xref: /openbmc/linux/drivers/infiniband/hw/efa/efa_com.c (revision ac8f933664c3a0e2d42f6ee9a2a6d25f87cb23f6)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause
2 /*
3  * Copyright 2018-2024 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #include "efa_com.h"
7 #include "efa_regs_defs.h"
8 
9 #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */
10 
11 #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */
12 #define EFA_MMIO_READ_INVALID 0xffffffff
13 
14 #define EFA_POLL_INTERVAL_MS 100 /* msecs */
15 
16 #define EFA_ASYNC_QUEUE_DEPTH 16
17 #define EFA_ADMIN_QUEUE_DEPTH 32
18 
19 #define EFA_CTRL_MAJOR          0
20 #define EFA_CTRL_MINOR          0
21 #define EFA_CTRL_SUB_MINOR      1
22 
23 enum efa_cmd_status {
24 	EFA_CMD_SUBMITTED,
25 	EFA_CMD_COMPLETED,
26 };
27 
28 struct efa_comp_ctx {
29 	struct completion wait_event;
30 	struct efa_admin_acq_entry *user_cqe;
31 	u32 comp_size;
32 	enum efa_cmd_status status;
33 	u8 cmd_opcode;
34 	u8 occupied;
35 };
36 
efa_com_cmd_str(u8 cmd)37 static const char *efa_com_cmd_str(u8 cmd)
38 {
39 #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd
40 
41 	switch (cmd) {
42 	EFA_CMD_STR_CASE(CREATE_QP);
43 	EFA_CMD_STR_CASE(MODIFY_QP);
44 	EFA_CMD_STR_CASE(QUERY_QP);
45 	EFA_CMD_STR_CASE(DESTROY_QP);
46 	EFA_CMD_STR_CASE(CREATE_AH);
47 	EFA_CMD_STR_CASE(DESTROY_AH);
48 	EFA_CMD_STR_CASE(REG_MR);
49 	EFA_CMD_STR_CASE(DEREG_MR);
50 	EFA_CMD_STR_CASE(CREATE_CQ);
51 	EFA_CMD_STR_CASE(DESTROY_CQ);
52 	EFA_CMD_STR_CASE(GET_FEATURE);
53 	EFA_CMD_STR_CASE(SET_FEATURE);
54 	EFA_CMD_STR_CASE(GET_STATS);
55 	EFA_CMD_STR_CASE(ALLOC_PD);
56 	EFA_CMD_STR_CASE(DEALLOC_PD);
57 	EFA_CMD_STR_CASE(ALLOC_UAR);
58 	EFA_CMD_STR_CASE(DEALLOC_UAR);
59 	EFA_CMD_STR_CASE(CREATE_EQ);
60 	EFA_CMD_STR_CASE(DESTROY_EQ);
61 	default: return "unknown command opcode";
62 	}
63 #undef EFA_CMD_STR_CASE
64 }
65 
efa_com_set_dma_addr(dma_addr_t addr,u32 * addr_high,u32 * addr_low)66 void efa_com_set_dma_addr(dma_addr_t addr, u32 *addr_high, u32 *addr_low)
67 {
68 	*addr_low = lower_32_bits(addr);
69 	*addr_high = upper_32_bits(addr);
70 }
71 
efa_com_reg_read32(struct efa_com_dev * edev,u16 offset)72 static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset)
73 {
74 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
75 	struct efa_admin_mmio_req_read_less_resp *read_resp;
76 	unsigned long exp_time;
77 	u32 mmio_read_reg = 0;
78 	u32 err;
79 
80 	read_resp = mmio_read->read_resp;
81 
82 	spin_lock(&mmio_read->lock);
83 	mmio_read->seq_num++;
84 
85 	/* trash DMA req_id to identify when hardware is done */
86 	read_resp->req_id = mmio_read->seq_num + 0x9aL;
87 	EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REG_OFF, offset);
88 	EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REQ_ID,
89 		mmio_read->seq_num);
90 
91 	writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF);
92 
93 	exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout);
94 	do {
95 		if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num)
96 			break;
97 		udelay(1);
98 	} while (time_is_after_jiffies(exp_time));
99 
100 	if (read_resp->req_id != mmio_read->seq_num) {
101 		ibdev_err_ratelimited(
102 			edev->efa_dev,
103 			"Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n",
104 			mmio_read->seq_num, offset, read_resp->req_id,
105 			read_resp->reg_off);
106 		err = EFA_MMIO_READ_INVALID;
107 		goto out;
108 	}
109 
110 	if (read_resp->reg_off != offset) {
111 		ibdev_err_ratelimited(
112 			edev->efa_dev,
113 			"Reading register failed: wrong offset provided\n");
114 		err = EFA_MMIO_READ_INVALID;
115 		goto out;
116 	}
117 
118 	err = read_resp->reg_val;
119 out:
120 	spin_unlock(&mmio_read->lock);
121 	return err;
122 }
123 
efa_com_admin_init_sq(struct efa_com_dev * edev)124 static int efa_com_admin_init_sq(struct efa_com_dev *edev)
125 {
126 	struct efa_com_admin_queue *aq = &edev->aq;
127 	struct efa_com_admin_sq *sq = &aq->sq;
128 	u16 size = aq->depth * sizeof(*sq->entries);
129 	u32 aq_caps = 0;
130 	u32 addr_high;
131 	u32 addr_low;
132 
133 	sq->entries =
134 		dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL);
135 	if (!sq->entries)
136 		return -ENOMEM;
137 
138 	spin_lock_init(&sq->lock);
139 
140 	sq->cc = 0;
141 	sq->pc = 0;
142 	sq->phase = 1;
143 
144 	sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF);
145 
146 	addr_high = upper_32_bits(sq->dma_addr);
147 	addr_low = lower_32_bits(sq->dma_addr);
148 
149 	writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF);
150 	writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF);
151 
152 	EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_DEPTH, aq->depth);
153 	EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE,
154 		sizeof(struct efa_admin_aq_entry));
155 
156 	writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF);
157 
158 	return 0;
159 }
160 
efa_com_admin_init_cq(struct efa_com_dev * edev)161 static int efa_com_admin_init_cq(struct efa_com_dev *edev)
162 {
163 	struct efa_com_admin_queue *aq = &edev->aq;
164 	struct efa_com_admin_cq *cq = &aq->cq;
165 	u16 size = aq->depth * sizeof(*cq->entries);
166 	u32 acq_caps = 0;
167 	u32 addr_high;
168 	u32 addr_low;
169 
170 	cq->entries =
171 		dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL);
172 	if (!cq->entries)
173 		return -ENOMEM;
174 
175 	spin_lock_init(&cq->lock);
176 
177 	cq->cc = 0;
178 	cq->phase = 1;
179 
180 	addr_high = upper_32_bits(cq->dma_addr);
181 	addr_low = lower_32_bits(cq->dma_addr);
182 
183 	writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF);
184 	writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF);
185 
186 	EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_DEPTH, aq->depth);
187 	EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE,
188 		sizeof(struct efa_admin_acq_entry));
189 	EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR,
190 		aq->msix_vector_idx);
191 
192 	writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF);
193 
194 	return 0;
195 }
196 
efa_com_admin_init_aenq(struct efa_com_dev * edev,struct efa_aenq_handlers * aenq_handlers)197 static int efa_com_admin_init_aenq(struct efa_com_dev *edev,
198 				   struct efa_aenq_handlers *aenq_handlers)
199 {
200 	struct efa_com_aenq *aenq = &edev->aenq;
201 	u32 addr_low, addr_high;
202 	u32 aenq_caps = 0;
203 	u16 size;
204 
205 	if (!aenq_handlers) {
206 		ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n");
207 		return -EINVAL;
208 	}
209 
210 	size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries);
211 	aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr,
212 					   GFP_KERNEL);
213 	if (!aenq->entries)
214 		return -ENOMEM;
215 
216 	aenq->aenq_handlers = aenq_handlers;
217 	aenq->depth = EFA_ASYNC_QUEUE_DEPTH;
218 	aenq->cc = 0;
219 	aenq->phase = 1;
220 
221 	addr_low = lower_32_bits(aenq->dma_addr);
222 	addr_high = upper_32_bits(aenq->dma_addr);
223 
224 	writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF);
225 	writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF);
226 
227 	EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_DEPTH, aenq->depth);
228 	EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE,
229 		sizeof(struct efa_admin_aenq_entry));
230 	EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR,
231 		aenq->msix_vector_idx);
232 	writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF);
233 
234 	/*
235 	 * Init cons_db to mark that all entries in the queue
236 	 * are initially available
237 	 */
238 	writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
239 
240 	return 0;
241 }
242 
243 /* ID to be used with efa_com_get_comp_ctx */
efa_com_alloc_ctx_id(struct efa_com_admin_queue * aq)244 static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq)
245 {
246 	u16 ctx_id;
247 
248 	spin_lock(&aq->comp_ctx_lock);
249 	ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next];
250 	aq->comp_ctx_pool_next++;
251 	spin_unlock(&aq->comp_ctx_lock);
252 
253 	return ctx_id;
254 }
255 
efa_com_dealloc_ctx_id(struct efa_com_admin_queue * aq,u16 ctx_id)256 static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq,
257 				   u16 ctx_id)
258 {
259 	spin_lock(&aq->comp_ctx_lock);
260 	aq->comp_ctx_pool_next--;
261 	aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id;
262 	spin_unlock(&aq->comp_ctx_lock);
263 }
264 
efa_com_put_comp_ctx(struct efa_com_admin_queue * aq,struct efa_comp_ctx * comp_ctx)265 static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq,
266 					struct efa_comp_ctx *comp_ctx)
267 {
268 	u16 cmd_id = EFA_GET(&comp_ctx->user_cqe->acq_common_descriptor.command,
269 			     EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID);
270 	u16 ctx_id = cmd_id & (aq->depth - 1);
271 
272 	ibdev_dbg(aq->efa_dev, "Put completion command_id %#x\n", cmd_id);
273 	comp_ctx->occupied = 0;
274 	efa_com_dealloc_ctx_id(aq, ctx_id);
275 }
276 
efa_com_get_comp_ctx(struct efa_com_admin_queue * aq,u16 cmd_id,bool capture)277 static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq,
278 						 u16 cmd_id, bool capture)
279 {
280 	u16 ctx_id = cmd_id & (aq->depth - 1);
281 
282 	if (aq->comp_ctx[ctx_id].occupied && capture) {
283 		ibdev_err_ratelimited(
284 			aq->efa_dev,
285 			"Completion context for command_id %#x is occupied\n",
286 			cmd_id);
287 		return NULL;
288 	}
289 
290 	if (capture) {
291 		aq->comp_ctx[ctx_id].occupied = 1;
292 		ibdev_dbg(aq->efa_dev,
293 			  "Take completion ctxt for command_id %#x\n", cmd_id);
294 	}
295 
296 	return &aq->comp_ctx[ctx_id];
297 }
298 
__efa_com_submit_admin_cmd(struct efa_com_admin_queue * aq,struct efa_admin_aq_entry * cmd,size_t cmd_size_in_bytes,struct efa_admin_acq_entry * comp,size_t comp_size_in_bytes)299 static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
300 						       struct efa_admin_aq_entry *cmd,
301 						       size_t cmd_size_in_bytes,
302 						       struct efa_admin_acq_entry *comp,
303 						       size_t comp_size_in_bytes)
304 {
305 	struct efa_admin_aq_entry *aqe;
306 	struct efa_comp_ctx *comp_ctx;
307 	u16 queue_size_mask;
308 	u16 cmd_id;
309 	u16 ctx_id;
310 	u16 pi;
311 
312 	queue_size_mask = aq->depth - 1;
313 	pi = aq->sq.pc & queue_size_mask;
314 
315 	ctx_id = efa_com_alloc_ctx_id(aq);
316 
317 	/* cmd_id LSBs are the ctx_id and MSBs are entropy bits from pc */
318 	cmd_id = ctx_id & queue_size_mask;
319 	cmd_id |= aq->sq.pc & ~queue_size_mask;
320 	cmd_id &= EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK;
321 
322 	cmd->aq_common_descriptor.command_id = cmd_id;
323 	EFA_SET(&cmd->aq_common_descriptor.flags,
324 		EFA_ADMIN_AQ_COMMON_DESC_PHASE, aq->sq.phase);
325 
326 	comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, true);
327 	if (!comp_ctx) {
328 		efa_com_dealloc_ctx_id(aq, ctx_id);
329 		return ERR_PTR(-EINVAL);
330 	}
331 
332 	comp_ctx->status = EFA_CMD_SUBMITTED;
333 	comp_ctx->comp_size = comp_size_in_bytes;
334 	comp_ctx->user_cqe = comp;
335 	comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode;
336 
337 	reinit_completion(&comp_ctx->wait_event);
338 
339 	aqe = &aq->sq.entries[pi];
340 	memset(aqe, 0, sizeof(*aqe));
341 	memcpy(aqe, cmd, cmd_size_in_bytes);
342 
343 	aq->sq.pc++;
344 	atomic64_inc(&aq->stats.submitted_cmd);
345 
346 	if ((aq->sq.pc & queue_size_mask) == 0)
347 		aq->sq.phase = !aq->sq.phase;
348 
349 	/* barrier not needed in case of writel */
350 	writel(aq->sq.pc, aq->sq.db_addr);
351 
352 	return comp_ctx;
353 }
354 
efa_com_init_comp_ctxt(struct efa_com_admin_queue * aq)355 static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq)
356 {
357 	size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool);
358 	size_t size = aq->depth * sizeof(struct efa_comp_ctx);
359 	struct efa_comp_ctx *comp_ctx;
360 	u16 i;
361 
362 	aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL);
363 	aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL);
364 	if (!aq->comp_ctx || !aq->comp_ctx_pool) {
365 		devm_kfree(aq->dmadev, aq->comp_ctx_pool);
366 		devm_kfree(aq->dmadev, aq->comp_ctx);
367 		return -ENOMEM;
368 	}
369 
370 	for (i = 0; i < aq->depth; i++) {
371 		comp_ctx = efa_com_get_comp_ctx(aq, i, false);
372 		if (comp_ctx)
373 			init_completion(&comp_ctx->wait_event);
374 
375 		aq->comp_ctx_pool[i] = i;
376 	}
377 
378 	spin_lock_init(&aq->comp_ctx_lock);
379 
380 	aq->comp_ctx_pool_next = 0;
381 
382 	return 0;
383 }
384 
efa_com_submit_admin_cmd(struct efa_com_admin_queue * aq,struct efa_admin_aq_entry * cmd,size_t cmd_size_in_bytes,struct efa_admin_acq_entry * comp,size_t comp_size_in_bytes)385 static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
386 						     struct efa_admin_aq_entry *cmd,
387 						     size_t cmd_size_in_bytes,
388 						     struct efa_admin_acq_entry *comp,
389 						     size_t comp_size_in_bytes)
390 {
391 	struct efa_comp_ctx *comp_ctx;
392 
393 	spin_lock(&aq->sq.lock);
394 	if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) {
395 		ibdev_err_ratelimited(aq->efa_dev, "Admin queue is closed\n");
396 		spin_unlock(&aq->sq.lock);
397 		return ERR_PTR(-ENODEV);
398 	}
399 
400 	comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp,
401 					      comp_size_in_bytes);
402 	spin_unlock(&aq->sq.lock);
403 	if (IS_ERR(comp_ctx))
404 		clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
405 
406 	return comp_ctx;
407 }
408 
efa_com_handle_single_admin_completion(struct efa_com_admin_queue * aq,struct efa_admin_acq_entry * cqe)409 static int efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq,
410 						  struct efa_admin_acq_entry *cqe)
411 {
412 	struct efa_comp_ctx *comp_ctx;
413 	u16 cmd_id;
414 
415 	cmd_id = EFA_GET(&cqe->acq_common_descriptor.command,
416 			 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID);
417 
418 	comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false);
419 	if (comp_ctx->status != EFA_CMD_SUBMITTED) {
420 		ibdev_err(aq->efa_dev,
421 			  "Received completion with unexpected command id[%d], sq producer: %d, sq consumer: %d, cq consumer: %d\n",
422 			  cmd_id, aq->sq.pc, aq->sq.cc, aq->cq.cc);
423 		return -EINVAL;
424 	}
425 
426 	comp_ctx->status = EFA_CMD_COMPLETED;
427 	memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size);
428 
429 	if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
430 		complete(&comp_ctx->wait_event);
431 
432 	return 0;
433 }
434 
efa_com_handle_admin_completion(struct efa_com_admin_queue * aq)435 static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq)
436 {
437 	struct efa_admin_acq_entry *cqe;
438 	u16 queue_size_mask;
439 	u16 comp_cmds = 0;
440 	u8 phase;
441 	int err;
442 	u16 ci;
443 
444 	queue_size_mask = aq->depth - 1;
445 
446 	ci = aq->cq.cc & queue_size_mask;
447 	phase = aq->cq.phase;
448 
449 	cqe = &aq->cq.entries[ci];
450 
451 	/* Go over all the completions */
452 	while ((READ_ONCE(cqe->acq_common_descriptor.flags) &
453 		EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) {
454 		/*
455 		 * Do not read the rest of the completion entry before the
456 		 * phase bit was validated
457 		 */
458 		dma_rmb();
459 		err = efa_com_handle_single_admin_completion(aq, cqe);
460 		if (!err)
461 			comp_cmds++;
462 
463 		aq->cq.cc++;
464 		ci++;
465 		if (ci == aq->depth) {
466 			ci = 0;
467 			phase = !phase;
468 		}
469 
470 		cqe = &aq->cq.entries[ci];
471 	}
472 
473 	aq->cq.phase = phase;
474 	aq->sq.cc += comp_cmds;
475 	atomic64_add(comp_cmds, &aq->stats.completed_cmd);
476 }
477 
efa_com_comp_status_to_errno(u8 comp_status)478 static int efa_com_comp_status_to_errno(u8 comp_status)
479 {
480 	switch (comp_status) {
481 	case EFA_ADMIN_SUCCESS:
482 		return 0;
483 	case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE:
484 		return -ENOMEM;
485 	case EFA_ADMIN_UNSUPPORTED_OPCODE:
486 		return -EOPNOTSUPP;
487 	case EFA_ADMIN_BAD_OPCODE:
488 	case EFA_ADMIN_MALFORMED_REQUEST:
489 	case EFA_ADMIN_ILLEGAL_PARAMETER:
490 	case EFA_ADMIN_UNKNOWN_ERROR:
491 		return -EINVAL;
492 	default:
493 		return -EINVAL;
494 	}
495 }
496 
efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx * comp_ctx,struct efa_com_admin_queue * aq)497 static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx,
498 						     struct efa_com_admin_queue *aq)
499 {
500 	unsigned long timeout;
501 	unsigned long flags;
502 	int err;
503 
504 	timeout = jiffies + usecs_to_jiffies(aq->completion_timeout);
505 
506 	while (1) {
507 		spin_lock_irqsave(&aq->cq.lock, flags);
508 		efa_com_handle_admin_completion(aq);
509 		spin_unlock_irqrestore(&aq->cq.lock, flags);
510 
511 		if (comp_ctx->status != EFA_CMD_SUBMITTED)
512 			break;
513 
514 		if (time_is_before_jiffies(timeout)) {
515 			ibdev_err_ratelimited(
516 				aq->efa_dev,
517 				"Wait for completion (polling) timeout\n");
518 			/* EFA didn't have any completion */
519 			atomic64_inc(&aq->stats.no_completion);
520 
521 			clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
522 			err = -ETIME;
523 			goto out;
524 		}
525 
526 		msleep(aq->poll_interval);
527 	}
528 
529 	err = efa_com_comp_status_to_errno(comp_ctx->user_cqe->acq_common_descriptor.status);
530 out:
531 	efa_com_put_comp_ctx(aq, comp_ctx);
532 	return err;
533 }
534 
efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx * comp_ctx,struct efa_com_admin_queue * aq)535 static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx,
536 							struct efa_com_admin_queue *aq)
537 {
538 	unsigned long flags;
539 	int err;
540 
541 	wait_for_completion_timeout(&comp_ctx->wait_event,
542 				    usecs_to_jiffies(aq->completion_timeout));
543 
544 	/*
545 	 * In case the command wasn't completed find out the root cause.
546 	 * There might be 2 kinds of errors
547 	 * 1) No completion (timeout reached)
548 	 * 2) There is completion but the device didn't get any msi-x interrupt.
549 	 */
550 	if (comp_ctx->status == EFA_CMD_SUBMITTED) {
551 		spin_lock_irqsave(&aq->cq.lock, flags);
552 		efa_com_handle_admin_completion(aq);
553 		spin_unlock_irqrestore(&aq->cq.lock, flags);
554 
555 		atomic64_inc(&aq->stats.no_completion);
556 
557 		if (comp_ctx->status == EFA_CMD_COMPLETED)
558 			ibdev_err_ratelimited(
559 				aq->efa_dev,
560 				"The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
561 				efa_com_cmd_str(comp_ctx->cmd_opcode),
562 				comp_ctx->cmd_opcode, comp_ctx->status,
563 				comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
564 		else
565 			ibdev_err_ratelimited(
566 				aq->efa_dev,
567 				"The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
568 				efa_com_cmd_str(comp_ctx->cmd_opcode),
569 				comp_ctx->cmd_opcode, comp_ctx->status,
570 				comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
571 
572 		clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
573 		err = -ETIME;
574 		goto out;
575 	}
576 
577 	err = efa_com_comp_status_to_errno(comp_ctx->user_cqe->acq_common_descriptor.status);
578 out:
579 	efa_com_put_comp_ctx(aq, comp_ctx);
580 	return err;
581 }
582 
583 /*
584  * There are two types to wait for completion.
585  * Polling mode - wait until the completion is available.
586  * Async mode - wait on wait queue until the completion is ready
587  * (or the timeout expired).
588  * It is expected that the IRQ called efa_com_handle_admin_completion
589  * to mark the completions.
590  */
efa_com_wait_and_process_admin_cq(struct efa_comp_ctx * comp_ctx,struct efa_com_admin_queue * aq)591 static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx,
592 					     struct efa_com_admin_queue *aq)
593 {
594 	if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
595 		return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq);
596 
597 	return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq);
598 }
599 
600 /**
601  * efa_com_cmd_exec - Execute admin command
602  * @aq: admin queue.
603  * @cmd: the admin command to execute.
604  * @cmd_size: the command size.
605  * @comp: command completion return entry.
606  * @comp_size: command completion size.
607  * Submit an admin command and then wait until the device will return a
608  * completion.
609  * The completion will be copied into comp.
610  *
611  * @return - 0 on success, negative value on failure.
612  */
efa_com_cmd_exec(struct efa_com_admin_queue * aq,struct efa_admin_aq_entry * cmd,size_t cmd_size,struct efa_admin_acq_entry * comp,size_t comp_size)613 int efa_com_cmd_exec(struct efa_com_admin_queue *aq,
614 		     struct efa_admin_aq_entry *cmd,
615 		     size_t cmd_size,
616 		     struct efa_admin_acq_entry *comp,
617 		     size_t comp_size)
618 {
619 	struct efa_comp_ctx *comp_ctx;
620 	int err;
621 
622 	might_sleep();
623 
624 	/* In case of queue FULL */
625 	down(&aq->avail_cmds);
626 
627 	ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n",
628 		  efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
629 		  cmd->aq_common_descriptor.opcode);
630 	comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size);
631 	if (IS_ERR(comp_ctx)) {
632 		ibdev_err_ratelimited(
633 			aq->efa_dev,
634 			"Failed to submit command %s (opcode %u) err %ld\n",
635 			efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
636 			cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx));
637 
638 		up(&aq->avail_cmds);
639 		atomic64_inc(&aq->stats.cmd_err);
640 		return PTR_ERR(comp_ctx);
641 	}
642 
643 	err = efa_com_wait_and_process_admin_cq(comp_ctx, aq);
644 	if (err) {
645 		ibdev_err_ratelimited(
646 			aq->efa_dev,
647 			"Failed to process command %s (opcode %u) comp_status %d err %d\n",
648 			efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
649 			cmd->aq_common_descriptor.opcode,
650 			comp_ctx->user_cqe->acq_common_descriptor.status, err);
651 		atomic64_inc(&aq->stats.cmd_err);
652 	}
653 
654 	up(&aq->avail_cmds);
655 
656 	return err;
657 }
658 
659 /**
660  * efa_com_admin_destroy - Destroy the admin and the async events queues.
661  * @edev: EFA communication layer struct
662  */
efa_com_admin_destroy(struct efa_com_dev * edev)663 void efa_com_admin_destroy(struct efa_com_dev *edev)
664 {
665 	struct efa_com_admin_queue *aq = &edev->aq;
666 	struct efa_com_aenq *aenq = &edev->aenq;
667 	struct efa_com_admin_cq *cq = &aq->cq;
668 	struct efa_com_admin_sq *sq = &aq->sq;
669 	u16 size;
670 
671 	clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
672 
673 	devm_kfree(edev->dmadev, aq->comp_ctx_pool);
674 	devm_kfree(edev->dmadev, aq->comp_ctx);
675 
676 	size = aq->depth * sizeof(*sq->entries);
677 	dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr);
678 
679 	size = aq->depth * sizeof(*cq->entries);
680 	dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr);
681 
682 	size = aenq->depth * sizeof(*aenq->entries);
683 	dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr);
684 }
685 
686 /**
687  * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode
688  * @edev: EFA communication layer struct
689  * @polling: Enable/Disable polling mode
690  *
691  * Set the admin completion mode.
692  */
efa_com_set_admin_polling_mode(struct efa_com_dev * edev,bool polling)693 void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling)
694 {
695 	u32 mask_value = 0;
696 
697 	if (polling)
698 		EFA_SET(&mask_value, EFA_REGS_INTR_MASK_EN, 1);
699 
700 	writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF);
701 	if (polling)
702 		set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
703 	else
704 		clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
705 }
706 
efa_com_stats_init(struct efa_com_dev * edev)707 static void efa_com_stats_init(struct efa_com_dev *edev)
708 {
709 	atomic64_t *s = (atomic64_t *)&edev->aq.stats;
710 	int i;
711 
712 	for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++)
713 		atomic64_set(s, 0);
714 }
715 
716 /**
717  * efa_com_admin_init - Init the admin and the async queues
718  * @edev: EFA communication layer struct
719  * @aenq_handlers: Those handlers to be called upon event.
720  *
721  * Initialize the admin submission and completion queues.
722  * Initialize the asynchronous events notification queues.
723  *
724  * @return - 0 on success, negative value on failure.
725  */
efa_com_admin_init(struct efa_com_dev * edev,struct efa_aenq_handlers * aenq_handlers)726 int efa_com_admin_init(struct efa_com_dev *edev,
727 		       struct efa_aenq_handlers *aenq_handlers)
728 {
729 	struct efa_com_admin_queue *aq = &edev->aq;
730 	u32 timeout;
731 	u32 dev_sts;
732 	u32 cap;
733 	int err;
734 
735 	dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
736 	if (!EFA_GET(&dev_sts, EFA_REGS_DEV_STS_READY)) {
737 		ibdev_err(edev->efa_dev,
738 			  "Device isn't ready, abort com init %#x\n", dev_sts);
739 		return -ENODEV;
740 	}
741 
742 	aq->depth = EFA_ADMIN_QUEUE_DEPTH;
743 
744 	aq->dmadev = edev->dmadev;
745 	aq->efa_dev = edev->efa_dev;
746 	set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state);
747 
748 	sema_init(&aq->avail_cmds, aq->depth);
749 
750 	efa_com_stats_init(edev);
751 
752 	err = efa_com_init_comp_ctxt(aq);
753 	if (err)
754 		return err;
755 
756 	err = efa_com_admin_init_sq(edev);
757 	if (err)
758 		goto err_destroy_comp_ctxt;
759 
760 	err = efa_com_admin_init_cq(edev);
761 	if (err)
762 		goto err_destroy_sq;
763 
764 	efa_com_set_admin_polling_mode(edev, false);
765 
766 	err = efa_com_admin_init_aenq(edev, aenq_handlers);
767 	if (err)
768 		goto err_destroy_cq;
769 
770 	cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
771 	timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO);
772 	if (timeout)
773 		/* the resolution of timeout reg is 100ms */
774 		aq->completion_timeout = timeout * 100000;
775 	else
776 		aq->completion_timeout = ADMIN_CMD_TIMEOUT_US;
777 
778 	aq->poll_interval = EFA_POLL_INTERVAL_MS;
779 
780 	set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
781 
782 	return 0;
783 
784 err_destroy_cq:
785 	dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries),
786 			  aq->cq.entries, aq->cq.dma_addr);
787 err_destroy_sq:
788 	dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries),
789 			  aq->sq.entries, aq->sq.dma_addr);
790 err_destroy_comp_ctxt:
791 	devm_kfree(edev->dmadev, aq->comp_ctx);
792 
793 	return err;
794 }
795 
796 /**
797  * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler
798  * @edev: EFA communication layer struct
799  *
800  * This method goes over the admin completion queue and wakes up
801  * all the pending threads that wait on the commands wait event.
802  *
803  * Note: Should be called after MSI-X interrupt.
804  */
efa_com_admin_q_comp_intr_handler(struct efa_com_dev * edev)805 void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev)
806 {
807 	unsigned long flags;
808 
809 	spin_lock_irqsave(&edev->aq.cq.lock, flags);
810 	efa_com_handle_admin_completion(&edev->aq);
811 	spin_unlock_irqrestore(&edev->aq.cq.lock, flags);
812 }
813 
814 /*
815  * efa_handle_specific_aenq_event:
816  * return the handler that is relevant to the specific event group
817  */
efa_com_get_specific_aenq_cb(struct efa_com_dev * edev,u16 group)818 static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev,
819 						     u16 group)
820 {
821 	struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers;
822 
823 	if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group])
824 		return aenq_handlers->handlers[group];
825 
826 	return aenq_handlers->unimplemented_handler;
827 }
828 
829 /**
830  * efa_com_aenq_intr_handler - AENQ interrupt handler
831  * @edev: EFA communication layer struct
832  * @data: Data of interrupt handler.
833  *
834  * Go over the async event notification queue and call the proper aenq handler.
835  */
efa_com_aenq_intr_handler(struct efa_com_dev * edev,void * data)836 void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data)
837 {
838 	struct efa_admin_aenq_common_desc *aenq_common;
839 	struct efa_com_aenq *aenq = &edev->aenq;
840 	struct efa_admin_aenq_entry *aenq_e;
841 	efa_aenq_handler handler_cb;
842 	u32 processed = 0;
843 	u8 phase;
844 	u32 ci;
845 
846 	ci = aenq->cc & (aenq->depth - 1);
847 	phase = aenq->phase;
848 	aenq_e = &aenq->entries[ci]; /* Get first entry */
849 	aenq_common = &aenq_e->aenq_common_desc;
850 
851 	/* Go over all the events */
852 	while ((READ_ONCE(aenq_common->flags) &
853 		EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) {
854 		/*
855 		 * Do not read the rest of the completion entry before the
856 		 * phase bit was validated
857 		 */
858 		dma_rmb();
859 
860 		/* Handle specific event*/
861 		handler_cb = efa_com_get_specific_aenq_cb(edev,
862 							  aenq_common->group);
863 		handler_cb(data, aenq_e); /* call the actual event handler*/
864 
865 		/* Get next event entry */
866 		ci++;
867 		processed++;
868 
869 		if (ci == aenq->depth) {
870 			ci = 0;
871 			phase = !phase;
872 		}
873 		aenq_e = &aenq->entries[ci];
874 		aenq_common = &aenq_e->aenq_common_desc;
875 	}
876 
877 	aenq->cc += processed;
878 	aenq->phase = phase;
879 
880 	/* Don't update aenq doorbell if there weren't any processed events */
881 	if (!processed)
882 		return;
883 
884 	/* barrier not needed in case of writel */
885 	writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
886 }
887 
efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev * edev)888 static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev)
889 {
890 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
891 	u32 addr_high;
892 	u32 addr_low;
893 
894 	/* dma_addr_bits is unknown at this point */
895 	addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0);
896 	addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0);
897 
898 	writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF);
899 	writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF);
900 }
901 
efa_com_mmio_reg_read_init(struct efa_com_dev * edev)902 int efa_com_mmio_reg_read_init(struct efa_com_dev *edev)
903 {
904 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
905 
906 	spin_lock_init(&mmio_read->lock);
907 	mmio_read->read_resp =
908 		dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
909 				   &mmio_read->read_resp_dma_addr, GFP_KERNEL);
910 	if (!mmio_read->read_resp)
911 		return -ENOMEM;
912 
913 	efa_com_mmio_reg_read_resp_addr_init(edev);
914 
915 	mmio_read->read_resp->req_id = 0;
916 	mmio_read->seq_num = 0;
917 	mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US;
918 
919 	return 0;
920 }
921 
efa_com_mmio_reg_read_destroy(struct efa_com_dev * edev)922 void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev)
923 {
924 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
925 
926 	dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
927 			  mmio_read->read_resp, mmio_read->read_resp_dma_addr);
928 }
929 
efa_com_validate_version(struct efa_com_dev * edev)930 int efa_com_validate_version(struct efa_com_dev *edev)
931 {
932 	u32 min_ctrl_ver = 0;
933 	u32 ctrl_ver_masked;
934 	u32 min_ver = 0;
935 	u32 ctrl_ver;
936 	u32 ver;
937 
938 	/*
939 	 * Make sure the EFA version and the controller version are at least
940 	 * as the driver expects
941 	 */
942 	ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF);
943 	ctrl_ver = efa_com_reg_read32(edev,
944 				      EFA_REGS_CONTROLLER_VERSION_OFF);
945 
946 	ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n",
947 		  EFA_GET(&ver, EFA_REGS_VERSION_MAJOR_VERSION),
948 		  EFA_GET(&ver, EFA_REGS_VERSION_MINOR_VERSION));
949 
950 	EFA_SET(&min_ver, EFA_REGS_VERSION_MAJOR_VERSION,
951 		EFA_ADMIN_API_VERSION_MAJOR);
952 	EFA_SET(&min_ver, EFA_REGS_VERSION_MINOR_VERSION,
953 		EFA_ADMIN_API_VERSION_MINOR);
954 	if (ver < min_ver) {
955 		ibdev_err(edev->efa_dev,
956 			  "EFA version is lower than the minimal version the driver supports\n");
957 		return -EOPNOTSUPP;
958 	}
959 
960 	ibdev_dbg(
961 		edev->efa_dev,
962 		"efa controller version: %d.%d.%d implementation version %d\n",
963 		EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION),
964 		EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION),
965 		EFA_GET(&ctrl_ver,
966 			EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION),
967 		EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_IMPL_ID));
968 
969 	ctrl_ver_masked =
970 		EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION) |
971 		EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION) |
972 		EFA_GET(&ctrl_ver,
973 			EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION);
974 
975 	EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION,
976 		EFA_CTRL_MAJOR);
977 	EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION,
978 		EFA_CTRL_MINOR);
979 	EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION,
980 		EFA_CTRL_SUB_MINOR);
981 	/* Validate the ctrl version without the implementation ID */
982 	if (ctrl_ver_masked < min_ctrl_ver) {
983 		ibdev_err(edev->efa_dev,
984 			  "EFA ctrl version is lower than the minimal ctrl version the driver supports\n");
985 		return -EOPNOTSUPP;
986 	}
987 
988 	return 0;
989 }
990 
991 /**
992  * efa_com_get_dma_width - Retrieve physical dma address width the device
993  * supports.
994  * @edev: EFA communication layer struct
995  *
996  * Retrieve the maximum physical address bits the device can handle.
997  *
998  * @return: > 0 on Success and negative value otherwise.
999  */
efa_com_get_dma_width(struct efa_com_dev * edev)1000 int efa_com_get_dma_width(struct efa_com_dev *edev)
1001 {
1002 	u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1003 	int width;
1004 
1005 	width = EFA_GET(&caps, EFA_REGS_CAPS_DMA_ADDR_WIDTH);
1006 
1007 	ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width);
1008 
1009 	if (width < 32 || width > 64) {
1010 		ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width);
1011 		return -EINVAL;
1012 	}
1013 
1014 	edev->dma_addr_bits = width;
1015 
1016 	return width;
1017 }
1018 
wait_for_reset_state(struct efa_com_dev * edev,u32 timeout,int on)1019 static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout, int on)
1020 {
1021 	u32 val, i;
1022 
1023 	for (i = 0; i < timeout; i++) {
1024 		val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1025 
1026 		if (EFA_GET(&val, EFA_REGS_DEV_STS_RESET_IN_PROGRESS) == on)
1027 			return 0;
1028 
1029 		ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val);
1030 		msleep(EFA_POLL_INTERVAL_MS);
1031 	}
1032 
1033 	return -ETIME;
1034 }
1035 
1036 /**
1037  * efa_com_dev_reset - Perform device FLR to the device.
1038  * @edev: EFA communication layer struct
1039  * @reset_reason: Specify what is the trigger for the reset in case of an error.
1040  *
1041  * @return - 0 on success, negative value on failure.
1042  */
efa_com_dev_reset(struct efa_com_dev * edev,enum efa_regs_reset_reason_types reset_reason)1043 int efa_com_dev_reset(struct efa_com_dev *edev,
1044 		      enum efa_regs_reset_reason_types reset_reason)
1045 {
1046 	u32 stat, timeout, cap;
1047 	u32 reset_val = 0;
1048 	int err;
1049 
1050 	stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1051 	cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1052 
1053 	if (!EFA_GET(&stat, EFA_REGS_DEV_STS_READY)) {
1054 		ibdev_err(edev->efa_dev,
1055 			  "Device isn't ready, can't reset device\n");
1056 		return -EINVAL;
1057 	}
1058 
1059 	timeout = EFA_GET(&cap, EFA_REGS_CAPS_RESET_TIMEOUT);
1060 	if (!timeout) {
1061 		ibdev_err(edev->efa_dev, "Invalid timeout value\n");
1062 		return -EINVAL;
1063 	}
1064 
1065 	/* start reset */
1066 	EFA_SET(&reset_val, EFA_REGS_DEV_CTL_DEV_RESET, 1);
1067 	EFA_SET(&reset_val, EFA_REGS_DEV_CTL_RESET_REASON, reset_reason);
1068 	writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1069 
1070 	/* reset clears the mmio readless address, restore it */
1071 	efa_com_mmio_reg_read_resp_addr_init(edev);
1072 
1073 	err = wait_for_reset_state(edev, timeout, 1);
1074 	if (err) {
1075 		ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n");
1076 		return err;
1077 	}
1078 
1079 	/* reset done */
1080 	writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1081 	err = wait_for_reset_state(edev, timeout, 0);
1082 	if (err) {
1083 		ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n");
1084 		return err;
1085 	}
1086 
1087 	timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO);
1088 	if (timeout)
1089 		/* the resolution of timeout reg is 100ms */
1090 		edev->aq.completion_timeout = timeout * 100000;
1091 	else
1092 		edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US;
1093 
1094 	return 0;
1095 }
1096 
efa_com_create_eq(struct efa_com_dev * edev,struct efa_com_create_eq_params * params,struct efa_com_create_eq_result * result)1097 static int efa_com_create_eq(struct efa_com_dev *edev,
1098 			     struct efa_com_create_eq_params *params,
1099 			     struct efa_com_create_eq_result *result)
1100 {
1101 	struct efa_com_admin_queue *aq = &edev->aq;
1102 	struct efa_admin_create_eq_resp resp = {};
1103 	struct efa_admin_create_eq_cmd cmd = {};
1104 	int err;
1105 
1106 	cmd.aq_common_descriptor.opcode = EFA_ADMIN_CREATE_EQ;
1107 	EFA_SET(&cmd.caps, EFA_ADMIN_CREATE_EQ_CMD_ENTRY_SIZE_WORDS,
1108 		params->entry_size_in_bytes / 4);
1109 	cmd.depth = params->depth;
1110 	cmd.event_bitmask = params->event_bitmask;
1111 	cmd.msix_vec = params->msix_vec;
1112 
1113 	efa_com_set_dma_addr(params->dma_addr, &cmd.ba.mem_addr_high,
1114 			     &cmd.ba.mem_addr_low);
1115 
1116 	err = efa_com_cmd_exec(aq,
1117 			       (struct efa_admin_aq_entry *)&cmd,
1118 			       sizeof(cmd),
1119 			       (struct efa_admin_acq_entry *)&resp,
1120 			       sizeof(resp));
1121 	if (err) {
1122 		ibdev_err_ratelimited(edev->efa_dev,
1123 				      "Failed to create eq[%d]\n", err);
1124 		return err;
1125 	}
1126 
1127 	result->eqn = resp.eqn;
1128 
1129 	return 0;
1130 }
1131 
efa_com_destroy_eq(struct efa_com_dev * edev,struct efa_com_destroy_eq_params * params)1132 static void efa_com_destroy_eq(struct efa_com_dev *edev,
1133 			       struct efa_com_destroy_eq_params *params)
1134 {
1135 	struct efa_com_admin_queue *aq = &edev->aq;
1136 	struct efa_admin_destroy_eq_resp resp = {};
1137 	struct efa_admin_destroy_eq_cmd cmd = {};
1138 	int err;
1139 
1140 	cmd.aq_common_descriptor.opcode = EFA_ADMIN_DESTROY_EQ;
1141 	cmd.eqn = params->eqn;
1142 
1143 	err = efa_com_cmd_exec(aq,
1144 			       (struct efa_admin_aq_entry *)&cmd,
1145 			       sizeof(cmd),
1146 			       (struct efa_admin_acq_entry *)&resp,
1147 			       sizeof(resp));
1148 	if (err)
1149 		ibdev_err_ratelimited(edev->efa_dev,
1150 				      "Failed to destroy EQ-%u [%d]\n", cmd.eqn,
1151 				      err);
1152 }
1153 
efa_com_arm_eq(struct efa_com_dev * edev,struct efa_com_eq * eeq)1154 static void efa_com_arm_eq(struct efa_com_dev *edev, struct efa_com_eq *eeq)
1155 {
1156 	u32 val = 0;
1157 
1158 	EFA_SET(&val, EFA_REGS_EQ_DB_EQN, eeq->eqn);
1159 	EFA_SET(&val, EFA_REGS_EQ_DB_ARM, 1);
1160 
1161 	writel(val, edev->reg_bar + EFA_REGS_EQ_DB_OFF);
1162 }
1163 
efa_com_eq_comp_intr_handler(struct efa_com_dev * edev,struct efa_com_eq * eeq)1164 void efa_com_eq_comp_intr_handler(struct efa_com_dev *edev,
1165 				  struct efa_com_eq *eeq)
1166 {
1167 	struct efa_admin_eqe *eqe;
1168 	u32 processed = 0;
1169 	u8 phase;
1170 	u32 ci;
1171 
1172 	ci = eeq->cc & (eeq->depth - 1);
1173 	phase = eeq->phase;
1174 	eqe = &eeq->eqes[ci];
1175 
1176 	/* Go over all the events */
1177 	while ((READ_ONCE(eqe->common) & EFA_ADMIN_EQE_PHASE_MASK) == phase) {
1178 		/*
1179 		 * Do not read the rest of the completion entry before the
1180 		 * phase bit was validated
1181 		 */
1182 		dma_rmb();
1183 
1184 		eeq->cb(eeq, eqe);
1185 
1186 		/* Get next event entry */
1187 		ci++;
1188 		processed++;
1189 
1190 		if (ci == eeq->depth) {
1191 			ci = 0;
1192 			phase = !phase;
1193 		}
1194 
1195 		eqe = &eeq->eqes[ci];
1196 	}
1197 
1198 	eeq->cc += processed;
1199 	eeq->phase = phase;
1200 	efa_com_arm_eq(eeq->edev, eeq);
1201 }
1202 
efa_com_eq_destroy(struct efa_com_dev * edev,struct efa_com_eq * eeq)1203 void efa_com_eq_destroy(struct efa_com_dev *edev, struct efa_com_eq *eeq)
1204 {
1205 	struct efa_com_destroy_eq_params params = {
1206 		.eqn = eeq->eqn,
1207 	};
1208 
1209 	efa_com_destroy_eq(edev, &params);
1210 	dma_free_coherent(edev->dmadev, eeq->depth * sizeof(*eeq->eqes),
1211 			  eeq->eqes, eeq->dma_addr);
1212 }
1213 
efa_com_eq_init(struct efa_com_dev * edev,struct efa_com_eq * eeq,efa_eqe_handler cb,u16 depth,u8 msix_vec)1214 int efa_com_eq_init(struct efa_com_dev *edev, struct efa_com_eq *eeq,
1215 		    efa_eqe_handler cb, u16 depth, u8 msix_vec)
1216 {
1217 	struct efa_com_create_eq_params params = {};
1218 	struct efa_com_create_eq_result result = {};
1219 	int err;
1220 
1221 	params.depth = depth;
1222 	params.entry_size_in_bytes = sizeof(*eeq->eqes);
1223 	EFA_SET(&params.event_bitmask,
1224 		EFA_ADMIN_CREATE_EQ_CMD_COMPLETION_EVENTS, 1);
1225 	params.msix_vec = msix_vec;
1226 
1227 	eeq->eqes = dma_alloc_coherent(edev->dmadev,
1228 				       params.depth * sizeof(*eeq->eqes),
1229 				       &params.dma_addr, GFP_KERNEL);
1230 	if (!eeq->eqes)
1231 		return -ENOMEM;
1232 
1233 	err = efa_com_create_eq(edev, &params, &result);
1234 	if (err)
1235 		goto err_free_coherent;
1236 
1237 	eeq->eqn = result.eqn;
1238 	eeq->edev = edev;
1239 	eeq->dma_addr = params.dma_addr;
1240 	eeq->phase = 1;
1241 	eeq->depth = params.depth;
1242 	eeq->cb = cb;
1243 	efa_com_arm_eq(edev, eeq);
1244 
1245 	return 0;
1246 
1247 err_free_coherent:
1248 	dma_free_coherent(edev->dmadev, params.depth * sizeof(*eeq->eqes),
1249 			  eeq->eqes, params.dma_addr);
1250 	return err;
1251 }
1252