xref: /openbmc/linux/block/elevator.c (revision 9464bf9762a8b16f4fbd05b115dcde51b339ac58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Block device elevator/IO-scheduler.
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  *
7  * 30042000 Jens Axboe <axboe@kernel.dk> :
8  *
9  * Split the elevator a bit so that it is possible to choose a different
10  * one or even write a new "plug in". There are three pieces:
11  * - elevator_fn, inserts a new request in the queue list
12  * - elevator_merge_fn, decides whether a new buffer can be merged with
13  *   an existing request
14  * - elevator_dequeue_fn, called when a request is taken off the active list
15  *
16  * 20082000 Dave Jones <davej@suse.de> :
17  * Removed tests for max-bomb-segments, which was breaking elvtune
18  *  when run without -bN
19  *
20  * Jens:
21  * - Rework again to work with bio instead of buffer_heads
22  * - loose bi_dev comparisons, partition handling is right now
23  * - completely modularize elevator setup and teardown
24  *
25  */
26 #include <linux/kernel.h>
27 #include <linux/fs.h>
28 #include <linux/blkdev.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/blktrace_api.h>
35 #include <linux/hash.h>
36 #include <linux/uaccess.h>
37 #include <linux/pm_runtime.h>
38 
39 #include <trace/events/block.h>
40 
41 #include "elevator.h"
42 #include "blk.h"
43 #include "blk-mq-sched.h"
44 #include "blk-pm.h"
45 #include "blk-wbt.h"
46 #include "blk-cgroup.h"
47 
48 static DEFINE_SPINLOCK(elv_list_lock);
49 static LIST_HEAD(elv_list);
50 
51 /*
52  * Merge hash stuff.
53  */
54 #define rq_hash_key(rq)		(blk_rq_pos(rq) + blk_rq_sectors(rq))
55 
56 /*
57  * Query io scheduler to see if the current process issuing bio may be
58  * merged with rq.
59  */
elv_iosched_allow_bio_merge(struct request * rq,struct bio * bio)60 static bool elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio)
61 {
62 	struct request_queue *q = rq->q;
63 	struct elevator_queue *e = q->elevator;
64 
65 	if (e->type->ops.allow_merge)
66 		return e->type->ops.allow_merge(q, rq, bio);
67 
68 	return true;
69 }
70 
71 /*
72  * can we safely merge with this request?
73  */
elv_bio_merge_ok(struct request * rq,struct bio * bio)74 bool elv_bio_merge_ok(struct request *rq, struct bio *bio)
75 {
76 	if (!blk_rq_merge_ok(rq, bio))
77 		return false;
78 
79 	if (!elv_iosched_allow_bio_merge(rq, bio))
80 		return false;
81 
82 	return true;
83 }
84 EXPORT_SYMBOL(elv_bio_merge_ok);
85 
elv_support_features(struct request_queue * q,const struct elevator_type * e)86 static inline bool elv_support_features(struct request_queue *q,
87 		const struct elevator_type *e)
88 {
89 	return (q->required_elevator_features & e->elevator_features) ==
90 		q->required_elevator_features;
91 }
92 
93 /**
94  * elevator_match - Check whether @e's name or alias matches @name
95  * @e: Scheduler to test
96  * @name: Elevator name to test
97  *
98  * Return true if the elevator @e's name or alias matches @name.
99  */
elevator_match(const struct elevator_type * e,const char * name)100 static bool elevator_match(const struct elevator_type *e, const char *name)
101 {
102 	return !strcmp(e->elevator_name, name) ||
103 		(e->elevator_alias && !strcmp(e->elevator_alias, name));
104 }
105 
__elevator_find(const char * name)106 static struct elevator_type *__elevator_find(const char *name)
107 {
108 	struct elevator_type *e;
109 
110 	list_for_each_entry(e, &elv_list, list)
111 		if (elevator_match(e, name))
112 			return e;
113 	return NULL;
114 }
115 
elevator_find_get(struct request_queue * q,const char * name)116 static struct elevator_type *elevator_find_get(struct request_queue *q,
117 		const char *name)
118 {
119 	struct elevator_type *e;
120 
121 	spin_lock(&elv_list_lock);
122 	e = __elevator_find(name);
123 	if (e && (!elv_support_features(q, e) || !elevator_tryget(e)))
124 		e = NULL;
125 	spin_unlock(&elv_list_lock);
126 	return e;
127 }
128 
129 static const struct kobj_type elv_ktype;
130 
elevator_alloc(struct request_queue * q,struct elevator_type * e)131 struct elevator_queue *elevator_alloc(struct request_queue *q,
132 				  struct elevator_type *e)
133 {
134 	struct elevator_queue *eq;
135 
136 	eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
137 	if (unlikely(!eq))
138 		return NULL;
139 
140 	__elevator_get(e);
141 	eq->type = e;
142 	kobject_init(&eq->kobj, &elv_ktype);
143 	mutex_init(&eq->sysfs_lock);
144 	hash_init(eq->hash);
145 
146 	return eq;
147 }
148 EXPORT_SYMBOL(elevator_alloc);
149 
elevator_release(struct kobject * kobj)150 static void elevator_release(struct kobject *kobj)
151 {
152 	struct elevator_queue *e;
153 
154 	e = container_of(kobj, struct elevator_queue, kobj);
155 	elevator_put(e->type);
156 	kfree(e);
157 }
158 
elevator_exit(struct request_queue * q)159 void elevator_exit(struct request_queue *q)
160 {
161 	struct elevator_queue *e = q->elevator;
162 
163 	ioc_clear_queue(q);
164 	blk_mq_sched_free_rqs(q);
165 
166 	mutex_lock(&e->sysfs_lock);
167 	blk_mq_exit_sched(q, e);
168 	mutex_unlock(&e->sysfs_lock);
169 
170 	kobject_put(&e->kobj);
171 }
172 
__elv_rqhash_del(struct request * rq)173 static inline void __elv_rqhash_del(struct request *rq)
174 {
175 	hash_del(&rq->hash);
176 	rq->rq_flags &= ~RQF_HASHED;
177 }
178 
elv_rqhash_del(struct request_queue * q,struct request * rq)179 void elv_rqhash_del(struct request_queue *q, struct request *rq)
180 {
181 	if (ELV_ON_HASH(rq))
182 		__elv_rqhash_del(rq);
183 }
184 EXPORT_SYMBOL_GPL(elv_rqhash_del);
185 
elv_rqhash_add(struct request_queue * q,struct request * rq)186 void elv_rqhash_add(struct request_queue *q, struct request *rq)
187 {
188 	struct elevator_queue *e = q->elevator;
189 
190 	BUG_ON(ELV_ON_HASH(rq));
191 	hash_add(e->hash, &rq->hash, rq_hash_key(rq));
192 	rq->rq_flags |= RQF_HASHED;
193 }
194 EXPORT_SYMBOL_GPL(elv_rqhash_add);
195 
elv_rqhash_reposition(struct request_queue * q,struct request * rq)196 void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
197 {
198 	__elv_rqhash_del(rq);
199 	elv_rqhash_add(q, rq);
200 }
201 
elv_rqhash_find(struct request_queue * q,sector_t offset)202 struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
203 {
204 	struct elevator_queue *e = q->elevator;
205 	struct hlist_node *next;
206 	struct request *rq;
207 
208 	hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
209 		BUG_ON(!ELV_ON_HASH(rq));
210 
211 		if (unlikely(!rq_mergeable(rq))) {
212 			__elv_rqhash_del(rq);
213 			continue;
214 		}
215 
216 		if (rq_hash_key(rq) == offset)
217 			return rq;
218 	}
219 
220 	return NULL;
221 }
222 
223 /*
224  * RB-tree support functions for inserting/lookup/removal of requests
225  * in a sorted RB tree.
226  */
elv_rb_add(struct rb_root * root,struct request * rq)227 void elv_rb_add(struct rb_root *root, struct request *rq)
228 {
229 	struct rb_node **p = &root->rb_node;
230 	struct rb_node *parent = NULL;
231 	struct request *__rq;
232 
233 	while (*p) {
234 		parent = *p;
235 		__rq = rb_entry(parent, struct request, rb_node);
236 
237 		if (blk_rq_pos(rq) < blk_rq_pos(__rq))
238 			p = &(*p)->rb_left;
239 		else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
240 			p = &(*p)->rb_right;
241 	}
242 
243 	rb_link_node(&rq->rb_node, parent, p);
244 	rb_insert_color(&rq->rb_node, root);
245 }
246 EXPORT_SYMBOL(elv_rb_add);
247 
elv_rb_del(struct rb_root * root,struct request * rq)248 void elv_rb_del(struct rb_root *root, struct request *rq)
249 {
250 	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
251 	rb_erase(&rq->rb_node, root);
252 	RB_CLEAR_NODE(&rq->rb_node);
253 }
254 EXPORT_SYMBOL(elv_rb_del);
255 
elv_rb_find(struct rb_root * root,sector_t sector)256 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
257 {
258 	struct rb_node *n = root->rb_node;
259 	struct request *rq;
260 
261 	while (n) {
262 		rq = rb_entry(n, struct request, rb_node);
263 
264 		if (sector < blk_rq_pos(rq))
265 			n = n->rb_left;
266 		else if (sector > blk_rq_pos(rq))
267 			n = n->rb_right;
268 		else
269 			return rq;
270 	}
271 
272 	return NULL;
273 }
274 EXPORT_SYMBOL(elv_rb_find);
275 
elv_merge(struct request_queue * q,struct request ** req,struct bio * bio)276 enum elv_merge elv_merge(struct request_queue *q, struct request **req,
277 		struct bio *bio)
278 {
279 	struct elevator_queue *e = q->elevator;
280 	struct request *__rq;
281 
282 	/*
283 	 * Levels of merges:
284 	 * 	nomerges:  No merges at all attempted
285 	 * 	noxmerges: Only simple one-hit cache try
286 	 * 	merges:	   All merge tries attempted
287 	 */
288 	if (blk_queue_nomerges(q) || !bio_mergeable(bio))
289 		return ELEVATOR_NO_MERGE;
290 
291 	/*
292 	 * First try one-hit cache.
293 	 */
294 	if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) {
295 		enum elv_merge ret = blk_try_merge(q->last_merge, bio);
296 
297 		if (ret != ELEVATOR_NO_MERGE) {
298 			*req = q->last_merge;
299 			return ret;
300 		}
301 	}
302 
303 	if (blk_queue_noxmerges(q))
304 		return ELEVATOR_NO_MERGE;
305 
306 	/*
307 	 * See if our hash lookup can find a potential backmerge.
308 	 */
309 	__rq = elv_rqhash_find(q, bio->bi_iter.bi_sector);
310 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
311 		*req = __rq;
312 
313 		if (blk_discard_mergable(__rq))
314 			return ELEVATOR_DISCARD_MERGE;
315 		return ELEVATOR_BACK_MERGE;
316 	}
317 
318 	if (e->type->ops.request_merge)
319 		return e->type->ops.request_merge(q, req, bio);
320 
321 	return ELEVATOR_NO_MERGE;
322 }
323 
324 /*
325  * Attempt to do an insertion back merge. Only check for the case where
326  * we can append 'rq' to an existing request, so we can throw 'rq' away
327  * afterwards.
328  *
329  * Returns true if we merged, false otherwise. 'free' will contain all
330  * requests that need to be freed.
331  */
elv_attempt_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)332 bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq,
333 			      struct list_head *free)
334 {
335 	struct request *__rq;
336 	bool ret;
337 
338 	if (blk_queue_nomerges(q))
339 		return false;
340 
341 	/*
342 	 * First try one-hit cache.
343 	 */
344 	if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) {
345 		list_add(&rq->queuelist, free);
346 		return true;
347 	}
348 
349 	if (blk_queue_noxmerges(q))
350 		return false;
351 
352 	ret = false;
353 	/*
354 	 * See if our hash lookup can find a potential backmerge.
355 	 */
356 	while (1) {
357 		__rq = elv_rqhash_find(q, blk_rq_pos(rq));
358 		if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
359 			break;
360 
361 		list_add(&rq->queuelist, free);
362 		/* The merged request could be merged with others, try again */
363 		ret = true;
364 		rq = __rq;
365 	}
366 
367 	return ret;
368 }
369 
elv_merged_request(struct request_queue * q,struct request * rq,enum elv_merge type)370 void elv_merged_request(struct request_queue *q, struct request *rq,
371 		enum elv_merge type)
372 {
373 	struct elevator_queue *e = q->elevator;
374 
375 	if (e->type->ops.request_merged)
376 		e->type->ops.request_merged(q, rq, type);
377 
378 	if (type == ELEVATOR_BACK_MERGE)
379 		elv_rqhash_reposition(q, rq);
380 
381 	q->last_merge = rq;
382 }
383 
elv_merge_requests(struct request_queue * q,struct request * rq,struct request * next)384 void elv_merge_requests(struct request_queue *q, struct request *rq,
385 			     struct request *next)
386 {
387 	struct elevator_queue *e = q->elevator;
388 
389 	if (e->type->ops.requests_merged)
390 		e->type->ops.requests_merged(q, rq, next);
391 
392 	elv_rqhash_reposition(q, rq);
393 	q->last_merge = rq;
394 }
395 
elv_latter_request(struct request_queue * q,struct request * rq)396 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
397 {
398 	struct elevator_queue *e = q->elevator;
399 
400 	if (e->type->ops.next_request)
401 		return e->type->ops.next_request(q, rq);
402 
403 	return NULL;
404 }
405 
elv_former_request(struct request_queue * q,struct request * rq)406 struct request *elv_former_request(struct request_queue *q, struct request *rq)
407 {
408 	struct elevator_queue *e = q->elevator;
409 
410 	if (e->type->ops.former_request)
411 		return e->type->ops.former_request(q, rq);
412 
413 	return NULL;
414 }
415 
416 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
417 
418 static ssize_t
elv_attr_show(struct kobject * kobj,struct attribute * attr,char * page)419 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
420 {
421 	struct elv_fs_entry *entry = to_elv(attr);
422 	struct elevator_queue *e;
423 	ssize_t error;
424 
425 	if (!entry->show)
426 		return -EIO;
427 
428 	e = container_of(kobj, struct elevator_queue, kobj);
429 	mutex_lock(&e->sysfs_lock);
430 	error = e->type ? entry->show(e, page) : -ENOENT;
431 	mutex_unlock(&e->sysfs_lock);
432 	return error;
433 }
434 
435 static ssize_t
elv_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)436 elv_attr_store(struct kobject *kobj, struct attribute *attr,
437 	       const char *page, size_t length)
438 {
439 	struct elv_fs_entry *entry = to_elv(attr);
440 	struct elevator_queue *e;
441 	ssize_t error;
442 
443 	if (!entry->store)
444 		return -EIO;
445 
446 	e = container_of(kobj, struct elevator_queue, kobj);
447 	mutex_lock(&e->sysfs_lock);
448 	error = e->type ? entry->store(e, page, length) : -ENOENT;
449 	mutex_unlock(&e->sysfs_lock);
450 	return error;
451 }
452 
453 static const struct sysfs_ops elv_sysfs_ops = {
454 	.show	= elv_attr_show,
455 	.store	= elv_attr_store,
456 };
457 
458 static const struct kobj_type elv_ktype = {
459 	.sysfs_ops	= &elv_sysfs_ops,
460 	.release	= elevator_release,
461 };
462 
elv_register_queue(struct request_queue * q,bool uevent)463 int elv_register_queue(struct request_queue *q, bool uevent)
464 {
465 	struct elevator_queue *e = q->elevator;
466 	int error;
467 
468 	lockdep_assert_held(&q->sysfs_lock);
469 
470 	error = kobject_add(&e->kobj, &q->disk->queue_kobj, "iosched");
471 	if (!error) {
472 		struct elv_fs_entry *attr = e->type->elevator_attrs;
473 		if (attr) {
474 			while (attr->attr.name) {
475 				if (sysfs_create_file(&e->kobj, &attr->attr))
476 					break;
477 				attr++;
478 			}
479 		}
480 		if (uevent)
481 			kobject_uevent(&e->kobj, KOBJ_ADD);
482 
483 		set_bit(ELEVATOR_FLAG_REGISTERED, &e->flags);
484 	}
485 	return error;
486 }
487 
elv_unregister_queue(struct request_queue * q)488 void elv_unregister_queue(struct request_queue *q)
489 {
490 	struct elevator_queue *e = q->elevator;
491 
492 	lockdep_assert_held(&q->sysfs_lock);
493 
494 	if (e && test_and_clear_bit(ELEVATOR_FLAG_REGISTERED, &e->flags)) {
495 		kobject_uevent(&e->kobj, KOBJ_REMOVE);
496 		kobject_del(&e->kobj);
497 	}
498 }
499 
elv_register(struct elevator_type * e)500 int elv_register(struct elevator_type *e)
501 {
502 	/* finish request is mandatory */
503 	if (WARN_ON_ONCE(!e->ops.finish_request))
504 		return -EINVAL;
505 	/* insert_requests and dispatch_request are mandatory */
506 	if (WARN_ON_ONCE(!e->ops.insert_requests || !e->ops.dispatch_request))
507 		return -EINVAL;
508 
509 	/* create icq_cache if requested */
510 	if (e->icq_size) {
511 		if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
512 		    WARN_ON(e->icq_align < __alignof__(struct io_cq)))
513 			return -EINVAL;
514 
515 		snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
516 			 "%s_io_cq", e->elevator_name);
517 		e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
518 						 e->icq_align, 0, NULL);
519 		if (!e->icq_cache)
520 			return -ENOMEM;
521 	}
522 
523 	/* register, don't allow duplicate names */
524 	spin_lock(&elv_list_lock);
525 	if (__elevator_find(e->elevator_name)) {
526 		spin_unlock(&elv_list_lock);
527 		kmem_cache_destroy(e->icq_cache);
528 		return -EBUSY;
529 	}
530 	list_add_tail(&e->list, &elv_list);
531 	spin_unlock(&elv_list_lock);
532 
533 	printk(KERN_INFO "io scheduler %s registered\n", e->elevator_name);
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(elv_register);
538 
elv_unregister(struct elevator_type * e)539 void elv_unregister(struct elevator_type *e)
540 {
541 	/* unregister */
542 	spin_lock(&elv_list_lock);
543 	list_del_init(&e->list);
544 	spin_unlock(&elv_list_lock);
545 
546 	/*
547 	 * Destroy icq_cache if it exists.  icq's are RCU managed.  Make
548 	 * sure all RCU operations are complete before proceeding.
549 	 */
550 	if (e->icq_cache) {
551 		rcu_barrier();
552 		kmem_cache_destroy(e->icq_cache);
553 		e->icq_cache = NULL;
554 	}
555 }
556 EXPORT_SYMBOL_GPL(elv_unregister);
557 
elv_support_iosched(struct request_queue * q)558 static inline bool elv_support_iosched(struct request_queue *q)
559 {
560 	if (!queue_is_mq(q) ||
561 	    (q->tag_set->flags & BLK_MQ_F_NO_SCHED))
562 		return false;
563 	return true;
564 }
565 
566 /*
567  * For single queue devices, default to using mq-deadline. If we have multiple
568  * queues or mq-deadline is not available, default to "none".
569  */
elevator_get_default(struct request_queue * q)570 static struct elevator_type *elevator_get_default(struct request_queue *q)
571 {
572 	if (q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT)
573 		return NULL;
574 
575 	if (q->nr_hw_queues != 1 &&
576 	    !blk_mq_is_shared_tags(q->tag_set->flags))
577 		return NULL;
578 
579 	return elevator_find_get(q, "mq-deadline");
580 }
581 
582 /*
583  * Get the first elevator providing the features required by the request queue.
584  * Default to "none" if no matching elevator is found.
585  */
elevator_get_by_features(struct request_queue * q)586 static struct elevator_type *elevator_get_by_features(struct request_queue *q)
587 {
588 	struct elevator_type *e, *found = NULL;
589 
590 	spin_lock(&elv_list_lock);
591 
592 	list_for_each_entry(e, &elv_list, list) {
593 		if (elv_support_features(q, e)) {
594 			found = e;
595 			break;
596 		}
597 	}
598 
599 	if (found && !elevator_tryget(found))
600 		found = NULL;
601 
602 	spin_unlock(&elv_list_lock);
603 	return found;
604 }
605 
606 /*
607  * For a device queue that has no required features, use the default elevator
608  * settings. Otherwise, use the first elevator available matching the required
609  * features. If no suitable elevator is find or if the chosen elevator
610  * initialization fails, fall back to the "none" elevator (no elevator).
611  */
elevator_init_mq(struct request_queue * q)612 void elevator_init_mq(struct request_queue *q)
613 {
614 	struct elevator_type *e;
615 	int err;
616 
617 	if (!elv_support_iosched(q))
618 		return;
619 
620 	WARN_ON_ONCE(blk_queue_registered(q));
621 
622 	if (unlikely(q->elevator))
623 		return;
624 
625 	if (!q->required_elevator_features)
626 		e = elevator_get_default(q);
627 	else
628 		e = elevator_get_by_features(q);
629 	if (!e)
630 		return;
631 
632 	/*
633 	 * We are called before adding disk, when there isn't any FS I/O,
634 	 * so freezing queue plus canceling dispatch work is enough to
635 	 * drain any dispatch activities originated from passthrough
636 	 * requests, then no need to quiesce queue which may add long boot
637 	 * latency, especially when lots of disks are involved.
638 	 */
639 	blk_mq_freeze_queue(q);
640 	blk_mq_cancel_work_sync(q);
641 
642 	err = blk_mq_init_sched(q, e);
643 
644 	blk_mq_unfreeze_queue(q);
645 
646 	if (err) {
647 		pr_warn("\"%s\" elevator initialization failed, "
648 			"falling back to \"none\"\n", e->elevator_name);
649 	}
650 
651 	elevator_put(e);
652 }
653 
654 /*
655  * Switch to new_e io scheduler.
656  *
657  * If switching fails, we are most likely running out of memory and not able
658  * to restore the old io scheduler, so leaving the io scheduler being none.
659  */
elevator_switch(struct request_queue * q,struct elevator_type * new_e)660 int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
661 {
662 	int ret;
663 
664 	lockdep_assert_held(&q->sysfs_lock);
665 
666 	blk_mq_freeze_queue(q);
667 	blk_mq_quiesce_queue(q);
668 
669 	if (q->elevator) {
670 		elv_unregister_queue(q);
671 		elevator_exit(q);
672 	}
673 
674 	ret = blk_mq_init_sched(q, new_e);
675 	if (ret)
676 		goto out_unfreeze;
677 
678 	ret = elv_register_queue(q, true);
679 	if (ret) {
680 		elevator_exit(q);
681 		goto out_unfreeze;
682 	}
683 	blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
684 
685 out_unfreeze:
686 	blk_mq_unquiesce_queue(q);
687 	blk_mq_unfreeze_queue(q);
688 
689 	if (ret) {
690 		pr_warn("elv: switch to \"%s\" failed, falling back to \"none\"\n",
691 			new_e->elevator_name);
692 	}
693 
694 	return ret;
695 }
696 
elevator_disable(struct request_queue * q)697 void elevator_disable(struct request_queue *q)
698 {
699 	lockdep_assert_held(&q->sysfs_lock);
700 
701 	blk_mq_freeze_queue(q);
702 	blk_mq_quiesce_queue(q);
703 
704 	elv_unregister_queue(q);
705 	elevator_exit(q);
706 	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
707 	q->elevator = NULL;
708 	q->nr_requests = q->tag_set->queue_depth;
709 	blk_add_trace_msg(q, "elv switch: none");
710 
711 	blk_mq_unquiesce_queue(q);
712 	blk_mq_unfreeze_queue(q);
713 }
714 
715 /*
716  * Switch this queue to the given IO scheduler.
717  */
elevator_change(struct request_queue * q,const char * elevator_name)718 static int elevator_change(struct request_queue *q, const char *elevator_name)
719 {
720 	struct elevator_type *e;
721 	int ret;
722 
723 	/* Make sure queue is not in the middle of being removed */
724 	if (!blk_queue_registered(q))
725 		return -ENOENT;
726 
727 	if (!strncmp(elevator_name, "none", 4)) {
728 		if (q->elevator)
729 			elevator_disable(q);
730 		return 0;
731 	}
732 
733 	if (q->elevator && elevator_match(q->elevator->type, elevator_name))
734 		return 0;
735 
736 	e = elevator_find_get(q, elevator_name);
737 	if (!e) {
738 		request_module("%s-iosched", elevator_name);
739 		e = elevator_find_get(q, elevator_name);
740 		if (!e)
741 			return -EINVAL;
742 	}
743 	ret = elevator_switch(q, e);
744 	elevator_put(e);
745 	return ret;
746 }
747 
elv_iosched_store(struct request_queue * q,const char * buf,size_t count)748 ssize_t elv_iosched_store(struct request_queue *q, const char *buf,
749 			  size_t count)
750 {
751 	char elevator_name[ELV_NAME_MAX];
752 	int ret;
753 
754 	if (!elv_support_iosched(q))
755 		return count;
756 
757 	strscpy(elevator_name, buf, sizeof(elevator_name));
758 	ret = elevator_change(q, strstrip(elevator_name));
759 	if (!ret)
760 		return count;
761 	return ret;
762 }
763 
elv_iosched_show(struct request_queue * q,char * name)764 ssize_t elv_iosched_show(struct request_queue *q, char *name)
765 {
766 	struct elevator_queue *eq = q->elevator;
767 	struct elevator_type *cur = NULL, *e;
768 	int len = 0;
769 
770 	if (!elv_support_iosched(q))
771 		return sprintf(name, "none\n");
772 
773 	if (!q->elevator) {
774 		len += sprintf(name+len, "[none] ");
775 	} else {
776 		len += sprintf(name+len, "none ");
777 		cur = eq->type;
778 	}
779 
780 	spin_lock(&elv_list_lock);
781 	list_for_each_entry(e, &elv_list, list) {
782 		if (e == cur)
783 			len += sprintf(name+len, "[%s] ", e->elevator_name);
784 		else if (elv_support_features(q, e))
785 			len += sprintf(name+len, "%s ", e->elevator_name);
786 	}
787 	spin_unlock(&elv_list_lock);
788 
789 	len += sprintf(name+len, "\n");
790 	return len;
791 }
792 
elv_rb_former_request(struct request_queue * q,struct request * rq)793 struct request *elv_rb_former_request(struct request_queue *q,
794 				      struct request *rq)
795 {
796 	struct rb_node *rbprev = rb_prev(&rq->rb_node);
797 
798 	if (rbprev)
799 		return rb_entry_rq(rbprev);
800 
801 	return NULL;
802 }
803 EXPORT_SYMBOL(elv_rb_former_request);
804 
elv_rb_latter_request(struct request_queue * q,struct request * rq)805 struct request *elv_rb_latter_request(struct request_queue *q,
806 				      struct request *rq)
807 {
808 	struct rb_node *rbnext = rb_next(&rq->rb_node);
809 
810 	if (rbnext)
811 		return rb_entry_rq(rbnext);
812 
813 	return NULL;
814 }
815 EXPORT_SYMBOL(elv_rb_latter_request);
816 
elevator_setup(char * str)817 static int __init elevator_setup(char *str)
818 {
819 	pr_warn("Kernel parameter elevator= does not have any effect anymore.\n"
820 		"Please use sysfs to set IO scheduler for individual devices.\n");
821 	return 1;
822 }
823 
824 __setup("elevator=", elevator_setup);
825