1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epnested_mutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
76 * It is possible to drop the "ep->mtx" and to use the global
77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 * but having "ep->mtx" will make the interface more scalable.
79 * Events that require holding "epnested_mutex" are very rare, while for
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
82 */
83
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
101 struct epoll_filefd {
102 struct file *file;
103 int fd;
104 } __packed;
105
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
110
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
122 };
123
124 /*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
129 */
130 struct epitem {
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
157 /* List containing poll wait queues */
158 struct eppoll_entry *pwqlist;
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
163 /* List header used to link this item to the "struct file" items list */
164 struct hlist_node fllink;
165
166 /* wakeup_source used when EPOLLWAKEUP is set */
167 struct wakeup_source __rcu *ws;
168
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
171 };
172
173 /*
174 * This structure is stored inside the "private_data" member of the file
175 * structure and represents the main data structure for the eventpoll
176 * interface.
177 */
178 struct eventpoll {
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
199 /* RB tree root used to store monitored fd structs */
200 struct rb_root_cached rbr;
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
204 * happened while transferring ready events to userspace w/out
205 * holding ->lock.
206 */
207 struct epitem *ovflist;
208
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
218 u64 gen;
219 struct hlist_head refs;
220
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230 #endif
231
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235 #endif
236 };
237
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242 };
243
244 /*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252
253 static u64 loop_check_gen = 0;
254
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263
264 /*
265 * List of files with newly added links, where we may need to limit the number
266 * of emanating paths. Protected by the epnested_mutex.
267 */
268 struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
274 static struct kmem_cache *ephead_cache __read_mostly;
275
free_ephead(struct epitems_head * head)276 static inline void free_ephead(struct epitems_head *head)
277 {
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280 }
281
list_file(struct file * file)282 static void list_file(struct file *file)
283 {
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291 }
292
unlist_file(struct epitems_head * head)293 static void unlist_file(struct epitems_head *head)
294 {
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306 }
307
308 #ifdef CONFIG_SYSCTL
309
310 #include <linux/sysctl.h>
311
312 static long long_zero;
313 static long long_max = LONG_MAX;
314
315 static struct ctl_table epoll_table[] = {
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
319 .maxlen = sizeof(max_user_watches),
320 .mode = 0644,
321 .proc_handler = proc_doulongvec_minmax,
322 .extra1 = &long_zero,
323 .extra2 = &long_max,
324 },
325 { }
326 };
327
epoll_sysctls_init(void)328 static void __init epoll_sysctls_init(void)
329 {
330 register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335
336 static const struct file_operations eventpoll_fops;
337
is_file_epoll(struct file * f)338 static inline int is_file_epoll(struct file *f)
339 {
340 return f->f_op == &eventpoll_fops;
341 }
342
343 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 struct file *file, int fd)
346 {
347 ffd->file = file;
348 ffd->fd = fd;
349 }
350
351 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 struct epoll_filefd *p2)
354 {
355 return (p1->file > p2->file ? +1:
356 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358
359 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 return !list_empty(&epi->rdllink);
363 }
364
ep_pwq_from_wait(wait_queue_entry_t * p)365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 return container_of(p, struct eppoll_entry, wait);
368 }
369
370 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 return container_of(p, struct eppoll_entry, wait)->base;
374 }
375
376 /**
377 * ep_events_available - Checks if ready events might be available.
378 *
379 * @ep: Pointer to the eventpoll context.
380 *
381 * Return: a value different than %zero if ready events are available,
382 * or %zero otherwise.
383 */
ep_events_available(struct eventpoll * ep)384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 return !list_empty_careful(&ep->rdllist) ||
387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389
390 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 struct eventpoll *ep = p;
394
395 return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397
398 /*
399 * Busy poll if globally on and supporting sockets found && no events,
400 * busy loop will return if need_resched or ep_events_available.
401 *
402 * we must do our busy polling with irqs enabled
403 */
ep_busy_loop(struct eventpoll * ep,int nonblock)404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 BUSY_POLL_BUDGET);
411 if (ep_events_available(ep))
412 return true;
413 /*
414 * Busy poll timed out. Drop NAPI ID for now, we can add
415 * it back in when we have moved a socket with a valid NAPI
416 * ID onto the ready list.
417 */
418 ep->napi_id = 0;
419 return false;
420 }
421 return false;
422 }
423
424 /*
425 * Set epoll busy poll NAPI ID from sk.
426 */
ep_set_busy_poll_napi_id(struct epitem * epi)427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 struct eventpoll *ep;
430 unsigned int napi_id;
431 struct socket *sock;
432 struct sock *sk;
433
434 if (!net_busy_loop_on())
435 return;
436
437 sock = sock_from_file(epi->ffd.file);
438 if (!sock)
439 return;
440
441 sk = sock->sk;
442 if (!sk)
443 return;
444
445 napi_id = READ_ONCE(sk->sk_napi_id);
446 ep = epi->ep;
447
448 /* Non-NAPI IDs can be rejected
449 * or
450 * Nothing to do if we already have this ID
451 */
452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 return;
454
455 /* record NAPI ID for use in next busy poll */
456 ep->napi_id = napi_id;
457 }
458
459 #else
460
ep_busy_loop(struct eventpoll * ep,int nonblock)461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 return false;
464 }
465
ep_set_busy_poll_napi_id(struct epitem * epi)466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471
472 /*
473 * As described in commit 0ccf831cb lockdep: annotate epoll
474 * the use of wait queues used by epoll is done in a very controlled
475 * manner. Wake ups can nest inside each other, but are never done
476 * with the same locking. For example:
477 *
478 * dfd = socket(...);
479 * efd1 = epoll_create();
480 * efd2 = epoll_create();
481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 *
484 * When a packet arrives to the device underneath "dfd", the net code will
485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 * callback wakeup entry on that queue, and the wake_up() performed by the
487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 * (efd1) notices that it may have some event ready, so it needs to wake up
489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 * that ends up in another wake_up(), after having checked about the
491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 * stack blasting.
493 *
494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 * this special case of epoll.
496 */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 unsigned pollflags)
501 {
502 struct eventpoll *ep_src;
503 unsigned long flags;
504 u8 nests = 0;
505
506 /*
507 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 * it might be natural to create a per-cpu nest count. However, since
509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 * protected. Thus, we are introducing a per eventpoll nest field.
512 * If we are not being call from ep_poll_callback(), epi is NULL and
513 * we are at the first level of nesting, 0. Otherwise, we are being
514 * called from ep_poll_callback() and if a previous wakeup source is
515 * not an epoll file itself, we are at depth 1 since the wakeup source
516 * is depth 0. If the wakeup source is a previous epoll file in the
517 * wakeup chain then we use its nests value and record ours as
518 * nests + 1. The previous epoll file nests value is stable since its
519 * already holding its own poll_wait.lock.
520 */
521 if (epi) {
522 if ((is_file_epoll(epi->ffd.file))) {
523 ep_src = epi->ffd.file->private_data;
524 nests = ep_src->nests;
525 } else {
526 nests = 1;
527 }
528 }
529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 ep->nests = nests + 1;
531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 ep->nests = 0;
533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535
536 #else
537
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 __poll_t pollflags)
540 {
541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543
544 #endif
545
ep_remove_wait_queue(struct eppoll_entry * pwq)546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 wait_queue_head_t *whead;
549
550 rcu_read_lock();
551 /*
552 * If it is cleared by POLLFREE, it should be rcu-safe.
553 * If we read NULL we need a barrier paired with
554 * smp_store_release() in ep_poll_callback(), otherwise
555 * we rely on whead->lock.
556 */
557 whead = smp_load_acquire(&pwq->whead);
558 if (whead)
559 remove_wait_queue(whead, &pwq->wait);
560 rcu_read_unlock();
561 }
562
563 /*
564 * This function unregisters poll callbacks from the associated file
565 * descriptor. Must be called with "mtx" held.
566 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 struct eppoll_entry **p = &epi->pwqlist;
570 struct eppoll_entry *pwq;
571
572 while ((pwq = *p) != NULL) {
573 *p = pwq->next;
574 ep_remove_wait_queue(pwq);
575 kmem_cache_free(pwq_cache, pwq);
576 }
577 }
578
579 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584
585 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 struct wakeup_source *ws = ep_wakeup_source(epi);
589
590 if (ws)
591 __pm_stay_awake(ws);
592 }
593
ep_has_wakeup_source(struct epitem * epi)594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 return rcu_access_pointer(epi->ws) ? true : false;
597 }
598
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 struct wakeup_source *ws;
603
604 rcu_read_lock();
605 ws = rcu_dereference(epi->ws);
606 if (ws)
607 __pm_stay_awake(ws);
608 rcu_read_unlock();
609 }
610
611
612 /*
613 * ep->mutex needs to be held because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
615 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 /*
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
625 */
626 lockdep_assert_irqs_enabled();
627 write_lock_irq(&ep->lock);
628 list_splice_init(&ep->rdllist, txlist);
629 WRITE_ONCE(ep->ovflist, NULL);
630 write_unlock_irq(&ep->lock);
631 }
632
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)633 static void ep_done_scan(struct eventpoll *ep,
634 struct list_head *txlist)
635 {
636 struct epitem *epi, *nepi;
637
638 write_lock_irq(&ep->lock);
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
652 if (!ep_is_linked(epi)) {
653 /*
654 * ->ovflist is LIFO, so we have to reverse it in order
655 * to keep in FIFO.
656 */
657 list_add(&epi->rdllink, &ep->rdllist);
658 ep_pm_stay_awake(epi);
659 }
660 }
661 /*
662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 * releasing the lock, events will be queued in the normal way inside
664 * ep->rdllist.
665 */
666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667
668 /*
669 * Quickly re-inject items left on "txlist".
670 */
671 list_splice(txlist, &ep->rdllist);
672 __pm_relax(ep->ws);
673
674 if (!list_empty(&ep->rdllist)) {
675 if (waitqueue_active(&ep->wq))
676 wake_up(&ep->wq);
677 }
678
679 write_unlock_irq(&ep->lock);
680 }
681
epi_rcu_free(struct rcu_head * head)682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 struct epitem *epi = container_of(head, struct epitem, rcu);
685 kmem_cache_free(epi_cache, epi);
686 }
687
ep_get(struct eventpoll * ep)688 static void ep_get(struct eventpoll *ep)
689 {
690 refcount_inc(&ep->refcount);
691 }
692
693 /*
694 * Returns true if the event poll can be disposed
695 */
ep_refcount_dec_and_test(struct eventpoll * ep)696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 if (!refcount_dec_and_test(&ep->refcount))
699 return false;
700
701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 return true;
703 }
704
ep_free(struct eventpoll * ep)705 static void ep_free(struct eventpoll *ep)
706 {
707 mutex_destroy(&ep->mtx);
708 free_uid(ep->user);
709 wakeup_source_unregister(ep->ws);
710 kfree(ep);
711 }
712
713 /*
714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715 * all the associated resources. Must be called with "mtx" held.
716 * If the dying flag is set, do the removal only if force is true.
717 * This prevents ep_clear_and_put() from dropping all the ep references
718 * while running concurrently with eventpoll_release_file().
719 * Returns true if the eventpoll can be disposed.
720 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 struct file *file = epi->ffd.file;
724 struct epitems_head *to_free;
725 struct hlist_head *head;
726
727 lockdep_assert_irqs_enabled();
728
729 /*
730 * Removes poll wait queue hooks.
731 */
732 ep_unregister_pollwait(ep, epi);
733
734 /* Remove the current item from the list of epoll hooks */
735 spin_lock(&file->f_lock);
736 if (epi->dying && !force) {
737 spin_unlock(&file->f_lock);
738 return false;
739 }
740
741 to_free = NULL;
742 head = file->f_ep;
743 if (head->first == &epi->fllink && !epi->fllink.next) {
744 /* See eventpoll_release() for details. */
745 WRITE_ONCE(file->f_ep, NULL);
746 if (!is_file_epoll(file)) {
747 struct epitems_head *v;
748 v = container_of(head, struct epitems_head, epitems);
749 if (!smp_load_acquire(&v->next))
750 to_free = v;
751 }
752 }
753 hlist_del_rcu(&epi->fllink);
754 spin_unlock(&file->f_lock);
755 free_ephead(to_free);
756
757 rb_erase_cached(&epi->rbn, &ep->rbr);
758
759 write_lock_irq(&ep->lock);
760 if (ep_is_linked(epi))
761 list_del_init(&epi->rdllink);
762 write_unlock_irq(&ep->lock);
763
764 wakeup_source_unregister(ep_wakeup_source(epi));
765 /*
766 * At this point it is safe to free the eventpoll item. Use the union
767 * field epi->rcu, since we are trying to minimize the size of
768 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
769 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
770 * use of the rbn field.
771 */
772 call_rcu(&epi->rcu, epi_rcu_free);
773
774 percpu_counter_dec(&ep->user->epoll_watches);
775 return ep_refcount_dec_and_test(ep);
776 }
777
778 /*
779 * ep_remove variant for callers owing an additional reference to the ep
780 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)781 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
782 {
783 WARN_ON_ONCE(__ep_remove(ep, epi, false));
784 }
785
ep_clear_and_put(struct eventpoll * ep)786 static void ep_clear_and_put(struct eventpoll *ep)
787 {
788 struct rb_node *rbp, *next;
789 struct epitem *epi;
790 bool dispose;
791
792 /* We need to release all tasks waiting for these file */
793 if (waitqueue_active(&ep->poll_wait))
794 ep_poll_safewake(ep, NULL, 0);
795
796 mutex_lock(&ep->mtx);
797
798 /*
799 * Walks through the whole tree by unregistering poll callbacks.
800 */
801 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
802 epi = rb_entry(rbp, struct epitem, rbn);
803
804 ep_unregister_pollwait(ep, epi);
805 cond_resched();
806 }
807
808 /*
809 * Walks through the whole tree and try to free each "struct epitem".
810 * Note that ep_remove_safe() will not remove the epitem in case of a
811 * racing eventpoll_release_file(); the latter will do the removal.
812 * At this point we are sure no poll callbacks will be lingering around.
813 * Since we still own a reference to the eventpoll struct, the loop can't
814 * dispose it.
815 */
816 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
817 next = rb_next(rbp);
818 epi = rb_entry(rbp, struct epitem, rbn);
819 ep_remove_safe(ep, epi);
820 cond_resched();
821 }
822
823 dispose = ep_refcount_dec_and_test(ep);
824 mutex_unlock(&ep->mtx);
825
826 if (dispose)
827 ep_free(ep);
828 }
829
ep_eventpoll_release(struct inode * inode,struct file * file)830 static int ep_eventpoll_release(struct inode *inode, struct file *file)
831 {
832 struct eventpoll *ep = file->private_data;
833
834 if (ep)
835 ep_clear_and_put(ep);
836
837 return 0;
838 }
839
840 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
841
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)842 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
843 {
844 struct eventpoll *ep = file->private_data;
845 LIST_HEAD(txlist);
846 struct epitem *epi, *tmp;
847 poll_table pt;
848 __poll_t res = 0;
849
850 init_poll_funcptr(&pt, NULL);
851
852 /* Insert inside our poll wait queue */
853 poll_wait(file, &ep->poll_wait, wait);
854
855 /*
856 * Proceed to find out if wanted events are really available inside
857 * the ready list.
858 */
859 mutex_lock_nested(&ep->mtx, depth);
860 ep_start_scan(ep, &txlist);
861 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
862 if (ep_item_poll(epi, &pt, depth + 1)) {
863 res = EPOLLIN | EPOLLRDNORM;
864 break;
865 } else {
866 /*
867 * Item has been dropped into the ready list by the poll
868 * callback, but it's not actually ready, as far as
869 * caller requested events goes. We can remove it here.
870 */
871 __pm_relax(ep_wakeup_source(epi));
872 list_del_init(&epi->rdllink);
873 }
874 }
875 ep_done_scan(ep, &txlist);
876 mutex_unlock(&ep->mtx);
877 return res;
878 }
879
880 /*
881 * The ffd.file pointer may be in the process of being torn down due to
882 * being closed, but we may not have finished eventpoll_release() yet.
883 *
884 * Normally, even with the atomic_long_inc_not_zero, the file may have
885 * been free'd and then gotten re-allocated to something else (since
886 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
887 *
888 * But for epoll, users hold the ep->mtx mutex, and as such any file in
889 * the process of being free'd will block in eventpoll_release_file()
890 * and thus the underlying file allocation will not be free'd, and the
891 * file re-use cannot happen.
892 *
893 * For the same reason we can avoid a rcu_read_lock() around the
894 * operation - 'ffd.file' cannot go away even if the refcount has
895 * reached zero (but we must still not call out to ->poll() functions
896 * etc).
897 */
epi_fget(const struct epitem * epi)898 static struct file *epi_fget(const struct epitem *epi)
899 {
900 struct file *file;
901
902 file = epi->ffd.file;
903 if (!atomic_long_inc_not_zero(&file->f_count))
904 file = NULL;
905 return file;
906 }
907
908 /*
909 * Differs from ep_eventpoll_poll() in that internal callers already have
910 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
911 * is correctly annotated.
912 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)913 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
914 int depth)
915 {
916 struct file *file = epi_fget(epi);
917 __poll_t res;
918
919 /*
920 * We could return EPOLLERR | EPOLLHUP or something, but let's
921 * treat this more as "file doesn't exist, poll didn't happen".
922 */
923 if (!file)
924 return 0;
925
926 pt->_key = epi->event.events;
927 if (!is_file_epoll(file))
928 res = vfs_poll(file, pt);
929 else
930 res = __ep_eventpoll_poll(file, pt, depth);
931 fput(file);
932 return res & epi->event.events;
933 }
934
ep_eventpoll_poll(struct file * file,poll_table * wait)935 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
936 {
937 return __ep_eventpoll_poll(file, wait, 0);
938 }
939
940 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)941 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
942 {
943 struct eventpoll *ep = f->private_data;
944 struct rb_node *rbp;
945
946 mutex_lock(&ep->mtx);
947 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
948 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
949 struct inode *inode = file_inode(epi->ffd.file);
950
951 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
952 " pos:%lli ino:%lx sdev:%x\n",
953 epi->ffd.fd, epi->event.events,
954 (long long)epi->event.data,
955 (long long)epi->ffd.file->f_pos,
956 inode->i_ino, inode->i_sb->s_dev);
957 if (seq_has_overflowed(m))
958 break;
959 }
960 mutex_unlock(&ep->mtx);
961 }
962 #endif
963
964 /* File callbacks that implement the eventpoll file behaviour */
965 static const struct file_operations eventpoll_fops = {
966 #ifdef CONFIG_PROC_FS
967 .show_fdinfo = ep_show_fdinfo,
968 #endif
969 .release = ep_eventpoll_release,
970 .poll = ep_eventpoll_poll,
971 .llseek = noop_llseek,
972 };
973
974 /*
975 * This is called from eventpoll_release() to unlink files from the eventpoll
976 * interface. We need to have this facility to cleanup correctly files that are
977 * closed without being removed from the eventpoll interface.
978 */
eventpoll_release_file(struct file * file)979 void eventpoll_release_file(struct file *file)
980 {
981 struct eventpoll *ep;
982 struct epitem *epi;
983 bool dispose;
984
985 /*
986 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
987 * touching the epitems list before eventpoll_release_file() can access
988 * the ep->mtx.
989 */
990 again:
991 spin_lock(&file->f_lock);
992 if (file->f_ep && file->f_ep->first) {
993 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
994 epi->dying = true;
995 spin_unlock(&file->f_lock);
996
997 /*
998 * ep access is safe as we still own a reference to the ep
999 * struct
1000 */
1001 ep = epi->ep;
1002 mutex_lock(&ep->mtx);
1003 dispose = __ep_remove(ep, epi, true);
1004 mutex_unlock(&ep->mtx);
1005
1006 if (dispose)
1007 ep_free(ep);
1008 goto again;
1009 }
1010 spin_unlock(&file->f_lock);
1011 }
1012
ep_alloc(struct eventpoll ** pep)1013 static int ep_alloc(struct eventpoll **pep)
1014 {
1015 struct eventpoll *ep;
1016
1017 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1018 if (unlikely(!ep))
1019 return -ENOMEM;
1020
1021 mutex_init(&ep->mtx);
1022 rwlock_init(&ep->lock);
1023 init_waitqueue_head(&ep->wq);
1024 init_waitqueue_head(&ep->poll_wait);
1025 INIT_LIST_HEAD(&ep->rdllist);
1026 ep->rbr = RB_ROOT_CACHED;
1027 ep->ovflist = EP_UNACTIVE_PTR;
1028 ep->user = get_current_user();
1029 refcount_set(&ep->refcount, 1);
1030
1031 *pep = ep;
1032
1033 return 0;
1034 }
1035
1036 /*
1037 * Search the file inside the eventpoll tree. The RB tree operations
1038 * are protected by the "mtx" mutex, and ep_find() must be called with
1039 * "mtx" held.
1040 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042 {
1043 int kcmp;
1044 struct rb_node *rbp;
1045 struct epitem *epi, *epir = NULL;
1046 struct epoll_filefd ffd;
1047
1048 ep_set_ffd(&ffd, file, fd);
1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050 epi = rb_entry(rbp, struct epitem, rbn);
1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052 if (kcmp > 0)
1053 rbp = rbp->rb_right;
1054 else if (kcmp < 0)
1055 rbp = rbp->rb_left;
1056 else {
1057 epir = epi;
1058 break;
1059 }
1060 }
1061
1062 return epir;
1063 }
1064
1065 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067 {
1068 struct rb_node *rbp;
1069 struct epitem *epi;
1070
1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072 epi = rb_entry(rbp, struct epitem, rbn);
1073 if (epi->ffd.fd == tfd) {
1074 if (toff == 0)
1075 return epi;
1076 else
1077 toff--;
1078 }
1079 cond_resched();
1080 }
1081
1082 return NULL;
1083 }
1084
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086 unsigned long toff)
1087 {
1088 struct file *file_raw;
1089 struct eventpoll *ep;
1090 struct epitem *epi;
1091
1092 if (!is_file_epoll(file))
1093 return ERR_PTR(-EINVAL);
1094
1095 ep = file->private_data;
1096
1097 mutex_lock(&ep->mtx);
1098 epi = ep_find_tfd(ep, tfd, toff);
1099 if (epi)
1100 file_raw = epi->ffd.file;
1101 else
1102 file_raw = ERR_PTR(-ENOENT);
1103 mutex_unlock(&ep->mtx);
1104
1105 return file_raw;
1106 }
1107 #endif /* CONFIG_KCMP */
1108
1109 /*
1110 * Adds a new entry to the tail of the list in a lockless way, i.e.
1111 * multiple CPUs are allowed to call this function concurrently.
1112 *
1113 * Beware: it is necessary to prevent any other modifications of the
1114 * existing list until all changes are completed, in other words
1115 * concurrent list_add_tail_lockless() calls should be protected
1116 * with a read lock, where write lock acts as a barrier which
1117 * makes sure all list_add_tail_lockless() calls are fully
1118 * completed.
1119 *
1120 * Also an element can be locklessly added to the list only in one
1121 * direction i.e. either to the tail or to the head, otherwise
1122 * concurrent access will corrupt the list.
1123 *
1124 * Return: %false if element has been already added to the list, %true
1125 * otherwise.
1126 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1127 static inline bool list_add_tail_lockless(struct list_head *new,
1128 struct list_head *head)
1129 {
1130 struct list_head *prev;
1131
1132 /*
1133 * This is simple 'new->next = head' operation, but cmpxchg()
1134 * is used in order to detect that same element has been just
1135 * added to the list from another CPU: the winner observes
1136 * new->next == new.
1137 */
1138 if (!try_cmpxchg(&new->next, &new, head))
1139 return false;
1140
1141 /*
1142 * Initially ->next of a new element must be updated with the head
1143 * (we are inserting to the tail) and only then pointers are atomically
1144 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1145 * updated before pointers are actually swapped and pointers are
1146 * swapped before prev->next is updated.
1147 */
1148
1149 prev = xchg(&head->prev, new);
1150
1151 /*
1152 * It is safe to modify prev->next and new->prev, because a new element
1153 * is added only to the tail and new->next is updated before XCHG.
1154 */
1155
1156 prev->next = new;
1157 new->prev = prev;
1158
1159 return true;
1160 }
1161
1162 /*
1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1164 * i.e. multiple CPUs are allowed to call this function concurrently.
1165 *
1166 * Return: %false if epi element has been already chained, %true otherwise.
1167 */
chain_epi_lockless(struct epitem * epi)1168 static inline bool chain_epi_lockless(struct epitem *epi)
1169 {
1170 struct eventpoll *ep = epi->ep;
1171
1172 /* Fast preliminary check */
1173 if (epi->next != EP_UNACTIVE_PTR)
1174 return false;
1175
1176 /* Check that the same epi has not been just chained from another CPU */
1177 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1178 return false;
1179
1180 /* Atomically exchange tail */
1181 epi->next = xchg(&ep->ovflist, epi);
1182
1183 return true;
1184 }
1185
1186 /*
1187 * This is the callback that is passed to the wait queue wakeup
1188 * mechanism. It is called by the stored file descriptors when they
1189 * have events to report.
1190 *
1191 * This callback takes a read lock in order not to contend with concurrent
1192 * events from another file descriptor, thus all modifications to ->rdllist
1193 * or ->ovflist are lockless. Read lock is paired with the write lock from
1194 * ep_scan_ready_list(), which stops all list modifications and guarantees
1195 * that lists state is seen correctly.
1196 *
1197 * Another thing worth to mention is that ep_poll_callback() can be called
1198 * concurrently for the same @epi from different CPUs if poll table was inited
1199 * with several wait queues entries. Plural wakeup from different CPUs of a
1200 * single wait queue is serialized by wq.lock, but the case when multiple wait
1201 * queues are used should be detected accordingly. This is detected using
1202 * cmpxchg() operation.
1203 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1204 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1205 {
1206 int pwake = 0;
1207 struct epitem *epi = ep_item_from_wait(wait);
1208 struct eventpoll *ep = epi->ep;
1209 __poll_t pollflags = key_to_poll(key);
1210 unsigned long flags;
1211 int ewake = 0;
1212
1213 read_lock_irqsave(&ep->lock, flags);
1214
1215 ep_set_busy_poll_napi_id(epi);
1216
1217 /*
1218 * If the event mask does not contain any poll(2) event, we consider the
1219 * descriptor to be disabled. This condition is likely the effect of the
1220 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1221 * until the next EPOLL_CTL_MOD will be issued.
1222 */
1223 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1224 goto out_unlock;
1225
1226 /*
1227 * Check the events coming with the callback. At this stage, not
1228 * every device reports the events in the "key" parameter of the
1229 * callback. We need to be able to handle both cases here, hence the
1230 * test for "key" != NULL before the event match test.
1231 */
1232 if (pollflags && !(pollflags & epi->event.events))
1233 goto out_unlock;
1234
1235 /*
1236 * If we are transferring events to userspace, we can hold no locks
1237 * (because we're accessing user memory, and because of linux f_op->poll()
1238 * semantics). All the events that happen during that period of time are
1239 * chained in ep->ovflist and requeued later on.
1240 */
1241 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1242 if (chain_epi_lockless(epi))
1243 ep_pm_stay_awake_rcu(epi);
1244 } else if (!ep_is_linked(epi)) {
1245 /* In the usual case, add event to ready list. */
1246 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1247 ep_pm_stay_awake_rcu(epi);
1248 }
1249
1250 /*
1251 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1252 * wait list.
1253 */
1254 if (waitqueue_active(&ep->wq)) {
1255 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1256 !(pollflags & POLLFREE)) {
1257 switch (pollflags & EPOLLINOUT_BITS) {
1258 case EPOLLIN:
1259 if (epi->event.events & EPOLLIN)
1260 ewake = 1;
1261 break;
1262 case EPOLLOUT:
1263 if (epi->event.events & EPOLLOUT)
1264 ewake = 1;
1265 break;
1266 case 0:
1267 ewake = 1;
1268 break;
1269 }
1270 }
1271 if (sync)
1272 wake_up_sync(&ep->wq);
1273 else
1274 wake_up(&ep->wq);
1275 }
1276 if (waitqueue_active(&ep->poll_wait))
1277 pwake++;
1278
1279 out_unlock:
1280 read_unlock_irqrestore(&ep->lock, flags);
1281
1282 /* We have to call this outside the lock */
1283 if (pwake)
1284 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1285
1286 if (!(epi->event.events & EPOLLEXCLUSIVE))
1287 ewake = 1;
1288
1289 if (pollflags & POLLFREE) {
1290 /*
1291 * If we race with ep_remove_wait_queue() it can miss
1292 * ->whead = NULL and do another remove_wait_queue() after
1293 * us, so we can't use __remove_wait_queue().
1294 */
1295 list_del_init(&wait->entry);
1296 /*
1297 * ->whead != NULL protects us from the race with
1298 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1299 * takes whead->lock held by the caller. Once we nullify it,
1300 * nothing protects ep/epi or even wait.
1301 */
1302 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1303 }
1304
1305 return ewake;
1306 }
1307
1308 /*
1309 * This is the callback that is used to add our wait queue to the
1310 * target file wakeup lists.
1311 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1312 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1313 poll_table *pt)
1314 {
1315 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1316 struct epitem *epi = epq->epi;
1317 struct eppoll_entry *pwq;
1318
1319 if (unlikely(!epi)) // an earlier allocation has failed
1320 return;
1321
1322 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1323 if (unlikely(!pwq)) {
1324 epq->epi = NULL;
1325 return;
1326 }
1327
1328 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1329 pwq->whead = whead;
1330 pwq->base = epi;
1331 if (epi->event.events & EPOLLEXCLUSIVE)
1332 add_wait_queue_exclusive(whead, &pwq->wait);
1333 else
1334 add_wait_queue(whead, &pwq->wait);
1335 pwq->next = epi->pwqlist;
1336 epi->pwqlist = pwq;
1337 }
1338
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1339 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1340 {
1341 int kcmp;
1342 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1343 struct epitem *epic;
1344 bool leftmost = true;
1345
1346 while (*p) {
1347 parent = *p;
1348 epic = rb_entry(parent, struct epitem, rbn);
1349 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1350 if (kcmp > 0) {
1351 p = &parent->rb_right;
1352 leftmost = false;
1353 } else
1354 p = &parent->rb_left;
1355 }
1356 rb_link_node(&epi->rbn, parent, p);
1357 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1358 }
1359
1360
1361
1362 #define PATH_ARR_SIZE 5
1363 /*
1364 * These are the number paths of length 1 to 5, that we are allowing to emanate
1365 * from a single file of interest. For example, we allow 1000 paths of length
1366 * 1, to emanate from each file of interest. This essentially represents the
1367 * potential wakeup paths, which need to be limited in order to avoid massive
1368 * uncontrolled wakeup storms. The common use case should be a single ep which
1369 * is connected to n file sources. In this case each file source has 1 path
1370 * of length 1. Thus, the numbers below should be more than sufficient. These
1371 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1372 * and delete can't add additional paths. Protected by the epnested_mutex.
1373 */
1374 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1375 static int path_count[PATH_ARR_SIZE];
1376
path_count_inc(int nests)1377 static int path_count_inc(int nests)
1378 {
1379 /* Allow an arbitrary number of depth 1 paths */
1380 if (nests == 0)
1381 return 0;
1382
1383 if (++path_count[nests] > path_limits[nests])
1384 return -1;
1385 return 0;
1386 }
1387
path_count_init(void)1388 static void path_count_init(void)
1389 {
1390 int i;
1391
1392 for (i = 0; i < PATH_ARR_SIZE; i++)
1393 path_count[i] = 0;
1394 }
1395
reverse_path_check_proc(struct hlist_head * refs,int depth)1396 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1397 {
1398 int error = 0;
1399 struct epitem *epi;
1400
1401 if (depth > EP_MAX_NESTS) /* too deep nesting */
1402 return -1;
1403
1404 /* CTL_DEL can remove links here, but that can't increase our count */
1405 hlist_for_each_entry_rcu(epi, refs, fllink) {
1406 struct hlist_head *refs = &epi->ep->refs;
1407 if (hlist_empty(refs))
1408 error = path_count_inc(depth);
1409 else
1410 error = reverse_path_check_proc(refs, depth + 1);
1411 if (error != 0)
1412 break;
1413 }
1414 return error;
1415 }
1416
1417 /**
1418 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1419 * links that are proposed to be newly added. We need to
1420 * make sure that those added links don't add too many
1421 * paths such that we will spend all our time waking up
1422 * eventpoll objects.
1423 *
1424 * Return: %zero if the proposed links don't create too many paths,
1425 * %-1 otherwise.
1426 */
reverse_path_check(void)1427 static int reverse_path_check(void)
1428 {
1429 struct epitems_head *p;
1430
1431 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1432 int error;
1433 path_count_init();
1434 rcu_read_lock();
1435 error = reverse_path_check_proc(&p->epitems, 0);
1436 rcu_read_unlock();
1437 if (error)
1438 return error;
1439 }
1440 return 0;
1441 }
1442
ep_create_wakeup_source(struct epitem * epi)1443 static int ep_create_wakeup_source(struct epitem *epi)
1444 {
1445 struct name_snapshot n;
1446 struct wakeup_source *ws;
1447
1448 if (!epi->ep->ws) {
1449 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1450 if (!epi->ep->ws)
1451 return -ENOMEM;
1452 }
1453
1454 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1455 ws = wakeup_source_register(NULL, n.name.name);
1456 release_dentry_name_snapshot(&n);
1457
1458 if (!ws)
1459 return -ENOMEM;
1460 rcu_assign_pointer(epi->ws, ws);
1461
1462 return 0;
1463 }
1464
1465 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1466 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1467 {
1468 struct wakeup_source *ws = ep_wakeup_source(epi);
1469
1470 RCU_INIT_POINTER(epi->ws, NULL);
1471
1472 /*
1473 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1474 * used internally by wakeup_source_remove, too (called by
1475 * wakeup_source_unregister), so we cannot use call_rcu
1476 */
1477 synchronize_rcu();
1478 wakeup_source_unregister(ws);
1479 }
1480
attach_epitem(struct file * file,struct epitem * epi)1481 static int attach_epitem(struct file *file, struct epitem *epi)
1482 {
1483 struct epitems_head *to_free = NULL;
1484 struct hlist_head *head = NULL;
1485 struct eventpoll *ep = NULL;
1486
1487 if (is_file_epoll(file))
1488 ep = file->private_data;
1489
1490 if (ep) {
1491 head = &ep->refs;
1492 } else if (!READ_ONCE(file->f_ep)) {
1493 allocate:
1494 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1495 if (!to_free)
1496 return -ENOMEM;
1497 head = &to_free->epitems;
1498 }
1499 spin_lock(&file->f_lock);
1500 if (!file->f_ep) {
1501 if (unlikely(!head)) {
1502 spin_unlock(&file->f_lock);
1503 goto allocate;
1504 }
1505 /* See eventpoll_release() for details. */
1506 WRITE_ONCE(file->f_ep, head);
1507 to_free = NULL;
1508 }
1509 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1510 spin_unlock(&file->f_lock);
1511 free_ephead(to_free);
1512 return 0;
1513 }
1514
1515 /*
1516 * Must be called with "mtx" held.
1517 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1518 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1519 struct file *tfile, int fd, int full_check)
1520 {
1521 int error, pwake = 0;
1522 __poll_t revents;
1523 struct epitem *epi;
1524 struct ep_pqueue epq;
1525 struct eventpoll *tep = NULL;
1526
1527 if (is_file_epoll(tfile))
1528 tep = tfile->private_data;
1529
1530 lockdep_assert_irqs_enabled();
1531
1532 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1533 max_user_watches) >= 0))
1534 return -ENOSPC;
1535 percpu_counter_inc(&ep->user->epoll_watches);
1536
1537 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1538 percpu_counter_dec(&ep->user->epoll_watches);
1539 return -ENOMEM;
1540 }
1541
1542 /* Item initialization follow here ... */
1543 INIT_LIST_HEAD(&epi->rdllink);
1544 epi->ep = ep;
1545 ep_set_ffd(&epi->ffd, tfile, fd);
1546 epi->event = *event;
1547 epi->next = EP_UNACTIVE_PTR;
1548
1549 if (tep)
1550 mutex_lock_nested(&tep->mtx, 1);
1551 /* Add the current item to the list of active epoll hook for this file */
1552 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1553 if (tep)
1554 mutex_unlock(&tep->mtx);
1555 kmem_cache_free(epi_cache, epi);
1556 percpu_counter_dec(&ep->user->epoll_watches);
1557 return -ENOMEM;
1558 }
1559
1560 if (full_check && !tep)
1561 list_file(tfile);
1562
1563 /*
1564 * Add the current item to the RB tree. All RB tree operations are
1565 * protected by "mtx", and ep_insert() is called with "mtx" held.
1566 */
1567 ep_rbtree_insert(ep, epi);
1568 if (tep)
1569 mutex_unlock(&tep->mtx);
1570
1571 /*
1572 * ep_remove_safe() calls in the later error paths can't lead to
1573 * ep_free() as the ep file itself still holds an ep reference.
1574 */
1575 ep_get(ep);
1576
1577 /* now check if we've created too many backpaths */
1578 if (unlikely(full_check && reverse_path_check())) {
1579 ep_remove_safe(ep, epi);
1580 return -EINVAL;
1581 }
1582
1583 if (epi->event.events & EPOLLWAKEUP) {
1584 error = ep_create_wakeup_source(epi);
1585 if (error) {
1586 ep_remove_safe(ep, epi);
1587 return error;
1588 }
1589 }
1590
1591 /* Initialize the poll table using the queue callback */
1592 epq.epi = epi;
1593 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1594
1595 /*
1596 * Attach the item to the poll hooks and get current event bits.
1597 * We can safely use the file* here because its usage count has
1598 * been increased by the caller of this function. Note that after
1599 * this operation completes, the poll callback can start hitting
1600 * the new item.
1601 */
1602 revents = ep_item_poll(epi, &epq.pt, 1);
1603
1604 /*
1605 * We have to check if something went wrong during the poll wait queue
1606 * install process. Namely an allocation for a wait queue failed due
1607 * high memory pressure.
1608 */
1609 if (unlikely(!epq.epi)) {
1610 ep_remove_safe(ep, epi);
1611 return -ENOMEM;
1612 }
1613
1614 /* We have to drop the new item inside our item list to keep track of it */
1615 write_lock_irq(&ep->lock);
1616
1617 /* record NAPI ID of new item if present */
1618 ep_set_busy_poll_napi_id(epi);
1619
1620 /* If the file is already "ready" we drop it inside the ready list */
1621 if (revents && !ep_is_linked(epi)) {
1622 list_add_tail(&epi->rdllink, &ep->rdllist);
1623 ep_pm_stay_awake(epi);
1624
1625 /* Notify waiting tasks that events are available */
1626 if (waitqueue_active(&ep->wq))
1627 wake_up(&ep->wq);
1628 if (waitqueue_active(&ep->poll_wait))
1629 pwake++;
1630 }
1631
1632 write_unlock_irq(&ep->lock);
1633
1634 /* We have to call this outside the lock */
1635 if (pwake)
1636 ep_poll_safewake(ep, NULL, 0);
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * Modify the interest event mask by dropping an event if the new mask
1643 * has a match in the current file status. Must be called with "mtx" held.
1644 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1645 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1646 const struct epoll_event *event)
1647 {
1648 int pwake = 0;
1649 poll_table pt;
1650
1651 lockdep_assert_irqs_enabled();
1652
1653 init_poll_funcptr(&pt, NULL);
1654
1655 /*
1656 * Set the new event interest mask before calling f_op->poll();
1657 * otherwise we might miss an event that happens between the
1658 * f_op->poll() call and the new event set registering.
1659 */
1660 epi->event.events = event->events; /* need barrier below */
1661 epi->event.data = event->data; /* protected by mtx */
1662 if (epi->event.events & EPOLLWAKEUP) {
1663 if (!ep_has_wakeup_source(epi))
1664 ep_create_wakeup_source(epi);
1665 } else if (ep_has_wakeup_source(epi)) {
1666 ep_destroy_wakeup_source(epi);
1667 }
1668
1669 /*
1670 * The following barrier has two effects:
1671 *
1672 * 1) Flush epi changes above to other CPUs. This ensures
1673 * we do not miss events from ep_poll_callback if an
1674 * event occurs immediately after we call f_op->poll().
1675 * We need this because we did not take ep->lock while
1676 * changing epi above (but ep_poll_callback does take
1677 * ep->lock).
1678 *
1679 * 2) We also need to ensure we do not miss _past_ events
1680 * when calling f_op->poll(). This barrier also
1681 * pairs with the barrier in wq_has_sleeper (see
1682 * comments for wq_has_sleeper).
1683 *
1684 * This barrier will now guarantee ep_poll_callback or f_op->poll
1685 * (or both) will notice the readiness of an item.
1686 */
1687 smp_mb();
1688
1689 /*
1690 * Get current event bits. We can safely use the file* here because
1691 * its usage count has been increased by the caller of this function.
1692 * If the item is "hot" and it is not registered inside the ready
1693 * list, push it inside.
1694 */
1695 if (ep_item_poll(epi, &pt, 1)) {
1696 write_lock_irq(&ep->lock);
1697 if (!ep_is_linked(epi)) {
1698 list_add_tail(&epi->rdllink, &ep->rdllist);
1699 ep_pm_stay_awake(epi);
1700
1701 /* Notify waiting tasks that events are available */
1702 if (waitqueue_active(&ep->wq))
1703 wake_up(&ep->wq);
1704 if (waitqueue_active(&ep->poll_wait))
1705 pwake++;
1706 }
1707 write_unlock_irq(&ep->lock);
1708 }
1709
1710 /* We have to call this outside the lock */
1711 if (pwake)
1712 ep_poll_safewake(ep, NULL, 0);
1713
1714 return 0;
1715 }
1716
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1717 static int ep_send_events(struct eventpoll *ep,
1718 struct epoll_event __user *events, int maxevents)
1719 {
1720 struct epitem *epi, *tmp;
1721 LIST_HEAD(txlist);
1722 poll_table pt;
1723 int res = 0;
1724
1725 /*
1726 * Always short-circuit for fatal signals to allow threads to make a
1727 * timely exit without the chance of finding more events available and
1728 * fetching repeatedly.
1729 */
1730 if (fatal_signal_pending(current))
1731 return -EINTR;
1732
1733 init_poll_funcptr(&pt, NULL);
1734
1735 mutex_lock(&ep->mtx);
1736 ep_start_scan(ep, &txlist);
1737
1738 /*
1739 * We can loop without lock because we are passed a task private list.
1740 * Items cannot vanish during the loop we are holding ep->mtx.
1741 */
1742 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1743 struct wakeup_source *ws;
1744 __poll_t revents;
1745
1746 if (res >= maxevents)
1747 break;
1748
1749 /*
1750 * Activate ep->ws before deactivating epi->ws to prevent
1751 * triggering auto-suspend here (in case we reactive epi->ws
1752 * below).
1753 *
1754 * This could be rearranged to delay the deactivation of epi->ws
1755 * instead, but then epi->ws would temporarily be out of sync
1756 * with ep_is_linked().
1757 */
1758 ws = ep_wakeup_source(epi);
1759 if (ws) {
1760 if (ws->active)
1761 __pm_stay_awake(ep->ws);
1762 __pm_relax(ws);
1763 }
1764
1765 list_del_init(&epi->rdllink);
1766
1767 /*
1768 * If the event mask intersect the caller-requested one,
1769 * deliver the event to userspace. Again, we are holding ep->mtx,
1770 * so no operations coming from userspace can change the item.
1771 */
1772 revents = ep_item_poll(epi, &pt, 1);
1773 if (!revents)
1774 continue;
1775
1776 events = epoll_put_uevent(revents, epi->event.data, events);
1777 if (!events) {
1778 list_add(&epi->rdllink, &txlist);
1779 ep_pm_stay_awake(epi);
1780 if (!res)
1781 res = -EFAULT;
1782 break;
1783 }
1784 res++;
1785 if (epi->event.events & EPOLLONESHOT)
1786 epi->event.events &= EP_PRIVATE_BITS;
1787 else if (!(epi->event.events & EPOLLET)) {
1788 /*
1789 * If this file has been added with Level
1790 * Trigger mode, we need to insert back inside
1791 * the ready list, so that the next call to
1792 * epoll_wait() will check again the events
1793 * availability. At this point, no one can insert
1794 * into ep->rdllist besides us. The epoll_ctl()
1795 * callers are locked out by
1796 * ep_scan_ready_list() holding "mtx" and the
1797 * poll callback will queue them in ep->ovflist.
1798 */
1799 list_add_tail(&epi->rdllink, &ep->rdllist);
1800 ep_pm_stay_awake(epi);
1801 }
1802 }
1803 ep_done_scan(ep, &txlist);
1804 mutex_unlock(&ep->mtx);
1805
1806 return res;
1807 }
1808
ep_timeout_to_timespec(struct timespec64 * to,long ms)1809 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1810 {
1811 struct timespec64 now;
1812
1813 if (ms < 0)
1814 return NULL;
1815
1816 if (!ms) {
1817 to->tv_sec = 0;
1818 to->tv_nsec = 0;
1819 return to;
1820 }
1821
1822 to->tv_sec = ms / MSEC_PER_SEC;
1823 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1824
1825 ktime_get_ts64(&now);
1826 *to = timespec64_add_safe(now, *to);
1827 return to;
1828 }
1829
1830 /*
1831 * autoremove_wake_function, but remove even on failure to wake up, because we
1832 * know that default_wake_function/ttwu will only fail if the thread is already
1833 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1834 * try to reuse it.
1835 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1836 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1837 unsigned int mode, int sync, void *key)
1838 {
1839 int ret = default_wake_function(wq_entry, mode, sync, key);
1840
1841 /*
1842 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1843 * iterations see the cause of this wakeup.
1844 */
1845 list_del_init_careful(&wq_entry->entry);
1846 return ret;
1847 }
1848
1849 /**
1850 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1851 * event buffer.
1852 *
1853 * @ep: Pointer to the eventpoll context.
1854 * @events: Pointer to the userspace buffer where the ready events should be
1855 * stored.
1856 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1857 * @timeout: Maximum timeout for the ready events fetch operation, in
1858 * timespec. If the timeout is zero, the function will not block,
1859 * while if the @timeout ptr is NULL, the function will block
1860 * until at least one event has been retrieved (or an error
1861 * occurred).
1862 *
1863 * Return: the number of ready events which have been fetched, or an
1864 * error code, in case of error.
1865 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1866 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1867 int maxevents, struct timespec64 *timeout)
1868 {
1869 int res, eavail, timed_out = 0;
1870 u64 slack = 0;
1871 wait_queue_entry_t wait;
1872 ktime_t expires, *to = NULL;
1873
1874 lockdep_assert_irqs_enabled();
1875
1876 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1877 slack = select_estimate_accuracy(timeout);
1878 to = &expires;
1879 *to = timespec64_to_ktime(*timeout);
1880 } else if (timeout) {
1881 /*
1882 * Avoid the unnecessary trip to the wait queue loop, if the
1883 * caller specified a non blocking operation.
1884 */
1885 timed_out = 1;
1886 }
1887
1888 /*
1889 * This call is racy: We may or may not see events that are being added
1890 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1891 * with a non-zero timeout, this thread will check the ready list under
1892 * lock and will add to the wait queue. For cases with a zero
1893 * timeout, the user by definition should not care and will have to
1894 * recheck again.
1895 */
1896 eavail = ep_events_available(ep);
1897
1898 while (1) {
1899 if (eavail) {
1900 /*
1901 * Try to transfer events to user space. In case we get
1902 * 0 events and there's still timeout left over, we go
1903 * trying again in search of more luck.
1904 */
1905 res = ep_send_events(ep, events, maxevents);
1906 if (res)
1907 return res;
1908 }
1909
1910 if (timed_out)
1911 return 0;
1912
1913 eavail = ep_busy_loop(ep, timed_out);
1914 if (eavail)
1915 continue;
1916
1917 if (signal_pending(current))
1918 return -EINTR;
1919
1920 /*
1921 * Internally init_wait() uses autoremove_wake_function(),
1922 * thus wait entry is removed from the wait queue on each
1923 * wakeup. Why it is important? In case of several waiters
1924 * each new wakeup will hit the next waiter, giving it the
1925 * chance to harvest new event. Otherwise wakeup can be
1926 * lost. This is also good performance-wise, because on
1927 * normal wakeup path no need to call __remove_wait_queue()
1928 * explicitly, thus ep->lock is not taken, which halts the
1929 * event delivery.
1930 *
1931 * In fact, we now use an even more aggressive function that
1932 * unconditionally removes, because we don't reuse the wait
1933 * entry between loop iterations. This lets us also avoid the
1934 * performance issue if a process is killed, causing all of its
1935 * threads to wake up without being removed normally.
1936 */
1937 init_wait(&wait);
1938 wait.func = ep_autoremove_wake_function;
1939
1940 write_lock_irq(&ep->lock);
1941 /*
1942 * Barrierless variant, waitqueue_active() is called under
1943 * the same lock on wakeup ep_poll_callback() side, so it
1944 * is safe to avoid an explicit barrier.
1945 */
1946 __set_current_state(TASK_INTERRUPTIBLE);
1947
1948 /*
1949 * Do the final check under the lock. ep_scan_ready_list()
1950 * plays with two lists (->rdllist and ->ovflist) and there
1951 * is always a race when both lists are empty for short
1952 * period of time although events are pending, so lock is
1953 * important.
1954 */
1955 eavail = ep_events_available(ep);
1956 if (!eavail)
1957 __add_wait_queue_exclusive(&ep->wq, &wait);
1958
1959 write_unlock_irq(&ep->lock);
1960
1961 if (!eavail)
1962 timed_out = !schedule_hrtimeout_range(to, slack,
1963 HRTIMER_MODE_ABS);
1964 __set_current_state(TASK_RUNNING);
1965
1966 /*
1967 * We were woken up, thus go and try to harvest some events.
1968 * If timed out and still on the wait queue, recheck eavail
1969 * carefully under lock, below.
1970 */
1971 eavail = 1;
1972
1973 if (!list_empty_careful(&wait.entry)) {
1974 write_lock_irq(&ep->lock);
1975 /*
1976 * If the thread timed out and is not on the wait queue,
1977 * it means that the thread was woken up after its
1978 * timeout expired before it could reacquire the lock.
1979 * Thus, when wait.entry is empty, it needs to harvest
1980 * events.
1981 */
1982 if (timed_out)
1983 eavail = list_empty(&wait.entry);
1984 __remove_wait_queue(&ep->wq, &wait);
1985 write_unlock_irq(&ep->lock);
1986 }
1987 }
1988 }
1989
1990 /**
1991 * ep_loop_check_proc - verify that adding an epoll file inside another
1992 * epoll structure does not violate the constraints, in
1993 * terms of closed loops, or too deep chains (which can
1994 * result in excessive stack usage).
1995 *
1996 * @ep: the &struct eventpoll to be currently checked.
1997 * @depth: Current depth of the path being checked.
1998 *
1999 * Return: %zero if adding the epoll @file inside current epoll
2000 * structure @ep does not violate the constraints, or %-1 otherwise.
2001 */
ep_loop_check_proc(struct eventpoll * ep,int depth)2002 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2003 {
2004 int error = 0;
2005 struct rb_node *rbp;
2006 struct epitem *epi;
2007
2008 mutex_lock_nested(&ep->mtx, depth + 1);
2009 ep->gen = loop_check_gen;
2010 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2011 epi = rb_entry(rbp, struct epitem, rbn);
2012 if (unlikely(is_file_epoll(epi->ffd.file))) {
2013 struct eventpoll *ep_tovisit;
2014 ep_tovisit = epi->ffd.file->private_data;
2015 if (ep_tovisit->gen == loop_check_gen)
2016 continue;
2017 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2018 error = -1;
2019 else
2020 error = ep_loop_check_proc(ep_tovisit, depth + 1);
2021 if (error != 0)
2022 break;
2023 } else {
2024 /*
2025 * If we've reached a file that is not associated with
2026 * an ep, then we need to check if the newly added
2027 * links are going to add too many wakeup paths. We do
2028 * this by adding it to the tfile_check_list, if it's
2029 * not already there, and calling reverse_path_check()
2030 * during ep_insert().
2031 */
2032 list_file(epi->ffd.file);
2033 }
2034 }
2035 mutex_unlock(&ep->mtx);
2036
2037 return error;
2038 }
2039
2040 /**
2041 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2042 * into another epoll file (represented by @ep) does not create
2043 * closed loops or too deep chains.
2044 *
2045 * @ep: Pointer to the epoll we are inserting into.
2046 * @to: Pointer to the epoll to be inserted.
2047 *
2048 * Return: %zero if adding the epoll @to inside the epoll @from
2049 * does not violate the constraints, or %-1 otherwise.
2050 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2051 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2052 {
2053 inserting_into = ep;
2054 return ep_loop_check_proc(to, 0);
2055 }
2056
clear_tfile_check_list(void)2057 static void clear_tfile_check_list(void)
2058 {
2059 rcu_read_lock();
2060 while (tfile_check_list != EP_UNACTIVE_PTR) {
2061 struct epitems_head *head = tfile_check_list;
2062 tfile_check_list = head->next;
2063 unlist_file(head);
2064 }
2065 rcu_read_unlock();
2066 }
2067
2068 /*
2069 * Open an eventpoll file descriptor.
2070 */
do_epoll_create(int flags)2071 static int do_epoll_create(int flags)
2072 {
2073 int error, fd;
2074 struct eventpoll *ep = NULL;
2075 struct file *file;
2076
2077 /* Check the EPOLL_* constant for consistency. */
2078 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2079
2080 if (flags & ~EPOLL_CLOEXEC)
2081 return -EINVAL;
2082 /*
2083 * Create the internal data structure ("struct eventpoll").
2084 */
2085 error = ep_alloc(&ep);
2086 if (error < 0)
2087 return error;
2088 /*
2089 * Creates all the items needed to setup an eventpoll file. That is,
2090 * a file structure and a free file descriptor.
2091 */
2092 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2093 if (fd < 0) {
2094 error = fd;
2095 goto out_free_ep;
2096 }
2097 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2098 O_RDWR | (flags & O_CLOEXEC));
2099 if (IS_ERR(file)) {
2100 error = PTR_ERR(file);
2101 goto out_free_fd;
2102 }
2103 ep->file = file;
2104 fd_install(fd, file);
2105 return fd;
2106
2107 out_free_fd:
2108 put_unused_fd(fd);
2109 out_free_ep:
2110 ep_clear_and_put(ep);
2111 return error;
2112 }
2113
SYSCALL_DEFINE1(epoll_create1,int,flags)2114 SYSCALL_DEFINE1(epoll_create1, int, flags)
2115 {
2116 return do_epoll_create(flags);
2117 }
2118
SYSCALL_DEFINE1(epoll_create,int,size)2119 SYSCALL_DEFINE1(epoll_create, int, size)
2120 {
2121 if (size <= 0)
2122 return -EINVAL;
2123
2124 return do_epoll_create(0);
2125 }
2126
2127 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2128 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2129 {
2130 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2131 epev->events &= ~EPOLLWAKEUP;
2132 }
2133 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2134 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2135 {
2136 epev->events &= ~EPOLLWAKEUP;
2137 }
2138 #endif
2139
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2140 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2141 bool nonblock)
2142 {
2143 if (!nonblock) {
2144 mutex_lock_nested(mutex, depth);
2145 return 0;
2146 }
2147 if (mutex_trylock(mutex))
2148 return 0;
2149 return -EAGAIN;
2150 }
2151
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2152 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2153 bool nonblock)
2154 {
2155 int error;
2156 int full_check = 0;
2157 struct fd f, tf;
2158 struct eventpoll *ep;
2159 struct epitem *epi;
2160 struct eventpoll *tep = NULL;
2161
2162 error = -EBADF;
2163 f = fdget(epfd);
2164 if (!f.file)
2165 goto error_return;
2166
2167 /* Get the "struct file *" for the target file */
2168 tf = fdget(fd);
2169 if (!tf.file)
2170 goto error_fput;
2171
2172 /* The target file descriptor must support poll */
2173 error = -EPERM;
2174 if (!file_can_poll(tf.file))
2175 goto error_tgt_fput;
2176
2177 /* Check if EPOLLWAKEUP is allowed */
2178 if (ep_op_has_event(op))
2179 ep_take_care_of_epollwakeup(epds);
2180
2181 /*
2182 * We have to check that the file structure underneath the file descriptor
2183 * the user passed to us _is_ an eventpoll file. And also we do not permit
2184 * adding an epoll file descriptor inside itself.
2185 */
2186 error = -EINVAL;
2187 if (f.file == tf.file || !is_file_epoll(f.file))
2188 goto error_tgt_fput;
2189
2190 /*
2191 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2192 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2193 * Also, we do not currently supported nested exclusive wakeups.
2194 */
2195 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2196 if (op == EPOLL_CTL_MOD)
2197 goto error_tgt_fput;
2198 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2199 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2200 goto error_tgt_fput;
2201 }
2202
2203 /*
2204 * At this point it is safe to assume that the "private_data" contains
2205 * our own data structure.
2206 */
2207 ep = f.file->private_data;
2208
2209 /*
2210 * When we insert an epoll file descriptor inside another epoll file
2211 * descriptor, there is the chance of creating closed loops, which are
2212 * better be handled here, than in more critical paths. While we are
2213 * checking for loops we also determine the list of files reachable
2214 * and hang them on the tfile_check_list, so we can check that we
2215 * haven't created too many possible wakeup paths.
2216 *
2217 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2218 * the epoll file descriptor is attaching directly to a wakeup source,
2219 * unless the epoll file descriptor is nested. The purpose of taking the
2220 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2221 * deep wakeup paths from forming in parallel through multiple
2222 * EPOLL_CTL_ADD operations.
2223 */
2224 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2225 if (error)
2226 goto error_tgt_fput;
2227 if (op == EPOLL_CTL_ADD) {
2228 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2229 is_file_epoll(tf.file)) {
2230 mutex_unlock(&ep->mtx);
2231 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2232 if (error)
2233 goto error_tgt_fput;
2234 loop_check_gen++;
2235 full_check = 1;
2236 if (is_file_epoll(tf.file)) {
2237 tep = tf.file->private_data;
2238 error = -ELOOP;
2239 if (ep_loop_check(ep, tep) != 0)
2240 goto error_tgt_fput;
2241 }
2242 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2243 if (error)
2244 goto error_tgt_fput;
2245 }
2246 }
2247
2248 /*
2249 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2250 * above, we can be sure to be able to use the item looked up by
2251 * ep_find() till we release the mutex.
2252 */
2253 epi = ep_find(ep, tf.file, fd);
2254
2255 error = -EINVAL;
2256 switch (op) {
2257 case EPOLL_CTL_ADD:
2258 if (!epi) {
2259 epds->events |= EPOLLERR | EPOLLHUP;
2260 error = ep_insert(ep, epds, tf.file, fd, full_check);
2261 } else
2262 error = -EEXIST;
2263 break;
2264 case EPOLL_CTL_DEL:
2265 if (epi) {
2266 /*
2267 * The eventpoll itself is still alive: the refcount
2268 * can't go to zero here.
2269 */
2270 ep_remove_safe(ep, epi);
2271 error = 0;
2272 } else {
2273 error = -ENOENT;
2274 }
2275 break;
2276 case EPOLL_CTL_MOD:
2277 if (epi) {
2278 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2279 epds->events |= EPOLLERR | EPOLLHUP;
2280 error = ep_modify(ep, epi, epds);
2281 }
2282 } else
2283 error = -ENOENT;
2284 break;
2285 }
2286 mutex_unlock(&ep->mtx);
2287
2288 error_tgt_fput:
2289 if (full_check) {
2290 clear_tfile_check_list();
2291 loop_check_gen++;
2292 mutex_unlock(&epnested_mutex);
2293 }
2294
2295 fdput(tf);
2296 error_fput:
2297 fdput(f);
2298 error_return:
2299
2300 return error;
2301 }
2302
2303 /*
2304 * The following function implements the controller interface for
2305 * the eventpoll file that enables the insertion/removal/change of
2306 * file descriptors inside the interest set.
2307 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2308 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2309 struct epoll_event __user *, event)
2310 {
2311 struct epoll_event epds;
2312
2313 if (ep_op_has_event(op) &&
2314 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2315 return -EFAULT;
2316
2317 return do_epoll_ctl(epfd, op, fd, &epds, false);
2318 }
2319
2320 /*
2321 * Implement the event wait interface for the eventpoll file. It is the kernel
2322 * part of the user space epoll_wait(2).
2323 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2324 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2325 int maxevents, struct timespec64 *to)
2326 {
2327 int error;
2328 struct fd f;
2329 struct eventpoll *ep;
2330
2331 /* The maximum number of event must be greater than zero */
2332 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2333 return -EINVAL;
2334
2335 /* Verify that the area passed by the user is writeable */
2336 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2337 return -EFAULT;
2338
2339 /* Get the "struct file *" for the eventpoll file */
2340 f = fdget(epfd);
2341 if (!f.file)
2342 return -EBADF;
2343
2344 /*
2345 * We have to check that the file structure underneath the fd
2346 * the user passed to us _is_ an eventpoll file.
2347 */
2348 error = -EINVAL;
2349 if (!is_file_epoll(f.file))
2350 goto error_fput;
2351
2352 /*
2353 * At this point it is safe to assume that the "private_data" contains
2354 * our own data structure.
2355 */
2356 ep = f.file->private_data;
2357
2358 /* Time to fish for events ... */
2359 error = ep_poll(ep, events, maxevents, to);
2360
2361 error_fput:
2362 fdput(f);
2363 return error;
2364 }
2365
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2366 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2367 int, maxevents, int, timeout)
2368 {
2369 struct timespec64 to;
2370
2371 return do_epoll_wait(epfd, events, maxevents,
2372 ep_timeout_to_timespec(&to, timeout));
2373 }
2374
2375 /*
2376 * Implement the event wait interface for the eventpoll file. It is the kernel
2377 * part of the user space epoll_pwait(2).
2378 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2379 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2380 int maxevents, struct timespec64 *to,
2381 const sigset_t __user *sigmask, size_t sigsetsize)
2382 {
2383 int error;
2384
2385 /*
2386 * If the caller wants a certain signal mask to be set during the wait,
2387 * we apply it here.
2388 */
2389 error = set_user_sigmask(sigmask, sigsetsize);
2390 if (error)
2391 return error;
2392
2393 error = do_epoll_wait(epfd, events, maxevents, to);
2394
2395 restore_saved_sigmask_unless(error == -EINTR);
2396
2397 return error;
2398 }
2399
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2400 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2401 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2402 size_t, sigsetsize)
2403 {
2404 struct timespec64 to;
2405
2406 return do_epoll_pwait(epfd, events, maxevents,
2407 ep_timeout_to_timespec(&to, timeout),
2408 sigmask, sigsetsize);
2409 }
2410
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2411 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2412 int, maxevents, const struct __kernel_timespec __user *, timeout,
2413 const sigset_t __user *, sigmask, size_t, sigsetsize)
2414 {
2415 struct timespec64 ts, *to = NULL;
2416
2417 if (timeout) {
2418 if (get_timespec64(&ts, timeout))
2419 return -EFAULT;
2420 to = &ts;
2421 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2422 return -EINVAL;
2423 }
2424
2425 return do_epoll_pwait(epfd, events, maxevents, to,
2426 sigmask, sigsetsize);
2427 }
2428
2429 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2430 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2431 int maxevents, struct timespec64 *timeout,
2432 const compat_sigset_t __user *sigmask,
2433 compat_size_t sigsetsize)
2434 {
2435 long err;
2436
2437 /*
2438 * If the caller wants a certain signal mask to be set during the wait,
2439 * we apply it here.
2440 */
2441 err = set_compat_user_sigmask(sigmask, sigsetsize);
2442 if (err)
2443 return err;
2444
2445 err = do_epoll_wait(epfd, events, maxevents, timeout);
2446
2447 restore_saved_sigmask_unless(err == -EINTR);
2448
2449 return err;
2450 }
2451
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2452 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2453 struct epoll_event __user *, events,
2454 int, maxevents, int, timeout,
2455 const compat_sigset_t __user *, sigmask,
2456 compat_size_t, sigsetsize)
2457 {
2458 struct timespec64 to;
2459
2460 return do_compat_epoll_pwait(epfd, events, maxevents,
2461 ep_timeout_to_timespec(&to, timeout),
2462 sigmask, sigsetsize);
2463 }
2464
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2465 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2466 struct epoll_event __user *, events,
2467 int, maxevents,
2468 const struct __kernel_timespec __user *, timeout,
2469 const compat_sigset_t __user *, sigmask,
2470 compat_size_t, sigsetsize)
2471 {
2472 struct timespec64 ts, *to = NULL;
2473
2474 if (timeout) {
2475 if (get_timespec64(&ts, timeout))
2476 return -EFAULT;
2477 to = &ts;
2478 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2479 return -EINVAL;
2480 }
2481
2482 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2483 sigmask, sigsetsize);
2484 }
2485
2486 #endif
2487
eventpoll_init(void)2488 static int __init eventpoll_init(void)
2489 {
2490 struct sysinfo si;
2491
2492 si_meminfo(&si);
2493 /*
2494 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2495 */
2496 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2497 EP_ITEM_COST;
2498 BUG_ON(max_user_watches < 0);
2499
2500 /*
2501 * We can have many thousands of epitems, so prevent this from
2502 * using an extra cache line on 64-bit (and smaller) CPUs
2503 */
2504 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2505
2506 /* Allocates slab cache used to allocate "struct epitem" items */
2507 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2508 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2509
2510 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2511 pwq_cache = kmem_cache_create("eventpoll_pwq",
2512 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2513 epoll_sysctls_init();
2514
2515 ephead_cache = kmem_cache_create("ep_head",
2516 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2517
2518 return 0;
2519 }
2520 fs_initcall(eventpoll_init);
2521