xref: /openbmc/linux/fs/ext4/inode.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
ext4_inode_is_fast_symlink(struct inode * inode)146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151 
152 		if (ext4_has_inline_data(inode))
153 			return 0;
154 
155 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 	}
157 	return S_ISLNK(inode->i_mode) && inode->i_size &&
158 	       (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160 
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
ext4_evict_inode(struct inode * inode)164 void ext4_evict_inode(struct inode *inode)
165 {
166 	handle_t *handle;
167 	int err;
168 	/*
169 	 * Credits for final inode cleanup and freeing:
170 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 	 */
173 	int extra_credits = 6;
174 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 	bool freeze_protected = false;
176 
177 	trace_ext4_evict_inode(inode);
178 
179 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 		ext4_evict_ea_inode(inode);
181 	if (inode->i_nlink) {
182 		truncate_inode_pages_final(&inode->i_data);
183 
184 		goto no_delete;
185 	}
186 
187 	if (is_bad_inode(inode))
188 		goto no_delete;
189 	dquot_initialize(inode);
190 
191 	if (ext4_should_order_data(inode))
192 		ext4_begin_ordered_truncate(inode, 0);
193 	truncate_inode_pages_final(&inode->i_data);
194 
195 	/*
196 	 * For inodes with journalled data, transaction commit could have
197 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 	 * extents converting worker could merge extents and also have dirtied
199 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 	 * we still need to remove the inode from the writeback lists.
201 	 */
202 	if (!list_empty_careful(&inode->i_io_list))
203 		inode_io_list_del(inode);
204 
205 	/*
206 	 * Protect us against freezing - iput() caller didn't have to have any
207 	 * protection against it. When we are in a running transaction though,
208 	 * we are already protected against freezing and we cannot grab further
209 	 * protection due to lock ordering constraints.
210 	 */
211 	if (!ext4_journal_current_handle()) {
212 		sb_start_intwrite(inode->i_sb);
213 		freeze_protected = true;
214 	}
215 
216 	if (!IS_NOQUOTA(inode))
217 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218 
219 	/*
220 	 * Block bitmap, group descriptor, and inode are accounted in both
221 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 	 */
223 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 	if (IS_ERR(handle)) {
226 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 		/*
228 		 * If we're going to skip the normal cleanup, we still need to
229 		 * make sure that the in-core orphan linked list is properly
230 		 * cleaned up.
231 		 */
232 		ext4_orphan_del(NULL, inode);
233 		if (freeze_protected)
234 			sb_end_intwrite(inode->i_sb);
235 		goto no_delete;
236 	}
237 
238 	if (IS_SYNC(inode))
239 		ext4_handle_sync(handle);
240 
241 	/*
242 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 	 * special handling of symlinks here because i_size is used to
244 	 * determine whether ext4_inode_info->i_data contains symlink data or
245 	 * block mappings. Setting i_size to 0 will remove its fast symlink
246 	 * status. Erase i_data so that it becomes a valid empty block map.
247 	 */
248 	if (ext4_inode_is_fast_symlink(inode))
249 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 	inode->i_size = 0;
251 	err = ext4_mark_inode_dirty(handle, inode);
252 	if (err) {
253 		ext4_warning(inode->i_sb,
254 			     "couldn't mark inode dirty (err %d)", err);
255 		goto stop_handle;
256 	}
257 	if (inode->i_blocks) {
258 		err = ext4_truncate(inode);
259 		if (err) {
260 			ext4_error_err(inode->i_sb, -err,
261 				       "couldn't truncate inode %lu (err %d)",
262 				       inode->i_ino, err);
263 			goto stop_handle;
264 		}
265 	}
266 
267 	/* Remove xattr references. */
268 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 				      extra_credits);
270 	if (err) {
271 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 		ext4_journal_stop(handle);
274 		ext4_orphan_del(NULL, inode);
275 		if (freeze_protected)
276 			sb_end_intwrite(inode->i_sb);
277 		ext4_xattr_inode_array_free(ea_inode_array);
278 		goto no_delete;
279 	}
280 
281 	/*
282 	 * Kill off the orphan record which ext4_truncate created.
283 	 * AKPM: I think this can be inside the above `if'.
284 	 * Note that ext4_orphan_del() has to be able to cope with the
285 	 * deletion of a non-existent orphan - this is because we don't
286 	 * know if ext4_truncate() actually created an orphan record.
287 	 * (Well, we could do this if we need to, but heck - it works)
288 	 */
289 	ext4_orphan_del(handle, inode);
290 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
291 
292 	/*
293 	 * One subtle ordering requirement: if anything has gone wrong
294 	 * (transaction abort, IO errors, whatever), then we can still
295 	 * do these next steps (the fs will already have been marked as
296 	 * having errors), but we can't free the inode if the mark_dirty
297 	 * fails.
298 	 */
299 	if (ext4_mark_inode_dirty(handle, inode))
300 		/* If that failed, just do the required in-core inode clear. */
301 		ext4_clear_inode(inode);
302 	else
303 		ext4_free_inode(handle, inode);
304 	ext4_journal_stop(handle);
305 	if (freeze_protected)
306 		sb_end_intwrite(inode->i_sb);
307 	ext4_xattr_inode_array_free(ea_inode_array);
308 	return;
309 no_delete:
310 	/*
311 	 * Check out some where else accidentally dirty the evicting inode,
312 	 * which may probably cause inode use-after-free issues later.
313 	 */
314 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315 
316 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
319 }
320 
321 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 	return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327 
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)332 void ext4_da_update_reserve_space(struct inode *inode,
333 					int used, int quota_claim)
334 {
335 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 	struct ext4_inode_info *ei = EXT4_I(inode);
337 
338 	spin_lock(&ei->i_block_reservation_lock);
339 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 	if (unlikely(used > ei->i_reserved_data_blocks)) {
341 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 			 "with only %d reserved data blocks",
343 			 __func__, inode->i_ino, used,
344 			 ei->i_reserved_data_blocks);
345 		WARN_ON(1);
346 		used = ei->i_reserved_data_blocks;
347 	}
348 
349 	/* Update per-inode reservations */
350 	ei->i_reserved_data_blocks -= used;
351 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 
353 	spin_unlock(&ei->i_block_reservation_lock);
354 
355 	/* Update quota subsystem for data blocks */
356 	if (quota_claim)
357 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 	else {
359 		/*
360 		 * We did fallocate with an offset that is already delayed
361 		 * allocated. So on delayed allocated writeback we should
362 		 * not re-claim the quota for fallocated blocks.
363 		 */
364 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 	}
366 
367 	/*
368 	 * If we have done all the pending block allocations and if
369 	 * there aren't any writers on the inode, we can discard the
370 	 * inode's preallocations.
371 	 */
372 	if ((ei->i_reserved_data_blocks == 0) &&
373 	    !inode_is_open_for_write(inode))
374 		ext4_discard_preallocations(inode, 0);
375 }
376 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)377 static int __check_block_validity(struct inode *inode, const char *func,
378 				unsigned int line,
379 				struct ext4_map_blocks *map)
380 {
381 	if (ext4_has_feature_journal(inode->i_sb) &&
382 	    (inode->i_ino ==
383 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 		return 0;
385 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 		ext4_error_inode(inode, func, line, map->m_pblk,
387 				 "lblock %lu mapped to illegal pblock %llu "
388 				 "(length %d)", (unsigned long) map->m_lblk,
389 				 map->m_pblk, map->m_len);
390 		return -EFSCORRUPTED;
391 	}
392 	return 0;
393 }
394 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 		       ext4_lblk_t len)
397 {
398 	int ret;
399 
400 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
402 
403 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 	if (ret > 0)
405 		ret = 0;
406 
407 	return ret;
408 }
409 
410 #define check_block_validity(inode, map)	\
411 	__check_block_validity((inode), __func__, __LINE__, (map))
412 
413 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 				       struct inode *inode,
416 				       struct ext4_map_blocks *es_map,
417 				       struct ext4_map_blocks *map,
418 				       int flags)
419 {
420 	int retval;
421 
422 	map->m_flags = 0;
423 	/*
424 	 * There is a race window that the result is not the same.
425 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
426 	 * is that we lookup a block mapping in extent status tree with
427 	 * out taking i_data_sem.  So at the time the unwritten extent
428 	 * could be converted.
429 	 */
430 	down_read(&EXT4_I(inode)->i_data_sem);
431 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 	} else {
434 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 	}
436 	up_read((&EXT4_I(inode)->i_data_sem));
437 
438 	/*
439 	 * We don't check m_len because extent will be collpased in status
440 	 * tree.  So the m_len might not equal.
441 	 */
442 	if (es_map->m_lblk != map->m_lblk ||
443 	    es_map->m_flags != map->m_flags ||
444 	    es_map->m_pblk != map->m_pblk) {
445 		printk("ES cache assertion failed for inode: %lu "
446 		       "es_cached ex [%d/%d/%llu/%x] != "
447 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
449 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 		       map->m_len, map->m_pblk, map->m_flags,
451 		       retval, flags);
452 	}
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
457 				 struct ext4_map_blocks *map)
458 {
459 	unsigned int status;
460 	int retval;
461 
462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
463 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 	else
465 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 
467 	if (retval <= 0)
468 		return retval;
469 
470 	if (unlikely(retval != map->m_len)) {
471 		ext4_warning(inode->i_sb,
472 			     "ES len assertion failed for inode "
473 			     "%lu: retval %d != map->m_len %d",
474 			     inode->i_ino, retval, map->m_len);
475 		WARN_ON(1);
476 	}
477 
478 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
479 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
480 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
481 			      map->m_pblk, status);
482 	return retval;
483 }
484 
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocated.  if
498  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
499  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
500  *
501  * It returns 0 if plain look up failed (blocks have not been allocated), in
502  * that case, @map is returned as unmapped but we still do fill map->m_len to
503  * indicate the length of a hole starting at map->m_lblk.
504  *
505  * It returns the error in case of allocation failure.
506  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 		    struct ext4_map_blocks *map, int flags)
509 {
510 	struct extent_status es;
511 	int retval;
512 	int ret = 0;
513 #ifdef ES_AGGRESSIVE_TEST
514 	struct ext4_map_blocks orig_map;
515 
516 	memcpy(&orig_map, map, sizeof(*map));
517 #endif
518 
519 	map->m_flags = 0;
520 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
521 		  flags, map->m_len, (unsigned long) map->m_lblk);
522 
523 	/*
524 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
525 	 */
526 	if (unlikely(map->m_len > INT_MAX))
527 		map->m_len = INT_MAX;
528 
529 	/* We can handle the block number less than EXT_MAX_BLOCKS */
530 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
531 		return -EFSCORRUPTED;
532 
533 	/* Lookup extent status tree firstly */
534 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
535 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
536 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
537 			map->m_pblk = ext4_es_pblock(&es) +
538 					map->m_lblk - es.es_lblk;
539 			map->m_flags |= ext4_es_is_written(&es) ?
540 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
546 			map->m_pblk = 0;
547 			retval = es.es_len - (map->m_lblk - es.es_lblk);
548 			if (retval > map->m_len)
549 				retval = map->m_len;
550 			map->m_len = retval;
551 			retval = 0;
552 		} else {
553 			BUG();
554 		}
555 
556 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
557 			return retval;
558 #ifdef ES_AGGRESSIVE_TEST
559 		ext4_map_blocks_es_recheck(handle, inode, map,
560 					   &orig_map, flags);
561 #endif
562 		goto found;
563 	}
564 	/*
565 	 * In the query cache no-wait mode, nothing we can do more if we
566 	 * cannot find extent in the cache.
567 	 */
568 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
569 		return 0;
570 
571 	/*
572 	 * Try to see if we can get the block without requesting a new
573 	 * file system block.
574 	 */
575 	down_read(&EXT4_I(inode)->i_data_sem);
576 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
577 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
578 	} else {
579 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
580 	}
581 	if (retval > 0) {
582 		unsigned int status;
583 
584 		if (unlikely(retval != map->m_len)) {
585 			ext4_warning(inode->i_sb,
586 				     "ES len assertion failed for inode "
587 				     "%lu: retval %d != map->m_len %d",
588 				     inode->i_ino, retval, map->m_len);
589 			WARN_ON(1);
590 		}
591 
592 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
593 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
594 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
595 		    !(status & EXTENT_STATUS_WRITTEN) &&
596 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
597 				       map->m_lblk + map->m_len - 1))
598 			status |= EXTENT_STATUS_DELAYED;
599 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
600 				      map->m_pblk, status);
601 	}
602 	up_read((&EXT4_I(inode)->i_data_sem));
603 
604 found:
605 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
606 		ret = check_block_validity(inode, map);
607 		if (ret != 0)
608 			return ret;
609 	}
610 
611 	/* If it is only a block(s) look up */
612 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
613 		return retval;
614 
615 	/*
616 	 * Returns if the blocks have already allocated
617 	 *
618 	 * Note that if blocks have been preallocated
619 	 * ext4_ext_get_block() returns the create = 0
620 	 * with buffer head unmapped.
621 	 */
622 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
623 		/*
624 		 * If we need to convert extent to unwritten
625 		 * we continue and do the actual work in
626 		 * ext4_ext_map_blocks()
627 		 */
628 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
629 			return retval;
630 
631 	/*
632 	 * Here we clear m_flags because after allocating an new extent,
633 	 * it will be set again.
634 	 */
635 	map->m_flags &= ~EXT4_MAP_FLAGS;
636 
637 	/*
638 	 * New blocks allocate and/or writing to unwritten extent
639 	 * will possibly result in updating i_data, so we take
640 	 * the write lock of i_data_sem, and call get_block()
641 	 * with create == 1 flag.
642 	 */
643 	down_write(&EXT4_I(inode)->i_data_sem);
644 
645 	/*
646 	 * We need to check for EXT4 here because migrate
647 	 * could have changed the inode type in between
648 	 */
649 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
650 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
651 	} else {
652 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
653 
654 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
655 			/*
656 			 * We allocated new blocks which will result in
657 			 * i_data's format changing.  Force the migrate
658 			 * to fail by clearing migrate flags
659 			 */
660 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
661 		}
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 				      map->m_pblk, status);
711 	}
712 
713 out_sem:
714 	up_write((&EXT4_I(inode)->i_data_sem));
715 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 		ret = check_block_validity(inode, map);
717 		if (ret != 0)
718 			return ret;
719 
720 		/*
721 		 * Inodes with freshly allocated blocks where contents will be
722 		 * visible after transaction commit must be on transaction's
723 		 * ordered data list.
724 		 */
725 		if (map->m_flags & EXT4_MAP_NEW &&
726 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 		    !ext4_is_quota_file(inode) &&
729 		    ext4_should_order_data(inode)) {
730 			loff_t start_byte =
731 				(loff_t)map->m_lblk << inode->i_blkbits;
732 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733 
734 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 				ret = ext4_jbd2_inode_add_wait(handle, inode,
736 						start_byte, length);
737 			else
738 				ret = ext4_jbd2_inode_add_write(handle, inode,
739 						start_byte, length);
740 			if (ret)
741 				return ret;
742 		}
743 	}
744 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745 				map->m_flags & EXT4_MAP_MAPPED))
746 		ext4_fc_track_range(handle, inode, map->m_lblk,
747 					map->m_lblk + map->m_len - 1);
748 	if (retval < 0)
749 		ext_debug(inode, "failed with err %d\n", retval);
750 	return retval;
751 }
752 
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 	unsigned long old_state;
760 	unsigned long new_state;
761 
762 	flags &= EXT4_MAP_FLAGS;
763 
764 	/* Dummy buffer_head? Set non-atomically. */
765 	if (!bh->b_page) {
766 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 		return;
768 	}
769 	/*
770 	 * Someone else may be modifying b_state. Be careful! This is ugly but
771 	 * once we get rid of using bh as a container for mapping information
772 	 * to pass to / from get_block functions, this can go away.
773 	 */
774 	old_state = READ_ONCE(bh->b_state);
775 	do {
776 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
778 }
779 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)780 static int _ext4_get_block(struct inode *inode, sector_t iblock,
781 			   struct buffer_head *bh, int flags)
782 {
783 	struct ext4_map_blocks map;
784 	int ret = 0;
785 
786 	if (ext4_has_inline_data(inode))
787 		return -ERANGE;
788 
789 	map.m_lblk = iblock;
790 	map.m_len = bh->b_size >> inode->i_blkbits;
791 
792 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793 			      flags);
794 	if (ret > 0) {
795 		map_bh(bh, inode->i_sb, map.m_pblk);
796 		ext4_update_bh_state(bh, map.m_flags);
797 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798 		ret = 0;
799 	} else if (ret == 0) {
800 		/* hole case, need to fill in bh->b_size */
801 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802 	}
803 	return ret;
804 }
805 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)806 int ext4_get_block(struct inode *inode, sector_t iblock,
807 		   struct buffer_head *bh, int create)
808 {
809 	return _ext4_get_block(inode, iblock, bh,
810 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
811 }
812 
813 /*
814  * Get block function used when preparing for buffered write if we require
815  * creating an unwritten extent if blocks haven't been allocated.  The extent
816  * will be converted to written after the IO is complete.
817  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819 			     struct buffer_head *bh_result, int create)
820 {
821 	int ret = 0;
822 
823 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 		   inode->i_ino, create);
825 	ret = _ext4_get_block(inode, iblock, bh_result,
826 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
827 
828 	/*
829 	 * If the buffer is marked unwritten, mark it as new to make sure it is
830 	 * zeroed out correctly in case of partial writes. Otherwise, there is
831 	 * a chance of stale data getting exposed.
832 	 */
833 	if (ret == 0 && buffer_unwritten(bh_result))
834 		set_buffer_new(bh_result);
835 
836 	return ret;
837 }
838 
839 /* Maximum number of blocks we map for direct IO at once. */
840 #define DIO_MAX_BLOCKS 4096
841 
842 /*
843  * `handle' can be NULL if create is zero
844  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)845 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
846 				ext4_lblk_t block, int map_flags)
847 {
848 	struct ext4_map_blocks map;
849 	struct buffer_head *bh;
850 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
851 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
852 	int err;
853 
854 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
855 		    || handle != NULL || create == 0);
856 	ASSERT(create == 0 || !nowait);
857 
858 	map.m_lblk = block;
859 	map.m_len = 1;
860 	err = ext4_map_blocks(handle, inode, &map, map_flags);
861 
862 	if (err == 0)
863 		return create ? ERR_PTR(-ENOSPC) : NULL;
864 	if (err < 0)
865 		return ERR_PTR(err);
866 
867 	if (nowait)
868 		return sb_find_get_block(inode->i_sb, map.m_pblk);
869 
870 	bh = sb_getblk(inode->i_sb, map.m_pblk);
871 	if (unlikely(!bh))
872 		return ERR_PTR(-ENOMEM);
873 	if (map.m_flags & EXT4_MAP_NEW) {
874 		ASSERT(create != 0);
875 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
876 			    || (handle != NULL));
877 
878 		/*
879 		 * Now that we do not always journal data, we should
880 		 * keep in mind whether this should always journal the
881 		 * new buffer as metadata.  For now, regular file
882 		 * writes use ext4_get_block instead, so it's not a
883 		 * problem.
884 		 */
885 		lock_buffer(bh);
886 		BUFFER_TRACE(bh, "call get_create_access");
887 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
888 						     EXT4_JTR_NONE);
889 		if (unlikely(err)) {
890 			unlock_buffer(bh);
891 			goto errout;
892 		}
893 		if (!buffer_uptodate(bh)) {
894 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
895 			set_buffer_uptodate(bh);
896 		}
897 		unlock_buffer(bh);
898 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
899 		err = ext4_handle_dirty_metadata(handle, inode, bh);
900 		if (unlikely(err))
901 			goto errout;
902 	} else
903 		BUFFER_TRACE(bh, "not a new buffer");
904 	return bh;
905 errout:
906 	brelse(bh);
907 	return ERR_PTR(err);
908 }
909 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
911 			       ext4_lblk_t block, int map_flags)
912 {
913 	struct buffer_head *bh;
914 	int ret;
915 
916 	bh = ext4_getblk(handle, inode, block, map_flags);
917 	if (IS_ERR(bh))
918 		return bh;
919 	if (!bh || ext4_buffer_uptodate(bh))
920 		return bh;
921 
922 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
923 	if (ret) {
924 		put_bh(bh);
925 		return ERR_PTR(ret);
926 	}
927 	return bh;
928 }
929 
930 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
932 		     bool wait, struct buffer_head **bhs)
933 {
934 	int i, err;
935 
936 	for (i = 0; i < bh_count; i++) {
937 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
938 		if (IS_ERR(bhs[i])) {
939 			err = PTR_ERR(bhs[i]);
940 			bh_count = i;
941 			goto out_brelse;
942 		}
943 	}
944 
945 	for (i = 0; i < bh_count; i++)
946 		/* Note that NULL bhs[i] is valid because of holes. */
947 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
948 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
949 
950 	if (!wait)
951 		return 0;
952 
953 	for (i = 0; i < bh_count; i++)
954 		if (bhs[i])
955 			wait_on_buffer(bhs[i]);
956 
957 	for (i = 0; i < bh_count; i++) {
958 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
959 			err = -EIO;
960 			goto out_brelse;
961 		}
962 	}
963 	return 0;
964 
965 out_brelse:
966 	for (i = 0; i < bh_count; i++) {
967 		brelse(bhs[i]);
968 		bhs[i] = NULL;
969 	}
970 	return err;
971 }
972 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
974 			   struct buffer_head *head,
975 			   unsigned from,
976 			   unsigned to,
977 			   int *partial,
978 			   int (*fn)(handle_t *handle, struct inode *inode,
979 				     struct buffer_head *bh))
980 {
981 	struct buffer_head *bh;
982 	unsigned block_start, block_end;
983 	unsigned blocksize = head->b_size;
984 	int err, ret = 0;
985 	struct buffer_head *next;
986 
987 	for (bh = head, block_start = 0;
988 	     ret == 0 && (bh != head || !block_start);
989 	     block_start = block_end, bh = next) {
990 		next = bh->b_this_page;
991 		block_end = block_start + blocksize;
992 		if (block_end <= from || block_start >= to) {
993 			if (partial && !buffer_uptodate(bh))
994 				*partial = 1;
995 			continue;
996 		}
997 		err = (*fn)(handle, inode, bh);
998 		if (!ret)
999 			ret = err;
1000 	}
1001 	return ret;
1002 }
1003 
1004 /*
1005  * Helper for handling dirtying of journalled data. We also mark the folio as
1006  * dirty so that writeback code knows about this page (and inode) contains
1007  * dirty data. ext4_writepages() then commits appropriate transaction to
1008  * make data stable.
1009  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1011 {
1012 	folio_mark_dirty(bh->b_folio);
1013 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1014 }
1015 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1017 				struct buffer_head *bh)
1018 {
1019 	int dirty = buffer_dirty(bh);
1020 	int ret;
1021 
1022 	if (!buffer_mapped(bh) || buffer_freed(bh))
1023 		return 0;
1024 	/*
1025 	 * __block_write_begin() could have dirtied some buffers. Clean
1026 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1027 	 * otherwise about fs integrity issues. Setting of the dirty bit
1028 	 * by __block_write_begin() isn't a real problem here as we clear
1029 	 * the bit before releasing a page lock and thus writeback cannot
1030 	 * ever write the buffer.
1031 	 */
1032 	if (dirty)
1033 		clear_buffer_dirty(bh);
1034 	BUFFER_TRACE(bh, "get write access");
1035 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1036 					    EXT4_JTR_NONE);
1037 	if (!ret && dirty)
1038 		ret = ext4_dirty_journalled_data(handle, bh);
1039 	return ret;
1040 }
1041 
1042 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1043 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1044 				  get_block_t *get_block)
1045 {
1046 	unsigned from = pos & (PAGE_SIZE - 1);
1047 	unsigned to = from + len;
1048 	struct inode *inode = folio->mapping->host;
1049 	unsigned block_start, block_end;
1050 	sector_t block;
1051 	int err = 0;
1052 	unsigned blocksize = inode->i_sb->s_blocksize;
1053 	unsigned bbits;
1054 	struct buffer_head *bh, *head, *wait[2];
1055 	int nr_wait = 0;
1056 	int i;
1057 
1058 	BUG_ON(!folio_test_locked(folio));
1059 	BUG_ON(from > PAGE_SIZE);
1060 	BUG_ON(to > PAGE_SIZE);
1061 	BUG_ON(from > to);
1062 
1063 	head = folio_buffers(folio);
1064 	if (!head) {
1065 		create_empty_buffers(&folio->page, blocksize, 0);
1066 		head = folio_buffers(folio);
1067 	}
1068 	bbits = ilog2(blocksize);
1069 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1070 
1071 	for (bh = head, block_start = 0; bh != head || !block_start;
1072 	    block++, block_start = block_end, bh = bh->b_this_page) {
1073 		block_end = block_start + blocksize;
1074 		if (block_end <= from || block_start >= to) {
1075 			if (folio_test_uptodate(folio)) {
1076 				set_buffer_uptodate(bh);
1077 			}
1078 			continue;
1079 		}
1080 		if (buffer_new(bh))
1081 			clear_buffer_new(bh);
1082 		if (!buffer_mapped(bh)) {
1083 			WARN_ON(bh->b_size != blocksize);
1084 			err = get_block(inode, block, bh, 1);
1085 			if (err)
1086 				break;
1087 			if (buffer_new(bh)) {
1088 				if (folio_test_uptodate(folio)) {
1089 					clear_buffer_new(bh);
1090 					set_buffer_uptodate(bh);
1091 					mark_buffer_dirty(bh);
1092 					continue;
1093 				}
1094 				if (block_end > to || block_start < from)
1095 					folio_zero_segments(folio, to,
1096 							    block_end,
1097 							    block_start, from);
1098 				continue;
1099 			}
1100 		}
1101 		if (folio_test_uptodate(folio)) {
1102 			set_buffer_uptodate(bh);
1103 			continue;
1104 		}
1105 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1106 		    !buffer_unwritten(bh) &&
1107 		    (block_start < from || block_end > to)) {
1108 			ext4_read_bh_lock(bh, 0, false);
1109 			wait[nr_wait++] = bh;
1110 		}
1111 	}
1112 	/*
1113 	 * If we issued read requests, let them complete.
1114 	 */
1115 	for (i = 0; i < nr_wait; i++) {
1116 		wait_on_buffer(wait[i]);
1117 		if (!buffer_uptodate(wait[i]))
1118 			err = -EIO;
1119 	}
1120 	if (unlikely(err)) {
1121 		folio_zero_new_buffers(folio, from, to);
1122 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1123 		for (i = 0; i < nr_wait; i++) {
1124 			int err2;
1125 
1126 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1127 						blocksize, bh_offset(wait[i]));
1128 			if (err2) {
1129 				clear_buffer_uptodate(wait[i]);
1130 				err = err2;
1131 			}
1132 		}
1133 	}
1134 
1135 	return err;
1136 }
1137 #endif
1138 
1139 /*
1140  * To preserve ordering, it is essential that the hole instantiation and
1141  * the data write be encapsulated in a single transaction.  We cannot
1142  * close off a transaction and start a new one between the ext4_get_block()
1143  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1144  * ext4_write_begin() is the right place.
1145  */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147 			    loff_t pos, unsigned len,
1148 			    struct page **pagep, void **fsdata)
1149 {
1150 	struct inode *inode = mapping->host;
1151 	int ret, needed_blocks;
1152 	handle_t *handle;
1153 	int retries = 0;
1154 	struct folio *folio;
1155 	pgoff_t index;
1156 	unsigned from, to;
1157 
1158 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1159 		return -EIO;
1160 
1161 	trace_ext4_write_begin(inode, pos, len);
1162 	/*
1163 	 * Reserve one block more for addition to orphan list in case
1164 	 * we allocate blocks but write fails for some reason
1165 	 */
1166 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167 	index = pos >> PAGE_SHIFT;
1168 	from = pos & (PAGE_SIZE - 1);
1169 	to = from + len;
1170 
1171 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173 						    pagep);
1174 		if (ret < 0)
1175 			return ret;
1176 		if (ret == 1)
1177 			return 0;
1178 	}
1179 
1180 	/*
1181 	 * __filemap_get_folio() can take a long time if the
1182 	 * system is thrashing due to memory pressure, or if the folio
1183 	 * is being written back.  So grab it first before we start
1184 	 * the transaction handle.  This also allows us to allocate
1185 	 * the folio (if needed) without using GFP_NOFS.
1186 	 */
1187 retry_grab:
1188 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1189 					mapping_gfp_mask(mapping));
1190 	if (IS_ERR(folio))
1191 		return PTR_ERR(folio);
1192 	/*
1193 	 * The same as page allocation, we prealloc buffer heads before
1194 	 * starting the handle.
1195 	 */
1196 	if (!folio_buffers(folio))
1197 		create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1198 
1199 	folio_unlock(folio);
1200 
1201 retry_journal:
1202 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1203 	if (IS_ERR(handle)) {
1204 		folio_put(folio);
1205 		return PTR_ERR(handle);
1206 	}
1207 
1208 	folio_lock(folio);
1209 	if (folio->mapping != mapping) {
1210 		/* The folio got truncated from under us */
1211 		folio_unlock(folio);
1212 		folio_put(folio);
1213 		ext4_journal_stop(handle);
1214 		goto retry_grab;
1215 	}
1216 	/* In case writeback began while the folio was unlocked */
1217 	folio_wait_stable(folio);
1218 
1219 #ifdef CONFIG_FS_ENCRYPTION
1220 	if (ext4_should_dioread_nolock(inode))
1221 		ret = ext4_block_write_begin(folio, pos, len,
1222 					     ext4_get_block_unwritten);
1223 	else
1224 		ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1225 #else
1226 	if (ext4_should_dioread_nolock(inode))
1227 		ret = __block_write_begin(&folio->page, pos, len,
1228 					  ext4_get_block_unwritten);
1229 	else
1230 		ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1231 #endif
1232 	if (!ret && ext4_should_journal_data(inode)) {
1233 		ret = ext4_walk_page_buffers(handle, inode,
1234 					     folio_buffers(folio), from, to,
1235 					     NULL, do_journal_get_write_access);
1236 	}
1237 
1238 	if (ret) {
1239 		bool extended = (pos + len > inode->i_size) &&
1240 				!ext4_verity_in_progress(inode);
1241 
1242 		folio_unlock(folio);
1243 		/*
1244 		 * __block_write_begin may have instantiated a few blocks
1245 		 * outside i_size.  Trim these off again. Don't need
1246 		 * i_size_read because we hold i_rwsem.
1247 		 *
1248 		 * Add inode to orphan list in case we crash before
1249 		 * truncate finishes
1250 		 */
1251 		if (extended && ext4_can_truncate(inode))
1252 			ext4_orphan_add(handle, inode);
1253 
1254 		ext4_journal_stop(handle);
1255 		if (extended) {
1256 			ext4_truncate_failed_write(inode);
1257 			/*
1258 			 * If truncate failed early the inode might
1259 			 * still be on the orphan list; we need to
1260 			 * make sure the inode is removed from the
1261 			 * orphan list in that case.
1262 			 */
1263 			if (inode->i_nlink)
1264 				ext4_orphan_del(NULL, inode);
1265 		}
1266 
1267 		if (ret == -ENOSPC &&
1268 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1269 			goto retry_journal;
1270 		folio_put(folio);
1271 		return ret;
1272 	}
1273 	*pagep = &folio->page;
1274 	return ret;
1275 }
1276 
1277 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1278 static int write_end_fn(handle_t *handle, struct inode *inode,
1279 			struct buffer_head *bh)
1280 {
1281 	int ret;
1282 	if (!buffer_mapped(bh) || buffer_freed(bh))
1283 		return 0;
1284 	set_buffer_uptodate(bh);
1285 	ret = ext4_dirty_journalled_data(handle, bh);
1286 	clear_buffer_meta(bh);
1287 	clear_buffer_prio(bh);
1288 	return ret;
1289 }
1290 
1291 /*
1292  * We need to pick up the new inode size which generic_commit_write gave us
1293  * `file' can be NULL - eg, when called from page_symlink().
1294  *
1295  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1296  * buffers are managed internally.
1297  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1298 static int ext4_write_end(struct file *file,
1299 			  struct address_space *mapping,
1300 			  loff_t pos, unsigned len, unsigned copied,
1301 			  struct page *page, void *fsdata)
1302 {
1303 	struct folio *folio = page_folio(page);
1304 	handle_t *handle = ext4_journal_current_handle();
1305 	struct inode *inode = mapping->host;
1306 	loff_t old_size = inode->i_size;
1307 	int ret = 0, ret2;
1308 	int i_size_changed = 0;
1309 	bool verity = ext4_verity_in_progress(inode);
1310 
1311 	trace_ext4_write_end(inode, pos, len, copied);
1312 
1313 	if (ext4_has_inline_data(inode) &&
1314 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1315 		return ext4_write_inline_data_end(inode, pos, len, copied,
1316 						  folio);
1317 
1318 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1319 	/*
1320 	 * it's important to update i_size while still holding folio lock:
1321 	 * page writeout could otherwise come in and zero beyond i_size.
1322 	 *
1323 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1324 	 * blocks are being written past EOF, so skip the i_size update.
1325 	 */
1326 	if (!verity)
1327 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1328 	folio_unlock(folio);
1329 	folio_put(folio);
1330 
1331 	if (old_size < pos && !verity) {
1332 		pagecache_isize_extended(inode, old_size, pos);
1333 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1334 	}
1335 	/*
1336 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1337 	 * makes the holding time of folio lock longer. Second, it forces lock
1338 	 * ordering of folio lock and transaction start for journaling
1339 	 * filesystems.
1340 	 */
1341 	if (i_size_changed)
1342 		ret = ext4_mark_inode_dirty(handle, inode);
1343 
1344 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1345 		/* if we have allocated more blocks and copied
1346 		 * less. We will have blocks allocated outside
1347 		 * inode->i_size. So truncate them
1348 		 */
1349 		ext4_orphan_add(handle, inode);
1350 
1351 	ret2 = ext4_journal_stop(handle);
1352 	if (!ret)
1353 		ret = ret2;
1354 
1355 	if (pos + len > inode->i_size && !verity) {
1356 		ext4_truncate_failed_write(inode);
1357 		/*
1358 		 * If truncate failed early the inode might still be
1359 		 * on the orphan list; we need to make sure the inode
1360 		 * is removed from the orphan list in that case.
1361 		 */
1362 		if (inode->i_nlink)
1363 			ext4_orphan_del(NULL, inode);
1364 	}
1365 
1366 	return ret ? ret : copied;
1367 }
1368 
1369 /*
1370  * This is a private version of folio_zero_new_buffers() which doesn't
1371  * set the buffer to be dirty, since in data=journalled mode we need
1372  * to call ext4_dirty_journalled_data() instead.
1373  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1374 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1375 					    struct inode *inode,
1376 					    struct folio *folio,
1377 					    unsigned from, unsigned to)
1378 {
1379 	unsigned int block_start = 0, block_end;
1380 	struct buffer_head *head, *bh;
1381 
1382 	bh = head = folio_buffers(folio);
1383 	do {
1384 		block_end = block_start + bh->b_size;
1385 		if (buffer_new(bh)) {
1386 			if (block_end > from && block_start < to) {
1387 				if (!folio_test_uptodate(folio)) {
1388 					unsigned start, size;
1389 
1390 					start = max(from, block_start);
1391 					size = min(to, block_end) - start;
1392 
1393 					folio_zero_range(folio, start, size);
1394 					write_end_fn(handle, inode, bh);
1395 				}
1396 				clear_buffer_new(bh);
1397 			}
1398 		}
1399 		block_start = block_end;
1400 		bh = bh->b_this_page;
1401 	} while (bh != head);
1402 }
1403 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1404 static int ext4_journalled_write_end(struct file *file,
1405 				     struct address_space *mapping,
1406 				     loff_t pos, unsigned len, unsigned copied,
1407 				     struct page *page, void *fsdata)
1408 {
1409 	struct folio *folio = page_folio(page);
1410 	handle_t *handle = ext4_journal_current_handle();
1411 	struct inode *inode = mapping->host;
1412 	loff_t old_size = inode->i_size;
1413 	int ret = 0, ret2;
1414 	int partial = 0;
1415 	unsigned from, to;
1416 	int size_changed = 0;
1417 	bool verity = ext4_verity_in_progress(inode);
1418 
1419 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1420 	from = pos & (PAGE_SIZE - 1);
1421 	to = from + len;
1422 
1423 	BUG_ON(!ext4_handle_valid(handle));
1424 
1425 	if (ext4_has_inline_data(inode))
1426 		return ext4_write_inline_data_end(inode, pos, len, copied,
1427 						  folio);
1428 
1429 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1430 		copied = 0;
1431 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1432 						 from, to);
1433 	} else {
1434 		if (unlikely(copied < len))
1435 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1436 							 from + copied, to);
1437 		ret = ext4_walk_page_buffers(handle, inode,
1438 					     folio_buffers(folio),
1439 					     from, from + copied, &partial,
1440 					     write_end_fn);
1441 		if (!partial)
1442 			folio_mark_uptodate(folio);
1443 	}
1444 	if (!verity)
1445 		size_changed = ext4_update_inode_size(inode, pos + copied);
1446 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1447 	folio_unlock(folio);
1448 	folio_put(folio);
1449 
1450 	if (old_size < pos && !verity) {
1451 		pagecache_isize_extended(inode, old_size, pos);
1452 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1453 	}
1454 
1455 	if (size_changed) {
1456 		ret2 = ext4_mark_inode_dirty(handle, inode);
1457 		if (!ret)
1458 			ret = ret2;
1459 	}
1460 
1461 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1462 		/* if we have allocated more blocks and copied
1463 		 * less. We will have blocks allocated outside
1464 		 * inode->i_size. So truncate them
1465 		 */
1466 		ext4_orphan_add(handle, inode);
1467 
1468 	ret2 = ext4_journal_stop(handle);
1469 	if (!ret)
1470 		ret = ret2;
1471 	if (pos + len > inode->i_size && !verity) {
1472 		ext4_truncate_failed_write(inode);
1473 		/*
1474 		 * If truncate failed early the inode might still be
1475 		 * on the orphan list; we need to make sure the inode
1476 		 * is removed from the orphan list in that case.
1477 		 */
1478 		if (inode->i_nlink)
1479 			ext4_orphan_del(NULL, inode);
1480 	}
1481 
1482 	return ret ? ret : copied;
1483 }
1484 
1485 /*
1486  * Reserve space for a single cluster
1487  */
ext4_da_reserve_space(struct inode * inode)1488 static int ext4_da_reserve_space(struct inode *inode)
1489 {
1490 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1491 	struct ext4_inode_info *ei = EXT4_I(inode);
1492 	int ret;
1493 
1494 	/*
1495 	 * We will charge metadata quota at writeout time; this saves
1496 	 * us from metadata over-estimation, though we may go over by
1497 	 * a small amount in the end.  Here we just reserve for data.
1498 	 */
1499 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1500 	if (ret)
1501 		return ret;
1502 
1503 	spin_lock(&ei->i_block_reservation_lock);
1504 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1505 		spin_unlock(&ei->i_block_reservation_lock);
1506 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1507 		return -ENOSPC;
1508 	}
1509 	ei->i_reserved_data_blocks++;
1510 	trace_ext4_da_reserve_space(inode);
1511 	spin_unlock(&ei->i_block_reservation_lock);
1512 
1513 	return 0;       /* success */
1514 }
1515 
ext4_da_release_space(struct inode * inode,int to_free)1516 void ext4_da_release_space(struct inode *inode, int to_free)
1517 {
1518 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 	struct ext4_inode_info *ei = EXT4_I(inode);
1520 
1521 	if (!to_free)
1522 		return;		/* Nothing to release, exit */
1523 
1524 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1525 
1526 	trace_ext4_da_release_space(inode, to_free);
1527 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1528 		/*
1529 		 * if there aren't enough reserved blocks, then the
1530 		 * counter is messed up somewhere.  Since this
1531 		 * function is called from invalidate page, it's
1532 		 * harmless to return without any action.
1533 		 */
1534 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1535 			 "ino %lu, to_free %d with only %d reserved "
1536 			 "data blocks", inode->i_ino, to_free,
1537 			 ei->i_reserved_data_blocks);
1538 		WARN_ON(1);
1539 		to_free = ei->i_reserved_data_blocks;
1540 	}
1541 	ei->i_reserved_data_blocks -= to_free;
1542 
1543 	/* update fs dirty data blocks counter */
1544 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1545 
1546 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547 
1548 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1549 }
1550 
1551 /*
1552  * Delayed allocation stuff
1553  */
1554 
1555 struct mpage_da_data {
1556 	/* These are input fields for ext4_do_writepages() */
1557 	struct inode *inode;
1558 	struct writeback_control *wbc;
1559 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1560 
1561 	/* These are internal state of ext4_do_writepages() */
1562 	pgoff_t first_page;	/* The first page to write */
1563 	pgoff_t next_page;	/* Current page to examine */
1564 	pgoff_t last_page;	/* Last page to examine */
1565 	/*
1566 	 * Extent to map - this can be after first_page because that can be
1567 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1568 	 * is delalloc or unwritten.
1569 	 */
1570 	struct ext4_map_blocks map;
1571 	struct ext4_io_submit io_submit;	/* IO submission data */
1572 	unsigned int do_map:1;
1573 	unsigned int scanned_until_end:1;
1574 	unsigned int journalled_more_data:1;
1575 };
1576 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1577 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1578 				       bool invalidate)
1579 {
1580 	unsigned nr, i;
1581 	pgoff_t index, end;
1582 	struct folio_batch fbatch;
1583 	struct inode *inode = mpd->inode;
1584 	struct address_space *mapping = inode->i_mapping;
1585 
1586 	/* This is necessary when next_page == 0. */
1587 	if (mpd->first_page >= mpd->next_page)
1588 		return;
1589 
1590 	mpd->scanned_until_end = 0;
1591 	index = mpd->first_page;
1592 	end   = mpd->next_page - 1;
1593 	if (invalidate) {
1594 		ext4_lblk_t start, last;
1595 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1596 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1597 
1598 		/*
1599 		 * avoid racing with extent status tree scans made by
1600 		 * ext4_insert_delayed_block()
1601 		 */
1602 		down_write(&EXT4_I(inode)->i_data_sem);
1603 		ext4_es_remove_extent(inode, start, last - start + 1);
1604 		up_write(&EXT4_I(inode)->i_data_sem);
1605 	}
1606 
1607 	folio_batch_init(&fbatch);
1608 	while (index <= end) {
1609 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1610 		if (nr == 0)
1611 			break;
1612 		for (i = 0; i < nr; i++) {
1613 			struct folio *folio = fbatch.folios[i];
1614 
1615 			if (folio->index < mpd->first_page)
1616 				continue;
1617 			if (folio_next_index(folio) - 1 > end)
1618 				continue;
1619 			BUG_ON(!folio_test_locked(folio));
1620 			BUG_ON(folio_test_writeback(folio));
1621 			if (invalidate) {
1622 				if (folio_mapped(folio))
1623 					folio_clear_dirty_for_io(folio);
1624 				block_invalidate_folio(folio, 0,
1625 						folio_size(folio));
1626 				folio_clear_uptodate(folio);
1627 			}
1628 			folio_unlock(folio);
1629 		}
1630 		folio_batch_release(&fbatch);
1631 	}
1632 }
1633 
ext4_print_free_blocks(struct inode * inode)1634 static void ext4_print_free_blocks(struct inode *inode)
1635 {
1636 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 	struct super_block *sb = inode->i_sb;
1638 	struct ext4_inode_info *ei = EXT4_I(inode);
1639 
1640 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1641 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1642 			ext4_count_free_clusters(sb)));
1643 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1644 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1645 	       (long long) EXT4_C2B(EXT4_SB(sb),
1646 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1647 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1648 	       (long long) EXT4_C2B(EXT4_SB(sb),
1649 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1650 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1651 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1652 		 ei->i_reserved_data_blocks);
1653 	return;
1654 }
1655 
1656 /*
1657  * ext4_insert_delayed_block - adds a delayed block to the extents status
1658  *                             tree, incrementing the reserved cluster/block
1659  *                             count or making a pending reservation
1660  *                             where needed
1661  *
1662  * @inode - file containing the newly added block
1663  * @lblk - logical block to be added
1664  *
1665  * Returns 0 on success, negative error code on failure.
1666  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1667 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1668 {
1669 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1670 	int ret;
1671 	bool allocated = false;
1672 
1673 	/*
1674 	 * If the cluster containing lblk is shared with a delayed,
1675 	 * written, or unwritten extent in a bigalloc file system, it's
1676 	 * already been accounted for and does not need to be reserved.
1677 	 * A pending reservation must be made for the cluster if it's
1678 	 * shared with a written or unwritten extent and doesn't already
1679 	 * have one.  Written and unwritten extents can be purged from the
1680 	 * extents status tree if the system is under memory pressure, so
1681 	 * it's necessary to examine the extent tree if a search of the
1682 	 * extents status tree doesn't get a match.
1683 	 */
1684 	if (sbi->s_cluster_ratio == 1) {
1685 		ret = ext4_da_reserve_space(inode);
1686 		if (ret != 0)   /* ENOSPC */
1687 			return ret;
1688 	} else {   /* bigalloc */
1689 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1690 			if (!ext4_es_scan_clu(inode,
1691 					      &ext4_es_is_mapped, lblk)) {
1692 				ret = ext4_clu_mapped(inode,
1693 						      EXT4_B2C(sbi, lblk));
1694 				if (ret < 0)
1695 					return ret;
1696 				if (ret == 0) {
1697 					ret = ext4_da_reserve_space(inode);
1698 					if (ret != 0)   /* ENOSPC */
1699 						return ret;
1700 				} else {
1701 					allocated = true;
1702 				}
1703 			} else {
1704 				allocated = true;
1705 			}
1706 		}
1707 	}
1708 
1709 	ext4_es_insert_delayed_block(inode, lblk, allocated);
1710 	return 0;
1711 }
1712 
1713 /*
1714  * This function is grabs code from the very beginning of
1715  * ext4_map_blocks, but assumes that the caller is from delayed write
1716  * time. This function looks up the requested blocks and sets the
1717  * buffer delay bit under the protection of i_data_sem.
1718  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1719 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1720 			      struct ext4_map_blocks *map,
1721 			      struct buffer_head *bh)
1722 {
1723 	struct extent_status es;
1724 	int retval;
1725 	sector_t invalid_block = ~((sector_t) 0xffff);
1726 #ifdef ES_AGGRESSIVE_TEST
1727 	struct ext4_map_blocks orig_map;
1728 
1729 	memcpy(&orig_map, map, sizeof(*map));
1730 #endif
1731 
1732 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1733 		invalid_block = ~0;
1734 
1735 	map->m_flags = 0;
1736 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1737 		  (unsigned long) map->m_lblk);
1738 
1739 	/* Lookup extent status tree firstly */
1740 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1741 		if (ext4_es_is_hole(&es))
1742 			goto add_delayed;
1743 
1744 found:
1745 		/*
1746 		 * Delayed extent could be allocated by fallocate.
1747 		 * So we need to check it.
1748 		 */
1749 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1750 			map_bh(bh, inode->i_sb, invalid_block);
1751 			set_buffer_new(bh);
1752 			set_buffer_delay(bh);
1753 			return 0;
1754 		}
1755 
1756 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1757 		retval = es.es_len - (iblock - es.es_lblk);
1758 		if (retval > map->m_len)
1759 			retval = map->m_len;
1760 		map->m_len = retval;
1761 		if (ext4_es_is_written(&es))
1762 			map->m_flags |= EXT4_MAP_MAPPED;
1763 		else if (ext4_es_is_unwritten(&es))
1764 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1765 		else
1766 			BUG();
1767 
1768 #ifdef ES_AGGRESSIVE_TEST
1769 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1770 #endif
1771 		return retval;
1772 	}
1773 
1774 	/*
1775 	 * Try to see if we can get the block without requesting a new
1776 	 * file system block.
1777 	 */
1778 	down_read(&EXT4_I(inode)->i_data_sem);
1779 	if (ext4_has_inline_data(inode))
1780 		retval = 0;
1781 	else
1782 		retval = ext4_map_query_blocks(NULL, inode, map);
1783 	up_read(&EXT4_I(inode)->i_data_sem);
1784 	if (retval)
1785 		return retval;
1786 
1787 add_delayed:
1788 	down_write(&EXT4_I(inode)->i_data_sem);
1789 	/*
1790 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1791 	 * and fallocate path (no folio lock) can race. Make sure we
1792 	 * lookup the extent status tree here again while i_data_sem
1793 	 * is held in write mode, before inserting a new da entry in
1794 	 * the extent status tree.
1795 	 */
1796 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1797 		if (!ext4_es_is_hole(&es)) {
1798 			up_write(&EXT4_I(inode)->i_data_sem);
1799 			goto found;
1800 		}
1801 	} else if (!ext4_has_inline_data(inode)) {
1802 		retval = ext4_map_query_blocks(NULL, inode, map);
1803 		if (retval) {
1804 			up_write(&EXT4_I(inode)->i_data_sem);
1805 			return retval;
1806 		}
1807 	}
1808 
1809 	retval = ext4_insert_delayed_block(inode, map->m_lblk);
1810 	up_write(&EXT4_I(inode)->i_data_sem);
1811 	if (retval)
1812 		return retval;
1813 
1814 	map_bh(bh, inode->i_sb, invalid_block);
1815 	set_buffer_new(bh);
1816 	set_buffer_delay(bh);
1817 	return retval;
1818 }
1819 
1820 /*
1821  * This is a special get_block_t callback which is used by
1822  * ext4_da_write_begin().  It will either return mapped block or
1823  * reserve space for a single block.
1824  *
1825  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1826  * We also have b_blocknr = -1 and b_bdev initialized properly
1827  *
1828  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1829  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1830  * initialized properly.
1831  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1832 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1833 			   struct buffer_head *bh, int create)
1834 {
1835 	struct ext4_map_blocks map;
1836 	int ret = 0;
1837 
1838 	BUG_ON(create == 0);
1839 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1840 
1841 	map.m_lblk = iblock;
1842 	map.m_len = 1;
1843 
1844 	/*
1845 	 * first, we need to know whether the block is allocated already
1846 	 * preallocated blocks are unmapped but should treated
1847 	 * the same as allocated blocks.
1848 	 */
1849 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1850 	if (ret <= 0)
1851 		return ret;
1852 
1853 	map_bh(bh, inode->i_sb, map.m_pblk);
1854 	ext4_update_bh_state(bh, map.m_flags);
1855 
1856 	if (buffer_unwritten(bh)) {
1857 		/* A delayed write to unwritten bh should be marked
1858 		 * new and mapped.  Mapped ensures that we don't do
1859 		 * get_block multiple times when we write to the same
1860 		 * offset and new ensures that we do proper zero out
1861 		 * for partial write.
1862 		 */
1863 		set_buffer_new(bh);
1864 		set_buffer_mapped(bh);
1865 	}
1866 	return 0;
1867 }
1868 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1869 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1870 {
1871 	mpd->first_page += folio_nr_pages(folio);
1872 	folio_unlock(folio);
1873 }
1874 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1875 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1876 {
1877 	size_t len;
1878 	loff_t size;
1879 	int err;
1880 
1881 	BUG_ON(folio->index != mpd->first_page);
1882 	folio_clear_dirty_for_io(folio);
1883 	/*
1884 	 * We have to be very careful here!  Nothing protects writeback path
1885 	 * against i_size changes and the page can be writeably mapped into
1886 	 * page tables. So an application can be growing i_size and writing
1887 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1888 	 * write-protects our page in page tables and the page cannot get
1889 	 * written to again until we release folio lock. So only after
1890 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1891 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1892 	 * on the barrier provided by folio_test_clear_dirty() in
1893 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1894 	 * after page tables are updated.
1895 	 */
1896 	size = i_size_read(mpd->inode);
1897 	len = folio_size(folio);
1898 	if (folio_pos(folio) + len > size &&
1899 	    !ext4_verity_in_progress(mpd->inode))
1900 		len = size & ~PAGE_MASK;
1901 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1902 	if (!err)
1903 		mpd->wbc->nr_to_write--;
1904 
1905 	return err;
1906 }
1907 
1908 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1909 
1910 /*
1911  * mballoc gives us at most this number of blocks...
1912  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1913  * The rest of mballoc seems to handle chunks up to full group size.
1914  */
1915 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1916 
1917 /*
1918  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1919  *
1920  * @mpd - extent of blocks
1921  * @lblk - logical number of the block in the file
1922  * @bh - buffer head we want to add to the extent
1923  *
1924  * The function is used to collect contig. blocks in the same state. If the
1925  * buffer doesn't require mapping for writeback and we haven't started the
1926  * extent of buffers to map yet, the function returns 'true' immediately - the
1927  * caller can write the buffer right away. Otherwise the function returns true
1928  * if the block has been added to the extent, false if the block couldn't be
1929  * added.
1930  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1931 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1932 				   struct buffer_head *bh)
1933 {
1934 	struct ext4_map_blocks *map = &mpd->map;
1935 
1936 	/* Buffer that doesn't need mapping for writeback? */
1937 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1938 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1939 		/* So far no extent to map => we write the buffer right away */
1940 		if (map->m_len == 0)
1941 			return true;
1942 		return false;
1943 	}
1944 
1945 	/* First block in the extent? */
1946 	if (map->m_len == 0) {
1947 		/* We cannot map unless handle is started... */
1948 		if (!mpd->do_map)
1949 			return false;
1950 		map->m_lblk = lblk;
1951 		map->m_len = 1;
1952 		map->m_flags = bh->b_state & BH_FLAGS;
1953 		return true;
1954 	}
1955 
1956 	/* Don't go larger than mballoc is willing to allocate */
1957 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1958 		return false;
1959 
1960 	/* Can we merge the block to our big extent? */
1961 	if (lblk == map->m_lblk + map->m_len &&
1962 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1963 		map->m_len++;
1964 		return true;
1965 	}
1966 	return false;
1967 }
1968 
1969 /*
1970  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1971  *
1972  * @mpd - extent of blocks for mapping
1973  * @head - the first buffer in the page
1974  * @bh - buffer we should start processing from
1975  * @lblk - logical number of the block in the file corresponding to @bh
1976  *
1977  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1978  * the page for IO if all buffers in this page were mapped and there's no
1979  * accumulated extent of buffers to map or add buffers in the page to the
1980  * extent of buffers to map. The function returns 1 if the caller can continue
1981  * by processing the next page, 0 if it should stop adding buffers to the
1982  * extent to map because we cannot extend it anymore. It can also return value
1983  * < 0 in case of error during IO submission.
1984  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1985 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1986 				   struct buffer_head *head,
1987 				   struct buffer_head *bh,
1988 				   ext4_lblk_t lblk)
1989 {
1990 	struct inode *inode = mpd->inode;
1991 	int err;
1992 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1993 							>> inode->i_blkbits;
1994 
1995 	if (ext4_verity_in_progress(inode))
1996 		blocks = EXT_MAX_BLOCKS;
1997 
1998 	do {
1999 		BUG_ON(buffer_locked(bh));
2000 
2001 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2002 			/* Found extent to map? */
2003 			if (mpd->map.m_len)
2004 				return 0;
2005 			/* Buffer needs mapping and handle is not started? */
2006 			if (!mpd->do_map)
2007 				return 0;
2008 			/* Everything mapped so far and we hit EOF */
2009 			break;
2010 		}
2011 	} while (lblk++, (bh = bh->b_this_page) != head);
2012 	/* So far everything mapped? Submit the page for IO. */
2013 	if (mpd->map.m_len == 0) {
2014 		err = mpage_submit_folio(mpd, head->b_folio);
2015 		if (err < 0)
2016 			return err;
2017 		mpage_folio_done(mpd, head->b_folio);
2018 	}
2019 	if (lblk >= blocks) {
2020 		mpd->scanned_until_end = 1;
2021 		return 0;
2022 	}
2023 	return 1;
2024 }
2025 
2026 /*
2027  * mpage_process_folio - update folio buffers corresponding to changed extent
2028  *			 and may submit fully mapped page for IO
2029  * @mpd: description of extent to map, on return next extent to map
2030  * @folio: Contains these buffers.
2031  * @m_lblk: logical block mapping.
2032  * @m_pblk: corresponding physical mapping.
2033  * @map_bh: determines on return whether this page requires any further
2034  *		  mapping or not.
2035  *
2036  * Scan given folio buffers corresponding to changed extent and update buffer
2037  * state according to new extent state.
2038  * We map delalloc buffers to their physical location, clear unwritten bits.
2039  * If the given folio is not fully mapped, we update @mpd to the next extent in
2040  * the given folio that needs mapping & return @map_bh as true.
2041  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2042 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2043 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2044 			      bool *map_bh)
2045 {
2046 	struct buffer_head *head, *bh;
2047 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2048 	ext4_lblk_t lblk = *m_lblk;
2049 	ext4_fsblk_t pblock = *m_pblk;
2050 	int err = 0;
2051 	int blkbits = mpd->inode->i_blkbits;
2052 	ssize_t io_end_size = 0;
2053 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2054 
2055 	bh = head = folio_buffers(folio);
2056 	do {
2057 		if (lblk < mpd->map.m_lblk)
2058 			continue;
2059 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2060 			/*
2061 			 * Buffer after end of mapped extent.
2062 			 * Find next buffer in the folio to map.
2063 			 */
2064 			mpd->map.m_len = 0;
2065 			mpd->map.m_flags = 0;
2066 			io_end_vec->size += io_end_size;
2067 
2068 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2069 			if (err > 0)
2070 				err = 0;
2071 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2072 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2073 				if (IS_ERR(io_end_vec)) {
2074 					err = PTR_ERR(io_end_vec);
2075 					goto out;
2076 				}
2077 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2078 			}
2079 			*map_bh = true;
2080 			goto out;
2081 		}
2082 		if (buffer_delay(bh)) {
2083 			clear_buffer_delay(bh);
2084 			bh->b_blocknr = pblock++;
2085 		}
2086 		clear_buffer_unwritten(bh);
2087 		io_end_size += (1 << blkbits);
2088 	} while (lblk++, (bh = bh->b_this_page) != head);
2089 
2090 	io_end_vec->size += io_end_size;
2091 	*map_bh = false;
2092 out:
2093 	*m_lblk = lblk;
2094 	*m_pblk = pblock;
2095 	return err;
2096 }
2097 
2098 /*
2099  * mpage_map_buffers - update buffers corresponding to changed extent and
2100  *		       submit fully mapped pages for IO
2101  *
2102  * @mpd - description of extent to map, on return next extent to map
2103  *
2104  * Scan buffers corresponding to changed extent (we expect corresponding pages
2105  * to be already locked) and update buffer state according to new extent state.
2106  * We map delalloc buffers to their physical location, clear unwritten bits,
2107  * and mark buffers as uninit when we perform writes to unwritten extents
2108  * and do extent conversion after IO is finished. If the last page is not fully
2109  * mapped, we update @map to the next extent in the last page that needs
2110  * mapping. Otherwise we submit the page for IO.
2111  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2112 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2113 {
2114 	struct folio_batch fbatch;
2115 	unsigned nr, i;
2116 	struct inode *inode = mpd->inode;
2117 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2118 	pgoff_t start, end;
2119 	ext4_lblk_t lblk;
2120 	ext4_fsblk_t pblock;
2121 	int err;
2122 	bool map_bh = false;
2123 
2124 	start = mpd->map.m_lblk >> bpp_bits;
2125 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2126 	lblk = start << bpp_bits;
2127 	pblock = mpd->map.m_pblk;
2128 
2129 	folio_batch_init(&fbatch);
2130 	while (start <= end) {
2131 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2132 		if (nr == 0)
2133 			break;
2134 		for (i = 0; i < nr; i++) {
2135 			struct folio *folio = fbatch.folios[i];
2136 
2137 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2138 						 &map_bh);
2139 			/*
2140 			 * If map_bh is true, means page may require further bh
2141 			 * mapping, or maybe the page was submitted for IO.
2142 			 * So we return to call further extent mapping.
2143 			 */
2144 			if (err < 0 || map_bh)
2145 				goto out;
2146 			/* Page fully mapped - let IO run! */
2147 			err = mpage_submit_folio(mpd, folio);
2148 			if (err < 0)
2149 				goto out;
2150 			mpage_folio_done(mpd, folio);
2151 		}
2152 		folio_batch_release(&fbatch);
2153 	}
2154 	/* Extent fully mapped and matches with page boundary. We are done. */
2155 	mpd->map.m_len = 0;
2156 	mpd->map.m_flags = 0;
2157 	return 0;
2158 out:
2159 	folio_batch_release(&fbatch);
2160 	return err;
2161 }
2162 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2163 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2164 {
2165 	struct inode *inode = mpd->inode;
2166 	struct ext4_map_blocks *map = &mpd->map;
2167 	int get_blocks_flags;
2168 	int err, dioread_nolock;
2169 
2170 	trace_ext4_da_write_pages_extent(inode, map);
2171 	/*
2172 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2173 	 * to convert an unwritten extent to be initialized (in the case
2174 	 * where we have written into one or more preallocated blocks).  It is
2175 	 * possible that we're going to need more metadata blocks than
2176 	 * previously reserved. However we must not fail because we're in
2177 	 * writeback and there is nothing we can do about it so it might result
2178 	 * in data loss.  So use reserved blocks to allocate metadata if
2179 	 * possible.
2180 	 *
2181 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2182 	 * the blocks in question are delalloc blocks.  This indicates
2183 	 * that the blocks and quotas has already been checked when
2184 	 * the data was copied into the page cache.
2185 	 */
2186 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2187 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2188 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2189 	dioread_nolock = ext4_should_dioread_nolock(inode);
2190 	if (dioread_nolock)
2191 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2192 	if (map->m_flags & BIT(BH_Delay))
2193 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2194 
2195 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2196 	if (err < 0)
2197 		return err;
2198 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2199 		if (!mpd->io_submit.io_end->handle &&
2200 		    ext4_handle_valid(handle)) {
2201 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2202 			handle->h_rsv_handle = NULL;
2203 		}
2204 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2205 	}
2206 
2207 	BUG_ON(map->m_len == 0);
2208 	return 0;
2209 }
2210 
2211 /*
2212  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2213  *				 mpd->len and submit pages underlying it for IO
2214  *
2215  * @handle - handle for journal operations
2216  * @mpd - extent to map
2217  * @give_up_on_write - we set this to true iff there is a fatal error and there
2218  *                     is no hope of writing the data. The caller should discard
2219  *                     dirty pages to avoid infinite loops.
2220  *
2221  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2222  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2223  * them to initialized or split the described range from larger unwritten
2224  * extent. Note that we need not map all the described range since allocation
2225  * can return less blocks or the range is covered by more unwritten extents. We
2226  * cannot map more because we are limited by reserved transaction credits. On
2227  * the other hand we always make sure that the last touched page is fully
2228  * mapped so that it can be written out (and thus forward progress is
2229  * guaranteed). After mapping we submit all mapped pages for IO.
2230  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2231 static int mpage_map_and_submit_extent(handle_t *handle,
2232 				       struct mpage_da_data *mpd,
2233 				       bool *give_up_on_write)
2234 {
2235 	struct inode *inode = mpd->inode;
2236 	struct ext4_map_blocks *map = &mpd->map;
2237 	int err;
2238 	loff_t disksize;
2239 	int progress = 0;
2240 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2241 	struct ext4_io_end_vec *io_end_vec;
2242 
2243 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2244 	if (IS_ERR(io_end_vec))
2245 		return PTR_ERR(io_end_vec);
2246 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2247 	do {
2248 		err = mpage_map_one_extent(handle, mpd);
2249 		if (err < 0) {
2250 			struct super_block *sb = inode->i_sb;
2251 
2252 			if (ext4_forced_shutdown(sb))
2253 				goto invalidate_dirty_pages;
2254 			/*
2255 			 * Let the uper layers retry transient errors.
2256 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2257 			 * is non-zero, a commit should free up blocks.
2258 			 */
2259 			if ((err == -ENOMEM) ||
2260 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2261 				if (progress)
2262 					goto update_disksize;
2263 				return err;
2264 			}
2265 			ext4_msg(sb, KERN_CRIT,
2266 				 "Delayed block allocation failed for "
2267 				 "inode %lu at logical offset %llu with"
2268 				 " max blocks %u with error %d",
2269 				 inode->i_ino,
2270 				 (unsigned long long)map->m_lblk,
2271 				 (unsigned)map->m_len, -err);
2272 			ext4_msg(sb, KERN_CRIT,
2273 				 "This should not happen!! Data will "
2274 				 "be lost\n");
2275 			if (err == -ENOSPC)
2276 				ext4_print_free_blocks(inode);
2277 		invalidate_dirty_pages:
2278 			*give_up_on_write = true;
2279 			return err;
2280 		}
2281 		progress = 1;
2282 		/*
2283 		 * Update buffer state, submit mapped pages, and get us new
2284 		 * extent to map
2285 		 */
2286 		err = mpage_map_and_submit_buffers(mpd);
2287 		if (err < 0)
2288 			goto update_disksize;
2289 	} while (map->m_len);
2290 
2291 update_disksize:
2292 	/*
2293 	 * Update on-disk size after IO is submitted.  Races with
2294 	 * truncate are avoided by checking i_size under i_data_sem.
2295 	 */
2296 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2297 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2298 		int err2;
2299 		loff_t i_size;
2300 
2301 		down_write(&EXT4_I(inode)->i_data_sem);
2302 		i_size = i_size_read(inode);
2303 		if (disksize > i_size)
2304 			disksize = i_size;
2305 		if (disksize > EXT4_I(inode)->i_disksize)
2306 			EXT4_I(inode)->i_disksize = disksize;
2307 		up_write(&EXT4_I(inode)->i_data_sem);
2308 		err2 = ext4_mark_inode_dirty(handle, inode);
2309 		if (err2) {
2310 			ext4_error_err(inode->i_sb, -err2,
2311 				       "Failed to mark inode %lu dirty",
2312 				       inode->i_ino);
2313 		}
2314 		if (!err)
2315 			err = err2;
2316 	}
2317 	return err;
2318 }
2319 
2320 /*
2321  * Calculate the total number of credits to reserve for one writepages
2322  * iteration. This is called from ext4_writepages(). We map an extent of
2323  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2324  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2325  * bpp - 1 blocks in bpp different extents.
2326  */
ext4_da_writepages_trans_blocks(struct inode * inode)2327 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2328 {
2329 	int bpp = ext4_journal_blocks_per_page(inode);
2330 
2331 	return ext4_meta_trans_blocks(inode,
2332 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2333 }
2334 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2335 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2336 				     size_t len)
2337 {
2338 	struct buffer_head *page_bufs = folio_buffers(folio);
2339 	struct inode *inode = folio->mapping->host;
2340 	int ret, err;
2341 
2342 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2343 				     NULL, do_journal_get_write_access);
2344 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2345 				     NULL, write_end_fn);
2346 	if (ret == 0)
2347 		ret = err;
2348 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2349 	if (ret == 0)
2350 		ret = err;
2351 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2352 
2353 	return ret;
2354 }
2355 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2356 static int mpage_journal_page_buffers(handle_t *handle,
2357 				      struct mpage_da_data *mpd,
2358 				      struct folio *folio)
2359 {
2360 	struct inode *inode = mpd->inode;
2361 	loff_t size = i_size_read(inode);
2362 	size_t len = folio_size(folio);
2363 
2364 	folio_clear_checked(folio);
2365 	mpd->wbc->nr_to_write--;
2366 
2367 	if (folio_pos(folio) + len > size &&
2368 	    !ext4_verity_in_progress(inode))
2369 		len = size & (len - 1);
2370 
2371 	return ext4_journal_folio_buffers(handle, folio, len);
2372 }
2373 
2374 /*
2375  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2376  * 				 needing mapping, submit mapped pages
2377  *
2378  * @mpd - where to look for pages
2379  *
2380  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2381  * IO immediately. If we cannot map blocks, we submit just already mapped
2382  * buffers in the page for IO and keep page dirty. When we can map blocks and
2383  * we find a page which isn't mapped we start accumulating extent of buffers
2384  * underlying these pages that needs mapping (formed by either delayed or
2385  * unwritten buffers). We also lock the pages containing these buffers. The
2386  * extent found is returned in @mpd structure (starting at mpd->lblk with
2387  * length mpd->len blocks).
2388  *
2389  * Note that this function can attach bios to one io_end structure which are
2390  * neither logically nor physically contiguous. Although it may seem as an
2391  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2392  * case as we need to track IO to all buffers underlying a page in one io_end.
2393  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2394 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2395 {
2396 	struct address_space *mapping = mpd->inode->i_mapping;
2397 	struct folio_batch fbatch;
2398 	unsigned int nr_folios;
2399 	pgoff_t index = mpd->first_page;
2400 	pgoff_t end = mpd->last_page;
2401 	xa_mark_t tag;
2402 	int i, err = 0;
2403 	int blkbits = mpd->inode->i_blkbits;
2404 	ext4_lblk_t lblk;
2405 	struct buffer_head *head;
2406 	handle_t *handle = NULL;
2407 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2408 
2409 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2410 		tag = PAGECACHE_TAG_TOWRITE;
2411 	else
2412 		tag = PAGECACHE_TAG_DIRTY;
2413 
2414 	mpd->map.m_len = 0;
2415 	mpd->next_page = index;
2416 	if (ext4_should_journal_data(mpd->inode)) {
2417 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2418 					    bpp);
2419 		if (IS_ERR(handle))
2420 			return PTR_ERR(handle);
2421 	}
2422 	folio_batch_init(&fbatch);
2423 	while (index <= end) {
2424 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2425 				tag, &fbatch);
2426 		if (nr_folios == 0)
2427 			break;
2428 
2429 		for (i = 0; i < nr_folios; i++) {
2430 			struct folio *folio = fbatch.folios[i];
2431 
2432 			/*
2433 			 * Accumulated enough dirty pages? This doesn't apply
2434 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2435 			 * keep going because someone may be concurrently
2436 			 * dirtying pages, and we might have synced a lot of
2437 			 * newly appeared dirty pages, but have not synced all
2438 			 * of the old dirty pages.
2439 			 */
2440 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2441 			    mpd->wbc->nr_to_write <=
2442 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2443 				goto out;
2444 
2445 			/* If we can't merge this page, we are done. */
2446 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2447 				goto out;
2448 
2449 			if (handle) {
2450 				err = ext4_journal_ensure_credits(handle, bpp,
2451 								  0);
2452 				if (err < 0)
2453 					goto out;
2454 			}
2455 
2456 			folio_lock(folio);
2457 			/*
2458 			 * If the page is no longer dirty, or its mapping no
2459 			 * longer corresponds to inode we are writing (which
2460 			 * means it has been truncated or invalidated), or the
2461 			 * page is already under writeback and we are not doing
2462 			 * a data integrity writeback, skip the page
2463 			 */
2464 			if (!folio_test_dirty(folio) ||
2465 			    (folio_test_writeback(folio) &&
2466 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2467 			    unlikely(folio->mapping != mapping)) {
2468 				folio_unlock(folio);
2469 				continue;
2470 			}
2471 
2472 			folio_wait_writeback(folio);
2473 			BUG_ON(folio_test_writeback(folio));
2474 
2475 			/*
2476 			 * Should never happen but for buggy code in
2477 			 * other subsystems that call
2478 			 * set_page_dirty() without properly warning
2479 			 * the file system first.  See [1] for more
2480 			 * information.
2481 			 *
2482 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2483 			 */
2484 			if (!folio_buffers(folio)) {
2485 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2486 				folio_clear_dirty(folio);
2487 				folio_unlock(folio);
2488 				continue;
2489 			}
2490 
2491 			if (mpd->map.m_len == 0)
2492 				mpd->first_page = folio->index;
2493 			mpd->next_page = folio_next_index(folio);
2494 			/*
2495 			 * Writeout when we cannot modify metadata is simple.
2496 			 * Just submit the page. For data=journal mode we
2497 			 * first handle writeout of the page for checkpoint and
2498 			 * only after that handle delayed page dirtying. This
2499 			 * makes sure current data is checkpointed to the final
2500 			 * location before possibly journalling it again which
2501 			 * is desirable when the page is frequently dirtied
2502 			 * through a pin.
2503 			 */
2504 			if (!mpd->can_map) {
2505 				err = mpage_submit_folio(mpd, folio);
2506 				if (err < 0)
2507 					goto out;
2508 				/* Pending dirtying of journalled data? */
2509 				if (folio_test_checked(folio)) {
2510 					err = mpage_journal_page_buffers(handle,
2511 						mpd, folio);
2512 					if (err < 0)
2513 						goto out;
2514 					mpd->journalled_more_data = 1;
2515 				}
2516 				mpage_folio_done(mpd, folio);
2517 			} else {
2518 				/* Add all dirty buffers to mpd */
2519 				lblk = ((ext4_lblk_t)folio->index) <<
2520 					(PAGE_SHIFT - blkbits);
2521 				head = folio_buffers(folio);
2522 				err = mpage_process_page_bufs(mpd, head, head,
2523 						lblk);
2524 				if (err <= 0)
2525 					goto out;
2526 				err = 0;
2527 			}
2528 		}
2529 		folio_batch_release(&fbatch);
2530 		cond_resched();
2531 	}
2532 	mpd->scanned_until_end = 1;
2533 	if (handle)
2534 		ext4_journal_stop(handle);
2535 	return 0;
2536 out:
2537 	folio_batch_release(&fbatch);
2538 	if (handle)
2539 		ext4_journal_stop(handle);
2540 	return err;
2541 }
2542 
ext4_do_writepages(struct mpage_da_data * mpd)2543 static int ext4_do_writepages(struct mpage_da_data *mpd)
2544 {
2545 	struct writeback_control *wbc = mpd->wbc;
2546 	pgoff_t	writeback_index = 0;
2547 	long nr_to_write = wbc->nr_to_write;
2548 	int range_whole = 0;
2549 	int cycled = 1;
2550 	handle_t *handle = NULL;
2551 	struct inode *inode = mpd->inode;
2552 	struct address_space *mapping = inode->i_mapping;
2553 	int needed_blocks, rsv_blocks = 0, ret = 0;
2554 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2555 	struct blk_plug plug;
2556 	bool give_up_on_write = false;
2557 
2558 	trace_ext4_writepages(inode, wbc);
2559 
2560 	/*
2561 	 * No pages to write? This is mainly a kludge to avoid starting
2562 	 * a transaction for special inodes like journal inode on last iput()
2563 	 * because that could violate lock ordering on umount
2564 	 */
2565 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2566 		goto out_writepages;
2567 
2568 	/*
2569 	 * If the filesystem has aborted, it is read-only, so return
2570 	 * right away instead of dumping stack traces later on that
2571 	 * will obscure the real source of the problem.  We test
2572 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2573 	 * the latter could be true if the filesystem is mounted
2574 	 * read-only, and in that case, ext4_writepages should
2575 	 * *never* be called, so if that ever happens, we would want
2576 	 * the stack trace.
2577 	 */
2578 	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2579 		ret = -EROFS;
2580 		goto out_writepages;
2581 	}
2582 
2583 	/*
2584 	 * If we have inline data and arrive here, it means that
2585 	 * we will soon create the block for the 1st page, so
2586 	 * we'd better clear the inline data here.
2587 	 */
2588 	if (ext4_has_inline_data(inode)) {
2589 		/* Just inode will be modified... */
2590 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2591 		if (IS_ERR(handle)) {
2592 			ret = PTR_ERR(handle);
2593 			goto out_writepages;
2594 		}
2595 		BUG_ON(ext4_test_inode_state(inode,
2596 				EXT4_STATE_MAY_INLINE_DATA));
2597 		ext4_destroy_inline_data(handle, inode);
2598 		ext4_journal_stop(handle);
2599 	}
2600 
2601 	/*
2602 	 * data=journal mode does not do delalloc so we just need to writeout /
2603 	 * journal already mapped buffers. On the other hand we need to commit
2604 	 * transaction to make data stable. We expect all the data to be
2605 	 * already in the journal (the only exception are DMA pinned pages
2606 	 * dirtied behind our back) so we commit transaction here and run the
2607 	 * writeback loop to checkpoint them. The checkpointing is not actually
2608 	 * necessary to make data persistent *but* quite a few places (extent
2609 	 * shifting operations, fsverity, ...) depend on being able to drop
2610 	 * pagecache pages after calling filemap_write_and_wait() and for that
2611 	 * checkpointing needs to happen.
2612 	 */
2613 	if (ext4_should_journal_data(inode)) {
2614 		mpd->can_map = 0;
2615 		if (wbc->sync_mode == WB_SYNC_ALL)
2616 			ext4_fc_commit(sbi->s_journal,
2617 				       EXT4_I(inode)->i_datasync_tid);
2618 	}
2619 	mpd->journalled_more_data = 0;
2620 
2621 	if (ext4_should_dioread_nolock(inode)) {
2622 		/*
2623 		 * We may need to convert up to one extent per block in
2624 		 * the page and we may dirty the inode.
2625 		 */
2626 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2627 						PAGE_SIZE >> inode->i_blkbits);
2628 	}
2629 
2630 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2631 		range_whole = 1;
2632 
2633 	if (wbc->range_cyclic) {
2634 		writeback_index = mapping->writeback_index;
2635 		if (writeback_index)
2636 			cycled = 0;
2637 		mpd->first_page = writeback_index;
2638 		mpd->last_page = -1;
2639 	} else {
2640 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2641 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2642 	}
2643 
2644 	ext4_io_submit_init(&mpd->io_submit, wbc);
2645 retry:
2646 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2647 		tag_pages_for_writeback(mapping, mpd->first_page,
2648 					mpd->last_page);
2649 	blk_start_plug(&plug);
2650 
2651 	/*
2652 	 * First writeback pages that don't need mapping - we can avoid
2653 	 * starting a transaction unnecessarily and also avoid being blocked
2654 	 * in the block layer on device congestion while having transaction
2655 	 * started.
2656 	 */
2657 	mpd->do_map = 0;
2658 	mpd->scanned_until_end = 0;
2659 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2660 	if (!mpd->io_submit.io_end) {
2661 		ret = -ENOMEM;
2662 		goto unplug;
2663 	}
2664 	ret = mpage_prepare_extent_to_map(mpd);
2665 	/* Unlock pages we didn't use */
2666 	mpage_release_unused_pages(mpd, false);
2667 	/* Submit prepared bio */
2668 	ext4_io_submit(&mpd->io_submit);
2669 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2670 	mpd->io_submit.io_end = NULL;
2671 	if (ret < 0)
2672 		goto unplug;
2673 
2674 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2675 		/* For each extent of pages we use new io_end */
2676 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2677 		if (!mpd->io_submit.io_end) {
2678 			ret = -ENOMEM;
2679 			break;
2680 		}
2681 
2682 		WARN_ON_ONCE(!mpd->can_map);
2683 		/*
2684 		 * We have two constraints: We find one extent to map and we
2685 		 * must always write out whole page (makes a difference when
2686 		 * blocksize < pagesize) so that we don't block on IO when we
2687 		 * try to write out the rest of the page. Journalled mode is
2688 		 * not supported by delalloc.
2689 		 */
2690 		BUG_ON(ext4_should_journal_data(inode));
2691 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2692 
2693 		/* start a new transaction */
2694 		handle = ext4_journal_start_with_reserve(inode,
2695 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2696 		if (IS_ERR(handle)) {
2697 			ret = PTR_ERR(handle);
2698 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2699 			       "%ld pages, ino %lu; err %d", __func__,
2700 				wbc->nr_to_write, inode->i_ino, ret);
2701 			/* Release allocated io_end */
2702 			ext4_put_io_end(mpd->io_submit.io_end);
2703 			mpd->io_submit.io_end = NULL;
2704 			break;
2705 		}
2706 		mpd->do_map = 1;
2707 
2708 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2709 		ret = mpage_prepare_extent_to_map(mpd);
2710 		if (!ret && mpd->map.m_len)
2711 			ret = mpage_map_and_submit_extent(handle, mpd,
2712 					&give_up_on_write);
2713 		/*
2714 		 * Caution: If the handle is synchronous,
2715 		 * ext4_journal_stop() can wait for transaction commit
2716 		 * to finish which may depend on writeback of pages to
2717 		 * complete or on page lock to be released.  In that
2718 		 * case, we have to wait until after we have
2719 		 * submitted all the IO, released page locks we hold,
2720 		 * and dropped io_end reference (for extent conversion
2721 		 * to be able to complete) before stopping the handle.
2722 		 */
2723 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2724 			ext4_journal_stop(handle);
2725 			handle = NULL;
2726 			mpd->do_map = 0;
2727 		}
2728 		/* Unlock pages we didn't use */
2729 		mpage_release_unused_pages(mpd, give_up_on_write);
2730 		/* Submit prepared bio */
2731 		ext4_io_submit(&mpd->io_submit);
2732 
2733 		/*
2734 		 * Drop our io_end reference we got from init. We have
2735 		 * to be careful and use deferred io_end finishing if
2736 		 * we are still holding the transaction as we can
2737 		 * release the last reference to io_end which may end
2738 		 * up doing unwritten extent conversion.
2739 		 */
2740 		if (handle) {
2741 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2742 			ext4_journal_stop(handle);
2743 		} else
2744 			ext4_put_io_end(mpd->io_submit.io_end);
2745 		mpd->io_submit.io_end = NULL;
2746 
2747 		if (ret == -ENOSPC && sbi->s_journal) {
2748 			/*
2749 			 * Commit the transaction which would
2750 			 * free blocks released in the transaction
2751 			 * and try again
2752 			 */
2753 			jbd2_journal_force_commit_nested(sbi->s_journal);
2754 			ret = 0;
2755 			continue;
2756 		}
2757 		/* Fatal error - ENOMEM, EIO... */
2758 		if (ret)
2759 			break;
2760 	}
2761 unplug:
2762 	blk_finish_plug(&plug);
2763 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2764 		cycled = 1;
2765 		mpd->last_page = writeback_index - 1;
2766 		mpd->first_page = 0;
2767 		goto retry;
2768 	}
2769 
2770 	/* Update index */
2771 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2772 		/*
2773 		 * Set the writeback_index so that range_cyclic
2774 		 * mode will write it back later
2775 		 */
2776 		mapping->writeback_index = mpd->first_page;
2777 
2778 out_writepages:
2779 	trace_ext4_writepages_result(inode, wbc, ret,
2780 				     nr_to_write - wbc->nr_to_write);
2781 	return ret;
2782 }
2783 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2784 static int ext4_writepages(struct address_space *mapping,
2785 			   struct writeback_control *wbc)
2786 {
2787 	struct super_block *sb = mapping->host->i_sb;
2788 	struct mpage_da_data mpd = {
2789 		.inode = mapping->host,
2790 		.wbc = wbc,
2791 		.can_map = 1,
2792 	};
2793 	int ret;
2794 	int alloc_ctx;
2795 
2796 	if (unlikely(ext4_forced_shutdown(sb)))
2797 		return -EIO;
2798 
2799 	alloc_ctx = ext4_writepages_down_read(sb);
2800 	ret = ext4_do_writepages(&mpd);
2801 	/*
2802 	 * For data=journal writeback we could have come across pages marked
2803 	 * for delayed dirtying (PageChecked) which were just added to the
2804 	 * running transaction. Try once more to get them to stable storage.
2805 	 */
2806 	if (!ret && mpd.journalled_more_data)
2807 		ret = ext4_do_writepages(&mpd);
2808 	ext4_writepages_up_read(sb, alloc_ctx);
2809 
2810 	return ret;
2811 }
2812 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2813 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2814 {
2815 	struct writeback_control wbc = {
2816 		.sync_mode = WB_SYNC_ALL,
2817 		.nr_to_write = LONG_MAX,
2818 		.range_start = jinode->i_dirty_start,
2819 		.range_end = jinode->i_dirty_end,
2820 	};
2821 	struct mpage_da_data mpd = {
2822 		.inode = jinode->i_vfs_inode,
2823 		.wbc = &wbc,
2824 		.can_map = 0,
2825 	};
2826 	return ext4_do_writepages(&mpd);
2827 }
2828 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2829 static int ext4_dax_writepages(struct address_space *mapping,
2830 			       struct writeback_control *wbc)
2831 {
2832 	int ret;
2833 	long nr_to_write = wbc->nr_to_write;
2834 	struct inode *inode = mapping->host;
2835 	int alloc_ctx;
2836 
2837 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2838 		return -EIO;
2839 
2840 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2841 	trace_ext4_writepages(inode, wbc);
2842 
2843 	ret = dax_writeback_mapping_range(mapping,
2844 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2845 	trace_ext4_writepages_result(inode, wbc, ret,
2846 				     nr_to_write - wbc->nr_to_write);
2847 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2848 	return ret;
2849 }
2850 
ext4_nonda_switch(struct super_block * sb)2851 static int ext4_nonda_switch(struct super_block *sb)
2852 {
2853 	s64 free_clusters, dirty_clusters;
2854 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2855 
2856 	/*
2857 	 * switch to non delalloc mode if we are running low
2858 	 * on free block. The free block accounting via percpu
2859 	 * counters can get slightly wrong with percpu_counter_batch getting
2860 	 * accumulated on each CPU without updating global counters
2861 	 * Delalloc need an accurate free block accounting. So switch
2862 	 * to non delalloc when we are near to error range.
2863 	 */
2864 	free_clusters =
2865 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866 	dirty_clusters =
2867 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2868 	/*
2869 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870 	 */
2871 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2872 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2873 
2874 	if (2 * free_clusters < 3 * dirty_clusters ||
2875 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2876 		/*
2877 		 * free block count is less than 150% of dirty blocks
2878 		 * or free blocks is less than watermark
2879 		 */
2880 		return 1;
2881 	}
2882 	return 0;
2883 }
2884 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886 			       loff_t pos, unsigned len,
2887 			       struct page **pagep, void **fsdata)
2888 {
2889 	int ret, retries = 0;
2890 	struct folio *folio;
2891 	pgoff_t index;
2892 	struct inode *inode = mapping->host;
2893 
2894 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2895 		return -EIO;
2896 
2897 	index = pos >> PAGE_SHIFT;
2898 
2899 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2900 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2901 		return ext4_write_begin(file, mapping, pos,
2902 					len, pagep, fsdata);
2903 	}
2904 	*fsdata = (void *)0;
2905 	trace_ext4_da_write_begin(inode, pos, len);
2906 
2907 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2908 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2909 						      pagep, fsdata);
2910 		if (ret < 0)
2911 			return ret;
2912 		if (ret == 1)
2913 			return 0;
2914 	}
2915 
2916 retry:
2917 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2918 			mapping_gfp_mask(mapping));
2919 	if (IS_ERR(folio))
2920 		return PTR_ERR(folio);
2921 
2922 #ifdef CONFIG_FS_ENCRYPTION
2923 	ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2924 #else
2925 	ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2926 #endif
2927 	if (ret < 0) {
2928 		folio_unlock(folio);
2929 		folio_put(folio);
2930 		/*
2931 		 * block_write_begin may have instantiated a few blocks
2932 		 * outside i_size.  Trim these off again. Don't need
2933 		 * i_size_read because we hold inode lock.
2934 		 */
2935 		if (pos + len > inode->i_size)
2936 			ext4_truncate_failed_write(inode);
2937 
2938 		if (ret == -ENOSPC &&
2939 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2940 			goto retry;
2941 		return ret;
2942 	}
2943 
2944 	*pagep = &folio->page;
2945 	return ret;
2946 }
2947 
2948 /*
2949  * Check if we should update i_disksize
2950  * when write to the end of file but not require block allocation
2951  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2952 static int ext4_da_should_update_i_disksize(struct folio *folio,
2953 					    unsigned long offset)
2954 {
2955 	struct buffer_head *bh;
2956 	struct inode *inode = folio->mapping->host;
2957 	unsigned int idx;
2958 	int i;
2959 
2960 	bh = folio_buffers(folio);
2961 	idx = offset >> inode->i_blkbits;
2962 
2963 	for (i = 0; i < idx; i++)
2964 		bh = bh->b_this_page;
2965 
2966 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2967 		return 0;
2968 	return 1;
2969 }
2970 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2971 static int ext4_da_do_write_end(struct address_space *mapping,
2972 			loff_t pos, unsigned len, unsigned copied,
2973 			struct folio *folio)
2974 {
2975 	struct inode *inode = mapping->host;
2976 	loff_t old_size = inode->i_size;
2977 	bool disksize_changed = false;
2978 	loff_t new_i_size, zero_len = 0;
2979 	handle_t *handle;
2980 
2981 	if (unlikely(!folio_buffers(folio))) {
2982 		folio_unlock(folio);
2983 		folio_put(folio);
2984 		return -EIO;
2985 	}
2986 	/*
2987 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2988 	 * flag, which all that's needed to trigger page writeback.
2989 	 */
2990 	copied = block_write_end(NULL, mapping, pos, len, copied,
2991 			&folio->page, NULL);
2992 	new_i_size = pos + copied;
2993 
2994 	/*
2995 	 * It's important to update i_size while still holding folio lock,
2996 	 * because folio writeout could otherwise come in and zero beyond
2997 	 * i_size.
2998 	 *
2999 	 * Since we are holding inode lock, we are sure i_disksize <=
3000 	 * i_size. We also know that if i_disksize < i_size, there are
3001 	 * delalloc writes pending in the range up to i_size. If the end of
3002 	 * the current write is <= i_size, there's no need to touch
3003 	 * i_disksize since writeback will push i_disksize up to i_size
3004 	 * eventually. If the end of the current write is > i_size and
3005 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3006 	 * checked, we need to update i_disksize here as certain
3007 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3008 	 */
3009 	if (new_i_size > inode->i_size) {
3010 		unsigned long end;
3011 
3012 		i_size_write(inode, new_i_size);
3013 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3014 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3015 			ext4_update_i_disksize(inode, new_i_size);
3016 			disksize_changed = true;
3017 		}
3018 	}
3019 
3020 	folio_unlock(folio);
3021 	folio_put(folio);
3022 
3023 	if (pos > old_size) {
3024 		pagecache_isize_extended(inode, old_size, pos);
3025 		zero_len = pos - old_size;
3026 	}
3027 
3028 	if (!disksize_changed && !zero_len)
3029 		return copied;
3030 
3031 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3032 	if (IS_ERR(handle))
3033 		return PTR_ERR(handle);
3034 	if (zero_len)
3035 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3036 	ext4_mark_inode_dirty(handle, inode);
3037 	ext4_journal_stop(handle);
3038 
3039 	return copied;
3040 }
3041 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3042 static int ext4_da_write_end(struct file *file,
3043 			     struct address_space *mapping,
3044 			     loff_t pos, unsigned len, unsigned copied,
3045 			     struct page *page, void *fsdata)
3046 {
3047 	struct inode *inode = mapping->host;
3048 	int write_mode = (int)(unsigned long)fsdata;
3049 	struct folio *folio = page_folio(page);
3050 
3051 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3052 		return ext4_write_end(file, mapping, pos,
3053 				      len, copied, &folio->page, fsdata);
3054 
3055 	trace_ext4_da_write_end(inode, pos, len, copied);
3056 
3057 	if (write_mode != CONVERT_INLINE_DATA &&
3058 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059 	    ext4_has_inline_data(inode))
3060 		return ext4_write_inline_data_end(inode, pos, len, copied,
3061 						  folio);
3062 
3063 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3064 		copied = 0;
3065 
3066 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3067 }
3068 
3069 /*
3070  * Force all delayed allocation blocks to be allocated for a given inode.
3071  */
ext4_alloc_da_blocks(struct inode * inode)3072 int ext4_alloc_da_blocks(struct inode *inode)
3073 {
3074 	trace_ext4_alloc_da_blocks(inode);
3075 
3076 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3077 		return 0;
3078 
3079 	/*
3080 	 * We do something simple for now.  The filemap_flush() will
3081 	 * also start triggering a write of the data blocks, which is
3082 	 * not strictly speaking necessary (and for users of
3083 	 * laptop_mode, not even desirable).  However, to do otherwise
3084 	 * would require replicating code paths in:
3085 	 *
3086 	 * ext4_writepages() ->
3087 	 *    write_cache_pages() ---> (via passed in callback function)
3088 	 *        __mpage_da_writepage() -->
3089 	 *           mpage_add_bh_to_extent()
3090 	 *           mpage_da_map_blocks()
3091 	 *
3092 	 * The problem is that write_cache_pages(), located in
3093 	 * mm/page-writeback.c, marks pages clean in preparation for
3094 	 * doing I/O, which is not desirable if we're not planning on
3095 	 * doing I/O at all.
3096 	 *
3097 	 * We could call write_cache_pages(), and then redirty all of
3098 	 * the pages by calling redirty_page_for_writepage() but that
3099 	 * would be ugly in the extreme.  So instead we would need to
3100 	 * replicate parts of the code in the above functions,
3101 	 * simplifying them because we wouldn't actually intend to
3102 	 * write out the pages, but rather only collect contiguous
3103 	 * logical block extents, call the multi-block allocator, and
3104 	 * then update the buffer heads with the block allocations.
3105 	 *
3106 	 * For now, though, we'll cheat by calling filemap_flush(),
3107 	 * which will map the blocks, and start the I/O, but not
3108 	 * actually wait for the I/O to complete.
3109 	 */
3110 	return filemap_flush(inode->i_mapping);
3111 }
3112 
3113 /*
3114  * bmap() is special.  It gets used by applications such as lilo and by
3115  * the swapper to find the on-disk block of a specific piece of data.
3116  *
3117  * Naturally, this is dangerous if the block concerned is still in the
3118  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3119  * filesystem and enables swap, then they may get a nasty shock when the
3120  * data getting swapped to that swapfile suddenly gets overwritten by
3121  * the original zero's written out previously to the journal and
3122  * awaiting writeback in the kernel's buffer cache.
3123  *
3124  * So, if we see any bmap calls here on a modified, data-journaled file,
3125  * take extra steps to flush any blocks which might be in the cache.
3126  */
ext4_bmap(struct address_space * mapping,sector_t block)3127 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3128 {
3129 	struct inode *inode = mapping->host;
3130 	sector_t ret = 0;
3131 
3132 	inode_lock_shared(inode);
3133 	/*
3134 	 * We can get here for an inline file via the FIBMAP ioctl
3135 	 */
3136 	if (ext4_has_inline_data(inode))
3137 		goto out;
3138 
3139 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3140 	    (test_opt(inode->i_sb, DELALLOC) ||
3141 	     ext4_should_journal_data(inode))) {
3142 		/*
3143 		 * With delalloc or journalled data we want to sync the file so
3144 		 * that we can make sure we allocate blocks for file and data
3145 		 * is in place for the user to see it
3146 		 */
3147 		filemap_write_and_wait(mapping);
3148 	}
3149 
3150 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3151 
3152 out:
3153 	inode_unlock_shared(inode);
3154 	return ret;
3155 }
3156 
ext4_read_folio(struct file * file,struct folio * folio)3157 static int ext4_read_folio(struct file *file, struct folio *folio)
3158 {
3159 	int ret = -EAGAIN;
3160 	struct inode *inode = folio->mapping->host;
3161 
3162 	trace_ext4_read_folio(inode, folio);
3163 
3164 	if (ext4_has_inline_data(inode))
3165 		ret = ext4_readpage_inline(inode, folio);
3166 
3167 	if (ret == -EAGAIN)
3168 		return ext4_mpage_readpages(inode, NULL, folio);
3169 
3170 	return ret;
3171 }
3172 
ext4_readahead(struct readahead_control * rac)3173 static void ext4_readahead(struct readahead_control *rac)
3174 {
3175 	struct inode *inode = rac->mapping->host;
3176 
3177 	/* If the file has inline data, no need to do readahead. */
3178 	if (ext4_has_inline_data(inode))
3179 		return;
3180 
3181 	ext4_mpage_readpages(inode, rac, NULL);
3182 }
3183 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3184 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3185 				size_t length)
3186 {
3187 	trace_ext4_invalidate_folio(folio, offset, length);
3188 
3189 	/* No journalling happens on data buffers when this function is used */
3190 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3191 
3192 	block_invalidate_folio(folio, offset, length);
3193 }
3194 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3195 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3196 					    size_t offset, size_t length)
3197 {
3198 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3199 
3200 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3201 
3202 	/*
3203 	 * If it's a full truncate we just forget about the pending dirtying
3204 	 */
3205 	if (offset == 0 && length == folio_size(folio))
3206 		folio_clear_checked(folio);
3207 
3208 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3209 }
3210 
3211 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3212 static void ext4_journalled_invalidate_folio(struct folio *folio,
3213 					   size_t offset,
3214 					   size_t length)
3215 {
3216 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3217 }
3218 
ext4_release_folio(struct folio * folio,gfp_t wait)3219 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3220 {
3221 	struct inode *inode = folio->mapping->host;
3222 	journal_t *journal = EXT4_JOURNAL(inode);
3223 
3224 	trace_ext4_release_folio(inode, folio);
3225 
3226 	/* Page has dirty journalled data -> cannot release */
3227 	if (folio_test_checked(folio))
3228 		return false;
3229 	if (journal)
3230 		return jbd2_journal_try_to_free_buffers(journal, folio);
3231 	else
3232 		return try_to_free_buffers(folio);
3233 }
3234 
ext4_inode_datasync_dirty(struct inode * inode)3235 static bool ext4_inode_datasync_dirty(struct inode *inode)
3236 {
3237 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3238 
3239 	if (journal) {
3240 		if (jbd2_transaction_committed(journal,
3241 			EXT4_I(inode)->i_datasync_tid))
3242 			return false;
3243 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3244 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3245 		return true;
3246 	}
3247 
3248 	/* Any metadata buffers to write? */
3249 	if (!list_empty(&inode->i_mapping->private_list))
3250 		return true;
3251 	return inode->i_state & I_DIRTY_DATASYNC;
3252 }
3253 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3254 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3255 			   struct ext4_map_blocks *map, loff_t offset,
3256 			   loff_t length, unsigned int flags)
3257 {
3258 	u8 blkbits = inode->i_blkbits;
3259 
3260 	/*
3261 	 * Writes that span EOF might trigger an I/O size update on completion,
3262 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3263 	 * there is no other metadata changes being made or are pending.
3264 	 */
3265 	iomap->flags = 0;
3266 	if (ext4_inode_datasync_dirty(inode) ||
3267 	    offset + length > i_size_read(inode))
3268 		iomap->flags |= IOMAP_F_DIRTY;
3269 
3270 	if (map->m_flags & EXT4_MAP_NEW)
3271 		iomap->flags |= IOMAP_F_NEW;
3272 
3273 	if (flags & IOMAP_DAX)
3274 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3275 	else
3276 		iomap->bdev = inode->i_sb->s_bdev;
3277 	iomap->offset = (u64) map->m_lblk << blkbits;
3278 	iomap->length = (u64) map->m_len << blkbits;
3279 
3280 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3281 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3282 		iomap->flags |= IOMAP_F_MERGED;
3283 
3284 	/*
3285 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3286 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3287 	 * set. In order for any allocated unwritten extents to be converted
3288 	 * into written extents correctly within the ->end_io() handler, we
3289 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3290 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3291 	 * been set first.
3292 	 */
3293 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3294 		iomap->type = IOMAP_UNWRITTEN;
3295 		iomap->addr = (u64) map->m_pblk << blkbits;
3296 		if (flags & IOMAP_DAX)
3297 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3298 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3299 		iomap->type = IOMAP_MAPPED;
3300 		iomap->addr = (u64) map->m_pblk << blkbits;
3301 		if (flags & IOMAP_DAX)
3302 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3303 	} else {
3304 		iomap->type = IOMAP_HOLE;
3305 		iomap->addr = IOMAP_NULL_ADDR;
3306 	}
3307 }
3308 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3309 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3310 			    unsigned int flags)
3311 {
3312 	handle_t *handle;
3313 	u8 blkbits = inode->i_blkbits;
3314 	int ret, dio_credits, m_flags = 0, retries = 0;
3315 
3316 	/*
3317 	 * Trim the mapping request to the maximum value that we can map at
3318 	 * once for direct I/O.
3319 	 */
3320 	if (map->m_len > DIO_MAX_BLOCKS)
3321 		map->m_len = DIO_MAX_BLOCKS;
3322 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3323 
3324 retry:
3325 	/*
3326 	 * Either we allocate blocks and then don't get an unwritten extent, so
3327 	 * in that case we have reserved enough credits. Or, the blocks are
3328 	 * already allocated and unwritten. In that case, the extent conversion
3329 	 * fits into the credits as well.
3330 	 */
3331 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3332 	if (IS_ERR(handle))
3333 		return PTR_ERR(handle);
3334 
3335 	/*
3336 	 * DAX and direct I/O are the only two operations that are currently
3337 	 * supported with IOMAP_WRITE.
3338 	 */
3339 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3340 	if (flags & IOMAP_DAX)
3341 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3342 	/*
3343 	 * We use i_size instead of i_disksize here because delalloc writeback
3344 	 * can complete at any point during the I/O and subsequently push the
3345 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3346 	 * happening and thus expose allocated blocks to direct I/O reads.
3347 	 */
3348 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3349 		m_flags = EXT4_GET_BLOCKS_CREATE;
3350 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3351 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3352 
3353 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3354 
3355 	/*
3356 	 * We cannot fill holes in indirect tree based inodes as that could
3357 	 * expose stale data in the case of a crash. Use the magic error code
3358 	 * to fallback to buffered I/O.
3359 	 */
3360 	if (!m_flags && !ret)
3361 		ret = -ENOTBLK;
3362 
3363 	ext4_journal_stop(handle);
3364 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3365 		goto retry;
3366 
3367 	return ret;
3368 }
3369 
3370 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3371 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3372 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3373 {
3374 	int ret;
3375 	struct ext4_map_blocks map;
3376 	u8 blkbits = inode->i_blkbits;
3377 
3378 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3379 		return -EINVAL;
3380 
3381 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3382 		return -ERANGE;
3383 
3384 	/*
3385 	 * Calculate the first and last logical blocks respectively.
3386 	 */
3387 	map.m_lblk = offset >> blkbits;
3388 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3389 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3390 
3391 	if (flags & IOMAP_WRITE) {
3392 		/*
3393 		 * We check here if the blocks are already allocated, then we
3394 		 * don't need to start a journal txn and we can directly return
3395 		 * the mapping information. This could boost performance
3396 		 * especially in multi-threaded overwrite requests.
3397 		 */
3398 		if (offset + length <= i_size_read(inode)) {
3399 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3400 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3401 				goto out;
3402 		}
3403 		ret = ext4_iomap_alloc(inode, &map, flags);
3404 	} else {
3405 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3406 	}
3407 
3408 	if (ret < 0)
3409 		return ret;
3410 out:
3411 	/*
3412 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3413 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3414 	 * limiting the length of the mapping returned.
3415 	 */
3416 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3417 
3418 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3419 
3420 	return 0;
3421 }
3422 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3423 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3424 		loff_t length, unsigned flags, struct iomap *iomap,
3425 		struct iomap *srcmap)
3426 {
3427 	int ret;
3428 
3429 	/*
3430 	 * Even for writes we don't need to allocate blocks, so just pretend
3431 	 * we are reading to save overhead of starting a transaction.
3432 	 */
3433 	flags &= ~IOMAP_WRITE;
3434 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3435 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3436 	return ret;
3437 }
3438 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3439 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3440 			  ssize_t written, unsigned flags, struct iomap *iomap)
3441 {
3442 	/*
3443 	 * Check to see whether an error occurred while writing out the data to
3444 	 * the allocated blocks. If so, return the magic error code so that we
3445 	 * fallback to buffered I/O and attempt to complete the remainder of
3446 	 * the I/O. Any blocks that may have been allocated in preparation for
3447 	 * the direct I/O will be reused during buffered I/O.
3448 	 */
3449 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3450 		return -ENOTBLK;
3451 
3452 	return 0;
3453 }
3454 
3455 const struct iomap_ops ext4_iomap_ops = {
3456 	.iomap_begin		= ext4_iomap_begin,
3457 	.iomap_end		= ext4_iomap_end,
3458 };
3459 
3460 const struct iomap_ops ext4_iomap_overwrite_ops = {
3461 	.iomap_begin		= ext4_iomap_overwrite_begin,
3462 	.iomap_end		= ext4_iomap_end,
3463 };
3464 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3465 static bool ext4_iomap_is_delalloc(struct inode *inode,
3466 				   struct ext4_map_blocks *map)
3467 {
3468 	struct extent_status es;
3469 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3470 
3471 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3472 				  map->m_lblk, end, &es);
3473 
3474 	if (!es.es_len || es.es_lblk > end)
3475 		return false;
3476 
3477 	if (es.es_lblk > map->m_lblk) {
3478 		map->m_len = es.es_lblk - map->m_lblk;
3479 		return false;
3480 	}
3481 
3482 	offset = map->m_lblk - es.es_lblk;
3483 	map->m_len = es.es_len - offset;
3484 
3485 	return true;
3486 }
3487 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3488 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3489 				   loff_t length, unsigned int flags,
3490 				   struct iomap *iomap, struct iomap *srcmap)
3491 {
3492 	int ret;
3493 	bool delalloc = false;
3494 	struct ext4_map_blocks map;
3495 	u8 blkbits = inode->i_blkbits;
3496 
3497 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3498 		return -EINVAL;
3499 
3500 	if (ext4_has_inline_data(inode)) {
3501 		ret = ext4_inline_data_iomap(inode, iomap);
3502 		if (ret != -EAGAIN) {
3503 			if (ret == 0 && offset >= iomap->length)
3504 				ret = -ENOENT;
3505 			return ret;
3506 		}
3507 	}
3508 
3509 	/*
3510 	 * Calculate the first and last logical block respectively.
3511 	 */
3512 	map.m_lblk = offset >> blkbits;
3513 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3514 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3515 
3516 	/*
3517 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3518 	 * So handle it here itself instead of querying ext4_map_blocks().
3519 	 * Since ext4_map_blocks() will warn about it and will return
3520 	 * -EIO error.
3521 	 */
3522 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3523 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3524 
3525 		if (offset >= sbi->s_bitmap_maxbytes) {
3526 			map.m_flags = 0;
3527 			goto set_iomap;
3528 		}
3529 	}
3530 
3531 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3532 	if (ret < 0)
3533 		return ret;
3534 	if (ret == 0)
3535 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3536 
3537 set_iomap:
3538 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3539 	if (delalloc && iomap->type == IOMAP_HOLE)
3540 		iomap->type = IOMAP_DELALLOC;
3541 
3542 	return 0;
3543 }
3544 
3545 const struct iomap_ops ext4_iomap_report_ops = {
3546 	.iomap_begin = ext4_iomap_begin_report,
3547 };
3548 
3549 /*
3550  * For data=journal mode, folio should be marked dirty only when it was
3551  * writeably mapped. When that happens, it was already attached to the
3552  * transaction and marked as jbddirty (we take care of this in
3553  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3554  * so we should have nothing to do here, except for the case when someone
3555  * had the page pinned and dirtied the page through this pin (e.g. by doing
3556  * direct IO to it). In that case we'd need to attach buffers here to the
3557  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3558  * folio and leave attached buffers clean, because the buffers' dirty state is
3559  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3560  * the journalling code will explode.  So what we do is to mark the folio
3561  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3562  * to the transaction appropriately.
3563  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3564 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3565 		struct folio *folio)
3566 {
3567 	WARN_ON_ONCE(!folio_buffers(folio));
3568 	if (folio_maybe_dma_pinned(folio))
3569 		folio_set_checked(folio);
3570 	return filemap_dirty_folio(mapping, folio);
3571 }
3572 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3573 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3574 {
3575 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3576 	WARN_ON_ONCE(!folio_buffers(folio));
3577 	return block_dirty_folio(mapping, folio);
3578 }
3579 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3581 				    struct file *file, sector_t *span)
3582 {
3583 	return iomap_swapfile_activate(sis, file, span,
3584 				       &ext4_iomap_report_ops);
3585 }
3586 
3587 static const struct address_space_operations ext4_aops = {
3588 	.read_folio		= ext4_read_folio,
3589 	.readahead		= ext4_readahead,
3590 	.writepages		= ext4_writepages,
3591 	.write_begin		= ext4_write_begin,
3592 	.write_end		= ext4_write_end,
3593 	.dirty_folio		= ext4_dirty_folio,
3594 	.bmap			= ext4_bmap,
3595 	.invalidate_folio	= ext4_invalidate_folio,
3596 	.release_folio		= ext4_release_folio,
3597 	.direct_IO		= noop_direct_IO,
3598 	.migrate_folio		= buffer_migrate_folio,
3599 	.is_partially_uptodate  = block_is_partially_uptodate,
3600 	.error_remove_page	= generic_error_remove_page,
3601 	.swap_activate		= ext4_iomap_swap_activate,
3602 };
3603 
3604 static const struct address_space_operations ext4_journalled_aops = {
3605 	.read_folio		= ext4_read_folio,
3606 	.readahead		= ext4_readahead,
3607 	.writepages		= ext4_writepages,
3608 	.write_begin		= ext4_write_begin,
3609 	.write_end		= ext4_journalled_write_end,
3610 	.dirty_folio		= ext4_journalled_dirty_folio,
3611 	.bmap			= ext4_bmap,
3612 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3613 	.release_folio		= ext4_release_folio,
3614 	.direct_IO		= noop_direct_IO,
3615 	.migrate_folio		= buffer_migrate_folio_norefs,
3616 	.is_partially_uptodate  = block_is_partially_uptodate,
3617 	.error_remove_page	= generic_error_remove_page,
3618 	.swap_activate		= ext4_iomap_swap_activate,
3619 };
3620 
3621 static const struct address_space_operations ext4_da_aops = {
3622 	.read_folio		= ext4_read_folio,
3623 	.readahead		= ext4_readahead,
3624 	.writepages		= ext4_writepages,
3625 	.write_begin		= ext4_da_write_begin,
3626 	.write_end		= ext4_da_write_end,
3627 	.dirty_folio		= ext4_dirty_folio,
3628 	.bmap			= ext4_bmap,
3629 	.invalidate_folio	= ext4_invalidate_folio,
3630 	.release_folio		= ext4_release_folio,
3631 	.direct_IO		= noop_direct_IO,
3632 	.migrate_folio		= buffer_migrate_folio,
3633 	.is_partially_uptodate  = block_is_partially_uptodate,
3634 	.error_remove_page	= generic_error_remove_page,
3635 	.swap_activate		= ext4_iomap_swap_activate,
3636 };
3637 
3638 static const struct address_space_operations ext4_dax_aops = {
3639 	.writepages		= ext4_dax_writepages,
3640 	.direct_IO		= noop_direct_IO,
3641 	.dirty_folio		= noop_dirty_folio,
3642 	.bmap			= ext4_bmap,
3643 	.swap_activate		= ext4_iomap_swap_activate,
3644 };
3645 
ext4_set_aops(struct inode * inode)3646 void ext4_set_aops(struct inode *inode)
3647 {
3648 	switch (ext4_inode_journal_mode(inode)) {
3649 	case EXT4_INODE_ORDERED_DATA_MODE:
3650 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3651 		break;
3652 	case EXT4_INODE_JOURNAL_DATA_MODE:
3653 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3654 		return;
3655 	default:
3656 		BUG();
3657 	}
3658 	if (IS_DAX(inode))
3659 		inode->i_mapping->a_ops = &ext4_dax_aops;
3660 	else if (test_opt(inode->i_sb, DELALLOC))
3661 		inode->i_mapping->a_ops = &ext4_da_aops;
3662 	else
3663 		inode->i_mapping->a_ops = &ext4_aops;
3664 }
3665 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3666 static int __ext4_block_zero_page_range(handle_t *handle,
3667 		struct address_space *mapping, loff_t from, loff_t length)
3668 {
3669 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3670 	unsigned offset = from & (PAGE_SIZE-1);
3671 	unsigned blocksize, pos;
3672 	ext4_lblk_t iblock;
3673 	struct inode *inode = mapping->host;
3674 	struct buffer_head *bh;
3675 	struct folio *folio;
3676 	int err = 0;
3677 
3678 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3679 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3680 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3681 	if (IS_ERR(folio))
3682 		return PTR_ERR(folio);
3683 
3684 	blocksize = inode->i_sb->s_blocksize;
3685 
3686 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3687 
3688 	bh = folio_buffers(folio);
3689 	if (!bh) {
3690 		create_empty_buffers(&folio->page, blocksize, 0);
3691 		bh = folio_buffers(folio);
3692 	}
3693 
3694 	/* Find the buffer that contains "offset" */
3695 	pos = blocksize;
3696 	while (offset >= pos) {
3697 		bh = bh->b_this_page;
3698 		iblock++;
3699 		pos += blocksize;
3700 	}
3701 	if (buffer_freed(bh)) {
3702 		BUFFER_TRACE(bh, "freed: skip");
3703 		goto unlock;
3704 	}
3705 	if (!buffer_mapped(bh)) {
3706 		BUFFER_TRACE(bh, "unmapped");
3707 		ext4_get_block(inode, iblock, bh, 0);
3708 		/* unmapped? It's a hole - nothing to do */
3709 		if (!buffer_mapped(bh)) {
3710 			BUFFER_TRACE(bh, "still unmapped");
3711 			goto unlock;
3712 		}
3713 	}
3714 
3715 	/* Ok, it's mapped. Make sure it's up-to-date */
3716 	if (folio_test_uptodate(folio))
3717 		set_buffer_uptodate(bh);
3718 
3719 	if (!buffer_uptodate(bh)) {
3720 		err = ext4_read_bh_lock(bh, 0, true);
3721 		if (err)
3722 			goto unlock;
3723 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3724 			/* We expect the key to be set. */
3725 			BUG_ON(!fscrypt_has_encryption_key(inode));
3726 			err = fscrypt_decrypt_pagecache_blocks(folio,
3727 							       blocksize,
3728 							       bh_offset(bh));
3729 			if (err) {
3730 				clear_buffer_uptodate(bh);
3731 				goto unlock;
3732 			}
3733 		}
3734 	}
3735 	if (ext4_should_journal_data(inode)) {
3736 		BUFFER_TRACE(bh, "get write access");
3737 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3738 						    EXT4_JTR_NONE);
3739 		if (err)
3740 			goto unlock;
3741 	}
3742 	folio_zero_range(folio, offset, length);
3743 	BUFFER_TRACE(bh, "zeroed end of block");
3744 
3745 	if (ext4_should_journal_data(inode)) {
3746 		err = ext4_dirty_journalled_data(handle, bh);
3747 	} else {
3748 		err = 0;
3749 		mark_buffer_dirty(bh);
3750 		if (ext4_should_order_data(inode))
3751 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3752 					length);
3753 	}
3754 
3755 unlock:
3756 	folio_unlock(folio);
3757 	folio_put(folio);
3758 	return err;
3759 }
3760 
3761 /*
3762  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3763  * starting from file offset 'from'.  The range to be zero'd must
3764  * be contained with in one block.  If the specified range exceeds
3765  * the end of the block it will be shortened to end of the block
3766  * that corresponds to 'from'
3767  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3768 static int ext4_block_zero_page_range(handle_t *handle,
3769 		struct address_space *mapping, loff_t from, loff_t length)
3770 {
3771 	struct inode *inode = mapping->host;
3772 	unsigned offset = from & (PAGE_SIZE-1);
3773 	unsigned blocksize = inode->i_sb->s_blocksize;
3774 	unsigned max = blocksize - (offset & (blocksize - 1));
3775 
3776 	/*
3777 	 * correct length if it does not fall between
3778 	 * 'from' and the end of the block
3779 	 */
3780 	if (length > max || length < 0)
3781 		length = max;
3782 
3783 	if (IS_DAX(inode)) {
3784 		return dax_zero_range(inode, from, length, NULL,
3785 				      &ext4_iomap_ops);
3786 	}
3787 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3788 }
3789 
3790 /*
3791  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3792  * up to the end of the block which corresponds to `from'.
3793  * This required during truncate. We need to physically zero the tail end
3794  * of that block so it doesn't yield old data if the file is later grown.
3795  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3796 static int ext4_block_truncate_page(handle_t *handle,
3797 		struct address_space *mapping, loff_t from)
3798 {
3799 	unsigned offset = from & (PAGE_SIZE-1);
3800 	unsigned length;
3801 	unsigned blocksize;
3802 	struct inode *inode = mapping->host;
3803 
3804 	/* If we are processing an encrypted inode during orphan list handling */
3805 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3806 		return 0;
3807 
3808 	blocksize = inode->i_sb->s_blocksize;
3809 	length = blocksize - (offset & (blocksize - 1));
3810 
3811 	return ext4_block_zero_page_range(handle, mapping, from, length);
3812 }
3813 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3814 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3815 			     loff_t lstart, loff_t length)
3816 {
3817 	struct super_block *sb = inode->i_sb;
3818 	struct address_space *mapping = inode->i_mapping;
3819 	unsigned partial_start, partial_end;
3820 	ext4_fsblk_t start, end;
3821 	loff_t byte_end = (lstart + length - 1);
3822 	int err = 0;
3823 
3824 	partial_start = lstart & (sb->s_blocksize - 1);
3825 	partial_end = byte_end & (sb->s_blocksize - 1);
3826 
3827 	start = lstart >> sb->s_blocksize_bits;
3828 	end = byte_end >> sb->s_blocksize_bits;
3829 
3830 	/* Handle partial zero within the single block */
3831 	if (start == end &&
3832 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3833 		err = ext4_block_zero_page_range(handle, mapping,
3834 						 lstart, length);
3835 		return err;
3836 	}
3837 	/* Handle partial zero out on the start of the range */
3838 	if (partial_start) {
3839 		err = ext4_block_zero_page_range(handle, mapping,
3840 						 lstart, sb->s_blocksize);
3841 		if (err)
3842 			return err;
3843 	}
3844 	/* Handle partial zero out on the end of the range */
3845 	if (partial_end != sb->s_blocksize - 1)
3846 		err = ext4_block_zero_page_range(handle, mapping,
3847 						 byte_end - partial_end,
3848 						 partial_end + 1);
3849 	return err;
3850 }
3851 
ext4_can_truncate(struct inode * inode)3852 int ext4_can_truncate(struct inode *inode)
3853 {
3854 	if (S_ISREG(inode->i_mode))
3855 		return 1;
3856 	if (S_ISDIR(inode->i_mode))
3857 		return 1;
3858 	if (S_ISLNK(inode->i_mode))
3859 		return !ext4_inode_is_fast_symlink(inode);
3860 	return 0;
3861 }
3862 
3863 /*
3864  * We have to make sure i_disksize gets properly updated before we truncate
3865  * page cache due to hole punching or zero range. Otherwise i_disksize update
3866  * can get lost as it may have been postponed to submission of writeback but
3867  * that will never happen after we truncate page cache.
3868  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3869 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3870 				      loff_t len)
3871 {
3872 	handle_t *handle;
3873 	int ret;
3874 
3875 	loff_t size = i_size_read(inode);
3876 
3877 	WARN_ON(!inode_is_locked(inode));
3878 	if (offset > size || offset + len < size)
3879 		return 0;
3880 
3881 	if (EXT4_I(inode)->i_disksize >= size)
3882 		return 0;
3883 
3884 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3885 	if (IS_ERR(handle))
3886 		return PTR_ERR(handle);
3887 	ext4_update_i_disksize(inode, size);
3888 	ret = ext4_mark_inode_dirty(handle, inode);
3889 	ext4_journal_stop(handle);
3890 
3891 	return ret;
3892 }
3893 
ext4_wait_dax_page(struct inode * inode)3894 static void ext4_wait_dax_page(struct inode *inode)
3895 {
3896 	filemap_invalidate_unlock(inode->i_mapping);
3897 	schedule();
3898 	filemap_invalidate_lock(inode->i_mapping);
3899 }
3900 
ext4_break_layouts(struct inode * inode)3901 int ext4_break_layouts(struct inode *inode)
3902 {
3903 	struct page *page;
3904 	int error;
3905 
3906 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3907 		return -EINVAL;
3908 
3909 	do {
3910 		page = dax_layout_busy_page(inode->i_mapping);
3911 		if (!page)
3912 			return 0;
3913 
3914 		error = ___wait_var_event(&page->_refcount,
3915 				atomic_read(&page->_refcount) == 1,
3916 				TASK_INTERRUPTIBLE, 0, 0,
3917 				ext4_wait_dax_page(inode));
3918 	} while (error == 0);
3919 
3920 	return error;
3921 }
3922 
3923 /*
3924  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3925  * associated with the given offset and length
3926  *
3927  * @inode:  File inode
3928  * @offset: The offset where the hole will begin
3929  * @len:    The length of the hole
3930  *
3931  * Returns: 0 on success or negative on failure
3932  */
3933 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3934 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3935 {
3936 	struct inode *inode = file_inode(file);
3937 	struct super_block *sb = inode->i_sb;
3938 	ext4_lblk_t first_block, stop_block;
3939 	struct address_space *mapping = inode->i_mapping;
3940 	loff_t first_block_offset, last_block_offset, max_length;
3941 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3942 	handle_t *handle;
3943 	unsigned int credits;
3944 	int ret = 0, ret2 = 0;
3945 
3946 	trace_ext4_punch_hole(inode, offset, length, 0);
3947 
3948 	/*
3949 	 * Write out all dirty pages to avoid race conditions
3950 	 * Then release them.
3951 	 */
3952 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3953 		ret = filemap_write_and_wait_range(mapping, offset,
3954 						   offset + length - 1);
3955 		if (ret)
3956 			return ret;
3957 	}
3958 
3959 	inode_lock(inode);
3960 
3961 	/* No need to punch hole beyond i_size */
3962 	if (offset >= inode->i_size)
3963 		goto out_mutex;
3964 
3965 	/*
3966 	 * If the hole extends beyond i_size, set the hole
3967 	 * to end after the page that contains i_size
3968 	 */
3969 	if (offset + length > inode->i_size) {
3970 		length = inode->i_size +
3971 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3972 		   offset;
3973 	}
3974 
3975 	/*
3976 	 * For punch hole the length + offset needs to be within one block
3977 	 * before last range. Adjust the length if it goes beyond that limit.
3978 	 */
3979 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3980 	if (offset + length > max_length)
3981 		length = max_length - offset;
3982 
3983 	if (offset & (sb->s_blocksize - 1) ||
3984 	    (offset + length) & (sb->s_blocksize - 1)) {
3985 		/*
3986 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3987 		 * partial block
3988 		 */
3989 		ret = ext4_inode_attach_jinode(inode);
3990 		if (ret < 0)
3991 			goto out_mutex;
3992 
3993 	}
3994 
3995 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
3996 	inode_dio_wait(inode);
3997 
3998 	ret = file_modified(file);
3999 	if (ret)
4000 		goto out_mutex;
4001 
4002 	/*
4003 	 * Prevent page faults from reinstantiating pages we have released from
4004 	 * page cache.
4005 	 */
4006 	filemap_invalidate_lock(mapping);
4007 
4008 	ret = ext4_break_layouts(inode);
4009 	if (ret)
4010 		goto out_dio;
4011 
4012 	first_block_offset = round_up(offset, sb->s_blocksize);
4013 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4014 
4015 	/* Now release the pages and zero block aligned part of pages*/
4016 	if (last_block_offset > first_block_offset) {
4017 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4018 		if (ret)
4019 			goto out_dio;
4020 		truncate_pagecache_range(inode, first_block_offset,
4021 					 last_block_offset);
4022 	}
4023 
4024 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4025 		credits = ext4_writepage_trans_blocks(inode);
4026 	else
4027 		credits = ext4_blocks_for_truncate(inode);
4028 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4029 	if (IS_ERR(handle)) {
4030 		ret = PTR_ERR(handle);
4031 		ext4_std_error(sb, ret);
4032 		goto out_dio;
4033 	}
4034 
4035 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4036 				       length);
4037 	if (ret)
4038 		goto out_stop;
4039 
4040 	first_block = (offset + sb->s_blocksize - 1) >>
4041 		EXT4_BLOCK_SIZE_BITS(sb);
4042 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4043 
4044 	/* If there are blocks to remove, do it */
4045 	if (stop_block > first_block) {
4046 
4047 		down_write(&EXT4_I(inode)->i_data_sem);
4048 		ext4_discard_preallocations(inode, 0);
4049 
4050 		ext4_es_remove_extent(inode, first_block,
4051 				      stop_block - first_block);
4052 
4053 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4054 			ret = ext4_ext_remove_space(inode, first_block,
4055 						    stop_block - 1);
4056 		else
4057 			ret = ext4_ind_remove_space(handle, inode, first_block,
4058 						    stop_block);
4059 
4060 		up_write(&EXT4_I(inode)->i_data_sem);
4061 	}
4062 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4063 	if (IS_SYNC(inode))
4064 		ext4_handle_sync(handle);
4065 
4066 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4067 	ret2 = ext4_mark_inode_dirty(handle, inode);
4068 	if (unlikely(ret2))
4069 		ret = ret2;
4070 	if (ret >= 0)
4071 		ext4_update_inode_fsync_trans(handle, inode, 1);
4072 out_stop:
4073 	ext4_journal_stop(handle);
4074 out_dio:
4075 	filemap_invalidate_unlock(mapping);
4076 out_mutex:
4077 	inode_unlock(inode);
4078 	return ret;
4079 }
4080 
ext4_inode_attach_jinode(struct inode * inode)4081 int ext4_inode_attach_jinode(struct inode *inode)
4082 {
4083 	struct ext4_inode_info *ei = EXT4_I(inode);
4084 	struct jbd2_inode *jinode;
4085 
4086 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4087 		return 0;
4088 
4089 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4090 	spin_lock(&inode->i_lock);
4091 	if (!ei->jinode) {
4092 		if (!jinode) {
4093 			spin_unlock(&inode->i_lock);
4094 			return -ENOMEM;
4095 		}
4096 		ei->jinode = jinode;
4097 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4098 		jinode = NULL;
4099 	}
4100 	spin_unlock(&inode->i_lock);
4101 	if (unlikely(jinode != NULL))
4102 		jbd2_free_inode(jinode);
4103 	return 0;
4104 }
4105 
4106 /*
4107  * ext4_truncate()
4108  *
4109  * We block out ext4_get_block() block instantiations across the entire
4110  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4111  * simultaneously on behalf of the same inode.
4112  *
4113  * As we work through the truncate and commit bits of it to the journal there
4114  * is one core, guiding principle: the file's tree must always be consistent on
4115  * disk.  We must be able to restart the truncate after a crash.
4116  *
4117  * The file's tree may be transiently inconsistent in memory (although it
4118  * probably isn't), but whenever we close off and commit a journal transaction,
4119  * the contents of (the filesystem + the journal) must be consistent and
4120  * restartable.  It's pretty simple, really: bottom up, right to left (although
4121  * left-to-right works OK too).
4122  *
4123  * Note that at recovery time, journal replay occurs *before* the restart of
4124  * truncate against the orphan inode list.
4125  *
4126  * The committed inode has the new, desired i_size (which is the same as
4127  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4128  * that this inode's truncate did not complete and it will again call
4129  * ext4_truncate() to have another go.  So there will be instantiated blocks
4130  * to the right of the truncation point in a crashed ext4 filesystem.  But
4131  * that's fine - as long as they are linked from the inode, the post-crash
4132  * ext4_truncate() run will find them and release them.
4133  */
ext4_truncate(struct inode * inode)4134 int ext4_truncate(struct inode *inode)
4135 {
4136 	struct ext4_inode_info *ei = EXT4_I(inode);
4137 	unsigned int credits;
4138 	int err = 0, err2;
4139 	handle_t *handle;
4140 	struct address_space *mapping = inode->i_mapping;
4141 
4142 	/*
4143 	 * There is a possibility that we're either freeing the inode
4144 	 * or it's a completely new inode. In those cases we might not
4145 	 * have i_rwsem locked because it's not necessary.
4146 	 */
4147 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4148 		WARN_ON(!inode_is_locked(inode));
4149 	trace_ext4_truncate_enter(inode);
4150 
4151 	if (!ext4_can_truncate(inode))
4152 		goto out_trace;
4153 
4154 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4155 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4156 
4157 	if (ext4_has_inline_data(inode)) {
4158 		int has_inline = 1;
4159 
4160 		err = ext4_inline_data_truncate(inode, &has_inline);
4161 		if (err || has_inline)
4162 			goto out_trace;
4163 	}
4164 
4165 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4166 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4167 		err = ext4_inode_attach_jinode(inode);
4168 		if (err)
4169 			goto out_trace;
4170 	}
4171 
4172 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4173 		credits = ext4_writepage_trans_blocks(inode);
4174 	else
4175 		credits = ext4_blocks_for_truncate(inode);
4176 
4177 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4178 	if (IS_ERR(handle)) {
4179 		err = PTR_ERR(handle);
4180 		goto out_trace;
4181 	}
4182 
4183 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4184 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4185 
4186 	/*
4187 	 * We add the inode to the orphan list, so that if this
4188 	 * truncate spans multiple transactions, and we crash, we will
4189 	 * resume the truncate when the filesystem recovers.  It also
4190 	 * marks the inode dirty, to catch the new size.
4191 	 *
4192 	 * Implication: the file must always be in a sane, consistent
4193 	 * truncatable state while each transaction commits.
4194 	 */
4195 	err = ext4_orphan_add(handle, inode);
4196 	if (err)
4197 		goto out_stop;
4198 
4199 	down_write(&EXT4_I(inode)->i_data_sem);
4200 
4201 	ext4_discard_preallocations(inode, 0);
4202 
4203 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4204 		err = ext4_ext_truncate(handle, inode);
4205 	else
4206 		ext4_ind_truncate(handle, inode);
4207 
4208 	up_write(&ei->i_data_sem);
4209 	if (err)
4210 		goto out_stop;
4211 
4212 	if (IS_SYNC(inode))
4213 		ext4_handle_sync(handle);
4214 
4215 out_stop:
4216 	/*
4217 	 * If this was a simple ftruncate() and the file will remain alive,
4218 	 * then we need to clear up the orphan record which we created above.
4219 	 * However, if this was a real unlink then we were called by
4220 	 * ext4_evict_inode(), and we allow that function to clean up the
4221 	 * orphan info for us.
4222 	 */
4223 	if (inode->i_nlink)
4224 		ext4_orphan_del(handle, inode);
4225 
4226 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4227 	err2 = ext4_mark_inode_dirty(handle, inode);
4228 	if (unlikely(err2 && !err))
4229 		err = err2;
4230 	ext4_journal_stop(handle);
4231 
4232 out_trace:
4233 	trace_ext4_truncate_exit(inode);
4234 	return err;
4235 }
4236 
ext4_inode_peek_iversion(const struct inode * inode)4237 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4238 {
4239 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4240 		return inode_peek_iversion_raw(inode);
4241 	else
4242 		return inode_peek_iversion(inode);
4243 }
4244 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4245 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4246 				 struct ext4_inode_info *ei)
4247 {
4248 	struct inode *inode = &(ei->vfs_inode);
4249 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4250 	struct super_block *sb = inode->i_sb;
4251 
4252 	if (i_blocks <= ~0U) {
4253 		/*
4254 		 * i_blocks can be represented in a 32 bit variable
4255 		 * as multiple of 512 bytes
4256 		 */
4257 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4258 		raw_inode->i_blocks_high = 0;
4259 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4260 		return 0;
4261 	}
4262 
4263 	/*
4264 	 * This should never happen since sb->s_maxbytes should not have
4265 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4266 	 * feature in ext4_fill_super().
4267 	 */
4268 	if (!ext4_has_feature_huge_file(sb))
4269 		return -EFSCORRUPTED;
4270 
4271 	if (i_blocks <= 0xffffffffffffULL) {
4272 		/*
4273 		 * i_blocks can be represented in a 48 bit variable
4274 		 * as multiple of 512 bytes
4275 		 */
4276 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4277 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4278 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279 	} else {
4280 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4281 		/* i_block is stored in file system block size */
4282 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4283 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4284 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4285 	}
4286 	return 0;
4287 }
4288 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4289 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4290 {
4291 	struct ext4_inode_info *ei = EXT4_I(inode);
4292 	uid_t i_uid;
4293 	gid_t i_gid;
4294 	projid_t i_projid;
4295 	int block;
4296 	int err;
4297 
4298 	err = ext4_inode_blocks_set(raw_inode, ei);
4299 
4300 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4301 	i_uid = i_uid_read(inode);
4302 	i_gid = i_gid_read(inode);
4303 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4304 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4305 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4306 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4307 		/*
4308 		 * Fix up interoperability with old kernels. Otherwise,
4309 		 * old inodes get re-used with the upper 16 bits of the
4310 		 * uid/gid intact.
4311 		 */
4312 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4313 			raw_inode->i_uid_high = 0;
4314 			raw_inode->i_gid_high = 0;
4315 		} else {
4316 			raw_inode->i_uid_high =
4317 				cpu_to_le16(high_16_bits(i_uid));
4318 			raw_inode->i_gid_high =
4319 				cpu_to_le16(high_16_bits(i_gid));
4320 		}
4321 	} else {
4322 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4323 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4324 		raw_inode->i_uid_high = 0;
4325 		raw_inode->i_gid_high = 0;
4326 	}
4327 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4328 
4329 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4330 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4331 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4332 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4333 
4334 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4335 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4336 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4337 		raw_inode->i_file_acl_high =
4338 			cpu_to_le16(ei->i_file_acl >> 32);
4339 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4340 	ext4_isize_set(raw_inode, ei->i_disksize);
4341 
4342 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4343 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4344 		if (old_valid_dev(inode->i_rdev)) {
4345 			raw_inode->i_block[0] =
4346 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4347 			raw_inode->i_block[1] = 0;
4348 		} else {
4349 			raw_inode->i_block[0] = 0;
4350 			raw_inode->i_block[1] =
4351 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4352 			raw_inode->i_block[2] = 0;
4353 		}
4354 	} else if (!ext4_has_inline_data(inode)) {
4355 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4356 			raw_inode->i_block[block] = ei->i_data[block];
4357 	}
4358 
4359 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4360 		u64 ivers = ext4_inode_peek_iversion(inode);
4361 
4362 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4363 		if (ei->i_extra_isize) {
4364 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4365 				raw_inode->i_version_hi =
4366 					cpu_to_le32(ivers >> 32);
4367 			raw_inode->i_extra_isize =
4368 				cpu_to_le16(ei->i_extra_isize);
4369 		}
4370 	}
4371 
4372 	if (i_projid != EXT4_DEF_PROJID &&
4373 	    !ext4_has_feature_project(inode->i_sb))
4374 		err = err ?: -EFSCORRUPTED;
4375 
4376 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4377 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4378 		raw_inode->i_projid = cpu_to_le32(i_projid);
4379 
4380 	ext4_inode_csum_set(inode, raw_inode, ei);
4381 	return err;
4382 }
4383 
4384 /*
4385  * ext4_get_inode_loc returns with an extra refcount against the inode's
4386  * underlying buffer_head on success. If we pass 'inode' and it does not
4387  * have in-inode xattr, we have all inode data in memory that is needed
4388  * to recreate the on-disk version of this inode.
4389  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4390 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4391 				struct inode *inode, struct ext4_iloc *iloc,
4392 				ext4_fsblk_t *ret_block)
4393 {
4394 	struct ext4_group_desc	*gdp;
4395 	struct buffer_head	*bh;
4396 	ext4_fsblk_t		block;
4397 	struct blk_plug		plug;
4398 	int			inodes_per_block, inode_offset;
4399 
4400 	iloc->bh = NULL;
4401 	if (ino < EXT4_ROOT_INO ||
4402 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4403 		return -EFSCORRUPTED;
4404 
4405 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4406 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4407 	if (!gdp)
4408 		return -EIO;
4409 
4410 	/*
4411 	 * Figure out the offset within the block group inode table
4412 	 */
4413 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4414 	inode_offset = ((ino - 1) %
4415 			EXT4_INODES_PER_GROUP(sb));
4416 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4417 
4418 	block = ext4_inode_table(sb, gdp);
4419 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4420 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4421 		ext4_error(sb, "Invalid inode table block %llu in "
4422 			   "block_group %u", block, iloc->block_group);
4423 		return -EFSCORRUPTED;
4424 	}
4425 	block += (inode_offset / inodes_per_block);
4426 
4427 	bh = sb_getblk(sb, block);
4428 	if (unlikely(!bh))
4429 		return -ENOMEM;
4430 	if (ext4_buffer_uptodate(bh))
4431 		goto has_buffer;
4432 
4433 	lock_buffer(bh);
4434 	if (ext4_buffer_uptodate(bh)) {
4435 		/* Someone brought it uptodate while we waited */
4436 		unlock_buffer(bh);
4437 		goto has_buffer;
4438 	}
4439 
4440 	/*
4441 	 * If we have all information of the inode in memory and this
4442 	 * is the only valid inode in the block, we need not read the
4443 	 * block.
4444 	 */
4445 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4446 		struct buffer_head *bitmap_bh;
4447 		int i, start;
4448 
4449 		start = inode_offset & ~(inodes_per_block - 1);
4450 
4451 		/* Is the inode bitmap in cache? */
4452 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4453 		if (unlikely(!bitmap_bh))
4454 			goto make_io;
4455 
4456 		/*
4457 		 * If the inode bitmap isn't in cache then the
4458 		 * optimisation may end up performing two reads instead
4459 		 * of one, so skip it.
4460 		 */
4461 		if (!buffer_uptodate(bitmap_bh)) {
4462 			brelse(bitmap_bh);
4463 			goto make_io;
4464 		}
4465 		for (i = start; i < start + inodes_per_block; i++) {
4466 			if (i == inode_offset)
4467 				continue;
4468 			if (ext4_test_bit(i, bitmap_bh->b_data))
4469 				break;
4470 		}
4471 		brelse(bitmap_bh);
4472 		if (i == start + inodes_per_block) {
4473 			struct ext4_inode *raw_inode =
4474 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4475 
4476 			/* all other inodes are free, so skip I/O */
4477 			memset(bh->b_data, 0, bh->b_size);
4478 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4479 				ext4_fill_raw_inode(inode, raw_inode);
4480 			set_buffer_uptodate(bh);
4481 			unlock_buffer(bh);
4482 			goto has_buffer;
4483 		}
4484 	}
4485 
4486 make_io:
4487 	/*
4488 	 * If we need to do any I/O, try to pre-readahead extra
4489 	 * blocks from the inode table.
4490 	 */
4491 	blk_start_plug(&plug);
4492 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4493 		ext4_fsblk_t b, end, table;
4494 		unsigned num;
4495 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4496 
4497 		table = ext4_inode_table(sb, gdp);
4498 		/* s_inode_readahead_blks is always a power of 2 */
4499 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4500 		if (table > b)
4501 			b = table;
4502 		end = b + ra_blks;
4503 		num = EXT4_INODES_PER_GROUP(sb);
4504 		if (ext4_has_group_desc_csum(sb))
4505 			num -= ext4_itable_unused_count(sb, gdp);
4506 		table += num / inodes_per_block;
4507 		if (end > table)
4508 			end = table;
4509 		while (b <= end)
4510 			ext4_sb_breadahead_unmovable(sb, b++);
4511 	}
4512 
4513 	/*
4514 	 * There are other valid inodes in the buffer, this inode
4515 	 * has in-inode xattrs, or we don't have this inode in memory.
4516 	 * Read the block from disk.
4517 	 */
4518 	trace_ext4_load_inode(sb, ino);
4519 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4520 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4521 	blk_finish_plug(&plug);
4522 	wait_on_buffer(bh);
4523 	if (!buffer_uptodate(bh)) {
4524 		if (ret_block)
4525 			*ret_block = block;
4526 		brelse(bh);
4527 		return -EIO;
4528 	}
4529 has_buffer:
4530 	iloc->bh = bh;
4531 	return 0;
4532 }
4533 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4534 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4535 					struct ext4_iloc *iloc)
4536 {
4537 	ext4_fsblk_t err_blk = 0;
4538 	int ret;
4539 
4540 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4541 					&err_blk);
4542 
4543 	if (ret == -EIO)
4544 		ext4_error_inode_block(inode, err_blk, EIO,
4545 					"unable to read itable block");
4546 
4547 	return ret;
4548 }
4549 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4550 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4551 {
4552 	ext4_fsblk_t err_blk = 0;
4553 	int ret;
4554 
4555 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4556 					&err_blk);
4557 
4558 	if (ret == -EIO)
4559 		ext4_error_inode_block(inode, err_blk, EIO,
4560 					"unable to read itable block");
4561 
4562 	return ret;
4563 }
4564 
4565 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4566 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4567 			  struct ext4_iloc *iloc)
4568 {
4569 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4570 }
4571 
ext4_should_enable_dax(struct inode * inode)4572 static bool ext4_should_enable_dax(struct inode *inode)
4573 {
4574 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4575 
4576 	if (test_opt2(inode->i_sb, DAX_NEVER))
4577 		return false;
4578 	if (!S_ISREG(inode->i_mode))
4579 		return false;
4580 	if (ext4_should_journal_data(inode))
4581 		return false;
4582 	if (ext4_has_inline_data(inode))
4583 		return false;
4584 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4585 		return false;
4586 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4587 		return false;
4588 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4589 		return false;
4590 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4591 		return true;
4592 
4593 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4594 }
4595 
ext4_set_inode_flags(struct inode * inode,bool init)4596 void ext4_set_inode_flags(struct inode *inode, bool init)
4597 {
4598 	unsigned int flags = EXT4_I(inode)->i_flags;
4599 	unsigned int new_fl = 0;
4600 
4601 	WARN_ON_ONCE(IS_DAX(inode) && init);
4602 
4603 	if (flags & EXT4_SYNC_FL)
4604 		new_fl |= S_SYNC;
4605 	if (flags & EXT4_APPEND_FL)
4606 		new_fl |= S_APPEND;
4607 	if (flags & EXT4_IMMUTABLE_FL)
4608 		new_fl |= S_IMMUTABLE;
4609 	if (flags & EXT4_NOATIME_FL)
4610 		new_fl |= S_NOATIME;
4611 	if (flags & EXT4_DIRSYNC_FL)
4612 		new_fl |= S_DIRSYNC;
4613 
4614 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4615 	 * here if already set. */
4616 	new_fl |= (inode->i_flags & S_DAX);
4617 	if (init && ext4_should_enable_dax(inode))
4618 		new_fl |= S_DAX;
4619 
4620 	if (flags & EXT4_ENCRYPT_FL)
4621 		new_fl |= S_ENCRYPTED;
4622 	if (flags & EXT4_CASEFOLD_FL)
4623 		new_fl |= S_CASEFOLD;
4624 	if (flags & EXT4_VERITY_FL)
4625 		new_fl |= S_VERITY;
4626 	inode_set_flags(inode, new_fl,
4627 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4628 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4629 }
4630 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4631 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4632 				  struct ext4_inode_info *ei)
4633 {
4634 	blkcnt_t i_blocks ;
4635 	struct inode *inode = &(ei->vfs_inode);
4636 	struct super_block *sb = inode->i_sb;
4637 
4638 	if (ext4_has_feature_huge_file(sb)) {
4639 		/* we are using combined 48 bit field */
4640 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4641 					le32_to_cpu(raw_inode->i_blocks_lo);
4642 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4643 			/* i_blocks represent file system block size */
4644 			return i_blocks  << (inode->i_blkbits - 9);
4645 		} else {
4646 			return i_blocks;
4647 		}
4648 	} else {
4649 		return le32_to_cpu(raw_inode->i_blocks_lo);
4650 	}
4651 }
4652 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4653 static inline int ext4_iget_extra_inode(struct inode *inode,
4654 					 struct ext4_inode *raw_inode,
4655 					 struct ext4_inode_info *ei)
4656 {
4657 	__le32 *magic = (void *)raw_inode +
4658 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4659 
4660 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4661 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4662 		int err;
4663 
4664 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4665 		err = ext4_find_inline_data_nolock(inode);
4666 		if (!err && ext4_has_inline_data(inode))
4667 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4668 		return err;
4669 	} else
4670 		EXT4_I(inode)->i_inline_off = 0;
4671 	return 0;
4672 }
4673 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4674 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4675 {
4676 	if (!ext4_has_feature_project(inode->i_sb))
4677 		return -EOPNOTSUPP;
4678 	*projid = EXT4_I(inode)->i_projid;
4679 	return 0;
4680 }
4681 
4682 /*
4683  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4684  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4685  * set.
4686  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4687 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4688 {
4689 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4690 		inode_set_iversion_raw(inode, val);
4691 	else
4692 		inode_set_iversion_queried(inode, val);
4693 }
4694 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4695 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4696 
4697 {
4698 	if (flags & EXT4_IGET_EA_INODE) {
4699 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4700 			return "missing EA_INODE flag";
4701 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4702 		    EXT4_I(inode)->i_file_acl)
4703 			return "ea_inode with extended attributes";
4704 	} else {
4705 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4706 			return "unexpected EA_INODE flag";
4707 	}
4708 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4709 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4710 	return NULL;
4711 }
4712 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4713 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4714 			  ext4_iget_flags flags, const char *function,
4715 			  unsigned int line)
4716 {
4717 	struct ext4_iloc iloc;
4718 	struct ext4_inode *raw_inode;
4719 	struct ext4_inode_info *ei;
4720 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4721 	struct inode *inode;
4722 	const char *err_str;
4723 	journal_t *journal = EXT4_SB(sb)->s_journal;
4724 	long ret;
4725 	loff_t size;
4726 	int block;
4727 	uid_t i_uid;
4728 	gid_t i_gid;
4729 	projid_t i_projid;
4730 
4731 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4732 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4733 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4734 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4735 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4736 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4737 	    (ino < EXT4_ROOT_INO) ||
4738 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4739 		if (flags & EXT4_IGET_HANDLE)
4740 			return ERR_PTR(-ESTALE);
4741 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4742 			     "inode #%lu: comm %s: iget: illegal inode #",
4743 			     ino, current->comm);
4744 		return ERR_PTR(-EFSCORRUPTED);
4745 	}
4746 
4747 	inode = iget_locked(sb, ino);
4748 	if (!inode)
4749 		return ERR_PTR(-ENOMEM);
4750 	if (!(inode->i_state & I_NEW)) {
4751 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4752 			ext4_error_inode(inode, function, line, 0, err_str);
4753 			iput(inode);
4754 			return ERR_PTR(-EFSCORRUPTED);
4755 		}
4756 		return inode;
4757 	}
4758 
4759 	ei = EXT4_I(inode);
4760 	iloc.bh = NULL;
4761 
4762 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4763 	if (ret < 0)
4764 		goto bad_inode;
4765 	raw_inode = ext4_raw_inode(&iloc);
4766 
4767 	if ((flags & EXT4_IGET_HANDLE) &&
4768 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4769 		ret = -ESTALE;
4770 		goto bad_inode;
4771 	}
4772 
4773 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4774 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4775 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4776 			EXT4_INODE_SIZE(inode->i_sb) ||
4777 		    (ei->i_extra_isize & 3)) {
4778 			ext4_error_inode(inode, function, line, 0,
4779 					 "iget: bad extra_isize %u "
4780 					 "(inode size %u)",
4781 					 ei->i_extra_isize,
4782 					 EXT4_INODE_SIZE(inode->i_sb));
4783 			ret = -EFSCORRUPTED;
4784 			goto bad_inode;
4785 		}
4786 	} else
4787 		ei->i_extra_isize = 0;
4788 
4789 	/* Precompute checksum seed for inode metadata */
4790 	if (ext4_has_metadata_csum(sb)) {
4791 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4792 		__u32 csum;
4793 		__le32 inum = cpu_to_le32(inode->i_ino);
4794 		__le32 gen = raw_inode->i_generation;
4795 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4796 				   sizeof(inum));
4797 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4798 					      sizeof(gen));
4799 	}
4800 
4801 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4802 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4803 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4804 		ext4_error_inode_err(inode, function, line, 0,
4805 				EFSBADCRC, "iget: checksum invalid");
4806 		ret = -EFSBADCRC;
4807 		goto bad_inode;
4808 	}
4809 
4810 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4811 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4812 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4813 	if (ext4_has_feature_project(sb) &&
4814 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4815 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4816 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4817 	else
4818 		i_projid = EXT4_DEF_PROJID;
4819 
4820 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4821 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4822 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4823 	}
4824 	i_uid_write(inode, i_uid);
4825 	i_gid_write(inode, i_gid);
4826 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4827 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4828 
4829 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4830 	ei->i_inline_off = 0;
4831 	ei->i_dir_start_lookup = 0;
4832 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4833 	/* We now have enough fields to check if the inode was active or not.
4834 	 * This is needed because nfsd might try to access dead inodes
4835 	 * the test is that same one that e2fsck uses
4836 	 * NeilBrown 1999oct15
4837 	 */
4838 	if (inode->i_nlink == 0) {
4839 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4840 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4841 		    ino != EXT4_BOOT_LOADER_INO) {
4842 			/* this inode is deleted or unallocated */
4843 			if (flags & EXT4_IGET_SPECIAL) {
4844 				ext4_error_inode(inode, function, line, 0,
4845 						 "iget: special inode unallocated");
4846 				ret = -EFSCORRUPTED;
4847 			} else
4848 				ret = -ESTALE;
4849 			goto bad_inode;
4850 		}
4851 		/* The only unlinked inodes we let through here have
4852 		 * valid i_mode and are being read by the orphan
4853 		 * recovery code: that's fine, we're about to complete
4854 		 * the process of deleting those.
4855 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4856 		 * not initialized on a new filesystem. */
4857 	}
4858 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4859 	ext4_set_inode_flags(inode, true);
4860 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4861 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4862 	if (ext4_has_feature_64bit(sb))
4863 		ei->i_file_acl |=
4864 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4865 	inode->i_size = ext4_isize(sb, raw_inode);
4866 	if ((size = i_size_read(inode)) < 0) {
4867 		ext4_error_inode(inode, function, line, 0,
4868 				 "iget: bad i_size value: %lld", size);
4869 		ret = -EFSCORRUPTED;
4870 		goto bad_inode;
4871 	}
4872 	/*
4873 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4874 	 * we'd normally treat htree data as empty space. But with metadata
4875 	 * checksumming that corrupts checksums so forbid that.
4876 	 */
4877 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4878 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4879 		ext4_error_inode(inode, function, line, 0,
4880 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4881 		ret = -EFSCORRUPTED;
4882 		goto bad_inode;
4883 	}
4884 	ei->i_disksize = inode->i_size;
4885 #ifdef CONFIG_QUOTA
4886 	ei->i_reserved_quota = 0;
4887 #endif
4888 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4889 	ei->i_block_group = iloc.block_group;
4890 	ei->i_last_alloc_group = ~0;
4891 	/*
4892 	 * NOTE! The in-memory inode i_data array is in little-endian order
4893 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4894 	 */
4895 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4896 		ei->i_data[block] = raw_inode->i_block[block];
4897 	INIT_LIST_HEAD(&ei->i_orphan);
4898 	ext4_fc_init_inode(&ei->vfs_inode);
4899 
4900 	/*
4901 	 * Set transaction id's of transactions that have to be committed
4902 	 * to finish f[data]sync. We set them to currently running transaction
4903 	 * as we cannot be sure that the inode or some of its metadata isn't
4904 	 * part of the transaction - the inode could have been reclaimed and
4905 	 * now it is reread from disk.
4906 	 */
4907 	if (journal) {
4908 		transaction_t *transaction;
4909 		tid_t tid;
4910 
4911 		read_lock(&journal->j_state_lock);
4912 		if (journal->j_running_transaction)
4913 			transaction = journal->j_running_transaction;
4914 		else
4915 			transaction = journal->j_committing_transaction;
4916 		if (transaction)
4917 			tid = transaction->t_tid;
4918 		else
4919 			tid = journal->j_commit_sequence;
4920 		read_unlock(&journal->j_state_lock);
4921 		ei->i_sync_tid = tid;
4922 		ei->i_datasync_tid = tid;
4923 	}
4924 
4925 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4926 		if (ei->i_extra_isize == 0) {
4927 			/* The extra space is currently unused. Use it. */
4928 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4929 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4930 					    EXT4_GOOD_OLD_INODE_SIZE;
4931 		} else {
4932 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4933 			if (ret)
4934 				goto bad_inode;
4935 		}
4936 	}
4937 
4938 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4939 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4940 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4941 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4942 
4943 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4944 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4945 
4946 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4947 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4948 				ivers |=
4949 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4950 		}
4951 		ext4_inode_set_iversion_queried(inode, ivers);
4952 	}
4953 
4954 	ret = 0;
4955 	if (ei->i_file_acl &&
4956 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4957 		ext4_error_inode(inode, function, line, 0,
4958 				 "iget: bad extended attribute block %llu",
4959 				 ei->i_file_acl);
4960 		ret = -EFSCORRUPTED;
4961 		goto bad_inode;
4962 	} else if (!ext4_has_inline_data(inode)) {
4963 		/* validate the block references in the inode */
4964 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4965 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4966 			(S_ISLNK(inode->i_mode) &&
4967 			!ext4_inode_is_fast_symlink(inode)))) {
4968 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4969 				ret = ext4_ext_check_inode(inode);
4970 			else
4971 				ret = ext4_ind_check_inode(inode);
4972 		}
4973 	}
4974 	if (ret)
4975 		goto bad_inode;
4976 
4977 	if (S_ISREG(inode->i_mode)) {
4978 		inode->i_op = &ext4_file_inode_operations;
4979 		inode->i_fop = &ext4_file_operations;
4980 		ext4_set_aops(inode);
4981 	} else if (S_ISDIR(inode->i_mode)) {
4982 		inode->i_op = &ext4_dir_inode_operations;
4983 		inode->i_fop = &ext4_dir_operations;
4984 	} else if (S_ISLNK(inode->i_mode)) {
4985 		/* VFS does not allow setting these so must be corruption */
4986 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4987 			ext4_error_inode(inode, function, line, 0,
4988 					 "iget: immutable or append flags "
4989 					 "not allowed on symlinks");
4990 			ret = -EFSCORRUPTED;
4991 			goto bad_inode;
4992 		}
4993 		if (IS_ENCRYPTED(inode)) {
4994 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4995 		} else if (ext4_inode_is_fast_symlink(inode)) {
4996 			inode->i_link = (char *)ei->i_data;
4997 			inode->i_op = &ext4_fast_symlink_inode_operations;
4998 			nd_terminate_link(ei->i_data, inode->i_size,
4999 				sizeof(ei->i_data) - 1);
5000 		} else {
5001 			inode->i_op = &ext4_symlink_inode_operations;
5002 		}
5003 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5004 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5005 		inode->i_op = &ext4_special_inode_operations;
5006 		if (raw_inode->i_block[0])
5007 			init_special_inode(inode, inode->i_mode,
5008 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5009 		else
5010 			init_special_inode(inode, inode->i_mode,
5011 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5012 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5013 		make_bad_inode(inode);
5014 	} else {
5015 		ret = -EFSCORRUPTED;
5016 		ext4_error_inode(inode, function, line, 0,
5017 				 "iget: bogus i_mode (%o)", inode->i_mode);
5018 		goto bad_inode;
5019 	}
5020 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5021 		ext4_error_inode(inode, function, line, 0,
5022 				 "casefold flag without casefold feature");
5023 		ret = -EFSCORRUPTED;
5024 		goto bad_inode;
5025 	}
5026 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5027 		ext4_error_inode(inode, function, line, 0, err_str);
5028 		ret = -EFSCORRUPTED;
5029 		goto bad_inode;
5030 	}
5031 
5032 	brelse(iloc.bh);
5033 	unlock_new_inode(inode);
5034 	return inode;
5035 
5036 bad_inode:
5037 	brelse(iloc.bh);
5038 	iget_failed(inode);
5039 	return ERR_PTR(ret);
5040 }
5041 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5042 static void __ext4_update_other_inode_time(struct super_block *sb,
5043 					   unsigned long orig_ino,
5044 					   unsigned long ino,
5045 					   struct ext4_inode *raw_inode)
5046 {
5047 	struct inode *inode;
5048 
5049 	inode = find_inode_by_ino_rcu(sb, ino);
5050 	if (!inode)
5051 		return;
5052 
5053 	if (!inode_is_dirtytime_only(inode))
5054 		return;
5055 
5056 	spin_lock(&inode->i_lock);
5057 	if (inode_is_dirtytime_only(inode)) {
5058 		struct ext4_inode_info	*ei = EXT4_I(inode);
5059 
5060 		inode->i_state &= ~I_DIRTY_TIME;
5061 		spin_unlock(&inode->i_lock);
5062 
5063 		spin_lock(&ei->i_raw_lock);
5064 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5065 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5066 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5067 		ext4_inode_csum_set(inode, raw_inode, ei);
5068 		spin_unlock(&ei->i_raw_lock);
5069 		trace_ext4_other_inode_update_time(inode, orig_ino);
5070 		return;
5071 	}
5072 	spin_unlock(&inode->i_lock);
5073 }
5074 
5075 /*
5076  * Opportunistically update the other time fields for other inodes in
5077  * the same inode table block.
5078  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5079 static void ext4_update_other_inodes_time(struct super_block *sb,
5080 					  unsigned long orig_ino, char *buf)
5081 {
5082 	unsigned long ino;
5083 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5084 	int inode_size = EXT4_INODE_SIZE(sb);
5085 
5086 	/*
5087 	 * Calculate the first inode in the inode table block.  Inode
5088 	 * numbers are one-based.  That is, the first inode in a block
5089 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5090 	 */
5091 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5092 	rcu_read_lock();
5093 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5094 		if (ino == orig_ino)
5095 			continue;
5096 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5097 					       (struct ext4_inode *)buf);
5098 	}
5099 	rcu_read_unlock();
5100 }
5101 
5102 /*
5103  * Post the struct inode info into an on-disk inode location in the
5104  * buffer-cache.  This gobbles the caller's reference to the
5105  * buffer_head in the inode location struct.
5106  *
5107  * The caller must have write access to iloc->bh.
5108  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5109 static int ext4_do_update_inode(handle_t *handle,
5110 				struct inode *inode,
5111 				struct ext4_iloc *iloc)
5112 {
5113 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5114 	struct ext4_inode_info *ei = EXT4_I(inode);
5115 	struct buffer_head *bh = iloc->bh;
5116 	struct super_block *sb = inode->i_sb;
5117 	int err;
5118 	int need_datasync = 0, set_large_file = 0;
5119 
5120 	spin_lock(&ei->i_raw_lock);
5121 
5122 	/*
5123 	 * For fields not tracked in the in-memory inode, initialise them
5124 	 * to zero for new inodes.
5125 	 */
5126 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5127 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5128 
5129 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5130 		need_datasync = 1;
5131 	if (ei->i_disksize > 0x7fffffffULL) {
5132 		if (!ext4_has_feature_large_file(sb) ||
5133 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5134 			set_large_file = 1;
5135 	}
5136 
5137 	err = ext4_fill_raw_inode(inode, raw_inode);
5138 	spin_unlock(&ei->i_raw_lock);
5139 	if (err) {
5140 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5141 		goto out_brelse;
5142 	}
5143 
5144 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5145 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 					      bh->b_data);
5147 
5148 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 	if (err)
5151 		goto out_error;
5152 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153 	if (set_large_file) {
5154 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5155 		err = ext4_journal_get_write_access(handle, sb,
5156 						    EXT4_SB(sb)->s_sbh,
5157 						    EXT4_JTR_NONE);
5158 		if (err)
5159 			goto out_error;
5160 		lock_buffer(EXT4_SB(sb)->s_sbh);
5161 		ext4_set_feature_large_file(sb);
5162 		ext4_superblock_csum_set(sb);
5163 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5164 		ext4_handle_sync(handle);
5165 		err = ext4_handle_dirty_metadata(handle, NULL,
5166 						 EXT4_SB(sb)->s_sbh);
5167 	}
5168 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5169 out_error:
5170 	ext4_std_error(inode->i_sb, err);
5171 out_brelse:
5172 	brelse(bh);
5173 	return err;
5174 }
5175 
5176 /*
5177  * ext4_write_inode()
5178  *
5179  * We are called from a few places:
5180  *
5181  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5182  *   Here, there will be no transaction running. We wait for any running
5183  *   transaction to commit.
5184  *
5185  * - Within flush work (sys_sync(), kupdate and such).
5186  *   We wait on commit, if told to.
5187  *
5188  * - Within iput_final() -> write_inode_now()
5189  *   We wait on commit, if told to.
5190  *
5191  * In all cases it is actually safe for us to return without doing anything,
5192  * because the inode has been copied into a raw inode buffer in
5193  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5194  * writeback.
5195  *
5196  * Note that we are absolutely dependent upon all inode dirtiers doing the
5197  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5198  * which we are interested.
5199  *
5200  * It would be a bug for them to not do this.  The code:
5201  *
5202  *	mark_inode_dirty(inode)
5203  *	stuff();
5204  *	inode->i_size = expr;
5205  *
5206  * is in error because write_inode() could occur while `stuff()' is running,
5207  * and the new i_size will be lost.  Plus the inode will no longer be on the
5208  * superblock's dirty inode list.
5209  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5211 {
5212 	int err;
5213 
5214 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5215 		return 0;
5216 
5217 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5218 		return -EIO;
5219 
5220 	if (EXT4_SB(inode->i_sb)->s_journal) {
5221 		if (ext4_journal_current_handle()) {
5222 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5223 			dump_stack();
5224 			return -EIO;
5225 		}
5226 
5227 		/*
5228 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5229 		 * ext4_sync_fs() will force the commit after everything is
5230 		 * written.
5231 		 */
5232 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5233 			return 0;
5234 
5235 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5236 						EXT4_I(inode)->i_sync_tid);
5237 	} else {
5238 		struct ext4_iloc iloc;
5239 
5240 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5241 		if (err)
5242 			return err;
5243 		/*
5244 		 * sync(2) will flush the whole buffer cache. No need to do
5245 		 * it here separately for each inode.
5246 		 */
5247 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5248 			sync_dirty_buffer(iloc.bh);
5249 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5250 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5251 					       "IO error syncing inode");
5252 			err = -EIO;
5253 		}
5254 		brelse(iloc.bh);
5255 	}
5256 	return err;
5257 }
5258 
5259 /*
5260  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5261  * buffers that are attached to a folio straddling i_size and are undergoing
5262  * commit. In that case we have to wait for commit to finish and try again.
5263  */
ext4_wait_for_tail_page_commit(struct inode * inode)5264 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5265 {
5266 	unsigned offset;
5267 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5268 	tid_t commit_tid;
5269 	int ret;
5270 	bool has_transaction;
5271 
5272 	offset = inode->i_size & (PAGE_SIZE - 1);
5273 	/*
5274 	 * If the folio is fully truncated, we don't need to wait for any commit
5275 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5276 	 * strip all buffers from the folio but keep the folio dirty which can then
5277 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5278 	 * buffers). Also we don't need to wait for any commit if all buffers in
5279 	 * the folio remain valid. This is most beneficial for the common case of
5280 	 * blocksize == PAGESIZE.
5281 	 */
5282 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5283 		return;
5284 	while (1) {
5285 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5286 				      inode->i_size >> PAGE_SHIFT);
5287 		if (IS_ERR(folio))
5288 			return;
5289 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5290 						folio_size(folio) - offset);
5291 		folio_unlock(folio);
5292 		folio_put(folio);
5293 		if (ret != -EBUSY)
5294 			return;
5295 		has_transaction = false;
5296 		read_lock(&journal->j_state_lock);
5297 		if (journal->j_committing_transaction) {
5298 			commit_tid = journal->j_committing_transaction->t_tid;
5299 			has_transaction = true;
5300 		}
5301 		read_unlock(&journal->j_state_lock);
5302 		if (has_transaction)
5303 			jbd2_log_wait_commit(journal, commit_tid);
5304 	}
5305 }
5306 
5307 /*
5308  * ext4_setattr()
5309  *
5310  * Called from notify_change.
5311  *
5312  * We want to trap VFS attempts to truncate the file as soon as
5313  * possible.  In particular, we want to make sure that when the VFS
5314  * shrinks i_size, we put the inode on the orphan list and modify
5315  * i_disksize immediately, so that during the subsequent flushing of
5316  * dirty pages and freeing of disk blocks, we can guarantee that any
5317  * commit will leave the blocks being flushed in an unused state on
5318  * disk.  (On recovery, the inode will get truncated and the blocks will
5319  * be freed, so we have a strong guarantee that no future commit will
5320  * leave these blocks visible to the user.)
5321  *
5322  * Another thing we have to assure is that if we are in ordered mode
5323  * and inode is still attached to the committing transaction, we must
5324  * we start writeout of all the dirty pages which are being truncated.
5325  * This way we are sure that all the data written in the previous
5326  * transaction are already on disk (truncate waits for pages under
5327  * writeback).
5328  *
5329  * Called with inode->i_rwsem down.
5330  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5331 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5332 		 struct iattr *attr)
5333 {
5334 	struct inode *inode = d_inode(dentry);
5335 	int error, rc = 0;
5336 	int orphan = 0;
5337 	const unsigned int ia_valid = attr->ia_valid;
5338 	bool inc_ivers = true;
5339 
5340 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5341 		return -EIO;
5342 
5343 	if (unlikely(IS_IMMUTABLE(inode)))
5344 		return -EPERM;
5345 
5346 	if (unlikely(IS_APPEND(inode) &&
5347 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5348 				  ATTR_GID | ATTR_TIMES_SET))))
5349 		return -EPERM;
5350 
5351 	error = setattr_prepare(idmap, dentry, attr);
5352 	if (error)
5353 		return error;
5354 
5355 	error = fscrypt_prepare_setattr(dentry, attr);
5356 	if (error)
5357 		return error;
5358 
5359 	error = fsverity_prepare_setattr(dentry, attr);
5360 	if (error)
5361 		return error;
5362 
5363 	if (is_quota_modification(idmap, inode, attr)) {
5364 		error = dquot_initialize(inode);
5365 		if (error)
5366 			return error;
5367 	}
5368 
5369 	if (i_uid_needs_update(idmap, attr, inode) ||
5370 	    i_gid_needs_update(idmap, attr, inode)) {
5371 		handle_t *handle;
5372 
5373 		/* (user+group)*(old+new) structure, inode write (sb,
5374 		 * inode block, ? - but truncate inode update has it) */
5375 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5376 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5377 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5378 		if (IS_ERR(handle)) {
5379 			error = PTR_ERR(handle);
5380 			goto err_out;
5381 		}
5382 
5383 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5384 		 * counts xattr inode references.
5385 		 */
5386 		down_read(&EXT4_I(inode)->xattr_sem);
5387 		error = dquot_transfer(idmap, inode, attr);
5388 		up_read(&EXT4_I(inode)->xattr_sem);
5389 
5390 		if (error) {
5391 			ext4_journal_stop(handle);
5392 			return error;
5393 		}
5394 		/* Update corresponding info in inode so that everything is in
5395 		 * one transaction */
5396 		i_uid_update(idmap, attr, inode);
5397 		i_gid_update(idmap, attr, inode);
5398 		error = ext4_mark_inode_dirty(handle, inode);
5399 		ext4_journal_stop(handle);
5400 		if (unlikely(error)) {
5401 			return error;
5402 		}
5403 	}
5404 
5405 	if (attr->ia_valid & ATTR_SIZE) {
5406 		handle_t *handle;
5407 		loff_t oldsize = inode->i_size;
5408 		loff_t old_disksize;
5409 		int shrink = (attr->ia_size < inode->i_size);
5410 
5411 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5412 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5413 
5414 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5415 				return -EFBIG;
5416 			}
5417 		}
5418 		if (!S_ISREG(inode->i_mode)) {
5419 			return -EINVAL;
5420 		}
5421 
5422 		if (attr->ia_size == inode->i_size)
5423 			inc_ivers = false;
5424 
5425 		if (shrink) {
5426 			if (ext4_should_order_data(inode)) {
5427 				error = ext4_begin_ordered_truncate(inode,
5428 							    attr->ia_size);
5429 				if (error)
5430 					goto err_out;
5431 			}
5432 			/*
5433 			 * Blocks are going to be removed from the inode. Wait
5434 			 * for dio in flight.
5435 			 */
5436 			inode_dio_wait(inode);
5437 		}
5438 
5439 		filemap_invalidate_lock(inode->i_mapping);
5440 
5441 		rc = ext4_break_layouts(inode);
5442 		if (rc) {
5443 			filemap_invalidate_unlock(inode->i_mapping);
5444 			goto err_out;
5445 		}
5446 
5447 		if (attr->ia_size != inode->i_size) {
5448 			/* attach jbd2 jinode for EOF folio tail zeroing */
5449 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5450 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5451 				error = ext4_inode_attach_jinode(inode);
5452 				if (error)
5453 					goto err_out;
5454 			}
5455 
5456 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5457 			if (IS_ERR(handle)) {
5458 				error = PTR_ERR(handle);
5459 				goto out_mmap_sem;
5460 			}
5461 			if (ext4_handle_valid(handle) && shrink) {
5462 				error = ext4_orphan_add(handle, inode);
5463 				orphan = 1;
5464 			}
5465 			/*
5466 			 * Update c/mtime and tail zero the EOF folio on
5467 			 * truncate up. ext4_truncate() handles the shrink case
5468 			 * below.
5469 			 */
5470 			if (!shrink) {
5471 				inode_set_mtime_to_ts(inode,
5472 						      inode_set_ctime_current(inode));
5473 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5474 					ext4_block_truncate_page(handle,
5475 							inode->i_mapping, oldsize);
5476 			}
5477 
5478 			if (shrink)
5479 				ext4_fc_track_range(handle, inode,
5480 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5481 					inode->i_sb->s_blocksize_bits,
5482 					EXT_MAX_BLOCKS - 1);
5483 			else
5484 				ext4_fc_track_range(
5485 					handle, inode,
5486 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5487 					inode->i_sb->s_blocksize_bits,
5488 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5489 					inode->i_sb->s_blocksize_bits);
5490 
5491 			down_write(&EXT4_I(inode)->i_data_sem);
5492 			old_disksize = EXT4_I(inode)->i_disksize;
5493 			EXT4_I(inode)->i_disksize = attr->ia_size;
5494 			rc = ext4_mark_inode_dirty(handle, inode);
5495 			if (!error)
5496 				error = rc;
5497 			/*
5498 			 * We have to update i_size under i_data_sem together
5499 			 * with i_disksize to avoid races with writeback code
5500 			 * running ext4_wb_update_i_disksize().
5501 			 */
5502 			if (!error)
5503 				i_size_write(inode, attr->ia_size);
5504 			else
5505 				EXT4_I(inode)->i_disksize = old_disksize;
5506 			up_write(&EXT4_I(inode)->i_data_sem);
5507 			ext4_journal_stop(handle);
5508 			if (error)
5509 				goto out_mmap_sem;
5510 			if (!shrink) {
5511 				pagecache_isize_extended(inode, oldsize,
5512 							 inode->i_size);
5513 			} else if (ext4_should_journal_data(inode)) {
5514 				ext4_wait_for_tail_page_commit(inode);
5515 			}
5516 		}
5517 
5518 		/*
5519 		 * Truncate pagecache after we've waited for commit
5520 		 * in data=journal mode to make pages freeable.
5521 		 */
5522 		truncate_pagecache(inode, inode->i_size);
5523 		/*
5524 		 * Call ext4_truncate() even if i_size didn't change to
5525 		 * truncate possible preallocated blocks.
5526 		 */
5527 		if (attr->ia_size <= oldsize) {
5528 			rc = ext4_truncate(inode);
5529 			if (rc)
5530 				error = rc;
5531 		}
5532 out_mmap_sem:
5533 		filemap_invalidate_unlock(inode->i_mapping);
5534 	}
5535 
5536 	if (!error) {
5537 		if (inc_ivers)
5538 			inode_inc_iversion(inode);
5539 		setattr_copy(idmap, inode, attr);
5540 		mark_inode_dirty(inode);
5541 	}
5542 
5543 	/*
5544 	 * If the call to ext4_truncate failed to get a transaction handle at
5545 	 * all, we need to clean up the in-core orphan list manually.
5546 	 */
5547 	if (orphan && inode->i_nlink)
5548 		ext4_orphan_del(NULL, inode);
5549 
5550 	if (!error && (ia_valid & ATTR_MODE))
5551 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5552 
5553 err_out:
5554 	if  (error)
5555 		ext4_std_error(inode->i_sb, error);
5556 	if (!error)
5557 		error = rc;
5558 	return error;
5559 }
5560 
ext4_dio_alignment(struct inode * inode)5561 u32 ext4_dio_alignment(struct inode *inode)
5562 {
5563 	if (fsverity_active(inode))
5564 		return 0;
5565 	if (ext4_should_journal_data(inode))
5566 		return 0;
5567 	if (ext4_has_inline_data(inode))
5568 		return 0;
5569 	if (IS_ENCRYPTED(inode)) {
5570 		if (!fscrypt_dio_supported(inode))
5571 			return 0;
5572 		return i_blocksize(inode);
5573 	}
5574 	return 1; /* use the iomap defaults */
5575 }
5576 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5577 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5578 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5579 {
5580 	struct inode *inode = d_inode(path->dentry);
5581 	struct ext4_inode *raw_inode;
5582 	struct ext4_inode_info *ei = EXT4_I(inode);
5583 	unsigned int flags;
5584 
5585 	if ((request_mask & STATX_BTIME) &&
5586 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5587 		stat->result_mask |= STATX_BTIME;
5588 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5589 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5590 	}
5591 
5592 	/*
5593 	 * Return the DIO alignment restrictions if requested.  We only return
5594 	 * this information when requested, since on encrypted files it might
5595 	 * take a fair bit of work to get if the file wasn't opened recently.
5596 	 */
5597 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5598 		u32 dio_align = ext4_dio_alignment(inode);
5599 
5600 		stat->result_mask |= STATX_DIOALIGN;
5601 		if (dio_align == 1) {
5602 			struct block_device *bdev = inode->i_sb->s_bdev;
5603 
5604 			/* iomap defaults */
5605 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5606 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5607 		} else {
5608 			stat->dio_mem_align = dio_align;
5609 			stat->dio_offset_align = dio_align;
5610 		}
5611 	}
5612 
5613 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5614 	if (flags & EXT4_APPEND_FL)
5615 		stat->attributes |= STATX_ATTR_APPEND;
5616 	if (flags & EXT4_COMPR_FL)
5617 		stat->attributes |= STATX_ATTR_COMPRESSED;
5618 	if (flags & EXT4_ENCRYPT_FL)
5619 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5620 	if (flags & EXT4_IMMUTABLE_FL)
5621 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5622 	if (flags & EXT4_NODUMP_FL)
5623 		stat->attributes |= STATX_ATTR_NODUMP;
5624 	if (flags & EXT4_VERITY_FL)
5625 		stat->attributes |= STATX_ATTR_VERITY;
5626 
5627 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5628 				  STATX_ATTR_COMPRESSED |
5629 				  STATX_ATTR_ENCRYPTED |
5630 				  STATX_ATTR_IMMUTABLE |
5631 				  STATX_ATTR_NODUMP |
5632 				  STATX_ATTR_VERITY);
5633 
5634 	generic_fillattr(idmap, request_mask, inode, stat);
5635 	return 0;
5636 }
5637 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5638 int ext4_file_getattr(struct mnt_idmap *idmap,
5639 		      const struct path *path, struct kstat *stat,
5640 		      u32 request_mask, unsigned int query_flags)
5641 {
5642 	struct inode *inode = d_inode(path->dentry);
5643 	u64 delalloc_blocks;
5644 
5645 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5646 
5647 	/*
5648 	 * If there is inline data in the inode, the inode will normally not
5649 	 * have data blocks allocated (it may have an external xattr block).
5650 	 * Report at least one sector for such files, so tools like tar, rsync,
5651 	 * others don't incorrectly think the file is completely sparse.
5652 	 */
5653 	if (unlikely(ext4_has_inline_data(inode)))
5654 		stat->blocks += (stat->size + 511) >> 9;
5655 
5656 	/*
5657 	 * We can't update i_blocks if the block allocation is delayed
5658 	 * otherwise in the case of system crash before the real block
5659 	 * allocation is done, we will have i_blocks inconsistent with
5660 	 * on-disk file blocks.
5661 	 * We always keep i_blocks updated together with real
5662 	 * allocation. But to not confuse with user, stat
5663 	 * will return the blocks that include the delayed allocation
5664 	 * blocks for this file.
5665 	 */
5666 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5667 				   EXT4_I(inode)->i_reserved_data_blocks);
5668 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5669 	return 0;
5670 }
5671 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5672 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5673 				   int pextents)
5674 {
5675 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5676 		return ext4_ind_trans_blocks(inode, lblocks);
5677 	return ext4_ext_index_trans_blocks(inode, pextents);
5678 }
5679 
5680 /*
5681  * Account for index blocks, block groups bitmaps and block group
5682  * descriptor blocks if modify datablocks and index blocks
5683  * worse case, the indexs blocks spread over different block groups
5684  *
5685  * If datablocks are discontiguous, they are possible to spread over
5686  * different block groups too. If they are contiguous, with flexbg,
5687  * they could still across block group boundary.
5688  *
5689  * Also account for superblock, inode, quota and xattr blocks
5690  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5691 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5692 				  int pextents)
5693 {
5694 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5695 	int gdpblocks;
5696 	int idxblocks;
5697 	int ret;
5698 
5699 	/*
5700 	 * How many index blocks need to touch to map @lblocks logical blocks
5701 	 * to @pextents physical extents?
5702 	 */
5703 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5704 
5705 	ret = idxblocks;
5706 
5707 	/*
5708 	 * Now let's see how many group bitmaps and group descriptors need
5709 	 * to account
5710 	 */
5711 	groups = idxblocks + pextents;
5712 	gdpblocks = groups;
5713 	if (groups > ngroups)
5714 		groups = ngroups;
5715 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5716 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5717 
5718 	/* bitmaps and block group descriptor blocks */
5719 	ret += groups + gdpblocks;
5720 
5721 	/* Blocks for super block, inode, quota and xattr blocks */
5722 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5723 
5724 	return ret;
5725 }
5726 
5727 /*
5728  * Calculate the total number of credits to reserve to fit
5729  * the modification of a single pages into a single transaction,
5730  * which may include multiple chunks of block allocations.
5731  *
5732  * This could be called via ext4_write_begin()
5733  *
5734  * We need to consider the worse case, when
5735  * one new block per extent.
5736  */
ext4_writepage_trans_blocks(struct inode * inode)5737 int ext4_writepage_trans_blocks(struct inode *inode)
5738 {
5739 	int bpp = ext4_journal_blocks_per_page(inode);
5740 	int ret;
5741 
5742 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5743 
5744 	/* Account for data blocks for journalled mode */
5745 	if (ext4_should_journal_data(inode))
5746 		ret += bpp;
5747 	return ret;
5748 }
5749 
5750 /*
5751  * Calculate the journal credits for a chunk of data modification.
5752  *
5753  * This is called from DIO, fallocate or whoever calling
5754  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5755  *
5756  * journal buffers for data blocks are not included here, as DIO
5757  * and fallocate do no need to journal data buffers.
5758  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5759 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5760 {
5761 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5762 }
5763 
5764 /*
5765  * The caller must have previously called ext4_reserve_inode_write().
5766  * Give this, we know that the caller already has write access to iloc->bh.
5767  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5768 int ext4_mark_iloc_dirty(handle_t *handle,
5769 			 struct inode *inode, struct ext4_iloc *iloc)
5770 {
5771 	int err = 0;
5772 
5773 	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5774 		put_bh(iloc->bh);
5775 		return -EIO;
5776 	}
5777 	ext4_fc_track_inode(handle, inode);
5778 
5779 	/* the do_update_inode consumes one bh->b_count */
5780 	get_bh(iloc->bh);
5781 
5782 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5783 	err = ext4_do_update_inode(handle, inode, iloc);
5784 	put_bh(iloc->bh);
5785 	return err;
5786 }
5787 
5788 /*
5789  * On success, We end up with an outstanding reference count against
5790  * iloc->bh.  This _must_ be cleaned up later.
5791  */
5792 
5793 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5794 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5795 			 struct ext4_iloc *iloc)
5796 {
5797 	int err;
5798 
5799 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5800 		return -EIO;
5801 
5802 	err = ext4_get_inode_loc(inode, iloc);
5803 	if (!err) {
5804 		BUFFER_TRACE(iloc->bh, "get_write_access");
5805 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5806 						    iloc->bh, EXT4_JTR_NONE);
5807 		if (err) {
5808 			brelse(iloc->bh);
5809 			iloc->bh = NULL;
5810 		}
5811 	}
5812 	ext4_std_error(inode->i_sb, err);
5813 	return err;
5814 }
5815 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5816 static int __ext4_expand_extra_isize(struct inode *inode,
5817 				     unsigned int new_extra_isize,
5818 				     struct ext4_iloc *iloc,
5819 				     handle_t *handle, int *no_expand)
5820 {
5821 	struct ext4_inode *raw_inode;
5822 	struct ext4_xattr_ibody_header *header;
5823 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5824 	struct ext4_inode_info *ei = EXT4_I(inode);
5825 	int error;
5826 
5827 	/* this was checked at iget time, but double check for good measure */
5828 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5829 	    (ei->i_extra_isize & 3)) {
5830 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5831 				 ei->i_extra_isize,
5832 				 EXT4_INODE_SIZE(inode->i_sb));
5833 		return -EFSCORRUPTED;
5834 	}
5835 	if ((new_extra_isize < ei->i_extra_isize) ||
5836 	    (new_extra_isize < 4) ||
5837 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5838 		return -EINVAL;	/* Should never happen */
5839 
5840 	raw_inode = ext4_raw_inode(iloc);
5841 
5842 	header = IHDR(inode, raw_inode);
5843 
5844 	/* No extended attributes present */
5845 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5846 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5847 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5848 		       EXT4_I(inode)->i_extra_isize, 0,
5849 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5850 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5851 		return 0;
5852 	}
5853 
5854 	/*
5855 	 * We may need to allocate external xattr block so we need quotas
5856 	 * initialized. Here we can be called with various locks held so we
5857 	 * cannot affort to initialize quotas ourselves. So just bail.
5858 	 */
5859 	if (dquot_initialize_needed(inode))
5860 		return -EAGAIN;
5861 
5862 	/* try to expand with EAs present */
5863 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5864 					   raw_inode, handle);
5865 	if (error) {
5866 		/*
5867 		 * Inode size expansion failed; don't try again
5868 		 */
5869 		*no_expand = 1;
5870 	}
5871 
5872 	return error;
5873 }
5874 
5875 /*
5876  * Expand an inode by new_extra_isize bytes.
5877  * Returns 0 on success or negative error number on failure.
5878  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5879 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5880 					  unsigned int new_extra_isize,
5881 					  struct ext4_iloc iloc,
5882 					  handle_t *handle)
5883 {
5884 	int no_expand;
5885 	int error;
5886 
5887 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5888 		return -EOVERFLOW;
5889 
5890 	/*
5891 	 * In nojournal mode, we can immediately attempt to expand
5892 	 * the inode.  When journaled, we first need to obtain extra
5893 	 * buffer credits since we may write into the EA block
5894 	 * with this same handle. If journal_extend fails, then it will
5895 	 * only result in a minor loss of functionality for that inode.
5896 	 * If this is felt to be critical, then e2fsck should be run to
5897 	 * force a large enough s_min_extra_isize.
5898 	 */
5899 	if (ext4_journal_extend(handle,
5900 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5901 		return -ENOSPC;
5902 
5903 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5904 		return -EBUSY;
5905 
5906 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5907 					  handle, &no_expand);
5908 	ext4_write_unlock_xattr(inode, &no_expand);
5909 
5910 	return error;
5911 }
5912 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5913 int ext4_expand_extra_isize(struct inode *inode,
5914 			    unsigned int new_extra_isize,
5915 			    struct ext4_iloc *iloc)
5916 {
5917 	handle_t *handle;
5918 	int no_expand;
5919 	int error, rc;
5920 
5921 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5922 		brelse(iloc->bh);
5923 		return -EOVERFLOW;
5924 	}
5925 
5926 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5927 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5928 	if (IS_ERR(handle)) {
5929 		error = PTR_ERR(handle);
5930 		brelse(iloc->bh);
5931 		return error;
5932 	}
5933 
5934 	ext4_write_lock_xattr(inode, &no_expand);
5935 
5936 	BUFFER_TRACE(iloc->bh, "get_write_access");
5937 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5938 					      EXT4_JTR_NONE);
5939 	if (error) {
5940 		brelse(iloc->bh);
5941 		goto out_unlock;
5942 	}
5943 
5944 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5945 					  handle, &no_expand);
5946 
5947 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5948 	if (!error)
5949 		error = rc;
5950 
5951 out_unlock:
5952 	ext4_write_unlock_xattr(inode, &no_expand);
5953 	ext4_journal_stop(handle);
5954 	return error;
5955 }
5956 
5957 /*
5958  * What we do here is to mark the in-core inode as clean with respect to inode
5959  * dirtiness (it may still be data-dirty).
5960  * This means that the in-core inode may be reaped by prune_icache
5961  * without having to perform any I/O.  This is a very good thing,
5962  * because *any* task may call prune_icache - even ones which
5963  * have a transaction open against a different journal.
5964  *
5965  * Is this cheating?  Not really.  Sure, we haven't written the
5966  * inode out, but prune_icache isn't a user-visible syncing function.
5967  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5968  * we start and wait on commits.
5969  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5970 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5971 				const char *func, unsigned int line)
5972 {
5973 	struct ext4_iloc iloc;
5974 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5975 	int err;
5976 
5977 	might_sleep();
5978 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5979 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5980 	if (err)
5981 		goto out;
5982 
5983 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5984 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5985 					       iloc, handle);
5986 
5987 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5988 out:
5989 	if (unlikely(err))
5990 		ext4_error_inode_err(inode, func, line, 0, err,
5991 					"mark_inode_dirty error");
5992 	return err;
5993 }
5994 
5995 /*
5996  * ext4_dirty_inode() is called from __mark_inode_dirty()
5997  *
5998  * We're really interested in the case where a file is being extended.
5999  * i_size has been changed by generic_commit_write() and we thus need
6000  * to include the updated inode in the current transaction.
6001  *
6002  * Also, dquot_alloc_block() will always dirty the inode when blocks
6003  * are allocated to the file.
6004  *
6005  * If the inode is marked synchronous, we don't honour that here - doing
6006  * so would cause a commit on atime updates, which we don't bother doing.
6007  * We handle synchronous inodes at the highest possible level.
6008  */
ext4_dirty_inode(struct inode * inode,int flags)6009 void ext4_dirty_inode(struct inode *inode, int flags)
6010 {
6011 	handle_t *handle;
6012 
6013 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6014 	if (IS_ERR(handle))
6015 		return;
6016 	ext4_mark_inode_dirty(handle, inode);
6017 	ext4_journal_stop(handle);
6018 }
6019 
ext4_change_inode_journal_flag(struct inode * inode,int val)6020 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6021 {
6022 	journal_t *journal;
6023 	handle_t *handle;
6024 	int err;
6025 	int alloc_ctx;
6026 
6027 	/*
6028 	 * We have to be very careful here: changing a data block's
6029 	 * journaling status dynamically is dangerous.  If we write a
6030 	 * data block to the journal, change the status and then delete
6031 	 * that block, we risk forgetting to revoke the old log record
6032 	 * from the journal and so a subsequent replay can corrupt data.
6033 	 * So, first we make sure that the journal is empty and that
6034 	 * nobody is changing anything.
6035 	 */
6036 
6037 	journal = EXT4_JOURNAL(inode);
6038 	if (!journal)
6039 		return 0;
6040 	if (is_journal_aborted(journal))
6041 		return -EROFS;
6042 
6043 	/* Wait for all existing dio workers */
6044 	inode_dio_wait(inode);
6045 
6046 	/*
6047 	 * Before flushing the journal and switching inode's aops, we have
6048 	 * to flush all dirty data the inode has. There can be outstanding
6049 	 * delayed allocations, there can be unwritten extents created by
6050 	 * fallocate or buffered writes in dioread_nolock mode covered by
6051 	 * dirty data which can be converted only after flushing the dirty
6052 	 * data (and journalled aops don't know how to handle these cases).
6053 	 */
6054 	if (val) {
6055 		filemap_invalidate_lock(inode->i_mapping);
6056 		err = filemap_write_and_wait(inode->i_mapping);
6057 		if (err < 0) {
6058 			filemap_invalidate_unlock(inode->i_mapping);
6059 			return err;
6060 		}
6061 	}
6062 
6063 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6064 	jbd2_journal_lock_updates(journal);
6065 
6066 	/*
6067 	 * OK, there are no updates running now, and all cached data is
6068 	 * synced to disk.  We are now in a completely consistent state
6069 	 * which doesn't have anything in the journal, and we know that
6070 	 * no filesystem updates are running, so it is safe to modify
6071 	 * the inode's in-core data-journaling state flag now.
6072 	 */
6073 
6074 	if (val)
6075 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6076 	else {
6077 		err = jbd2_journal_flush(journal, 0);
6078 		if (err < 0) {
6079 			jbd2_journal_unlock_updates(journal);
6080 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6081 			return err;
6082 		}
6083 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6084 	}
6085 	ext4_set_aops(inode);
6086 
6087 	jbd2_journal_unlock_updates(journal);
6088 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6089 
6090 	if (val)
6091 		filemap_invalidate_unlock(inode->i_mapping);
6092 
6093 	/* Finally we can mark the inode as dirty. */
6094 
6095 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6096 	if (IS_ERR(handle))
6097 		return PTR_ERR(handle);
6098 
6099 	ext4_fc_mark_ineligible(inode->i_sb,
6100 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6101 	err = ext4_mark_inode_dirty(handle, inode);
6102 	ext4_handle_sync(handle);
6103 	ext4_journal_stop(handle);
6104 	ext4_std_error(inode->i_sb, err);
6105 
6106 	return err;
6107 }
6108 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6109 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6110 			    struct buffer_head *bh)
6111 {
6112 	return !buffer_mapped(bh);
6113 }
6114 
ext4_page_mkwrite(struct vm_fault * vmf)6115 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6116 {
6117 	struct vm_area_struct *vma = vmf->vma;
6118 	struct folio *folio = page_folio(vmf->page);
6119 	loff_t size;
6120 	unsigned long len;
6121 	int err;
6122 	vm_fault_t ret;
6123 	struct file *file = vma->vm_file;
6124 	struct inode *inode = file_inode(file);
6125 	struct address_space *mapping = inode->i_mapping;
6126 	handle_t *handle;
6127 	get_block_t *get_block;
6128 	int retries = 0;
6129 
6130 	if (unlikely(IS_IMMUTABLE(inode)))
6131 		return VM_FAULT_SIGBUS;
6132 
6133 	sb_start_pagefault(inode->i_sb);
6134 	file_update_time(vma->vm_file);
6135 
6136 	filemap_invalidate_lock_shared(mapping);
6137 
6138 	err = ext4_convert_inline_data(inode);
6139 	if (err)
6140 		goto out_ret;
6141 
6142 	/*
6143 	 * On data journalling we skip straight to the transaction handle:
6144 	 * there's no delalloc; page truncated will be checked later; the
6145 	 * early return w/ all buffers mapped (calculates size/len) can't
6146 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6147 	 */
6148 	if (ext4_should_journal_data(inode))
6149 		goto retry_alloc;
6150 
6151 	/* Delalloc case is easy... */
6152 	if (test_opt(inode->i_sb, DELALLOC) &&
6153 	    !ext4_nonda_switch(inode->i_sb)) {
6154 		do {
6155 			err = block_page_mkwrite(vma, vmf,
6156 						   ext4_da_get_block_prep);
6157 		} while (err == -ENOSPC &&
6158 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6159 		goto out_ret;
6160 	}
6161 
6162 	folio_lock(folio);
6163 	size = i_size_read(inode);
6164 	/* Page got truncated from under us? */
6165 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6166 		folio_unlock(folio);
6167 		ret = VM_FAULT_NOPAGE;
6168 		goto out;
6169 	}
6170 
6171 	len = folio_size(folio);
6172 	if (folio_pos(folio) + len > size)
6173 		len = size - folio_pos(folio);
6174 	/*
6175 	 * Return if we have all the buffers mapped. This avoids the need to do
6176 	 * journal_start/journal_stop which can block and take a long time
6177 	 *
6178 	 * This cannot be done for data journalling, as we have to add the
6179 	 * inode to the transaction's list to writeprotect pages on commit.
6180 	 */
6181 	if (folio_buffers(folio)) {
6182 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6183 					    0, len, NULL,
6184 					    ext4_bh_unmapped)) {
6185 			/* Wait so that we don't change page under IO */
6186 			folio_wait_stable(folio);
6187 			ret = VM_FAULT_LOCKED;
6188 			goto out;
6189 		}
6190 	}
6191 	folio_unlock(folio);
6192 	/* OK, we need to fill the hole... */
6193 	if (ext4_should_dioread_nolock(inode))
6194 		get_block = ext4_get_block_unwritten;
6195 	else
6196 		get_block = ext4_get_block;
6197 retry_alloc:
6198 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6199 				    ext4_writepage_trans_blocks(inode));
6200 	if (IS_ERR(handle)) {
6201 		ret = VM_FAULT_SIGBUS;
6202 		goto out;
6203 	}
6204 	/*
6205 	 * Data journalling can't use block_page_mkwrite() because it
6206 	 * will set_buffer_dirty() before do_journal_get_write_access()
6207 	 * thus might hit warning messages for dirty metadata buffers.
6208 	 */
6209 	if (!ext4_should_journal_data(inode)) {
6210 		err = block_page_mkwrite(vma, vmf, get_block);
6211 	} else {
6212 		folio_lock(folio);
6213 		size = i_size_read(inode);
6214 		/* Page got truncated from under us? */
6215 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6216 			ret = VM_FAULT_NOPAGE;
6217 			goto out_error;
6218 		}
6219 
6220 		len = folio_size(folio);
6221 		if (folio_pos(folio) + len > size)
6222 			len = size - folio_pos(folio);
6223 
6224 		err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6225 		if (!err) {
6226 			ret = VM_FAULT_SIGBUS;
6227 			if (ext4_journal_folio_buffers(handle, folio, len))
6228 				goto out_error;
6229 		} else {
6230 			folio_unlock(folio);
6231 		}
6232 	}
6233 	ext4_journal_stop(handle);
6234 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6235 		goto retry_alloc;
6236 out_ret:
6237 	ret = vmf_fs_error(err);
6238 out:
6239 	filemap_invalidate_unlock_shared(mapping);
6240 	sb_end_pagefault(inode->i_sb);
6241 	return ret;
6242 out_error:
6243 	folio_unlock(folio);
6244 	ext4_journal_stop(handle);
6245 	goto out;
6246 }
6247