xref: /openbmc/u-boot/board/gdsys/p1022/controlcenterd-id.c (revision 172e3c11901229f0fb88317ac73a47d944a74f46)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2013
4  * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
5  */
6 
7 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
8 
9 #ifdef CCDM_ID_DEBUG
10 #define DEBUG
11 #endif
12 
13 #include <common.h>
14 #include <dm.h>
15 #include <malloc.h>
16 #include <fs.h>
17 #include <i2c.h>
18 #include <mmc.h>
19 #include <tpm-v1.h>
20 #include <u-boot/sha1.h>
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 #include <pca9698.h>
24 
25 #undef CCDM_FIRST_STAGE
26 #undef CCDM_SECOND_STAGE
27 #undef CCDM_AUTO_FIRST_STAGE
28 
29 #ifdef CONFIG_DEVELOP
30 #define CCDM_DEVELOP
31 #endif
32 
33 #ifdef CONFIG_TRAILBLAZER
34 #define CCDM_FIRST_STAGE
35 #undef CCDM_SECOND_STAGE
36 #else
37 #undef CCDM_FIRST_STAGE
38 #define CCDM_SECOND_STAGE
39 #endif
40 
41 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
42 	!defined(CCCM_FIRST_STAGE)
43 #define CCDM_AUTO_FIRST_STAGE
44 #endif
45 
46 /* CCDM specific contants */
47 enum {
48 	/* NV indices */
49 	NV_COMMON_DATA_INDEX	= 0x40000001,
50 	/* magics for key blob chains */
51 	MAGIC_KEY_PROGRAM	= 0x68726500,
52 	MAGIC_HMAC		= 0x68616300,
53 	MAGIC_END_OF_CHAIN	= 0x00000000,
54 	/* sizes */
55 	NV_COMMON_DATA_MIN_SIZE	= 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
56 };
57 
58 /* other constants */
59 enum {
60 	ESDHC_BOOT_IMAGE_SIG_OFS	= 0x40,
61 	ESDHC_BOOT_IMAGE_SIZE_OFS	= 0x48,
62 	ESDHC_BOOT_IMAGE_ADDR_OFS	= 0x50,
63 	ESDHC_BOOT_IMAGE_TARGET_OFS	= 0x58,
64 	ESDHC_BOOT_IMAGE_ENTRY_OFS	= 0x60,
65 };
66 
67 enum {
68 	I2C_SOC_0 = 0,
69 	I2C_SOC_1 = 1,
70 };
71 
72 struct key_program {
73 	uint32_t magic;
74 	uint32_t code_crc;
75 	uint32_t code_size;
76 	uint8_t code[];
77 };
78 
79 struct h_reg {
80 	bool valid;
81 	uint8_t digest[20];
82 };
83 
84 
85 enum access_mode {
86 	HREG_NONE	= 0,
87 	HREG_RD		= 1,
88 	HREG_WR		= 2,
89 	HREG_RDWR	= 3,
90 };
91 
92 /* register constants */
93 enum {
94 	FIX_HREG_DEVICE_ID_HASH	= 0,
95 	FIX_HREG_SELF_HASH	= 1,
96 	FIX_HREG_STAGE2_HASH	= 2,
97 	FIX_HREG_VENDOR		= 3,
98 	COUNT_FIX_HREGS
99 };
100 
101 
102 /* hre opcodes */
103 enum {
104 	/* opcodes w/o data */
105 	HRE_NOP		= 0x00,
106 	HRE_SYNC	= HRE_NOP,
107 	HRE_CHECK0	= 0x01,
108 	/* opcodes w/o data, w/ sync dst */
109 	/* opcodes w/ data */
110 	HRE_LOAD	= 0x81,
111 	/* opcodes w/data, w/sync dst */
112 	HRE_XOR		= 0xC1,
113 	HRE_AND		= 0xC2,
114 	HRE_OR		= 0xC3,
115 	HRE_EXTEND	= 0xC4,
116 	HRE_LOADKEY	= 0xC5,
117 };
118 
119 /* hre errors */
120 enum {
121 	HRE_E_OK	= 0,
122 	HRE_E_TPM_FAILURE,
123 	HRE_E_INVALID_HREG,
124 };
125 
126 static uint64_t device_id;
127 static uint64_t device_cl;
128 static uint64_t device_type;
129 
130 static uint32_t platform_key_handle;
131 
132 static void(*bl2_entry)(void);
133 
134 static struct h_reg pcr_hregs[24];
135 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
136 static struct h_reg var_hregs[8];
137 static uint32_t hre_tpm_err;
138 static int hre_err = HRE_E_OK;
139 
140 #define IS_PCR_HREG(spec) ((spec) & 0x20)
141 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
142 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
143 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
144 
get_tpm(struct udevice ** devp)145 static int get_tpm(struct udevice **devp)
146 {
147 	int rc;
148 
149 	rc = uclass_first_device_err(UCLASS_TPM, devp);
150 	if (rc) {
151 		printf("Could not find TPM (ret=%d)\n", rc);
152 		return CMD_RET_FAILURE;
153 	}
154 
155 	return 0;
156 }
157 
158 static const uint8_t vendor[] = "Guntermann & Drunck";
159 
160 /**
161  * @brief read a bunch of data from MMC into memory.
162  *
163  * @param mmc	pointer to the mmc structure to use.
164  * @param src	offset where the data starts on MMC/SD device (in bytes).
165  * @param dst	pointer to the location where the read data should be stored.
166  * @param size	number of bytes to read from the MMC/SD device.
167  * @return number of bytes read or -1 on error.
168  */
ccdm_mmc_read(struct mmc * mmc,u64 src,u8 * dst,int size)169 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
170 {
171 	int result = 0;
172 	u32 blk_len, ofs;
173 	ulong block_no, n, cnt;
174 	u8 *tmp_buf = NULL;
175 
176 	if (size <= 0)
177 		goto end;
178 
179 	blk_len = mmc->read_bl_len;
180 	tmp_buf = malloc(blk_len);
181 	if (!tmp_buf)
182 		goto failure;
183 	block_no = src / blk_len;
184 	ofs = src % blk_len;
185 
186 	if (ofs) {
187 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
188 			tmp_buf);
189 		if (!n)
190 			goto failure;
191 		result = min(size, (int)(blk_len - ofs));
192 		memcpy(dst, tmp_buf + ofs, result);
193 		dst += result;
194 		size -= result;
195 	}
196 	cnt = size / blk_len;
197 	if (cnt) {
198 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
199 			dst);
200 		if (n != cnt)
201 			goto failure;
202 		size -= cnt * blk_len;
203 		result += cnt * blk_len;
204 		dst += cnt * blk_len;
205 		block_no += cnt;
206 	}
207 	if (size) {
208 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
209 			tmp_buf);
210 		if (!n)
211 			goto failure;
212 		memcpy(dst, tmp_buf, size);
213 		result += size;
214 	}
215 	goto end;
216 failure:
217 	result = -1;
218 end:
219 	if (tmp_buf)
220 		free(tmp_buf);
221 	return result;
222 }
223 
224 /**
225  * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
226  *
227  * @return pointer to the location for/of the 2nd stage bootloader
228  */
get_2nd_stage_bl_location(ulong target_addr)229 static u8 *get_2nd_stage_bl_location(ulong target_addr)
230 {
231 	ulong addr;
232 #ifdef CCDM_SECOND_STAGE
233 	addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
234 #else
235 	addr = target_addr;
236 #endif
237 	return (u8 *)(addr);
238 }
239 
240 
241 #ifdef CCDM_SECOND_STAGE
242 /**
243  * @brief returns a location where the image can be(/ is) placed.
244  *
245  * @return pointer to the location for/of the image
246  */
get_image_location(void)247 static u8 *get_image_location(void)
248 {
249 	ulong addr;
250 	/* TODO use other area? */
251 	addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
252 	return (u8 *)(addr);
253 }
254 #endif
255 
256 /**
257  * @brief get the size of a given (TPM) NV area
258  * @param index	NV index of the area to get size for
259  * @param size	pointer to the size
260  * @return 0 on success, != 0 on error
261  */
get_tpm_nv_size(struct udevice * tpm,uint32_t index,uint32_t * size)262 static int get_tpm_nv_size(struct udevice *tpm, uint32_t index, uint32_t *size)
263 {
264 	uint32_t err;
265 	uint8_t info[72];
266 	uint8_t *ptr;
267 	uint16_t v16;
268 
269 	err = tpm_get_capability(tpm, TPM_CAP_NV_INDEX, index,
270 				 info, sizeof(info));
271 	if (err) {
272 		printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
273 		       index, err);
274 		return 1;
275 	}
276 
277 	/* skip tag and nvIndex */
278 	ptr = info + 6;
279 	/* skip 2 pcr info fields */
280 	v16 = get_unaligned_be16(ptr);
281 	ptr += 2 + v16 + 1 + 20;
282 	v16 = get_unaligned_be16(ptr);
283 	ptr += 2 + v16 + 1 + 20;
284 	/* skip permission and flags */
285 	ptr += 6 + 3;
286 
287 	*size = get_unaligned_be32(ptr);
288 	return 0;
289 }
290 
291 /**
292  * @brief search for a key by usage auth and pub key hash.
293  * @param auth	usage auth of the key to search for
294  * @param pubkey_digest	(SHA1) hash of the pub key structure of the key
295  * @param[out] handle	the handle of the key iff found
296  * @return 0 if key was found in TPM; != 0 if not.
297  */
find_key(struct udevice * tpm,const uint8_t auth[20],const uint8_t pubkey_digest[20],uint32_t * handle)298 static int find_key(struct udevice *tpm, const uint8_t auth[20],
299 		    const uint8_t pubkey_digest[20], uint32_t *handle)
300 {
301 	uint16_t key_count;
302 	uint32_t key_handles[10];
303 	uint8_t buf[288];
304 	uint8_t *ptr;
305 	uint32_t err;
306 	uint8_t digest[20];
307 	size_t buf_len;
308 	unsigned int i;
309 
310 	/* fetch list of already loaded keys in the TPM */
311 	err = tpm_get_capability(tpm, TPM_CAP_HANDLE, TPM_RT_KEY, buf,
312 				 sizeof(buf));
313 	if (err)
314 		return -1;
315 	key_count = get_unaligned_be16(buf);
316 	ptr = buf + 2;
317 	for (i = 0; i < key_count; ++i, ptr += 4)
318 		key_handles[i] = get_unaligned_be32(ptr);
319 
320 	/* now search a(/ the) key which we can access with the given auth */
321 	for (i = 0; i < key_count; ++i) {
322 		buf_len = sizeof(buf);
323 		err = tpm_get_pub_key_oiap(tpm, key_handles[i], auth, buf,
324 					   &buf_len);
325 		if (err && err != TPM_AUTHFAIL)
326 			return -1;
327 		if (err)
328 			continue;
329 		sha1_csum(buf, buf_len, digest);
330 		if (!memcmp(digest, pubkey_digest, 20)) {
331 			*handle = key_handles[i];
332 			return 0;
333 		}
334 	}
335 	return 1;
336 }
337 
338 /**
339  * @brief read CCDM common data from TPM NV
340  * @return 0 if CCDM common data was found and read, !=0 if something failed.
341  */
read_common_data(struct udevice * tpm)342 static int read_common_data(struct udevice *tpm)
343 {
344 	uint32_t size;
345 	uint32_t err;
346 	uint8_t buf[256];
347 	sha1_context ctx;
348 
349 	if (get_tpm_nv_size(tpm, NV_COMMON_DATA_INDEX, &size) ||
350 	    size < NV_COMMON_DATA_MIN_SIZE)
351 		return 1;
352 	err = tpm_nv_read_value(tpm, NV_COMMON_DATA_INDEX,
353 				buf, min(sizeof(buf), size));
354 	if (err) {
355 		printf("tpm_nv_read_value() failed: %u\n", err);
356 		return 1;
357 	}
358 
359 	device_id = get_unaligned_be64(buf);
360 	device_cl = get_unaligned_be64(buf + 8);
361 	device_type = get_unaligned_be64(buf + 16);
362 
363 	sha1_starts(&ctx);
364 	sha1_update(&ctx, buf, 24);
365 	sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
366 	fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
367 
368 	platform_key_handle = get_unaligned_be32(buf + 24);
369 
370 	return 0;
371 }
372 
373 /**
374  * @brief compute hash of bootloader itself.
375  * @param[out] dst	hash register where the hash should be stored
376  * @return 0 on success, != 0 on failure.
377  *
378  * @note MUST be called at a time where the boot loader is accessible at the
379  * configured location (; so take care when code is reallocated).
380  */
compute_self_hash(struct h_reg * dst)381 static int compute_self_hash(struct h_reg *dst)
382 {
383 	sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
384 		  CONFIG_SYS_MONITOR_LEN, dst->digest);
385 	dst->valid = true;
386 	return 0;
387 }
388 
ccdm_compute_self_hash(void)389 int ccdm_compute_self_hash(void)
390 {
391 	if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
392 		compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
393 	return 0;
394 }
395 
396 /**
397  * @brief compute the hash of the 2nd stage boot loader (on SD card)
398  * @param[out] dst	hash register to store the computed hash
399  * @return 0 on success, != 0 on failure
400  *
401  * Determines the size and location of the 2nd stage boot loader on SD card,
402  * loads the 2nd stage boot loader and computes the (SHA1) hash value.
403  * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
404  * the desired memory location and the variable @a bl2_entry is set.
405  *
406  * @note This sets the variable @a bl2_entry to the entry point when the
407  * 2nd stage boot loader is loaded at its configured memory location.
408  */
compute_second_stage_hash(struct h_reg * dst)409 static int compute_second_stage_hash(struct h_reg *dst)
410 {
411 	int result = 0;
412 	u32 code_len, code_offset, target_addr, exec_entry;
413 	struct mmc *mmc;
414 	u8 *load_addr = NULL;
415 	u8 buf[128];
416 
417 	mmc = find_mmc_device(0);
418 	if (!mmc)
419 		goto failure;
420 	mmc_init(mmc);
421 
422 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
423 		goto failure;
424 
425 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
426 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
427 	target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
428 	exec_entry =  *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
429 
430 	load_addr = get_2nd_stage_bl_location(target_addr);
431 	if (load_addr == (u8 *)target_addr)
432 		bl2_entry = (void(*)(void))exec_entry;
433 
434 	if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
435 		goto failure;
436 
437 	sha1_csum(load_addr, code_len, dst->digest);
438 	dst->valid = true;
439 
440 	goto end;
441 failure:
442 	result = 1;
443 	bl2_entry = NULL;
444 end:
445 	return result;
446 }
447 
448 /**
449  * @brief get pointer to  hash register by specification
450  * @param spec	specification of a hash register
451  * @return pointer to hash register or NULL if @a spec does not qualify a
452  * valid hash register; NULL else.
453  */
get_hreg(uint8_t spec)454 static struct h_reg *get_hreg(uint8_t spec)
455 {
456 	uint8_t idx;
457 
458 	idx = HREG_IDX(spec);
459 	if (IS_FIX_HREG(spec)) {
460 		if (idx < ARRAY_SIZE(fix_hregs))
461 			return fix_hregs + idx;
462 		hre_err = HRE_E_INVALID_HREG;
463 	} else if (IS_PCR_HREG(spec)) {
464 		if (idx < ARRAY_SIZE(pcr_hregs))
465 			return pcr_hregs + idx;
466 		hre_err = HRE_E_INVALID_HREG;
467 	} else if (IS_VAR_HREG(spec)) {
468 		if (idx < ARRAY_SIZE(var_hregs))
469 			return var_hregs + idx;
470 		hre_err = HRE_E_INVALID_HREG;
471 	}
472 	return NULL;
473 }
474 
475 /**
476  * @brief get pointer of a hash register by specification and usage.
477  * @param spec	specification of a hash register
478  * @param mode	access mode (read or write or read/write)
479  * @return pointer to hash register if found and valid; NULL else.
480  *
481  * This func uses @a get_reg() to determine the hash register for a given spec.
482  * If a register is found it is validated according to the desired access mode.
483  * The value of automatic registers (PCR register and fixed registers) is
484  * loaded or computed on read access.
485  */
access_hreg(struct udevice * tpm,uint8_t spec,enum access_mode mode)486 static struct h_reg *access_hreg(struct udevice *tpm, uint8_t spec,
487 				 enum access_mode mode)
488 {
489 	struct h_reg *result;
490 
491 	result = get_hreg(spec);
492 	if (!result)
493 		return NULL;
494 
495 	if (mode & HREG_WR) {
496 		if (IS_FIX_HREG(spec)) {
497 			hre_err = HRE_E_INVALID_HREG;
498 			return NULL;
499 		}
500 	}
501 	if (mode & HREG_RD) {
502 		if (!result->valid) {
503 			if (IS_PCR_HREG(spec)) {
504 				hre_tpm_err = tpm_pcr_read(tpm, HREG_IDX(spec),
505 					result->digest, 20);
506 				result->valid = (hre_tpm_err == TPM_SUCCESS);
507 			} else if (IS_FIX_HREG(spec)) {
508 				switch (HREG_IDX(spec)) {
509 				case FIX_HREG_DEVICE_ID_HASH:
510 					read_common_data(tpm);
511 					break;
512 				case FIX_HREG_SELF_HASH:
513 					ccdm_compute_self_hash();
514 					break;
515 				case FIX_HREG_STAGE2_HASH:
516 					compute_second_stage_hash(result);
517 					break;
518 				case FIX_HREG_VENDOR:
519 					memcpy(result->digest, vendor, 20);
520 					result->valid = true;
521 					break;
522 				}
523 			} else {
524 				result->valid = true;
525 			}
526 		}
527 		if (!result->valid) {
528 			hre_err = HRE_E_INVALID_HREG;
529 			return NULL;
530 		}
531 	}
532 
533 	return result;
534 }
535 
compute_and(void * _dst,const void * _src,size_t n)536 static void *compute_and(void *_dst, const void *_src, size_t n)
537 {
538 	uint8_t *dst = _dst;
539 	const uint8_t *src = _src;
540 	size_t i;
541 
542 	for (i = n; i-- > 0; )
543 		*dst++ &= *src++;
544 
545 	return _dst;
546 }
547 
compute_or(void * _dst,const void * _src,size_t n)548 static void *compute_or(void *_dst, const void *_src, size_t n)
549 {
550 	uint8_t *dst = _dst;
551 	const uint8_t *src = _src;
552 	size_t i;
553 
554 	for (i = n; i-- > 0; )
555 		*dst++ |= *src++;
556 
557 	return _dst;
558 }
559 
compute_xor(void * _dst,const void * _src,size_t n)560 static void *compute_xor(void *_dst, const void *_src, size_t n)
561 {
562 	uint8_t *dst = _dst;
563 	const uint8_t *src = _src;
564 	size_t i;
565 
566 	for (i = n; i-- > 0; )
567 		*dst++ ^= *src++;
568 
569 	return _dst;
570 }
571 
compute_extend(void * _dst,const void * _src,size_t n)572 static void *compute_extend(void *_dst, const void *_src, size_t n)
573 {
574 	uint8_t digest[20];
575 	sha1_context ctx;
576 
577 	sha1_starts(&ctx);
578 	sha1_update(&ctx, _dst, n);
579 	sha1_update(&ctx, _src, n);
580 	sha1_finish(&ctx, digest);
581 	memcpy(_dst, digest, min(n, sizeof(digest)));
582 
583 	return _dst;
584 }
585 
hre_op_loadkey(struct udevice * tpm,struct h_reg * src_reg,struct h_reg * dst_reg,const void * key,size_t key_size)586 static int hre_op_loadkey(struct udevice *tpm, struct h_reg *src_reg,
587 			  struct h_reg *dst_reg, const void *key,
588 			  size_t key_size)
589 {
590 	uint32_t parent_handle;
591 	uint32_t key_handle;
592 
593 	if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
594 		return -1;
595 	if (find_key(tpm, src_reg->digest, dst_reg->digest, &parent_handle))
596 		return -1;
597 	hre_tpm_err = tpm_load_key2_oiap(tpm, parent_handle, key, key_size,
598 					 src_reg->digest, &key_handle);
599 	if (hre_tpm_err) {
600 		hre_err = HRE_E_TPM_FAILURE;
601 		return -1;
602 	}
603 	/* TODO remember key handle somehow? */
604 
605 	return 0;
606 }
607 
608 /**
609  * @brief executes the next opcode on the hash register engine.
610  * @param[in,out] ip	pointer to the opcode (instruction pointer)
611  * @param[in,out] code_size	(remaining) size of the code
612  * @return new instruction pointer on success, NULL on error.
613  */
hre_execute_op(struct udevice * tpm,const uint8_t ** ip,size_t * code_size)614 static const uint8_t *hre_execute_op(struct udevice *tpm, const uint8_t **ip,
615 				     size_t *code_size)
616 {
617 	bool dst_modified = false;
618 	uint32_t ins;
619 	uint8_t opcode;
620 	uint8_t src_spec;
621 	uint8_t dst_spec;
622 	uint16_t data_size;
623 	struct h_reg *src_reg, *dst_reg;
624 	uint8_t buf[20];
625 	const uint8_t *src_buf, *data;
626 	uint8_t *ptr;
627 	int i;
628 	void * (*bin_func)(void *, const void *, size_t);
629 
630 	if (*code_size < 4)
631 		return NULL;
632 
633 	ins = get_unaligned_be32(*ip);
634 	opcode = **ip;
635 	data = *ip + 4;
636 	src_spec = (ins >> 18) & 0x3f;
637 	dst_spec = (ins >> 12) & 0x3f;
638 	data_size = (ins & 0x7ff);
639 
640 	debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
641 	      opcode, src_spec, dst_spec, data_size);
642 
643 	if ((opcode & 0x80) && (data_size + 4) > *code_size)
644 		return NULL;
645 
646 	src_reg = access_hreg(tpm, src_spec, HREG_RD);
647 	if (hre_err || hre_tpm_err)
648 		return NULL;
649 	dst_reg = access_hreg(tpm, dst_spec,
650 			      (opcode & 0x40) ? HREG_RDWR : HREG_WR);
651 	if (hre_err || hre_tpm_err)
652 		return NULL;
653 
654 	switch (opcode) {
655 	case HRE_NOP:
656 		goto end;
657 	case HRE_CHECK0:
658 		if (src_reg) {
659 			for (i = 0; i < 20; ++i) {
660 				if (src_reg->digest[i])
661 					return NULL;
662 			}
663 		}
664 		break;
665 	case HRE_LOAD:
666 		bin_func = memcpy;
667 		goto do_bin_func;
668 	case HRE_XOR:
669 		bin_func = compute_xor;
670 		goto do_bin_func;
671 	case HRE_AND:
672 		bin_func = compute_and;
673 		goto do_bin_func;
674 	case HRE_OR:
675 		bin_func = compute_or;
676 		goto do_bin_func;
677 	case HRE_EXTEND:
678 		bin_func = compute_extend;
679 do_bin_func:
680 		if (!dst_reg)
681 			return NULL;
682 		if (src_reg) {
683 			src_buf = src_reg->digest;
684 		} else {
685 			if (!data_size) {
686 				memset(buf, 0, 20);
687 				src_buf = buf;
688 			} else if (data_size == 1) {
689 				memset(buf, *data, 20);
690 				src_buf = buf;
691 			} else if (data_size >= 20) {
692 				src_buf = data;
693 			} else {
694 				src_buf = buf;
695 				for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
696 					i -= data_size, ptr += data_size)
697 					memcpy(ptr, data,
698 					       min_t(size_t, i, data_size));
699 			}
700 		}
701 		bin_func(dst_reg->digest, src_buf, 20);
702 		dst_reg->valid = true;
703 		dst_modified = true;
704 		break;
705 	case HRE_LOADKEY:
706 		if (hre_op_loadkey(tpm, src_reg, dst_reg, data, data_size))
707 			return NULL;
708 		break;
709 	default:
710 		return NULL;
711 	}
712 
713 	if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
714 		hre_tpm_err = tpm_extend(tpm, HREG_IDX(dst_spec),
715 					 dst_reg->digest, dst_reg->digest);
716 		if (hre_tpm_err) {
717 			hre_err = HRE_E_TPM_FAILURE;
718 			return NULL;
719 		}
720 	}
721 end:
722 	*ip += 4;
723 	*code_size -= 4;
724 	if (opcode & 0x80) {
725 		*ip += data_size;
726 		*code_size -= data_size;
727 	}
728 
729 	return *ip;
730 }
731 
732 /**
733  * @brief runs a program on the hash register engine.
734  * @param code		pointer to the (HRE) code.
735  * @param code_size	size of the code (in bytes).
736  * @return 0 on success, != 0 on failure.
737  */
hre_run_program(struct udevice * tpm,const uint8_t * code,size_t code_size)738 static int hre_run_program(struct udevice *tpm, const uint8_t *code,
739 			   size_t code_size)
740 {
741 	size_t code_left;
742 	const uint8_t *ip = code;
743 
744 	code_left = code_size;
745 	hre_tpm_err = 0;
746 	hre_err = HRE_E_OK;
747 	while (code_left > 0)
748 		if (!hre_execute_op(tpm, &ip, &code_left))
749 			return -1;
750 
751 	return hre_err;
752 }
753 
check_hmac(struct key_program * hmac,const uint8_t * data,size_t data_size)754 static int check_hmac(struct key_program *hmac,
755 	const uint8_t *data, size_t data_size)
756 {
757 	uint8_t key[20], computed_hmac[20];
758 	uint32_t type;
759 
760 	type = get_unaligned_be32(hmac->code);
761 	if (type != 0)
762 		return 1;
763 	memset(key, 0, sizeof(key));
764 	compute_extend(key, pcr_hregs[1].digest, 20);
765 	compute_extend(key, pcr_hregs[2].digest, 20);
766 	compute_extend(key, pcr_hregs[3].digest, 20);
767 	compute_extend(key, pcr_hregs[4].digest, 20);
768 
769 	sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
770 
771 	return memcmp(computed_hmac, hmac->code + 4, 20);
772 }
773 
verify_program(struct key_program * prg)774 static int verify_program(struct key_program *prg)
775 {
776 	uint32_t crc;
777 	crc = crc32(0, prg->code, prg->code_size);
778 
779 	if (crc != prg->code_crc) {
780 		printf("HRC crc mismatch: %08x != %08x\n",
781 		       crc, prg->code_crc);
782 		return 1;
783 	}
784 	return 0;
785 }
786 
787 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
load_sd_key_program(void)788 static struct key_program *load_sd_key_program(void)
789 {
790 	u32 code_len, code_offset;
791 	struct mmc *mmc;
792 	u8 buf[128];
793 	struct key_program *result = NULL, *hmac = NULL;
794 	struct key_program header;
795 
796 	mmc = find_mmc_device(0);
797 	if (!mmc)
798 		return NULL;
799 	mmc_init(mmc);
800 
801 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
802 		goto failure;
803 
804 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
805 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
806 
807 	code_offset += code_len;
808 	/* TODO: the following needs to be the size of the 2nd stage env */
809 	code_offset += CONFIG_ENV_SIZE;
810 
811 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
812 		goto failure;
813 
814 	header.magic = get_unaligned_be32(buf);
815 	header.code_crc = get_unaligned_be32(buf + 4);
816 	header.code_size = get_unaligned_be32(buf + 8);
817 
818 	if (header.magic != MAGIC_KEY_PROGRAM)
819 		goto failure;
820 
821 	result = malloc(sizeof(struct key_program) + header.code_size);
822 	if (!result)
823 		goto failure;
824 	*result = header;
825 
826 	printf("load key program chunk from SD card (%u bytes) ",
827 	       header.code_size);
828 	code_offset += 12;
829 	if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
830 		< 0)
831 		goto failure;
832 	code_offset += header.code_size;
833 	puts("\n");
834 
835 	if (verify_program(result))
836 		goto failure;
837 
838 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
839 		goto failure;
840 
841 	header.magic = get_unaligned_be32(buf);
842 	header.code_crc = get_unaligned_be32(buf + 4);
843 	header.code_size = get_unaligned_be32(buf + 8);
844 
845 	if (header.magic == MAGIC_HMAC) {
846 		puts("check integrity\n");
847 		hmac = malloc(sizeof(struct key_program) + header.code_size);
848 		if (!hmac)
849 			goto failure;
850 		*hmac = header;
851 		code_offset += 12;
852 		if (ccdm_mmc_read(mmc, code_offset, hmac->code,
853 				  hmac->code_size) < 0)
854 			goto failure;
855 		if (verify_program(hmac))
856 			goto failure;
857 		if (check_hmac(hmac, result->code, result->code_size)) {
858 			puts("key program integrity could not be verified\n");
859 			goto failure;
860 		}
861 		puts("key program verified\n");
862 	}
863 
864 	goto end;
865 failure:
866 	if (result)
867 		free(result);
868 	result = NULL;
869 end:
870 	if (hmac)
871 		free(hmac);
872 
873 	return result;
874 }
875 #endif
876 
877 #ifdef CCDM_SECOND_STAGE
878 /**
879  * @brief load a key program from file system.
880  * @param ifname	interface of the file system
881  * @param dev_part_str	device part of the file system
882  * @param fs_type	tyep of the file system
883  * @param path		path of the file to load.
884  * @return the loaded structure or NULL on failure.
885  */
load_key_chunk(const char * ifname,const char * dev_part_str,int fs_type,const char * path)886 static struct key_program *load_key_chunk(const char *ifname,
887 	const char *dev_part_str, int fs_type,
888 	const char *path)
889 {
890 	struct key_program *result = NULL;
891 	struct key_program header;
892 	uint32_t crc;
893 	uint8_t buf[12];
894 	loff_t i;
895 
896 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
897 		goto failure;
898 	if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
899 		goto failure;
900 	if (i < 12)
901 		goto failure;
902 	header.magic = get_unaligned_be32(buf);
903 	header.code_crc = get_unaligned_be32(buf + 4);
904 	header.code_size = get_unaligned_be32(buf + 8);
905 
906 	if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
907 		goto failure;
908 
909 	result = malloc(sizeof(struct key_program) + header.code_size);
910 	if (!result)
911 		goto failure;
912 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
913 		goto failure;
914 	if (fs_read(path, (ulong)result, 0,
915 		    sizeof(struct key_program) + header.code_size, &i) < 0)
916 		goto failure;
917 	if (i <= 0)
918 		goto failure;
919 	*result = header;
920 
921 	crc = crc32(0, result->code, result->code_size);
922 
923 	if (crc != result->code_crc) {
924 		printf("%s: HRC crc mismatch: %08x != %08x\n",
925 		       path, crc, result->code_crc);
926 		goto failure;
927 	}
928 	goto end;
929 failure:
930 	if (result) {
931 		free(result);
932 		result = NULL;
933 	}
934 end:
935 	return result;
936 }
937 #endif
938 
939 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
940 static const uint8_t prg_stage1_prepare[] = {
941 	0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
942 	0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
943 	0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
944 	0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
945 	0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
946 	0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
947 	0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
948 	0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
949 	0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
950 	0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
951 };
952 
first_stage_actions(struct udevice * tpm)953 static int first_stage_actions(struct udevice *tpm)
954 {
955 	int result = 0;
956 	struct key_program *sd_prg = NULL;
957 
958 	puts("CCDM S1: start actions\n");
959 #ifndef CCDM_SECOND_STAGE
960 	if (tpm_continue_self_test(tpm))
961 		goto failure;
962 #else
963 	tpm_continue_self_test(tpm);
964 #endif
965 	mdelay(37);
966 
967 	if (hre_run_program(tpm, prg_stage1_prepare,
968 			    sizeof(prg_stage1_prepare)))
969 		goto failure;
970 
971 	sd_prg = load_sd_key_program();
972 	if (sd_prg) {
973 		if (hre_run_program(tpm, sd_prg->code, sd_prg->code_size))
974 			goto failure;
975 		puts("SD code run successfully\n");
976 	} else {
977 		puts("no key program found on SD\n");
978 		goto failure;
979 	}
980 	goto end;
981 failure:
982 	result = 1;
983 end:
984 	if (sd_prg)
985 		free(sd_prg);
986 	printf("CCDM S1: actions done (%d)\n", result);
987 	return result;
988 }
989 #endif
990 
991 #ifdef CCDM_FIRST_STAGE
first_stage_init(void)992 static int first_stage_init(void)
993 {
994 	struct udevice *tpm;
995 	int ret;
996 
997 	puts("CCDM S1\n");
998 	ret = get_tpm(&tpm);
999 	if (ret || tpm_init(tpm) || tpm_startup(tpm, TPM_ST_CLEAR))
1000 		return 1;
1001 	ret = first_stage_actions(tpm);
1002 #ifndef CCDM_SECOND_STAGE
1003 	if (!ret) {
1004 		if (bl2_entry)
1005 			(*bl2_entry)();
1006 		ret = 1;
1007 	}
1008 #endif
1009 	return ret;
1010 }
1011 #endif
1012 
1013 #ifdef CCDM_SECOND_STAGE
1014 static const uint8_t prg_stage2_prepare[] = {
1015 	0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
1016 	0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
1017 	0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
1018 	0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
1019 	0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
1020 };
1021 
1022 static const uint8_t prg_stage2_success[] = {
1023 	0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
1024 	0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
1025 	0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
1026 	0xe4, 0xd2, 0x81, 0xe0, /* data */
1027 };
1028 
1029 static const uint8_t prg_stage_fail[] = {
1030 	0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
1031 	0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
1032 	0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
1033 	0xea, 0xdf, 0x14, 0x4b, /* data */
1034 	0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
1035 	0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
1036 };
1037 
second_stage_init(void)1038 static int second_stage_init(void)
1039 {
1040 	static const char mac_suffix[] = ".mac";
1041 	bool did_first_stage_run = true;
1042 	int result = 0;
1043 	char *cptr, *mmcdev = NULL;
1044 	struct key_program *hmac_blob = NULL;
1045 	const char *image_path = "/ccdm.itb";
1046 	char *mac_path = NULL;
1047 	ulong image_addr;
1048 	loff_t image_size;
1049 	struct udevice *tpm;
1050 	uint32_t err;
1051 	int ret;
1052 
1053 	printf("CCDM S2\n");
1054 	ret = get_tpm(&tpm);
1055 	if (ret || tpm_init(tpm))
1056 		return 1;
1057 	err = tpm_startup(tpm, TPM_ST_CLEAR);
1058 	if (err != TPM_INVALID_POSTINIT)
1059 		did_first_stage_run = false;
1060 
1061 #ifdef CCDM_AUTO_FIRST_STAGE
1062 	if (!did_first_stage_run && first_stage_actions(tpm))
1063 		goto failure;
1064 #else
1065 	if (!did_first_stage_run)
1066 		goto failure;
1067 #endif
1068 
1069 	if (hre_run_program(tpm, prg_stage2_prepare,
1070 			    sizeof(prg_stage2_prepare)))
1071 		goto failure;
1072 
1073 	/* run "prepboot" from env to get "mmcdev" set */
1074 	cptr = env_get("prepboot");
1075 	if (cptr && !run_command(cptr, 0))
1076 		mmcdev = env_get("mmcdev");
1077 	if (!mmcdev)
1078 		goto failure;
1079 
1080 	cptr = env_get("ramdiskimage");
1081 	if (cptr)
1082 		image_path = cptr;
1083 
1084 	mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1085 	if (mac_path == NULL)
1086 		goto failure;
1087 	strcpy(mac_path, image_path);
1088 	strcat(mac_path, mac_suffix);
1089 
1090 	/* read image from mmcdev (ccdm.itb) */
1091 	image_addr = (ulong)get_image_location();
1092 	if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1093 		goto failure;
1094 	if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1095 		goto failure;
1096 	if (image_size <= 0)
1097 		goto failure;
1098 	printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1099 
1100 	hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1101 	if (!hmac_blob) {
1102 		puts("failed to load mac file\n");
1103 		goto failure;
1104 	}
1105 	if (verify_program(hmac_blob)) {
1106 		puts("corrupted mac file\n");
1107 		goto failure;
1108 	}
1109 	if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1110 		puts("image integrity could not be verified\n");
1111 		goto failure;
1112 	}
1113 	puts("CCDM image OK\n");
1114 
1115 	hre_run_program(tpm, prg_stage2_success, sizeof(prg_stage2_success));
1116 
1117 	goto end;
1118 failure:
1119 	result = 1;
1120 	hre_run_program(tpm, prg_stage_fail, sizeof(prg_stage_fail));
1121 end:
1122 	if (hmac_blob)
1123 		free(hmac_blob);
1124 	if (mac_path)
1125 		free(mac_path);
1126 
1127 	return result;
1128 }
1129 #endif
1130 
show_self_hash(void)1131 int show_self_hash(void)
1132 {
1133 	struct h_reg *hash_ptr;
1134 #ifdef CCDM_SECOND_STAGE
1135 	struct h_reg hash;
1136 
1137 	hash_ptr = &hash;
1138 	if (compute_self_hash(hash_ptr))
1139 		return 1;
1140 #else
1141 	hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1142 #endif
1143 	puts("self hash: ");
1144 	if (hash_ptr && hash_ptr->valid)
1145 		print_buffer(0, hash_ptr->digest, 1, 20, 20);
1146 	else
1147 		puts("INVALID\n");
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * @brief let the system hang.
1154  *
1155  * Called on error.
1156  * Will stop the boot process; display a message and signal the error condition
1157  * by blinking the "status" and the "finder" LED of the controller board.
1158  *
1159  * @note the develop version runs the blink cycle 2 times and then returns.
1160  * The release version never returns.
1161  */
ccdm_hang(void)1162 static void ccdm_hang(void)
1163 {
1164 	static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1165 	static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1166 	u64 f, s;
1167 	int i;
1168 #ifdef CCDM_DEVELOP
1169 	int j;
1170 #endif
1171 
1172 	I2C_SET_BUS(I2C_SOC_0);
1173 	pca9698_direction_output(0x22, 0, 0); /* Finder */
1174 	pca9698_direction_output(0x22, 4, 0); /* Status */
1175 
1176 	puts("### ERROR ### Please RESET the board ###\n");
1177 	bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1178 #ifdef CCDM_DEVELOP
1179 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1180 	puts("** but we continue since this is a DEVELOP version **\n");
1181 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1182 	for (j = 2; j-- > 0;) {
1183 		putc('#');
1184 #else
1185 	for (;;) {
1186 #endif
1187 		f = f0;
1188 		s = s0;
1189 		for (i = 54; i-- > 0;) {
1190 			pca9698_set_value(0x22, 0, !(f & 1));
1191 			pca9698_set_value(0x22, 4, (s & 1));
1192 			f >>= 1;
1193 			s >>= 1;
1194 			mdelay(120);
1195 		}
1196 	}
1197 	puts("\ncontinue...\n");
1198 }
1199 
1200 int startup_ccdm_id_module(void)
1201 {
1202 	int result = 0;
1203 	unsigned int orig_i2c_bus;
1204 
1205 	orig_i2c_bus = i2c_get_bus_num();
1206 	i2c_set_bus_num(I2C_SOC_1);
1207 
1208 	/* goto end; */
1209 
1210 #ifdef CCDM_DEVELOP
1211 	show_self_hash();
1212 #endif
1213 #ifdef CCDM_FIRST_STAGE
1214 	result = first_stage_init();
1215 	if (result) {
1216 		puts("1st stage init failed\n");
1217 		goto failure;
1218 	}
1219 #endif
1220 #ifdef CCDM_SECOND_STAGE
1221 	result = second_stage_init();
1222 	if (result) {
1223 		puts("2nd stage init failed\n");
1224 		goto failure;
1225 	}
1226 #endif
1227 
1228 	goto end;
1229 failure:
1230 	result = 1;
1231 end:
1232 	i2c_set_bus_num(orig_i2c_bus);
1233 	if (result)
1234 		ccdm_hang();
1235 
1236 	return result;
1237 }
1238