1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247
248 do_div(val, skb->truesize);
249 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250
251 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 struct tcp_sock *tp = tcp_sk(sk);
253
254 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 tcp_set_window_clamp(sk, val);
256
257 if (tp->window_clamp < tp->rcvq_space.space)
258 tp->rcvq_space.space = tp->window_clamp;
259 }
260 }
261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 tcp_sk(sk)->advmss);
263 /* Account for possibly-removed options */
264 if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 MAX_TCP_OPTION_SPACE))
266 tcp_gro_dev_warn(sk, skb, len);
267 /* If the skb has a len of exactly 1*MSS and has the PSH bit
268 * set then it is likely the end of an application write. So
269 * more data may not be arriving soon, and yet the data sender
270 * may be waiting for an ACK if cwnd-bound or using TX zero
271 * copy. So we set ICSK_ACK_PUSHED here so that
272 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 * reads all of the data and is not ping-pong. If len > MSS
274 * then this logic does not matter (and does not hurt) because
275 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 * reads data and there is more than an MSS of unACKed data.
277 */
278 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 } else {
281 /* Otherwise, we make more careful check taking into account,
282 * that SACKs block is variable.
283 *
284 * "len" is invariant segment length, including TCP header.
285 */
286 len += skb->data - skb_transport_header(skb);
287 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 /* If PSH is not set, packet should be
289 * full sized, provided peer TCP is not badly broken.
290 * This observation (if it is correct 8)) allows
291 * to handle super-low mtu links fairly.
292 */
293 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 /* Subtract also invariant (if peer is RFC compliant),
296 * tcp header plus fixed timestamp option length.
297 * Resulting "len" is MSS free of SACK jitter.
298 */
299 len -= tcp_sk(sk)->tcp_header_len;
300 icsk->icsk_ack.last_seg_size = len;
301 if (len == lss) {
302 icsk->icsk_ack.rcv_mss = len;
303 return;
304 }
305 }
306 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 }
310 }
311
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 struct inet_connection_sock *icsk = inet_csk(sk);
315 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316
317 if (quickacks == 0)
318 quickacks = 2;
319 quickacks = min(quickacks, max_quickacks);
320 if (quickacks > icsk->icsk_ack.quick)
321 icsk->icsk_ack.quick = quickacks;
322 }
323
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 struct inet_connection_sock *icsk = inet_csk(sk);
327
328 tcp_incr_quickack(sk, max_quickacks);
329 inet_csk_exit_pingpong_mode(sk);
330 icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332
333 /* Send ACKs quickly, if "quick" count is not exhausted
334 * and the session is not interactive.
335 */
336
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 const struct inet_connection_sock *icsk = inet_csk(sk);
340 const struct dst_entry *dst = __sk_dst_get(sk);
341
342 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 if (tp->ecn_flags & TCP_ECN_OK)
349 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 if (tcp_hdr(skb)->cwr) {
355 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356
357 /* If the sender is telling us it has entered CWR, then its
358 * cwnd may be very low (even just 1 packet), so we should ACK
359 * immediately.
360 */
361 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 }
364 }
365
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 case INET_ECN_NOT_ECT:
377 /* Funny extension: if ECT is not set on a segment,
378 * and we already seen ECT on a previous segment,
379 * it is probably a retransmit.
380 */
381 if (tp->ecn_flags & TCP_ECN_SEEN)
382 tcp_enter_quickack_mode(sk, 2);
383 break;
384 case INET_ECN_CE:
385 if (tcp_ca_needs_ecn(sk))
386 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387
388 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 /* Better not delay acks, sender can have a very low cwnd */
390 tcp_enter_quickack_mode(sk, 2);
391 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 }
393 tp->ecn_flags |= TCP_ECN_SEEN;
394 break;
395 default:
396 if (tcp_ca_needs_ecn(sk))
397 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 tp->ecn_flags |= TCP_ECN_SEEN;
399 break;
400 }
401 }
402
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 __tcp_ecn_check_ce(sk, skb);
407 }
408
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 return true;
425 return false;
426 }
427
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)428 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
429 {
430 tp->delivered_ce += ecn_count;
431 }
432
433 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)434 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
435 bool ece_ack)
436 {
437 tp->delivered += delivered;
438 if (ece_ack)
439 tcp_count_delivered_ce(tp, delivered);
440 }
441
442 /* Buffer size and advertised window tuning.
443 *
444 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
445 */
446
tcp_sndbuf_expand(struct sock * sk)447 static void tcp_sndbuf_expand(struct sock *sk)
448 {
449 const struct tcp_sock *tp = tcp_sk(sk);
450 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
451 int sndmem, per_mss;
452 u32 nr_segs;
453
454 /* Worst case is non GSO/TSO : each frame consumes one skb
455 * and skb->head is kmalloced using power of two area of memory
456 */
457 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
458 MAX_TCP_HEADER +
459 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
460
461 per_mss = roundup_pow_of_two(per_mss) +
462 SKB_DATA_ALIGN(sizeof(struct sk_buff));
463
464 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
465 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
466
467 /* Fast Recovery (RFC 5681 3.2) :
468 * Cubic needs 1.7 factor, rounded to 2 to include
469 * extra cushion (application might react slowly to EPOLLOUT)
470 */
471 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
472 sndmem *= nr_segs * per_mss;
473
474 if (sk->sk_sndbuf < sndmem)
475 WRITE_ONCE(sk->sk_sndbuf,
476 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
477 }
478
479 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
480 *
481 * All tcp_full_space() is split to two parts: "network" buffer, allocated
482 * forward and advertised in receiver window (tp->rcv_wnd) and
483 * "application buffer", required to isolate scheduling/application
484 * latencies from network.
485 * window_clamp is maximal advertised window. It can be less than
486 * tcp_full_space(), in this case tcp_full_space() - window_clamp
487 * is reserved for "application" buffer. The less window_clamp is
488 * the smoother our behaviour from viewpoint of network, but the lower
489 * throughput and the higher sensitivity of the connection to losses. 8)
490 *
491 * rcv_ssthresh is more strict window_clamp used at "slow start"
492 * phase to predict further behaviour of this connection.
493 * It is used for two goals:
494 * - to enforce header prediction at sender, even when application
495 * requires some significant "application buffer". It is check #1.
496 * - to prevent pruning of receive queue because of misprediction
497 * of receiver window. Check #2.
498 *
499 * The scheme does not work when sender sends good segments opening
500 * window and then starts to feed us spaghetti. But it should work
501 * in common situations. Otherwise, we have to rely on queue collapsing.
502 */
503
504 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)505 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
506 unsigned int skbtruesize)
507 {
508 const struct tcp_sock *tp = tcp_sk(sk);
509 /* Optimize this! */
510 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
511 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
512
513 while (tp->rcv_ssthresh <= window) {
514 if (truesize <= skb->len)
515 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
516
517 truesize >>= 1;
518 window >>= 1;
519 }
520 return 0;
521 }
522
523 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
524 * can play nice with us, as sk_buff and skb->head might be either
525 * freed or shared with up to MAX_SKB_FRAGS segments.
526 * Only give a boost to drivers using page frag(s) to hold the frame(s),
527 * and if no payload was pulled in skb->head before reaching us.
528 */
truesize_adjust(bool adjust,const struct sk_buff * skb)529 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
530 {
531 u32 truesize = skb->truesize;
532
533 if (adjust && !skb_headlen(skb)) {
534 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
535 /* paranoid check, some drivers might be buggy */
536 if (unlikely((int)truesize < (int)skb->len))
537 truesize = skb->truesize;
538 }
539 return truesize;
540 }
541
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)542 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
543 bool adjust)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 int room;
547
548 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
549
550 if (room <= 0)
551 return;
552
553 /* Check #1 */
554 if (!tcp_under_memory_pressure(sk)) {
555 unsigned int truesize = truesize_adjust(adjust, skb);
556 int incr;
557
558 /* Check #2. Increase window, if skb with such overhead
559 * will fit to rcvbuf in future.
560 */
561 if (tcp_win_from_space(sk, truesize) <= skb->len)
562 incr = 2 * tp->advmss;
563 else
564 incr = __tcp_grow_window(sk, skb, truesize);
565
566 if (incr) {
567 incr = max_t(int, incr, 2 * skb->len);
568 tp->rcv_ssthresh += min(room, incr);
569 inet_csk(sk)->icsk_ack.quick |= 1;
570 }
571 } else {
572 /* Under pressure:
573 * Adjust rcv_ssthresh according to reserved mem
574 */
575 tcp_adjust_rcv_ssthresh(sk);
576 }
577 }
578
579 /* 3. Try to fixup all. It is made immediately after connection enters
580 * established state.
581 */
tcp_init_buffer_space(struct sock * sk)582 static void tcp_init_buffer_space(struct sock *sk)
583 {
584 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
585 struct tcp_sock *tp = tcp_sk(sk);
586 int maxwin;
587
588 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
589 tcp_sndbuf_expand(sk);
590
591 tcp_mstamp_refresh(tp);
592 tp->rcvq_space.time = tp->tcp_mstamp;
593 tp->rcvq_space.seq = tp->copied_seq;
594
595 maxwin = tcp_full_space(sk);
596
597 if (tp->window_clamp >= maxwin) {
598 WRITE_ONCE(tp->window_clamp, maxwin);
599
600 if (tcp_app_win && maxwin > 4 * tp->advmss)
601 WRITE_ONCE(tp->window_clamp,
602 max(maxwin - (maxwin >> tcp_app_win),
603 4 * tp->advmss));
604 }
605
606 /* Force reservation of one segment. */
607 if (tcp_app_win &&
608 tp->window_clamp > 2 * tp->advmss &&
609 tp->window_clamp + tp->advmss > maxwin)
610 WRITE_ONCE(tp->window_clamp,
611 max(2 * tp->advmss, maxwin - tp->advmss));
612
613 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
614 tp->snd_cwnd_stamp = tcp_jiffies32;
615 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
616 (u32)TCP_INIT_CWND * tp->advmss);
617 }
618
619 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)620 static void tcp_clamp_window(struct sock *sk)
621 {
622 struct tcp_sock *tp = tcp_sk(sk);
623 struct inet_connection_sock *icsk = inet_csk(sk);
624 struct net *net = sock_net(sk);
625 int rmem2;
626
627 icsk->icsk_ack.quick = 0;
628 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
629
630 if (sk->sk_rcvbuf < rmem2 &&
631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
632 !tcp_under_memory_pressure(sk) &&
633 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
634 WRITE_ONCE(sk->sk_rcvbuf,
635 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
636 }
637 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
638 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
639 }
640
641 /* Initialize RCV_MSS value.
642 * RCV_MSS is an our guess about MSS used by the peer.
643 * We haven't any direct information about the MSS.
644 * It's better to underestimate the RCV_MSS rather than overestimate.
645 * Overestimations make us ACKing less frequently than needed.
646 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
647 */
tcp_initialize_rcv_mss(struct sock * sk)648 void tcp_initialize_rcv_mss(struct sock *sk)
649 {
650 const struct tcp_sock *tp = tcp_sk(sk);
651 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
652
653 hint = min(hint, tp->rcv_wnd / 2);
654 hint = min(hint, TCP_MSS_DEFAULT);
655 hint = max(hint, TCP_MIN_MSS);
656
657 inet_csk(sk)->icsk_ack.rcv_mss = hint;
658 }
659 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
660
661 /* Receiver "autotuning" code.
662 *
663 * The algorithm for RTT estimation w/o timestamps is based on
664 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
665 * <https://public.lanl.gov/radiant/pubs.html#DRS>
666 *
667 * More detail on this code can be found at
668 * <http://staff.psc.edu/jheffner/>,
669 * though this reference is out of date. A new paper
670 * is pending.
671 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)672 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
673 {
674 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
675 long m = sample << 3;
676
677 if (old_sample == 0 || m < old_sample) {
678 new_sample = m;
679 } else {
680 /* If we sample in larger samples in the non-timestamp
681 * case, we could grossly overestimate the RTT especially
682 * with chatty applications or bulk transfer apps which
683 * are stalled on filesystem I/O.
684 *
685 * Also, since we are only going for a minimum in the
686 * non-timestamp case, we do not smooth things out
687 * else with timestamps disabled convergence takes too
688 * long.
689 */
690 if (win_dep)
691 return;
692 new_sample = old_sample - (old_sample >> 3) + sample;
693 }
694
695 tp->rcv_rtt_est.rtt_us = new_sample;
696 }
697
tcp_rcv_rtt_measure(struct tcp_sock * tp)698 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
699 {
700 u32 delta_us;
701
702 if (tp->rcv_rtt_est.time == 0)
703 goto new_measure;
704 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
705 return;
706 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
707 if (!delta_us)
708 delta_us = 1;
709 tcp_rcv_rtt_update(tp, delta_us, 1);
710
711 new_measure:
712 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
713 tp->rcv_rtt_est.time = tp->tcp_mstamp;
714 }
715
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)716 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
717 const struct sk_buff *skb)
718 {
719 struct tcp_sock *tp = tcp_sk(sk);
720
721 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
722 return;
723 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
724
725 if (TCP_SKB_CB(skb)->end_seq -
726 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
727 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
728 u32 delta_us;
729
730 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
731 if (!delta)
732 delta = 1;
733 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
734 tcp_rcv_rtt_update(tp, delta_us, 0);
735 }
736 }
737 }
738
739 /*
740 * This function should be called every time data is copied to user space.
741 * It calculates the appropriate TCP receive buffer space.
742 */
tcp_rcv_space_adjust(struct sock * sk)743 void tcp_rcv_space_adjust(struct sock *sk)
744 {
745 struct tcp_sock *tp = tcp_sk(sk);
746 u32 copied;
747 int time;
748
749 trace_tcp_rcv_space_adjust(sk);
750
751 tcp_mstamp_refresh(tp);
752 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
753 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
754 return;
755
756 /* Number of bytes copied to user in last RTT */
757 copied = tp->copied_seq - tp->rcvq_space.seq;
758 if (copied <= tp->rcvq_space.space)
759 goto new_measure;
760
761 /* A bit of theory :
762 * copied = bytes received in previous RTT, our base window
763 * To cope with packet losses, we need a 2x factor
764 * To cope with slow start, and sender growing its cwin by 100 %
765 * every RTT, we need a 4x factor, because the ACK we are sending
766 * now is for the next RTT, not the current one :
767 * <prev RTT . ><current RTT .. ><next RTT .... >
768 */
769
770 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
771 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
772 u64 rcvwin, grow;
773 int rcvbuf;
774
775 /* minimal window to cope with packet losses, assuming
776 * steady state. Add some cushion because of small variations.
777 */
778 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
779
780 /* Accommodate for sender rate increase (eg. slow start) */
781 grow = rcvwin * (copied - tp->rcvq_space.space);
782 do_div(grow, tp->rcvq_space.space);
783 rcvwin += (grow << 1);
784
785 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
786 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
787 if (rcvbuf > sk->sk_rcvbuf) {
788 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
789
790 /* Make the window clamp follow along. */
791 WRITE_ONCE(tp->window_clamp,
792 tcp_win_from_space(sk, rcvbuf));
793 }
794 }
795 tp->rcvq_space.space = copied;
796
797 new_measure:
798 tp->rcvq_space.seq = tp->copied_seq;
799 tp->rcvq_space.time = tp->tcp_mstamp;
800 }
801
802 /* There is something which you must keep in mind when you analyze the
803 * behavior of the tp->ato delayed ack timeout interval. When a
804 * connection starts up, we want to ack as quickly as possible. The
805 * problem is that "good" TCP's do slow start at the beginning of data
806 * transmission. The means that until we send the first few ACK's the
807 * sender will sit on his end and only queue most of his data, because
808 * he can only send snd_cwnd unacked packets at any given time. For
809 * each ACK we send, he increments snd_cwnd and transmits more of his
810 * queue. -DaveM
811 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)812 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
813 {
814 struct tcp_sock *tp = tcp_sk(sk);
815 struct inet_connection_sock *icsk = inet_csk(sk);
816 u32 now;
817
818 inet_csk_schedule_ack(sk);
819
820 tcp_measure_rcv_mss(sk, skb);
821
822 tcp_rcv_rtt_measure(tp);
823
824 now = tcp_jiffies32;
825
826 if (!icsk->icsk_ack.ato) {
827 /* The _first_ data packet received, initialize
828 * delayed ACK engine.
829 */
830 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
831 icsk->icsk_ack.ato = TCP_ATO_MIN;
832 } else {
833 int m = now - icsk->icsk_ack.lrcvtime;
834
835 if (m <= TCP_ATO_MIN / 2) {
836 /* The fastest case is the first. */
837 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
838 } else if (m < icsk->icsk_ack.ato) {
839 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
840 if (icsk->icsk_ack.ato > icsk->icsk_rto)
841 icsk->icsk_ack.ato = icsk->icsk_rto;
842 } else if (m > icsk->icsk_rto) {
843 /* Too long gap. Apparently sender failed to
844 * restart window, so that we send ACKs quickly.
845 */
846 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
847 }
848 }
849 icsk->icsk_ack.lrcvtime = now;
850
851 tcp_ecn_check_ce(sk, skb);
852
853 if (skb->len >= 128)
854 tcp_grow_window(sk, skb, true);
855 }
856
857 /* Called to compute a smoothed rtt estimate. The data fed to this
858 * routine either comes from timestamps, or from segments that were
859 * known _not_ to have been retransmitted [see Karn/Partridge
860 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
861 * piece by Van Jacobson.
862 * NOTE: the next three routines used to be one big routine.
863 * To save cycles in the RFC 1323 implementation it was better to break
864 * it up into three procedures. -- erics
865 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)866 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
867 {
868 struct tcp_sock *tp = tcp_sk(sk);
869 long m = mrtt_us; /* RTT */
870 u32 srtt = tp->srtt_us;
871
872 /* The following amusing code comes from Jacobson's
873 * article in SIGCOMM '88. Note that rtt and mdev
874 * are scaled versions of rtt and mean deviation.
875 * This is designed to be as fast as possible
876 * m stands for "measurement".
877 *
878 * On a 1990 paper the rto value is changed to:
879 * RTO = rtt + 4 * mdev
880 *
881 * Funny. This algorithm seems to be very broken.
882 * These formulae increase RTO, when it should be decreased, increase
883 * too slowly, when it should be increased quickly, decrease too quickly
884 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
885 * does not matter how to _calculate_ it. Seems, it was trap
886 * that VJ failed to avoid. 8)
887 */
888 if (srtt != 0) {
889 m -= (srtt >> 3); /* m is now error in rtt est */
890 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
891 if (m < 0) {
892 m = -m; /* m is now abs(error) */
893 m -= (tp->mdev_us >> 2); /* similar update on mdev */
894 /* This is similar to one of Eifel findings.
895 * Eifel blocks mdev updates when rtt decreases.
896 * This solution is a bit different: we use finer gain
897 * for mdev in this case (alpha*beta).
898 * Like Eifel it also prevents growth of rto,
899 * but also it limits too fast rto decreases,
900 * happening in pure Eifel.
901 */
902 if (m > 0)
903 m >>= 3;
904 } else {
905 m -= (tp->mdev_us >> 2); /* similar update on mdev */
906 }
907 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
908 if (tp->mdev_us > tp->mdev_max_us) {
909 tp->mdev_max_us = tp->mdev_us;
910 if (tp->mdev_max_us > tp->rttvar_us)
911 tp->rttvar_us = tp->mdev_max_us;
912 }
913 if (after(tp->snd_una, tp->rtt_seq)) {
914 if (tp->mdev_max_us < tp->rttvar_us)
915 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
916 tp->rtt_seq = tp->snd_nxt;
917 tp->mdev_max_us = tcp_rto_min_us(sk);
918
919 tcp_bpf_rtt(sk);
920 }
921 } else {
922 /* no previous measure. */
923 srtt = m << 3; /* take the measured time to be rtt */
924 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
925 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
926 tp->mdev_max_us = tp->rttvar_us;
927 tp->rtt_seq = tp->snd_nxt;
928
929 tcp_bpf_rtt(sk);
930 }
931 tp->srtt_us = max(1U, srtt);
932 }
933
tcp_update_pacing_rate(struct sock * sk)934 static void tcp_update_pacing_rate(struct sock *sk)
935 {
936 const struct tcp_sock *tp = tcp_sk(sk);
937 u64 rate;
938
939 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
940 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
941
942 /* current rate is (cwnd * mss) / srtt
943 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
944 * In Congestion Avoidance phase, set it to 120 % the current rate.
945 *
946 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
947 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
948 * end of slow start and should slow down.
949 */
950 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
951 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
952 else
953 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
954
955 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
956
957 if (likely(tp->srtt_us))
958 do_div(rate, tp->srtt_us);
959
960 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
961 * without any lock. We want to make sure compiler wont store
962 * intermediate values in this location.
963 */
964 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
965 sk->sk_max_pacing_rate));
966 }
967
968 /* Calculate rto without backoff. This is the second half of Van Jacobson's
969 * routine referred to above.
970 */
tcp_set_rto(struct sock * sk)971 static void tcp_set_rto(struct sock *sk)
972 {
973 const struct tcp_sock *tp = tcp_sk(sk);
974 /* Old crap is replaced with new one. 8)
975 *
976 * More seriously:
977 * 1. If rtt variance happened to be less 50msec, it is hallucination.
978 * It cannot be less due to utterly erratic ACK generation made
979 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
980 * to do with delayed acks, because at cwnd>2 true delack timeout
981 * is invisible. Actually, Linux-2.4 also generates erratic
982 * ACKs in some circumstances.
983 */
984 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
985
986 /* 2. Fixups made earlier cannot be right.
987 * If we do not estimate RTO correctly without them,
988 * all the algo is pure shit and should be replaced
989 * with correct one. It is exactly, which we pretend to do.
990 */
991
992 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
993 * guarantees that rto is higher.
994 */
995 tcp_bound_rto(sk);
996 }
997
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)998 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
999 {
1000 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1001
1002 if (!cwnd)
1003 cwnd = TCP_INIT_CWND;
1004 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1005 }
1006
1007 struct tcp_sacktag_state {
1008 /* Timestamps for earliest and latest never-retransmitted segment
1009 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1010 * but congestion control should still get an accurate delay signal.
1011 */
1012 u64 first_sackt;
1013 u64 last_sackt;
1014 u32 reord;
1015 u32 sack_delivered;
1016 int flag;
1017 unsigned int mss_now;
1018 struct rate_sample *rate;
1019 };
1020
1021 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1022 * and spurious retransmission information if this DSACK is unlikely caused by
1023 * sender's action:
1024 * - DSACKed sequence range is larger than maximum receiver's window.
1025 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1026 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1027 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1028 u32 end_seq, struct tcp_sacktag_state *state)
1029 {
1030 u32 seq_len, dup_segs = 1;
1031
1032 if (!before(start_seq, end_seq))
1033 return 0;
1034
1035 seq_len = end_seq - start_seq;
1036 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1037 if (seq_len > tp->max_window)
1038 return 0;
1039 if (seq_len > tp->mss_cache)
1040 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1041 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1042 state->flag |= FLAG_DSACK_TLP;
1043
1044 tp->dsack_dups += dup_segs;
1045 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1046 if (tp->dsack_dups > tp->total_retrans)
1047 return 0;
1048
1049 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1050 /* We increase the RACK ordering window in rounds where we receive
1051 * DSACKs that may have been due to reordering causing RACK to trigger
1052 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1053 * without having seen reordering, or that match TLP probes (TLP
1054 * is timer-driven, not triggered by RACK).
1055 */
1056 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1057 tp->rack.dsack_seen = 1;
1058
1059 state->flag |= FLAG_DSACKING_ACK;
1060 /* A spurious retransmission is delivered */
1061 state->sack_delivered += dup_segs;
1062
1063 return dup_segs;
1064 }
1065
1066 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1067 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1068 * distance is approximated in full-mss packet distance ("reordering").
1069 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1070 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1071 const int ts)
1072 {
1073 struct tcp_sock *tp = tcp_sk(sk);
1074 const u32 mss = tp->mss_cache;
1075 u32 fack, metric;
1076
1077 fack = tcp_highest_sack_seq(tp);
1078 if (!before(low_seq, fack))
1079 return;
1080
1081 metric = fack - low_seq;
1082 if ((metric > tp->reordering * mss) && mss) {
1083 #if FASTRETRANS_DEBUG > 1
1084 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1085 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1086 tp->reordering,
1087 0,
1088 tp->sacked_out,
1089 tp->undo_marker ? tp->undo_retrans : 0);
1090 #endif
1091 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1092 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1093 }
1094
1095 /* This exciting event is worth to be remembered. 8) */
1096 tp->reord_seen++;
1097 NET_INC_STATS(sock_net(sk),
1098 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1099 }
1100
1101 /* This must be called before lost_out or retrans_out are updated
1102 * on a new loss, because we want to know if all skbs previously
1103 * known to be lost have already been retransmitted, indicating
1104 * that this newly lost skb is our next skb to retransmit.
1105 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1106 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1107 {
1108 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1109 (tp->retransmit_skb_hint &&
1110 before(TCP_SKB_CB(skb)->seq,
1111 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1112 tp->retransmit_skb_hint = skb;
1113 }
1114
1115 /* Sum the number of packets on the wire we have marked as lost, and
1116 * notify the congestion control module that the given skb was marked lost.
1117 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1118 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1119 {
1120 tp->lost += tcp_skb_pcount(skb);
1121 }
1122
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1123 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1124 {
1125 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1126 struct tcp_sock *tp = tcp_sk(sk);
1127
1128 if (sacked & TCPCB_SACKED_ACKED)
1129 return;
1130
1131 tcp_verify_retransmit_hint(tp, skb);
1132 if (sacked & TCPCB_LOST) {
1133 if (sacked & TCPCB_SACKED_RETRANS) {
1134 /* Account for retransmits that are lost again */
1135 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1136 tp->retrans_out -= tcp_skb_pcount(skb);
1137 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1138 tcp_skb_pcount(skb));
1139 tcp_notify_skb_loss_event(tp, skb);
1140 }
1141 } else {
1142 tp->lost_out += tcp_skb_pcount(skb);
1143 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1144 tcp_notify_skb_loss_event(tp, skb);
1145 }
1146 }
1147
1148 /* This procedure tags the retransmission queue when SACKs arrive.
1149 *
1150 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1151 * Packets in queue with these bits set are counted in variables
1152 * sacked_out, retrans_out and lost_out, correspondingly.
1153 *
1154 * Valid combinations are:
1155 * Tag InFlight Description
1156 * 0 1 - orig segment is in flight.
1157 * S 0 - nothing flies, orig reached receiver.
1158 * L 0 - nothing flies, orig lost by net.
1159 * R 2 - both orig and retransmit are in flight.
1160 * L|R 1 - orig is lost, retransmit is in flight.
1161 * S|R 1 - orig reached receiver, retrans is still in flight.
1162 * (L|S|R is logically valid, it could occur when L|R is sacked,
1163 * but it is equivalent to plain S and code short-curcuits it to S.
1164 * L|S is logically invalid, it would mean -1 packet in flight 8))
1165 *
1166 * These 6 states form finite state machine, controlled by the following events:
1167 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1168 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1169 * 3. Loss detection event of two flavors:
1170 * A. Scoreboard estimator decided the packet is lost.
1171 * A'. Reno "three dupacks" marks head of queue lost.
1172 * B. SACK arrives sacking SND.NXT at the moment, when the
1173 * segment was retransmitted.
1174 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1175 *
1176 * It is pleasant to note, that state diagram turns out to be commutative,
1177 * so that we are allowed not to be bothered by order of our actions,
1178 * when multiple events arrive simultaneously. (see the function below).
1179 *
1180 * Reordering detection.
1181 * --------------------
1182 * Reordering metric is maximal distance, which a packet can be displaced
1183 * in packet stream. With SACKs we can estimate it:
1184 *
1185 * 1. SACK fills old hole and the corresponding segment was not
1186 * ever retransmitted -> reordering. Alas, we cannot use it
1187 * when segment was retransmitted.
1188 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1189 * for retransmitted and already SACKed segment -> reordering..
1190 * Both of these heuristics are not used in Loss state, when we cannot
1191 * account for retransmits accurately.
1192 *
1193 * SACK block validation.
1194 * ----------------------
1195 *
1196 * SACK block range validation checks that the received SACK block fits to
1197 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1198 * Note that SND.UNA is not included to the range though being valid because
1199 * it means that the receiver is rather inconsistent with itself reporting
1200 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1201 * perfectly valid, however, in light of RFC2018 which explicitly states
1202 * that "SACK block MUST reflect the newest segment. Even if the newest
1203 * segment is going to be discarded ...", not that it looks very clever
1204 * in case of head skb. Due to potentional receiver driven attacks, we
1205 * choose to avoid immediate execution of a walk in write queue due to
1206 * reneging and defer head skb's loss recovery to standard loss recovery
1207 * procedure that will eventually trigger (nothing forbids us doing this).
1208 *
1209 * Implements also blockage to start_seq wrap-around. Problem lies in the
1210 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1211 * there's no guarantee that it will be before snd_nxt (n). The problem
1212 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1213 * wrap (s_w):
1214 *
1215 * <- outs wnd -> <- wrapzone ->
1216 * u e n u_w e_w s n_w
1217 * | | | | | | |
1218 * |<------------+------+----- TCP seqno space --------------+---------->|
1219 * ...-- <2^31 ->| |<--------...
1220 * ...---- >2^31 ------>| |<--------...
1221 *
1222 * Current code wouldn't be vulnerable but it's better still to discard such
1223 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1224 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1225 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1226 * equal to the ideal case (infinite seqno space without wrap caused issues).
1227 *
1228 * With D-SACK the lower bound is extended to cover sequence space below
1229 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1230 * again, D-SACK block must not to go across snd_una (for the same reason as
1231 * for the normal SACK blocks, explained above). But there all simplicity
1232 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1233 * fully below undo_marker they do not affect behavior in anyway and can
1234 * therefore be safely ignored. In rare cases (which are more or less
1235 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1236 * fragmentation and packet reordering past skb's retransmission. To consider
1237 * them correctly, the acceptable range must be extended even more though
1238 * the exact amount is rather hard to quantify. However, tp->max_window can
1239 * be used as an exaggerated estimate.
1240 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1241 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1242 u32 start_seq, u32 end_seq)
1243 {
1244 /* Too far in future, or reversed (interpretation is ambiguous) */
1245 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1246 return false;
1247
1248 /* Nasty start_seq wrap-around check (see comments above) */
1249 if (!before(start_seq, tp->snd_nxt))
1250 return false;
1251
1252 /* In outstanding window? ...This is valid exit for D-SACKs too.
1253 * start_seq == snd_una is non-sensical (see comments above)
1254 */
1255 if (after(start_seq, tp->snd_una))
1256 return true;
1257
1258 if (!is_dsack || !tp->undo_marker)
1259 return false;
1260
1261 /* ...Then it's D-SACK, and must reside below snd_una completely */
1262 if (after(end_seq, tp->snd_una))
1263 return false;
1264
1265 if (!before(start_seq, tp->undo_marker))
1266 return true;
1267
1268 /* Too old */
1269 if (!after(end_seq, tp->undo_marker))
1270 return false;
1271
1272 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1273 * start_seq < undo_marker and end_seq >= undo_marker.
1274 */
1275 return !before(start_seq, end_seq - tp->max_window);
1276 }
1277
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1278 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1279 struct tcp_sack_block_wire *sp, int num_sacks,
1280 u32 prior_snd_una, struct tcp_sacktag_state *state)
1281 {
1282 struct tcp_sock *tp = tcp_sk(sk);
1283 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1284 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1285 u32 dup_segs;
1286
1287 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1288 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1289 } else if (num_sacks > 1) {
1290 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1291 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1292
1293 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1294 return false;
1295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1296 } else {
1297 return false;
1298 }
1299
1300 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1301 if (!dup_segs) { /* Skip dubious DSACK */
1302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1303 return false;
1304 }
1305
1306 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1307
1308 /* D-SACK for already forgotten data... Do dumb counting. */
1309 if (tp->undo_marker && tp->undo_retrans > 0 &&
1310 !after(end_seq_0, prior_snd_una) &&
1311 after(end_seq_0, tp->undo_marker))
1312 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1313
1314 return true;
1315 }
1316
1317 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1318 * the incoming SACK may not exactly match but we can find smaller MSS
1319 * aligned portion of it that matches. Therefore we might need to fragment
1320 * which may fail and creates some hassle (caller must handle error case
1321 * returns).
1322 *
1323 * FIXME: this could be merged to shift decision code
1324 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1325 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1326 u32 start_seq, u32 end_seq)
1327 {
1328 int err;
1329 bool in_sack;
1330 unsigned int pkt_len;
1331 unsigned int mss;
1332
1333 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1334 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1335
1336 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1337 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1338 mss = tcp_skb_mss(skb);
1339 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340
1341 if (!in_sack) {
1342 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1343 if (pkt_len < mss)
1344 pkt_len = mss;
1345 } else {
1346 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1347 if (pkt_len < mss)
1348 return -EINVAL;
1349 }
1350
1351 /* Round if necessary so that SACKs cover only full MSSes
1352 * and/or the remaining small portion (if present)
1353 */
1354 if (pkt_len > mss) {
1355 unsigned int new_len = (pkt_len / mss) * mss;
1356 if (!in_sack && new_len < pkt_len)
1357 new_len += mss;
1358 pkt_len = new_len;
1359 }
1360
1361 if (pkt_len >= skb->len && !in_sack)
1362 return 0;
1363
1364 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1365 pkt_len, mss, GFP_ATOMIC);
1366 if (err < 0)
1367 return err;
1368 }
1369
1370 return in_sack;
1371 }
1372
1373 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1374 static u8 tcp_sacktag_one(struct sock *sk,
1375 struct tcp_sacktag_state *state, u8 sacked,
1376 u32 start_seq, u32 end_seq,
1377 int dup_sack, int pcount,
1378 u64 xmit_time)
1379 {
1380 struct tcp_sock *tp = tcp_sk(sk);
1381
1382 /* Account D-SACK for retransmitted packet. */
1383 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1384 if (tp->undo_marker && tp->undo_retrans > 0 &&
1385 after(end_seq, tp->undo_marker))
1386 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1387 if ((sacked & TCPCB_SACKED_ACKED) &&
1388 before(start_seq, state->reord))
1389 state->reord = start_seq;
1390 }
1391
1392 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1393 if (!after(end_seq, tp->snd_una))
1394 return sacked;
1395
1396 if (!(sacked & TCPCB_SACKED_ACKED)) {
1397 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1398
1399 if (sacked & TCPCB_SACKED_RETRANS) {
1400 /* If the segment is not tagged as lost,
1401 * we do not clear RETRANS, believing
1402 * that retransmission is still in flight.
1403 */
1404 if (sacked & TCPCB_LOST) {
1405 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1406 tp->lost_out -= pcount;
1407 tp->retrans_out -= pcount;
1408 }
1409 } else {
1410 if (!(sacked & TCPCB_RETRANS)) {
1411 /* New sack for not retransmitted frame,
1412 * which was in hole. It is reordering.
1413 */
1414 if (before(start_seq,
1415 tcp_highest_sack_seq(tp)) &&
1416 before(start_seq, state->reord))
1417 state->reord = start_seq;
1418
1419 if (!after(end_seq, tp->high_seq))
1420 state->flag |= FLAG_ORIG_SACK_ACKED;
1421 if (state->first_sackt == 0)
1422 state->first_sackt = xmit_time;
1423 state->last_sackt = xmit_time;
1424 }
1425
1426 if (sacked & TCPCB_LOST) {
1427 sacked &= ~TCPCB_LOST;
1428 tp->lost_out -= pcount;
1429 }
1430 }
1431
1432 sacked |= TCPCB_SACKED_ACKED;
1433 state->flag |= FLAG_DATA_SACKED;
1434 tp->sacked_out += pcount;
1435 /* Out-of-order packets delivered */
1436 state->sack_delivered += pcount;
1437
1438 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1439 if (tp->lost_skb_hint &&
1440 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1441 tp->lost_cnt_hint += pcount;
1442 }
1443
1444 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1445 * frames and clear it. undo_retrans is decreased above, L|R frames
1446 * are accounted above as well.
1447 */
1448 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1449 sacked &= ~TCPCB_SACKED_RETRANS;
1450 tp->retrans_out -= pcount;
1451 }
1452
1453 return sacked;
1454 }
1455
1456 /* Shift newly-SACKed bytes from this skb to the immediately previous
1457 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1458 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1459 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1460 struct sk_buff *skb,
1461 struct tcp_sacktag_state *state,
1462 unsigned int pcount, int shifted, int mss,
1463 bool dup_sack)
1464 {
1465 struct tcp_sock *tp = tcp_sk(sk);
1466 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1467 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1468
1469 BUG_ON(!pcount);
1470
1471 /* Adjust counters and hints for the newly sacked sequence
1472 * range but discard the return value since prev is already
1473 * marked. We must tag the range first because the seq
1474 * advancement below implicitly advances
1475 * tcp_highest_sack_seq() when skb is highest_sack.
1476 */
1477 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1478 start_seq, end_seq, dup_sack, pcount,
1479 tcp_skb_timestamp_us(skb));
1480 tcp_rate_skb_delivered(sk, skb, state->rate);
1481
1482 if (skb == tp->lost_skb_hint)
1483 tp->lost_cnt_hint += pcount;
1484
1485 TCP_SKB_CB(prev)->end_seq += shifted;
1486 TCP_SKB_CB(skb)->seq += shifted;
1487
1488 tcp_skb_pcount_add(prev, pcount);
1489 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1490 tcp_skb_pcount_add(skb, -pcount);
1491
1492 /* When we're adding to gso_segs == 1, gso_size will be zero,
1493 * in theory this shouldn't be necessary but as long as DSACK
1494 * code can come after this skb later on it's better to keep
1495 * setting gso_size to something.
1496 */
1497 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1498 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1499
1500 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1501 if (tcp_skb_pcount(skb) <= 1)
1502 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1503
1504 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1505 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1506
1507 if (skb->len > 0) {
1508 BUG_ON(!tcp_skb_pcount(skb));
1509 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1510 return false;
1511 }
1512
1513 /* Whole SKB was eaten :-) */
1514
1515 if (skb == tp->retransmit_skb_hint)
1516 tp->retransmit_skb_hint = prev;
1517 if (skb == tp->lost_skb_hint) {
1518 tp->lost_skb_hint = prev;
1519 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1520 }
1521
1522 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1523 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1524 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1525 TCP_SKB_CB(prev)->end_seq++;
1526
1527 if (skb == tcp_highest_sack(sk))
1528 tcp_advance_highest_sack(sk, skb);
1529
1530 tcp_skb_collapse_tstamp(prev, skb);
1531 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1532 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1533
1534 tcp_rtx_queue_unlink_and_free(skb, sk);
1535
1536 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1537
1538 return true;
1539 }
1540
1541 /* I wish gso_size would have a bit more sane initialization than
1542 * something-or-zero which complicates things
1543 */
tcp_skb_seglen(const struct sk_buff * skb)1544 static int tcp_skb_seglen(const struct sk_buff *skb)
1545 {
1546 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1547 }
1548
1549 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1550 static int skb_can_shift(const struct sk_buff *skb)
1551 {
1552 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1553 }
1554
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1555 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1556 int pcount, int shiftlen)
1557 {
1558 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1559 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1560 * to make sure not storing more than 65535 * 8 bytes per skb,
1561 * even if current MSS is bigger.
1562 */
1563 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1564 return 0;
1565 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1566 return 0;
1567 return skb_shift(to, from, shiftlen);
1568 }
1569
1570 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1571 * skb.
1572 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1573 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1574 struct tcp_sacktag_state *state,
1575 u32 start_seq, u32 end_seq,
1576 bool dup_sack)
1577 {
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 struct sk_buff *prev;
1580 int mss;
1581 int pcount = 0;
1582 int len;
1583 int in_sack;
1584
1585 /* Normally R but no L won't result in plain S */
1586 if (!dup_sack &&
1587 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1588 goto fallback;
1589 if (!skb_can_shift(skb))
1590 goto fallback;
1591 /* This frame is about to be dropped (was ACKed). */
1592 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1593 goto fallback;
1594
1595 /* Can only happen with delayed DSACK + discard craziness */
1596 prev = skb_rb_prev(skb);
1597 if (!prev)
1598 goto fallback;
1599
1600 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1601 goto fallback;
1602
1603 if (!tcp_skb_can_collapse(prev, skb))
1604 goto fallback;
1605
1606 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1607 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1608
1609 if (in_sack) {
1610 len = skb->len;
1611 pcount = tcp_skb_pcount(skb);
1612 mss = tcp_skb_seglen(skb);
1613
1614 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1615 * drop this restriction as unnecessary
1616 */
1617 if (mss != tcp_skb_seglen(prev))
1618 goto fallback;
1619 } else {
1620 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1621 goto noop;
1622 /* CHECKME: This is non-MSS split case only?, this will
1623 * cause skipped skbs due to advancing loop btw, original
1624 * has that feature too
1625 */
1626 if (tcp_skb_pcount(skb) <= 1)
1627 goto noop;
1628
1629 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1630 if (!in_sack) {
1631 /* TODO: head merge to next could be attempted here
1632 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1633 * though it might not be worth of the additional hassle
1634 *
1635 * ...we can probably just fallback to what was done
1636 * previously. We could try merging non-SACKed ones
1637 * as well but it probably isn't going to buy off
1638 * because later SACKs might again split them, and
1639 * it would make skb timestamp tracking considerably
1640 * harder problem.
1641 */
1642 goto fallback;
1643 }
1644
1645 len = end_seq - TCP_SKB_CB(skb)->seq;
1646 BUG_ON(len < 0);
1647 BUG_ON(len > skb->len);
1648
1649 /* MSS boundaries should be honoured or else pcount will
1650 * severely break even though it makes things bit trickier.
1651 * Optimize common case to avoid most of the divides
1652 */
1653 mss = tcp_skb_mss(skb);
1654
1655 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1656 * drop this restriction as unnecessary
1657 */
1658 if (mss != tcp_skb_seglen(prev))
1659 goto fallback;
1660
1661 if (len == mss) {
1662 pcount = 1;
1663 } else if (len < mss) {
1664 goto noop;
1665 } else {
1666 pcount = len / mss;
1667 len = pcount * mss;
1668 }
1669 }
1670
1671 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1672 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1673 goto fallback;
1674
1675 if (!tcp_skb_shift(prev, skb, pcount, len))
1676 goto fallback;
1677 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1678 goto out;
1679
1680 /* Hole filled allows collapsing with the next as well, this is very
1681 * useful when hole on every nth skb pattern happens
1682 */
1683 skb = skb_rb_next(prev);
1684 if (!skb)
1685 goto out;
1686
1687 if (!skb_can_shift(skb) ||
1688 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1689 (mss != tcp_skb_seglen(skb)))
1690 goto out;
1691
1692 if (!tcp_skb_can_collapse(prev, skb))
1693 goto out;
1694 len = skb->len;
1695 pcount = tcp_skb_pcount(skb);
1696 if (tcp_skb_shift(prev, skb, pcount, len))
1697 tcp_shifted_skb(sk, prev, skb, state, pcount,
1698 len, mss, 0);
1699
1700 out:
1701 return prev;
1702
1703 noop:
1704 return skb;
1705
1706 fallback:
1707 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1708 return NULL;
1709 }
1710
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1711 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1712 struct tcp_sack_block *next_dup,
1713 struct tcp_sacktag_state *state,
1714 u32 start_seq, u32 end_seq,
1715 bool dup_sack_in)
1716 {
1717 struct tcp_sock *tp = tcp_sk(sk);
1718 struct sk_buff *tmp;
1719
1720 skb_rbtree_walk_from(skb) {
1721 int in_sack = 0;
1722 bool dup_sack = dup_sack_in;
1723
1724 /* queue is in-order => we can short-circuit the walk early */
1725 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1726 break;
1727
1728 if (next_dup &&
1729 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1730 in_sack = tcp_match_skb_to_sack(sk, skb,
1731 next_dup->start_seq,
1732 next_dup->end_seq);
1733 if (in_sack > 0)
1734 dup_sack = true;
1735 }
1736
1737 /* skb reference here is a bit tricky to get right, since
1738 * shifting can eat and free both this skb and the next,
1739 * so not even _safe variant of the loop is enough.
1740 */
1741 if (in_sack <= 0) {
1742 tmp = tcp_shift_skb_data(sk, skb, state,
1743 start_seq, end_seq, dup_sack);
1744 if (tmp) {
1745 if (tmp != skb) {
1746 skb = tmp;
1747 continue;
1748 }
1749
1750 in_sack = 0;
1751 } else {
1752 in_sack = tcp_match_skb_to_sack(sk, skb,
1753 start_seq,
1754 end_seq);
1755 }
1756 }
1757
1758 if (unlikely(in_sack < 0))
1759 break;
1760
1761 if (in_sack) {
1762 TCP_SKB_CB(skb)->sacked =
1763 tcp_sacktag_one(sk,
1764 state,
1765 TCP_SKB_CB(skb)->sacked,
1766 TCP_SKB_CB(skb)->seq,
1767 TCP_SKB_CB(skb)->end_seq,
1768 dup_sack,
1769 tcp_skb_pcount(skb),
1770 tcp_skb_timestamp_us(skb));
1771 tcp_rate_skb_delivered(sk, skb, state->rate);
1772 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1773 list_del_init(&skb->tcp_tsorted_anchor);
1774
1775 if (!before(TCP_SKB_CB(skb)->seq,
1776 tcp_highest_sack_seq(tp)))
1777 tcp_advance_highest_sack(sk, skb);
1778 }
1779 }
1780 return skb;
1781 }
1782
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1783 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1784 {
1785 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1786 struct sk_buff *skb;
1787
1788 while (*p) {
1789 parent = *p;
1790 skb = rb_to_skb(parent);
1791 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1792 p = &parent->rb_left;
1793 continue;
1794 }
1795 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1796 p = &parent->rb_right;
1797 continue;
1798 }
1799 return skb;
1800 }
1801 return NULL;
1802 }
1803
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1804 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1805 u32 skip_to_seq)
1806 {
1807 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1808 return skb;
1809
1810 return tcp_sacktag_bsearch(sk, skip_to_seq);
1811 }
1812
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1813 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1814 struct sock *sk,
1815 struct tcp_sack_block *next_dup,
1816 struct tcp_sacktag_state *state,
1817 u32 skip_to_seq)
1818 {
1819 if (!next_dup)
1820 return skb;
1821
1822 if (before(next_dup->start_seq, skip_to_seq)) {
1823 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1824 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1825 next_dup->start_seq, next_dup->end_seq,
1826 1);
1827 }
1828
1829 return skb;
1830 }
1831
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1832 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1833 {
1834 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1835 }
1836
1837 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1838 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1839 u32 prior_snd_una, struct tcp_sacktag_state *state)
1840 {
1841 struct tcp_sock *tp = tcp_sk(sk);
1842 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1843 TCP_SKB_CB(ack_skb)->sacked);
1844 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1845 struct tcp_sack_block sp[TCP_NUM_SACKS];
1846 struct tcp_sack_block *cache;
1847 struct sk_buff *skb;
1848 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1849 int used_sacks;
1850 bool found_dup_sack = false;
1851 int i, j;
1852 int first_sack_index;
1853
1854 state->flag = 0;
1855 state->reord = tp->snd_nxt;
1856
1857 if (!tp->sacked_out)
1858 tcp_highest_sack_reset(sk);
1859
1860 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1861 num_sacks, prior_snd_una, state);
1862
1863 /* Eliminate too old ACKs, but take into
1864 * account more or less fresh ones, they can
1865 * contain valid SACK info.
1866 */
1867 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1868 return 0;
1869
1870 if (!tp->packets_out)
1871 goto out;
1872
1873 used_sacks = 0;
1874 first_sack_index = 0;
1875 for (i = 0; i < num_sacks; i++) {
1876 bool dup_sack = !i && found_dup_sack;
1877
1878 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1879 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1880
1881 if (!tcp_is_sackblock_valid(tp, dup_sack,
1882 sp[used_sacks].start_seq,
1883 sp[used_sacks].end_seq)) {
1884 int mib_idx;
1885
1886 if (dup_sack) {
1887 if (!tp->undo_marker)
1888 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1889 else
1890 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1891 } else {
1892 /* Don't count olds caused by ACK reordering */
1893 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1894 !after(sp[used_sacks].end_seq, tp->snd_una))
1895 continue;
1896 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1897 }
1898
1899 NET_INC_STATS(sock_net(sk), mib_idx);
1900 if (i == 0)
1901 first_sack_index = -1;
1902 continue;
1903 }
1904
1905 /* Ignore very old stuff early */
1906 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1907 if (i == 0)
1908 first_sack_index = -1;
1909 continue;
1910 }
1911
1912 used_sacks++;
1913 }
1914
1915 /* order SACK blocks to allow in order walk of the retrans queue */
1916 for (i = used_sacks - 1; i > 0; i--) {
1917 for (j = 0; j < i; j++) {
1918 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1919 swap(sp[j], sp[j + 1]);
1920
1921 /* Track where the first SACK block goes to */
1922 if (j == first_sack_index)
1923 first_sack_index = j + 1;
1924 }
1925 }
1926 }
1927
1928 state->mss_now = tcp_current_mss(sk);
1929 skb = NULL;
1930 i = 0;
1931
1932 if (!tp->sacked_out) {
1933 /* It's already past, so skip checking against it */
1934 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1935 } else {
1936 cache = tp->recv_sack_cache;
1937 /* Skip empty blocks in at head of the cache */
1938 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1939 !cache->end_seq)
1940 cache++;
1941 }
1942
1943 while (i < used_sacks) {
1944 u32 start_seq = sp[i].start_seq;
1945 u32 end_seq = sp[i].end_seq;
1946 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1947 struct tcp_sack_block *next_dup = NULL;
1948
1949 if (found_dup_sack && ((i + 1) == first_sack_index))
1950 next_dup = &sp[i + 1];
1951
1952 /* Skip too early cached blocks */
1953 while (tcp_sack_cache_ok(tp, cache) &&
1954 !before(start_seq, cache->end_seq))
1955 cache++;
1956
1957 /* Can skip some work by looking recv_sack_cache? */
1958 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1959 after(end_seq, cache->start_seq)) {
1960
1961 /* Head todo? */
1962 if (before(start_seq, cache->start_seq)) {
1963 skb = tcp_sacktag_skip(skb, sk, start_seq);
1964 skb = tcp_sacktag_walk(skb, sk, next_dup,
1965 state,
1966 start_seq,
1967 cache->start_seq,
1968 dup_sack);
1969 }
1970
1971 /* Rest of the block already fully processed? */
1972 if (!after(end_seq, cache->end_seq))
1973 goto advance_sp;
1974
1975 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1976 state,
1977 cache->end_seq);
1978
1979 /* ...tail remains todo... */
1980 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1981 /* ...but better entrypoint exists! */
1982 skb = tcp_highest_sack(sk);
1983 if (!skb)
1984 break;
1985 cache++;
1986 goto walk;
1987 }
1988
1989 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1990 /* Check overlap against next cached too (past this one already) */
1991 cache++;
1992 continue;
1993 }
1994
1995 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1996 skb = tcp_highest_sack(sk);
1997 if (!skb)
1998 break;
1999 }
2000 skb = tcp_sacktag_skip(skb, sk, start_seq);
2001
2002 walk:
2003 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2004 start_seq, end_seq, dup_sack);
2005
2006 advance_sp:
2007 i++;
2008 }
2009
2010 /* Clear the head of the cache sack blocks so we can skip it next time */
2011 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2012 tp->recv_sack_cache[i].start_seq = 0;
2013 tp->recv_sack_cache[i].end_seq = 0;
2014 }
2015 for (j = 0; j < used_sacks; j++)
2016 tp->recv_sack_cache[i++] = sp[j];
2017
2018 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2019 tcp_check_sack_reordering(sk, state->reord, 0);
2020
2021 tcp_verify_left_out(tp);
2022 out:
2023
2024 #if FASTRETRANS_DEBUG > 0
2025 WARN_ON((int)tp->sacked_out < 0);
2026 WARN_ON((int)tp->lost_out < 0);
2027 WARN_ON((int)tp->retrans_out < 0);
2028 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2029 #endif
2030 return state->flag;
2031 }
2032
2033 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2034 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2035 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2036 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2037 {
2038 u32 holes;
2039
2040 holes = max(tp->lost_out, 1U);
2041 holes = min(holes, tp->packets_out);
2042
2043 if ((tp->sacked_out + holes) > tp->packets_out) {
2044 tp->sacked_out = tp->packets_out - holes;
2045 return true;
2046 }
2047 return false;
2048 }
2049
2050 /* If we receive more dupacks than we expected counting segments
2051 * in assumption of absent reordering, interpret this as reordering.
2052 * The only another reason could be bug in receiver TCP.
2053 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2054 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2055 {
2056 struct tcp_sock *tp = tcp_sk(sk);
2057
2058 if (!tcp_limit_reno_sacked(tp))
2059 return;
2060
2061 tp->reordering = min_t(u32, tp->packets_out + addend,
2062 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2063 tp->reord_seen++;
2064 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2065 }
2066
2067 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2068
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2069 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2070 {
2071 if (num_dupack) {
2072 struct tcp_sock *tp = tcp_sk(sk);
2073 u32 prior_sacked = tp->sacked_out;
2074 s32 delivered;
2075
2076 tp->sacked_out += num_dupack;
2077 tcp_check_reno_reordering(sk, 0);
2078 delivered = tp->sacked_out - prior_sacked;
2079 if (delivered > 0)
2080 tcp_count_delivered(tp, delivered, ece_ack);
2081 tcp_verify_left_out(tp);
2082 }
2083 }
2084
2085 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2086
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2087 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2088 {
2089 struct tcp_sock *tp = tcp_sk(sk);
2090
2091 if (acked > 0) {
2092 /* One ACK acked hole. The rest eat duplicate ACKs. */
2093 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2094 ece_ack);
2095 if (acked - 1 >= tp->sacked_out)
2096 tp->sacked_out = 0;
2097 else
2098 tp->sacked_out -= acked - 1;
2099 }
2100 tcp_check_reno_reordering(sk, acked);
2101 tcp_verify_left_out(tp);
2102 }
2103
tcp_reset_reno_sack(struct tcp_sock * tp)2104 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2105 {
2106 tp->sacked_out = 0;
2107 }
2108
tcp_clear_retrans(struct tcp_sock * tp)2109 void tcp_clear_retrans(struct tcp_sock *tp)
2110 {
2111 tp->retrans_out = 0;
2112 tp->lost_out = 0;
2113 tp->undo_marker = 0;
2114 tp->undo_retrans = -1;
2115 tp->sacked_out = 0;
2116 tp->rto_stamp = 0;
2117 tp->total_rto = 0;
2118 tp->total_rto_recoveries = 0;
2119 tp->total_rto_time = 0;
2120 }
2121
tcp_init_undo(struct tcp_sock * tp)2122 static inline void tcp_init_undo(struct tcp_sock *tp)
2123 {
2124 tp->undo_marker = tp->snd_una;
2125
2126 /* Retransmission still in flight may cause DSACKs later. */
2127 /* First, account for regular retransmits in flight: */
2128 tp->undo_retrans = tp->retrans_out;
2129 /* Next, account for TLP retransmits in flight: */
2130 if (tp->tlp_high_seq && tp->tlp_retrans)
2131 tp->undo_retrans++;
2132 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2133 if (!tp->undo_retrans)
2134 tp->undo_retrans = -1;
2135 }
2136
tcp_is_rack(const struct sock * sk)2137 static bool tcp_is_rack(const struct sock *sk)
2138 {
2139 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2140 TCP_RACK_LOSS_DETECTION;
2141 }
2142
2143 /* If we detect SACK reneging, forget all SACK information
2144 * and reset tags completely, otherwise preserve SACKs. If receiver
2145 * dropped its ofo queue, we will know this due to reneging detection.
2146 */
tcp_timeout_mark_lost(struct sock * sk)2147 static void tcp_timeout_mark_lost(struct sock *sk)
2148 {
2149 struct tcp_sock *tp = tcp_sk(sk);
2150 struct sk_buff *skb, *head;
2151 bool is_reneg; /* is receiver reneging on SACKs? */
2152
2153 head = tcp_rtx_queue_head(sk);
2154 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2155 if (is_reneg) {
2156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2157 tp->sacked_out = 0;
2158 /* Mark SACK reneging until we recover from this loss event. */
2159 tp->is_sack_reneg = 1;
2160 } else if (tcp_is_reno(tp)) {
2161 tcp_reset_reno_sack(tp);
2162 }
2163
2164 skb = head;
2165 skb_rbtree_walk_from(skb) {
2166 if (is_reneg)
2167 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2168 else if (tcp_is_rack(sk) && skb != head &&
2169 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2170 continue; /* Don't mark recently sent ones lost yet */
2171 tcp_mark_skb_lost(sk, skb);
2172 }
2173 tcp_verify_left_out(tp);
2174 tcp_clear_all_retrans_hints(tp);
2175 }
2176
2177 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2178 void tcp_enter_loss(struct sock *sk)
2179 {
2180 const struct inet_connection_sock *icsk = inet_csk(sk);
2181 struct tcp_sock *tp = tcp_sk(sk);
2182 struct net *net = sock_net(sk);
2183 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2184 u8 reordering;
2185
2186 tcp_timeout_mark_lost(sk);
2187
2188 /* Reduce ssthresh if it has not yet been made inside this window. */
2189 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2190 !after(tp->high_seq, tp->snd_una) ||
2191 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2192 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2193 tp->prior_cwnd = tcp_snd_cwnd(tp);
2194 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2195 tcp_ca_event(sk, CA_EVENT_LOSS);
2196 tcp_init_undo(tp);
2197 }
2198 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2199 tp->snd_cwnd_cnt = 0;
2200 tp->snd_cwnd_stamp = tcp_jiffies32;
2201
2202 /* Timeout in disordered state after receiving substantial DUPACKs
2203 * suggests that the degree of reordering is over-estimated.
2204 */
2205 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2207 tp->sacked_out >= reordering)
2208 tp->reordering = min_t(unsigned int, tp->reordering,
2209 reordering);
2210
2211 tcp_set_ca_state(sk, TCP_CA_Loss);
2212 tp->high_seq = tp->snd_nxt;
2213 tp->tlp_high_seq = 0;
2214 tcp_ecn_queue_cwr(tp);
2215
2216 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2217 * loss recovery is underway except recurring timeout(s) on
2218 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2219 */
2220 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2221 (new_recovery || icsk->icsk_retransmits) &&
2222 !inet_csk(sk)->icsk_mtup.probe_size;
2223 }
2224
2225 /* If ACK arrived pointing to a remembered SACK, it means that our
2226 * remembered SACKs do not reflect real state of receiver i.e.
2227 * receiver _host_ is heavily congested (or buggy).
2228 *
2229 * To avoid big spurious retransmission bursts due to transient SACK
2230 * scoreboard oddities that look like reneging, we give the receiver a
2231 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2232 * restore sanity to the SACK scoreboard. If the apparent reneging
2233 * persists until this RTO then we'll clear the SACK scoreboard.
2234 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2235 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2236 {
2237 if (*ack_flag & FLAG_SACK_RENEGING &&
2238 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2239 struct tcp_sock *tp = tcp_sk(sk);
2240 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2241 msecs_to_jiffies(10));
2242
2243 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2244 delay, TCP_RTO_MAX);
2245 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2246 return true;
2247 }
2248 return false;
2249 }
2250
2251 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2252 * counter when SACK is enabled (without SACK, sacked_out is used for
2253 * that purpose).
2254 *
2255 * With reordering, holes may still be in flight, so RFC3517 recovery
2256 * uses pure sacked_out (total number of SACKed segments) even though
2257 * it violates the RFC that uses duplicate ACKs, often these are equal
2258 * but when e.g. out-of-window ACKs or packet duplication occurs,
2259 * they differ. Since neither occurs due to loss, TCP should really
2260 * ignore them.
2261 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2262 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2263 {
2264 return tp->sacked_out + 1;
2265 }
2266
2267 /* Linux NewReno/SACK/ECN state machine.
2268 * --------------------------------------
2269 *
2270 * "Open" Normal state, no dubious events, fast path.
2271 * "Disorder" In all the respects it is "Open",
2272 * but requires a bit more attention. It is entered when
2273 * we see some SACKs or dupacks. It is split of "Open"
2274 * mainly to move some processing from fast path to slow one.
2275 * "CWR" CWND was reduced due to some Congestion Notification event.
2276 * It can be ECN, ICMP source quench, local device congestion.
2277 * "Recovery" CWND was reduced, we are fast-retransmitting.
2278 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2279 *
2280 * tcp_fastretrans_alert() is entered:
2281 * - each incoming ACK, if state is not "Open"
2282 * - when arrived ACK is unusual, namely:
2283 * * SACK
2284 * * Duplicate ACK.
2285 * * ECN ECE.
2286 *
2287 * Counting packets in flight is pretty simple.
2288 *
2289 * in_flight = packets_out - left_out + retrans_out
2290 *
2291 * packets_out is SND.NXT-SND.UNA counted in packets.
2292 *
2293 * retrans_out is number of retransmitted segments.
2294 *
2295 * left_out is number of segments left network, but not ACKed yet.
2296 *
2297 * left_out = sacked_out + lost_out
2298 *
2299 * sacked_out: Packets, which arrived to receiver out of order
2300 * and hence not ACKed. With SACKs this number is simply
2301 * amount of SACKed data. Even without SACKs
2302 * it is easy to give pretty reliable estimate of this number,
2303 * counting duplicate ACKs.
2304 *
2305 * lost_out: Packets lost by network. TCP has no explicit
2306 * "loss notification" feedback from network (for now).
2307 * It means that this number can be only _guessed_.
2308 * Actually, it is the heuristics to predict lossage that
2309 * distinguishes different algorithms.
2310 *
2311 * F.e. after RTO, when all the queue is considered as lost,
2312 * lost_out = packets_out and in_flight = retrans_out.
2313 *
2314 * Essentially, we have now a few algorithms detecting
2315 * lost packets.
2316 *
2317 * If the receiver supports SACK:
2318 *
2319 * RFC6675/3517: It is the conventional algorithm. A packet is
2320 * considered lost if the number of higher sequence packets
2321 * SACKed is greater than or equal the DUPACK thoreshold
2322 * (reordering). This is implemented in tcp_mark_head_lost and
2323 * tcp_update_scoreboard.
2324 *
2325 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2326 * (2017-) that checks timing instead of counting DUPACKs.
2327 * Essentially a packet is considered lost if it's not S/ACKed
2328 * after RTT + reordering_window, where both metrics are
2329 * dynamically measured and adjusted. This is implemented in
2330 * tcp_rack_mark_lost.
2331 *
2332 * If the receiver does not support SACK:
2333 *
2334 * NewReno (RFC6582): in Recovery we assume that one segment
2335 * is lost (classic Reno). While we are in Recovery and
2336 * a partial ACK arrives, we assume that one more packet
2337 * is lost (NewReno). This heuristics are the same in NewReno
2338 * and SACK.
2339 *
2340 * Really tricky (and requiring careful tuning) part of algorithm
2341 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2342 * The first determines the moment _when_ we should reduce CWND and,
2343 * hence, slow down forward transmission. In fact, it determines the moment
2344 * when we decide that hole is caused by loss, rather than by a reorder.
2345 *
2346 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2347 * holes, caused by lost packets.
2348 *
2349 * And the most logically complicated part of algorithm is undo
2350 * heuristics. We detect false retransmits due to both too early
2351 * fast retransmit (reordering) and underestimated RTO, analyzing
2352 * timestamps and D-SACKs. When we detect that some segments were
2353 * retransmitted by mistake and CWND reduction was wrong, we undo
2354 * window reduction and abort recovery phase. This logic is hidden
2355 * inside several functions named tcp_try_undo_<something>.
2356 */
2357
2358 /* This function decides, when we should leave Disordered state
2359 * and enter Recovery phase, reducing congestion window.
2360 *
2361 * Main question: may we further continue forward transmission
2362 * with the same cwnd?
2363 */
tcp_time_to_recover(struct sock * sk,int flag)2364 static bool tcp_time_to_recover(struct sock *sk, int flag)
2365 {
2366 struct tcp_sock *tp = tcp_sk(sk);
2367
2368 /* Trick#1: The loss is proven. */
2369 if (tp->lost_out)
2370 return true;
2371
2372 /* Not-A-Trick#2 : Classic rule... */
2373 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2374 return true;
2375
2376 return false;
2377 }
2378
2379 /* Detect loss in event "A" above by marking head of queue up as lost.
2380 * For RFC3517 SACK, a segment is considered lost if it
2381 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2382 * the maximum SACKed segments to pass before reaching this limit.
2383 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2384 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2385 {
2386 struct tcp_sock *tp = tcp_sk(sk);
2387 struct sk_buff *skb;
2388 int cnt;
2389 /* Use SACK to deduce losses of new sequences sent during recovery */
2390 const u32 loss_high = tp->snd_nxt;
2391
2392 WARN_ON(packets > tp->packets_out);
2393 skb = tp->lost_skb_hint;
2394 if (skb) {
2395 /* Head already handled? */
2396 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2397 return;
2398 cnt = tp->lost_cnt_hint;
2399 } else {
2400 skb = tcp_rtx_queue_head(sk);
2401 cnt = 0;
2402 }
2403
2404 skb_rbtree_walk_from(skb) {
2405 /* TODO: do this better */
2406 /* this is not the most efficient way to do this... */
2407 tp->lost_skb_hint = skb;
2408 tp->lost_cnt_hint = cnt;
2409
2410 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411 break;
2412
2413 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2414 cnt += tcp_skb_pcount(skb);
2415
2416 if (cnt > packets)
2417 break;
2418
2419 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2420 tcp_mark_skb_lost(sk, skb);
2421
2422 if (mark_head)
2423 break;
2424 }
2425 tcp_verify_left_out(tp);
2426 }
2427
2428 /* Account newly detected lost packet(s) */
2429
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2430 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2431 {
2432 struct tcp_sock *tp = tcp_sk(sk);
2433
2434 if (tcp_is_sack(tp)) {
2435 int sacked_upto = tp->sacked_out - tp->reordering;
2436 if (sacked_upto >= 0)
2437 tcp_mark_head_lost(sk, sacked_upto, 0);
2438 else if (fast_rexmit)
2439 tcp_mark_head_lost(sk, 1, 1);
2440 }
2441 }
2442
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2443 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2444 {
2445 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2446 before(tp->rx_opt.rcv_tsecr, when);
2447 }
2448
2449 /* skb is spurious retransmitted if the returned timestamp echo
2450 * reply is prior to the skb transmission time
2451 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2452 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2453 const struct sk_buff *skb)
2454 {
2455 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2456 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2457 }
2458
2459 /* Nothing was retransmitted or returned timestamp is less
2460 * than timestamp of the first retransmission.
2461 */
tcp_packet_delayed(const struct tcp_sock * tp)2462 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2463 {
2464 const struct sock *sk = (const struct sock *)tp;
2465
2466 /* Received an echoed timestamp before the first retransmission? */
2467 if (tp->retrans_stamp)
2468 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2469
2470 /* We set tp->retrans_stamp upon the first retransmission of a loss
2471 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2472 * retransmission has happened yet (likely due to TSQ, which can cause
2473 * fast retransmits to be delayed). So if snd_una advanced while
2474 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2475 * not lost. But there are exceptions where we retransmit but then
2476 * clear tp->retrans_stamp, so we check for those exceptions.
2477 */
2478
2479 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2480 * clears tp->retrans_stamp when snd_una == high_seq.
2481 */
2482 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2483 return false;
2484
2485 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2486 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2487 * retransmitted.
2488 */
2489 if (sk->sk_state == TCP_SYN_SENT)
2490 return false;
2491
2492 return true; /* tp->retrans_stamp is zero; no retransmit yet */
2493 }
2494
2495 /* Undo procedures. */
2496
2497 /* We can clear retrans_stamp when there are no retransmissions in the
2498 * window. It would seem that it is trivially available for us in
2499 * tp->retrans_out, however, that kind of assumptions doesn't consider
2500 * what will happen if errors occur when sending retransmission for the
2501 * second time. ...It could the that such segment has only
2502 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2503 * the head skb is enough except for some reneging corner cases that
2504 * are not worth the effort.
2505 *
2506 * Main reason for all this complexity is the fact that connection dying
2507 * time now depends on the validity of the retrans_stamp, in particular,
2508 * that successive retransmissions of a segment must not advance
2509 * retrans_stamp under any conditions.
2510 */
tcp_any_retrans_done(const struct sock * sk)2511 static bool tcp_any_retrans_done(const struct sock *sk)
2512 {
2513 const struct tcp_sock *tp = tcp_sk(sk);
2514 struct sk_buff *skb;
2515
2516 if (tp->retrans_out)
2517 return true;
2518
2519 skb = tcp_rtx_queue_head(sk);
2520 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2521 return true;
2522
2523 return false;
2524 }
2525
2526 /* If loss recovery is finished and there are no retransmits out in the
2527 * network, then we clear retrans_stamp so that upon the next loss recovery
2528 * retransmits_timed_out() and timestamp-undo are using the correct value.
2529 */
tcp_retrans_stamp_cleanup(struct sock * sk)2530 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2531 {
2532 if (!tcp_any_retrans_done(sk))
2533 tcp_sk(sk)->retrans_stamp = 0;
2534 }
2535
DBGUNDO(struct sock * sk,const char * msg)2536 static void DBGUNDO(struct sock *sk, const char *msg)
2537 {
2538 #if FASTRETRANS_DEBUG > 1
2539 struct tcp_sock *tp = tcp_sk(sk);
2540 struct inet_sock *inet = inet_sk(sk);
2541
2542 if (sk->sk_family == AF_INET) {
2543 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2544 msg,
2545 &inet->inet_daddr, ntohs(inet->inet_dport),
2546 tcp_snd_cwnd(tp), tcp_left_out(tp),
2547 tp->snd_ssthresh, tp->prior_ssthresh,
2548 tp->packets_out);
2549 }
2550 #if IS_ENABLED(CONFIG_IPV6)
2551 else if (sk->sk_family == AF_INET6) {
2552 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2553 msg,
2554 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2555 tcp_snd_cwnd(tp), tcp_left_out(tp),
2556 tp->snd_ssthresh, tp->prior_ssthresh,
2557 tp->packets_out);
2558 }
2559 #endif
2560 #endif
2561 }
2562
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2563 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566
2567 if (unmark_loss) {
2568 struct sk_buff *skb;
2569
2570 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2571 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2572 }
2573 tp->lost_out = 0;
2574 tcp_clear_all_retrans_hints(tp);
2575 }
2576
2577 if (tp->prior_ssthresh) {
2578 const struct inet_connection_sock *icsk = inet_csk(sk);
2579
2580 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2581
2582 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2583 tp->snd_ssthresh = tp->prior_ssthresh;
2584 tcp_ecn_withdraw_cwr(tp);
2585 }
2586 }
2587 tp->snd_cwnd_stamp = tcp_jiffies32;
2588 tp->undo_marker = 0;
2589 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2590 }
2591
tcp_may_undo(const struct tcp_sock * tp)2592 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2593 {
2594 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2595 }
2596
tcp_is_non_sack_preventing_reopen(struct sock * sk)2597 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2598 {
2599 struct tcp_sock *tp = tcp_sk(sk);
2600
2601 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2602 /* Hold old state until something *above* high_seq
2603 * is ACKed. For Reno it is MUST to prevent false
2604 * fast retransmits (RFC2582). SACK TCP is safe. */
2605 if (!tcp_any_retrans_done(sk))
2606 tp->retrans_stamp = 0;
2607 return true;
2608 }
2609 return false;
2610 }
2611
2612 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2613 static bool tcp_try_undo_recovery(struct sock *sk)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616
2617 if (tcp_may_undo(tp)) {
2618 int mib_idx;
2619
2620 /* Happy end! We did not retransmit anything
2621 * or our original transmission succeeded.
2622 */
2623 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2624 tcp_undo_cwnd_reduction(sk, false);
2625 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2626 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2627 else
2628 mib_idx = LINUX_MIB_TCPFULLUNDO;
2629
2630 NET_INC_STATS(sock_net(sk), mib_idx);
2631 } else if (tp->rack.reo_wnd_persist) {
2632 tp->rack.reo_wnd_persist--;
2633 }
2634 if (tcp_is_non_sack_preventing_reopen(sk))
2635 return true;
2636 tcp_set_ca_state(sk, TCP_CA_Open);
2637 tp->is_sack_reneg = 0;
2638 return false;
2639 }
2640
2641 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2642 static bool tcp_try_undo_dsack(struct sock *sk)
2643 {
2644 struct tcp_sock *tp = tcp_sk(sk);
2645
2646 if (tp->undo_marker && !tp->undo_retrans) {
2647 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2648 tp->rack.reo_wnd_persist + 1);
2649 DBGUNDO(sk, "D-SACK");
2650 tcp_undo_cwnd_reduction(sk, false);
2651 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2652 return true;
2653 }
2654 return false;
2655 }
2656
2657 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2658 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661
2662 if (frto_undo || tcp_may_undo(tp)) {
2663 tcp_undo_cwnd_reduction(sk, true);
2664
2665 DBGUNDO(sk, "partial loss");
2666 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2667 if (frto_undo)
2668 NET_INC_STATS(sock_net(sk),
2669 LINUX_MIB_TCPSPURIOUSRTOS);
2670 inet_csk(sk)->icsk_retransmits = 0;
2671 if (tcp_is_non_sack_preventing_reopen(sk))
2672 return true;
2673 if (frto_undo || tcp_is_sack(tp)) {
2674 tcp_set_ca_state(sk, TCP_CA_Open);
2675 tp->is_sack_reneg = 0;
2676 }
2677 return true;
2678 }
2679 return false;
2680 }
2681
2682 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2683 * It computes the number of packets to send (sndcnt) based on packets newly
2684 * delivered:
2685 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2686 * cwnd reductions across a full RTT.
2687 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2688 * But when SND_UNA is acked without further losses,
2689 * slow starts cwnd up to ssthresh to speed up the recovery.
2690 */
tcp_init_cwnd_reduction(struct sock * sk)2691 static void tcp_init_cwnd_reduction(struct sock *sk)
2692 {
2693 struct tcp_sock *tp = tcp_sk(sk);
2694
2695 tp->high_seq = tp->snd_nxt;
2696 tp->tlp_high_seq = 0;
2697 tp->snd_cwnd_cnt = 0;
2698 tp->prior_cwnd = tcp_snd_cwnd(tp);
2699 tp->prr_delivered = 0;
2700 tp->prr_out = 0;
2701 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2702 tcp_ecn_queue_cwr(tp);
2703 }
2704
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2705 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2706 {
2707 struct tcp_sock *tp = tcp_sk(sk);
2708 int sndcnt = 0;
2709 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2710
2711 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2712 return;
2713
2714 tp->prr_delivered += newly_acked_sacked;
2715 if (delta < 0) {
2716 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2717 tp->prior_cwnd - 1;
2718 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2719 } else {
2720 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2721 newly_acked_sacked);
2722 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2723 sndcnt++;
2724 sndcnt = min(delta, sndcnt);
2725 }
2726 /* Force a fast retransmit upon entering fast recovery */
2727 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2728 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2729 }
2730
tcp_end_cwnd_reduction(struct sock * sk)2731 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2732 {
2733 struct tcp_sock *tp = tcp_sk(sk);
2734
2735 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2736 return;
2737
2738 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2739 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2740 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2741 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2742 tp->snd_cwnd_stamp = tcp_jiffies32;
2743 }
2744 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2745 }
2746
2747 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2748 void tcp_enter_cwr(struct sock *sk)
2749 {
2750 struct tcp_sock *tp = tcp_sk(sk);
2751
2752 tp->prior_ssthresh = 0;
2753 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2754 tp->undo_marker = 0;
2755 tcp_init_cwnd_reduction(sk);
2756 tcp_set_ca_state(sk, TCP_CA_CWR);
2757 }
2758 }
2759 EXPORT_SYMBOL(tcp_enter_cwr);
2760
tcp_try_keep_open(struct sock * sk)2761 static void tcp_try_keep_open(struct sock *sk)
2762 {
2763 struct tcp_sock *tp = tcp_sk(sk);
2764 int state = TCP_CA_Open;
2765
2766 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2767 state = TCP_CA_Disorder;
2768
2769 if (inet_csk(sk)->icsk_ca_state != state) {
2770 tcp_set_ca_state(sk, state);
2771 tp->high_seq = tp->snd_nxt;
2772 }
2773 }
2774
tcp_try_to_open(struct sock * sk,int flag)2775 static void tcp_try_to_open(struct sock *sk, int flag)
2776 {
2777 struct tcp_sock *tp = tcp_sk(sk);
2778
2779 tcp_verify_left_out(tp);
2780
2781 if (!tcp_any_retrans_done(sk))
2782 tp->retrans_stamp = 0;
2783
2784 if (flag & FLAG_ECE)
2785 tcp_enter_cwr(sk);
2786
2787 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2788 tcp_try_keep_open(sk);
2789 }
2790 }
2791
tcp_mtup_probe_failed(struct sock * sk)2792 static void tcp_mtup_probe_failed(struct sock *sk)
2793 {
2794 struct inet_connection_sock *icsk = inet_csk(sk);
2795
2796 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2797 icsk->icsk_mtup.probe_size = 0;
2798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2799 }
2800
tcp_mtup_probe_success(struct sock * sk)2801 static void tcp_mtup_probe_success(struct sock *sk)
2802 {
2803 struct tcp_sock *tp = tcp_sk(sk);
2804 struct inet_connection_sock *icsk = inet_csk(sk);
2805 u64 val;
2806
2807 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2808
2809 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2810 do_div(val, icsk->icsk_mtup.probe_size);
2811 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2812 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2813
2814 tp->snd_cwnd_cnt = 0;
2815 tp->snd_cwnd_stamp = tcp_jiffies32;
2816 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2817
2818 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2819 icsk->icsk_mtup.probe_size = 0;
2820 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2821 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2822 }
2823
2824 /* Sometimes we deduce that packets have been dropped due to reasons other than
2825 * congestion, like path MTU reductions or failed client TFO attempts. In these
2826 * cases we call this function to retransmit as many packets as cwnd allows,
2827 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2828 * non-zero value (and may do so in a later calling context due to TSQ), we
2829 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2830 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2831 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2832 * prematurely).
2833 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2834 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2835 {
2836 const struct inet_connection_sock *icsk = inet_csk(sk);
2837 struct tcp_sock *tp = tcp_sk(sk);
2838
2839 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2840 tp->high_seq = tp->snd_nxt;
2841 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2842 tp->prior_ssthresh = 0;
2843 tp->undo_marker = 0;
2844 tcp_set_ca_state(sk, TCP_CA_Loss);
2845 }
2846 tcp_xmit_retransmit_queue(sk);
2847 }
2848
2849 /* Do a simple retransmit without using the backoff mechanisms in
2850 * tcp_timer. This is used for path mtu discovery.
2851 * The socket is already locked here.
2852 */
tcp_simple_retransmit(struct sock * sk)2853 void tcp_simple_retransmit(struct sock *sk)
2854 {
2855 struct tcp_sock *tp = tcp_sk(sk);
2856 struct sk_buff *skb;
2857 int mss;
2858
2859 /* A fastopen SYN request is stored as two separate packets within
2860 * the retransmit queue, this is done by tcp_send_syn_data().
2861 * As a result simply checking the MSS of the frames in the queue
2862 * will not work for the SYN packet.
2863 *
2864 * Us being here is an indication of a path MTU issue so we can
2865 * assume that the fastopen SYN was lost and just mark all the
2866 * frames in the retransmit queue as lost. We will use an MSS of
2867 * -1 to mark all frames as lost, otherwise compute the current MSS.
2868 */
2869 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2870 mss = -1;
2871 else
2872 mss = tcp_current_mss(sk);
2873
2874 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2875 if (tcp_skb_seglen(skb) > mss)
2876 tcp_mark_skb_lost(sk, skb);
2877 }
2878
2879 tcp_clear_retrans_hints_partial(tp);
2880
2881 if (!tp->lost_out)
2882 return;
2883
2884 if (tcp_is_reno(tp))
2885 tcp_limit_reno_sacked(tp);
2886
2887 tcp_verify_left_out(tp);
2888
2889 /* Don't muck with the congestion window here.
2890 * Reason is that we do not increase amount of _data_
2891 * in network, but units changed and effective
2892 * cwnd/ssthresh really reduced now.
2893 */
2894 tcp_non_congestion_loss_retransmit(sk);
2895 }
2896 EXPORT_SYMBOL(tcp_simple_retransmit);
2897
tcp_enter_recovery(struct sock * sk,bool ece_ack)2898 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2899 {
2900 struct tcp_sock *tp = tcp_sk(sk);
2901 int mib_idx;
2902
2903 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2904 tcp_retrans_stamp_cleanup(sk);
2905
2906 if (tcp_is_reno(tp))
2907 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2908 else
2909 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2910
2911 NET_INC_STATS(sock_net(sk), mib_idx);
2912
2913 tp->prior_ssthresh = 0;
2914 tcp_init_undo(tp);
2915
2916 if (!tcp_in_cwnd_reduction(sk)) {
2917 if (!ece_ack)
2918 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2919 tcp_init_cwnd_reduction(sk);
2920 }
2921 tcp_set_ca_state(sk, TCP_CA_Recovery);
2922 }
2923
tcp_update_rto_time(struct tcp_sock * tp)2924 static void tcp_update_rto_time(struct tcp_sock *tp)
2925 {
2926 if (tp->rto_stamp) {
2927 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2928 tp->rto_stamp = 0;
2929 }
2930 }
2931
2932 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2933 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2934 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2935 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2936 int *rexmit)
2937 {
2938 struct tcp_sock *tp = tcp_sk(sk);
2939 bool recovered = !before(tp->snd_una, tp->high_seq);
2940
2941 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2942 tcp_try_undo_loss(sk, false))
2943 return;
2944
2945 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2946 /* Step 3.b. A timeout is spurious if not all data are
2947 * lost, i.e., never-retransmitted data are (s)acked.
2948 */
2949 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2950 tcp_try_undo_loss(sk, true))
2951 return;
2952
2953 if (after(tp->snd_nxt, tp->high_seq)) {
2954 if (flag & FLAG_DATA_SACKED || num_dupack)
2955 tp->frto = 0; /* Step 3.a. loss was real */
2956 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2957 tp->high_seq = tp->snd_nxt;
2958 /* Step 2.b. Try send new data (but deferred until cwnd
2959 * is updated in tcp_ack()). Otherwise fall back to
2960 * the conventional recovery.
2961 */
2962 if (!tcp_write_queue_empty(sk) &&
2963 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2964 *rexmit = REXMIT_NEW;
2965 return;
2966 }
2967 tp->frto = 0;
2968 }
2969 }
2970
2971 if (recovered) {
2972 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2973 tcp_try_undo_recovery(sk);
2974 return;
2975 }
2976 if (tcp_is_reno(tp)) {
2977 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2978 * delivered. Lower inflight to clock out (re)transmissions.
2979 */
2980 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2981 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2982 else if (flag & FLAG_SND_UNA_ADVANCED)
2983 tcp_reset_reno_sack(tp);
2984 }
2985 *rexmit = REXMIT_LOST;
2986 }
2987
tcp_force_fast_retransmit(struct sock * sk)2988 static bool tcp_force_fast_retransmit(struct sock *sk)
2989 {
2990 struct tcp_sock *tp = tcp_sk(sk);
2991
2992 return after(tcp_highest_sack_seq(tp),
2993 tp->snd_una + tp->reordering * tp->mss_cache);
2994 }
2995
2996 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2997 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2998 bool *do_lost)
2999 {
3000 struct tcp_sock *tp = tcp_sk(sk);
3001
3002 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3003 /* Plain luck! Hole if filled with delayed
3004 * packet, rather than with a retransmit. Check reordering.
3005 */
3006 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3007
3008 /* We are getting evidence that the reordering degree is higher
3009 * than we realized. If there are no retransmits out then we
3010 * can undo. Otherwise we clock out new packets but do not
3011 * mark more packets lost or retransmit more.
3012 */
3013 if (tp->retrans_out)
3014 return true;
3015
3016 if (!tcp_any_retrans_done(sk))
3017 tp->retrans_stamp = 0;
3018
3019 DBGUNDO(sk, "partial recovery");
3020 tcp_undo_cwnd_reduction(sk, true);
3021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3022 tcp_try_keep_open(sk);
3023 } else {
3024 /* Partial ACK arrived. Force fast retransmit. */
3025 *do_lost = tcp_force_fast_retransmit(sk);
3026 }
3027 return false;
3028 }
3029
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3030 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3031 {
3032 struct tcp_sock *tp = tcp_sk(sk);
3033
3034 if (tcp_rtx_queue_empty(sk))
3035 return;
3036
3037 if (unlikely(tcp_is_reno(tp))) {
3038 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3039 } else if (tcp_is_rack(sk)) {
3040 u32 prior_retrans = tp->retrans_out;
3041
3042 if (tcp_rack_mark_lost(sk))
3043 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3044 if (prior_retrans > tp->retrans_out)
3045 *ack_flag |= FLAG_LOST_RETRANS;
3046 }
3047 }
3048
3049 /* Process an event, which can update packets-in-flight not trivially.
3050 * Main goal of this function is to calculate new estimate for left_out,
3051 * taking into account both packets sitting in receiver's buffer and
3052 * packets lost by network.
3053 *
3054 * Besides that it updates the congestion state when packet loss or ECN
3055 * is detected. But it does not reduce the cwnd, it is done by the
3056 * congestion control later.
3057 *
3058 * It does _not_ decide what to send, it is made in function
3059 * tcp_xmit_retransmit_queue().
3060 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3061 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3062 int num_dupack, int *ack_flag, int *rexmit)
3063 {
3064 struct inet_connection_sock *icsk = inet_csk(sk);
3065 struct tcp_sock *tp = tcp_sk(sk);
3066 int fast_rexmit = 0, flag = *ack_flag;
3067 bool ece_ack = flag & FLAG_ECE;
3068 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3069 tcp_force_fast_retransmit(sk));
3070
3071 if (!tp->packets_out && tp->sacked_out)
3072 tp->sacked_out = 0;
3073
3074 /* Now state machine starts.
3075 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3076 if (ece_ack)
3077 tp->prior_ssthresh = 0;
3078
3079 /* B. In all the states check for reneging SACKs. */
3080 if (tcp_check_sack_reneging(sk, ack_flag))
3081 return;
3082
3083 /* C. Check consistency of the current state. */
3084 tcp_verify_left_out(tp);
3085
3086 /* D. Check state exit conditions. State can be terminated
3087 * when high_seq is ACKed. */
3088 if (icsk->icsk_ca_state == TCP_CA_Open) {
3089 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3090 tp->retrans_stamp = 0;
3091 } else if (!before(tp->snd_una, tp->high_seq)) {
3092 switch (icsk->icsk_ca_state) {
3093 case TCP_CA_CWR:
3094 /* CWR is to be held something *above* high_seq
3095 * is ACKed for CWR bit to reach receiver. */
3096 if (tp->snd_una != tp->high_seq) {
3097 tcp_end_cwnd_reduction(sk);
3098 tcp_set_ca_state(sk, TCP_CA_Open);
3099 }
3100 break;
3101
3102 case TCP_CA_Recovery:
3103 if (tcp_is_reno(tp))
3104 tcp_reset_reno_sack(tp);
3105 if (tcp_try_undo_recovery(sk))
3106 return;
3107 tcp_end_cwnd_reduction(sk);
3108 break;
3109 }
3110 }
3111
3112 /* E. Process state. */
3113 switch (icsk->icsk_ca_state) {
3114 case TCP_CA_Recovery:
3115 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3116 if (tcp_is_reno(tp))
3117 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3118 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3119 return;
3120
3121 if (tcp_try_undo_dsack(sk))
3122 tcp_try_to_open(sk, flag);
3123
3124 tcp_identify_packet_loss(sk, ack_flag);
3125 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3126 if (!tcp_time_to_recover(sk, flag))
3127 return;
3128 /* Undo reverts the recovery state. If loss is evident,
3129 * starts a new recovery (e.g. reordering then loss);
3130 */
3131 tcp_enter_recovery(sk, ece_ack);
3132 }
3133 break;
3134 case TCP_CA_Loss:
3135 tcp_process_loss(sk, flag, num_dupack, rexmit);
3136 if (icsk->icsk_ca_state != TCP_CA_Loss)
3137 tcp_update_rto_time(tp);
3138 tcp_identify_packet_loss(sk, ack_flag);
3139 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3140 (*ack_flag & FLAG_LOST_RETRANS)))
3141 return;
3142 /* Change state if cwnd is undone or retransmits are lost */
3143 fallthrough;
3144 default:
3145 if (tcp_is_reno(tp)) {
3146 if (flag & FLAG_SND_UNA_ADVANCED)
3147 tcp_reset_reno_sack(tp);
3148 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3149 }
3150
3151 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3152 tcp_try_undo_dsack(sk);
3153
3154 tcp_identify_packet_loss(sk, ack_flag);
3155 if (!tcp_time_to_recover(sk, flag)) {
3156 tcp_try_to_open(sk, flag);
3157 return;
3158 }
3159
3160 /* MTU probe failure: don't reduce cwnd */
3161 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3162 icsk->icsk_mtup.probe_size &&
3163 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3164 tcp_mtup_probe_failed(sk);
3165 /* Restores the reduction we did in tcp_mtup_probe() */
3166 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3167 tcp_simple_retransmit(sk);
3168 return;
3169 }
3170
3171 /* Otherwise enter Recovery state */
3172 tcp_enter_recovery(sk, ece_ack);
3173 fast_rexmit = 1;
3174 }
3175
3176 if (!tcp_is_rack(sk) && do_lost)
3177 tcp_update_scoreboard(sk, fast_rexmit);
3178 *rexmit = REXMIT_LOST;
3179 }
3180
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3181 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3182 {
3183 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3184 struct tcp_sock *tp = tcp_sk(sk);
3185
3186 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3187 /* If the remote keeps returning delayed ACKs, eventually
3188 * the min filter would pick it up and overestimate the
3189 * prop. delay when it expires. Skip suspected delayed ACKs.
3190 */
3191 return;
3192 }
3193 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3194 rtt_us ? : jiffies_to_usecs(1));
3195 }
3196
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3197 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3198 long seq_rtt_us, long sack_rtt_us,
3199 long ca_rtt_us, struct rate_sample *rs)
3200 {
3201 const struct tcp_sock *tp = tcp_sk(sk);
3202
3203 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3204 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3205 * Karn's algorithm forbids taking RTT if some retransmitted data
3206 * is acked (RFC6298).
3207 */
3208 if (seq_rtt_us < 0)
3209 seq_rtt_us = sack_rtt_us;
3210
3211 /* RTTM Rule: A TSecr value received in a segment is used to
3212 * update the averaged RTT measurement only if the segment
3213 * acknowledges some new data, i.e., only if it advances the
3214 * left edge of the send window.
3215 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3216 */
3217 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3218 flag & FLAG_ACKED) {
3219 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3220
3221 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3222 if (!delta)
3223 delta = 1;
3224 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3225 ca_rtt_us = seq_rtt_us;
3226 }
3227 }
3228 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3229 if (seq_rtt_us < 0)
3230 return false;
3231
3232 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3233 * always taken together with ACK, SACK, or TS-opts. Any negative
3234 * values will be skipped with the seq_rtt_us < 0 check above.
3235 */
3236 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3237 tcp_rtt_estimator(sk, seq_rtt_us);
3238 tcp_set_rto(sk);
3239
3240 /* RFC6298: only reset backoff on valid RTT measurement. */
3241 inet_csk(sk)->icsk_backoff = 0;
3242 return true;
3243 }
3244
3245 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3246 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3247 {
3248 struct rate_sample rs;
3249 long rtt_us = -1L;
3250
3251 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3252 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3253
3254 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3255 }
3256
3257
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3258 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3259 {
3260 const struct inet_connection_sock *icsk = inet_csk(sk);
3261
3262 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3263 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3264 }
3265
3266 /* Restart timer after forward progress on connection.
3267 * RFC2988 recommends to restart timer to now+rto.
3268 */
tcp_rearm_rto(struct sock * sk)3269 void tcp_rearm_rto(struct sock *sk)
3270 {
3271 const struct inet_connection_sock *icsk = inet_csk(sk);
3272 struct tcp_sock *tp = tcp_sk(sk);
3273
3274 /* If the retrans timer is currently being used by Fast Open
3275 * for SYN-ACK retrans purpose, stay put.
3276 */
3277 if (rcu_access_pointer(tp->fastopen_rsk))
3278 return;
3279
3280 if (!tp->packets_out) {
3281 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3282 } else {
3283 u32 rto = inet_csk(sk)->icsk_rto;
3284 /* Offset the time elapsed after installing regular RTO */
3285 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3286 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3287 s64 delta_us = tcp_rto_delta_us(sk);
3288 /* delta_us may not be positive if the socket is locked
3289 * when the retrans timer fires and is rescheduled.
3290 */
3291 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3292 }
3293 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3294 TCP_RTO_MAX);
3295 }
3296 }
3297
3298 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3299 static void tcp_set_xmit_timer(struct sock *sk)
3300 {
3301 if (!tcp_schedule_loss_probe(sk, true))
3302 tcp_rearm_rto(sk);
3303 }
3304
3305 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3306 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3307 {
3308 struct tcp_sock *tp = tcp_sk(sk);
3309 u32 packets_acked;
3310
3311 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3312
3313 packets_acked = tcp_skb_pcount(skb);
3314 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3315 return 0;
3316 packets_acked -= tcp_skb_pcount(skb);
3317
3318 if (packets_acked) {
3319 BUG_ON(tcp_skb_pcount(skb) == 0);
3320 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3321 }
3322
3323 return packets_acked;
3324 }
3325
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3326 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3327 const struct sk_buff *ack_skb, u32 prior_snd_una)
3328 {
3329 const struct skb_shared_info *shinfo;
3330
3331 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3332 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3333 return;
3334
3335 shinfo = skb_shinfo(skb);
3336 if (!before(shinfo->tskey, prior_snd_una) &&
3337 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3338 tcp_skb_tsorted_save(skb) {
3339 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3340 } tcp_skb_tsorted_restore(skb);
3341 }
3342 }
3343
3344 /* Remove acknowledged frames from the retransmission queue. If our packet
3345 * is before the ack sequence we can discard it as it's confirmed to have
3346 * arrived at the other end.
3347 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3348 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3349 u32 prior_fack, u32 prior_snd_una,
3350 struct tcp_sacktag_state *sack, bool ece_ack)
3351 {
3352 const struct inet_connection_sock *icsk = inet_csk(sk);
3353 u64 first_ackt, last_ackt;
3354 struct tcp_sock *tp = tcp_sk(sk);
3355 u32 prior_sacked = tp->sacked_out;
3356 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3357 struct sk_buff *skb, *next;
3358 bool fully_acked = true;
3359 long sack_rtt_us = -1L;
3360 long seq_rtt_us = -1L;
3361 long ca_rtt_us = -1L;
3362 u32 pkts_acked = 0;
3363 bool rtt_update;
3364 int flag = 0;
3365
3366 first_ackt = 0;
3367
3368 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3369 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3370 const u32 start_seq = scb->seq;
3371 u8 sacked = scb->sacked;
3372 u32 acked_pcount;
3373
3374 /* Determine how many packets and what bytes were acked, tso and else */
3375 if (after(scb->end_seq, tp->snd_una)) {
3376 if (tcp_skb_pcount(skb) == 1 ||
3377 !after(tp->snd_una, scb->seq))
3378 break;
3379
3380 acked_pcount = tcp_tso_acked(sk, skb);
3381 if (!acked_pcount)
3382 break;
3383 fully_acked = false;
3384 } else {
3385 acked_pcount = tcp_skb_pcount(skb);
3386 }
3387
3388 if (unlikely(sacked & TCPCB_RETRANS)) {
3389 if (sacked & TCPCB_SACKED_RETRANS)
3390 tp->retrans_out -= acked_pcount;
3391 flag |= FLAG_RETRANS_DATA_ACKED;
3392 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3393 last_ackt = tcp_skb_timestamp_us(skb);
3394 WARN_ON_ONCE(last_ackt == 0);
3395 if (!first_ackt)
3396 first_ackt = last_ackt;
3397
3398 if (before(start_seq, reord))
3399 reord = start_seq;
3400 if (!after(scb->end_seq, tp->high_seq))
3401 flag |= FLAG_ORIG_SACK_ACKED;
3402 }
3403
3404 if (sacked & TCPCB_SACKED_ACKED) {
3405 tp->sacked_out -= acked_pcount;
3406 } else if (tcp_is_sack(tp)) {
3407 tcp_count_delivered(tp, acked_pcount, ece_ack);
3408 if (!tcp_skb_spurious_retrans(tp, skb))
3409 tcp_rack_advance(tp, sacked, scb->end_seq,
3410 tcp_skb_timestamp_us(skb));
3411 }
3412 if (sacked & TCPCB_LOST)
3413 tp->lost_out -= acked_pcount;
3414
3415 tp->packets_out -= acked_pcount;
3416 pkts_acked += acked_pcount;
3417 tcp_rate_skb_delivered(sk, skb, sack->rate);
3418
3419 /* Initial outgoing SYN's get put onto the write_queue
3420 * just like anything else we transmit. It is not
3421 * true data, and if we misinform our callers that
3422 * this ACK acks real data, we will erroneously exit
3423 * connection startup slow start one packet too
3424 * quickly. This is severely frowned upon behavior.
3425 */
3426 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3427 flag |= FLAG_DATA_ACKED;
3428 } else {
3429 flag |= FLAG_SYN_ACKED;
3430 tp->retrans_stamp = 0;
3431 }
3432
3433 if (!fully_acked)
3434 break;
3435
3436 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3437
3438 next = skb_rb_next(skb);
3439 if (unlikely(skb == tp->retransmit_skb_hint))
3440 tp->retransmit_skb_hint = NULL;
3441 if (unlikely(skb == tp->lost_skb_hint))
3442 tp->lost_skb_hint = NULL;
3443 tcp_highest_sack_replace(sk, skb, next);
3444 tcp_rtx_queue_unlink_and_free(skb, sk);
3445 }
3446
3447 if (!skb)
3448 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3449
3450 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3451 tp->snd_up = tp->snd_una;
3452
3453 if (skb) {
3454 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3455 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3456 flag |= FLAG_SACK_RENEGING;
3457 }
3458
3459 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3460 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3461 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3462
3463 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3464 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3465 sack->rate->prior_delivered + 1 == tp->delivered &&
3466 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3467 /* Conservatively mark a delayed ACK. It's typically
3468 * from a lone runt packet over the round trip to
3469 * a receiver w/o out-of-order or CE events.
3470 */
3471 flag |= FLAG_ACK_MAYBE_DELAYED;
3472 }
3473 }
3474 if (sack->first_sackt) {
3475 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3476 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3477 }
3478 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3479 ca_rtt_us, sack->rate);
3480
3481 if (flag & FLAG_ACKED) {
3482 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3483 if (unlikely(icsk->icsk_mtup.probe_size &&
3484 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3485 tcp_mtup_probe_success(sk);
3486 }
3487
3488 if (tcp_is_reno(tp)) {
3489 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3490
3491 /* If any of the cumulatively ACKed segments was
3492 * retransmitted, non-SACK case cannot confirm that
3493 * progress was due to original transmission due to
3494 * lack of TCPCB_SACKED_ACKED bits even if some of
3495 * the packets may have been never retransmitted.
3496 */
3497 if (flag & FLAG_RETRANS_DATA_ACKED)
3498 flag &= ~FLAG_ORIG_SACK_ACKED;
3499 } else {
3500 int delta;
3501
3502 /* Non-retransmitted hole got filled? That's reordering */
3503 if (before(reord, prior_fack))
3504 tcp_check_sack_reordering(sk, reord, 0);
3505
3506 delta = prior_sacked - tp->sacked_out;
3507 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3508 }
3509 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3510 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3511 tcp_skb_timestamp_us(skb))) {
3512 /* Do not re-arm RTO if the sack RTT is measured from data sent
3513 * after when the head was last (re)transmitted. Otherwise the
3514 * timeout may continue to extend in loss recovery.
3515 */
3516 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3517 }
3518
3519 if (icsk->icsk_ca_ops->pkts_acked) {
3520 struct ack_sample sample = { .pkts_acked = pkts_acked,
3521 .rtt_us = sack->rate->rtt_us };
3522
3523 sample.in_flight = tp->mss_cache *
3524 (tp->delivered - sack->rate->prior_delivered);
3525 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3526 }
3527
3528 #if FASTRETRANS_DEBUG > 0
3529 WARN_ON((int)tp->sacked_out < 0);
3530 WARN_ON((int)tp->lost_out < 0);
3531 WARN_ON((int)tp->retrans_out < 0);
3532 if (!tp->packets_out && tcp_is_sack(tp)) {
3533 icsk = inet_csk(sk);
3534 if (tp->lost_out) {
3535 pr_debug("Leak l=%u %d\n",
3536 tp->lost_out, icsk->icsk_ca_state);
3537 tp->lost_out = 0;
3538 }
3539 if (tp->sacked_out) {
3540 pr_debug("Leak s=%u %d\n",
3541 tp->sacked_out, icsk->icsk_ca_state);
3542 tp->sacked_out = 0;
3543 }
3544 if (tp->retrans_out) {
3545 pr_debug("Leak r=%u %d\n",
3546 tp->retrans_out, icsk->icsk_ca_state);
3547 tp->retrans_out = 0;
3548 }
3549 }
3550 #endif
3551 return flag;
3552 }
3553
tcp_ack_probe(struct sock * sk)3554 static void tcp_ack_probe(struct sock *sk)
3555 {
3556 struct inet_connection_sock *icsk = inet_csk(sk);
3557 struct sk_buff *head = tcp_send_head(sk);
3558 const struct tcp_sock *tp = tcp_sk(sk);
3559
3560 /* Was it a usable window open? */
3561 if (!head)
3562 return;
3563 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3564 icsk->icsk_backoff = 0;
3565 icsk->icsk_probes_tstamp = 0;
3566 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3567 /* Socket must be waked up by subsequent tcp_data_snd_check().
3568 * This function is not for random using!
3569 */
3570 } else {
3571 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3572
3573 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3574 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3575 }
3576 }
3577
tcp_ack_is_dubious(const struct sock * sk,const int flag)3578 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3579 {
3580 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3581 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3582 }
3583
3584 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3585 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3586 {
3587 /* If reordering is high then always grow cwnd whenever data is
3588 * delivered regardless of its ordering. Otherwise stay conservative
3589 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3590 * new SACK or ECE mark may first advance cwnd here and later reduce
3591 * cwnd in tcp_fastretrans_alert() based on more states.
3592 */
3593 if (tcp_sk(sk)->reordering >
3594 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3595 return flag & FLAG_FORWARD_PROGRESS;
3596
3597 return flag & FLAG_DATA_ACKED;
3598 }
3599
3600 /* The "ultimate" congestion control function that aims to replace the rigid
3601 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3602 * It's called toward the end of processing an ACK with precise rate
3603 * information. All transmission or retransmission are delayed afterwards.
3604 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3605 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3606 int flag, const struct rate_sample *rs)
3607 {
3608 const struct inet_connection_sock *icsk = inet_csk(sk);
3609
3610 if (icsk->icsk_ca_ops->cong_control) {
3611 icsk->icsk_ca_ops->cong_control(sk, rs);
3612 return;
3613 }
3614
3615 if (tcp_in_cwnd_reduction(sk)) {
3616 /* Reduce cwnd if state mandates */
3617 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3618 } else if (tcp_may_raise_cwnd(sk, flag)) {
3619 /* Advance cwnd if state allows */
3620 tcp_cong_avoid(sk, ack, acked_sacked);
3621 }
3622 tcp_update_pacing_rate(sk);
3623 }
3624
3625 /* Check that window update is acceptable.
3626 * The function assumes that snd_una<=ack<=snd_next.
3627 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3628 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3629 const u32 ack, const u32 ack_seq,
3630 const u32 nwin)
3631 {
3632 return after(ack, tp->snd_una) ||
3633 after(ack_seq, tp->snd_wl1) ||
3634 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3635 }
3636
3637 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3638 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3639 {
3640 u32 delta = ack - tp->snd_una;
3641
3642 sock_owned_by_me((struct sock *)tp);
3643 tp->bytes_acked += delta;
3644 tp->snd_una = ack;
3645 }
3646
3647 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3648 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3649 {
3650 u32 delta = seq - tp->rcv_nxt;
3651
3652 sock_owned_by_me((struct sock *)tp);
3653 tp->bytes_received += delta;
3654 WRITE_ONCE(tp->rcv_nxt, seq);
3655 }
3656
3657 /* Update our send window.
3658 *
3659 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3660 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3661 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3662 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3663 u32 ack_seq)
3664 {
3665 struct tcp_sock *tp = tcp_sk(sk);
3666 int flag = 0;
3667 u32 nwin = ntohs(tcp_hdr(skb)->window);
3668
3669 if (likely(!tcp_hdr(skb)->syn))
3670 nwin <<= tp->rx_opt.snd_wscale;
3671
3672 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3673 flag |= FLAG_WIN_UPDATE;
3674 tcp_update_wl(tp, ack_seq);
3675
3676 if (tp->snd_wnd != nwin) {
3677 tp->snd_wnd = nwin;
3678
3679 /* Note, it is the only place, where
3680 * fast path is recovered for sending TCP.
3681 */
3682 tp->pred_flags = 0;
3683 tcp_fast_path_check(sk);
3684
3685 if (!tcp_write_queue_empty(sk))
3686 tcp_slow_start_after_idle_check(sk);
3687
3688 if (nwin > tp->max_window) {
3689 tp->max_window = nwin;
3690 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3691 }
3692 }
3693 }
3694
3695 tcp_snd_una_update(tp, ack);
3696
3697 return flag;
3698 }
3699
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3700 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3701 u32 *last_oow_ack_time)
3702 {
3703 /* Paired with the WRITE_ONCE() in this function. */
3704 u32 val = READ_ONCE(*last_oow_ack_time);
3705
3706 if (val) {
3707 s32 elapsed = (s32)(tcp_jiffies32 - val);
3708
3709 if (0 <= elapsed &&
3710 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3711 NET_INC_STATS(net, mib_idx);
3712 return true; /* rate-limited: don't send yet! */
3713 }
3714 }
3715
3716 /* Paired with the prior READ_ONCE() and with itself,
3717 * as we might be lockless.
3718 */
3719 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3720
3721 return false; /* not rate-limited: go ahead, send dupack now! */
3722 }
3723
3724 /* Return true if we're currently rate-limiting out-of-window ACKs and
3725 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3726 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3727 * attacks that send repeated SYNs or ACKs for the same connection. To
3728 * do this, we do not send a duplicate SYNACK or ACK if the remote
3729 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3730 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3731 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3732 int mib_idx, u32 *last_oow_ack_time)
3733 {
3734 /* Data packets without SYNs are not likely part of an ACK loop. */
3735 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3736 !tcp_hdr(skb)->syn)
3737 return false;
3738
3739 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3740 }
3741
3742 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3743 static void tcp_send_challenge_ack(struct sock *sk)
3744 {
3745 struct tcp_sock *tp = tcp_sk(sk);
3746 struct net *net = sock_net(sk);
3747 u32 count, now, ack_limit;
3748
3749 /* First check our per-socket dupack rate limit. */
3750 if (__tcp_oow_rate_limited(net,
3751 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3752 &tp->last_oow_ack_time))
3753 return;
3754
3755 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3756 if (ack_limit == INT_MAX)
3757 goto send_ack;
3758
3759 /* Then check host-wide RFC 5961 rate limit. */
3760 now = jiffies / HZ;
3761 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3762 u32 half = (ack_limit + 1) >> 1;
3763
3764 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3765 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3766 get_random_u32_inclusive(half, ack_limit + half - 1));
3767 }
3768 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3769 if (count > 0) {
3770 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3771 send_ack:
3772 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3773 tcp_send_ack(sk);
3774 }
3775 }
3776
tcp_store_ts_recent(struct tcp_sock * tp)3777 static void tcp_store_ts_recent(struct tcp_sock *tp)
3778 {
3779 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3780 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3781 }
3782
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3783 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3784 {
3785 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3786 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3787 * extra check below makes sure this can only happen
3788 * for pure ACK frames. -DaveM
3789 *
3790 * Not only, also it occurs for expired timestamps.
3791 */
3792
3793 if (tcp_paws_check(&tp->rx_opt, 0))
3794 tcp_store_ts_recent(tp);
3795 }
3796 }
3797
3798 /* This routine deals with acks during a TLP episode and ends an episode by
3799 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3800 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3801 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3802 {
3803 struct tcp_sock *tp = tcp_sk(sk);
3804
3805 if (before(ack, tp->tlp_high_seq))
3806 return;
3807
3808 if (!tp->tlp_retrans) {
3809 /* TLP of new data has been acknowledged */
3810 tp->tlp_high_seq = 0;
3811 } else if (flag & FLAG_DSACK_TLP) {
3812 /* This DSACK means original and TLP probe arrived; no loss */
3813 tp->tlp_high_seq = 0;
3814 } else if (after(ack, tp->tlp_high_seq)) {
3815 /* ACK advances: there was a loss, so reduce cwnd. Reset
3816 * tlp_high_seq in tcp_init_cwnd_reduction()
3817 */
3818 tcp_init_cwnd_reduction(sk);
3819 tcp_set_ca_state(sk, TCP_CA_CWR);
3820 tcp_end_cwnd_reduction(sk);
3821 tcp_try_keep_open(sk);
3822 NET_INC_STATS(sock_net(sk),
3823 LINUX_MIB_TCPLOSSPROBERECOVERY);
3824 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3825 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3826 /* Pure dupack: original and TLP probe arrived; no loss */
3827 tp->tlp_high_seq = 0;
3828 }
3829 }
3830
tcp_in_ack_event(struct sock * sk,int flag)3831 static void tcp_in_ack_event(struct sock *sk, int flag)
3832 {
3833 const struct inet_connection_sock *icsk = inet_csk(sk);
3834
3835 if (icsk->icsk_ca_ops->in_ack_event) {
3836 u32 ack_ev_flags = 0;
3837
3838 if (flag & FLAG_WIN_UPDATE)
3839 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3840 if (flag & FLAG_SLOWPATH) {
3841 ack_ev_flags |= CA_ACK_SLOWPATH;
3842 if (flag & FLAG_ECE)
3843 ack_ev_flags |= CA_ACK_ECE;
3844 }
3845
3846 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3847 }
3848 }
3849
3850 /* Congestion control has updated the cwnd already. So if we're in
3851 * loss recovery then now we do any new sends (for FRTO) or
3852 * retransmits (for CA_Loss or CA_recovery) that make sense.
3853 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3854 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3855 {
3856 struct tcp_sock *tp = tcp_sk(sk);
3857
3858 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3859 return;
3860
3861 if (unlikely(rexmit == REXMIT_NEW)) {
3862 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3863 TCP_NAGLE_OFF);
3864 if (after(tp->snd_nxt, tp->high_seq))
3865 return;
3866 tp->frto = 0;
3867 }
3868 tcp_xmit_retransmit_queue(sk);
3869 }
3870
3871 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3872 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3873 {
3874 const struct net *net = sock_net(sk);
3875 struct tcp_sock *tp = tcp_sk(sk);
3876 u32 delivered;
3877
3878 delivered = tp->delivered - prior_delivered;
3879 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3880 if (flag & FLAG_ECE)
3881 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3882
3883 return delivered;
3884 }
3885
3886 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3887 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3888 {
3889 struct inet_connection_sock *icsk = inet_csk(sk);
3890 struct tcp_sock *tp = tcp_sk(sk);
3891 struct tcp_sacktag_state sack_state;
3892 struct rate_sample rs = { .prior_delivered = 0 };
3893 u32 prior_snd_una = tp->snd_una;
3894 bool is_sack_reneg = tp->is_sack_reneg;
3895 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3896 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3897 int num_dupack = 0;
3898 int prior_packets = tp->packets_out;
3899 u32 delivered = tp->delivered;
3900 u32 lost = tp->lost;
3901 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3902 u32 prior_fack;
3903
3904 sack_state.first_sackt = 0;
3905 sack_state.rate = &rs;
3906 sack_state.sack_delivered = 0;
3907
3908 /* We very likely will need to access rtx queue. */
3909 prefetch(sk->tcp_rtx_queue.rb_node);
3910
3911 /* If the ack is older than previous acks
3912 * then we can probably ignore it.
3913 */
3914 if (before(ack, prior_snd_una)) {
3915 u32 max_window;
3916
3917 /* do not accept ACK for bytes we never sent. */
3918 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3919 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3920 if (before(ack, prior_snd_una - max_window)) {
3921 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3922 tcp_send_challenge_ack(sk);
3923 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3924 }
3925 goto old_ack;
3926 }
3927
3928 /* If the ack includes data we haven't sent yet, discard
3929 * this segment (RFC793 Section 3.9).
3930 */
3931 if (after(ack, tp->snd_nxt))
3932 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3933
3934 if (after(ack, prior_snd_una)) {
3935 flag |= FLAG_SND_UNA_ADVANCED;
3936 icsk->icsk_retransmits = 0;
3937
3938 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3939 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3940 if (icsk->icsk_clean_acked)
3941 icsk->icsk_clean_acked(sk, ack);
3942 #endif
3943 }
3944
3945 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3946 rs.prior_in_flight = tcp_packets_in_flight(tp);
3947
3948 /* ts_recent update must be made after we are sure that the packet
3949 * is in window.
3950 */
3951 if (flag & FLAG_UPDATE_TS_RECENT)
3952 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3953
3954 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3955 FLAG_SND_UNA_ADVANCED) {
3956 /* Window is constant, pure forward advance.
3957 * No more checks are required.
3958 * Note, we use the fact that SND.UNA>=SND.WL2.
3959 */
3960 tcp_update_wl(tp, ack_seq);
3961 tcp_snd_una_update(tp, ack);
3962 flag |= FLAG_WIN_UPDATE;
3963
3964 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3965 } else {
3966 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3967 flag |= FLAG_DATA;
3968 else
3969 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3970
3971 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3972
3973 if (TCP_SKB_CB(skb)->sacked)
3974 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3975 &sack_state);
3976
3977 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3978 flag |= FLAG_ECE;
3979
3980 if (sack_state.sack_delivered)
3981 tcp_count_delivered(tp, sack_state.sack_delivered,
3982 flag & FLAG_ECE);
3983 }
3984
3985 /* This is a deviation from RFC3168 since it states that:
3986 * "When the TCP data sender is ready to set the CWR bit after reducing
3987 * the congestion window, it SHOULD set the CWR bit only on the first
3988 * new data packet that it transmits."
3989 * We accept CWR on pure ACKs to be more robust
3990 * with widely-deployed TCP implementations that do this.
3991 */
3992 tcp_ecn_accept_cwr(sk, skb);
3993
3994 /* We passed data and got it acked, remove any soft error
3995 * log. Something worked...
3996 */
3997 WRITE_ONCE(sk->sk_err_soft, 0);
3998 icsk->icsk_probes_out = 0;
3999 tp->rcv_tstamp = tcp_jiffies32;
4000 if (!prior_packets)
4001 goto no_queue;
4002
4003 /* See if we can take anything off of the retransmit queue. */
4004 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4005 &sack_state, flag & FLAG_ECE);
4006
4007 tcp_rack_update_reo_wnd(sk, &rs);
4008
4009 tcp_in_ack_event(sk, flag);
4010
4011 if (tp->tlp_high_seq)
4012 tcp_process_tlp_ack(sk, ack, flag);
4013
4014 if (tcp_ack_is_dubious(sk, flag)) {
4015 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4016 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4017 num_dupack = 1;
4018 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4019 if (!(flag & FLAG_DATA))
4020 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4021 }
4022 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4023 &rexmit);
4024 }
4025
4026 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4027 if (flag & FLAG_SET_XMIT_TIMER)
4028 tcp_set_xmit_timer(sk);
4029
4030 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4031 sk_dst_confirm(sk);
4032
4033 delivered = tcp_newly_delivered(sk, delivered, flag);
4034 lost = tp->lost - lost; /* freshly marked lost */
4035 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4036 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4037 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4038 tcp_xmit_recovery(sk, rexmit);
4039 return 1;
4040
4041 no_queue:
4042 tcp_in_ack_event(sk, flag);
4043 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4044 if (flag & FLAG_DSACKING_ACK) {
4045 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4046 &rexmit);
4047 tcp_newly_delivered(sk, delivered, flag);
4048 }
4049 /* If this ack opens up a zero window, clear backoff. It was
4050 * being used to time the probes, and is probably far higher than
4051 * it needs to be for normal retransmission.
4052 */
4053 tcp_ack_probe(sk);
4054
4055 if (tp->tlp_high_seq)
4056 tcp_process_tlp_ack(sk, ack, flag);
4057 return 1;
4058
4059 old_ack:
4060 /* If data was SACKed, tag it and see if we should send more data.
4061 * If data was DSACKed, see if we can undo a cwnd reduction.
4062 */
4063 if (TCP_SKB_CB(skb)->sacked) {
4064 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4065 &sack_state);
4066 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4067 &rexmit);
4068 tcp_newly_delivered(sk, delivered, flag);
4069 tcp_xmit_recovery(sk, rexmit);
4070 }
4071
4072 return 0;
4073 }
4074
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4075 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4076 bool syn, struct tcp_fastopen_cookie *foc,
4077 bool exp_opt)
4078 {
4079 /* Valid only in SYN or SYN-ACK with an even length. */
4080 if (!foc || !syn || len < 0 || (len & 1))
4081 return;
4082
4083 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4084 len <= TCP_FASTOPEN_COOKIE_MAX)
4085 memcpy(foc->val, cookie, len);
4086 else if (len != 0)
4087 len = -1;
4088 foc->len = len;
4089 foc->exp = exp_opt;
4090 }
4091
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4092 static bool smc_parse_options(const struct tcphdr *th,
4093 struct tcp_options_received *opt_rx,
4094 const unsigned char *ptr,
4095 int opsize)
4096 {
4097 #if IS_ENABLED(CONFIG_SMC)
4098 if (static_branch_unlikely(&tcp_have_smc)) {
4099 if (th->syn && !(opsize & 1) &&
4100 opsize >= TCPOLEN_EXP_SMC_BASE &&
4101 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4102 opt_rx->smc_ok = 1;
4103 return true;
4104 }
4105 }
4106 #endif
4107 return false;
4108 }
4109
4110 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4111 * value on success.
4112 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4113 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4114 {
4115 const unsigned char *ptr = (const unsigned char *)(th + 1);
4116 int length = (th->doff * 4) - sizeof(struct tcphdr);
4117 u16 mss = 0;
4118
4119 while (length > 0) {
4120 int opcode = *ptr++;
4121 int opsize;
4122
4123 switch (opcode) {
4124 case TCPOPT_EOL:
4125 return mss;
4126 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4127 length--;
4128 continue;
4129 default:
4130 if (length < 2)
4131 return mss;
4132 opsize = *ptr++;
4133 if (opsize < 2) /* "silly options" */
4134 return mss;
4135 if (opsize > length)
4136 return mss; /* fail on partial options */
4137 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4138 u16 in_mss = get_unaligned_be16(ptr);
4139
4140 if (in_mss) {
4141 if (user_mss && user_mss < in_mss)
4142 in_mss = user_mss;
4143 mss = in_mss;
4144 }
4145 }
4146 ptr += opsize - 2;
4147 length -= opsize;
4148 }
4149 }
4150 return mss;
4151 }
4152 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4153
4154 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4155 * But, this can also be called on packets in the established flow when
4156 * the fast version below fails.
4157 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4158 void tcp_parse_options(const struct net *net,
4159 const struct sk_buff *skb,
4160 struct tcp_options_received *opt_rx, int estab,
4161 struct tcp_fastopen_cookie *foc)
4162 {
4163 const unsigned char *ptr;
4164 const struct tcphdr *th = tcp_hdr(skb);
4165 int length = (th->doff * 4) - sizeof(struct tcphdr);
4166
4167 ptr = (const unsigned char *)(th + 1);
4168 opt_rx->saw_tstamp = 0;
4169 opt_rx->saw_unknown = 0;
4170
4171 while (length > 0) {
4172 int opcode = *ptr++;
4173 int opsize;
4174
4175 switch (opcode) {
4176 case TCPOPT_EOL:
4177 return;
4178 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4179 length--;
4180 continue;
4181 default:
4182 if (length < 2)
4183 return;
4184 opsize = *ptr++;
4185 if (opsize < 2) /* "silly options" */
4186 return;
4187 if (opsize > length)
4188 return; /* don't parse partial options */
4189 switch (opcode) {
4190 case TCPOPT_MSS:
4191 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4192 u16 in_mss = get_unaligned_be16(ptr);
4193 if (in_mss) {
4194 if (opt_rx->user_mss &&
4195 opt_rx->user_mss < in_mss)
4196 in_mss = opt_rx->user_mss;
4197 opt_rx->mss_clamp = in_mss;
4198 }
4199 }
4200 break;
4201 case TCPOPT_WINDOW:
4202 if (opsize == TCPOLEN_WINDOW && th->syn &&
4203 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4204 __u8 snd_wscale = *(__u8 *)ptr;
4205 opt_rx->wscale_ok = 1;
4206 if (snd_wscale > TCP_MAX_WSCALE) {
4207 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4208 __func__,
4209 snd_wscale,
4210 TCP_MAX_WSCALE);
4211 snd_wscale = TCP_MAX_WSCALE;
4212 }
4213 opt_rx->snd_wscale = snd_wscale;
4214 }
4215 break;
4216 case TCPOPT_TIMESTAMP:
4217 if ((opsize == TCPOLEN_TIMESTAMP) &&
4218 ((estab && opt_rx->tstamp_ok) ||
4219 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4220 opt_rx->saw_tstamp = 1;
4221 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4222 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4223 }
4224 break;
4225 case TCPOPT_SACK_PERM:
4226 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4227 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4228 opt_rx->sack_ok = TCP_SACK_SEEN;
4229 tcp_sack_reset(opt_rx);
4230 }
4231 break;
4232
4233 case TCPOPT_SACK:
4234 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4235 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4236 opt_rx->sack_ok) {
4237 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4238 }
4239 break;
4240 #ifdef CONFIG_TCP_MD5SIG
4241 case TCPOPT_MD5SIG:
4242 /* The MD5 Hash has already been
4243 * checked (see tcp_v{4,6}_rcv()).
4244 */
4245 break;
4246 #endif
4247 case TCPOPT_FASTOPEN:
4248 tcp_parse_fastopen_option(
4249 opsize - TCPOLEN_FASTOPEN_BASE,
4250 ptr, th->syn, foc, false);
4251 break;
4252
4253 case TCPOPT_EXP:
4254 /* Fast Open option shares code 254 using a
4255 * 16 bits magic number.
4256 */
4257 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4258 get_unaligned_be16(ptr) ==
4259 TCPOPT_FASTOPEN_MAGIC) {
4260 tcp_parse_fastopen_option(opsize -
4261 TCPOLEN_EXP_FASTOPEN_BASE,
4262 ptr + 2, th->syn, foc, true);
4263 break;
4264 }
4265
4266 if (smc_parse_options(th, opt_rx, ptr, opsize))
4267 break;
4268
4269 opt_rx->saw_unknown = 1;
4270 break;
4271
4272 default:
4273 opt_rx->saw_unknown = 1;
4274 }
4275 ptr += opsize-2;
4276 length -= opsize;
4277 }
4278 }
4279 }
4280 EXPORT_SYMBOL(tcp_parse_options);
4281
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4282 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4283 {
4284 const __be32 *ptr = (const __be32 *)(th + 1);
4285
4286 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4287 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4288 tp->rx_opt.saw_tstamp = 1;
4289 ++ptr;
4290 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4291 ++ptr;
4292 if (*ptr)
4293 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4294 else
4295 tp->rx_opt.rcv_tsecr = 0;
4296 return true;
4297 }
4298 return false;
4299 }
4300
4301 /* Fast parse options. This hopes to only see timestamps.
4302 * If it is wrong it falls back on tcp_parse_options().
4303 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4304 static bool tcp_fast_parse_options(const struct net *net,
4305 const struct sk_buff *skb,
4306 const struct tcphdr *th, struct tcp_sock *tp)
4307 {
4308 /* In the spirit of fast parsing, compare doff directly to constant
4309 * values. Because equality is used, short doff can be ignored here.
4310 */
4311 if (th->doff == (sizeof(*th) / 4)) {
4312 tp->rx_opt.saw_tstamp = 0;
4313 return false;
4314 } else if (tp->rx_opt.tstamp_ok &&
4315 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4316 if (tcp_parse_aligned_timestamp(tp, th))
4317 return true;
4318 }
4319
4320 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4321 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4322 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4323
4324 return true;
4325 }
4326
4327 #ifdef CONFIG_TCP_MD5SIG
4328 /*
4329 * Parse MD5 Signature option
4330 */
tcp_parse_md5sig_option(const struct tcphdr * th)4331 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4332 {
4333 int length = (th->doff << 2) - sizeof(*th);
4334 const u8 *ptr = (const u8 *)(th + 1);
4335
4336 /* If not enough data remaining, we can short cut */
4337 while (length >= TCPOLEN_MD5SIG) {
4338 int opcode = *ptr++;
4339 int opsize;
4340
4341 switch (opcode) {
4342 case TCPOPT_EOL:
4343 return NULL;
4344 case TCPOPT_NOP:
4345 length--;
4346 continue;
4347 default:
4348 opsize = *ptr++;
4349 if (opsize < 2 || opsize > length)
4350 return NULL;
4351 if (opcode == TCPOPT_MD5SIG)
4352 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4353 }
4354 ptr += opsize - 2;
4355 length -= opsize;
4356 }
4357 return NULL;
4358 }
4359 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4360 #endif
4361
4362 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4363 *
4364 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4365 * it can pass through stack. So, the following predicate verifies that
4366 * this segment is not used for anything but congestion avoidance or
4367 * fast retransmit. Moreover, we even are able to eliminate most of such
4368 * second order effects, if we apply some small "replay" window (~RTO)
4369 * to timestamp space.
4370 *
4371 * All these measures still do not guarantee that we reject wrapped ACKs
4372 * on networks with high bandwidth, when sequence space is recycled fastly,
4373 * but it guarantees that such events will be very rare and do not affect
4374 * connection seriously. This doesn't look nice, but alas, PAWS is really
4375 * buggy extension.
4376 *
4377 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4378 * states that events when retransmit arrives after original data are rare.
4379 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4380 * the biggest problem on large power networks even with minor reordering.
4381 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4382 * up to bandwidth of 18Gigabit/sec. 8) ]
4383 */
4384
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4385 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4386 {
4387 const struct tcp_sock *tp = tcp_sk(sk);
4388 const struct tcphdr *th = tcp_hdr(skb);
4389 u32 seq = TCP_SKB_CB(skb)->seq;
4390 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4391
4392 return (/* 1. Pure ACK with correct sequence number. */
4393 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4394
4395 /* 2. ... and duplicate ACK. */
4396 ack == tp->snd_una &&
4397
4398 /* 3. ... and does not update window. */
4399 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4400
4401 /* 4. ... and sits in replay window. */
4402 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4403 }
4404
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4405 static inline bool tcp_paws_discard(const struct sock *sk,
4406 const struct sk_buff *skb)
4407 {
4408 const struct tcp_sock *tp = tcp_sk(sk);
4409
4410 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4411 !tcp_disordered_ack(sk, skb);
4412 }
4413
4414 /* Check segment sequence number for validity.
4415 *
4416 * Segment controls are considered valid, if the segment
4417 * fits to the window after truncation to the window. Acceptability
4418 * of data (and SYN, FIN, of course) is checked separately.
4419 * See tcp_data_queue(), for example.
4420 *
4421 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4422 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4423 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4424 * (borrowed from freebsd)
4425 */
4426
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4427 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4428 u32 seq, u32 end_seq)
4429 {
4430 if (before(end_seq, tp->rcv_wup))
4431 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4432
4433 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4435
4436 return SKB_NOT_DROPPED_YET;
4437 }
4438
4439
tcp_done_with_error(struct sock * sk,int err)4440 void tcp_done_with_error(struct sock *sk, int err)
4441 {
4442 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4443 WRITE_ONCE(sk->sk_err, err);
4444 smp_wmb();
4445
4446 tcp_write_queue_purge(sk);
4447 tcp_done(sk);
4448
4449 if (!sock_flag(sk, SOCK_DEAD))
4450 sk_error_report(sk);
4451 }
4452 EXPORT_SYMBOL(tcp_done_with_error);
4453
4454 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4455 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4456 {
4457 int err;
4458
4459 trace_tcp_receive_reset(sk);
4460
4461 /* mptcp can't tell us to ignore reset pkts,
4462 * so just ignore the return value of mptcp_incoming_options().
4463 */
4464 if (sk_is_mptcp(sk))
4465 mptcp_incoming_options(sk, skb);
4466
4467 /* We want the right error as BSD sees it (and indeed as we do). */
4468 switch (sk->sk_state) {
4469 case TCP_SYN_SENT:
4470 err = ECONNREFUSED;
4471 break;
4472 case TCP_CLOSE_WAIT:
4473 err = EPIPE;
4474 break;
4475 case TCP_CLOSE:
4476 return;
4477 default:
4478 err = ECONNRESET;
4479 }
4480 tcp_done_with_error(sk, err);
4481 }
4482
4483 /*
4484 * Process the FIN bit. This now behaves as it is supposed to work
4485 * and the FIN takes effect when it is validly part of sequence
4486 * space. Not before when we get holes.
4487 *
4488 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4489 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4490 * TIME-WAIT)
4491 *
4492 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4493 * close and we go into CLOSING (and later onto TIME-WAIT)
4494 *
4495 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4496 */
tcp_fin(struct sock * sk)4497 void tcp_fin(struct sock *sk)
4498 {
4499 struct tcp_sock *tp = tcp_sk(sk);
4500
4501 inet_csk_schedule_ack(sk);
4502
4503 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4504 sock_set_flag(sk, SOCK_DONE);
4505
4506 switch (sk->sk_state) {
4507 case TCP_SYN_RECV:
4508 case TCP_ESTABLISHED:
4509 /* Move to CLOSE_WAIT */
4510 tcp_set_state(sk, TCP_CLOSE_WAIT);
4511 inet_csk_enter_pingpong_mode(sk);
4512 break;
4513
4514 case TCP_CLOSE_WAIT:
4515 case TCP_CLOSING:
4516 /* Received a retransmission of the FIN, do
4517 * nothing.
4518 */
4519 break;
4520 case TCP_LAST_ACK:
4521 /* RFC793: Remain in the LAST-ACK state. */
4522 break;
4523
4524 case TCP_FIN_WAIT1:
4525 /* This case occurs when a simultaneous close
4526 * happens, we must ack the received FIN and
4527 * enter the CLOSING state.
4528 */
4529 tcp_send_ack(sk);
4530 tcp_set_state(sk, TCP_CLOSING);
4531 break;
4532 case TCP_FIN_WAIT2:
4533 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4534 tcp_send_ack(sk);
4535 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4536 break;
4537 default:
4538 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4539 * cases we should never reach this piece of code.
4540 */
4541 pr_err("%s: Impossible, sk->sk_state=%d\n",
4542 __func__, sk->sk_state);
4543 break;
4544 }
4545
4546 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4547 * Probably, we should reset in this case. For now drop them.
4548 */
4549 skb_rbtree_purge(&tp->out_of_order_queue);
4550 if (tcp_is_sack(tp))
4551 tcp_sack_reset(&tp->rx_opt);
4552
4553 if (!sock_flag(sk, SOCK_DEAD)) {
4554 sk->sk_state_change(sk);
4555
4556 /* Do not send POLL_HUP for half duplex close. */
4557 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4558 sk->sk_state == TCP_CLOSE)
4559 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4560 else
4561 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4562 }
4563 }
4564
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4565 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4566 u32 end_seq)
4567 {
4568 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4569 if (before(seq, sp->start_seq))
4570 sp->start_seq = seq;
4571 if (after(end_seq, sp->end_seq))
4572 sp->end_seq = end_seq;
4573 return true;
4574 }
4575 return false;
4576 }
4577
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4578 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4579 {
4580 struct tcp_sock *tp = tcp_sk(sk);
4581
4582 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4583 int mib_idx;
4584
4585 if (before(seq, tp->rcv_nxt))
4586 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4587 else
4588 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4589
4590 NET_INC_STATS(sock_net(sk), mib_idx);
4591
4592 tp->rx_opt.dsack = 1;
4593 tp->duplicate_sack[0].start_seq = seq;
4594 tp->duplicate_sack[0].end_seq = end_seq;
4595 }
4596 }
4597
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4598 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4599 {
4600 struct tcp_sock *tp = tcp_sk(sk);
4601
4602 if (!tp->rx_opt.dsack)
4603 tcp_dsack_set(sk, seq, end_seq);
4604 else
4605 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4606 }
4607
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4608 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4609 {
4610 /* When the ACK path fails or drops most ACKs, the sender would
4611 * timeout and spuriously retransmit the same segment repeatedly.
4612 * The receiver remembers and reflects via DSACKs. Leverage the
4613 * DSACK state and change the txhash to re-route speculatively.
4614 */
4615 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4616 sk_rethink_txhash(sk))
4617 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4618 }
4619
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4620 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4621 {
4622 struct tcp_sock *tp = tcp_sk(sk);
4623
4624 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4625 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4626 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4627 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4628
4629 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4630 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4631
4632 tcp_rcv_spurious_retrans(sk, skb);
4633 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4634 end_seq = tp->rcv_nxt;
4635 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4636 }
4637 }
4638
4639 tcp_send_ack(sk);
4640 }
4641
4642 /* These routines update the SACK block as out-of-order packets arrive or
4643 * in-order packets close up the sequence space.
4644 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4646 {
4647 int this_sack;
4648 struct tcp_sack_block *sp = &tp->selective_acks[0];
4649 struct tcp_sack_block *swalk = sp + 1;
4650
4651 /* See if the recent change to the first SACK eats into
4652 * or hits the sequence space of other SACK blocks, if so coalesce.
4653 */
4654 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4655 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4656 int i;
4657
4658 /* Zap SWALK, by moving every further SACK up by one slot.
4659 * Decrease num_sacks.
4660 */
4661 tp->rx_opt.num_sacks--;
4662 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4663 sp[i] = sp[i + 1];
4664 continue;
4665 }
4666 this_sack++;
4667 swalk++;
4668 }
4669 }
4670
tcp_sack_compress_send_ack(struct sock * sk)4671 void tcp_sack_compress_send_ack(struct sock *sk)
4672 {
4673 struct tcp_sock *tp = tcp_sk(sk);
4674
4675 if (!tp->compressed_ack)
4676 return;
4677
4678 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4679 __sock_put(sk);
4680
4681 /* Since we have to send one ack finally,
4682 * substract one from tp->compressed_ack to keep
4683 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4684 */
4685 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4686 tp->compressed_ack - 1);
4687
4688 tp->compressed_ack = 0;
4689 tcp_send_ack(sk);
4690 }
4691
4692 /* Reasonable amount of sack blocks included in TCP SACK option
4693 * The max is 4, but this becomes 3 if TCP timestamps are there.
4694 * Given that SACK packets might be lost, be conservative and use 2.
4695 */
4696 #define TCP_SACK_BLOCKS_EXPECTED 2
4697
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4699 {
4700 struct tcp_sock *tp = tcp_sk(sk);
4701 struct tcp_sack_block *sp = &tp->selective_acks[0];
4702 int cur_sacks = tp->rx_opt.num_sacks;
4703 int this_sack;
4704
4705 if (!cur_sacks)
4706 goto new_sack;
4707
4708 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4709 if (tcp_sack_extend(sp, seq, end_seq)) {
4710 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4711 tcp_sack_compress_send_ack(sk);
4712 /* Rotate this_sack to the first one. */
4713 for (; this_sack > 0; this_sack--, sp--)
4714 swap(*sp, *(sp - 1));
4715 if (cur_sacks > 1)
4716 tcp_sack_maybe_coalesce(tp);
4717 return;
4718 }
4719 }
4720
4721 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4722 tcp_sack_compress_send_ack(sk);
4723
4724 /* Could not find an adjacent existing SACK, build a new one,
4725 * put it at the front, and shift everyone else down. We
4726 * always know there is at least one SACK present already here.
4727 *
4728 * If the sack array is full, forget about the last one.
4729 */
4730 if (this_sack >= TCP_NUM_SACKS) {
4731 this_sack--;
4732 tp->rx_opt.num_sacks--;
4733 sp--;
4734 }
4735 for (; this_sack > 0; this_sack--, sp--)
4736 *sp = *(sp - 1);
4737
4738 new_sack:
4739 /* Build the new head SACK, and we're done. */
4740 sp->start_seq = seq;
4741 sp->end_seq = end_seq;
4742 tp->rx_opt.num_sacks++;
4743 }
4744
4745 /* RCV.NXT advances, some SACKs should be eaten. */
4746
tcp_sack_remove(struct tcp_sock * tp)4747 static void tcp_sack_remove(struct tcp_sock *tp)
4748 {
4749 struct tcp_sack_block *sp = &tp->selective_acks[0];
4750 int num_sacks = tp->rx_opt.num_sacks;
4751 int this_sack;
4752
4753 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4754 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4755 tp->rx_opt.num_sacks = 0;
4756 return;
4757 }
4758
4759 for (this_sack = 0; this_sack < num_sacks;) {
4760 /* Check if the start of the sack is covered by RCV.NXT. */
4761 if (!before(tp->rcv_nxt, sp->start_seq)) {
4762 int i;
4763
4764 /* RCV.NXT must cover all the block! */
4765 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4766
4767 /* Zap this SACK, by moving forward any other SACKS. */
4768 for (i = this_sack+1; i < num_sacks; i++)
4769 tp->selective_acks[i-1] = tp->selective_acks[i];
4770 num_sacks--;
4771 continue;
4772 }
4773 this_sack++;
4774 sp++;
4775 }
4776 tp->rx_opt.num_sacks = num_sacks;
4777 }
4778
4779 /**
4780 * tcp_try_coalesce - try to merge skb to prior one
4781 * @sk: socket
4782 * @to: prior buffer
4783 * @from: buffer to add in queue
4784 * @fragstolen: pointer to boolean
4785 *
4786 * Before queueing skb @from after @to, try to merge them
4787 * to reduce overall memory use and queue lengths, if cost is small.
4788 * Packets in ofo or receive queues can stay a long time.
4789 * Better try to coalesce them right now to avoid future collapses.
4790 * Returns true if caller should free @from instead of queueing it
4791 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4792 static bool tcp_try_coalesce(struct sock *sk,
4793 struct sk_buff *to,
4794 struct sk_buff *from,
4795 bool *fragstolen)
4796 {
4797 int delta;
4798
4799 *fragstolen = false;
4800
4801 /* Its possible this segment overlaps with prior segment in queue */
4802 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4803 return false;
4804
4805 if (!mptcp_skb_can_collapse(to, from))
4806 return false;
4807
4808 #ifdef CONFIG_TLS_DEVICE
4809 if (from->decrypted != to->decrypted)
4810 return false;
4811 #endif
4812
4813 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4814 return false;
4815
4816 atomic_add(delta, &sk->sk_rmem_alloc);
4817 sk_mem_charge(sk, delta);
4818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4819 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4820 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4821 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4822
4823 if (TCP_SKB_CB(from)->has_rxtstamp) {
4824 TCP_SKB_CB(to)->has_rxtstamp = true;
4825 to->tstamp = from->tstamp;
4826 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4827 }
4828
4829 return true;
4830 }
4831
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4832 static bool tcp_ooo_try_coalesce(struct sock *sk,
4833 struct sk_buff *to,
4834 struct sk_buff *from,
4835 bool *fragstolen)
4836 {
4837 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4838
4839 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4840 if (res) {
4841 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4842 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4843
4844 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4845 }
4846 return res;
4847 }
4848
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4849 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4850 enum skb_drop_reason reason)
4851 {
4852 sk_drops_add(sk, skb);
4853 kfree_skb_reason(skb, reason);
4854 }
4855
4856 /* This one checks to see if we can put data from the
4857 * out_of_order queue into the receive_queue.
4858 */
tcp_ofo_queue(struct sock * sk)4859 static void tcp_ofo_queue(struct sock *sk)
4860 {
4861 struct tcp_sock *tp = tcp_sk(sk);
4862 __u32 dsack_high = tp->rcv_nxt;
4863 bool fin, fragstolen, eaten;
4864 struct sk_buff *skb, *tail;
4865 struct rb_node *p;
4866
4867 p = rb_first(&tp->out_of_order_queue);
4868 while (p) {
4869 skb = rb_to_skb(p);
4870 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4871 break;
4872
4873 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4874 __u32 dsack = dsack_high;
4875 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4876 dsack_high = TCP_SKB_CB(skb)->end_seq;
4877 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4878 }
4879 p = rb_next(p);
4880 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4881
4882 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4883 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4884 continue;
4885 }
4886
4887 tail = skb_peek_tail(&sk->sk_receive_queue);
4888 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4889 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4890 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4891 if (!eaten)
4892 tcp_add_receive_queue(sk, skb);
4893 else
4894 kfree_skb_partial(skb, fragstolen);
4895
4896 if (unlikely(fin)) {
4897 tcp_fin(sk);
4898 /* tcp_fin() purges tp->out_of_order_queue,
4899 * so we must end this loop right now.
4900 */
4901 break;
4902 }
4903 }
4904 }
4905
4906 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4907 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4908
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4909 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4910 unsigned int size)
4911 {
4912 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4913 !sk_rmem_schedule(sk, skb, size)) {
4914
4915 if (tcp_prune_queue(sk, skb) < 0)
4916 return -1;
4917
4918 while (!sk_rmem_schedule(sk, skb, size)) {
4919 if (!tcp_prune_ofo_queue(sk, skb))
4920 return -1;
4921 }
4922 }
4923 return 0;
4924 }
4925
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4926 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4927 {
4928 struct tcp_sock *tp = tcp_sk(sk);
4929 struct rb_node **p, *parent;
4930 struct sk_buff *skb1;
4931 u32 seq, end_seq;
4932 bool fragstolen;
4933
4934 tcp_ecn_check_ce(sk, skb);
4935
4936 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4938 sk->sk_data_ready(sk);
4939 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4940 return;
4941 }
4942
4943 /* Disable header prediction. */
4944 tp->pred_flags = 0;
4945 inet_csk_schedule_ack(sk);
4946
4947 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4948 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4949 seq = TCP_SKB_CB(skb)->seq;
4950 end_seq = TCP_SKB_CB(skb)->end_seq;
4951
4952 p = &tp->out_of_order_queue.rb_node;
4953 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4954 /* Initial out of order segment, build 1 SACK. */
4955 if (tcp_is_sack(tp)) {
4956 tp->rx_opt.num_sacks = 1;
4957 tp->selective_acks[0].start_seq = seq;
4958 tp->selective_acks[0].end_seq = end_seq;
4959 }
4960 rb_link_node(&skb->rbnode, NULL, p);
4961 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4962 tp->ooo_last_skb = skb;
4963 goto end;
4964 }
4965
4966 /* In the typical case, we are adding an skb to the end of the list.
4967 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4968 */
4969 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4970 skb, &fragstolen)) {
4971 coalesce_done:
4972 /* For non sack flows, do not grow window to force DUPACK
4973 * and trigger fast retransmit.
4974 */
4975 if (tcp_is_sack(tp))
4976 tcp_grow_window(sk, skb, true);
4977 kfree_skb_partial(skb, fragstolen);
4978 skb = NULL;
4979 goto add_sack;
4980 }
4981 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4982 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4983 parent = &tp->ooo_last_skb->rbnode;
4984 p = &parent->rb_right;
4985 goto insert;
4986 }
4987
4988 /* Find place to insert this segment. Handle overlaps on the way. */
4989 parent = NULL;
4990 while (*p) {
4991 parent = *p;
4992 skb1 = rb_to_skb(parent);
4993 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4994 p = &parent->rb_left;
4995 continue;
4996 }
4997 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4998 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4999 /* All the bits are present. Drop. */
5000 NET_INC_STATS(sock_net(sk),
5001 LINUX_MIB_TCPOFOMERGE);
5002 tcp_drop_reason(sk, skb,
5003 SKB_DROP_REASON_TCP_OFOMERGE);
5004 skb = NULL;
5005 tcp_dsack_set(sk, seq, end_seq);
5006 goto add_sack;
5007 }
5008 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5009 /* Partial overlap. */
5010 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5011 } else {
5012 /* skb's seq == skb1's seq and skb covers skb1.
5013 * Replace skb1 with skb.
5014 */
5015 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5016 &tp->out_of_order_queue);
5017 tcp_dsack_extend(sk,
5018 TCP_SKB_CB(skb1)->seq,
5019 TCP_SKB_CB(skb1)->end_seq);
5020 NET_INC_STATS(sock_net(sk),
5021 LINUX_MIB_TCPOFOMERGE);
5022 tcp_drop_reason(sk, skb1,
5023 SKB_DROP_REASON_TCP_OFOMERGE);
5024 goto merge_right;
5025 }
5026 } else if (tcp_ooo_try_coalesce(sk, skb1,
5027 skb, &fragstolen)) {
5028 goto coalesce_done;
5029 }
5030 p = &parent->rb_right;
5031 }
5032 insert:
5033 /* Insert segment into RB tree. */
5034 rb_link_node(&skb->rbnode, parent, p);
5035 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5036
5037 merge_right:
5038 /* Remove other segments covered by skb. */
5039 while ((skb1 = skb_rb_next(skb)) != NULL) {
5040 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5041 break;
5042 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5043 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5044 end_seq);
5045 break;
5046 }
5047 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5048 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5049 TCP_SKB_CB(skb1)->end_seq);
5050 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5051 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5052 }
5053 /* If there is no skb after us, we are the last_skb ! */
5054 if (!skb1)
5055 tp->ooo_last_skb = skb;
5056
5057 add_sack:
5058 if (tcp_is_sack(tp))
5059 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5060 end:
5061 if (skb) {
5062 /* For non sack flows, do not grow window to force DUPACK
5063 * and trigger fast retransmit.
5064 */
5065 if (tcp_is_sack(tp))
5066 tcp_grow_window(sk, skb, false);
5067 skb_condense(skb);
5068 skb_set_owner_r(skb, sk);
5069 }
5070 }
5071
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5072 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5073 bool *fragstolen)
5074 {
5075 int eaten;
5076 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5077
5078 eaten = (tail &&
5079 tcp_try_coalesce(sk, tail,
5080 skb, fragstolen)) ? 1 : 0;
5081 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5082 if (!eaten) {
5083 tcp_add_receive_queue(sk, skb);
5084 skb_set_owner_r(skb, sk);
5085 }
5086 return eaten;
5087 }
5088
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5089 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5090 {
5091 struct sk_buff *skb;
5092 int err = -ENOMEM;
5093 int data_len = 0;
5094 bool fragstolen;
5095
5096 if (size == 0)
5097 return 0;
5098
5099 if (size > PAGE_SIZE) {
5100 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5101
5102 data_len = npages << PAGE_SHIFT;
5103 size = data_len + (size & ~PAGE_MASK);
5104 }
5105 skb = alloc_skb_with_frags(size - data_len, data_len,
5106 PAGE_ALLOC_COSTLY_ORDER,
5107 &err, sk->sk_allocation);
5108 if (!skb)
5109 goto err;
5110
5111 skb_put(skb, size - data_len);
5112 skb->data_len = data_len;
5113 skb->len = size;
5114
5115 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5116 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5117 goto err_free;
5118 }
5119
5120 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5121 if (err)
5122 goto err_free;
5123
5124 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5125 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5126 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5127
5128 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5129 WARN_ON_ONCE(fragstolen); /* should not happen */
5130 __kfree_skb(skb);
5131 }
5132 return size;
5133
5134 err_free:
5135 kfree_skb(skb);
5136 err:
5137 return err;
5138
5139 }
5140
tcp_data_ready(struct sock * sk)5141 void tcp_data_ready(struct sock *sk)
5142 {
5143 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5144 sk->sk_data_ready(sk);
5145 }
5146
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5147 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5148 {
5149 struct tcp_sock *tp = tcp_sk(sk);
5150 enum skb_drop_reason reason;
5151 bool fragstolen;
5152 int eaten;
5153
5154 /* If a subflow has been reset, the packet should not continue
5155 * to be processed, drop the packet.
5156 */
5157 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5158 __kfree_skb(skb);
5159 return;
5160 }
5161
5162 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5163 __kfree_skb(skb);
5164 return;
5165 }
5166 tcp_cleanup_skb(skb);
5167 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5168
5169 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5170 tp->rx_opt.dsack = 0;
5171
5172 /* Queue data for delivery to the user.
5173 * Packets in sequence go to the receive queue.
5174 * Out of sequence packets to the out_of_order_queue.
5175 */
5176 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5177 if (tcp_receive_window(tp) == 0) {
5178 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5179 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5180 goto out_of_window;
5181 }
5182
5183 /* Ok. In sequence. In window. */
5184 queue_and_out:
5185 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5186 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5187 inet_csk(sk)->icsk_ack.pending |=
5188 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5189 inet_csk_schedule_ack(sk);
5190 sk->sk_data_ready(sk);
5191
5192 if (skb_queue_len(&sk->sk_receive_queue)) {
5193 reason = SKB_DROP_REASON_PROTO_MEM;
5194 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5195 goto drop;
5196 }
5197 sk_forced_mem_schedule(sk, skb->truesize);
5198 }
5199
5200 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5201 if (skb->len)
5202 tcp_event_data_recv(sk, skb);
5203 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5204 tcp_fin(sk);
5205
5206 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5207 tcp_ofo_queue(sk);
5208
5209 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5210 * gap in queue is filled.
5211 */
5212 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5213 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5214 }
5215
5216 if (tp->rx_opt.num_sacks)
5217 tcp_sack_remove(tp);
5218
5219 tcp_fast_path_check(sk);
5220
5221 if (eaten > 0)
5222 kfree_skb_partial(skb, fragstolen);
5223 if (!sock_flag(sk, SOCK_DEAD))
5224 tcp_data_ready(sk);
5225 return;
5226 }
5227
5228 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5229 tcp_rcv_spurious_retrans(sk, skb);
5230 /* A retransmit, 2nd most common case. Force an immediate ack. */
5231 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5232 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5233 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5234
5235 out_of_window:
5236 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5237 inet_csk_schedule_ack(sk);
5238 drop:
5239 tcp_drop_reason(sk, skb, reason);
5240 return;
5241 }
5242
5243 /* Out of window. F.e. zero window probe. */
5244 if (!before(TCP_SKB_CB(skb)->seq,
5245 tp->rcv_nxt + tcp_receive_window(tp))) {
5246 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5247 goto out_of_window;
5248 }
5249
5250 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5251 /* Partial packet, seq < rcv_next < end_seq */
5252 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5253
5254 /* If window is closed, drop tail of packet. But after
5255 * remembering D-SACK for its head made in previous line.
5256 */
5257 if (!tcp_receive_window(tp)) {
5258 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5259 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5260 goto out_of_window;
5261 }
5262 goto queue_and_out;
5263 }
5264
5265 tcp_data_queue_ofo(sk, skb);
5266 }
5267
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5268 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5269 {
5270 if (list)
5271 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5272
5273 return skb_rb_next(skb);
5274 }
5275
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5276 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5277 struct sk_buff_head *list,
5278 struct rb_root *root)
5279 {
5280 struct sk_buff *next = tcp_skb_next(skb, list);
5281
5282 if (list)
5283 __skb_unlink(skb, list);
5284 else
5285 rb_erase(&skb->rbnode, root);
5286
5287 __kfree_skb(skb);
5288 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5289
5290 return next;
5291 }
5292
5293 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5294 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5295 {
5296 struct rb_node **p = &root->rb_node;
5297 struct rb_node *parent = NULL;
5298 struct sk_buff *skb1;
5299
5300 while (*p) {
5301 parent = *p;
5302 skb1 = rb_to_skb(parent);
5303 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5304 p = &parent->rb_left;
5305 else
5306 p = &parent->rb_right;
5307 }
5308 rb_link_node(&skb->rbnode, parent, p);
5309 rb_insert_color(&skb->rbnode, root);
5310 }
5311
5312 /* Collapse contiguous sequence of skbs head..tail with
5313 * sequence numbers start..end.
5314 *
5315 * If tail is NULL, this means until the end of the queue.
5316 *
5317 * Segments with FIN/SYN are not collapsed (only because this
5318 * simplifies code)
5319 */
5320 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5321 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5322 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5323 {
5324 struct sk_buff *skb = head, *n;
5325 struct sk_buff_head tmp;
5326 bool end_of_skbs;
5327
5328 /* First, check that queue is collapsible and find
5329 * the point where collapsing can be useful.
5330 */
5331 restart:
5332 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5333 n = tcp_skb_next(skb, list);
5334
5335 /* No new bits? It is possible on ofo queue. */
5336 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5337 skb = tcp_collapse_one(sk, skb, list, root);
5338 if (!skb)
5339 break;
5340 goto restart;
5341 }
5342
5343 /* The first skb to collapse is:
5344 * - not SYN/FIN and
5345 * - bloated or contains data before "start" or
5346 * overlaps to the next one and mptcp allow collapsing.
5347 */
5348 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5349 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5350 before(TCP_SKB_CB(skb)->seq, start))) {
5351 end_of_skbs = false;
5352 break;
5353 }
5354
5355 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5356 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5357 end_of_skbs = false;
5358 break;
5359 }
5360
5361 /* Decided to skip this, advance start seq. */
5362 start = TCP_SKB_CB(skb)->end_seq;
5363 }
5364 if (end_of_skbs ||
5365 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5366 return;
5367
5368 __skb_queue_head_init(&tmp);
5369
5370 while (before(start, end)) {
5371 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5372 struct sk_buff *nskb;
5373
5374 nskb = alloc_skb(copy, GFP_ATOMIC);
5375 if (!nskb)
5376 break;
5377
5378 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5379 #ifdef CONFIG_TLS_DEVICE
5380 nskb->decrypted = skb->decrypted;
5381 #endif
5382 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5383 if (list)
5384 __skb_queue_before(list, skb, nskb);
5385 else
5386 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5387 skb_set_owner_r(nskb, sk);
5388 mptcp_skb_ext_move(nskb, skb);
5389
5390 /* Copy data, releasing collapsed skbs. */
5391 while (copy > 0) {
5392 int offset = start - TCP_SKB_CB(skb)->seq;
5393 int size = TCP_SKB_CB(skb)->end_seq - start;
5394
5395 BUG_ON(offset < 0);
5396 if (size > 0) {
5397 size = min(copy, size);
5398 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5399 BUG();
5400 TCP_SKB_CB(nskb)->end_seq += size;
5401 copy -= size;
5402 start += size;
5403 }
5404 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5405 skb = tcp_collapse_one(sk, skb, list, root);
5406 if (!skb ||
5407 skb == tail ||
5408 !mptcp_skb_can_collapse(nskb, skb) ||
5409 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5410 goto end;
5411 #ifdef CONFIG_TLS_DEVICE
5412 if (skb->decrypted != nskb->decrypted)
5413 goto end;
5414 #endif
5415 }
5416 }
5417 }
5418 end:
5419 skb_queue_walk_safe(&tmp, skb, n)
5420 tcp_rbtree_insert(root, skb);
5421 }
5422
5423 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5424 * and tcp_collapse() them until all the queue is collapsed.
5425 */
tcp_collapse_ofo_queue(struct sock * sk)5426 static void tcp_collapse_ofo_queue(struct sock *sk)
5427 {
5428 struct tcp_sock *tp = tcp_sk(sk);
5429 u32 range_truesize, sum_tiny = 0;
5430 struct sk_buff *skb, *head;
5431 u32 start, end;
5432
5433 skb = skb_rb_first(&tp->out_of_order_queue);
5434 new_range:
5435 if (!skb) {
5436 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5437 return;
5438 }
5439 start = TCP_SKB_CB(skb)->seq;
5440 end = TCP_SKB_CB(skb)->end_seq;
5441 range_truesize = skb->truesize;
5442
5443 for (head = skb;;) {
5444 skb = skb_rb_next(skb);
5445
5446 /* Range is terminated when we see a gap or when
5447 * we are at the queue end.
5448 */
5449 if (!skb ||
5450 after(TCP_SKB_CB(skb)->seq, end) ||
5451 before(TCP_SKB_CB(skb)->end_seq, start)) {
5452 /* Do not attempt collapsing tiny skbs */
5453 if (range_truesize != head->truesize ||
5454 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5455 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5456 head, skb, start, end);
5457 } else {
5458 sum_tiny += range_truesize;
5459 if (sum_tiny > sk->sk_rcvbuf >> 3)
5460 return;
5461 }
5462 goto new_range;
5463 }
5464
5465 range_truesize += skb->truesize;
5466 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5467 start = TCP_SKB_CB(skb)->seq;
5468 if (after(TCP_SKB_CB(skb)->end_seq, end))
5469 end = TCP_SKB_CB(skb)->end_seq;
5470 }
5471 }
5472
5473 /*
5474 * Clean the out-of-order queue to make room.
5475 * We drop high sequences packets to :
5476 * 1) Let a chance for holes to be filled.
5477 * This means we do not drop packets from ooo queue if their sequence
5478 * is before incoming packet sequence.
5479 * 2) not add too big latencies if thousands of packets sit there.
5480 * (But if application shrinks SO_RCVBUF, we could still end up
5481 * freeing whole queue here)
5482 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5483 *
5484 * Return true if queue has shrunk.
5485 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5486 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5487 {
5488 struct tcp_sock *tp = tcp_sk(sk);
5489 struct rb_node *node, *prev;
5490 bool pruned = false;
5491 int goal;
5492
5493 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5494 return false;
5495
5496 goal = sk->sk_rcvbuf >> 3;
5497 node = &tp->ooo_last_skb->rbnode;
5498
5499 do {
5500 struct sk_buff *skb = rb_to_skb(node);
5501
5502 /* If incoming skb would land last in ofo queue, stop pruning. */
5503 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5504 break;
5505 pruned = true;
5506 prev = rb_prev(node);
5507 rb_erase(node, &tp->out_of_order_queue);
5508 goal -= skb->truesize;
5509 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5510 tp->ooo_last_skb = rb_to_skb(prev);
5511 if (!prev || goal <= 0) {
5512 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5513 !tcp_under_memory_pressure(sk))
5514 break;
5515 goal = sk->sk_rcvbuf >> 3;
5516 }
5517 node = prev;
5518 } while (node);
5519
5520 if (pruned) {
5521 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5522 /* Reset SACK state. A conforming SACK implementation will
5523 * do the same at a timeout based retransmit. When a connection
5524 * is in a sad state like this, we care only about integrity
5525 * of the connection not performance.
5526 */
5527 if (tp->rx_opt.sack_ok)
5528 tcp_sack_reset(&tp->rx_opt);
5529 }
5530 return pruned;
5531 }
5532
5533 /* Reduce allocated memory if we can, trying to get
5534 * the socket within its memory limits again.
5535 *
5536 * Return less than zero if we should start dropping frames
5537 * until the socket owning process reads some of the data
5538 * to stabilize the situation.
5539 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5540 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5541 {
5542 struct tcp_sock *tp = tcp_sk(sk);
5543
5544 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5545
5546 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5547 tcp_clamp_window(sk);
5548 else if (tcp_under_memory_pressure(sk))
5549 tcp_adjust_rcv_ssthresh(sk);
5550
5551 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5552 return 0;
5553
5554 tcp_collapse_ofo_queue(sk);
5555 if (!skb_queue_empty(&sk->sk_receive_queue))
5556 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5557 skb_peek(&sk->sk_receive_queue),
5558 NULL,
5559 tp->copied_seq, tp->rcv_nxt);
5560
5561 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5562 return 0;
5563
5564 /* Collapsing did not help, destructive actions follow.
5565 * This must not ever occur. */
5566
5567 tcp_prune_ofo_queue(sk, in_skb);
5568
5569 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5570 return 0;
5571
5572 /* If we are really being abused, tell the caller to silently
5573 * drop receive data on the floor. It will get retransmitted
5574 * and hopefully then we'll have sufficient space.
5575 */
5576 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5577
5578 /* Massive buffer overcommit. */
5579 tp->pred_flags = 0;
5580 return -1;
5581 }
5582
tcp_should_expand_sndbuf(struct sock * sk)5583 static bool tcp_should_expand_sndbuf(struct sock *sk)
5584 {
5585 const struct tcp_sock *tp = tcp_sk(sk);
5586
5587 /* If the user specified a specific send buffer setting, do
5588 * not modify it.
5589 */
5590 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5591 return false;
5592
5593 /* If we are under global TCP memory pressure, do not expand. */
5594 if (tcp_under_memory_pressure(sk)) {
5595 int unused_mem = sk_unused_reserved_mem(sk);
5596
5597 /* Adjust sndbuf according to reserved mem. But make sure
5598 * it never goes below SOCK_MIN_SNDBUF.
5599 * See sk_stream_moderate_sndbuf() for more details.
5600 */
5601 if (unused_mem > SOCK_MIN_SNDBUF)
5602 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5603
5604 return false;
5605 }
5606
5607 /* If we are under soft global TCP memory pressure, do not expand. */
5608 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5609 return false;
5610
5611 /* If we filled the congestion window, do not expand. */
5612 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5613 return false;
5614
5615 return true;
5616 }
5617
tcp_new_space(struct sock * sk)5618 static void tcp_new_space(struct sock *sk)
5619 {
5620 struct tcp_sock *tp = tcp_sk(sk);
5621
5622 if (tcp_should_expand_sndbuf(sk)) {
5623 tcp_sndbuf_expand(sk);
5624 tp->snd_cwnd_stamp = tcp_jiffies32;
5625 }
5626
5627 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5628 }
5629
5630 /* Caller made space either from:
5631 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5632 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5633 *
5634 * We might be able to generate EPOLLOUT to the application if:
5635 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5636 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5637 * small enough that tcp_stream_memory_free() decides it
5638 * is time to generate EPOLLOUT.
5639 */
tcp_check_space(struct sock * sk)5640 void tcp_check_space(struct sock *sk)
5641 {
5642 /* pairs with tcp_poll() */
5643 smp_mb();
5644 if (sk->sk_socket &&
5645 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5646 tcp_new_space(sk);
5647 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5648 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5649 }
5650 }
5651
tcp_data_snd_check(struct sock * sk)5652 static inline void tcp_data_snd_check(struct sock *sk)
5653 {
5654 tcp_push_pending_frames(sk);
5655 tcp_check_space(sk);
5656 }
5657
5658 /*
5659 * Check if sending an ack is needed.
5660 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5661 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5662 {
5663 struct tcp_sock *tp = tcp_sk(sk);
5664 unsigned long rtt, delay;
5665
5666 /* More than one full frame received... */
5667 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5668 /* ... and right edge of window advances far enough.
5669 * (tcp_recvmsg() will send ACK otherwise).
5670 * If application uses SO_RCVLOWAT, we want send ack now if
5671 * we have not received enough bytes to satisfy the condition.
5672 */
5673 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5674 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5675 /* We ACK each frame or... */
5676 tcp_in_quickack_mode(sk) ||
5677 /* Protocol state mandates a one-time immediate ACK */
5678 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5679 send_now:
5680 tcp_send_ack(sk);
5681 return;
5682 }
5683
5684 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5685 tcp_send_delayed_ack(sk);
5686 return;
5687 }
5688
5689 if (!tcp_is_sack(tp) ||
5690 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5691 goto send_now;
5692
5693 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5694 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5695 tp->dup_ack_counter = 0;
5696 }
5697 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5698 tp->dup_ack_counter++;
5699 goto send_now;
5700 }
5701 tp->compressed_ack++;
5702 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5703 return;
5704
5705 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5706
5707 rtt = tp->rcv_rtt_est.rtt_us;
5708 if (tp->srtt_us && tp->srtt_us < rtt)
5709 rtt = tp->srtt_us;
5710
5711 delay = min_t(unsigned long,
5712 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5713 rtt * (NSEC_PER_USEC >> 3)/20);
5714 sock_hold(sk);
5715 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5716 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5717 HRTIMER_MODE_REL_PINNED_SOFT);
5718 }
5719
tcp_ack_snd_check(struct sock * sk)5720 static inline void tcp_ack_snd_check(struct sock *sk)
5721 {
5722 if (!inet_csk_ack_scheduled(sk)) {
5723 /* We sent a data segment already. */
5724 return;
5725 }
5726 __tcp_ack_snd_check(sk, 1);
5727 }
5728
5729 /*
5730 * This routine is only called when we have urgent data
5731 * signaled. Its the 'slow' part of tcp_urg. It could be
5732 * moved inline now as tcp_urg is only called from one
5733 * place. We handle URGent data wrong. We have to - as
5734 * BSD still doesn't use the correction from RFC961.
5735 * For 1003.1g we should support a new option TCP_STDURG to permit
5736 * either form (or just set the sysctl tcp_stdurg).
5737 */
5738
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5739 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5740 {
5741 struct tcp_sock *tp = tcp_sk(sk);
5742 u32 ptr = ntohs(th->urg_ptr);
5743
5744 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5745 ptr--;
5746 ptr += ntohl(th->seq);
5747
5748 /* Ignore urgent data that we've already seen and read. */
5749 if (after(tp->copied_seq, ptr))
5750 return;
5751
5752 /* Do not replay urg ptr.
5753 *
5754 * NOTE: interesting situation not covered by specs.
5755 * Misbehaving sender may send urg ptr, pointing to segment,
5756 * which we already have in ofo queue. We are not able to fetch
5757 * such data and will stay in TCP_URG_NOTYET until will be eaten
5758 * by recvmsg(). Seems, we are not obliged to handle such wicked
5759 * situations. But it is worth to think about possibility of some
5760 * DoSes using some hypothetical application level deadlock.
5761 */
5762 if (before(ptr, tp->rcv_nxt))
5763 return;
5764
5765 /* Do we already have a newer (or duplicate) urgent pointer? */
5766 if (tp->urg_data && !after(ptr, tp->urg_seq))
5767 return;
5768
5769 /* Tell the world about our new urgent pointer. */
5770 sk_send_sigurg(sk);
5771
5772 /* We may be adding urgent data when the last byte read was
5773 * urgent. To do this requires some care. We cannot just ignore
5774 * tp->copied_seq since we would read the last urgent byte again
5775 * as data, nor can we alter copied_seq until this data arrives
5776 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5777 *
5778 * NOTE. Double Dutch. Rendering to plain English: author of comment
5779 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5780 * and expect that both A and B disappear from stream. This is _wrong_.
5781 * Though this happens in BSD with high probability, this is occasional.
5782 * Any application relying on this is buggy. Note also, that fix "works"
5783 * only in this artificial test. Insert some normal data between A and B and we will
5784 * decline of BSD again. Verdict: it is better to remove to trap
5785 * buggy users.
5786 */
5787 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5788 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5789 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5790 tp->copied_seq++;
5791 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5792 __skb_unlink(skb, &sk->sk_receive_queue);
5793 __kfree_skb(skb);
5794 }
5795 }
5796
5797 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5798 WRITE_ONCE(tp->urg_seq, ptr);
5799
5800 /* Disable header prediction. */
5801 tp->pred_flags = 0;
5802 }
5803
5804 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5805 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5806 {
5807 struct tcp_sock *tp = tcp_sk(sk);
5808
5809 /* Check if we get a new urgent pointer - normally not. */
5810 if (unlikely(th->urg))
5811 tcp_check_urg(sk, th);
5812
5813 /* Do we wait for any urgent data? - normally not... */
5814 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5815 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5816 th->syn;
5817
5818 /* Is the urgent pointer pointing into this packet? */
5819 if (ptr < skb->len) {
5820 u8 tmp;
5821 if (skb_copy_bits(skb, ptr, &tmp, 1))
5822 BUG();
5823 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5824 if (!sock_flag(sk, SOCK_DEAD))
5825 sk->sk_data_ready(sk);
5826 }
5827 }
5828 }
5829
5830 /* Accept RST for rcv_nxt - 1 after a FIN.
5831 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5832 * FIN is sent followed by a RST packet. The RST is sent with the same
5833 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5834 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5835 * ACKs on the closed socket. In addition middleboxes can drop either the
5836 * challenge ACK or a subsequent RST.
5837 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5838 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5839 {
5840 const struct tcp_sock *tp = tcp_sk(sk);
5841
5842 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5843 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5844 TCPF_CLOSING));
5845 }
5846
5847 /* Does PAWS and seqno based validation of an incoming segment, flags will
5848 * play significant role here.
5849 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5850 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5851 const struct tcphdr *th, int syn_inerr)
5852 {
5853 struct tcp_sock *tp = tcp_sk(sk);
5854 SKB_DR(reason);
5855
5856 /* RFC1323: H1. Apply PAWS check first. */
5857 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5858 tp->rx_opt.saw_tstamp &&
5859 tcp_paws_discard(sk, skb)) {
5860 if (!th->rst) {
5861 if (unlikely(th->syn))
5862 goto syn_challenge;
5863 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5864 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5865 LINUX_MIB_TCPACKSKIPPEDPAWS,
5866 &tp->last_oow_ack_time))
5867 tcp_send_dupack(sk, skb);
5868 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5869 goto discard;
5870 }
5871 /* Reset is accepted even if it did not pass PAWS. */
5872 }
5873
5874 /* Step 1: check sequence number */
5875 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5876 if (reason) {
5877 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5878 * (RST) segments are validated by checking their SEQ-fields."
5879 * And page 69: "If an incoming segment is not acceptable,
5880 * an acknowledgment should be sent in reply (unless the RST
5881 * bit is set, if so drop the segment and return)".
5882 */
5883 if (!th->rst) {
5884 if (th->syn)
5885 goto syn_challenge;
5886 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5887 LINUX_MIB_TCPACKSKIPPEDSEQ,
5888 &tp->last_oow_ack_time))
5889 tcp_send_dupack(sk, skb);
5890 } else if (tcp_reset_check(sk, skb)) {
5891 goto reset;
5892 }
5893 goto discard;
5894 }
5895
5896 /* Step 2: check RST bit */
5897 if (th->rst) {
5898 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5899 * FIN and SACK too if available):
5900 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5901 * the right-most SACK block,
5902 * then
5903 * RESET the connection
5904 * else
5905 * Send a challenge ACK
5906 */
5907 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5908 tcp_reset_check(sk, skb))
5909 goto reset;
5910
5911 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5912 struct tcp_sack_block *sp = &tp->selective_acks[0];
5913 int max_sack = sp[0].end_seq;
5914 int this_sack;
5915
5916 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5917 ++this_sack) {
5918 max_sack = after(sp[this_sack].end_seq,
5919 max_sack) ?
5920 sp[this_sack].end_seq : max_sack;
5921 }
5922
5923 if (TCP_SKB_CB(skb)->seq == max_sack)
5924 goto reset;
5925 }
5926
5927 /* Disable TFO if RST is out-of-order
5928 * and no data has been received
5929 * for current active TFO socket
5930 */
5931 if (tp->syn_fastopen && !tp->data_segs_in &&
5932 sk->sk_state == TCP_ESTABLISHED)
5933 tcp_fastopen_active_disable(sk);
5934 tcp_send_challenge_ack(sk);
5935 SKB_DR_SET(reason, TCP_RESET);
5936 goto discard;
5937 }
5938
5939 /* step 3: check security and precedence [ignored] */
5940
5941 /* step 4: Check for a SYN
5942 * RFC 5961 4.2 : Send a challenge ack
5943 */
5944 if (th->syn) {
5945 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5946 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5947 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5948 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5949 goto pass;
5950 syn_challenge:
5951 if (syn_inerr)
5952 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5953 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5954 tcp_send_challenge_ack(sk);
5955 SKB_DR_SET(reason, TCP_INVALID_SYN);
5956 goto discard;
5957 }
5958
5959 pass:
5960 bpf_skops_parse_hdr(sk, skb);
5961
5962 return true;
5963
5964 discard:
5965 tcp_drop_reason(sk, skb, reason);
5966 return false;
5967
5968 reset:
5969 tcp_reset(sk, skb);
5970 __kfree_skb(skb);
5971 return false;
5972 }
5973
5974 /*
5975 * TCP receive function for the ESTABLISHED state.
5976 *
5977 * It is split into a fast path and a slow path. The fast path is
5978 * disabled when:
5979 * - A zero window was announced from us - zero window probing
5980 * is only handled properly in the slow path.
5981 * - Out of order segments arrived.
5982 * - Urgent data is expected.
5983 * - There is no buffer space left
5984 * - Unexpected TCP flags/window values/header lengths are received
5985 * (detected by checking the TCP header against pred_flags)
5986 * - Data is sent in both directions. Fast path only supports pure senders
5987 * or pure receivers (this means either the sequence number or the ack
5988 * value must stay constant)
5989 * - Unexpected TCP option.
5990 *
5991 * When these conditions are not satisfied it drops into a standard
5992 * receive procedure patterned after RFC793 to handle all cases.
5993 * The first three cases are guaranteed by proper pred_flags setting,
5994 * the rest is checked inline. Fast processing is turned on in
5995 * tcp_data_queue when everything is OK.
5996 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5997 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5998 {
5999 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6000 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6001 struct tcp_sock *tp = tcp_sk(sk);
6002 unsigned int len = skb->len;
6003
6004 /* TCP congestion window tracking */
6005 trace_tcp_probe(sk, skb);
6006
6007 tcp_mstamp_refresh(tp);
6008 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6009 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6010 /*
6011 * Header prediction.
6012 * The code loosely follows the one in the famous
6013 * "30 instruction TCP receive" Van Jacobson mail.
6014 *
6015 * Van's trick is to deposit buffers into socket queue
6016 * on a device interrupt, to call tcp_recv function
6017 * on the receive process context and checksum and copy
6018 * the buffer to user space. smart...
6019 *
6020 * Our current scheme is not silly either but we take the
6021 * extra cost of the net_bh soft interrupt processing...
6022 * We do checksum and copy also but from device to kernel.
6023 */
6024
6025 tp->rx_opt.saw_tstamp = 0;
6026
6027 /* pred_flags is 0xS?10 << 16 + snd_wnd
6028 * if header_prediction is to be made
6029 * 'S' will always be tp->tcp_header_len >> 2
6030 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6031 * turn it off (when there are holes in the receive
6032 * space for instance)
6033 * PSH flag is ignored.
6034 */
6035
6036 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6037 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6038 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6039 int tcp_header_len = tp->tcp_header_len;
6040
6041 /* Timestamp header prediction: tcp_header_len
6042 * is automatically equal to th->doff*4 due to pred_flags
6043 * match.
6044 */
6045
6046 /* Check timestamp */
6047 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6048 /* No? Slow path! */
6049 if (!tcp_parse_aligned_timestamp(tp, th))
6050 goto slow_path;
6051
6052 /* If PAWS failed, check it more carefully in slow path */
6053 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6054 goto slow_path;
6055
6056 /* DO NOT update ts_recent here, if checksum fails
6057 * and timestamp was corrupted part, it will result
6058 * in a hung connection since we will drop all
6059 * future packets due to the PAWS test.
6060 */
6061 }
6062
6063 if (len <= tcp_header_len) {
6064 /* Bulk data transfer: sender */
6065 if (len == tcp_header_len) {
6066 /* Predicted packet is in window by definition.
6067 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6068 * Hence, check seq<=rcv_wup reduces to:
6069 */
6070 if (tcp_header_len ==
6071 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6072 tp->rcv_nxt == tp->rcv_wup)
6073 tcp_store_ts_recent(tp);
6074
6075 /* We know that such packets are checksummed
6076 * on entry.
6077 */
6078 tcp_ack(sk, skb, 0);
6079 __kfree_skb(skb);
6080 tcp_data_snd_check(sk);
6081 /* When receiving pure ack in fast path, update
6082 * last ts ecr directly instead of calling
6083 * tcp_rcv_rtt_measure_ts()
6084 */
6085 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6086 return;
6087 } else { /* Header too small */
6088 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6089 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6090 goto discard;
6091 }
6092 } else {
6093 int eaten = 0;
6094 bool fragstolen = false;
6095
6096 if (tcp_checksum_complete(skb))
6097 goto csum_error;
6098
6099 if ((int)skb->truesize > sk->sk_forward_alloc)
6100 goto step5;
6101
6102 /* Predicted packet is in window by definition.
6103 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6104 * Hence, check seq<=rcv_wup reduces to:
6105 */
6106 if (tcp_header_len ==
6107 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6108 tp->rcv_nxt == tp->rcv_wup)
6109 tcp_store_ts_recent(tp);
6110
6111 tcp_rcv_rtt_measure_ts(sk, skb);
6112
6113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6114
6115 /* Bulk data transfer: receiver */
6116 tcp_cleanup_skb(skb);
6117 __skb_pull(skb, tcp_header_len);
6118 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6119
6120 tcp_event_data_recv(sk, skb);
6121
6122 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6123 /* Well, only one small jumplet in fast path... */
6124 tcp_ack(sk, skb, FLAG_DATA);
6125 tcp_data_snd_check(sk);
6126 if (!inet_csk_ack_scheduled(sk))
6127 goto no_ack;
6128 } else {
6129 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6130 }
6131
6132 __tcp_ack_snd_check(sk, 0);
6133 no_ack:
6134 if (eaten)
6135 kfree_skb_partial(skb, fragstolen);
6136 tcp_data_ready(sk);
6137 return;
6138 }
6139 }
6140
6141 slow_path:
6142 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6143 goto csum_error;
6144
6145 if (!th->ack && !th->rst && !th->syn) {
6146 reason = SKB_DROP_REASON_TCP_FLAGS;
6147 goto discard;
6148 }
6149
6150 /*
6151 * Standard slow path.
6152 */
6153
6154 if (!tcp_validate_incoming(sk, skb, th, 1))
6155 return;
6156
6157 step5:
6158 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6159 if ((int)reason < 0) {
6160 reason = -reason;
6161 goto discard;
6162 }
6163 tcp_rcv_rtt_measure_ts(sk, skb);
6164
6165 /* Process urgent data. */
6166 tcp_urg(sk, skb, th);
6167
6168 /* step 7: process the segment text */
6169 tcp_data_queue(sk, skb);
6170
6171 tcp_data_snd_check(sk);
6172 tcp_ack_snd_check(sk);
6173 return;
6174
6175 csum_error:
6176 reason = SKB_DROP_REASON_TCP_CSUM;
6177 trace_tcp_bad_csum(skb);
6178 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6179 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6180
6181 discard:
6182 tcp_drop_reason(sk, skb, reason);
6183 }
6184 EXPORT_SYMBOL(tcp_rcv_established);
6185
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6186 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6187 {
6188 struct inet_connection_sock *icsk = inet_csk(sk);
6189 struct tcp_sock *tp = tcp_sk(sk);
6190
6191 tcp_mtup_init(sk);
6192 icsk->icsk_af_ops->rebuild_header(sk);
6193 tcp_init_metrics(sk);
6194
6195 /* Initialize the congestion window to start the transfer.
6196 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6197 * retransmitted. In light of RFC6298 more aggressive 1sec
6198 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6199 * retransmission has occurred.
6200 */
6201 if (tp->total_retrans > 1 && tp->undo_marker)
6202 tcp_snd_cwnd_set(tp, 1);
6203 else
6204 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6205 tp->snd_cwnd_stamp = tcp_jiffies32;
6206
6207 bpf_skops_established(sk, bpf_op, skb);
6208 /* Initialize congestion control unless BPF initialized it already: */
6209 if (!icsk->icsk_ca_initialized)
6210 tcp_init_congestion_control(sk);
6211 tcp_init_buffer_space(sk);
6212 }
6213
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6214 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6215 {
6216 struct tcp_sock *tp = tcp_sk(sk);
6217 struct inet_connection_sock *icsk = inet_csk(sk);
6218
6219 tcp_set_state(sk, TCP_ESTABLISHED);
6220 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6221
6222 if (skb) {
6223 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6224 security_inet_conn_established(sk, skb);
6225 sk_mark_napi_id(sk, skb);
6226 }
6227
6228 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6229
6230 /* Prevent spurious tcp_cwnd_restart() on first data
6231 * packet.
6232 */
6233 tp->lsndtime = tcp_jiffies32;
6234
6235 if (sock_flag(sk, SOCK_KEEPOPEN))
6236 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6237
6238 if (!tp->rx_opt.snd_wscale)
6239 __tcp_fast_path_on(tp, tp->snd_wnd);
6240 else
6241 tp->pred_flags = 0;
6242 }
6243
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6244 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6245 struct tcp_fastopen_cookie *cookie)
6246 {
6247 struct tcp_sock *tp = tcp_sk(sk);
6248 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6249 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6250 bool syn_drop = false;
6251
6252 if (mss == tp->rx_opt.user_mss) {
6253 struct tcp_options_received opt;
6254
6255 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6256 tcp_clear_options(&opt);
6257 opt.user_mss = opt.mss_clamp = 0;
6258 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6259 mss = opt.mss_clamp;
6260 }
6261
6262 if (!tp->syn_fastopen) {
6263 /* Ignore an unsolicited cookie */
6264 cookie->len = -1;
6265 } else if (tp->total_retrans) {
6266 /* SYN timed out and the SYN-ACK neither has a cookie nor
6267 * acknowledges data. Presumably the remote received only
6268 * the retransmitted (regular) SYNs: either the original
6269 * SYN-data or the corresponding SYN-ACK was dropped.
6270 */
6271 syn_drop = (cookie->len < 0 && data);
6272 } else if (cookie->len < 0 && !tp->syn_data) {
6273 /* We requested a cookie but didn't get it. If we did not use
6274 * the (old) exp opt format then try so next time (try_exp=1).
6275 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6276 */
6277 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6278 }
6279
6280 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6281
6282 if (data) { /* Retransmit unacked data in SYN */
6283 if (tp->total_retrans)
6284 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6285 else
6286 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6287 skb_rbtree_walk_from(data)
6288 tcp_mark_skb_lost(sk, data);
6289 tcp_non_congestion_loss_retransmit(sk);
6290 NET_INC_STATS(sock_net(sk),
6291 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6292 return true;
6293 }
6294 tp->syn_data_acked = tp->syn_data;
6295 if (tp->syn_data_acked) {
6296 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6297 /* SYN-data is counted as two separate packets in tcp_ack() */
6298 if (tp->delivered > 1)
6299 --tp->delivered;
6300 }
6301
6302 tcp_fastopen_add_skb(sk, synack);
6303
6304 return false;
6305 }
6306
smc_check_reset_syn(struct tcp_sock * tp)6307 static void smc_check_reset_syn(struct tcp_sock *tp)
6308 {
6309 #if IS_ENABLED(CONFIG_SMC)
6310 if (static_branch_unlikely(&tcp_have_smc)) {
6311 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6312 tp->syn_smc = 0;
6313 }
6314 #endif
6315 }
6316
tcp_try_undo_spurious_syn(struct sock * sk)6317 static void tcp_try_undo_spurious_syn(struct sock *sk)
6318 {
6319 struct tcp_sock *tp = tcp_sk(sk);
6320 u32 syn_stamp;
6321
6322 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6323 * spurious if the ACK's timestamp option echo value matches the
6324 * original SYN timestamp.
6325 */
6326 syn_stamp = tp->retrans_stamp;
6327 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6328 syn_stamp == tp->rx_opt.rcv_tsecr)
6329 tp->undo_marker = 0;
6330 }
6331
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6332 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6333 const struct tcphdr *th)
6334 {
6335 struct inet_connection_sock *icsk = inet_csk(sk);
6336 struct tcp_sock *tp = tcp_sk(sk);
6337 struct tcp_fastopen_cookie foc = { .len = -1 };
6338 int saved_clamp = tp->rx_opt.mss_clamp;
6339 bool fastopen_fail;
6340 SKB_DR(reason);
6341
6342 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6343 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6344 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6345
6346 if (th->ack) {
6347 /* rfc793:
6348 * "If the state is SYN-SENT then
6349 * first check the ACK bit
6350 * If the ACK bit is set
6351 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6352 * a reset (unless the RST bit is set, if so drop
6353 * the segment and return)"
6354 */
6355 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6356 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6357 /* Previous FIN/ACK or RST/ACK might be ignored. */
6358 if (icsk->icsk_retransmits == 0)
6359 inet_csk_reset_xmit_timer(sk,
6360 ICSK_TIME_RETRANS,
6361 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6362 goto reset_and_undo;
6363 }
6364
6365 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6366 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6367 tcp_time_stamp(tp))) {
6368 NET_INC_STATS(sock_net(sk),
6369 LINUX_MIB_PAWSACTIVEREJECTED);
6370 goto reset_and_undo;
6371 }
6372
6373 /* Now ACK is acceptable.
6374 *
6375 * "If the RST bit is set
6376 * If the ACK was acceptable then signal the user "error:
6377 * connection reset", drop the segment, enter CLOSED state,
6378 * delete TCB, and return."
6379 */
6380
6381 if (th->rst) {
6382 tcp_reset(sk, skb);
6383 consume:
6384 __kfree_skb(skb);
6385 return 0;
6386 }
6387
6388 /* rfc793:
6389 * "fifth, if neither of the SYN or RST bits is set then
6390 * drop the segment and return."
6391 *
6392 * See note below!
6393 * --ANK(990513)
6394 */
6395 if (!th->syn) {
6396 SKB_DR_SET(reason, TCP_FLAGS);
6397 goto discard_and_undo;
6398 }
6399 /* rfc793:
6400 * "If the SYN bit is on ...
6401 * are acceptable then ...
6402 * (our SYN has been ACKed), change the connection
6403 * state to ESTABLISHED..."
6404 */
6405
6406 tcp_ecn_rcv_synack(tp, th);
6407
6408 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6409 tcp_try_undo_spurious_syn(sk);
6410 tcp_ack(sk, skb, FLAG_SLOWPATH);
6411
6412 /* Ok.. it's good. Set up sequence numbers and
6413 * move to established.
6414 */
6415 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6416 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6417
6418 /* RFC1323: The window in SYN & SYN/ACK segments is
6419 * never scaled.
6420 */
6421 tp->snd_wnd = ntohs(th->window);
6422
6423 if (!tp->rx_opt.wscale_ok) {
6424 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6425 WRITE_ONCE(tp->window_clamp,
6426 min(tp->window_clamp, 65535U));
6427 }
6428
6429 if (tp->rx_opt.saw_tstamp) {
6430 tp->rx_opt.tstamp_ok = 1;
6431 tp->tcp_header_len =
6432 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6433 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6434 tcp_store_ts_recent(tp);
6435 } else {
6436 tp->tcp_header_len = sizeof(struct tcphdr);
6437 }
6438
6439 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6440 tcp_initialize_rcv_mss(sk);
6441
6442 /* Remember, tcp_poll() does not lock socket!
6443 * Change state from SYN-SENT only after copied_seq
6444 * is initialized. */
6445 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6446
6447 smc_check_reset_syn(tp);
6448
6449 smp_mb();
6450
6451 tcp_finish_connect(sk, skb);
6452
6453 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6454 tcp_rcv_fastopen_synack(sk, skb, &foc);
6455
6456 if (!sock_flag(sk, SOCK_DEAD)) {
6457 sk->sk_state_change(sk);
6458 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6459 }
6460 if (fastopen_fail)
6461 return -1;
6462 if (sk->sk_write_pending ||
6463 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6464 inet_csk_in_pingpong_mode(sk)) {
6465 /* Save one ACK. Data will be ready after
6466 * several ticks, if write_pending is set.
6467 *
6468 * It may be deleted, but with this feature tcpdumps
6469 * look so _wonderfully_ clever, that I was not able
6470 * to stand against the temptation 8) --ANK
6471 */
6472 inet_csk_schedule_ack(sk);
6473 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6474 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6475 TCP_DELACK_MAX, TCP_RTO_MAX);
6476 goto consume;
6477 }
6478 tcp_send_ack(sk);
6479 return -1;
6480 }
6481
6482 /* No ACK in the segment */
6483
6484 if (th->rst) {
6485 /* rfc793:
6486 * "If the RST bit is set
6487 *
6488 * Otherwise (no ACK) drop the segment and return."
6489 */
6490 SKB_DR_SET(reason, TCP_RESET);
6491 goto discard_and_undo;
6492 }
6493
6494 /* PAWS check. */
6495 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6496 tcp_paws_reject(&tp->rx_opt, 0)) {
6497 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6498 goto discard_and_undo;
6499 }
6500 if (th->syn) {
6501 /* We see SYN without ACK. It is attempt of
6502 * simultaneous connect with crossed SYNs.
6503 * Particularly, it can be connect to self.
6504 */
6505 tcp_set_state(sk, TCP_SYN_RECV);
6506
6507 if (tp->rx_opt.saw_tstamp) {
6508 tp->rx_opt.tstamp_ok = 1;
6509 tcp_store_ts_recent(tp);
6510 tp->tcp_header_len =
6511 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6512 } else {
6513 tp->tcp_header_len = sizeof(struct tcphdr);
6514 }
6515
6516 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6517 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6518 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6519
6520 /* RFC1323: The window in SYN & SYN/ACK segments is
6521 * never scaled.
6522 */
6523 tp->snd_wnd = ntohs(th->window);
6524 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6525 tp->max_window = tp->snd_wnd;
6526
6527 tcp_ecn_rcv_syn(tp, th);
6528
6529 tcp_mtup_init(sk);
6530 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6531 tcp_initialize_rcv_mss(sk);
6532
6533 tcp_send_synack(sk);
6534 #if 0
6535 /* Note, we could accept data and URG from this segment.
6536 * There are no obstacles to make this (except that we must
6537 * either change tcp_recvmsg() to prevent it from returning data
6538 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6539 *
6540 * However, if we ignore data in ACKless segments sometimes,
6541 * we have no reasons to accept it sometimes.
6542 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6543 * is not flawless. So, discard packet for sanity.
6544 * Uncomment this return to process the data.
6545 */
6546 return -1;
6547 #else
6548 goto consume;
6549 #endif
6550 }
6551 /* "fifth, if neither of the SYN or RST bits is set then
6552 * drop the segment and return."
6553 */
6554
6555 discard_and_undo:
6556 tcp_clear_options(&tp->rx_opt);
6557 tp->rx_opt.mss_clamp = saved_clamp;
6558 tcp_drop_reason(sk, skb, reason);
6559 return 0;
6560
6561 reset_and_undo:
6562 tcp_clear_options(&tp->rx_opt);
6563 tp->rx_opt.mss_clamp = saved_clamp;
6564 return 1;
6565 }
6566
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6567 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6568 {
6569 struct tcp_sock *tp = tcp_sk(sk);
6570 struct request_sock *req;
6571
6572 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6573 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6574 */
6575 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6576 tcp_try_undo_recovery(sk);
6577
6578 tcp_update_rto_time(tp);
6579 inet_csk(sk)->icsk_retransmits = 0;
6580 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6581 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6582 * need to zero retrans_stamp here to prevent spurious
6583 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6584 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6585 * set entering CA_Recovery, for correct retransmits_timed_out() and
6586 * undo behavior.
6587 */
6588 tcp_retrans_stamp_cleanup(sk);
6589
6590 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6591 * we no longer need req so release it.
6592 */
6593 req = rcu_dereference_protected(tp->fastopen_rsk,
6594 lockdep_sock_is_held(sk));
6595 reqsk_fastopen_remove(sk, req, false);
6596
6597 /* Re-arm the timer because data may have been sent out.
6598 * This is similar to the regular data transmission case
6599 * when new data has just been ack'ed.
6600 *
6601 * (TFO) - we could try to be more aggressive and
6602 * retransmitting any data sooner based on when they
6603 * are sent out.
6604 */
6605 tcp_rearm_rto(sk);
6606 }
6607
6608 /*
6609 * This function implements the receiving procedure of RFC 793 for
6610 * all states except ESTABLISHED and TIME_WAIT.
6611 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6612 * address independent.
6613 */
6614
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6615 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6616 {
6617 struct tcp_sock *tp = tcp_sk(sk);
6618 struct inet_connection_sock *icsk = inet_csk(sk);
6619 const struct tcphdr *th = tcp_hdr(skb);
6620 struct request_sock *req;
6621 int queued = 0;
6622 bool acceptable;
6623 SKB_DR(reason);
6624
6625 switch (sk->sk_state) {
6626 case TCP_CLOSE:
6627 SKB_DR_SET(reason, TCP_CLOSE);
6628 goto discard;
6629
6630 case TCP_LISTEN:
6631 if (th->ack)
6632 return 1;
6633
6634 if (th->rst) {
6635 SKB_DR_SET(reason, TCP_RESET);
6636 goto discard;
6637 }
6638 if (th->syn) {
6639 if (th->fin) {
6640 SKB_DR_SET(reason, TCP_FLAGS);
6641 goto discard;
6642 }
6643 /* It is possible that we process SYN packets from backlog,
6644 * so we need to make sure to disable BH and RCU right there.
6645 */
6646 rcu_read_lock();
6647 local_bh_disable();
6648 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6649 local_bh_enable();
6650 rcu_read_unlock();
6651
6652 if (!acceptable)
6653 return 1;
6654 consume_skb(skb);
6655 return 0;
6656 }
6657 SKB_DR_SET(reason, TCP_FLAGS);
6658 goto discard;
6659
6660 case TCP_SYN_SENT:
6661 tp->rx_opt.saw_tstamp = 0;
6662 tcp_mstamp_refresh(tp);
6663 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6664 if (queued >= 0)
6665 return queued;
6666
6667 /* Do step6 onward by hand. */
6668 tcp_urg(sk, skb, th);
6669 __kfree_skb(skb);
6670 tcp_data_snd_check(sk);
6671 return 0;
6672 }
6673
6674 tcp_mstamp_refresh(tp);
6675 tp->rx_opt.saw_tstamp = 0;
6676 req = rcu_dereference_protected(tp->fastopen_rsk,
6677 lockdep_sock_is_held(sk));
6678 if (req) {
6679 bool req_stolen;
6680
6681 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6682 sk->sk_state != TCP_FIN_WAIT1);
6683
6684 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6685 SKB_DR_SET(reason, TCP_FASTOPEN);
6686 goto discard;
6687 }
6688 }
6689
6690 if (!th->ack && !th->rst && !th->syn) {
6691 SKB_DR_SET(reason, TCP_FLAGS);
6692 goto discard;
6693 }
6694 if (!tcp_validate_incoming(sk, skb, th, 0))
6695 return 0;
6696
6697 /* step 5: check the ACK field */
6698 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6699 FLAG_UPDATE_TS_RECENT |
6700 FLAG_NO_CHALLENGE_ACK) > 0;
6701
6702 if (!acceptable) {
6703 if (sk->sk_state == TCP_SYN_RECV)
6704 return 1; /* send one RST */
6705 tcp_send_challenge_ack(sk);
6706 SKB_DR_SET(reason, TCP_OLD_ACK);
6707 goto discard;
6708 }
6709 switch (sk->sk_state) {
6710 case TCP_SYN_RECV:
6711 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6712 if (!tp->srtt_us)
6713 tcp_synack_rtt_meas(sk, req);
6714
6715 if (tp->rx_opt.tstamp_ok)
6716 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6717
6718 if (req) {
6719 tcp_rcv_synrecv_state_fastopen(sk);
6720 } else {
6721 tcp_try_undo_spurious_syn(sk);
6722 tp->retrans_stamp = 0;
6723 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6724 skb);
6725 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6726 }
6727 smp_mb();
6728 tcp_set_state(sk, TCP_ESTABLISHED);
6729 sk->sk_state_change(sk);
6730
6731 /* Note, that this wakeup is only for marginal crossed SYN case.
6732 * Passively open sockets are not waked up, because
6733 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6734 */
6735 if (sk->sk_socket)
6736 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6737
6738 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6739 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6740 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6741
6742 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6743 tcp_update_pacing_rate(sk);
6744
6745 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6746 tp->lsndtime = tcp_jiffies32;
6747
6748 tcp_initialize_rcv_mss(sk);
6749 tcp_fast_path_on(tp);
6750 if (sk->sk_shutdown & SEND_SHUTDOWN)
6751 tcp_shutdown(sk, SEND_SHUTDOWN);
6752 break;
6753
6754 case TCP_FIN_WAIT1: {
6755 int tmo;
6756
6757 if (req)
6758 tcp_rcv_synrecv_state_fastopen(sk);
6759
6760 if (tp->snd_una != tp->write_seq)
6761 break;
6762
6763 tcp_set_state(sk, TCP_FIN_WAIT2);
6764 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6765
6766 sk_dst_confirm(sk);
6767
6768 if (!sock_flag(sk, SOCK_DEAD)) {
6769 /* Wake up lingering close() */
6770 sk->sk_state_change(sk);
6771 break;
6772 }
6773
6774 if (READ_ONCE(tp->linger2) < 0) {
6775 tcp_done(sk);
6776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6777 return 1;
6778 }
6779 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6780 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6781 /* Receive out of order FIN after close() */
6782 if (tp->syn_fastopen && th->fin)
6783 tcp_fastopen_active_disable(sk);
6784 tcp_done(sk);
6785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6786 return 1;
6787 }
6788
6789 tmo = tcp_fin_time(sk);
6790 if (tmo > TCP_TIMEWAIT_LEN) {
6791 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6792 } else if (th->fin || sock_owned_by_user(sk)) {
6793 /* Bad case. We could lose such FIN otherwise.
6794 * It is not a big problem, but it looks confusing
6795 * and not so rare event. We still can lose it now,
6796 * if it spins in bh_lock_sock(), but it is really
6797 * marginal case.
6798 */
6799 inet_csk_reset_keepalive_timer(sk, tmo);
6800 } else {
6801 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6802 goto consume;
6803 }
6804 break;
6805 }
6806
6807 case TCP_CLOSING:
6808 if (tp->snd_una == tp->write_seq) {
6809 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6810 goto consume;
6811 }
6812 break;
6813
6814 case TCP_LAST_ACK:
6815 if (tp->snd_una == tp->write_seq) {
6816 tcp_update_metrics(sk);
6817 tcp_done(sk);
6818 goto consume;
6819 }
6820 break;
6821 }
6822
6823 /* step 6: check the URG bit */
6824 tcp_urg(sk, skb, th);
6825
6826 /* step 7: process the segment text */
6827 switch (sk->sk_state) {
6828 case TCP_CLOSE_WAIT:
6829 case TCP_CLOSING:
6830 case TCP_LAST_ACK:
6831 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6832 /* If a subflow has been reset, the packet should not
6833 * continue to be processed, drop the packet.
6834 */
6835 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6836 goto discard;
6837 break;
6838 }
6839 fallthrough;
6840 case TCP_FIN_WAIT1:
6841 case TCP_FIN_WAIT2:
6842 /* RFC 793 says to queue data in these states,
6843 * RFC 1122 says we MUST send a reset.
6844 * BSD 4.4 also does reset.
6845 */
6846 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6847 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6848 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6850 tcp_reset(sk, skb);
6851 return 1;
6852 }
6853 }
6854 fallthrough;
6855 case TCP_ESTABLISHED:
6856 tcp_data_queue(sk, skb);
6857 queued = 1;
6858 break;
6859 }
6860
6861 /* tcp_data could move socket to TIME-WAIT */
6862 if (sk->sk_state != TCP_CLOSE) {
6863 tcp_data_snd_check(sk);
6864 tcp_ack_snd_check(sk);
6865 }
6866
6867 if (!queued) {
6868 discard:
6869 tcp_drop_reason(sk, skb, reason);
6870 }
6871 return 0;
6872
6873 consume:
6874 __kfree_skb(skb);
6875 return 0;
6876 }
6877 EXPORT_SYMBOL(tcp_rcv_state_process);
6878
pr_drop_req(struct request_sock * req,__u16 port,int family)6879 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6880 {
6881 struct inet_request_sock *ireq = inet_rsk(req);
6882
6883 if (family == AF_INET)
6884 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6885 &ireq->ir_rmt_addr, port);
6886 #if IS_ENABLED(CONFIG_IPV6)
6887 else if (family == AF_INET6)
6888 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6889 &ireq->ir_v6_rmt_addr, port);
6890 #endif
6891 }
6892
6893 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6894 *
6895 * If we receive a SYN packet with these bits set, it means a
6896 * network is playing bad games with TOS bits. In order to
6897 * avoid possible false congestion notifications, we disable
6898 * TCP ECN negotiation.
6899 *
6900 * Exception: tcp_ca wants ECN. This is required for DCTCP
6901 * congestion control: Linux DCTCP asserts ECT on all packets,
6902 * including SYN, which is most optimal solution; however,
6903 * others, such as FreeBSD do not.
6904 *
6905 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6906 * set, indicating the use of a future TCP extension (such as AccECN). See
6907 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6908 * extensions.
6909 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6910 static void tcp_ecn_create_request(struct request_sock *req,
6911 const struct sk_buff *skb,
6912 const struct sock *listen_sk,
6913 const struct dst_entry *dst)
6914 {
6915 const struct tcphdr *th = tcp_hdr(skb);
6916 const struct net *net = sock_net(listen_sk);
6917 bool th_ecn = th->ece && th->cwr;
6918 bool ect, ecn_ok;
6919 u32 ecn_ok_dst;
6920
6921 if (!th_ecn)
6922 return;
6923
6924 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6925 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6926 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6927
6928 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6929 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6930 tcp_bpf_ca_needs_ecn((struct sock *)req))
6931 inet_rsk(req)->ecn_ok = 1;
6932 }
6933
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6934 static void tcp_openreq_init(struct request_sock *req,
6935 const struct tcp_options_received *rx_opt,
6936 struct sk_buff *skb, const struct sock *sk)
6937 {
6938 struct inet_request_sock *ireq = inet_rsk(req);
6939
6940 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6941 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6942 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6943 tcp_rsk(req)->snt_synack = 0;
6944 tcp_rsk(req)->last_oow_ack_time = 0;
6945 req->mss = rx_opt->mss_clamp;
6946 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6947 ireq->tstamp_ok = rx_opt->tstamp_ok;
6948 ireq->sack_ok = rx_opt->sack_ok;
6949 ireq->snd_wscale = rx_opt->snd_wscale;
6950 ireq->wscale_ok = rx_opt->wscale_ok;
6951 ireq->acked = 0;
6952 ireq->ecn_ok = 0;
6953 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6954 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6955 ireq->ir_mark = inet_request_mark(sk, skb);
6956 #if IS_ENABLED(CONFIG_SMC)
6957 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6958 tcp_sk(sk)->smc_hs_congested(sk));
6959 #endif
6960 }
6961
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6962 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6963 struct sock *sk_listener,
6964 bool attach_listener)
6965 {
6966 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6967 attach_listener);
6968
6969 if (req) {
6970 struct inet_request_sock *ireq = inet_rsk(req);
6971
6972 ireq->ireq_opt = NULL;
6973 #if IS_ENABLED(CONFIG_IPV6)
6974 ireq->pktopts = NULL;
6975 #endif
6976 atomic64_set(&ireq->ir_cookie, 0);
6977 ireq->ireq_state = TCP_NEW_SYN_RECV;
6978 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6979 ireq->ireq_family = sk_listener->sk_family;
6980 req->timeout = TCP_TIMEOUT_INIT;
6981 }
6982
6983 return req;
6984 }
6985 EXPORT_SYMBOL(inet_reqsk_alloc);
6986
6987 /*
6988 * Return true if a syncookie should be sent
6989 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6990 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6991 {
6992 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6993 const char *msg = "Dropping request";
6994 struct net *net = sock_net(sk);
6995 bool want_cookie = false;
6996 u8 syncookies;
6997
6998 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6999
7000 #ifdef CONFIG_SYN_COOKIES
7001 if (syncookies) {
7002 msg = "Sending cookies";
7003 want_cookie = true;
7004 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7005 } else
7006 #endif
7007 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7008
7009 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7010 xchg(&queue->synflood_warned, 1) == 0) {
7011 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7012 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7013 proto, inet6_rcv_saddr(sk),
7014 sk->sk_num, msg);
7015 } else {
7016 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7017 proto, &sk->sk_rcv_saddr,
7018 sk->sk_num, msg);
7019 }
7020 }
7021
7022 return want_cookie;
7023 }
7024
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7025 static void tcp_reqsk_record_syn(const struct sock *sk,
7026 struct request_sock *req,
7027 const struct sk_buff *skb)
7028 {
7029 if (tcp_sk(sk)->save_syn) {
7030 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7031 struct saved_syn *saved_syn;
7032 u32 mac_hdrlen;
7033 void *base;
7034
7035 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7036 base = skb_mac_header(skb);
7037 mac_hdrlen = skb_mac_header_len(skb);
7038 len += mac_hdrlen;
7039 } else {
7040 base = skb_network_header(skb);
7041 mac_hdrlen = 0;
7042 }
7043
7044 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7045 GFP_ATOMIC);
7046 if (saved_syn) {
7047 saved_syn->mac_hdrlen = mac_hdrlen;
7048 saved_syn->network_hdrlen = skb_network_header_len(skb);
7049 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7050 memcpy(saved_syn->data, base, len);
7051 req->saved_syn = saved_syn;
7052 }
7053 }
7054 }
7055
7056 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7057 * used for SYN cookie generation.
7058 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7059 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7060 const struct tcp_request_sock_ops *af_ops,
7061 struct sock *sk, struct tcphdr *th)
7062 {
7063 struct tcp_sock *tp = tcp_sk(sk);
7064 u16 mss;
7065
7066 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7067 !inet_csk_reqsk_queue_is_full(sk))
7068 return 0;
7069
7070 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7071 return 0;
7072
7073 if (sk_acceptq_is_full(sk)) {
7074 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7075 return 0;
7076 }
7077
7078 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7079 if (!mss)
7080 mss = af_ops->mss_clamp;
7081
7082 return mss;
7083 }
7084 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7085
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7086 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7087 const struct tcp_request_sock_ops *af_ops,
7088 struct sock *sk, struct sk_buff *skb)
7089 {
7090 struct tcp_fastopen_cookie foc = { .len = -1 };
7091 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7092 struct tcp_options_received tmp_opt;
7093 struct tcp_sock *tp = tcp_sk(sk);
7094 struct net *net = sock_net(sk);
7095 struct sock *fastopen_sk = NULL;
7096 struct request_sock *req;
7097 bool want_cookie = false;
7098 struct dst_entry *dst;
7099 struct flowi fl;
7100 u8 syncookies;
7101
7102 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7103
7104 /* TW buckets are converted to open requests without
7105 * limitations, they conserve resources and peer is
7106 * evidently real one.
7107 */
7108 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7109 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7110 if (!want_cookie)
7111 goto drop;
7112 }
7113
7114 if (sk_acceptq_is_full(sk)) {
7115 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7116 goto drop;
7117 }
7118
7119 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7120 if (!req)
7121 goto drop;
7122
7123 req->syncookie = want_cookie;
7124 tcp_rsk(req)->af_specific = af_ops;
7125 tcp_rsk(req)->ts_off = 0;
7126 #if IS_ENABLED(CONFIG_MPTCP)
7127 tcp_rsk(req)->is_mptcp = 0;
7128 #endif
7129
7130 tcp_clear_options(&tmp_opt);
7131 tmp_opt.mss_clamp = af_ops->mss_clamp;
7132 tmp_opt.user_mss = tp->rx_opt.user_mss;
7133 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7134 want_cookie ? NULL : &foc);
7135
7136 if (want_cookie && !tmp_opt.saw_tstamp)
7137 tcp_clear_options(&tmp_opt);
7138
7139 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7140 tmp_opt.smc_ok = 0;
7141
7142 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7143 tcp_openreq_init(req, &tmp_opt, skb, sk);
7144 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7145
7146 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7147 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7148
7149 dst = af_ops->route_req(sk, skb, &fl, req);
7150 if (!dst)
7151 goto drop_and_free;
7152
7153 if (tmp_opt.tstamp_ok)
7154 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7155
7156 if (!want_cookie && !isn) {
7157 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7158
7159 /* Kill the following clause, if you dislike this way. */
7160 if (!syncookies &&
7161 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7162 (max_syn_backlog >> 2)) &&
7163 !tcp_peer_is_proven(req, dst)) {
7164 /* Without syncookies last quarter of
7165 * backlog is filled with destinations,
7166 * proven to be alive.
7167 * It means that we continue to communicate
7168 * to destinations, already remembered
7169 * to the moment of synflood.
7170 */
7171 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7172 rsk_ops->family);
7173 goto drop_and_release;
7174 }
7175
7176 isn = af_ops->init_seq(skb);
7177 }
7178
7179 tcp_ecn_create_request(req, skb, sk, dst);
7180
7181 if (want_cookie) {
7182 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7183 if (!tmp_opt.tstamp_ok)
7184 inet_rsk(req)->ecn_ok = 0;
7185 }
7186
7187 tcp_rsk(req)->snt_isn = isn;
7188 tcp_rsk(req)->txhash = net_tx_rndhash();
7189 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7190 tcp_openreq_init_rwin(req, sk, dst);
7191 sk_rx_queue_set(req_to_sk(req), skb);
7192 if (!want_cookie) {
7193 tcp_reqsk_record_syn(sk, req, skb);
7194 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7195 }
7196 if (fastopen_sk) {
7197 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7198 &foc, TCP_SYNACK_FASTOPEN, skb);
7199 /* Add the child socket directly into the accept queue */
7200 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7201 reqsk_fastopen_remove(fastopen_sk, req, false);
7202 bh_unlock_sock(fastopen_sk);
7203 sock_put(fastopen_sk);
7204 goto drop_and_free;
7205 }
7206 sk->sk_data_ready(sk);
7207 bh_unlock_sock(fastopen_sk);
7208 sock_put(fastopen_sk);
7209 } else {
7210 tcp_rsk(req)->tfo_listener = false;
7211 if (!want_cookie) {
7212 req->timeout = tcp_timeout_init((struct sock *)req);
7213 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7214 req->timeout))) {
7215 reqsk_free(req);
7216 dst_release(dst);
7217 return 0;
7218 }
7219
7220 }
7221 af_ops->send_synack(sk, dst, &fl, req, &foc,
7222 !want_cookie ? TCP_SYNACK_NORMAL :
7223 TCP_SYNACK_COOKIE,
7224 skb);
7225 if (want_cookie) {
7226 reqsk_free(req);
7227 return 0;
7228 }
7229 }
7230 reqsk_put(req);
7231 return 0;
7232
7233 drop_and_release:
7234 dst_release(dst);
7235 drop_and_free:
7236 __reqsk_free(req);
7237 drop:
7238 tcp_listendrop(sk);
7239 return 0;
7240 }
7241 EXPORT_SYMBOL(tcp_conn_request);
7242