
4946
4947 /* We have now updated the journal if required, so we can
4948 * validate the data journaling mode. */
4949 switch (test_opt(sb, DATA_FLAGS)) {
4950 case 0:
4951 /* No mode set, assume a default based on the journal
4952 * capabilities: ORDERED_DATA if the journal can
4953 * cope, else JOURNAL_DATA
4954 */
4955 if (jbd2_journal_check_available_features
4956 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4957 set_opt(sb, ORDERED_DATA);
4958 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4959 } else {
4960 set_opt(sb, JOURNAL_DATA);
4961 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4962 }
4963 break;
4964
4965 case EXT4_MOUNT_ORDERED_DATA:
4966 case EXT4_MOUNT_WRITEBACK_DATA:
4967 if (!jbd2_journal_check_available_features
4968 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4969 ext4_msg(sb, KERN_ERR, "Journal does not support "
4970 "requested data journaling mode");
4971 goto out;
4972 }
4973 break;
4974 default:
4975 break;
4976 }
4977
4978 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4979 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4980 ext4_msg(sb, KERN_ERR, "can't mount with "
4981 "journal_async_commit in data=ordered mode");
4982 goto out;
4983 }
4984
4985 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4986
4987 sbi->s_journal->j_submit_inode_data_buffers =
4988 ext4_journal_submit_inode_data_buffers;
4989 sbi->s_journal->j_finish_inode_data_buffers =
4990 ext4_journal_finish_inode_data_buffers;
4991
4992 return 0;
4993
4994 out:
4995 /* flush s_sb_upd_work before destroying the journal. */
4996 flush_work(&sbi->s_sb_upd_work);
4997 jbd2_journal_destroy(sbi->s_journal);
4998 sbi->s_journal = NULL;
4999 return -EINVAL;
5000 }
5001
ext4_check_journal_data_mode(struct super_block * sb)5002 static int ext4_check_journal_data_mode(struct super_block *sb)
5003 {
5004 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5005 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
5006 "data=journal disables delayed allocation, "
5007 "dioread_nolock, O_DIRECT and fast_commit support!\n");
5008 /* can't mount with both data=journal and dioread_nolock. */
5009 clear_opt(sb, DIOREAD_NOLOCK);
5010 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5011 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5012 ext4_msg(sb, KERN_ERR, "can't mount with "
5013 "both data=journal and delalloc");
5014 return -EINVAL;
5015 }
5016 if (test_opt(sb, DAX_ALWAYS)) {
5017 ext4_msg(sb, KERN_ERR, "can't mount with "
5018 "both data=journal and dax");
5019 return -EINVAL;
5020 }
5021 if (ext4_has_feature_encrypt(sb)) {
5022 ext4_msg(sb, KERN_WARNING,
5023 "encrypted files will use data=ordered "
5024 "instead of data journaling mode");
5025 }
5026 if (test_opt(sb, DELALLOC))
5027 clear_opt(sb, DELALLOC);
5028 } else {
5029 sb->s_iflags |= SB_I_CGROUPWB;
5030 }
5031
5032 return 0;
5033 }
5034
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5035 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5036 int silent)
5037 {
5038 struct ext4_sb_info *sbi = EXT4_SB(sb);
5039 struct ext4_super_block *es;
5040 ext4_fsblk_t logical_sb_block;
5041 unsigned long offset = 0;
5042 struct buffer_head *bh;
5043 int ret = -EINVAL;
5044 int blocksize;
5045
5046 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5047 if (!blocksize) {
5048 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5049 return -EINVAL;
5050 }
5051
5052 /*
5053 * The ext4 superblock will not be buffer aligned for other than 1kB
5054 * block sizes. We need to calculate the offset from buffer start.
5055 */
5056 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5057 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5058 offset = do_div(logical_sb_block, blocksize);
5059 } else {
5060 logical_sb_block = sbi->s_sb_block;
5061 }
5062
5063 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5064 if (IS_ERR(bh)) {
5065 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5066 return PTR_ERR(bh);
5067 }
5068 /*
5069 * Note: s_es must be initialized as soon as possible because
5070 * some ext4 macro-instructions depend on its value
5071 */
5072 es = (struct ext4_super_block *) (bh->b_data + offset);
5073 sbi->s_es = es;
5074 sb->s_magic = le16_to_cpu(es->s_magic);
5075 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5076 if (!silent)
5077 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5078 goto out;
5079 }
5080
5081 if (le32_to_cpu(es->s_log_block_size) >
5082 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5083 ext4_msg(sb, KERN_ERR,
5084 "Invalid log block size: %u",
5085 le32_to_cpu(es->s_log_block_size));
5086 goto out;
5087 }
5088 if (le32_to_cpu(es->s_log_cluster_size) >
5089 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5090 ext4_msg(sb, KERN_ERR,
5091 "Invalid log cluster size: %u",
5092 le32_to_cpu(es->s_log_cluster_size));
5093 goto out;
5094 }
5095
5096 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5097
5098 /*
5099 * If the default block size is not the same as the real block size,
5100 * we need to reload it.
5101 */
5102 if (sb->s_blocksize == blocksize) {
5103 *lsb = logical_sb_block;
5104 sbi->s_sbh = bh;
5105 return 0;
5106 }
5107
5108 /*
5109 * bh must be released before kill_bdev(), otherwise
5110 * it won't be freed and its page also. kill_bdev()
5111 * is called by sb_set_blocksize().
5112 */
5113 brelse(bh);
5114 /* Validate the filesystem blocksize */
5115 if (!sb_set_blocksize(sb, blocksize)) {
5116 ext4_msg(sb, KERN_ERR, "bad block size %d",
5117 blocksize);
5118 bh = NULL;
5119 goto out;
5120 }
5121
5122 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5123 offset = do_div(logical_sb_block, blocksize);
5124 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5125 if (IS_ERR(bh)) {
5126 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5127 ret = PTR_ERR(bh);
5128 bh = NULL;
5129 goto out;
5130 }
5131 es = (struct ext4_super_block *)(bh->b_data + offset);
5132 sbi->s_es = es;
5133 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5134 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5135 goto out;
5136 }
5137 *lsb = logical_sb_block;
5138 sbi->s_sbh = bh;
5139 return 0;
5140 out:
5141 brelse(bh);
5142 return ret;
5143 }
5144
ext4_hash_info_init(struct super_block * sb)5145 static void ext4_hash_info_init(struct super_block *sb)
5146 {
5147 struct ext4_sb_info *sbi = EXT4_SB(sb);
5148 struct ext4_super_block *es = sbi->s_es;
5149 unsigned int i;
5150
5151 for (i = 0; i < 4; i++)
5152 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5153
5154 sbi->s_def_hash_version = es->s_def_hash_version;
5155 if (ext4_has_feature_dir_index(sb)) {
5156 i = le32_to_cpu(es->s_flags);
5157 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5158 sbi->s_hash_unsigned = 3;
5159 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5160 #ifdef __CHAR_UNSIGNED__
5161 if (!sb_rdonly(sb))
5162 es->s_flags |=
5163 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5164 sbi->s_hash_unsigned = 3;
5165 #else
5166 if (!sb_rdonly(sb))
5167 es->s_flags |=
5168 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5169 #endif
5170 }
5171 }
5172 }
5173
ext4_block_group_meta_init(struct super_block * sb,int silent)5174 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5175 {
5176 struct ext4_sb_info *sbi = EXT4_SB(sb);
5177 struct ext4_super_block *es = sbi->s_es;
5178 int has_huge_files;
5179
5180 has_huge_files = ext4_has_feature_huge_file(sb);
5181 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5182 has_huge_files);
5183 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5184
5185 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5186 if (ext4_has_feature_64bit(sb)) {
5187 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5188 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5189 !is_power_of_2(sbi->s_desc_size)) {
5190 ext4_msg(sb, KERN_ERR,
5191 "unsupported descriptor size %lu",
5192 sbi->s_desc_size);
5193 return -EINVAL;
5194 }
5195 } else
5196 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5197
5198 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5199 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5200
5201 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5202 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5203 if (!silent)
5204 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5205 return -EINVAL;
5206 }
5207 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5208 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5209 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5210 sbi->s_inodes_per_group);
5211 return -EINVAL;
5212 }
5213 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5214 sbi->s_inodes_per_block;
5215 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5216 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5217 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5218 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5219
5220 return 0;
5221 }
5222
5223 /*
5224 * It's hard to get stripe aligned blocks if stripe is not aligned with
5225 * cluster, just disable stripe and alert user to simplify code and avoid
5226 * stripe aligned allocation which will rarely succeed.
5227 */
ext4_is_stripe_incompatible(struct super_block * sb,unsigned long stripe)5228 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5229 {
5230 struct ext4_sb_info *sbi = EXT4_SB(sb);
5231 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5232 stripe % sbi->s_cluster_ratio != 0);
5233 }
5234
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5235 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5236 {
5237 struct ext4_super_block *es = NULL;
5238 struct ext4_sb_info *sbi = EXT4_SB(sb);
5239 ext4_fsblk_t logical_sb_block;
5240 struct inode *root;
5241 int needs_recovery;
5242 int err;
5243 ext4_group_t first_not_zeroed;
5244 struct ext4_fs_context *ctx = fc->fs_private;
5245 int silent = fc->sb_flags & SB_SILENT;
5246
5247 /* Set defaults for the variables that will be set during parsing */
5248 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5249 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5250
5251 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5252 sbi->s_sectors_written_start =
5253 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5254
5255 err = ext4_load_super(sb, &logical_sb_block, silent);
5256 if (err)
5257 goto out_fail;
5258
5259 es = sbi->s_es;
5260 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5261
5262 err = ext4_init_metadata_csum(sb, es);
5263 if (err)
5264 goto failed_mount;
5265
5266 ext4_set_def_opts(sb, es);
5267
5268 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5269 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5270 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5271 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5272 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5273
5274 /*
5275 * set default s_li_wait_mult for lazyinit, for the case there is
5276 * no mount option specified.
5277 */
5278 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5279
5280 err = ext4_inode_info_init(sb, es);
5281 if (err)
5282 goto failed_mount;
5283
5284 err = parse_apply_sb_mount_options(sb, ctx);
5285 if (err < 0)
5286 goto failed_mount;
5287
5288 sbi->s_def_mount_opt = sbi->s_mount_opt;
5289 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5290
5291 err = ext4_check_opt_consistency(fc, sb);
5292 if (err < 0)
5293 goto failed_mount;
5294
5295 ext4_apply_options(fc, sb);
5296
5297 err = ext4_encoding_init(sb, es);
5298 if (err)
5299 goto failed_mount;
5300
5301 err = ext4_check_journal_data_mode(sb);
5302 if (err)
5303 goto failed_mount;
5304
5305 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5306 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5307
5308 /* i_version is always enabled now */
5309 sb->s_flags |= SB_I_VERSION;
5310
5311 err = ext4_check_feature_compatibility(sb, es, silent);
5312 if (err)
5313 goto failed_mount;
5314
5315 err = ext4_block_group_meta_init(sb, silent);
5316 if (err)
5317 goto failed_mount;
5318
5319 ext4_hash_info_init(sb);
5320
5321 err = ext4_handle_clustersize(sb);
5322 if (err)
5323 goto failed_mount;
5324
5325 err = ext4_check_geometry(sb, es);
5326 if (err)
5327 goto failed_mount;
5328
5329 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5330 spin_lock_init(&sbi->s_error_lock);
5331 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5332
5333 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5334 if (err)
5335 goto failed_mount3;
5336
5337 err = ext4_es_register_shrinker(sbi);
5338 if (err)
5339 goto failed_mount3;
5340
5341 sbi->s_stripe = ext4_get_stripe_size(sbi);
5342 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5343 ext4_msg(sb, KERN_WARNING,
5344 "stripe (%lu) is not aligned with cluster size (%u), "
5345 "stripe is disabled",
5346 sbi->s_stripe, sbi->s_cluster_ratio);
5347 sbi->s_stripe = 0;
5348 }
5349 sbi->s_extent_max_zeroout_kb = 32;
5350
5351 /*
5352 * set up enough so that it can read an inode
5353 */
5354 sb->s_op = &ext4_sops;
5355 sb->s_export_op = &ext4_export_ops;
5356 sb->s_xattr = ext4_xattr_handlers;
5357 #ifdef CONFIG_FS_ENCRYPTION
5358 sb->s_cop = &ext4_cryptops;
5359 #endif
5360 #ifdef CONFIG_FS_VERITY
5361 sb->s_vop = &ext4_verityops;
5362 #endif
5363 #ifdef CONFIG_QUOTA
5364 sb->dq_op = &ext4_quota_operations;
5365 if (ext4_has_feature_quota(sb))
5366 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5367 else
5368 sb->s_qcop = &ext4_qctl_operations;
5369 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5370 #endif
5371 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5372
5373 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5374 mutex_init(&sbi->s_orphan_lock);
5375
5376 spin_lock_init(&sbi->s_bdev_wb_lock);
5377
5378 ext4_fast_commit_init(sb);
5379
5380 sb->s_root = NULL;
5381
5382 needs_recovery = (es->s_last_orphan != 0 ||
5383 ext4_has_feature_orphan_present(sb) ||
5384 ext4_has_feature_journal_needs_recovery(sb));
5385
5386 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5387 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5388 if (err)
5389 goto failed_mount3a;
5390 }
5391
5392 err = -EINVAL;
5393 /*
5394 * The first inode we look at is the journal inode. Don't try
5395 * root first: it may be modified in the journal!
5396 */
5397 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5398 err = ext4_load_and_init_journal(sb, es, ctx);
5399 if (err)
5400 goto failed_mount3a;
5401 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5402 ext4_has_feature_journal_needs_recovery(sb)) {
5403 ext4_msg(sb, KERN_ERR, "required journal recovery "
5404 "suppressed and not mounted read-only");
5405 goto failed_mount3a;
5406 } else {
5407 /* Nojournal mode, all journal mount options are illegal */
5408 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5409 ext4_msg(sb, KERN_ERR, "can't mount with "
5410 "journal_async_commit, fs mounted w/o journal");
5411 goto failed_mount3a;
5412 }
5413
5414 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5415 ext4_msg(sb, KERN_ERR, "can't mount with "
5416 "journal_checksum, fs mounted w/o journal");
5417 goto failed_mount3a;
5418 }
5419 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5420 ext4_msg(sb, KERN_ERR, "can't mount with "
5421 "commit=%lu, fs mounted w/o journal",
5422 sbi->s_commit_interval / HZ);
5423 goto failed_mount3a;
5424 }
5425 if (EXT4_MOUNT_DATA_FLAGS &
5426 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5427 ext4_msg(sb, KERN_ERR, "can't mount with "
5428 "data=, fs mounted w/o journal");
5429 goto failed_mount3a;
5430 }
5431 if (test_opt(sb, DATA_ERR_ABORT)) {
5432 ext4_msg(sb, KERN_ERR,
5433 "can't mount with data_err=abort, fs mounted w/o journal");
5434 goto failed_mount3a;
5435 }
5436 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5437 clear_opt(sb, JOURNAL_CHECKSUM);
5438 clear_opt(sb, DATA_FLAGS);
5439 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5440 sbi->s_journal = NULL;
5441 needs_recovery = 0;
5442 }
5443
5444 if (!test_opt(sb, NO_MBCACHE)) {
5445 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5446 if (!sbi->s_ea_block_cache) {
5447 ext4_msg(sb, KERN_ERR,
5448 "Failed to create ea_block_cache");
5449 err = -EINVAL;
5450 goto failed_mount_wq;
5451 }
5452
5453 if (ext4_has_feature_ea_inode(sb)) {
5454 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5455 if (!sbi->s_ea_inode_cache) {
5456 ext4_msg(sb, KERN_ERR,
5457 "Failed to create ea_inode_cache");
5458 err = -EINVAL;
5459 goto failed_mount_wq;
5460 }
5461 }
5462 }
5463
5464 /*
5465 * Get the # of file system overhead blocks from the
5466 * superblock if present.
5467 */
5468 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5469 /* ignore the precalculated value if it is ridiculous */
5470 if (sbi->s_overhead > ext4_blocks_count(es))
5471 sbi->s_overhead = 0;
5472 /*
5473 * If the bigalloc feature is not enabled recalculating the
5474 * overhead doesn't take long, so we might as well just redo
5475 * it to make sure we are using the correct value.
5476 */
5477 if (!ext4_has_feature_bigalloc(sb))
5478 sbi->s_overhead = 0;
5479 if (sbi->s_overhead == 0) {
5480 err = ext4_calculate_overhead(sb);
5481 if (err)
5482 goto failed_mount_wq;
5483 }
5484
5485 /*
5486 * The maximum number of concurrent works can be high and
5487 * concurrency isn't really necessary. Limit it to 1.
5488 */
5489 EXT4_SB(sb)->rsv_conversion_wq =
5490 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5491 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5492 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5493 err = -ENOMEM;
5494 goto failed_mount4;
5495 }
5496
5497 /*
5498 * The jbd2_journal_load will have done any necessary log recovery,
5499 * so we can safely mount the rest of the filesystem now.
5500 */
5501
5502 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5503 if (IS_ERR(root)) {
5504 ext4_msg(sb, KERN_ERR, "get root inode failed");
5505 err = PTR_ERR(root);
5506 root = NULL;
5507 goto failed_mount4;
5508 }
5509 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5510 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5511 iput(root);
5512 err = -EFSCORRUPTED;
5513 goto failed_mount4;
5514 }
5515
5516 sb->s_root = d_make_root(root);
5517 if (!sb->s_root) {
5518 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5519 err = -ENOMEM;
5520 goto failed_mount4;
5521 }
5522
5523 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5524 if (err == -EROFS) {
5525 sb->s_flags |= SB_RDONLY;
5526 } else if (err)
5527 goto failed_mount4a;
5528
5529 ext4_set_resv_clusters(sb);
5530
5531 if (test_opt(sb, BLOCK_VALIDITY)) {
5532 err = ext4_setup_system_zone(sb);
5533 if (err) {
5534 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5535 "zone (%d)", err);
5536 goto failed_mount4a;
5537 }
5538 }
5539 ext4_fc_replay_cleanup(sb);
5540
5541 ext4_ext_init(sb);
5542
5543 /*
5544 * Enable optimize_scan if number of groups is > threshold. This can be
5545 * turned off by passing "mb_optimize_scan=0". This can also be
5546 * turned on forcefully by passing "mb_optimize_scan=1".
5547 */
5548 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5549 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5550 set_opt2(sb, MB_OPTIMIZE_SCAN);
5551 else
5552 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5553 }
5554
5555 err = ext4_mb_init(sb);
5556 if (err) {
5557 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5558 err);
5559 goto failed_mount5;
5560 }
5561
5562 /*
5563 * We can only set up the journal commit callback once
5564 * mballoc is initialized
5565 */
5566 if (sbi->s_journal)
5567 sbi->s_journal->j_commit_callback =
5568 ext4_journal_commit_callback;
5569
5570 err = ext4_percpu_param_init(sbi);
5571 if (err)
5572 goto failed_mount6;
5573
5574 if (ext4_has_feature_flex_bg(sb))
5575 if (!ext4_fill_flex_info(sb)) {
5576 ext4_msg(sb, KERN_ERR,
5577 "unable to initialize "
5578 "flex_bg meta info!");
5579 err = -ENOMEM;
5580 goto failed_mount6;
5581 }
5582
5583 err = ext4_register_li_request(sb, first_not_zeroed);
5584 if (err)
5585 goto failed_mount6;
5586
5587 err = ext4_init_orphan_info(sb);
5588 if (err)
5589 goto failed_mount7;
5590 #ifdef CONFIG_QUOTA
5591 /* Enable quota usage during mount. */
5592 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5593 err = ext4_enable_quotas(sb);
5594 if (err)
5595 goto failed_mount8;
5596 }
5597 #endif /* CONFIG_QUOTA */
5598
5599 /*
5600 * Save the original bdev mapping's wb_err value which could be
5601 * used to detect the metadata async write error.
5602 */
5603 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5604 &sbi->s_bdev_wb_err);
5605 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5606 ext4_orphan_cleanup(sb, es);
5607 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5608 /*
5609 * Update the checksum after updating free space/inode counters and
5610 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5611 * checksum in the buffer cache until it is written out and
5612 * e2fsprogs programs trying to open a file system immediately
5613 * after it is mounted can fail.
5614 */
5615 ext4_superblock_csum_set(sb);
5616 if (needs_recovery) {
5617 ext4_msg(sb, KERN_INFO, "recovery complete");
5618 err = ext4_mark_recovery_complete(sb, es);
5619 if (err)
5620 goto failed_mount9;
5621 }
5622
5623 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5624 ext4_msg(sb, KERN_WARNING,
5625 "mounting with \"discard\" option, but the device does not support discard");
5626
5627 if (es->s_error_count)
5628 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5629
5630 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5631 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5632 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5633 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5634 atomic_set(&sbi->s_warning_count, 0);
5635 atomic_set(&sbi->s_msg_count, 0);
5636
5637 /* Register sysfs after all initializations are complete. */
5638 err = ext4_register_sysfs(sb);
5639 if (err)
5640 goto failed_mount9;
5641
5642 return 0;
5643
5644 failed_mount9:
5645 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5646 failed_mount8: __maybe_unused
5647 ext4_release_orphan_info(sb);
5648 failed_mount7:
5649 ext4_unregister_li_request(sb);
5650 failed_mount6:
5651 ext4_mb_release(sb);
5652 ext4_flex_groups_free(sbi);
5653 ext4_percpu_param_destroy(sbi);
5654 failed_mount5:
5655 ext4_ext_release(sb);
5656 ext4_release_system_zone(sb);
5657 failed_mount4a:
5658 dput(sb->s_root);
5659 sb->s_root = NULL;
5660 failed_mount4:
5661 ext4_msg(sb, KERN_ERR, "mount failed");
5662 if (EXT4_SB(sb)->rsv_conversion_wq)
5663 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5664 failed_mount_wq:
5665 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5666 sbi->s_ea_inode_cache = NULL;
5667
5668 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5669 sbi->s_ea_block_cache = NULL;
5670
5671 if (sbi->s_journal) {
5672 /* flush s_sb_upd_work before journal destroy. */
5673 flush_work(&sbi->s_sb_upd_work);
5674 jbd2_journal_destroy(sbi->s_journal);
5675 sbi->s_journal = NULL;
5676 }
5677 failed_mount3a:
5678 ext4_es_unregister_shrinker(sbi);
5679 failed_mount3:
5680 /* flush s_sb_upd_work before sbi destroy */
5681 flush_work(&sbi->s_sb_upd_work);
5682 ext4_stop_mmpd(sbi);
5683 del_timer_sync(&sbi->s_err_report);
5684 ext4_group_desc_free(sbi);
5685 failed_mount:
5686 if (sbi->s_chksum_driver)
5687 crypto_free_shash(sbi->s_chksum_driver);
5688
5689 #if IS_ENABLED(CONFIG_UNICODE)
5690 utf8_unload(sb->s_encoding);
5691 #endif
5692
5693 #ifdef CONFIG_QUOTA
5694 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5695 kfree(get_qf_name(sb, sbi, i));
5696 #endif
5697 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5698 brelse(sbi->s_sbh);
5699 if (sbi->s_journal_bdev) {
5700 invalidate_bdev(sbi->s_journal_bdev);
5701 blkdev_put(sbi->s_journal_bdev, sb);
5702 }
5703 out_fail:
5704 invalidate_bdev(sb->s_bdev);
5705 sb->s_fs_info = NULL;
5706 return err;
5707 }
5708
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5709 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5710 {
5711 struct ext4_fs_context *ctx = fc->fs_private;
5712 struct ext4_sb_info *sbi;
5713 const char *descr;
5714 int ret;
5715
5716 sbi = ext4_alloc_sbi(sb);
5717 if (!sbi)
5718 return -ENOMEM;
5719
5720 fc->s_fs_info = sbi;
5721
5722 /* Cleanup superblock name */
5723 strreplace(sb->s_id, '/', '!');
5724
5725 sbi->s_sb_block = 1; /* Default super block location */
5726 if (ctx->spec & EXT4_SPEC_s_sb_block)
5727 sbi->s_sb_block = ctx->s_sb_block;
5728
5729 ret = __ext4_fill_super(fc, sb);
5730 if (ret < 0)
5731 goto free_sbi;
5732
5733 if (sbi->s_journal) {
5734 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5735 descr = " journalled data mode";
5736 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5737 descr = " ordered data mode";
5738 else
5739 descr = " writeback data mode";
5740 } else
5741 descr = "out journal";
5742
5743 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5744 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5745 "Quota mode: %s.", &sb->s_uuid,
5746 sb_rdonly(sb) ? "ro" : "r/w", descr,
5747 ext4_quota_mode(sb));
5748
5749 /* Update the s_overhead_clusters if necessary */
5750 ext4_update_overhead(sb, false);
5751 return 0;
5752
5753 free_sbi:
5754 ext4_free_sbi(sbi);
5755 fc->s_fs_info = NULL;
5756 return ret;
5757 }
5758
ext4_get_tree(struct fs_context * fc)5759 static int ext4_get_tree(struct fs_context *fc)
5760 {
5761 return get_tree_bdev(fc, ext4_fill_super);
5762 }
5763
5764 /*
5765 * Setup any per-fs journal parameters now. We'll do this both on
5766 * initial mount, once the journal has been initialised but before we've
5767 * done any recovery; and again on any subsequent remount.
5768 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5769 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5770 {
5771 struct ext4_sb_info *sbi = EXT4_SB(sb);
5772
5773 journal->j_commit_interval = sbi->s_commit_interval;
5774 journal->j_min_batch_time = sbi->s_min_batch_time;
5775 journal->j_max_batch_time = sbi->s_max_batch_time;
5776 ext4_fc_init(sb, journal);
5777
5778 write_lock(&journal->j_state_lock);
5779 if (test_opt(sb, BARRIER))
5780 journal->j_flags |= JBD2_BARRIER;
5781 else
5782 journal->j_flags &= ~JBD2_BARRIER;
5783 if (test_opt(sb, DATA_ERR_ABORT))
5784 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5785 else
5786 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5787 /*
5788 * Always enable journal cycle record option, letting the journal
5789 * records log transactions continuously between each mount.
5790 */
5791 journal->j_flags |= JBD2_CYCLE_RECORD;
5792 write_unlock(&journal->j_state_lock);
5793 }
5794
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5795 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5796 unsigned int journal_inum)
5797 {
5798 struct inode *journal_inode;
5799
5800 /*
5801 * Test for the existence of a valid inode on disk. Bad things
5802 * happen if we iget() an unused inode, as the subsequent iput()
5803 * will try to delete it.
5804 */
5805 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5806 if (IS_ERR(journal_inode)) {
5807 ext4_msg(sb, KERN_ERR, "no journal found");
5808 return ERR_CAST(journal_inode);
5809 }
5810 if (!journal_inode->i_nlink) {
5811 make_bad_inode(journal_inode);
5812 iput(journal_inode);
5813 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5814 return ERR_PTR(-EFSCORRUPTED);
5815 }
5816 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5817 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5818 iput(journal_inode);
5819 return ERR_PTR(-EFSCORRUPTED);
5820 }
5821
5822 ext4_debug("Journal inode found at %p: %lld bytes\n",
5823 journal_inode, journal_inode->i_size);
5824 return journal_inode;
5825 }
5826
ext4_journal_bmap(journal_t * journal,sector_t * block)5827 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5828 {
5829 struct ext4_map_blocks map;
5830 int ret;
5831
5832 if (journal->j_inode == NULL)
5833 return 0;
5834
5835 map.m_lblk = *block;
5836 map.m_len = 1;
5837 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5838 if (ret <= 0) {
5839 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5840 "journal bmap failed: block %llu ret %d\n",
5841 *block, ret);
5842 jbd2_journal_abort(journal, ret ? ret : -EIO);
5843 return ret;
5844 }
5845 *block = map.m_pblk;
5846 return 0;
5847 }
5848
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5849 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5850 unsigned int journal_inum)
5851 {
5852 struct inode *journal_inode;
5853 journal_t *journal;
5854
5855 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5856 if (IS_ERR(journal_inode))
5857 return ERR_CAST(journal_inode);
5858
5859 journal = jbd2_journal_init_inode(journal_inode);
5860 if (IS_ERR(journal)) {
5861 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5862 iput(journal_inode);
5863 return ERR_CAST(journal);
5864 }
5865 journal->j_private = sb;
5866 journal->j_bmap = ext4_journal_bmap;
5867 ext4_init_journal_params(sb, journal);
5868 return journal;
5869 }
5870
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5871 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5872 dev_t j_dev, ext4_fsblk_t *j_start,
5873 ext4_fsblk_t *j_len)
5874 {
5875 struct buffer_head *bh;
5876 struct block_device *bdev;
5877 int hblock, blocksize;
5878 ext4_fsblk_t sb_block;
5879 unsigned long offset;
5880 struct ext4_super_block *es;
5881 int errno;
5882
5883 /* see get_tree_bdev why this is needed and safe */
5884 up_write(&sb->s_umount);
5885 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5886 &fs_holder_ops);
5887 down_write(&sb->s_umount);
5888 if (IS_ERR(bdev)) {
5889 ext4_msg(sb, KERN_ERR,
5890 "failed to open journal device unknown-block(%u,%u) %ld",
5891 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5892 return ERR_CAST(bdev);
5893 }
5894
5895 blocksize = sb->s_blocksize;
5896 hblock = bdev_logical_block_size(bdev);
5897 if (blocksize < hblock) {
5898 ext4_msg(sb, KERN_ERR,
5899 "blocksize too small for journal device");
5900 errno = -EINVAL;
5901 goto out_bdev;
5902 }
5903
5904 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5905 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5906 set_blocksize(bdev, blocksize);
5907 bh = __bread(bdev, sb_block, blocksize);
5908 if (!bh) {
5909 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5910 "external journal");
5911 errno = -EINVAL;
5912 goto out_bdev;
5913 }
5914
5915 es = (struct ext4_super_block *) (bh->b_data + offset);
5916 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5917 !(le32_to_cpu(es->s_feature_incompat) &
5918 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5919 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5920 errno = -EFSCORRUPTED;
5921 goto out_bh;
5922 }
5923
5924 if ((le32_to_cpu(es->s_feature_ro_compat) &
5925 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5926 es->s_checksum != ext4_superblock_csum(sb, es)) {
5927 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5928 errno = -EFSCORRUPTED;
5929 goto out_bh;
5930 }
5931
5932 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5933 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5934 errno = -EFSCORRUPTED;
5935 goto out_bh;
5936 }
5937
5938 *j_start = sb_block + 1;
5939 *j_len = ext4_blocks_count(es);
5940 brelse(bh);
5941 return bdev;
5942
5943 out_bh:
5944 brelse(bh);
5945 out_bdev:
5946 blkdev_put(bdev, sb);
5947 return ERR_PTR(errno);
5948 }
5949
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5950 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5951 dev_t j_dev)
5952 {
5953 journal_t *journal;
5954 ext4_fsblk_t j_start;
5955 ext4_fsblk_t j_len;
5956 struct block_device *journal_bdev;
5957 int errno = 0;
5958
5959 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5960 if (IS_ERR(journal_bdev))
5961 return ERR_CAST(journal_bdev);
5962
5963 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5964 j_len, sb->s_blocksize);
5965 if (IS_ERR(journal)) {
5966 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5967 errno = PTR_ERR(journal);
5968 goto out_bdev;
5969 }
5970 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5971 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5972 "user (unsupported) - %d",
5973 be32_to_cpu(journal->j_superblock->s_nr_users));
5974 errno = -EINVAL;
5975 goto out_journal;
5976 }
5977 journal->j_private = sb;
5978 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5979 ext4_init_journal_params(sb, journal);
5980 return journal;
5981
5982 out_journal:
5983 jbd2_journal_destroy(journal);
5984 out_bdev:
5985 blkdev_put(journal_bdev, sb);
5986 return ERR_PTR(errno);
5987 }
5988
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5989 static int ext4_load_journal(struct super_block *sb,
5990 struct ext4_super_block *es,
5991 unsigned long journal_devnum)
5992 {
5993 journal_t *journal;
5994 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5995 dev_t journal_dev;
5996 int err = 0;
5997 int really_read_only;
5998 int journal_dev_ro;
5999
6000 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6001 return -EFSCORRUPTED;
6002
6003 if (journal_devnum &&
6004 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6005 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6006 "numbers have changed");
6007 journal_dev = new_decode_dev(journal_devnum);
6008 } else
6009 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6010
6011 if (journal_inum && journal_dev) {
6012 ext4_msg(sb, KERN_ERR,
6013 "filesystem has both journal inode and journal device!");
6014 return -EINVAL;
6015 }
6016
6017 if (journal_inum) {
6018 journal = ext4_open_inode_journal(sb, journal_inum);
6019 if (IS_ERR(journal))
6020 return PTR_ERR(journal);
6021 } else {
6022 journal = ext4_open_dev_journal(sb, journal_dev);
6023 if (IS_ERR(journal))
6024 return PTR_ERR(journal);
6025 }
6026
6027 journal_dev_ro = bdev_read_only(journal->j_dev);
6028 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6029
6030 if (journal_dev_ro && !sb_rdonly(sb)) {
6031 ext4_msg(sb, KERN_ERR,
6032 "journal device read-only, try mounting with '-o ro'");
6033 err = -EROFS;
6034 goto err_out;
6035 }
6036
6037 /*
6038 * Are we loading a blank journal or performing recovery after a
6039 * crash? For recovery, we need to check in advance whether we
6040 * can get read-write access to the device.
6041 */
6042 if (ext4_has_feature_journal_needs_recovery(sb)) {
6043 if (sb_rdonly(sb)) {
6044 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6045 "required on readonly filesystem");
6046 if (really_read_only) {
6047 ext4_msg(sb, KERN_ERR, "write access "
6048 "unavailable, cannot proceed "
6049 "(try mounting with noload)");
6050 err = -EROFS;
6051 goto err_out;
6052 }
6053 ext4_msg(sb, KERN_INFO, "write access will "
6054 "be enabled during recovery");
6055 }
6056 }
6057
6058 if (!(journal->j_flags & JBD2_BARRIER))
6059 ext4_msg(sb, KERN_INFO, "barriers disabled");
6060
6061 if (!ext4_has_feature_journal_needs_recovery(sb))
6062 err = jbd2_journal_wipe(journal, !really_read_only);
6063 if (!err) {
6064 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6065 __le16 orig_state;
6066 bool changed = false;
6067
6068 if (save)
6069 memcpy(save, ((char *) es) +
6070 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6071 err = jbd2_journal_load(journal);
6072 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6073 save, EXT4_S_ERR_LEN)) {
6074 memcpy(((char *) es) + EXT4_S_ERR_START,
6075 save, EXT4_S_ERR_LEN);
6076 changed = true;
6077 }
6078 kfree(save);
6079 orig_state = es->s_state;
6080 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6081 EXT4_ERROR_FS);
6082 if (orig_state != es->s_state)
6083 changed = true;
6084 /* Write out restored error information to the superblock */
6085 if (changed && !really_read_only) {
6086 int err2;
6087 err2 = ext4_commit_super(sb);
6088 err = err ? : err2;
6089 }
6090 }
6091
6092 if (err) {
6093 ext4_msg(sb, KERN_ERR, "error loading journal");
6094 goto err_out;
6095 }
6096
6097 EXT4_SB(sb)->s_journal = journal;
6098 err = ext4_clear_journal_err(sb, es);
6099 if (err) {
6100 EXT4_SB(sb)->s_journal = NULL;
6101 jbd2_journal_destroy(journal);
6102 return err;
6103 }
6104
6105 if (!really_read_only && journal_devnum &&
6106 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6107 es->s_journal_dev = cpu_to_le32(journal_devnum);
6108 ext4_commit_super(sb);
6109 }
6110 if (!really_read_only && journal_inum &&
6111 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6112 es->s_journal_inum = cpu_to_le32(journal_inum);
6113 ext4_commit_super(sb);
6114 }
6115
6116 return 0;
6117
6118 err_out:
6119 jbd2_journal_destroy(journal);
6120 return err;
6121 }
6122
6123 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6124 static void ext4_update_super(struct super_block *sb)
6125 {
6126 struct ext4_sb_info *sbi = EXT4_SB(sb);
6127 struct ext4_super_block *es = sbi->s_es;
6128 struct buffer_head *sbh = sbi->s_sbh;
6129
6130 lock_buffer(sbh);
6131 /*
6132 * If the file system is mounted read-only, don't update the
6133 * superblock write time. This avoids updating the superblock
6134 * write time when we are mounting the root file system
6135 * read/only but we need to replay the journal; at that point,
6136 * for people who are east of GMT and who make their clock
6137 * tick in localtime for Windows bug-for-bug compatibility,
6138 * the clock is set in the future, and this will cause e2fsck
6139 * to complain and force a full file system check.
6140 */
6141 if (!sb_rdonly(sb))
6142 ext4_update_tstamp(es, s_wtime);
6143 es->s_kbytes_written =
6144 cpu_to_le64(sbi->s_kbytes_written +
6145 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6146 sbi->s_sectors_written_start) >> 1));
6147 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6148 ext4_free_blocks_count_set(es,
6149 EXT4_C2B(sbi, percpu_counter_sum_positive(
6150 &sbi->s_freeclusters_counter)));
6151 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6152 es->s_free_inodes_count =
6153 cpu_to_le32(percpu_counter_sum_positive(
6154 &sbi->s_freeinodes_counter));
6155 /* Copy error information to the on-disk superblock */
6156 spin_lock(&sbi->s_error_lock);
6157 if (sbi->s_add_error_count > 0) {
6158 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6159 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6160 __ext4_update_tstamp(&es->s_first_error_time,
6161 &es->s_first_error_time_hi,
6162 sbi->s_first_error_time);
6163 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6164 sizeof(es->s_first_error_func));
6165 es->s_first_error_line =
6166 cpu_to_le32(sbi->s_first_error_line);
6167 es->s_first_error_ino =
6168 cpu_to_le32(sbi->s_first_error_ino);
6169 es->s_first_error_block =
6170 cpu_to_le64(sbi->s_first_error_block);
6171 es->s_first_error_errcode =
6172 ext4_errno_to_code(sbi->s_first_error_code);
6173 }
6174 __ext4_update_tstamp(&es->s_last_error_time,
6175 &es->s_last_error_time_hi,
6176 sbi->s_last_error_time);
6177 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6178 sizeof(es->s_last_error_func));
6179 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6180 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6181 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6182 es->s_last_error_errcode =
6183 ext4_errno_to_code(sbi->s_last_error_code);
6184 /*
6185 * Start the daily error reporting function if it hasn't been
6186 * started already
6187 */
6188 if (!es->s_error_count)
6189 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6190 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6191 sbi->s_add_error_count = 0;
6192 }
6193 spin_unlock(&sbi->s_error_lock);
6194
6195 ext4_superblock_csum_set(sb);
6196 unlock_buffer(sbh);
6197 }
6198
ext4_commit_super(struct super_block * sb)6199 static int ext4_commit_super(struct super_block *sb)
6200 {
6201 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6202
6203 if (!sbh)
6204 return -EINVAL;
6205 if (block_device_ejected(sb))
6206 return -ENODEV;
6207
6208 ext4_update_super(sb);
6209
6210 lock_buffer(sbh);
6211 /* Buffer got discarded which means block device got invalidated */
6212 if (!buffer_mapped(sbh)) {
6213 unlock_buffer(sbh);
6214 return -EIO;
6215 }
6216
6217 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6218 /*
6219 * Oh, dear. A previous attempt to write the
6220 * superblock failed. This could happen because the
6221 * USB device was yanked out. Or it could happen to
6222 * be a transient write error and maybe the block will
6223 * be remapped. Nothing we can do but to retry the
6224 * write and hope for the best.
6225 */
6226 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6227 "superblock detected");
6228 clear_buffer_write_io_error(sbh);
6229 set_buffer_uptodate(sbh);
6230 }
6231 get_bh(sbh);
6232 /* Clear potential dirty bit if it was journalled update */
6233 clear_buffer_dirty(sbh);
6234 sbh->b_end_io = end_buffer_write_sync;
6235 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6236 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6237 wait_on_buffer(sbh);
6238 if (buffer_write_io_error(sbh)) {
6239 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6240 "superblock");
6241 clear_buffer_write_io_error(sbh);
6242 set_buffer_uptodate(sbh);
6243 return -EIO;
6244 }
6245 return 0;
6246 }
6247
6248 /*
6249 * Have we just finished recovery? If so, and if we are mounting (or
6250 * remounting) the filesystem readonly, then we will end up with a
6251 * consistent fs on disk. Record that fact.
6252 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6253 static int ext4_mark_recovery_complete(struct super_block *sb,
6254 struct ext4_super_block *es)
6255 {
6256 int err;
6257 journal_t *journal = EXT4_SB(sb)->s_journal;
6258
6259 if (!ext4_has_feature_journal(sb)) {
6260 if (journal != NULL) {
6261 ext4_error(sb, "Journal got removed while the fs was "
6262 "mounted!");
6263 return -EFSCORRUPTED;
6264 }
6265 return 0;
6266 }
6267 jbd2_journal_lock_updates(journal);
6268 err = jbd2_journal_flush(journal, 0);
6269 if (err < 0)
6270 goto out;
6271
6272 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6273 ext4_has_feature_orphan_present(sb))) {
6274 if (!ext4_orphan_file_empty(sb)) {
6275 ext4_error(sb, "Orphan file not empty on read-only fs.");
6276 err = -EFSCORRUPTED;
6277 goto out;
6278 }
6279 ext4_clear_feature_journal_needs_recovery(sb);
6280 ext4_clear_feature_orphan_present(sb);
6281 ext4_commit_super(sb);
6282 }
6283 out:
6284 jbd2_journal_unlock_updates(journal);
6285 return err;
6286 }
6287
6288 /*
6289 * If we are mounting (or read-write remounting) a filesystem whose journal
6290 * has recorded an error from a previous lifetime, move that error to the
6291 * main filesystem now.
6292 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6293 static int ext4_clear_journal_err(struct super_block *sb,
6294 struct ext4_super_block *es)
6295 {
6296 journal_t *journal;
6297 int j_errno;
6298 const char *errstr;
6299
6300 if (!ext4_has_feature_journal(sb)) {
6301 ext4_error(sb, "Journal got removed while the fs was mounted!");
6302 return -EFSCORRUPTED;
6303 }
6304
6305 journal = EXT4_SB(sb)->s_journal;
6306
6307 /*
6308 * Now check for any error status which may have been recorded in the
6309 * journal by a prior ext4_error() or ext4_abort()
6310 */
6311
6312 j_errno = jbd2_journal_errno(journal);
6313 if (j_errno) {
6314 char nbuf[16];
6315
6316 errstr = ext4_decode_error(sb, j_errno, nbuf);
6317 ext4_warning(sb, "Filesystem error recorded "
6318 "from previous mount: %s", errstr);
6319
6320 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6321 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6322 j_errno = ext4_commit_super(sb);
6323 if (j_errno)
6324 return j_errno;
6325 ext4_warning(sb, "Marked fs in need of filesystem check.");
6326
6327 jbd2_journal_clear_err(journal);
6328 jbd2_journal_update_sb_errno(journal);
6329 }
6330 return 0;
6331 }
6332
6333 /*
6334 * Force the running and committing transactions to commit,
6335 * and wait on the commit.
6336 */
ext4_force_commit(struct super_block * sb)6337 int ext4_force_commit(struct super_block *sb)
6338 {
6339 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6340 }
6341
ext4_sync_fs(struct super_block * sb,int wait)6342 static int ext4_sync_fs(struct super_block *sb, int wait)
6343 {
6344 int ret = 0;
6345 tid_t target;
6346 bool needs_barrier = false;
6347 struct ext4_sb_info *sbi = EXT4_SB(sb);
6348
6349 if (unlikely(ext4_forced_shutdown(sb)))
6350 return 0;
6351
6352 trace_ext4_sync_fs(sb, wait);
6353 flush_workqueue(sbi->rsv_conversion_wq);
6354 /*
6355 * Writeback quota in non-journalled quota case - journalled quota has
6356 * no dirty dquots
6357 */
6358 dquot_writeback_dquots(sb, -1);
6359 /*
6360 * Data writeback is possible w/o journal transaction, so barrier must
6361 * being sent at the end of the function. But we can skip it if
6362 * transaction_commit will do it for us.
6363 */
6364 if (sbi->s_journal) {
6365 target = jbd2_get_latest_transaction(sbi->s_journal);
6366 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6367 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6368 needs_barrier = true;
6369
6370 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6371 if (wait)
6372 ret = jbd2_log_wait_commit(sbi->s_journal,
6373 target);
6374 }
6375 } else if (wait && test_opt(sb, BARRIER))
6376 needs_barrier = true;
6377 if (needs_barrier) {
6378 int err;
6379 err = blkdev_issue_flush(sb->s_bdev);
6380 if (!ret)
6381 ret = err;
6382 }
6383
6384 return ret;
6385 }
6386
6387 /*
6388 * LVM calls this function before a (read-only) snapshot is created. This
6389 * gives us a chance to flush the journal completely and mark the fs clean.
6390 *
6391 * Note that only this function cannot bring a filesystem to be in a clean
6392 * state independently. It relies on upper layer to stop all data & metadata
6393 * modifications.
6394 */
ext4_freeze(struct super_block * sb)6395 static int ext4_freeze(struct super_block *sb)
6396 {
6397 int error = 0;
6398 journal_t *journal = EXT4_SB(sb)->s_journal;
6399
6400 if (journal) {
6401 /* Now we set up the journal barrier. */
6402 jbd2_journal_lock_updates(journal);
6403
6404 /*
6405 * Don't clear the needs_recovery flag if we failed to
6406 * flush the journal.
6407 */
6408 error = jbd2_journal_flush(journal, 0);
6409 if (error < 0)
6410 goto out;
6411
6412 /* Journal blocked and flushed, clear needs_recovery flag. */
6413 ext4_clear_feature_journal_needs_recovery(sb);
6414 if (ext4_orphan_file_empty(sb))
6415 ext4_clear_feature_orphan_present(sb);
6416 }
6417
6418 error = ext4_commit_super(sb);
6419 out:
6420 if (journal)
6421 /* we rely on upper layer to stop further updates */
6422 jbd2_journal_unlock_updates(journal);
6423 return error;
6424 }
6425
6426 /*
6427 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6428 * flag here, even though the filesystem is not technically dirty yet.
6429 */
ext4_unfreeze(struct super_block * sb)6430 static int ext4_unfreeze(struct super_block *sb)
6431 {
6432 if (ext4_forced_shutdown(sb))
6433 return 0;
6434
6435 if (EXT4_SB(sb)->s_journal) {
6436 /* Reset the needs_recovery flag before the fs is unlocked. */
6437 ext4_set_feature_journal_needs_recovery(sb);
6438 if (ext4_has_feature_orphan_file(sb))
6439 ext4_set_feature_orphan_present(sb);
6440 }
6441
6442 ext4_commit_super(sb);
6443 return 0;
6444 }
6445
6446 /*
6447 * Structure to save mount options for ext4_remount's benefit
6448 */
6449 struct ext4_mount_options {
6450 unsigned long s_mount_opt;
6451 unsigned long s_mount_opt2;
6452 kuid_t s_resuid;
6453 kgid_t s_resgid;
6454 unsigned long s_commit_interval;
6455 u32 s_min_batch_time, s_max_batch_time;
6456 #ifdef CONFIG_QUOTA
6457 int s_jquota_fmt;
6458 char *s_qf_names[EXT4_MAXQUOTAS];
6459 #endif
6460 };
6461
__ext4_remount(struct fs_context * fc,struct super_block * sb)6462 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6463 {
6464 struct ext4_fs_context *ctx = fc->fs_private;
6465 struct ext4_super_block *es;
6466 struct ext4_sb_info *sbi = EXT4_SB(sb);
6467 unsigned long old_sb_flags;
6468 struct ext4_mount_options old_opts;
6469 ext4_group_t g;
6470 int err = 0;
6471 int alloc_ctx;
6472 #ifdef CONFIG_QUOTA
6473 int enable_quota = 0;
6474 int i, j;
6475 char *to_free[EXT4_MAXQUOTAS];
6476 #endif
6477
6478
6479 /* Store the original options */
6480 old_sb_flags = sb->s_flags;
6481 old_opts.s_mount_opt = sbi->s_mount_opt;
6482 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6483 old_opts.s_resuid = sbi->s_resuid;
6484 old_opts.s_resgid = sbi->s_resgid;
6485 old_opts.s_commit_interval = sbi->s_commit_interval;
6486 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6487 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6488 #ifdef CONFIG_QUOTA
6489 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6490 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6491 if (sbi->s_qf_names[i]) {
6492 char *qf_name = get_qf_name(sb, sbi, i);
6493
6494 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6495 if (!old_opts.s_qf_names[i]) {
6496 for (j = 0; j < i; j++)
6497 kfree(old_opts.s_qf_names[j]);
6498 return -ENOMEM;
6499 }
6500 } else
6501 old_opts.s_qf_names[i] = NULL;
6502 #endif
6503 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6504 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6505 ctx->journal_ioprio =
6506 sbi->s_journal->j_task->io_context->ioprio;
6507 else
6508 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6509
6510 }
6511
6512 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6513 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6514 ext4_msg(sb, KERN_WARNING,
6515 "stripe (%lu) is not aligned with cluster size (%u), "
6516 "stripe is disabled",
6517 ctx->s_stripe, sbi->s_cluster_ratio);
6518 ctx->s_stripe = 0;
6519 }
6520
6521 /*
6522 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6523 * two calls to ext4_should_dioread_nolock() to return inconsistent
6524 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6525 * here s_writepages_rwsem to avoid race between writepages ops and
6526 * remount.
6527 */
6528 alloc_ctx = ext4_writepages_down_write(sb);
6529 ext4_apply_options(fc, sb);
6530 ext4_writepages_up_write(sb, alloc_ctx);
6531
6532 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6533 test_opt(sb, JOURNAL_CHECKSUM)) {
6534 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6535 "during remount not supported; ignoring");
6536 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6537 }
6538
6539 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6540 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6541 ext4_msg(sb, KERN_ERR, "can't mount with "
6542 "both data=journal and delalloc");
6543 err = -EINVAL;
6544 goto restore_opts;
6545 }
6546 if (test_opt(sb, DIOREAD_NOLOCK)) {
6547 ext4_msg(sb, KERN_ERR, "can't mount with "
6548 "both data=journal and dioread_nolock");
6549 err = -EINVAL;
6550 goto restore_opts;
6551 }
6552 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6553 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6554 ext4_msg(sb, KERN_ERR, "can't mount with "
6555 "journal_async_commit in data=ordered mode");
6556 err = -EINVAL;
6557 goto restore_opts;
6558 }
6559 }
6560
6561 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6562 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6563 err = -EINVAL;
6564 goto restore_opts;
6565 }
6566
6567 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6568 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6569
6570 es = sbi->s_es;
6571
6572 if (sbi->s_journal) {
6573 ext4_init_journal_params(sb, sbi->s_journal);
6574 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6575 }
6576
6577 /* Flush outstanding errors before changing fs state */
6578 flush_work(&sbi->s_sb_upd_work);
6579
6580 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6581 if (ext4_forced_shutdown(sb)) {
6582 err = -EROFS;
6583 goto restore_opts;
6584 }
6585
6586 if (fc->sb_flags & SB_RDONLY) {
6587 err = sync_filesystem(sb);
6588 if (err < 0)
6589 goto restore_opts;
6590 err = dquot_suspend(sb, -1);
6591 if (err < 0)
6592 goto restore_opts;
6593
6594 /*
6595 * First of all, the unconditional stuff we have to do
6596 * to disable replay of the journal when we next remount
6597 */
6598 sb->s_flags |= SB_RDONLY;
6599
6600 /*
6601 * OK, test if we are remounting a valid rw partition
6602 * readonly, and if so set the rdonly flag and then
6603 * mark the partition as valid again.
6604 */
6605 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6606 (sbi->s_mount_state & EXT4_VALID_FS))
6607 es->s_state = cpu_to_le16(sbi->s_mount_state);
6608
6609 if (sbi->s_journal) {
6610 /*
6611 * We let remount-ro finish even if marking fs
6612 * as clean failed...
6613 */
6614 ext4_mark_recovery_complete(sb, es);
6615 }
6616 } else {
6617 /* Make sure we can mount this feature set readwrite */
6618 if (ext4_has_feature_readonly(sb) ||
6619 !ext4_feature_set_ok(sb, 0)) {
6620 err = -EROFS;
6621 goto restore_opts;
6622 }
6623 /*
6624 * Make sure the group descriptor checksums
6625 * are sane. If they aren't, refuse to remount r/w.
6626 */
6627 for (g = 0; g < sbi->s_groups_count; g++) {
6628 struct ext4_group_desc *gdp =
6629 ext4_get_group_desc(sb, g, NULL);
6630
6631 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6632 ext4_msg(sb, KERN_ERR,
6633 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6634 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6635 le16_to_cpu(gdp->bg_checksum));
6636 err = -EFSBADCRC;
6637 goto restore_opts;
6638 }
6639 }
6640
6641 /*
6642 * If we have an unprocessed orphan list hanging
6643 * around from a previously readonly bdev mount,
6644 * require a full umount/remount for now.
6645 */
6646 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6647 ext4_msg(sb, KERN_WARNING, "Couldn't "
6648 "remount RDWR because of unprocessed "
6649 "orphan inode list. Please "
6650 "umount/remount instead");
6651 err = -EINVAL;
6652 goto restore_opts;
6653 }
6654
6655 /*
6656 * Mounting a RDONLY partition read-write, so reread
6657 * and store the current valid flag. (It may have
6658 * been changed by e2fsck since we originally mounted
6659 * the partition.)
6660 */
6661 if (sbi->s_journal) {
6662 err = ext4_clear_journal_err(sb, es);
6663 if (err)
6664 goto restore_opts;
6665 }
6666 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6667 ~EXT4_FC_REPLAY);
6668
6669 err = ext4_setup_super(sb, es, 0);
6670 if (err)
6671 goto restore_opts;
6672
6673 sb->s_flags &= ~SB_RDONLY;
6674 if (ext4_has_feature_mmp(sb)) {
6675 err = ext4_multi_mount_protect(sb,
6676 le64_to_cpu(es->s_mmp_block));
6677 if (err)
6678 goto restore_opts;
6679 }
6680 #ifdef CONFIG_QUOTA
6681 enable_quota = 1;
6682 #endif
6683 }
6684 }
6685
6686 /*
6687 * Handle creation of system zone data early because it can fail.
6688 * Releasing of existing data is done when we are sure remount will
6689 * succeed.
6690 */
6691 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6692 err = ext4_setup_system_zone(sb);
6693 if (err)
6694 goto restore_opts;
6695 }
6696
6697 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6698 err = ext4_commit_super(sb);
6699 if (err)
6700 goto restore_opts;
6701 }
6702
6703 #ifdef CONFIG_QUOTA
6704 if (enable_quota) {
6705 if (sb_any_quota_suspended(sb))
6706 dquot_resume(sb, -1);
6707 else if (ext4_has_feature_quota(sb)) {
6708 err = ext4_enable_quotas(sb);
6709 if (err)
6710 goto restore_opts;
6711 }
6712 }
6713 /* Release old quota file names */
6714 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6715 kfree(old_opts.s_qf_names[i]);
6716 #endif
6717 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6718 ext4_release_system_zone(sb);
6719
6720 /*
6721 * Reinitialize lazy itable initialization thread based on
6722 * current settings
6723 */
6724 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6725 ext4_unregister_li_request(sb);
6726 else {
6727 ext4_group_t first_not_zeroed;
6728 first_not_zeroed = ext4_has_uninit_itable(sb);
6729 ext4_register_li_request(sb, first_not_zeroed);
6730 }
6731
6732 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6733 ext4_stop_mmpd(sbi);
6734
6735 /*
6736 * Handle aborting the filesystem as the last thing during remount to
6737 * avoid obsure errors during remount when some option changes fail to
6738 * apply due to shutdown filesystem.
6739 */
6740 if (test_opt2(sb, ABORT))
6741 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6742
6743 return 0;
6744
6745 restore_opts:
6746 /*
6747 * If there was a failing r/w to ro transition, we may need to
6748 * re-enable quota
6749 */
6750 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6751 sb_any_quota_suspended(sb))
6752 dquot_resume(sb, -1);
6753
6754 alloc_ctx = ext4_writepages_down_write(sb);
6755 sb->s_flags = old_sb_flags;
6756 sbi->s_mount_opt = old_opts.s_mount_opt;
6757 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6758 sbi->s_resuid = old_opts.s_resuid;
6759 sbi->s_resgid = old_opts.s_resgid;
6760 sbi->s_commit_interval = old_opts.s_commit_interval;
6761 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6762 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6763 ext4_writepages_up_write(sb, alloc_ctx);
6764
6765 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6766 ext4_release_system_zone(sb);
6767 #ifdef CONFIG_QUOTA
6768 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6769 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6770 to_free[i] = get_qf_name(sb, sbi, i);
6771 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6772 }
6773 synchronize_rcu();
6774 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6775 kfree(to_free[i]);
6776 #endif
6777 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6778 ext4_stop_mmpd(sbi);
6779 return err;
6780 }
6781
ext4_reconfigure(struct fs_context * fc)6782 static int ext4_reconfigure(struct fs_context *fc)
6783 {
6784 struct super_block *sb = fc->root->d_sb;
6785 int ret;
6786 bool old_ro = sb_rdonly(sb);
6787
6788 fc->s_fs_info = EXT4_SB(sb);
6789
6790 ret = ext4_check_opt_consistency(fc, sb);
6791 if (ret < 0)
6792 return ret;
6793
6794 ret = __ext4_remount(fc, sb);
6795 if (ret < 0)
6796 return ret;
6797
6798 ext4_msg(sb, KERN_INFO, "re-mounted %pU%s.",
6799 &sb->s_uuid,
6800 (old_ro != sb_rdonly(sb)) ? (sb_rdonly(sb) ? " ro" : " r/w") : "");
6801
6802 return 0;
6803 }
6804
6805 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6806 static int ext4_statfs_project(struct super_block *sb,
6807 kprojid_t projid, struct kstatfs *buf)
6808 {
6809 struct kqid qid;
6810 struct dquot *dquot;
6811 u64 limit;
6812 u64 curblock;
6813
6814 qid = make_kqid_projid(projid);
6815 dquot = dqget(sb, qid);
6816 if (IS_ERR(dquot))
6817 return PTR_ERR(dquot);
6818 spin_lock(&dquot->dq_dqb_lock);
6819
6820 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6821 dquot->dq_dqb.dqb_bhardlimit);
6822 limit >>= sb->s_blocksize_bits;
6823
6824 if (limit) {
6825 uint64_t remaining = 0;
6826
6827 curblock = (dquot->dq_dqb.dqb_curspace +
6828 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6829 if (limit > curblock)
6830 remaining = limit - curblock;
6831
6832 buf->f_blocks = min(buf->f_blocks, limit);
6833 buf->f_bfree = min(buf->f_bfree, remaining);
6834 buf->f_bavail = min(buf->f_bavail, remaining);
6835 }
6836
6837 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6838 dquot->dq_dqb.dqb_ihardlimit);
6839 if (limit) {
6840 uint64_t remaining = 0;
6841
6842 if (limit > dquot->dq_dqb.dqb_curinodes)
6843 remaining = limit - dquot->dq_dqb.dqb_curinodes;
6844
6845 buf->f_files = min(buf->f_files, limit);
6846 buf->f_ffree = min(buf->f_ffree, remaining);
6847 }
6848
6849 spin_unlock(&dquot->dq_dqb_lock);
6850 dqput(dquot);
6851 return 0;
6852 }
6853 #endif
6854
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6855 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6856 {
6857 struct super_block *sb = dentry->d_sb;
6858 struct ext4_sb_info *sbi = EXT4_SB(sb);
6859 struct ext4_super_block *es = sbi->s_es;
6860 ext4_fsblk_t overhead = 0, resv_blocks;
6861 s64 bfree;
6862 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6863
6864 if (!test_opt(sb, MINIX_DF))
6865 overhead = sbi->s_overhead;
6866
6867 buf->f_type = EXT4_SUPER_MAGIC;
6868 buf->f_bsize = sb->s_blocksize;
6869 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6870 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6871 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6872 /* prevent underflow in case that few free space is available */
6873 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6874 buf->f_bavail = buf->f_bfree -
6875 (ext4_r_blocks_count(es) + resv_blocks);
6876 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6877 buf->f_bavail = 0;
6878 buf->f_files = le32_to_cpu(es->s_inodes_count);
6879 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6880 buf->f_namelen = EXT4_NAME_LEN;
6881 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6882
6883 #ifdef CONFIG_QUOTA
6884 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6885 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6886 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6887 #endif
6888 return 0;
6889 }
6890
6891
6892 #ifdef CONFIG_QUOTA
6893
6894 /*
6895 * Helper functions so that transaction is started before we acquire dqio_sem
6896 * to keep correct lock ordering of transaction > dqio_sem
6897 */
dquot_to_inode(struct dquot * dquot)6898 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6899 {
6900 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6901 }
6902
ext4_write_dquot(struct dquot * dquot)6903 static int ext4_write_dquot(struct dquot *dquot)
6904 {
6905 int ret, err;
6906 handle_t *handle;
6907 struct inode *inode;
6908
6909 inode = dquot_to_inode(dquot);
6910 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6911 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6912 if (IS_ERR(handle))
6913 return PTR_ERR(handle);
6914 ret = dquot_commit(dquot);
6915 if (ret < 0)
6916 ext4_error_err(dquot->dq_sb, -ret,
6917 "Failed to commit dquot type %d",
6918 dquot->dq_id.type);
6919 err = ext4_journal_stop(handle);
6920 if (!ret)
6921 ret = err;
6922 return ret;
6923 }
6924
ext4_acquire_dquot(struct dquot * dquot)6925 static int ext4_acquire_dquot(struct dquot *dquot)
6926 {
6927 int ret, err;
6928 handle_t *handle;
6929
6930 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6931 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6932 if (IS_ERR(handle))
6933 return PTR_ERR(handle);
6934 ret = dquot_acquire(dquot);
6935 if (ret < 0)
6936 ext4_error_err(dquot->dq_sb, -ret,
6937 "Failed to acquire dquot type %d",
6938 dquot->dq_id.type);
6939 err = ext4_journal_stop(handle);
6940 if (!ret)
6941 ret = err;
6942 return ret;
6943 }
6944
ext4_release_dquot(struct dquot * dquot)6945 static int ext4_release_dquot(struct dquot *dquot)
6946 {
6947 int ret, err;
6948 handle_t *handle;
6949 bool freeze_protected = false;
6950
6951 /*
6952 * Trying to sb_start_intwrite() in a running transaction
6953 * can result in a deadlock. Further, running transactions
6954 * are already protected from freezing.
6955 */
6956 if (!ext4_journal_current_handle()) {
6957 sb_start_intwrite(dquot->dq_sb);
6958 freeze_protected = true;
6959 }
6960
6961 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6962 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6963 if (IS_ERR(handle)) {
6964 /* Release dquot anyway to avoid endless cycle in dqput() */
6965 dquot_release(dquot);
6966 if (freeze_protected)
6967 sb_end_intwrite(dquot->dq_sb);
6968 return PTR_ERR(handle);
6969 }
6970 ret = dquot_release(dquot);
6971 if (ret < 0)
6972 ext4_error_err(dquot->dq_sb, -ret,
6973 "Failed to release dquot type %d",
6974 dquot->dq_id.type);
6975 err = ext4_journal_stop(handle);
6976 if (!ret)
6977 ret = err;
6978
6979 if (freeze_protected)
6980 sb_end_intwrite(dquot->dq_sb);
6981
6982 return ret;
6983 }
6984
ext4_mark_dquot_dirty(struct dquot * dquot)6985 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6986 {
6987 struct super_block *sb = dquot->dq_sb;
6988
6989 if (ext4_is_quota_journalled(sb)) {
6990 dquot_mark_dquot_dirty(dquot);
6991 return ext4_write_dquot(dquot);
6992 } else {
6993 return dquot_mark_dquot_dirty(dquot);
6994 }
6995 }
6996
ext4_write_info(struct super_block * sb,int type)6997 static int ext4_write_info(struct super_block *sb, int type)
6998 {
6999 int ret, err;
7000 handle_t *handle;
7001
7002 /* Data block + inode block */
7003 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
7004 if (IS_ERR(handle))
7005 return PTR_ERR(handle);
7006 ret = dquot_commit_info(sb, type);
7007 err = ext4_journal_stop(handle);
7008 if (!ret)
7009 ret = err;
7010 return ret;
7011 }
7012
lockdep_set_quota_inode(struct inode * inode,int subclass)7013 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
7014 {
7015 struct ext4_inode_info *ei = EXT4_I(inode);
7016
7017 /* The first argument of lockdep_set_subclass has to be
7018 * *exactly* the same as the argument to init_rwsem() --- in
7019 * this case, in init_once() --- or lockdep gets unhappy
7020 * because the name of the lock is set using the
7021 * stringification of the argument to init_rwsem().
7022 */
7023 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7024 lockdep_set_subclass(&ei->i_data_sem, subclass);
7025 }
7026
7027 /*
7028 * Standard function to be called on quota_on
7029 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)7030 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7031 const struct path *path)
7032 {
7033 int err;
7034
7035 if (!test_opt(sb, QUOTA))
7036 return -EINVAL;
7037
7038 /* Quotafile not on the same filesystem? */
7039 if (path->dentry->d_sb != sb)
7040 return -EXDEV;
7041
7042 /* Quota already enabled for this file? */
7043 if (IS_NOQUOTA(d_inode(path->dentry)))
7044 return -EBUSY;
7045
7046 /* Journaling quota? */
7047 if (EXT4_SB(sb)->s_qf_names[type]) {
7048 /* Quotafile not in fs root? */
7049 if (path->dentry->d_parent != sb->s_root)
7050 ext4_msg(sb, KERN_WARNING,
7051 "Quota file not on filesystem root. "
7052 "Journaled quota will not work");
7053 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7054 } else {
7055 /*
7056 * Clear the flag just in case mount options changed since
7057 * last time.
7058 */
7059 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7060 }
7061
7062 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7063 err = dquot_quota_on(sb, type, format_id, path);
7064 if (!err) {
7065 struct inode *inode = d_inode(path->dentry);
7066 handle_t *handle;
7067
7068 /*
7069 * Set inode flags to prevent userspace from messing with quota
7070 * files. If this fails, we return success anyway since quotas
7071 * are already enabled and this is not a hard failure.
7072 */
7073 inode_lock(inode);
7074 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7075 if (IS_ERR(handle))
7076 goto unlock_inode;
7077 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7078 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7079 S_NOATIME | S_IMMUTABLE);
7080 err = ext4_mark_inode_dirty(handle, inode);
7081 ext4_journal_stop(handle);
7082 unlock_inode:
7083 inode_unlock(inode);
7084 if (err)
7085 dquot_quota_off(sb, type);
7086 }
7087 if (err)
7088 lockdep_set_quota_inode(path->dentry->d_inode,
7089 I_DATA_SEM_NORMAL);
7090 return err;
7091 }
7092
ext4_check_quota_inum(int type,unsigned long qf_inum)7093 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7094 {
7095 switch (type) {
7096 case USRQUOTA:
7097 return qf_inum == EXT4_USR_QUOTA_INO;
7098 case GRPQUOTA:
7099 return qf_inum == EXT4_GRP_QUOTA_INO;
7100 case PRJQUOTA:
7101 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7102 default:
7103 BUG();
7104 }
7105 }
7106
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7107 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7108 unsigned int flags)
7109 {
7110 int err;
7111 struct inode *qf_inode;
7112 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7113 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7114 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7115 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7116 };
7117
7118 BUG_ON(!ext4_has_feature_quota(sb));
7119
7120 if (!qf_inums[type])
7121 return -EPERM;
7122
7123 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7124 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7125 qf_inums[type], type);
7126 return -EUCLEAN;
7127 }
7128
7129 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7130 if (IS_ERR(qf_inode)) {
7131 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7132 qf_inums[type], type);
7133 return PTR_ERR(qf_inode);
7134 }
7135
7136 /* Don't account quota for quota files to avoid recursion */
7137 qf_inode->i_flags |= S_NOQUOTA;
7138 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7139 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7140 if (err)
7141 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7142 iput(qf_inode);
7143
7144 return err;
7145 }
7146
7147 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7148 int ext4_enable_quotas(struct super_block *sb)
7149 {
7150 int type, err = 0;
7151 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7152 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7153 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7154 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7155 };
7156 bool quota_mopt[EXT4_MAXQUOTAS] = {
7157 test_opt(sb, USRQUOTA),
7158 test_opt(sb, GRPQUOTA),
7159 test_opt(sb, PRJQUOTA),
7160 };
7161
7162 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7163 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7164 if (qf_inums[type]) {
7165 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7166 DQUOT_USAGE_ENABLED |
7167 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7168 if (err) {
7169 ext4_warning(sb,
7170 "Failed to enable quota tracking "
7171 "(type=%d, err=%d, ino=%lu). "
7172 "Please run e2fsck to fix.", type,
7173 err, qf_inums[type]);
7174
7175 ext4_quotas_off(sb, type);
7176 return err;
7177 }
7178 }
7179 }
7180 return 0;
7181 }
7182
ext4_quota_off(struct super_block * sb,int type)7183 static int ext4_quota_off(struct super_block *sb, int type)
7184 {
7185 struct inode *inode = sb_dqopt(sb)->files[type];
7186 handle_t *handle;
7187 int err;
7188
7189 /* Force all delayed allocation blocks to be allocated.
7190 * Caller already holds s_umount sem */
7191 if (test_opt(sb, DELALLOC))
7192 sync_filesystem(sb);
7193
7194 if (!inode || !igrab(inode))
7195 goto out;
7196
7197 err = dquot_quota_off(sb, type);
7198 if (err || ext4_has_feature_quota(sb))
7199 goto out_put;
7200 /*
7201 * When the filesystem was remounted read-only first, we cannot cleanup
7202 * inode flags here. Bad luck but people should be using QUOTA feature
7203 * these days anyway.
7204 */
7205 if (sb_rdonly(sb))
7206 goto out_put;
7207
7208 inode_lock(inode);
7209 /*
7210 * Update modification times of quota files when userspace can
7211 * start looking at them. If we fail, we return success anyway since
7212 * this is not a hard failure and quotas are already disabled.
7213 */
7214 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7215 if (IS_ERR(handle)) {
7216 err = PTR_ERR(handle);
7217 goto out_unlock;
7218 }
7219 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7220 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7221 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7222 err = ext4_mark_inode_dirty(handle, inode);
7223 ext4_journal_stop(handle);
7224 out_unlock:
7225 inode_unlock(inode);
7226 out_put:
7227 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7228 iput(inode);
7229 return err;
7230 out:
7231 return dquot_quota_off(sb, type);
7232 }
7233
7234 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7235 * acquiring the locks... As quota files are never truncated and quota code
7236 * itself serializes the operations (and no one else should touch the files)
7237 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7238 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7239 size_t len, loff_t off)
7240 {
7241 struct inode *inode = sb_dqopt(sb)->files[type];
7242 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7243 int offset = off & (sb->s_blocksize - 1);
7244 int tocopy;
7245 size_t toread;
7246 struct buffer_head *bh;
7247 loff_t i_size = i_size_read(inode);
7248
7249 if (off > i_size)
7250 return 0;
7251 if (off+len > i_size)
7252 len = i_size-off;
7253 toread = len;
7254 while (toread > 0) {
7255 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7256 bh = ext4_bread(NULL, inode, blk, 0);
7257 if (IS_ERR(bh))
7258 return PTR_ERR(bh);
7259 if (!bh) /* A hole? */
7260 memset(data, 0, tocopy);
7261 else
7262 memcpy(data, bh->b_data+offset, tocopy);
7263 brelse(bh);
7264 offset = 0;
7265 toread -= tocopy;
7266 data += tocopy;
7267 blk++;
7268 }
7269 return len;
7270 }
7271
7272 /* Write to quotafile (we know the transaction is already started and has
7273 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7274 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7275 const char *data, size_t len, loff_t off)
7276 {
7277 struct inode *inode = sb_dqopt(sb)->files[type];
7278 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7279 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7280 int retries = 0;
7281 struct buffer_head *bh;
7282 handle_t *handle = journal_current_handle();
7283
7284 if (!handle) {
7285 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7286 " cancelled because transaction is not started",
7287 (unsigned long long)off, (unsigned long long)len);
7288 return -EIO;
7289 }
7290 /*
7291 * Since we account only one data block in transaction credits,
7292 * then it is impossible to cross a block boundary.
7293 */
7294 if (sb->s_blocksize - offset < len) {
7295 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7296 " cancelled because not block aligned",
7297 (unsigned long long)off, (unsigned long long)len);
7298 return -EIO;
7299 }
7300
7301 do {
7302 bh = ext4_bread(handle, inode, blk,
7303 EXT4_GET_BLOCKS_CREATE |
7304 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7305 } while (PTR_ERR(bh) == -ENOSPC &&
7306 ext4_should_retry_alloc(inode->i_sb, &retries));
7307 if (IS_ERR(bh))
7308 return PTR_ERR(bh);
7309 if (!bh)
7310 goto out;
7311 BUFFER_TRACE(bh, "get write access");
7312 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7313 if (err) {
7314 brelse(bh);
7315 return err;
7316 }
7317 lock_buffer(bh);
7318 memcpy(bh->b_data+offset, data, len);
7319 flush_dcache_page(bh->b_page);
7320 unlock_buffer(bh);
7321 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7322 brelse(bh);
7323 out:
7324 if (inode->i_size < off + len) {
7325 i_size_write(inode, off + len);
7326 EXT4_I(inode)->i_disksize = inode->i_size;
7327 err2 = ext4_mark_inode_dirty(handle, inode);
7328 if (unlikely(err2 && !err))
7329 err = err2;
7330 }
7331 return err ? err : len;
7332 }
7333 #endif
7334
7335 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7336 static inline void register_as_ext2(void)
7337 {
7338 int err = register_filesystem(&ext2_fs_type);
7339 if (err)
7340 printk(KERN_WARNING
7341 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7342 }
7343
unregister_as_ext2(void)7344 static inline void unregister_as_ext2(void)
7345 {
7346 unregister_filesystem(&ext2_fs_type);
7347 }
7348
ext2_feature_set_ok(struct super_block * sb)7349 static inline int ext2_feature_set_ok(struct super_block *sb)
7350 {
7351 if (ext4_has_unknown_ext2_incompat_features(sb))
7352 return 0;
7353 if (sb_rdonly(sb))
7354 return 1;
7355 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7356 return 0;
7357 return 1;
7358 }
7359 #else
register_as_ext2(void)7360 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7361 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7362 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7363 #endif
7364
register_as_ext3(void)7365 static inline void register_as_ext3(void)
7366 {
7367 int err = register_filesystem(&ext3_fs_type);
7368 if (err)
7369 printk(KERN_WARNING
7370 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7371 }
7372
unregister_as_ext3(void)7373 static inline void unregister_as_ext3(void)
7374 {
7375 unregister_filesystem(&ext3_fs_type);
7376 }
7377
ext3_feature_set_ok(struct super_block * sb)7378 static inline int ext3_feature_set_ok(struct super_block *sb)
7379 {
7380 if (ext4_has_unknown_ext3_incompat_features(sb))
7381 return 0;
7382 if (!ext4_has_feature_journal(sb))
7383 return 0;
7384 if (sb_rdonly(sb))
7385 return 1;
7386 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7387 return 0;
7388 return 1;
7389 }
7390
ext4_kill_sb(struct super_block * sb)7391 static void ext4_kill_sb(struct super_block *sb)
7392 {
7393 struct ext4_sb_info *sbi = EXT4_SB(sb);
7394 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7395
7396 kill_block_super(sb);
7397
7398 if (journal_bdev)
7399 blkdev_put(journal_bdev, sb);
7400 }
7401
7402 static struct file_system_type ext4_fs_type = {
7403 .owner = THIS_MODULE,
7404 .name = "ext4",
7405 .init_fs_context = ext4_init_fs_context,
7406 .parameters = ext4_param_specs,
7407 .kill_sb = ext4_kill_sb,
7408 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7409 };
7410 MODULE_ALIAS_FS("ext4");
7411
7412 /* Shared across all ext4 file systems */
7413 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7414
ext4_init_fs(void)7415 static int __init ext4_init_fs(void)
7416 {
7417 int i, err;
7418
7419 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7420 ext4_li_info = NULL;
7421
7422 /* Build-time check for flags consistency */
7423 ext4_check_flag_values();
7424
7425 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7426 init_waitqueue_head(&ext4__ioend_wq[i]);
7427
7428 err = ext4_init_es();
7429 if (err)
7430 return err;
7431
7432 err = ext4_init_pending();
7433 if (err)
7434 goto out7;
7435
7436 err = ext4_init_post_read_processing();
7437 if (err)
7438 goto out6;
7439
7440 err = ext4_init_pageio();
7441 if (err)
7442 goto out5;
7443
7444 err = ext4_init_system_zone();
7445 if (err)
7446 goto out4;
7447
7448 err = ext4_init_sysfs();
7449 if (err)
7450 goto out3;
7451
7452 err = ext4_init_mballoc();
7453 if (err)
7454 goto out2;
7455 err = init_inodecache();
7456 if (err)
7457 goto out1;
7458
7459 err = ext4_fc_init_dentry_cache();
7460 if (err)
7461 goto out05;
7462
7463 register_as_ext3();
7464 register_as_ext2();
7465 err = register_filesystem(&ext4_fs_type);
7466 if (err)
7467 goto out;
7468
7469 return 0;
7470 out:
7471 unregister_as_ext2();
7472 unregister_as_ext3();
7473 ext4_fc_destroy_dentry_cache();
7474 out05:
7475 destroy_inodecache();
7476 out1:
7477 ext4_exit_mballoc();
7478 out2:
7479 ext4_exit_sysfs();
7480 out3:
7481 ext4_exit_system_zone();
7482 out4:
7483 ext4_exit_pageio();
7484 out5:
7485 ext4_exit_post_read_processing();
7486 out6:
7487 ext4_exit_pending();
7488 out7:
7489 ext4_exit_es();
7490
7491 return err;
7492 }
7493
ext4_exit_fs(void)7494 static void __exit ext4_exit_fs(void)
7495 {
7496 ext4_destroy_lazyinit_thread();
7497 unregister_as_ext2();
7498 unregister_as_ext3();
7499 unregister_filesystem(&ext4_fs_type);
7500 ext4_fc_destroy_dentry_cache();
7501 destroy_inodecache();
7502 ext4_exit_mballoc();
7503 ext4_exit_sysfs();
7504 ext4_exit_system_zone();
7505 ext4_exit_pageio();
7506 ext4_exit_post_read_processing();
7507 ext4_exit_es();
7508 ext4_exit_pending();
7509 }
7510
7511 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7512 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7513 MODULE_LICENSE("GPL");
7514 MODULE_SOFTDEP("pre: crc32c");
7515 module_init(ext4_init_fs)
7516 module_exit(ext4_exit_fs)
7517