xref: /openbmc/linux/drivers/net/ethernet/intel/e1000/e1000_hw.c (revision 86aa961bb4619a68077ebeba21c52e9ba0eab43d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /* e1000_hw.c
5  * Shared functions for accessing and configuring the MAC
6  */
7 
8 #include <linux/bitfield.h>
9 #include "e1000.h"
10 
11 static s32 e1000_check_downshift(struct e1000_hw *hw);
12 static s32 e1000_check_polarity(struct e1000_hw *hw,
13 				e1000_rev_polarity *polarity);
14 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
15 static void e1000_clear_vfta(struct e1000_hw *hw);
16 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
17 					      bool link_up);
18 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
19 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
20 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
21 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
22 				  u16 *max_length);
23 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
24 static s32 e1000_id_led_init(struct e1000_hw *hw);
25 static void e1000_init_rx_addrs(struct e1000_hw *hw);
26 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
27 				  struct e1000_phy_info *phy_info);
28 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
29 				  struct e1000_phy_info *phy_info);
30 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
31 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
32 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
33 static s32 e1000_set_phy_type(struct e1000_hw *hw);
34 static void e1000_phy_init_script(struct e1000_hw *hw);
35 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
36 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
37 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
38 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
39 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
40 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
41 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
42 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
43 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
44 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
45 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
46 				  u16 words, u16 *data);
47 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
48 					u16 words, u16 *data);
49 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
50 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
51 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
52 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
53 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
54 				  u16 phy_data);
55 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
56 				 u16 *phy_data);
57 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
58 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
59 static void e1000_release_eeprom(struct e1000_hw *hw);
60 static void e1000_standby_eeprom(struct e1000_hw *hw);
61 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
62 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
63 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
64 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
65 				u16 *data);
66 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
67 				 u16 *data);
68 
69 /* IGP cable length table */
70 static const
71 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
72 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
73 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
74 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
75 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
76 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
77 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
78 	    100,
79 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
80 	    110, 110,
81 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
82 	    120, 120
83 };
84 
85 static DEFINE_MUTEX(e1000_eeprom_lock);
86 static DEFINE_SPINLOCK(e1000_phy_lock);
87 
88 /**
89  * e1000_set_phy_type - Set the phy type member in the hw struct.
90  * @hw: Struct containing variables accessed by shared code
91  */
e1000_set_phy_type(struct e1000_hw * hw)92 static s32 e1000_set_phy_type(struct e1000_hw *hw)
93 {
94 	if (hw->mac_type == e1000_undefined)
95 		return -E1000_ERR_PHY_TYPE;
96 
97 	switch (hw->phy_id) {
98 	case M88E1000_E_PHY_ID:
99 	case M88E1000_I_PHY_ID:
100 	case M88E1011_I_PHY_ID:
101 	case M88E1111_I_PHY_ID:
102 	case M88E1118_E_PHY_ID:
103 		hw->phy_type = e1000_phy_m88;
104 		break;
105 	case IGP01E1000_I_PHY_ID:
106 		if (hw->mac_type == e1000_82541 ||
107 		    hw->mac_type == e1000_82541_rev_2 ||
108 		    hw->mac_type == e1000_82547 ||
109 		    hw->mac_type == e1000_82547_rev_2)
110 			hw->phy_type = e1000_phy_igp;
111 		break;
112 	case RTL8211B_PHY_ID:
113 		hw->phy_type = e1000_phy_8211;
114 		break;
115 	case RTL8201N_PHY_ID:
116 		hw->phy_type = e1000_phy_8201;
117 		break;
118 	default:
119 		/* Should never have loaded on this device */
120 		hw->phy_type = e1000_phy_undefined;
121 		return -E1000_ERR_PHY_TYPE;
122 	}
123 
124 	return E1000_SUCCESS;
125 }
126 
127 /**
128  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
129  * @hw: Struct containing variables accessed by shared code
130  */
e1000_phy_init_script(struct e1000_hw * hw)131 static void e1000_phy_init_script(struct e1000_hw *hw)
132 {
133 	u16 phy_saved_data;
134 
135 	if (hw->phy_init_script) {
136 		msleep(20);
137 
138 		/* Save off the current value of register 0x2F5B to be restored
139 		 * at the end of this routine.
140 		 */
141 		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
142 
143 		/* Disabled the PHY transmitter */
144 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
145 		msleep(20);
146 
147 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
148 		msleep(5);
149 
150 		switch (hw->mac_type) {
151 		case e1000_82541:
152 		case e1000_82547:
153 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
154 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
155 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
156 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
157 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
158 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
159 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
160 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
161 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
162 			break;
163 
164 		case e1000_82541_rev_2:
165 		case e1000_82547_rev_2:
166 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
167 			break;
168 		default:
169 			break;
170 		}
171 
172 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
173 		msleep(20);
174 
175 		/* Now enable the transmitter */
176 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
177 
178 		if (hw->mac_type == e1000_82547) {
179 			u16 fused, fine, coarse;
180 
181 			/* Move to analog registers page */
182 			e1000_read_phy_reg(hw,
183 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
184 					   &fused);
185 
186 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
187 				e1000_read_phy_reg(hw,
188 						   IGP01E1000_ANALOG_FUSE_STATUS,
189 						   &fused);
190 
191 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
192 				coarse =
193 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
194 
195 				if (coarse >
196 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
197 					coarse -=
198 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
199 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
200 				} else if (coarse ==
201 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
202 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
203 
204 				fused =
205 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
206 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
207 				    (coarse &
208 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
209 
210 				e1000_write_phy_reg(hw,
211 						    IGP01E1000_ANALOG_FUSE_CONTROL,
212 						    fused);
213 				e1000_write_phy_reg(hw,
214 						    IGP01E1000_ANALOG_FUSE_BYPASS,
215 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
216 			}
217 		}
218 	}
219 }
220 
221 /**
222  * e1000_set_mac_type - Set the mac type member in the hw struct.
223  * @hw: Struct containing variables accessed by shared code
224  */
e1000_set_mac_type(struct e1000_hw * hw)225 s32 e1000_set_mac_type(struct e1000_hw *hw)
226 {
227 	switch (hw->device_id) {
228 	case E1000_DEV_ID_82542:
229 		switch (hw->revision_id) {
230 		case E1000_82542_2_0_REV_ID:
231 			hw->mac_type = e1000_82542_rev2_0;
232 			break;
233 		case E1000_82542_2_1_REV_ID:
234 			hw->mac_type = e1000_82542_rev2_1;
235 			break;
236 		default:
237 			/* Invalid 82542 revision ID */
238 			return -E1000_ERR_MAC_TYPE;
239 		}
240 		break;
241 	case E1000_DEV_ID_82543GC_FIBER:
242 	case E1000_DEV_ID_82543GC_COPPER:
243 		hw->mac_type = e1000_82543;
244 		break;
245 	case E1000_DEV_ID_82544EI_COPPER:
246 	case E1000_DEV_ID_82544EI_FIBER:
247 	case E1000_DEV_ID_82544GC_COPPER:
248 	case E1000_DEV_ID_82544GC_LOM:
249 		hw->mac_type = e1000_82544;
250 		break;
251 	case E1000_DEV_ID_82540EM:
252 	case E1000_DEV_ID_82540EM_LOM:
253 	case E1000_DEV_ID_82540EP:
254 	case E1000_DEV_ID_82540EP_LOM:
255 	case E1000_DEV_ID_82540EP_LP:
256 		hw->mac_type = e1000_82540;
257 		break;
258 	case E1000_DEV_ID_82545EM_COPPER:
259 	case E1000_DEV_ID_82545EM_FIBER:
260 		hw->mac_type = e1000_82545;
261 		break;
262 	case E1000_DEV_ID_82545GM_COPPER:
263 	case E1000_DEV_ID_82545GM_FIBER:
264 	case E1000_DEV_ID_82545GM_SERDES:
265 		hw->mac_type = e1000_82545_rev_3;
266 		break;
267 	case E1000_DEV_ID_82546EB_COPPER:
268 	case E1000_DEV_ID_82546EB_FIBER:
269 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
270 		hw->mac_type = e1000_82546;
271 		break;
272 	case E1000_DEV_ID_82546GB_COPPER:
273 	case E1000_DEV_ID_82546GB_FIBER:
274 	case E1000_DEV_ID_82546GB_SERDES:
275 	case E1000_DEV_ID_82546GB_PCIE:
276 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
277 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
278 		hw->mac_type = e1000_82546_rev_3;
279 		break;
280 	case E1000_DEV_ID_82541EI:
281 	case E1000_DEV_ID_82541EI_MOBILE:
282 	case E1000_DEV_ID_82541ER_LOM:
283 		hw->mac_type = e1000_82541;
284 		break;
285 	case E1000_DEV_ID_82541ER:
286 	case E1000_DEV_ID_82541GI:
287 	case E1000_DEV_ID_82541GI_LF:
288 	case E1000_DEV_ID_82541GI_MOBILE:
289 		hw->mac_type = e1000_82541_rev_2;
290 		break;
291 	case E1000_DEV_ID_82547EI:
292 	case E1000_DEV_ID_82547EI_MOBILE:
293 		hw->mac_type = e1000_82547;
294 		break;
295 	case E1000_DEV_ID_82547GI:
296 		hw->mac_type = e1000_82547_rev_2;
297 		break;
298 	case E1000_DEV_ID_INTEL_CE4100_GBE:
299 		hw->mac_type = e1000_ce4100;
300 		break;
301 	default:
302 		/* Should never have loaded on this device */
303 		return -E1000_ERR_MAC_TYPE;
304 	}
305 
306 	switch (hw->mac_type) {
307 	case e1000_82541:
308 	case e1000_82547:
309 	case e1000_82541_rev_2:
310 	case e1000_82547_rev_2:
311 		hw->asf_firmware_present = true;
312 		break;
313 	default:
314 		break;
315 	}
316 
317 	/* The 82543 chip does not count tx_carrier_errors properly in
318 	 * FD mode
319 	 */
320 	if (hw->mac_type == e1000_82543)
321 		hw->bad_tx_carr_stats_fd = true;
322 
323 	if (hw->mac_type > e1000_82544)
324 		hw->has_smbus = true;
325 
326 	return E1000_SUCCESS;
327 }
328 
329 /**
330  * e1000_set_media_type - Set media type and TBI compatibility.
331  * @hw: Struct containing variables accessed by shared code
332  */
e1000_set_media_type(struct e1000_hw * hw)333 void e1000_set_media_type(struct e1000_hw *hw)
334 {
335 	u32 status;
336 
337 	if (hw->mac_type != e1000_82543) {
338 		/* tbi_compatibility is only valid on 82543 */
339 		hw->tbi_compatibility_en = false;
340 	}
341 
342 	switch (hw->device_id) {
343 	case E1000_DEV_ID_82545GM_SERDES:
344 	case E1000_DEV_ID_82546GB_SERDES:
345 		hw->media_type = e1000_media_type_internal_serdes;
346 		break;
347 	default:
348 		switch (hw->mac_type) {
349 		case e1000_82542_rev2_0:
350 		case e1000_82542_rev2_1:
351 			hw->media_type = e1000_media_type_fiber;
352 			break;
353 		case e1000_ce4100:
354 			hw->media_type = e1000_media_type_copper;
355 			break;
356 		default:
357 			status = er32(STATUS);
358 			if (status & E1000_STATUS_TBIMODE) {
359 				hw->media_type = e1000_media_type_fiber;
360 				/* tbi_compatibility not valid on fiber */
361 				hw->tbi_compatibility_en = false;
362 			} else {
363 				hw->media_type = e1000_media_type_copper;
364 			}
365 			break;
366 		}
367 	}
368 }
369 
370 /**
371  * e1000_reset_hw - reset the hardware completely
372  * @hw: Struct containing variables accessed by shared code
373  *
374  * Reset the transmit and receive units; mask and clear all interrupts.
375  */
e1000_reset_hw(struct e1000_hw * hw)376 s32 e1000_reset_hw(struct e1000_hw *hw)
377 {
378 	u32 ctrl;
379 	u32 ctrl_ext;
380 	u32 manc;
381 	u32 led_ctrl;
382 	s32 ret_val;
383 
384 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
385 	if (hw->mac_type == e1000_82542_rev2_0) {
386 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
387 		e1000_pci_clear_mwi(hw);
388 	}
389 
390 	/* Clear interrupt mask to stop board from generating interrupts */
391 	e_dbg("Masking off all interrupts\n");
392 	ew32(IMC, 0xffffffff);
393 
394 	/* Disable the Transmit and Receive units.  Then delay to allow
395 	 * any pending transactions to complete before we hit the MAC with
396 	 * the global reset.
397 	 */
398 	ew32(RCTL, 0);
399 	ew32(TCTL, E1000_TCTL_PSP);
400 	E1000_WRITE_FLUSH();
401 
402 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
403 	hw->tbi_compatibility_on = false;
404 
405 	/* Delay to allow any outstanding PCI transactions to complete before
406 	 * resetting the device
407 	 */
408 	msleep(10);
409 
410 	ctrl = er32(CTRL);
411 
412 	/* Must reset the PHY before resetting the MAC */
413 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
414 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
415 		E1000_WRITE_FLUSH();
416 		msleep(5);
417 	}
418 
419 	/* Issue a global reset to the MAC.  This will reset the chip's
420 	 * transmit, receive, DMA, and link units.  It will not effect
421 	 * the current PCI configuration.  The global reset bit is self-
422 	 * clearing, and should clear within a microsecond.
423 	 */
424 	e_dbg("Issuing a global reset to MAC\n");
425 
426 	switch (hw->mac_type) {
427 	case e1000_82544:
428 	case e1000_82540:
429 	case e1000_82545:
430 	case e1000_82546:
431 	case e1000_82541:
432 	case e1000_82541_rev_2:
433 		/* These controllers can't ack the 64-bit write when issuing the
434 		 * reset, so use IO-mapping as a workaround to issue the reset
435 		 */
436 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
437 		break;
438 	case e1000_82545_rev_3:
439 	case e1000_82546_rev_3:
440 		/* Reset is performed on a shadow of the control register */
441 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
442 		break;
443 	case e1000_ce4100:
444 	default:
445 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
446 		break;
447 	}
448 
449 	/* After MAC reset, force reload of EEPROM to restore power-on settings
450 	 * to device.  Later controllers reload the EEPROM automatically, so
451 	 * just wait for reload to complete.
452 	 */
453 	switch (hw->mac_type) {
454 	case e1000_82542_rev2_0:
455 	case e1000_82542_rev2_1:
456 	case e1000_82543:
457 	case e1000_82544:
458 		/* Wait for reset to complete */
459 		udelay(10);
460 		ctrl_ext = er32(CTRL_EXT);
461 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
462 		ew32(CTRL_EXT, ctrl_ext);
463 		E1000_WRITE_FLUSH();
464 		/* Wait for EEPROM reload */
465 		msleep(2);
466 		break;
467 	case e1000_82541:
468 	case e1000_82541_rev_2:
469 	case e1000_82547:
470 	case e1000_82547_rev_2:
471 		/* Wait for EEPROM reload */
472 		msleep(20);
473 		break;
474 	default:
475 		/* Auto read done will delay 5ms or poll based on mac type */
476 		ret_val = e1000_get_auto_rd_done(hw);
477 		if (ret_val)
478 			return ret_val;
479 		break;
480 	}
481 
482 	/* Disable HW ARPs on ASF enabled adapters */
483 	if (hw->mac_type >= e1000_82540) {
484 		manc = er32(MANC);
485 		manc &= ~(E1000_MANC_ARP_EN);
486 		ew32(MANC, manc);
487 	}
488 
489 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
490 		e1000_phy_init_script(hw);
491 
492 		/* Configure activity LED after PHY reset */
493 		led_ctrl = er32(LEDCTL);
494 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
495 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
496 		ew32(LEDCTL, led_ctrl);
497 	}
498 
499 	/* Clear interrupt mask to stop board from generating interrupts */
500 	e_dbg("Masking off all interrupts\n");
501 	ew32(IMC, 0xffffffff);
502 
503 	/* Clear any pending interrupt events. */
504 	er32(ICR);
505 
506 	/* If MWI was previously enabled, reenable it. */
507 	if (hw->mac_type == e1000_82542_rev2_0) {
508 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
509 			e1000_pci_set_mwi(hw);
510 	}
511 
512 	return E1000_SUCCESS;
513 }
514 
515 /**
516  * e1000_init_hw - Performs basic configuration of the adapter.
517  * @hw: Struct containing variables accessed by shared code
518  *
519  * Assumes that the controller has previously been reset and is in a
520  * post-reset uninitialized state. Initializes the receive address registers,
521  * multicast table, and VLAN filter table. Calls routines to setup link
522  * configuration and flow control settings. Clears all on-chip counters. Leaves
523  * the transmit and receive units disabled and uninitialized.
524  */
e1000_init_hw(struct e1000_hw * hw)525 s32 e1000_init_hw(struct e1000_hw *hw)
526 {
527 	u32 ctrl;
528 	u32 i;
529 	s32 ret_val;
530 	u32 mta_size;
531 	u32 ctrl_ext;
532 
533 	/* Initialize Identification LED */
534 	ret_val = e1000_id_led_init(hw);
535 	if (ret_val) {
536 		e_dbg("Error Initializing Identification LED\n");
537 		return ret_val;
538 	}
539 
540 	/* Set the media type and TBI compatibility */
541 	e1000_set_media_type(hw);
542 
543 	/* Disabling VLAN filtering. */
544 	e_dbg("Initializing the IEEE VLAN\n");
545 	if (hw->mac_type < e1000_82545_rev_3)
546 		ew32(VET, 0);
547 	e1000_clear_vfta(hw);
548 
549 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
550 	if (hw->mac_type == e1000_82542_rev2_0) {
551 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
552 		e1000_pci_clear_mwi(hw);
553 		ew32(RCTL, E1000_RCTL_RST);
554 		E1000_WRITE_FLUSH();
555 		msleep(5);
556 	}
557 
558 	/* Setup the receive address. This involves initializing all of the
559 	 * Receive Address Registers (RARs 0 - 15).
560 	 */
561 	e1000_init_rx_addrs(hw);
562 
563 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
564 	if (hw->mac_type == e1000_82542_rev2_0) {
565 		ew32(RCTL, 0);
566 		E1000_WRITE_FLUSH();
567 		msleep(1);
568 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
569 			e1000_pci_set_mwi(hw);
570 	}
571 
572 	/* Zero out the Multicast HASH table */
573 	e_dbg("Zeroing the MTA\n");
574 	mta_size = E1000_MC_TBL_SIZE;
575 	for (i = 0; i < mta_size; i++) {
576 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
577 		/* use write flush to prevent Memory Write Block (MWB) from
578 		 * occurring when accessing our register space
579 		 */
580 		E1000_WRITE_FLUSH();
581 	}
582 
583 	/* Set the PCI priority bit correctly in the CTRL register.  This
584 	 * determines if the adapter gives priority to receives, or if it
585 	 * gives equal priority to transmits and receives.  Valid only on
586 	 * 82542 and 82543 silicon.
587 	 */
588 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
589 		ctrl = er32(CTRL);
590 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
591 	}
592 
593 	switch (hw->mac_type) {
594 	case e1000_82545_rev_3:
595 	case e1000_82546_rev_3:
596 		break;
597 	default:
598 		/* Workaround for PCI-X problem when BIOS sets MMRBC
599 		 * incorrectly.
600 		 */
601 		if (hw->bus_type == e1000_bus_type_pcix &&
602 		    e1000_pcix_get_mmrbc(hw) > 2048)
603 			e1000_pcix_set_mmrbc(hw, 2048);
604 		break;
605 	}
606 
607 	/* Call a subroutine to configure the link and setup flow control. */
608 	ret_val = e1000_setup_link(hw);
609 
610 	/* Set the transmit descriptor write-back policy */
611 	if (hw->mac_type > e1000_82544) {
612 		ctrl = er32(TXDCTL);
613 		ctrl =
614 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
615 		    E1000_TXDCTL_FULL_TX_DESC_WB;
616 		ew32(TXDCTL, ctrl);
617 	}
618 
619 	/* Clear all of the statistics registers (clear on read).  It is
620 	 * important that we do this after we have tried to establish link
621 	 * because the symbol error count will increment wildly if there
622 	 * is no link.
623 	 */
624 	e1000_clear_hw_cntrs(hw);
625 
626 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
627 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
628 		ctrl_ext = er32(CTRL_EXT);
629 		/* Relaxed ordering must be disabled to avoid a parity
630 		 * error crash in a PCI slot.
631 		 */
632 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
633 		ew32(CTRL_EXT, ctrl_ext);
634 	}
635 
636 	return ret_val;
637 }
638 
639 /**
640  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
641  * @hw: Struct containing variables accessed by shared code.
642  */
e1000_adjust_serdes_amplitude(struct e1000_hw * hw)643 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
644 {
645 	u16 eeprom_data;
646 	s32 ret_val;
647 
648 	if (hw->media_type != e1000_media_type_internal_serdes)
649 		return E1000_SUCCESS;
650 
651 	switch (hw->mac_type) {
652 	case e1000_82545_rev_3:
653 	case e1000_82546_rev_3:
654 		break;
655 	default:
656 		return E1000_SUCCESS;
657 	}
658 
659 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
660 				    &eeprom_data);
661 	if (ret_val)
662 		return ret_val;
663 
664 	if (eeprom_data != EEPROM_RESERVED_WORD) {
665 		/* Adjust SERDES output amplitude only. */
666 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
667 		ret_val =
668 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
669 		if (ret_val)
670 			return ret_val;
671 	}
672 
673 	return E1000_SUCCESS;
674 }
675 
676 /**
677  * e1000_setup_link - Configures flow control and link settings.
678  * @hw: Struct containing variables accessed by shared code
679  *
680  * Determines which flow control settings to use. Calls the appropriate media-
681  * specific link configuration function. Configures the flow control settings.
682  * Assuming the adapter has a valid link partner, a valid link should be
683  * established. Assumes the hardware has previously been reset and the
684  * transmitter and receiver are not enabled.
685  */
e1000_setup_link(struct e1000_hw * hw)686 s32 e1000_setup_link(struct e1000_hw *hw)
687 {
688 	u32 ctrl_ext;
689 	s32 ret_val;
690 	u16 eeprom_data;
691 
692 	/* Read and store word 0x0F of the EEPROM. This word contains bits
693 	 * that determine the hardware's default PAUSE (flow control) mode,
694 	 * a bit that determines whether the HW defaults to enabling or
695 	 * disabling auto-negotiation, and the direction of the
696 	 * SW defined pins. If there is no SW over-ride of the flow
697 	 * control setting, then the variable hw->fc will
698 	 * be initialized based on a value in the EEPROM.
699 	 */
700 	if (hw->fc == E1000_FC_DEFAULT) {
701 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
702 					    1, &eeprom_data);
703 		if (ret_val) {
704 			e_dbg("EEPROM Read Error\n");
705 			return -E1000_ERR_EEPROM;
706 		}
707 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
708 			hw->fc = E1000_FC_NONE;
709 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
710 			 EEPROM_WORD0F_ASM_DIR)
711 			hw->fc = E1000_FC_TX_PAUSE;
712 		else
713 			hw->fc = E1000_FC_FULL;
714 	}
715 
716 	/* We want to save off the original Flow Control configuration just
717 	 * in case we get disconnected and then reconnected into a different
718 	 * hub or switch with different Flow Control capabilities.
719 	 */
720 	if (hw->mac_type == e1000_82542_rev2_0)
721 		hw->fc &= (~E1000_FC_TX_PAUSE);
722 
723 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
724 		hw->fc &= (~E1000_FC_RX_PAUSE);
725 
726 	hw->original_fc = hw->fc;
727 
728 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
729 
730 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
731 	 * polarity value for the SW controlled pins, and setup the
732 	 * Extended Device Control reg with that info.
733 	 * This is needed because one of the SW controlled pins is used for
734 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
735 	 * or e1000_phy_setup() is called.
736 	 */
737 	if (hw->mac_type == e1000_82543) {
738 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
739 					    1, &eeprom_data);
740 		if (ret_val) {
741 			e_dbg("EEPROM Read Error\n");
742 			return -E1000_ERR_EEPROM;
743 		}
744 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
745 			    SWDPIO__EXT_SHIFT);
746 		ew32(CTRL_EXT, ctrl_ext);
747 	}
748 
749 	/* Call the necessary subroutine to configure the link. */
750 	ret_val = (hw->media_type == e1000_media_type_copper) ?
751 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
752 
753 	/* Initialize the flow control address, type, and PAUSE timer
754 	 * registers to their default values.  This is done even if flow
755 	 * control is disabled, because it does not hurt anything to
756 	 * initialize these registers.
757 	 */
758 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
759 
760 	ew32(FCT, FLOW_CONTROL_TYPE);
761 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
762 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
763 
764 	ew32(FCTTV, hw->fc_pause_time);
765 
766 	/* Set the flow control receive threshold registers.  Normally,
767 	 * these registers will be set to a default threshold that may be
768 	 * adjusted later by the driver's runtime code.  However, if the
769 	 * ability to transmit pause frames in not enabled, then these
770 	 * registers will be set to 0.
771 	 */
772 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
773 		ew32(FCRTL, 0);
774 		ew32(FCRTH, 0);
775 	} else {
776 		/* We need to set up the Receive Threshold high and low water
777 		 * marks as well as (optionally) enabling the transmission of
778 		 * XON frames.
779 		 */
780 		if (hw->fc_send_xon) {
781 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
782 			ew32(FCRTH, hw->fc_high_water);
783 		} else {
784 			ew32(FCRTL, hw->fc_low_water);
785 			ew32(FCRTH, hw->fc_high_water);
786 		}
787 	}
788 	return ret_val;
789 }
790 
791 /**
792  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
793  * @hw: Struct containing variables accessed by shared code
794  *
795  * Manipulates Physical Coding Sublayer functions in order to configure
796  * link. Assumes the hardware has been previously reset and the transmitter
797  * and receiver are not enabled.
798  */
e1000_setup_fiber_serdes_link(struct e1000_hw * hw)799 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
800 {
801 	u32 ctrl;
802 	u32 status;
803 	u32 txcw = 0;
804 	u32 i;
805 	u32 signal = 0;
806 	s32 ret_val;
807 
808 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
809 	 * set when the optics detect a signal. On older adapters, it will be
810 	 * cleared when there is a signal.  This applies to fiber media only.
811 	 * If we're on serdes media, adjust the output amplitude to value
812 	 * set in the EEPROM.
813 	 */
814 	ctrl = er32(CTRL);
815 	if (hw->media_type == e1000_media_type_fiber)
816 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
817 
818 	ret_val = e1000_adjust_serdes_amplitude(hw);
819 	if (ret_val)
820 		return ret_val;
821 
822 	/* Take the link out of reset */
823 	ctrl &= ~(E1000_CTRL_LRST);
824 
825 	/* Adjust VCO speed to improve BER performance */
826 	ret_val = e1000_set_vco_speed(hw);
827 	if (ret_val)
828 		return ret_val;
829 
830 	e1000_config_collision_dist(hw);
831 
832 	/* Check for a software override of the flow control settings, and setup
833 	 * the device accordingly.  If auto-negotiation is enabled, then
834 	 * software will have to set the "PAUSE" bits to the correct value in
835 	 * the Tranmsit Config Word Register (TXCW) and re-start
836 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
837 	 * software will have to manually configure the two flow control enable
838 	 * bits in the CTRL register.
839 	 *
840 	 * The possible values of the "fc" parameter are:
841 	 *  0:  Flow control is completely disabled
842 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
843 	 *      not send pause frames).
844 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
845 	 *      not support receiving pause frames).
846 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
847 	 */
848 	switch (hw->fc) {
849 	case E1000_FC_NONE:
850 		/* Flow ctrl is completely disabled by a software over-ride */
851 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
852 		break;
853 	case E1000_FC_RX_PAUSE:
854 		/* Rx Flow control is enabled and Tx Flow control is disabled by
855 		 * a software over-ride. Since there really isn't a way to
856 		 * advertise that we are capable of Rx Pause ONLY, we will
857 		 * advertise that we support both symmetric and asymmetric Rx
858 		 * PAUSE. Later, we will disable the adapter's ability to send
859 		 * PAUSE frames.
860 		 */
861 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
862 		break;
863 	case E1000_FC_TX_PAUSE:
864 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
865 		 * by a software over-ride.
866 		 */
867 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
868 		break;
869 	case E1000_FC_FULL:
870 		/* Flow control (both Rx and Tx) is enabled by a software
871 		 * over-ride.
872 		 */
873 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
874 		break;
875 	default:
876 		e_dbg("Flow control param set incorrectly\n");
877 		return -E1000_ERR_CONFIG;
878 	}
879 
880 	/* Since auto-negotiation is enabled, take the link out of reset (the
881 	 * link will be in reset, because we previously reset the chip). This
882 	 * will restart auto-negotiation.  If auto-negotiation is successful
883 	 * then the link-up status bit will be set and the flow control enable
884 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
885 	 */
886 	e_dbg("Auto-negotiation enabled\n");
887 
888 	ew32(TXCW, txcw);
889 	ew32(CTRL, ctrl);
890 	E1000_WRITE_FLUSH();
891 
892 	hw->txcw = txcw;
893 	msleep(1);
894 
895 	/* If we have a signal (the cable is plugged in) then poll for a
896 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
897 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
898 	 * complete in less than 500 milliseconds even if the other end is doing
899 	 * it in SW). For internal serdes, we just assume a signal is present,
900 	 * then poll.
901 	 */
902 	if (hw->media_type == e1000_media_type_internal_serdes ||
903 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
904 		e_dbg("Looking for Link\n");
905 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
906 			msleep(10);
907 			status = er32(STATUS);
908 			if (status & E1000_STATUS_LU)
909 				break;
910 		}
911 		if (i == (LINK_UP_TIMEOUT / 10)) {
912 			e_dbg("Never got a valid link from auto-neg!!!\n");
913 			hw->autoneg_failed = 1;
914 			/* AutoNeg failed to achieve a link, so we'll call
915 			 * e1000_check_for_link. This routine will force the
916 			 * link up if we detect a signal. This will allow us to
917 			 * communicate with non-autonegotiating link partners.
918 			 */
919 			ret_val = e1000_check_for_link(hw);
920 			if (ret_val) {
921 				e_dbg("Error while checking for link\n");
922 				return ret_val;
923 			}
924 			hw->autoneg_failed = 0;
925 		} else {
926 			hw->autoneg_failed = 0;
927 			e_dbg("Valid Link Found\n");
928 		}
929 	} else {
930 		e_dbg("No Signal Detected\n");
931 	}
932 	return E1000_SUCCESS;
933 }
934 
935 /**
936  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
937  * @hw: Struct containing variables accessed by shared code
938  *
939  * Commits changes to PHY configuration by calling e1000_phy_reset().
940  */
e1000_copper_link_rtl_setup(struct e1000_hw * hw)941 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
942 {
943 	s32 ret_val;
944 
945 	/* SW reset the PHY so all changes take effect */
946 	ret_val = e1000_phy_reset(hw);
947 	if (ret_val) {
948 		e_dbg("Error Resetting the PHY\n");
949 		return ret_val;
950 	}
951 
952 	return E1000_SUCCESS;
953 }
954 
gbe_dhg_phy_setup(struct e1000_hw * hw)955 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
956 {
957 	s32 ret_val;
958 	u32 ctrl_aux;
959 
960 	switch (hw->phy_type) {
961 	case e1000_phy_8211:
962 		ret_val = e1000_copper_link_rtl_setup(hw);
963 		if (ret_val) {
964 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
965 			return ret_val;
966 		}
967 		break;
968 	case e1000_phy_8201:
969 		/* Set RMII mode */
970 		ctrl_aux = er32(CTL_AUX);
971 		ctrl_aux |= E1000_CTL_AUX_RMII;
972 		ew32(CTL_AUX, ctrl_aux);
973 		E1000_WRITE_FLUSH();
974 
975 		/* Disable the J/K bits required for receive */
976 		ctrl_aux = er32(CTL_AUX);
977 		ctrl_aux |= 0x4;
978 		ctrl_aux &= ~0x2;
979 		ew32(CTL_AUX, ctrl_aux);
980 		E1000_WRITE_FLUSH();
981 		ret_val = e1000_copper_link_rtl_setup(hw);
982 
983 		if (ret_val) {
984 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
985 			return ret_val;
986 		}
987 		break;
988 	default:
989 		e_dbg("Error Resetting the PHY\n");
990 		return E1000_ERR_PHY_TYPE;
991 	}
992 
993 	return E1000_SUCCESS;
994 }
995 
996 /**
997  * e1000_copper_link_preconfig - early configuration for copper
998  * @hw: Struct containing variables accessed by shared code
999  *
1000  * Make sure we have a valid PHY and change PHY mode before link setup.
1001  */
e1000_copper_link_preconfig(struct e1000_hw * hw)1002 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1003 {
1004 	u32 ctrl;
1005 	s32 ret_val;
1006 	u16 phy_data;
1007 
1008 	ctrl = er32(CTRL);
1009 	/* With 82543, we need to force speed and duplex on the MAC equal to
1010 	 * what the PHY speed and duplex configuration is. In addition, we need
1011 	 * to perform a hardware reset on the PHY to take it out of reset.
1012 	 */
1013 	if (hw->mac_type > e1000_82543) {
1014 		ctrl |= E1000_CTRL_SLU;
1015 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1016 		ew32(CTRL, ctrl);
1017 	} else {
1018 		ctrl |=
1019 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020 		ew32(CTRL, ctrl);
1021 		ret_val = e1000_phy_hw_reset(hw);
1022 		if (ret_val)
1023 			return ret_val;
1024 	}
1025 
1026 	/* Make sure we have a valid PHY */
1027 	ret_val = e1000_detect_gig_phy(hw);
1028 	if (ret_val) {
1029 		e_dbg("Error, did not detect valid phy.\n");
1030 		return ret_val;
1031 	}
1032 	e_dbg("Phy ID = %x\n", hw->phy_id);
1033 
1034 	/* Set PHY to class A mode (if necessary) */
1035 	ret_val = e1000_set_phy_mode(hw);
1036 	if (ret_val)
1037 		return ret_val;
1038 
1039 	if ((hw->mac_type == e1000_82545_rev_3) ||
1040 	    (hw->mac_type == e1000_82546_rev_3)) {
1041 		ret_val =
1042 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1043 		phy_data |= 0x00000008;
1044 		ret_val =
1045 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1046 	}
1047 
1048 	if (hw->mac_type <= e1000_82543 ||
1049 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1050 	    hw->mac_type == e1000_82541_rev_2 ||
1051 	    hw->mac_type == e1000_82547_rev_2)
1052 		hw->phy_reset_disable = false;
1053 
1054 	return E1000_SUCCESS;
1055 }
1056 
1057 /**
1058  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1059  * @hw: Struct containing variables accessed by shared code
1060  */
e1000_copper_link_igp_setup(struct e1000_hw * hw)1061 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062 {
1063 	u32 led_ctrl;
1064 	s32 ret_val;
1065 	u16 phy_data;
1066 
1067 	if (hw->phy_reset_disable)
1068 		return E1000_SUCCESS;
1069 
1070 	ret_val = e1000_phy_reset(hw);
1071 	if (ret_val) {
1072 		e_dbg("Error Resetting the PHY\n");
1073 		return ret_val;
1074 	}
1075 
1076 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1077 	msleep(15);
1078 	/* Configure activity LED after PHY reset */
1079 	led_ctrl = er32(LEDCTL);
1080 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1081 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1082 	ew32(LEDCTL, led_ctrl);
1083 
1084 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1085 	if (hw->phy_type == e1000_phy_igp) {
1086 		/* disable lplu d3 during driver init */
1087 		ret_val = e1000_set_d3_lplu_state(hw, false);
1088 		if (ret_val) {
1089 			e_dbg("Error Disabling LPLU D3\n");
1090 			return ret_val;
1091 		}
1092 	}
1093 
1094 	/* Configure mdi-mdix settings */
1095 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1096 	if (ret_val)
1097 		return ret_val;
1098 
1099 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1100 		hw->dsp_config_state = e1000_dsp_config_disabled;
1101 		/* Force MDI for earlier revs of the IGP PHY */
1102 		phy_data &=
1103 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1104 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1105 		hw->mdix = 1;
1106 
1107 	} else {
1108 		hw->dsp_config_state = e1000_dsp_config_enabled;
1109 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1110 
1111 		switch (hw->mdix) {
1112 		case 1:
1113 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1114 			break;
1115 		case 2:
1116 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1117 			break;
1118 		case 0:
1119 		default:
1120 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1121 			break;
1122 		}
1123 	}
1124 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1125 	if (ret_val)
1126 		return ret_val;
1127 
1128 	/* set auto-master slave resolution settings */
1129 	if (hw->autoneg) {
1130 		e1000_ms_type phy_ms_setting = hw->master_slave;
1131 
1132 		if (hw->ffe_config_state == e1000_ffe_config_active)
1133 			hw->ffe_config_state = e1000_ffe_config_enabled;
1134 
1135 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1136 			hw->dsp_config_state = e1000_dsp_config_enabled;
1137 
1138 		/* when autonegotiation advertisement is only 1000Mbps then we
1139 		 * should disable SmartSpeed and enable Auto MasterSlave
1140 		 * resolution as hardware default.
1141 		 */
1142 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1143 			/* Disable SmartSpeed */
1144 			ret_val =
1145 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1146 					       &phy_data);
1147 			if (ret_val)
1148 				return ret_val;
1149 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150 			ret_val =
1151 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1152 						phy_data);
1153 			if (ret_val)
1154 				return ret_val;
1155 			/* Set auto Master/Slave resolution process */
1156 			ret_val =
1157 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158 			if (ret_val)
1159 				return ret_val;
1160 			phy_data &= ~CR_1000T_MS_ENABLE;
1161 			ret_val =
1162 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1163 			if (ret_val)
1164 				return ret_val;
1165 		}
1166 
1167 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1168 		if (ret_val)
1169 			return ret_val;
1170 
1171 		/* load defaults for future use */
1172 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1173 		    ((phy_data & CR_1000T_MS_VALUE) ?
1174 		     e1000_ms_force_master :
1175 		     e1000_ms_force_slave) : e1000_ms_auto;
1176 
1177 		switch (phy_ms_setting) {
1178 		case e1000_ms_force_master:
1179 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180 			break;
1181 		case e1000_ms_force_slave:
1182 			phy_data |= CR_1000T_MS_ENABLE;
1183 			phy_data &= ~(CR_1000T_MS_VALUE);
1184 			break;
1185 		case e1000_ms_auto:
1186 			phy_data &= ~CR_1000T_MS_ENABLE;
1187 			break;
1188 		default:
1189 			break;
1190 		}
1191 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192 		if (ret_val)
1193 			return ret_val;
1194 	}
1195 
1196 	return E1000_SUCCESS;
1197 }
1198 
1199 /**
1200  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201  * @hw: Struct containing variables accessed by shared code
1202  */
e1000_copper_link_mgp_setup(struct e1000_hw * hw)1203 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204 {
1205 	s32 ret_val;
1206 	u16 phy_data;
1207 
1208 	if (hw->phy_reset_disable)
1209 		return E1000_SUCCESS;
1210 
1211 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1212 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213 	if (ret_val)
1214 		return ret_val;
1215 
1216 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217 
1218 	/* Options:
1219 	 *   MDI/MDI-X = 0 (default)
1220 	 *   0 - Auto for all speeds
1221 	 *   1 - MDI mode
1222 	 *   2 - MDI-X mode
1223 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224 	 */
1225 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226 
1227 	switch (hw->mdix) {
1228 	case 1:
1229 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230 		break;
1231 	case 2:
1232 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233 		break;
1234 	case 3:
1235 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236 		break;
1237 	case 0:
1238 	default:
1239 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240 		break;
1241 	}
1242 
1243 	/* Options:
1244 	 *   disable_polarity_correction = 0 (default)
1245 	 *       Automatic Correction for Reversed Cable Polarity
1246 	 *   0 - Disabled
1247 	 *   1 - Enabled
1248 	 */
1249 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250 	if (hw->disable_polarity_correction == 1)
1251 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253 	if (ret_val)
1254 		return ret_val;
1255 
1256 	if (hw->phy_revision < M88E1011_I_REV_4) {
1257 		/* Force TX_CLK in the Extended PHY Specific Control Register
1258 		 * to 25MHz clock.
1259 		 */
1260 		ret_val =
1261 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262 				       &phy_data);
1263 		if (ret_val)
1264 			return ret_val;
1265 
1266 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267 
1268 		if ((hw->phy_revision == E1000_REVISION_2) &&
1269 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1270 			/* Vidalia Phy, set the downshift counter to 5x */
1271 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273 			ret_val = e1000_write_phy_reg(hw,
1274 						      M88E1000_EXT_PHY_SPEC_CTRL,
1275 						      phy_data);
1276 			if (ret_val)
1277 				return ret_val;
1278 		} else {
1279 			/* Configure Master and Slave downshift values */
1280 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284 			ret_val = e1000_write_phy_reg(hw,
1285 						      M88E1000_EXT_PHY_SPEC_CTRL,
1286 						      phy_data);
1287 			if (ret_val)
1288 				return ret_val;
1289 		}
1290 	}
1291 
1292 	/* SW Reset the PHY so all changes take effect */
1293 	ret_val = e1000_phy_reset(hw);
1294 	if (ret_val) {
1295 		e_dbg("Error Resetting the PHY\n");
1296 		return ret_val;
1297 	}
1298 
1299 	return E1000_SUCCESS;
1300 }
1301 
1302 /**
1303  * e1000_copper_link_autoneg - setup auto-neg
1304  * @hw: Struct containing variables accessed by shared code
1305  *
1306  * Setup auto-negotiation and flow control advertisements,
1307  * and then perform auto-negotiation.
1308  */
e1000_copper_link_autoneg(struct e1000_hw * hw)1309 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310 {
1311 	s32 ret_val;
1312 	u16 phy_data;
1313 
1314 	/* Perform some bounds checking on the hw->autoneg_advertised
1315 	 * parameter.  If this variable is zero, then set it to the default.
1316 	 */
1317 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318 
1319 	/* If autoneg_advertised is zero, we assume it was not defaulted
1320 	 * by the calling code so we set to advertise full capability.
1321 	 */
1322 	if (hw->autoneg_advertised == 0)
1323 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324 
1325 	/* IFE/RTL8201N PHY only supports 10/100 */
1326 	if (hw->phy_type == e1000_phy_8201)
1327 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328 
1329 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1330 	ret_val = e1000_phy_setup_autoneg(hw);
1331 	if (ret_val) {
1332 		e_dbg("Error Setting up Auto-Negotiation\n");
1333 		return ret_val;
1334 	}
1335 	e_dbg("Restarting Auto-Neg\n");
1336 
1337 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338 	 * the Auto Neg Restart bit in the PHY control register.
1339 	 */
1340 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341 	if (ret_val)
1342 		return ret_val;
1343 
1344 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346 	if (ret_val)
1347 		return ret_val;
1348 
1349 	/* Does the user want to wait for Auto-Neg to complete here, or
1350 	 * check at a later time (for example, callback routine).
1351 	 */
1352 	if (hw->wait_autoneg_complete) {
1353 		ret_val = e1000_wait_autoneg(hw);
1354 		if (ret_val) {
1355 			e_dbg
1356 			    ("Error while waiting for autoneg to complete\n");
1357 			return ret_val;
1358 		}
1359 	}
1360 
1361 	hw->get_link_status = true;
1362 
1363 	return E1000_SUCCESS;
1364 }
1365 
1366 /**
1367  * e1000_copper_link_postconfig - post link setup
1368  * @hw: Struct containing variables accessed by shared code
1369  *
1370  * Config the MAC and the PHY after link is up.
1371  *   1) Set up the MAC to the current PHY speed/duplex
1372  *      if we are on 82543.  If we
1373  *      are on newer silicon, we only need to configure
1374  *      collision distance in the Transmit Control Register.
1375  *   2) Set up flow control on the MAC to that established with
1376  *      the link partner.
1377  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378  */
e1000_copper_link_postconfig(struct e1000_hw * hw)1379 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380 {
1381 	s32 ret_val;
1382 
1383 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384 		e1000_config_collision_dist(hw);
1385 	} else {
1386 		ret_val = e1000_config_mac_to_phy(hw);
1387 		if (ret_val) {
1388 			e_dbg("Error configuring MAC to PHY settings\n");
1389 			return ret_val;
1390 		}
1391 	}
1392 	ret_val = e1000_config_fc_after_link_up(hw);
1393 	if (ret_val) {
1394 		e_dbg("Error Configuring Flow Control\n");
1395 		return ret_val;
1396 	}
1397 
1398 	/* Config DSP to improve Giga link quality */
1399 	if (hw->phy_type == e1000_phy_igp) {
1400 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1401 		if (ret_val) {
1402 			e_dbg("Error Configuring DSP after link up\n");
1403 			return ret_val;
1404 		}
1405 	}
1406 
1407 	return E1000_SUCCESS;
1408 }
1409 
1410 /**
1411  * e1000_setup_copper_link - phy/speed/duplex setting
1412  * @hw: Struct containing variables accessed by shared code
1413  *
1414  * Detects which PHY is present and sets up the speed and duplex
1415  */
e1000_setup_copper_link(struct e1000_hw * hw)1416 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417 {
1418 	s32 ret_val;
1419 	u16 i;
1420 	u16 phy_data;
1421 
1422 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1423 	ret_val = e1000_copper_link_preconfig(hw);
1424 	if (ret_val)
1425 		return ret_val;
1426 
1427 	if (hw->phy_type == e1000_phy_igp) {
1428 		ret_val = e1000_copper_link_igp_setup(hw);
1429 		if (ret_val)
1430 			return ret_val;
1431 	} else if (hw->phy_type == e1000_phy_m88) {
1432 		ret_val = e1000_copper_link_mgp_setup(hw);
1433 		if (ret_val)
1434 			return ret_val;
1435 	} else {
1436 		ret_val = gbe_dhg_phy_setup(hw);
1437 		if (ret_val) {
1438 			e_dbg("gbe_dhg_phy_setup failed!\n");
1439 			return ret_val;
1440 		}
1441 	}
1442 
1443 	if (hw->autoneg) {
1444 		/* Setup autoneg and flow control advertisement
1445 		 * and perform autonegotiation
1446 		 */
1447 		ret_val = e1000_copper_link_autoneg(hw);
1448 		if (ret_val)
1449 			return ret_val;
1450 	} else {
1451 		/* PHY will be set to 10H, 10F, 100H,or 100F
1452 		 * depending on value from forced_speed_duplex.
1453 		 */
1454 		e_dbg("Forcing speed and duplex\n");
1455 		ret_val = e1000_phy_force_speed_duplex(hw);
1456 		if (ret_val) {
1457 			e_dbg("Error Forcing Speed and Duplex\n");
1458 			return ret_val;
1459 		}
1460 	}
1461 
1462 	/* Check link status. Wait up to 100 microseconds for link to become
1463 	 * valid.
1464 	 */
1465 	for (i = 0; i < 10; i++) {
1466 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467 		if (ret_val)
1468 			return ret_val;
1469 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470 		if (ret_val)
1471 			return ret_val;
1472 
1473 		if (phy_data & MII_SR_LINK_STATUS) {
1474 			/* Config the MAC and PHY after link is up */
1475 			ret_val = e1000_copper_link_postconfig(hw);
1476 			if (ret_val)
1477 				return ret_val;
1478 
1479 			e_dbg("Valid link established!!!\n");
1480 			return E1000_SUCCESS;
1481 		}
1482 		udelay(10);
1483 	}
1484 
1485 	e_dbg("Unable to establish link!!!\n");
1486 	return E1000_SUCCESS;
1487 }
1488 
1489 /**
1490  * e1000_phy_setup_autoneg - phy settings
1491  * @hw: Struct containing variables accessed by shared code
1492  *
1493  * Configures PHY autoneg and flow control advertisement settings
1494  */
e1000_phy_setup_autoneg(struct e1000_hw * hw)1495 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496 {
1497 	s32 ret_val;
1498 	u16 mii_autoneg_adv_reg;
1499 	u16 mii_1000t_ctrl_reg;
1500 
1501 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503 	if (ret_val)
1504 		return ret_val;
1505 
1506 	/* Read the MII 1000Base-T Control Register (Address 9). */
1507 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508 	if (ret_val)
1509 		return ret_val;
1510 	else if (hw->phy_type == e1000_phy_8201)
1511 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512 
1513 	/* Need to parse both autoneg_advertised and fc and set up
1514 	 * the appropriate PHY registers.  First we will parse for
1515 	 * autoneg_advertised software override.  Since we can advertise
1516 	 * a plethora of combinations, we need to check each bit
1517 	 * individually.
1518 	 */
1519 
1520 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522 	 * the  1000Base-T Control Register (Address 9).
1523 	 */
1524 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526 
1527 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528 
1529 	/* Do we want to advertise 10 Mb Half Duplex? */
1530 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531 		e_dbg("Advertise 10mb Half duplex\n");
1532 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533 	}
1534 
1535 	/* Do we want to advertise 10 Mb Full Duplex? */
1536 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537 		e_dbg("Advertise 10mb Full duplex\n");
1538 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539 	}
1540 
1541 	/* Do we want to advertise 100 Mb Half Duplex? */
1542 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543 		e_dbg("Advertise 100mb Half duplex\n");
1544 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545 	}
1546 
1547 	/* Do we want to advertise 100 Mb Full Duplex? */
1548 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549 		e_dbg("Advertise 100mb Full duplex\n");
1550 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551 	}
1552 
1553 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555 		e_dbg
1556 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1557 	}
1558 
1559 	/* Do we want to advertise 1000 Mb Full Duplex? */
1560 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561 		e_dbg("Advertise 1000mb Full duplex\n");
1562 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563 	}
1564 
1565 	/* Check for a software override of the flow control settings, and
1566 	 * setup the PHY advertisement registers accordingly.  If
1567 	 * auto-negotiation is enabled, then software will have to set the
1568 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570 	 * auto-negotiation.
1571 	 *
1572 	 * The possible values of the "fc" parameter are:
1573 	 *      0:  Flow control is completely disabled
1574 	 *      1:  Rx flow control is enabled (we can receive pause frames
1575 	 *          but not send pause frames).
1576 	 *      2:  Tx flow control is enabled (we can send pause frames
1577 	 *          but we do not support receiving pause frames).
1578 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1579 	 *  other:  No software override.  The flow control configuration
1580 	 *          in the EEPROM is used.
1581 	 */
1582 	switch (hw->fc) {
1583 	case E1000_FC_NONE:	/* 0 */
1584 		/* Flow control (RX & TX) is completely disabled by a
1585 		 * software over-ride.
1586 		 */
1587 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588 		break;
1589 	case E1000_FC_RX_PAUSE:	/* 1 */
1590 		/* RX Flow control is enabled, and TX Flow control is
1591 		 * disabled, by a software over-ride.
1592 		 */
1593 		/* Since there really isn't a way to advertise that we are
1594 		 * capable of RX Pause ONLY, we will advertise that we
1595 		 * support both symmetric and asymmetric RX PAUSE.  Later
1596 		 * (in e1000_config_fc_after_link_up) we will disable the
1597 		 * hw's ability to send PAUSE frames.
1598 		 */
1599 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600 		break;
1601 	case E1000_FC_TX_PAUSE:	/* 2 */
1602 		/* TX Flow control is enabled, and RX Flow control is
1603 		 * disabled, by a software over-ride.
1604 		 */
1605 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607 		break;
1608 	case E1000_FC_FULL:	/* 3 */
1609 		/* Flow control (both RX and TX) is enabled by a software
1610 		 * over-ride.
1611 		 */
1612 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613 		break;
1614 	default:
1615 		e_dbg("Flow control param set incorrectly\n");
1616 		return -E1000_ERR_CONFIG;
1617 	}
1618 
1619 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620 	if (ret_val)
1621 		return ret_val;
1622 
1623 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624 
1625 	if (hw->phy_type == e1000_phy_8201) {
1626 		mii_1000t_ctrl_reg = 0;
1627 	} else {
1628 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629 					      mii_1000t_ctrl_reg);
1630 		if (ret_val)
1631 			return ret_val;
1632 	}
1633 
1634 	return E1000_SUCCESS;
1635 }
1636 
1637 /**
1638  * e1000_phy_force_speed_duplex - force link settings
1639  * @hw: Struct containing variables accessed by shared code
1640  *
1641  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642  */
e1000_phy_force_speed_duplex(struct e1000_hw * hw)1643 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644 {
1645 	u32 ctrl;
1646 	s32 ret_val;
1647 	u16 mii_ctrl_reg;
1648 	u16 mii_status_reg;
1649 	u16 phy_data;
1650 	u16 i;
1651 
1652 	/* Turn off Flow control if we are forcing speed and duplex. */
1653 	hw->fc = E1000_FC_NONE;
1654 
1655 	e_dbg("hw->fc = %d\n", hw->fc);
1656 
1657 	/* Read the Device Control Register. */
1658 	ctrl = er32(CTRL);
1659 
1660 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662 	ctrl &= ~(DEVICE_SPEED_MASK);
1663 
1664 	/* Clear the Auto Speed Detect Enable bit. */
1665 	ctrl &= ~E1000_CTRL_ASDE;
1666 
1667 	/* Read the MII Control Register. */
1668 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669 	if (ret_val)
1670 		return ret_val;
1671 
1672 	/* We need to disable autoneg in order to force link and duplex. */
1673 
1674 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675 
1676 	/* Are we forcing Full or Half Duplex? */
1677 	if (hw->forced_speed_duplex == e1000_100_full ||
1678 	    hw->forced_speed_duplex == e1000_10_full) {
1679 		/* We want to force full duplex so we SET the full duplex bits
1680 		 * in the Device and MII Control Registers.
1681 		 */
1682 		ctrl |= E1000_CTRL_FD;
1683 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684 		e_dbg("Full Duplex\n");
1685 	} else {
1686 		/* We want to force half duplex so we CLEAR the full duplex bits
1687 		 * in the Device and MII Control Registers.
1688 		 */
1689 		ctrl &= ~E1000_CTRL_FD;
1690 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691 		e_dbg("Half Duplex\n");
1692 	}
1693 
1694 	/* Are we forcing 100Mbps??? */
1695 	if (hw->forced_speed_duplex == e1000_100_full ||
1696 	    hw->forced_speed_duplex == e1000_100_half) {
1697 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698 		ctrl |= E1000_CTRL_SPD_100;
1699 		mii_ctrl_reg |= MII_CR_SPEED_100;
1700 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701 		e_dbg("Forcing 100mb ");
1702 	} else {
1703 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705 		mii_ctrl_reg |= MII_CR_SPEED_10;
1706 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707 		e_dbg("Forcing 10mb ");
1708 	}
1709 
1710 	e1000_config_collision_dist(hw);
1711 
1712 	/* Write the configured values back to the Device Control Reg. */
1713 	ew32(CTRL, ctrl);
1714 
1715 	if (hw->phy_type == e1000_phy_m88) {
1716 		ret_val =
1717 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718 		if (ret_val)
1719 			return ret_val;
1720 
1721 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722 		 * MDI forced whenever speed are duplex are forced.
1723 		 */
1724 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725 		ret_val =
1726 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727 		if (ret_val)
1728 			return ret_val;
1729 
1730 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731 
1732 		/* Need to reset the PHY or these changes will be ignored */
1733 		mii_ctrl_reg |= MII_CR_RESET;
1734 
1735 		/* Disable MDI-X support for 10/100 */
1736 	} else {
1737 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1738 		 * forced whenever speed or duplex are forced.
1739 		 */
1740 		ret_val =
1741 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742 		if (ret_val)
1743 			return ret_val;
1744 
1745 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747 
1748 		ret_val =
1749 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750 		if (ret_val)
1751 			return ret_val;
1752 	}
1753 
1754 	/* Write back the modified PHY MII control register. */
1755 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756 	if (ret_val)
1757 		return ret_val;
1758 
1759 	udelay(1);
1760 
1761 	/* The wait_autoneg_complete flag may be a little misleading here.
1762 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763 	 * But we do want to delay for a period while forcing only so we
1764 	 * don't generate false No Link messages.  So we will wait here
1765 	 * only if the user has set wait_autoneg_complete to 1, which is
1766 	 * the default.
1767 	 */
1768 	if (hw->wait_autoneg_complete) {
1769 		/* We will wait for autoneg to complete. */
1770 		e_dbg("Waiting for forced speed/duplex link.\n");
1771 		mii_status_reg = 0;
1772 
1773 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1774 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1775 			/* Read the MII Status Register and wait for Auto-Neg
1776 			 * Complete bit to be set.
1777 			 */
1778 			ret_val =
1779 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780 			if (ret_val)
1781 				return ret_val;
1782 
1783 			ret_val =
1784 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785 			if (ret_val)
1786 				return ret_val;
1787 
1788 			if (mii_status_reg & MII_SR_LINK_STATUS)
1789 				break;
1790 			msleep(100);
1791 		}
1792 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793 			/* We didn't get link.  Reset the DSP and wait again
1794 			 * for link.
1795 			 */
1796 			ret_val = e1000_phy_reset_dsp(hw);
1797 			if (ret_val) {
1798 				e_dbg("Error Resetting PHY DSP\n");
1799 				return ret_val;
1800 			}
1801 		}
1802 		/* This loop will early-out if the link condition has been
1803 		 * met
1804 		 */
1805 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1806 			if (mii_status_reg & MII_SR_LINK_STATUS)
1807 				break;
1808 			msleep(100);
1809 			/* Read the MII Status Register and wait for Auto-Neg
1810 			 * Complete bit to be set.
1811 			 */
1812 			ret_val =
1813 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814 			if (ret_val)
1815 				return ret_val;
1816 
1817 			ret_val =
1818 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819 			if (ret_val)
1820 				return ret_val;
1821 		}
1822 	}
1823 
1824 	if (hw->phy_type == e1000_phy_m88) {
1825 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1826 		 * the Extended PHY Specific Control Register to 25MHz clock.
1827 		 * This value defaults back to a 2.5MHz clock when the PHY is
1828 		 * reset.
1829 		 */
1830 		ret_val =
1831 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832 				       &phy_data);
1833 		if (ret_val)
1834 			return ret_val;
1835 
1836 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837 		ret_val =
1838 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839 					phy_data);
1840 		if (ret_val)
1841 			return ret_val;
1842 
1843 		/* In addition, because of the s/w reset above, we need to
1844 		 * enable CRS on Tx.  This must be set for both full and half
1845 		 * duplex operation.
1846 		 */
1847 		ret_val =
1848 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849 		if (ret_val)
1850 			return ret_val;
1851 
1852 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853 		ret_val =
1854 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855 		if (ret_val)
1856 			return ret_val;
1857 
1858 		if ((hw->mac_type == e1000_82544 ||
1859 		     hw->mac_type == e1000_82543) &&
1860 		    (!hw->autoneg) &&
1861 		    (hw->forced_speed_duplex == e1000_10_full ||
1862 		     hw->forced_speed_duplex == e1000_10_half)) {
1863 			ret_val = e1000_polarity_reversal_workaround(hw);
1864 			if (ret_val)
1865 				return ret_val;
1866 		}
1867 	}
1868 	return E1000_SUCCESS;
1869 }
1870 
1871 /**
1872  * e1000_config_collision_dist - set collision distance register
1873  * @hw: Struct containing variables accessed by shared code
1874  *
1875  * Sets the collision distance in the Transmit Control register.
1876  * Link should have been established previously. Reads the speed and duplex
1877  * information from the Device Status register.
1878  */
e1000_config_collision_dist(struct e1000_hw * hw)1879 void e1000_config_collision_dist(struct e1000_hw *hw)
1880 {
1881 	u32 tctl, coll_dist;
1882 
1883 	if (hw->mac_type < e1000_82543)
1884 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1885 	else
1886 		coll_dist = E1000_COLLISION_DISTANCE;
1887 
1888 	tctl = er32(TCTL);
1889 
1890 	tctl &= ~E1000_TCTL_COLD;
1891 	tctl |= coll_dist << E1000_COLD_SHIFT;
1892 
1893 	ew32(TCTL, tctl);
1894 	E1000_WRITE_FLUSH();
1895 }
1896 
1897 /**
1898  * e1000_config_mac_to_phy - sync phy and mac settings
1899  * @hw: Struct containing variables accessed by shared code
1900  *
1901  * Sets MAC speed and duplex settings to reflect the those in the PHY
1902  * The contents of the PHY register containing the needed information need to
1903  * be passed in.
1904  */
e1000_config_mac_to_phy(struct e1000_hw * hw)1905 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1906 {
1907 	u32 ctrl;
1908 	s32 ret_val;
1909 	u16 phy_data;
1910 
1911 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1912 	 * MAC speed/duplex configuration.
1913 	 */
1914 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1915 		return E1000_SUCCESS;
1916 
1917 	/* Read the Device Control Register and set the bits to Force Speed
1918 	 * and Duplex.
1919 	 */
1920 	ctrl = er32(CTRL);
1921 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1922 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1923 
1924 	switch (hw->phy_type) {
1925 	case e1000_phy_8201:
1926 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1927 		if (ret_val)
1928 			return ret_val;
1929 
1930 		if (phy_data & RTL_PHY_CTRL_FD)
1931 			ctrl |= E1000_CTRL_FD;
1932 		else
1933 			ctrl &= ~E1000_CTRL_FD;
1934 
1935 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1936 			ctrl |= E1000_CTRL_SPD_100;
1937 		else
1938 			ctrl |= E1000_CTRL_SPD_10;
1939 
1940 		e1000_config_collision_dist(hw);
1941 		break;
1942 	default:
1943 		/* Set up duplex in the Device Control and Transmit Control
1944 		 * registers depending on negotiated values.
1945 		 */
1946 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1947 					     &phy_data);
1948 		if (ret_val)
1949 			return ret_val;
1950 
1951 		if (phy_data & M88E1000_PSSR_DPLX)
1952 			ctrl |= E1000_CTRL_FD;
1953 		else
1954 			ctrl &= ~E1000_CTRL_FD;
1955 
1956 		e1000_config_collision_dist(hw);
1957 
1958 		/* Set up speed in the Device Control register depending on
1959 		 * negotiated values.
1960 		 */
1961 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1962 			ctrl |= E1000_CTRL_SPD_1000;
1963 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1964 			 M88E1000_PSSR_100MBS)
1965 			ctrl |= E1000_CTRL_SPD_100;
1966 	}
1967 
1968 	/* Write the configured values back to the Device Control Reg. */
1969 	ew32(CTRL, ctrl);
1970 	return E1000_SUCCESS;
1971 }
1972 
1973 /**
1974  * e1000_force_mac_fc - force flow control settings
1975  * @hw: Struct containing variables accessed by shared code
1976  *
1977  * Forces the MAC's flow control settings.
1978  * Sets the TFCE and RFCE bits in the device control register to reflect
1979  * the adapter settings. TFCE and RFCE need to be explicitly set by
1980  * software when a Copper PHY is used because autonegotiation is managed
1981  * by the PHY rather than the MAC. Software must also configure these
1982  * bits when link is forced on a fiber connection.
1983  */
e1000_force_mac_fc(struct e1000_hw * hw)1984 s32 e1000_force_mac_fc(struct e1000_hw *hw)
1985 {
1986 	u32 ctrl;
1987 
1988 	/* Get the current configuration of the Device Control Register */
1989 	ctrl = er32(CTRL);
1990 
1991 	/* Because we didn't get link via the internal auto-negotiation
1992 	 * mechanism (we either forced link or we got link via PHY
1993 	 * auto-neg), we have to manually enable/disable transmit an
1994 	 * receive flow control.
1995 	 *
1996 	 * The "Case" statement below enables/disable flow control
1997 	 * according to the "hw->fc" parameter.
1998 	 *
1999 	 * The possible values of the "fc" parameter are:
2000 	 *      0:  Flow control is completely disabled
2001 	 *      1:  Rx flow control is enabled (we can receive pause
2002 	 *          frames but not send pause frames).
2003 	 *      2:  Tx flow control is enabled (we can send pause frames
2004 	 *          but we do not receive pause frames).
2005 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2006 	 *  other:  No other values should be possible at this point.
2007 	 */
2008 
2009 	switch (hw->fc) {
2010 	case E1000_FC_NONE:
2011 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2012 		break;
2013 	case E1000_FC_RX_PAUSE:
2014 		ctrl &= (~E1000_CTRL_TFCE);
2015 		ctrl |= E1000_CTRL_RFCE;
2016 		break;
2017 	case E1000_FC_TX_PAUSE:
2018 		ctrl &= (~E1000_CTRL_RFCE);
2019 		ctrl |= E1000_CTRL_TFCE;
2020 		break;
2021 	case E1000_FC_FULL:
2022 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2023 		break;
2024 	default:
2025 		e_dbg("Flow control param set incorrectly\n");
2026 		return -E1000_ERR_CONFIG;
2027 	}
2028 
2029 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2030 	if (hw->mac_type == e1000_82542_rev2_0)
2031 		ctrl &= (~E1000_CTRL_TFCE);
2032 
2033 	ew32(CTRL, ctrl);
2034 	return E1000_SUCCESS;
2035 }
2036 
2037 /**
2038  * e1000_config_fc_after_link_up - configure flow control after autoneg
2039  * @hw: Struct containing variables accessed by shared code
2040  *
2041  * Configures flow control settings after link is established
2042  * Should be called immediately after a valid link has been established.
2043  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2044  * and autonegotiation is enabled, the MAC flow control settings will be set
2045  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2046  * and RFCE bits will be automatically set to the negotiated flow control mode.
2047  */
e1000_config_fc_after_link_up(struct e1000_hw * hw)2048 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2049 {
2050 	s32 ret_val;
2051 	u16 mii_status_reg;
2052 	u16 mii_nway_adv_reg;
2053 	u16 mii_nway_lp_ability_reg;
2054 	u16 speed;
2055 	u16 duplex;
2056 
2057 	/* Check for the case where we have fiber media and auto-neg failed
2058 	 * so we had to force link.  In this case, we need to force the
2059 	 * configuration of the MAC to match the "fc" parameter.
2060 	 */
2061 	if (((hw->media_type == e1000_media_type_fiber) &&
2062 	     (hw->autoneg_failed)) ||
2063 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2064 	     (hw->autoneg_failed)) ||
2065 	    ((hw->media_type == e1000_media_type_copper) &&
2066 	     (!hw->autoneg))) {
2067 		ret_val = e1000_force_mac_fc(hw);
2068 		if (ret_val) {
2069 			e_dbg("Error forcing flow control settings\n");
2070 			return ret_val;
2071 		}
2072 	}
2073 
2074 	/* Check for the case where we have copper media and auto-neg is
2075 	 * enabled.  In this case, we need to check and see if Auto-Neg
2076 	 * has completed, and if so, how the PHY and link partner has
2077 	 * flow control configured.
2078 	 */
2079 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2080 		/* Read the MII Status Register and check to see if AutoNeg
2081 		 * has completed.  We read this twice because this reg has
2082 		 * some "sticky" (latched) bits.
2083 		 */
2084 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2085 		if (ret_val)
2086 			return ret_val;
2087 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2088 		if (ret_val)
2089 			return ret_val;
2090 
2091 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2092 			/* The AutoNeg process has completed, so we now need to
2093 			 * read both the Auto Negotiation Advertisement Register
2094 			 * (Address 4) and the Auto_Negotiation Base Page
2095 			 * Ability Register (Address 5) to determine how flow
2096 			 * control was negotiated.
2097 			 */
2098 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2099 						     &mii_nway_adv_reg);
2100 			if (ret_val)
2101 				return ret_val;
2102 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2103 						     &mii_nway_lp_ability_reg);
2104 			if (ret_val)
2105 				return ret_val;
2106 
2107 			/* Two bits in the Auto Negotiation Advertisement
2108 			 * Register (Address 4) and two bits in the Auto
2109 			 * Negotiation Base Page Ability Register (Address 5)
2110 			 * determine flow control for both the PHY and the link
2111 			 * partner.  The following table, taken out of the IEEE
2112 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2113 			 * PAUSE resolution bits and how flow control is
2114 			 * determined based upon these settings.
2115 			 * NOTE:  DC = Don't Care
2116 			 *
2117 			 *   LOCAL DEVICE  |   LINK PARTNER
2118 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2119 			 *-------|---------|-------|---------|------------------
2120 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2121 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2122 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2123 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2124 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2125 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2126 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2127 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2128 			 *
2129 			 */
2130 			/* Are both PAUSE bits set to 1?  If so, this implies
2131 			 * Symmetric Flow Control is enabled at both ends.  The
2132 			 * ASM_DIR bits are irrelevant per the spec.
2133 			 *
2134 			 * For Symmetric Flow Control:
2135 			 *
2136 			 *   LOCAL DEVICE  |   LINK PARTNER
2137 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2138 			 *-------|---------|-------|---------|------------------
2139 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2140 			 *
2141 			 */
2142 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2143 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2144 				/* Now we need to check if the user selected Rx
2145 				 * ONLY of pause frames.  In this case, we had
2146 				 * to advertise FULL flow control because we
2147 				 * could not advertise Rx ONLY. Hence, we must
2148 				 * now check to see if we need to turn OFF the
2149 				 * TRANSMISSION of PAUSE frames.
2150 				 */
2151 				if (hw->original_fc == E1000_FC_FULL) {
2152 					hw->fc = E1000_FC_FULL;
2153 					e_dbg("Flow Control = FULL.\n");
2154 				} else {
2155 					hw->fc = E1000_FC_RX_PAUSE;
2156 					e_dbg
2157 					    ("Flow Control = RX PAUSE frames only.\n");
2158 				}
2159 			}
2160 			/* For receiving PAUSE frames ONLY.
2161 			 *
2162 			 *   LOCAL DEVICE  |   LINK PARTNER
2163 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164 			 *-------|---------|-------|---------|------------------
2165 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166 			 *
2167 			 */
2168 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2170 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2171 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2172 				hw->fc = E1000_FC_TX_PAUSE;
2173 				e_dbg
2174 				    ("Flow Control = TX PAUSE frames only.\n");
2175 			}
2176 			/* For transmitting PAUSE frames ONLY.
2177 			 *
2178 			 *   LOCAL DEVICE  |   LINK PARTNER
2179 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180 			 *-------|---------|-------|---------|------------------
2181 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2182 			 *
2183 			 */
2184 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2186 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2187 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2188 				hw->fc = E1000_FC_RX_PAUSE;
2189 				e_dbg
2190 				    ("Flow Control = RX PAUSE frames only.\n");
2191 			}
2192 			/* Per the IEEE spec, at this point flow control should
2193 			 * be disabled.  However, we want to consider that we
2194 			 * could be connected to a legacy switch that doesn't
2195 			 * advertise desired flow control, but can be forced on
2196 			 * the link partner.  So if we advertised no flow
2197 			 * control, that is what we will resolve to.  If we
2198 			 * advertised some kind of receive capability (Rx Pause
2199 			 * Only or Full Flow Control) and the link partner
2200 			 * advertised none, we will configure ourselves to
2201 			 * enable Rx Flow Control only.  We can do this safely
2202 			 * for two reasons:  If the link partner really
2203 			 * didn't want flow control enabled, and we enable Rx,
2204 			 * no harm done since we won't be receiving any PAUSE
2205 			 * frames anyway.  If the intent on the link partner was
2206 			 * to have flow control enabled, then by us enabling Rx
2207 			 * only, we can at least receive pause frames and
2208 			 * process them. This is a good idea because in most
2209 			 * cases, since we are predominantly a server NIC, more
2210 			 * times than not we will be asked to delay transmission
2211 			 * of packets than asking our link partner to pause
2212 			 * transmission of frames.
2213 			 */
2214 			else if ((hw->original_fc == E1000_FC_NONE ||
2215 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2216 				 hw->fc_strict_ieee) {
2217 				hw->fc = E1000_FC_NONE;
2218 				e_dbg("Flow Control = NONE.\n");
2219 			} else {
2220 				hw->fc = E1000_FC_RX_PAUSE;
2221 				e_dbg
2222 				    ("Flow Control = RX PAUSE frames only.\n");
2223 			}
2224 
2225 			/* Now we need to do one last check...  If we auto-
2226 			 * negotiated to HALF DUPLEX, flow control should not be
2227 			 * enabled per IEEE 802.3 spec.
2228 			 */
2229 			ret_val =
2230 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2231 			if (ret_val) {
2232 				e_dbg
2233 				    ("Error getting link speed and duplex\n");
2234 				return ret_val;
2235 			}
2236 
2237 			if (duplex == HALF_DUPLEX)
2238 				hw->fc = E1000_FC_NONE;
2239 
2240 			/* Now we call a subroutine to actually force the MAC
2241 			 * controller to use the correct flow control settings.
2242 			 */
2243 			ret_val = e1000_force_mac_fc(hw);
2244 			if (ret_val) {
2245 				e_dbg
2246 				    ("Error forcing flow control settings\n");
2247 				return ret_val;
2248 			}
2249 		} else {
2250 			e_dbg
2251 			    ("Copper PHY and Auto Neg has not completed.\n");
2252 		}
2253 	}
2254 	return E1000_SUCCESS;
2255 }
2256 
2257 /**
2258  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2259  * @hw: pointer to the HW structure
2260  *
2261  * Checks for link up on the hardware.  If link is not up and we have
2262  * a signal, then we need to force link up.
2263  */
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)2264 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2265 {
2266 	u32 rxcw;
2267 	u32 ctrl;
2268 	u32 status;
2269 	s32 ret_val = E1000_SUCCESS;
2270 
2271 	ctrl = er32(CTRL);
2272 	status = er32(STATUS);
2273 	rxcw = er32(RXCW);
2274 
2275 	/* If we don't have link (auto-negotiation failed or link partner
2276 	 * cannot auto-negotiate), and our link partner is not trying to
2277 	 * auto-negotiate with us (we are receiving idles or data),
2278 	 * we need to force link up. We also need to give auto-negotiation
2279 	 * time to complete.
2280 	 */
2281 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2282 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2283 		if (hw->autoneg_failed == 0) {
2284 			hw->autoneg_failed = 1;
2285 			goto out;
2286 		}
2287 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2288 
2289 		/* Disable auto-negotiation in the TXCW register */
2290 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2291 
2292 		/* Force link-up and also force full-duplex. */
2293 		ctrl = er32(CTRL);
2294 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2295 		ew32(CTRL, ctrl);
2296 
2297 		/* Configure Flow Control after forcing link up. */
2298 		ret_val = e1000_config_fc_after_link_up(hw);
2299 		if (ret_val) {
2300 			e_dbg("Error configuring flow control\n");
2301 			goto out;
2302 		}
2303 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2304 		/* If we are forcing link and we are receiving /C/ ordered
2305 		 * sets, re-enable auto-negotiation in the TXCW register
2306 		 * and disable forced link in the Device Control register
2307 		 * in an attempt to auto-negotiate with our link partner.
2308 		 */
2309 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2310 		ew32(TXCW, hw->txcw);
2311 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2312 
2313 		hw->serdes_has_link = true;
2314 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2315 		/* If we force link for non-auto-negotiation switch, check
2316 		 * link status based on MAC synchronization for internal
2317 		 * serdes media type.
2318 		 */
2319 		/* SYNCH bit and IV bit are sticky. */
2320 		udelay(10);
2321 		rxcw = er32(RXCW);
2322 		if (rxcw & E1000_RXCW_SYNCH) {
2323 			if (!(rxcw & E1000_RXCW_IV)) {
2324 				hw->serdes_has_link = true;
2325 				e_dbg("SERDES: Link up - forced.\n");
2326 			}
2327 		} else {
2328 			hw->serdes_has_link = false;
2329 			e_dbg("SERDES: Link down - force failed.\n");
2330 		}
2331 	}
2332 
2333 	if (E1000_TXCW_ANE & er32(TXCW)) {
2334 		status = er32(STATUS);
2335 		if (status & E1000_STATUS_LU) {
2336 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2337 			udelay(10);
2338 			rxcw = er32(RXCW);
2339 			if (rxcw & E1000_RXCW_SYNCH) {
2340 				if (!(rxcw & E1000_RXCW_IV)) {
2341 					hw->serdes_has_link = true;
2342 					e_dbg("SERDES: Link up - autoneg "
2343 						 "completed successfully.\n");
2344 				} else {
2345 					hw->serdes_has_link = false;
2346 					e_dbg("SERDES: Link down - invalid"
2347 						 "codewords detected in autoneg.\n");
2348 				}
2349 			} else {
2350 				hw->serdes_has_link = false;
2351 				e_dbg("SERDES: Link down - no sync.\n");
2352 			}
2353 		} else {
2354 			hw->serdes_has_link = false;
2355 			e_dbg("SERDES: Link down - autoneg failed\n");
2356 		}
2357 	}
2358 
2359       out:
2360 	return ret_val;
2361 }
2362 
2363 /**
2364  * e1000_check_for_link
2365  * @hw: Struct containing variables accessed by shared code
2366  *
2367  * Checks to see if the link status of the hardware has changed.
2368  * Called by any function that needs to check the link status of the adapter.
2369  */
e1000_check_for_link(struct e1000_hw * hw)2370 s32 e1000_check_for_link(struct e1000_hw *hw)
2371 {
2372 	u32 status;
2373 	u32 rctl;
2374 	u32 icr;
2375 	s32 ret_val;
2376 	u16 phy_data;
2377 
2378 	er32(CTRL);
2379 	status = er32(STATUS);
2380 
2381 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2382 	 * set when the optics detect a signal. On older adapters, it will be
2383 	 * cleared when there is a signal.  This applies to fiber media only.
2384 	 */
2385 	if ((hw->media_type == e1000_media_type_fiber) ||
2386 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2387 		er32(RXCW);
2388 
2389 		if (hw->media_type == e1000_media_type_fiber) {
2390 			if (status & E1000_STATUS_LU)
2391 				hw->get_link_status = false;
2392 		}
2393 	}
2394 
2395 	/* If we have a copper PHY then we only want to go out to the PHY
2396 	 * registers to see if Auto-Neg has completed and/or if our link
2397 	 * status has changed.  The get_link_status flag will be set if we
2398 	 * receive a Link Status Change interrupt or we have Rx Sequence
2399 	 * Errors.
2400 	 */
2401 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2402 		/* First we want to see if the MII Status Register reports
2403 		 * link.  If so, then we want to get the current speed/duplex
2404 		 * of the PHY.
2405 		 * Read the register twice since the link bit is sticky.
2406 		 */
2407 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2408 		if (ret_val)
2409 			return ret_val;
2410 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2411 		if (ret_val)
2412 			return ret_val;
2413 
2414 		if (phy_data & MII_SR_LINK_STATUS) {
2415 			hw->get_link_status = false;
2416 			/* Check if there was DownShift, must be checked
2417 			 * immediately after link-up
2418 			 */
2419 			e1000_check_downshift(hw);
2420 
2421 			/* If we are on 82544 or 82543 silicon and speed/duplex
2422 			 * are forced to 10H or 10F, then we will implement the
2423 			 * polarity reversal workaround.  We disable interrupts
2424 			 * first, and upon returning, place the devices
2425 			 * interrupt state to its previous value except for the
2426 			 * link status change interrupt which will
2427 			 * happen due to the execution of this workaround.
2428 			 */
2429 
2430 			if ((hw->mac_type == e1000_82544 ||
2431 			     hw->mac_type == e1000_82543) &&
2432 			    (!hw->autoneg) &&
2433 			    (hw->forced_speed_duplex == e1000_10_full ||
2434 			     hw->forced_speed_duplex == e1000_10_half)) {
2435 				ew32(IMC, 0xffffffff);
2436 				ret_val =
2437 				    e1000_polarity_reversal_workaround(hw);
2438 				icr = er32(ICR);
2439 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2440 				ew32(IMS, IMS_ENABLE_MASK);
2441 			}
2442 
2443 		} else {
2444 			/* No link detected */
2445 			e1000_config_dsp_after_link_change(hw, false);
2446 			return 0;
2447 		}
2448 
2449 		/* If we are forcing speed/duplex, then we simply return since
2450 		 * we have already determined whether we have link or not.
2451 		 */
2452 		if (!hw->autoneg)
2453 			return -E1000_ERR_CONFIG;
2454 
2455 		/* optimize the dsp settings for the igp phy */
2456 		e1000_config_dsp_after_link_change(hw, true);
2457 
2458 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2459 		 * have Si on board that is 82544 or newer, Auto
2460 		 * Speed Detection takes care of MAC speed/duplex
2461 		 * configuration.  So we only need to configure Collision
2462 		 * Distance in the MAC.  Otherwise, we need to force
2463 		 * speed/duplex on the MAC to the current PHY speed/duplex
2464 		 * settings.
2465 		 */
2466 		if ((hw->mac_type >= e1000_82544) &&
2467 		    (hw->mac_type != e1000_ce4100))
2468 			e1000_config_collision_dist(hw);
2469 		else {
2470 			ret_val = e1000_config_mac_to_phy(hw);
2471 			if (ret_val) {
2472 				e_dbg
2473 				    ("Error configuring MAC to PHY settings\n");
2474 				return ret_val;
2475 			}
2476 		}
2477 
2478 		/* Configure Flow Control now that Auto-Neg has completed.
2479 		 * First, we need to restore the desired flow control settings
2480 		 * because we may have had to re-autoneg with a different link
2481 		 * partner.
2482 		 */
2483 		ret_val = e1000_config_fc_after_link_up(hw);
2484 		if (ret_val) {
2485 			e_dbg("Error configuring flow control\n");
2486 			return ret_val;
2487 		}
2488 
2489 		/* At this point we know that we are on copper and we have
2490 		 * auto-negotiated link.  These are conditions for checking the
2491 		 * link partner capability register.  We use the link speed to
2492 		 * determine if TBI compatibility needs to be turned on or off.
2493 		 * If the link is not at gigabit speed, then TBI compatibility
2494 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2495 		 * compatibility.
2496 		 */
2497 		if (hw->tbi_compatibility_en) {
2498 			u16 speed, duplex;
2499 
2500 			ret_val =
2501 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2502 
2503 			if (ret_val) {
2504 				e_dbg
2505 				    ("Error getting link speed and duplex\n");
2506 				return ret_val;
2507 			}
2508 			if (speed != SPEED_1000) {
2509 				/* If link speed is not set to gigabit speed, we
2510 				 * do not need to enable TBI compatibility.
2511 				 */
2512 				if (hw->tbi_compatibility_on) {
2513 					/* If we previously were in the mode,
2514 					 * turn it off.
2515 					 */
2516 					rctl = er32(RCTL);
2517 					rctl &= ~E1000_RCTL_SBP;
2518 					ew32(RCTL, rctl);
2519 					hw->tbi_compatibility_on = false;
2520 				}
2521 			} else {
2522 				/* If TBI compatibility is was previously off,
2523 				 * turn it on. For compatibility with a TBI link
2524 				 * partner, we will store bad packets. Some
2525 				 * frames have an additional byte on the end and
2526 				 * will look like CRC errors to the hardware.
2527 				 */
2528 				if (!hw->tbi_compatibility_on) {
2529 					hw->tbi_compatibility_on = true;
2530 					rctl = er32(RCTL);
2531 					rctl |= E1000_RCTL_SBP;
2532 					ew32(RCTL, rctl);
2533 				}
2534 			}
2535 		}
2536 	}
2537 
2538 	if ((hw->media_type == e1000_media_type_fiber) ||
2539 	    (hw->media_type == e1000_media_type_internal_serdes))
2540 		e1000_check_for_serdes_link_generic(hw);
2541 
2542 	return E1000_SUCCESS;
2543 }
2544 
2545 /**
2546  * e1000_get_speed_and_duplex
2547  * @hw: Struct containing variables accessed by shared code
2548  * @speed: Speed of the connection
2549  * @duplex: Duplex setting of the connection
2550  *
2551  * Detects the current speed and duplex settings of the hardware.
2552  */
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)2553 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2554 {
2555 	u32 status;
2556 	s32 ret_val;
2557 	u16 phy_data;
2558 
2559 	if (hw->mac_type >= e1000_82543) {
2560 		status = er32(STATUS);
2561 		if (status & E1000_STATUS_SPEED_1000) {
2562 			*speed = SPEED_1000;
2563 			e_dbg("1000 Mbs, ");
2564 		} else if (status & E1000_STATUS_SPEED_100) {
2565 			*speed = SPEED_100;
2566 			e_dbg("100 Mbs, ");
2567 		} else {
2568 			*speed = SPEED_10;
2569 			e_dbg("10 Mbs, ");
2570 		}
2571 
2572 		if (status & E1000_STATUS_FD) {
2573 			*duplex = FULL_DUPLEX;
2574 			e_dbg("Full Duplex\n");
2575 		} else {
2576 			*duplex = HALF_DUPLEX;
2577 			e_dbg(" Half Duplex\n");
2578 		}
2579 	} else {
2580 		e_dbg("1000 Mbs, Full Duplex\n");
2581 		*speed = SPEED_1000;
2582 		*duplex = FULL_DUPLEX;
2583 	}
2584 
2585 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2586 	 * even if it is operating at half duplex.  Here we set the duplex
2587 	 * settings to match the duplex in the link partner's capabilities.
2588 	 */
2589 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2590 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2591 		if (ret_val)
2592 			return ret_val;
2593 
2594 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2595 			*duplex = HALF_DUPLEX;
2596 		else {
2597 			ret_val =
2598 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2599 			if (ret_val)
2600 				return ret_val;
2601 			if ((*speed == SPEED_100 &&
2602 			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2603 			    (*speed == SPEED_10 &&
2604 			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2605 				*duplex = HALF_DUPLEX;
2606 		}
2607 	}
2608 
2609 	return E1000_SUCCESS;
2610 }
2611 
2612 /**
2613  * e1000_wait_autoneg
2614  * @hw: Struct containing variables accessed by shared code
2615  *
2616  * Blocks until autoneg completes or times out (~4.5 seconds)
2617  */
e1000_wait_autoneg(struct e1000_hw * hw)2618 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2619 {
2620 	s32 ret_val;
2621 	u16 i;
2622 	u16 phy_data;
2623 
2624 	e_dbg("Waiting for Auto-Neg to complete.\n");
2625 
2626 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2627 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2628 		/* Read the MII Status Register and wait for Auto-Neg
2629 		 * Complete bit to be set.
2630 		 */
2631 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2632 		if (ret_val)
2633 			return ret_val;
2634 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2635 		if (ret_val)
2636 			return ret_val;
2637 		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2638 			return E1000_SUCCESS;
2639 
2640 		msleep(100);
2641 	}
2642 	return E1000_SUCCESS;
2643 }
2644 
2645 /**
2646  * e1000_raise_mdi_clk - Raises the Management Data Clock
2647  * @hw: Struct containing variables accessed by shared code
2648  * @ctrl: Device control register's current value
2649  */
e1000_raise_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2650 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2651 {
2652 	/* Raise the clock input to the Management Data Clock (by setting the
2653 	 * MDC bit), and then delay 10 microseconds.
2654 	 */
2655 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2656 	E1000_WRITE_FLUSH();
2657 	udelay(10);
2658 }
2659 
2660 /**
2661  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2662  * @hw: Struct containing variables accessed by shared code
2663  * @ctrl: Device control register's current value
2664  */
e1000_lower_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2665 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2666 {
2667 	/* Lower the clock input to the Management Data Clock (by clearing the
2668 	 * MDC bit), and then delay 10 microseconds.
2669 	 */
2670 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2671 	E1000_WRITE_FLUSH();
2672 	udelay(10);
2673 }
2674 
2675 /**
2676  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2677  * @hw: Struct containing variables accessed by shared code
2678  * @data: Data to send out to the PHY
2679  * @count: Number of bits to shift out
2680  *
2681  * Bits are shifted out in MSB to LSB order.
2682  */
e1000_shift_out_mdi_bits(struct e1000_hw * hw,u32 data,u16 count)2683 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2684 {
2685 	u32 ctrl;
2686 	u32 mask;
2687 
2688 	/* We need to shift "count" number of bits out to the PHY. So, the value
2689 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2690 	 * time. In order to do this, "data" must be broken down into bits.
2691 	 */
2692 	mask = 0x01;
2693 	mask <<= (count - 1);
2694 
2695 	ctrl = er32(CTRL);
2696 
2697 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2698 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2699 
2700 	while (mask) {
2701 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2702 		 * "1" and then raising and lowering the Management Data Clock.
2703 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2704 		 * "0" and then raising and lowering the clock.
2705 		 */
2706 		if (data & mask)
2707 			ctrl |= E1000_CTRL_MDIO;
2708 		else
2709 			ctrl &= ~E1000_CTRL_MDIO;
2710 
2711 		ew32(CTRL, ctrl);
2712 		E1000_WRITE_FLUSH();
2713 
2714 		udelay(10);
2715 
2716 		e1000_raise_mdi_clk(hw, &ctrl);
2717 		e1000_lower_mdi_clk(hw, &ctrl);
2718 
2719 		mask = mask >> 1;
2720 	}
2721 }
2722 
2723 /**
2724  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2725  * @hw: Struct containing variables accessed by shared code
2726  *
2727  * Bits are shifted in MSB to LSB order.
2728  */
e1000_shift_in_mdi_bits(struct e1000_hw * hw)2729 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2730 {
2731 	u32 ctrl;
2732 	u16 data = 0;
2733 	u8 i;
2734 
2735 	/* In order to read a register from the PHY, we need to shift in a total
2736 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2737 	 * used to avoid contention on the MDIO pin when a read operation is
2738 	 * performed. These two bits are ignored by us and thrown away. Bits are
2739 	 * "shifted in" by raising the input to the Management Data Clock
2740 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2741 	 */
2742 	ctrl = er32(CTRL);
2743 
2744 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2745 	 * input.
2746 	 */
2747 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2748 	ctrl &= ~E1000_CTRL_MDIO;
2749 
2750 	ew32(CTRL, ctrl);
2751 	E1000_WRITE_FLUSH();
2752 
2753 	/* Raise and Lower the clock before reading in the data. This accounts
2754 	 * for the turnaround bits. The first clock occurred when we clocked out
2755 	 * the last bit of the Register Address.
2756 	 */
2757 	e1000_raise_mdi_clk(hw, &ctrl);
2758 	e1000_lower_mdi_clk(hw, &ctrl);
2759 
2760 	for (data = 0, i = 0; i < 16; i++) {
2761 		data = data << 1;
2762 		e1000_raise_mdi_clk(hw, &ctrl);
2763 		ctrl = er32(CTRL);
2764 		/* Check to see if we shifted in a "1". */
2765 		if (ctrl & E1000_CTRL_MDIO)
2766 			data |= 1;
2767 		e1000_lower_mdi_clk(hw, &ctrl);
2768 	}
2769 
2770 	e1000_raise_mdi_clk(hw, &ctrl);
2771 	e1000_lower_mdi_clk(hw, &ctrl);
2772 
2773 	return data;
2774 }
2775 
2776 /**
2777  * e1000_read_phy_reg - read a phy register
2778  * @hw: Struct containing variables accessed by shared code
2779  * @reg_addr: address of the PHY register to read
2780  * @phy_data: pointer to the value on the PHY register
2781  *
2782  * Reads the value from a PHY register, if the value is on a specific non zero
2783  * page, sets the page first.
2784  */
e1000_read_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2785 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2786 {
2787 	u32 ret_val;
2788 	unsigned long flags;
2789 
2790 	spin_lock_irqsave(&e1000_phy_lock, flags);
2791 
2792 	if ((hw->phy_type == e1000_phy_igp) &&
2793 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2794 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2795 						 (u16) reg_addr);
2796 		if (ret_val)
2797 			goto out;
2798 	}
2799 
2800 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2801 					phy_data);
2802 out:
2803 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2804 
2805 	return ret_val;
2806 }
2807 
e1000_read_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2808 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2809 				 u16 *phy_data)
2810 {
2811 	u32 i;
2812 	u32 mdic = 0;
2813 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2814 
2815 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2816 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2817 		return -E1000_ERR_PARAM;
2818 	}
2819 
2820 	if (hw->mac_type > e1000_82543) {
2821 		/* Set up Op-code, Phy Address, and register address in the MDI
2822 		 * Control register.  The MAC will take care of interfacing with
2823 		 * the PHY to retrieve the desired data.
2824 		 */
2825 		if (hw->mac_type == e1000_ce4100) {
2826 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2827 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2828 				(INTEL_CE_GBE_MDIC_OP_READ) |
2829 				(INTEL_CE_GBE_MDIC_GO));
2830 
2831 			writel(mdic, E1000_MDIO_CMD);
2832 
2833 			/* Poll the ready bit to see if the MDI read
2834 			 * completed
2835 			 */
2836 			for (i = 0; i < 64; i++) {
2837 				udelay(50);
2838 				mdic = readl(E1000_MDIO_CMD);
2839 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2840 					break;
2841 			}
2842 
2843 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2844 				e_dbg("MDI Read did not complete\n");
2845 				return -E1000_ERR_PHY;
2846 			}
2847 
2848 			mdic = readl(E1000_MDIO_STS);
2849 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2850 				e_dbg("MDI Read Error\n");
2851 				return -E1000_ERR_PHY;
2852 			}
2853 			*phy_data = (u16)mdic;
2854 		} else {
2855 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2856 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2857 				(E1000_MDIC_OP_READ));
2858 
2859 			ew32(MDIC, mdic);
2860 
2861 			/* Poll the ready bit to see if the MDI read
2862 			 * completed
2863 			 */
2864 			for (i = 0; i < 64; i++) {
2865 				udelay(50);
2866 				mdic = er32(MDIC);
2867 				if (mdic & E1000_MDIC_READY)
2868 					break;
2869 			}
2870 			if (!(mdic & E1000_MDIC_READY)) {
2871 				e_dbg("MDI Read did not complete\n");
2872 				return -E1000_ERR_PHY;
2873 			}
2874 			if (mdic & E1000_MDIC_ERROR) {
2875 				e_dbg("MDI Error\n");
2876 				return -E1000_ERR_PHY;
2877 			}
2878 			*phy_data = (u16)mdic;
2879 		}
2880 	} else {
2881 		/* We must first send a preamble through the MDIO pin to signal
2882 		 * the beginning of an MII instruction.  This is done by sending
2883 		 * 32 consecutive "1" bits.
2884 		 */
2885 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2886 
2887 		/* Now combine the next few fields that are required for a read
2888 		 * operation.  We use this method instead of calling the
2889 		 * e1000_shift_out_mdi_bits routine five different times. The
2890 		 * format of a MII read instruction consists of a shift out of
2891 		 * 14 bits and is defined as follows:
2892 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2893 		 * followed by a shift in of 18 bits.  This first two bits
2894 		 * shifted in are TurnAround bits used to avoid contention on
2895 		 * the MDIO pin when a READ operation is performed.  These two
2896 		 * bits are thrown away followed by a shift in of 16 bits which
2897 		 * contains the desired data.
2898 		 */
2899 		mdic = ((reg_addr) | (phy_addr << 5) |
2900 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2901 
2902 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2903 
2904 		/* Now that we've shifted out the read command to the MII, we
2905 		 * need to "shift in" the 16-bit value (18 total bits) of the
2906 		 * requested PHY register address.
2907 		 */
2908 		*phy_data = e1000_shift_in_mdi_bits(hw);
2909 	}
2910 	return E1000_SUCCESS;
2911 }
2912 
2913 /**
2914  * e1000_write_phy_reg - write a phy register
2915  *
2916  * @hw: Struct containing variables accessed by shared code
2917  * @reg_addr: address of the PHY register to write
2918  * @phy_data: data to write to the PHY
2919  *
2920  * Writes a value to a PHY register
2921  */
e1000_write_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2922 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2923 {
2924 	u32 ret_val;
2925 	unsigned long flags;
2926 
2927 	spin_lock_irqsave(&e1000_phy_lock, flags);
2928 
2929 	if ((hw->phy_type == e1000_phy_igp) &&
2930 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2931 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2932 						 (u16)reg_addr);
2933 		if (ret_val) {
2934 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2935 			return ret_val;
2936 		}
2937 	}
2938 
2939 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2940 					 phy_data);
2941 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942 
2943 	return ret_val;
2944 }
2945 
e1000_write_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2946 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2947 				  u16 phy_data)
2948 {
2949 	u32 i;
2950 	u32 mdic = 0;
2951 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2952 
2953 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2954 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2955 		return -E1000_ERR_PARAM;
2956 	}
2957 
2958 	if (hw->mac_type > e1000_82543) {
2959 		/* Set up Op-code, Phy Address, register address, and data
2960 		 * intended for the PHY register in the MDI Control register.
2961 		 * The MAC will take care of interfacing with the PHY to send
2962 		 * the desired data.
2963 		 */
2964 		if (hw->mac_type == e1000_ce4100) {
2965 			mdic = (((u32)phy_data) |
2966 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2967 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2968 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2969 				(INTEL_CE_GBE_MDIC_GO));
2970 
2971 			writel(mdic, E1000_MDIO_CMD);
2972 
2973 			/* Poll the ready bit to see if the MDI read
2974 			 * completed
2975 			 */
2976 			for (i = 0; i < 640; i++) {
2977 				udelay(5);
2978 				mdic = readl(E1000_MDIO_CMD);
2979 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2980 					break;
2981 			}
2982 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2983 				e_dbg("MDI Write did not complete\n");
2984 				return -E1000_ERR_PHY;
2985 			}
2986 		} else {
2987 			mdic = (((u32)phy_data) |
2988 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2989 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2990 				(E1000_MDIC_OP_WRITE));
2991 
2992 			ew32(MDIC, mdic);
2993 
2994 			/* Poll the ready bit to see if the MDI read
2995 			 * completed
2996 			 */
2997 			for (i = 0; i < 641; i++) {
2998 				udelay(5);
2999 				mdic = er32(MDIC);
3000 				if (mdic & E1000_MDIC_READY)
3001 					break;
3002 			}
3003 			if (!(mdic & E1000_MDIC_READY)) {
3004 				e_dbg("MDI Write did not complete\n");
3005 				return -E1000_ERR_PHY;
3006 			}
3007 		}
3008 	} else {
3009 		/* We'll need to use the SW defined pins to shift the write
3010 		 * command out to the PHY. We first send a preamble to the PHY
3011 		 * to signal the beginning of the MII instruction.  This is done
3012 		 * by sending 32 consecutive "1" bits.
3013 		 */
3014 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3015 
3016 		/* Now combine the remaining required fields that will indicate
3017 		 * a write operation. We use this method instead of calling the
3018 		 * e1000_shift_out_mdi_bits routine for each field in the
3019 		 * command. The format of a MII write instruction is as follows:
3020 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3021 		 */
3022 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3023 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3024 		mdic <<= 16;
3025 		mdic |= (u32)phy_data;
3026 
3027 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3028 	}
3029 
3030 	return E1000_SUCCESS;
3031 }
3032 
3033 /**
3034  * e1000_phy_hw_reset - reset the phy, hardware style
3035  * @hw: Struct containing variables accessed by shared code
3036  *
3037  * Returns the PHY to the power-on reset state
3038  */
e1000_phy_hw_reset(struct e1000_hw * hw)3039 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3040 {
3041 	u32 ctrl, ctrl_ext;
3042 	u32 led_ctrl;
3043 
3044 	e_dbg("Resetting Phy...\n");
3045 
3046 	if (hw->mac_type > e1000_82543) {
3047 		/* Read the device control register and assert the
3048 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3049 		 * For e1000 hardware, we delay for 10ms between the assert
3050 		 * and de-assert.
3051 		 */
3052 		ctrl = er32(CTRL);
3053 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3054 		E1000_WRITE_FLUSH();
3055 
3056 		msleep(10);
3057 
3058 		ew32(CTRL, ctrl);
3059 		E1000_WRITE_FLUSH();
3060 
3061 	} else {
3062 		/* Read the Extended Device Control Register, assert the
3063 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3064 		 * out of reset.
3065 		 */
3066 		ctrl_ext = er32(CTRL_EXT);
3067 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3068 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3069 		ew32(CTRL_EXT, ctrl_ext);
3070 		E1000_WRITE_FLUSH();
3071 		msleep(10);
3072 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3073 		ew32(CTRL_EXT, ctrl_ext);
3074 		E1000_WRITE_FLUSH();
3075 	}
3076 	udelay(150);
3077 
3078 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3079 		/* Configure activity LED after PHY reset */
3080 		led_ctrl = er32(LEDCTL);
3081 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3082 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3083 		ew32(LEDCTL, led_ctrl);
3084 	}
3085 
3086 	/* Wait for FW to finish PHY configuration. */
3087 	return e1000_get_phy_cfg_done(hw);
3088 }
3089 
3090 /**
3091  * e1000_phy_reset - reset the phy to commit settings
3092  * @hw: Struct containing variables accessed by shared code
3093  *
3094  * Resets the PHY
3095  * Sets bit 15 of the MII Control register
3096  */
e1000_phy_reset(struct e1000_hw * hw)3097 s32 e1000_phy_reset(struct e1000_hw *hw)
3098 {
3099 	s32 ret_val;
3100 	u16 phy_data;
3101 
3102 	switch (hw->phy_type) {
3103 	case e1000_phy_igp:
3104 		ret_val = e1000_phy_hw_reset(hw);
3105 		if (ret_val)
3106 			return ret_val;
3107 		break;
3108 	default:
3109 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3110 		if (ret_val)
3111 			return ret_val;
3112 
3113 		phy_data |= MII_CR_RESET;
3114 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3115 		if (ret_val)
3116 			return ret_val;
3117 
3118 		udelay(1);
3119 		break;
3120 	}
3121 
3122 	if (hw->phy_type == e1000_phy_igp)
3123 		e1000_phy_init_script(hw);
3124 
3125 	return E1000_SUCCESS;
3126 }
3127 
3128 /**
3129  * e1000_detect_gig_phy - check the phy type
3130  * @hw: Struct containing variables accessed by shared code
3131  *
3132  * Probes the expected PHY address for known PHY IDs
3133  */
e1000_detect_gig_phy(struct e1000_hw * hw)3134 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3135 {
3136 	s32 phy_init_status, ret_val;
3137 	u16 phy_id_high, phy_id_low;
3138 	bool match = false;
3139 
3140 	if (hw->phy_id != 0)
3141 		return E1000_SUCCESS;
3142 
3143 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3144 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3145 	if (ret_val)
3146 		return ret_val;
3147 
3148 	hw->phy_id = (u32)(phy_id_high << 16);
3149 	udelay(20);
3150 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3151 	if (ret_val)
3152 		return ret_val;
3153 
3154 	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3155 	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3156 
3157 	switch (hw->mac_type) {
3158 	case e1000_82543:
3159 		if (hw->phy_id == M88E1000_E_PHY_ID)
3160 			match = true;
3161 		break;
3162 	case e1000_82544:
3163 		if (hw->phy_id == M88E1000_I_PHY_ID)
3164 			match = true;
3165 		break;
3166 	case e1000_82540:
3167 	case e1000_82545:
3168 	case e1000_82545_rev_3:
3169 	case e1000_82546:
3170 	case e1000_82546_rev_3:
3171 		if (hw->phy_id == M88E1011_I_PHY_ID)
3172 			match = true;
3173 		break;
3174 	case e1000_ce4100:
3175 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3176 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3177 		    (hw->phy_id == M88E1118_E_PHY_ID))
3178 			match = true;
3179 		break;
3180 	case e1000_82541:
3181 	case e1000_82541_rev_2:
3182 	case e1000_82547:
3183 	case e1000_82547_rev_2:
3184 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3185 			match = true;
3186 		break;
3187 	default:
3188 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3189 		return -E1000_ERR_CONFIG;
3190 	}
3191 	phy_init_status = e1000_set_phy_type(hw);
3192 
3193 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3194 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3195 		return E1000_SUCCESS;
3196 	}
3197 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3198 	return -E1000_ERR_PHY;
3199 }
3200 
3201 /**
3202  * e1000_phy_reset_dsp - reset DSP
3203  * @hw: Struct containing variables accessed by shared code
3204  *
3205  * Resets the PHY's DSP
3206  */
e1000_phy_reset_dsp(struct e1000_hw * hw)3207 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3208 {
3209 	s32 ret_val;
3210 
3211 	do {
3212 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3213 		if (ret_val)
3214 			break;
3215 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3216 		if (ret_val)
3217 			break;
3218 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3219 		if (ret_val)
3220 			break;
3221 		ret_val = E1000_SUCCESS;
3222 	} while (0);
3223 
3224 	return ret_val;
3225 }
3226 
3227 /**
3228  * e1000_phy_igp_get_info - get igp specific registers
3229  * @hw: Struct containing variables accessed by shared code
3230  * @phy_info: PHY information structure
3231  *
3232  * Get PHY information from various PHY registers for igp PHY only.
3233  */
e1000_phy_igp_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3234 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3235 				  struct e1000_phy_info *phy_info)
3236 {
3237 	s32 ret_val;
3238 	u16 phy_data, min_length, max_length, average;
3239 	e1000_rev_polarity polarity;
3240 
3241 	/* The downshift status is checked only once, after link is established,
3242 	 * and it stored in the hw->speed_downgraded parameter.
3243 	 */
3244 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3245 
3246 	/* IGP01E1000 does not need to support it. */
3247 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3248 
3249 	/* IGP01E1000 always correct polarity reversal */
3250 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3251 
3252 	/* Check polarity status */
3253 	ret_val = e1000_check_polarity(hw, &polarity);
3254 	if (ret_val)
3255 		return ret_val;
3256 
3257 	phy_info->cable_polarity = polarity;
3258 
3259 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3260 	if (ret_val)
3261 		return ret_val;
3262 
3263 	phy_info->mdix_mode =
3264 	    (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data);
3265 
3266 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268 		/* Local/Remote Receiver Information are only valid @ 1000
3269 		 * Mbps
3270 		 */
3271 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272 		if (ret_val)
3273 			return ret_val;
3274 
3275 		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3276 					       phy_data) ?
3277 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278 		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3279 						phy_data) ?
3280 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281 
3282 		/* Get cable length */
3283 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284 		if (ret_val)
3285 			return ret_val;
3286 
3287 		/* Translate to old method */
3288 		average = (max_length + min_length) / 2;
3289 
3290 		if (average <= e1000_igp_cable_length_50)
3291 			phy_info->cable_length = e1000_cable_length_50;
3292 		else if (average <= e1000_igp_cable_length_80)
3293 			phy_info->cable_length = e1000_cable_length_50_80;
3294 		else if (average <= e1000_igp_cable_length_110)
3295 			phy_info->cable_length = e1000_cable_length_80_110;
3296 		else if (average <= e1000_igp_cable_length_140)
3297 			phy_info->cable_length = e1000_cable_length_110_140;
3298 		else
3299 			phy_info->cable_length = e1000_cable_length_140;
3300 	}
3301 
3302 	return E1000_SUCCESS;
3303 }
3304 
3305 /**
3306  * e1000_phy_m88_get_info - get m88 specific registers
3307  * @hw: Struct containing variables accessed by shared code
3308  * @phy_info: PHY information structure
3309  *
3310  * Get PHY information from various PHY registers for m88 PHY only.
3311  */
e1000_phy_m88_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3312 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313 				  struct e1000_phy_info *phy_info)
3314 {
3315 	s32 ret_val;
3316 	u16 phy_data;
3317 	e1000_rev_polarity polarity;
3318 
3319 	/* The downshift status is checked only once, after link is established,
3320 	 * and it stored in the hw->speed_downgraded parameter.
3321 	 */
3322 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323 
3324 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325 	if (ret_val)
3326 		return ret_val;
3327 
3328 	phy_info->extended_10bt_distance =
3329 	    FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ?
3330 	    e1000_10bt_ext_dist_enable_lower :
3331 	    e1000_10bt_ext_dist_enable_normal;
3332 
3333 	phy_info->polarity_correction =
3334 	    FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ?
3335 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3336 
3337 	/* Check polarity status */
3338 	ret_val = e1000_check_polarity(hw, &polarity);
3339 	if (ret_val)
3340 		return ret_val;
3341 	phy_info->cable_polarity = polarity;
3342 
3343 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3344 	if (ret_val)
3345 		return ret_val;
3346 
3347 	phy_info->mdix_mode =
3348 	    (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data);
3349 
3350 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3351 		/* Cable Length Estimation and Local/Remote Receiver Information
3352 		 * are only valid at 1000 Mbps.
3353 		 */
3354 		phy_info->cable_length =
3355 		    (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH,
3356 						  phy_data);
3357 
3358 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3359 		if (ret_val)
3360 			return ret_val;
3361 
3362 		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3363 					       phy_data) ?
3364 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3365 		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3366 						phy_data) ?
3367 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3368 	}
3369 
3370 	return E1000_SUCCESS;
3371 }
3372 
3373 /**
3374  * e1000_phy_get_info - request phy info
3375  * @hw: Struct containing variables accessed by shared code
3376  * @phy_info: PHY information structure
3377  *
3378  * Get PHY information from various PHY registers
3379  */
e1000_phy_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3380 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3381 {
3382 	s32 ret_val;
3383 	u16 phy_data;
3384 
3385 	phy_info->cable_length = e1000_cable_length_undefined;
3386 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3387 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3388 	phy_info->downshift = e1000_downshift_undefined;
3389 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3390 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3391 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3392 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3393 
3394 	if (hw->media_type != e1000_media_type_copper) {
3395 		e_dbg("PHY info is only valid for copper media\n");
3396 		return -E1000_ERR_CONFIG;
3397 	}
3398 
3399 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3400 	if (ret_val)
3401 		return ret_val;
3402 
3403 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404 	if (ret_val)
3405 		return ret_val;
3406 
3407 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3408 		e_dbg("PHY info is only valid if link is up\n");
3409 		return -E1000_ERR_CONFIG;
3410 	}
3411 
3412 	if (hw->phy_type == e1000_phy_igp)
3413 		return e1000_phy_igp_get_info(hw, phy_info);
3414 	else if ((hw->phy_type == e1000_phy_8211) ||
3415 		 (hw->phy_type == e1000_phy_8201))
3416 		return E1000_SUCCESS;
3417 	else
3418 		return e1000_phy_m88_get_info(hw, phy_info);
3419 }
3420 
e1000_validate_mdi_setting(struct e1000_hw * hw)3421 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3422 {
3423 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3424 		e_dbg("Invalid MDI setting detected\n");
3425 		hw->mdix = 1;
3426 		return -E1000_ERR_CONFIG;
3427 	}
3428 	return E1000_SUCCESS;
3429 }
3430 
3431 /**
3432  * e1000_init_eeprom_params - initialize sw eeprom vars
3433  * @hw: Struct containing variables accessed by shared code
3434  *
3435  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3436  * is configured.
3437  */
e1000_init_eeprom_params(struct e1000_hw * hw)3438 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3439 {
3440 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441 	u32 eecd = er32(EECD);
3442 	s32 ret_val = E1000_SUCCESS;
3443 	u16 eeprom_size;
3444 
3445 	switch (hw->mac_type) {
3446 	case e1000_82542_rev2_0:
3447 	case e1000_82542_rev2_1:
3448 	case e1000_82543:
3449 	case e1000_82544:
3450 		eeprom->type = e1000_eeprom_microwire;
3451 		eeprom->word_size = 64;
3452 		eeprom->opcode_bits = 3;
3453 		eeprom->address_bits = 6;
3454 		eeprom->delay_usec = 50;
3455 		break;
3456 	case e1000_82540:
3457 	case e1000_82545:
3458 	case e1000_82545_rev_3:
3459 	case e1000_82546:
3460 	case e1000_82546_rev_3:
3461 		eeprom->type = e1000_eeprom_microwire;
3462 		eeprom->opcode_bits = 3;
3463 		eeprom->delay_usec = 50;
3464 		if (eecd & E1000_EECD_SIZE) {
3465 			eeprom->word_size = 256;
3466 			eeprom->address_bits = 8;
3467 		} else {
3468 			eeprom->word_size = 64;
3469 			eeprom->address_bits = 6;
3470 		}
3471 		break;
3472 	case e1000_82541:
3473 	case e1000_82541_rev_2:
3474 	case e1000_82547:
3475 	case e1000_82547_rev_2:
3476 		if (eecd & E1000_EECD_TYPE) {
3477 			eeprom->type = e1000_eeprom_spi;
3478 			eeprom->opcode_bits = 8;
3479 			eeprom->delay_usec = 1;
3480 			if (eecd & E1000_EECD_ADDR_BITS) {
3481 				eeprom->page_size = 32;
3482 				eeprom->address_bits = 16;
3483 			} else {
3484 				eeprom->page_size = 8;
3485 				eeprom->address_bits = 8;
3486 			}
3487 		} else {
3488 			eeprom->type = e1000_eeprom_microwire;
3489 			eeprom->opcode_bits = 3;
3490 			eeprom->delay_usec = 50;
3491 			if (eecd & E1000_EECD_ADDR_BITS) {
3492 				eeprom->word_size = 256;
3493 				eeprom->address_bits = 8;
3494 			} else {
3495 				eeprom->word_size = 64;
3496 				eeprom->address_bits = 6;
3497 			}
3498 		}
3499 		break;
3500 	default:
3501 		break;
3502 	}
3503 
3504 	if (eeprom->type == e1000_eeprom_spi) {
3505 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3506 		 * 128B to 32KB (incremented by powers of 2).
3507 		 */
3508 		/* Set to default value for initial eeprom read. */
3509 		eeprom->word_size = 64;
3510 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3511 		if (ret_val)
3512 			return ret_val;
3513 		eeprom_size =
3514 		    FIELD_GET(EEPROM_SIZE_MASK, eeprom_size);
3515 		/* 256B eeprom size was not supported in earlier hardware, so we
3516 		 * bump eeprom_size up one to ensure that "1" (which maps to
3517 		 * 256B) is never the result used in the shifting logic below.
3518 		 */
3519 		if (eeprom_size)
3520 			eeprom_size++;
3521 
3522 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3523 	}
3524 	return ret_val;
3525 }
3526 
3527 /**
3528  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3529  * @hw: Struct containing variables accessed by shared code
3530  * @eecd: EECD's current value
3531  */
e1000_raise_ee_clk(struct e1000_hw * hw,u32 * eecd)3532 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3533 {
3534 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3535 	 * wait <delay> microseconds.
3536 	 */
3537 	*eecd = *eecd | E1000_EECD_SK;
3538 	ew32(EECD, *eecd);
3539 	E1000_WRITE_FLUSH();
3540 	udelay(hw->eeprom.delay_usec);
3541 }
3542 
3543 /**
3544  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3545  * @hw: Struct containing variables accessed by shared code
3546  * @eecd: EECD's current value
3547  */
e1000_lower_ee_clk(struct e1000_hw * hw,u32 * eecd)3548 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3549 {
3550 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3551 	 * then wait 50 microseconds.
3552 	 */
3553 	*eecd = *eecd & ~E1000_EECD_SK;
3554 	ew32(EECD, *eecd);
3555 	E1000_WRITE_FLUSH();
3556 	udelay(hw->eeprom.delay_usec);
3557 }
3558 
3559 /**
3560  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3561  * @hw: Struct containing variables accessed by shared code
3562  * @data: data to send to the EEPROM
3563  * @count: number of bits to shift out
3564  */
e1000_shift_out_ee_bits(struct e1000_hw * hw,u16 data,u16 count)3565 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3566 {
3567 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3568 	u32 eecd;
3569 	u32 mask;
3570 
3571 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3572 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3573 	 * In order to do this, "data" must be broken down into bits.
3574 	 */
3575 	mask = 0x01 << (count - 1);
3576 	eecd = er32(EECD);
3577 	if (eeprom->type == e1000_eeprom_microwire)
3578 		eecd &= ~E1000_EECD_DO;
3579 	else if (eeprom->type == e1000_eeprom_spi)
3580 		eecd |= E1000_EECD_DO;
3581 
3582 	do {
3583 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3584 		 * "1", and then raising and then lowering the clock (the SK bit
3585 		 * controls the clock input to the EEPROM).  A "0" is shifted
3586 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3587 		 * then lowering the clock.
3588 		 */
3589 		eecd &= ~E1000_EECD_DI;
3590 
3591 		if (data & mask)
3592 			eecd |= E1000_EECD_DI;
3593 
3594 		ew32(EECD, eecd);
3595 		E1000_WRITE_FLUSH();
3596 
3597 		udelay(eeprom->delay_usec);
3598 
3599 		e1000_raise_ee_clk(hw, &eecd);
3600 		e1000_lower_ee_clk(hw, &eecd);
3601 
3602 		mask = mask >> 1;
3603 
3604 	} while (mask);
3605 
3606 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3607 	eecd &= ~E1000_EECD_DI;
3608 	ew32(EECD, eecd);
3609 }
3610 
3611 /**
3612  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3613  * @hw: Struct containing variables accessed by shared code
3614  * @count: number of bits to shift in
3615  */
e1000_shift_in_ee_bits(struct e1000_hw * hw,u16 count)3616 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3617 {
3618 	u32 eecd;
3619 	u32 i;
3620 	u16 data;
3621 
3622 	/* In order to read a register from the EEPROM, we need to shift 'count'
3623 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3624 	 * input to the EEPROM (setting the SK bit), and then reading the value
3625 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3626 	 * should always be clear.
3627 	 */
3628 
3629 	eecd = er32(EECD);
3630 
3631 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3632 	data = 0;
3633 
3634 	for (i = 0; i < count; i++) {
3635 		data = data << 1;
3636 		e1000_raise_ee_clk(hw, &eecd);
3637 
3638 		eecd = er32(EECD);
3639 
3640 		eecd &= ~(E1000_EECD_DI);
3641 		if (eecd & E1000_EECD_DO)
3642 			data |= 1;
3643 
3644 		e1000_lower_ee_clk(hw, &eecd);
3645 	}
3646 
3647 	return data;
3648 }
3649 
3650 /**
3651  * e1000_acquire_eeprom - Prepares EEPROM for access
3652  * @hw: Struct containing variables accessed by shared code
3653  *
3654  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655  * function should be called before issuing a command to the EEPROM.
3656  */
e1000_acquire_eeprom(struct e1000_hw * hw)3657 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3658 {
3659 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3660 	u32 eecd, i = 0;
3661 
3662 	eecd = er32(EECD);
3663 
3664 	/* Request EEPROM Access */
3665 	if (hw->mac_type > e1000_82544) {
3666 		eecd |= E1000_EECD_REQ;
3667 		ew32(EECD, eecd);
3668 		eecd = er32(EECD);
3669 		while ((!(eecd & E1000_EECD_GNT)) &&
3670 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3671 			i++;
3672 			udelay(5);
3673 			eecd = er32(EECD);
3674 		}
3675 		if (!(eecd & E1000_EECD_GNT)) {
3676 			eecd &= ~E1000_EECD_REQ;
3677 			ew32(EECD, eecd);
3678 			e_dbg("Could not acquire EEPROM grant\n");
3679 			return -E1000_ERR_EEPROM;
3680 		}
3681 	}
3682 
3683 	/* Setup EEPROM for Read/Write */
3684 
3685 	if (eeprom->type == e1000_eeprom_microwire) {
3686 		/* Clear SK and DI */
3687 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3688 		ew32(EECD, eecd);
3689 
3690 		/* Set CS */
3691 		eecd |= E1000_EECD_CS;
3692 		ew32(EECD, eecd);
3693 	} else if (eeprom->type == e1000_eeprom_spi) {
3694 		/* Clear SK and CS */
3695 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3696 		ew32(EECD, eecd);
3697 		E1000_WRITE_FLUSH();
3698 		udelay(1);
3699 	}
3700 
3701 	return E1000_SUCCESS;
3702 }
3703 
3704 /**
3705  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3706  * @hw: Struct containing variables accessed by shared code
3707  */
e1000_standby_eeprom(struct e1000_hw * hw)3708 static void e1000_standby_eeprom(struct e1000_hw *hw)
3709 {
3710 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3711 	u32 eecd;
3712 
3713 	eecd = er32(EECD);
3714 
3715 	if (eeprom->type == e1000_eeprom_microwire) {
3716 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3717 		ew32(EECD, eecd);
3718 		E1000_WRITE_FLUSH();
3719 		udelay(eeprom->delay_usec);
3720 
3721 		/* Clock high */
3722 		eecd |= E1000_EECD_SK;
3723 		ew32(EECD, eecd);
3724 		E1000_WRITE_FLUSH();
3725 		udelay(eeprom->delay_usec);
3726 
3727 		/* Select EEPROM */
3728 		eecd |= E1000_EECD_CS;
3729 		ew32(EECD, eecd);
3730 		E1000_WRITE_FLUSH();
3731 		udelay(eeprom->delay_usec);
3732 
3733 		/* Clock low */
3734 		eecd &= ~E1000_EECD_SK;
3735 		ew32(EECD, eecd);
3736 		E1000_WRITE_FLUSH();
3737 		udelay(eeprom->delay_usec);
3738 	} else if (eeprom->type == e1000_eeprom_spi) {
3739 		/* Toggle CS to flush commands */
3740 		eecd |= E1000_EECD_CS;
3741 		ew32(EECD, eecd);
3742 		E1000_WRITE_FLUSH();
3743 		udelay(eeprom->delay_usec);
3744 		eecd &= ~E1000_EECD_CS;
3745 		ew32(EECD, eecd);
3746 		E1000_WRITE_FLUSH();
3747 		udelay(eeprom->delay_usec);
3748 	}
3749 }
3750 
3751 /**
3752  * e1000_release_eeprom - drop chip select
3753  * @hw: Struct containing variables accessed by shared code
3754  *
3755  * Terminates a command by inverting the EEPROM's chip select pin
3756  */
e1000_release_eeprom(struct e1000_hw * hw)3757 static void e1000_release_eeprom(struct e1000_hw *hw)
3758 {
3759 	u32 eecd;
3760 
3761 	eecd = er32(EECD);
3762 
3763 	if (hw->eeprom.type == e1000_eeprom_spi) {
3764 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3765 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3766 
3767 		ew32(EECD, eecd);
3768 		E1000_WRITE_FLUSH();
3769 
3770 		udelay(hw->eeprom.delay_usec);
3771 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3772 		/* cleanup eeprom */
3773 
3774 		/* CS on Microwire is active-high */
3775 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3776 
3777 		ew32(EECD, eecd);
3778 
3779 		/* Rising edge of clock */
3780 		eecd |= E1000_EECD_SK;
3781 		ew32(EECD, eecd);
3782 		E1000_WRITE_FLUSH();
3783 		udelay(hw->eeprom.delay_usec);
3784 
3785 		/* Falling edge of clock */
3786 		eecd &= ~E1000_EECD_SK;
3787 		ew32(EECD, eecd);
3788 		E1000_WRITE_FLUSH();
3789 		udelay(hw->eeprom.delay_usec);
3790 	}
3791 
3792 	/* Stop requesting EEPROM access */
3793 	if (hw->mac_type > e1000_82544) {
3794 		eecd &= ~E1000_EECD_REQ;
3795 		ew32(EECD, eecd);
3796 	}
3797 }
3798 
3799 /**
3800  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3801  * @hw: Struct containing variables accessed by shared code
3802  */
e1000_spi_eeprom_ready(struct e1000_hw * hw)3803 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3804 {
3805 	u16 retry_count = 0;
3806 	u8 spi_stat_reg;
3807 
3808 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3809 	 * EEPROM will signal that the command has been completed by clearing
3810 	 * bit 0 of the internal status register.  If it's not cleared within
3811 	 * 5 milliseconds, then error out.
3812 	 */
3813 	retry_count = 0;
3814 	do {
3815 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3816 					hw->eeprom.opcode_bits);
3817 		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3818 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3819 			break;
3820 
3821 		udelay(5);
3822 		retry_count += 5;
3823 
3824 		e1000_standby_eeprom(hw);
3825 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3826 
3827 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3828 	 * only 0-5mSec on 5V devices)
3829 	 */
3830 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3831 		e_dbg("SPI EEPROM Status error\n");
3832 		return -E1000_ERR_EEPROM;
3833 	}
3834 
3835 	return E1000_SUCCESS;
3836 }
3837 
3838 /**
3839  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3840  * @hw: Struct containing variables accessed by shared code
3841  * @offset: offset of  word in the EEPROM to read
3842  * @data: word read from the EEPROM
3843  * @words: number of words to read
3844  */
e1000_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3845 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3846 {
3847 	s32 ret;
3848 
3849 	mutex_lock(&e1000_eeprom_lock);
3850 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3851 	mutex_unlock(&e1000_eeprom_lock);
3852 	return ret;
3853 }
3854 
e1000_do_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3855 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3856 				u16 *data)
3857 {
3858 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3859 	u32 i = 0;
3860 
3861 	if (hw->mac_type == e1000_ce4100) {
3862 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3863 				      data);
3864 		return E1000_SUCCESS;
3865 	}
3866 
3867 	/* A check for invalid values:  offset too large, too many words, and
3868 	 * not enough words.
3869 	 */
3870 	if ((offset >= eeprom->word_size) ||
3871 	    (words > eeprom->word_size - offset) ||
3872 	    (words == 0)) {
3873 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3874 		      "size = %d\n", offset, eeprom->word_size);
3875 		return -E1000_ERR_EEPROM;
3876 	}
3877 
3878 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3879 	 * directly. In this case, we need to acquire the EEPROM so that
3880 	 * FW or other port software does not interrupt.
3881 	 */
3882 	/* Prepare the EEPROM for bit-bang reading */
3883 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3884 		return -E1000_ERR_EEPROM;
3885 
3886 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3887 	 * acquired the EEPROM at this point, so any returns should release it
3888 	 */
3889 	if (eeprom->type == e1000_eeprom_spi) {
3890 		u16 word_in;
3891 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3892 
3893 		if (e1000_spi_eeprom_ready(hw)) {
3894 			e1000_release_eeprom(hw);
3895 			return -E1000_ERR_EEPROM;
3896 		}
3897 
3898 		e1000_standby_eeprom(hw);
3899 
3900 		/* Some SPI eeproms use the 8th address bit embedded in the
3901 		 * opcode
3902 		 */
3903 		if ((eeprom->address_bits == 8) && (offset >= 128))
3904 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3905 
3906 		/* Send the READ command (opcode + addr)  */
3907 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3908 		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3909 					eeprom->address_bits);
3910 
3911 		/* Read the data.  The address of the eeprom internally
3912 		 * increments with each byte (spi) being read, saving on the
3913 		 * overhead of eeprom setup and tear-down.  The address counter
3914 		 * will roll over if reading beyond the size of the eeprom, thus
3915 		 * allowing the entire memory to be read starting from any
3916 		 * offset.
3917 		 */
3918 		for (i = 0; i < words; i++) {
3919 			word_in = e1000_shift_in_ee_bits(hw, 16);
3920 			data[i] = (word_in >> 8) | (word_in << 8);
3921 		}
3922 	} else if (eeprom->type == e1000_eeprom_microwire) {
3923 		for (i = 0; i < words; i++) {
3924 			/* Send the READ command (opcode + addr)  */
3925 			e1000_shift_out_ee_bits(hw,
3926 						EEPROM_READ_OPCODE_MICROWIRE,
3927 						eeprom->opcode_bits);
3928 			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3929 						eeprom->address_bits);
3930 
3931 			/* Read the data.  For microwire, each word requires the
3932 			 * overhead of eeprom setup and tear-down.
3933 			 */
3934 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3935 			e1000_standby_eeprom(hw);
3936 			cond_resched();
3937 		}
3938 	}
3939 
3940 	/* End this read operation */
3941 	e1000_release_eeprom(hw);
3942 
3943 	return E1000_SUCCESS;
3944 }
3945 
3946 /**
3947  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3948  * @hw: Struct containing variables accessed by shared code
3949  *
3950  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3951  * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3952  * valid.
3953  */
e1000_validate_eeprom_checksum(struct e1000_hw * hw)3954 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3955 {
3956 	u16 checksum = 0;
3957 	u16 i, eeprom_data;
3958 
3959 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3960 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3961 			e_dbg("EEPROM Read Error\n");
3962 			return -E1000_ERR_EEPROM;
3963 		}
3964 		checksum += eeprom_data;
3965 	}
3966 
3967 #ifdef CONFIG_PARISC
3968 	/* This is a signature and not a checksum on HP c8000 */
3969 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3970 		return E1000_SUCCESS;
3971 
3972 #endif
3973 	if (checksum == (u16)EEPROM_SUM)
3974 		return E1000_SUCCESS;
3975 	else {
3976 		e_dbg("EEPROM Checksum Invalid\n");
3977 		return -E1000_ERR_EEPROM;
3978 	}
3979 }
3980 
3981 /**
3982  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3983  * @hw: Struct containing variables accessed by shared code
3984  *
3985  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3986  * Writes the difference to word offset 63 of the EEPROM.
3987  */
e1000_update_eeprom_checksum(struct e1000_hw * hw)3988 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3989 {
3990 	u16 checksum = 0;
3991 	u16 i, eeprom_data;
3992 
3993 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3994 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995 			e_dbg("EEPROM Read Error\n");
3996 			return -E1000_ERR_EEPROM;
3997 		}
3998 		checksum += eeprom_data;
3999 	}
4000 	checksum = (u16)EEPROM_SUM - checksum;
4001 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4002 		e_dbg("EEPROM Write Error\n");
4003 		return -E1000_ERR_EEPROM;
4004 	}
4005 	return E1000_SUCCESS;
4006 }
4007 
4008 /**
4009  * e1000_write_eeprom - write words to the different EEPROM types.
4010  * @hw: Struct containing variables accessed by shared code
4011  * @offset: offset within the EEPROM to be written to
4012  * @words: number of words to write
4013  * @data: 16 bit word to be written to the EEPROM
4014  *
4015  * If e1000_update_eeprom_checksum is not called after this function, the
4016  * EEPROM will most likely contain an invalid checksum.
4017  */
e1000_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4018 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4019 {
4020 	s32 ret;
4021 
4022 	mutex_lock(&e1000_eeprom_lock);
4023 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4024 	mutex_unlock(&e1000_eeprom_lock);
4025 	return ret;
4026 }
4027 
e1000_do_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4028 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4029 				 u16 *data)
4030 {
4031 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4032 	s32 status = 0;
4033 
4034 	if (hw->mac_type == e1000_ce4100) {
4035 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4036 				       data);
4037 		return E1000_SUCCESS;
4038 	}
4039 
4040 	/* A check for invalid values:  offset too large, too many words, and
4041 	 * not enough words.
4042 	 */
4043 	if ((offset >= eeprom->word_size) ||
4044 	    (words > eeprom->word_size - offset) ||
4045 	    (words == 0)) {
4046 		e_dbg("\"words\" parameter out of bounds\n");
4047 		return -E1000_ERR_EEPROM;
4048 	}
4049 
4050 	/* Prepare the EEPROM for writing  */
4051 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4052 		return -E1000_ERR_EEPROM;
4053 
4054 	if (eeprom->type == e1000_eeprom_microwire) {
4055 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4056 	} else {
4057 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4058 		msleep(10);
4059 	}
4060 
4061 	/* Done with writing */
4062 	e1000_release_eeprom(hw);
4063 
4064 	return status;
4065 }
4066 
4067 /**
4068  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4069  * @hw: Struct containing variables accessed by shared code
4070  * @offset: offset within the EEPROM to be written to
4071  * @words: number of words to write
4072  * @data: pointer to array of 8 bit words to be written to the EEPROM
4073  */
e1000_write_eeprom_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4074 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4075 				  u16 *data)
4076 {
4077 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4078 	u16 widx = 0;
4079 
4080 	while (widx < words) {
4081 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4082 
4083 		if (e1000_spi_eeprom_ready(hw))
4084 			return -E1000_ERR_EEPROM;
4085 
4086 		e1000_standby_eeprom(hw);
4087 		cond_resched();
4088 
4089 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4090 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4091 					eeprom->opcode_bits);
4092 
4093 		e1000_standby_eeprom(hw);
4094 
4095 		/* Some SPI eeproms use the 8th address bit embedded in the
4096 		 * opcode
4097 		 */
4098 		if ((eeprom->address_bits == 8) && (offset >= 128))
4099 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4100 
4101 		/* Send the Write command (8-bit opcode + addr) */
4102 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4103 
4104 		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4105 					eeprom->address_bits);
4106 
4107 		/* Send the data */
4108 
4109 		/* Loop to allow for up to whole page write (32 bytes) of
4110 		 * eeprom
4111 		 */
4112 		while (widx < words) {
4113 			u16 word_out = data[widx];
4114 
4115 			word_out = (word_out >> 8) | (word_out << 8);
4116 			e1000_shift_out_ee_bits(hw, word_out, 16);
4117 			widx++;
4118 
4119 			/* Some larger eeprom sizes are capable of a 32-byte
4120 			 * PAGE WRITE operation, while the smaller eeproms are
4121 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4122 			 * inner loop to pass new address
4123 			 */
4124 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4125 				e1000_standby_eeprom(hw);
4126 				break;
4127 			}
4128 		}
4129 	}
4130 
4131 	return E1000_SUCCESS;
4132 }
4133 
4134 /**
4135  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4136  * @hw: Struct containing variables accessed by shared code
4137  * @offset: offset within the EEPROM to be written to
4138  * @words: number of words to write
4139  * @data: pointer to array of 8 bit words to be written to the EEPROM
4140  */
e1000_write_eeprom_microwire(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4141 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4142 					u16 words, u16 *data)
4143 {
4144 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4145 	u32 eecd;
4146 	u16 words_written = 0;
4147 	u16 i = 0;
4148 
4149 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4150 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4151 	 * the 11 of the dummy address as part of the opcode than it is to shift
4152 	 * it over the correct number of bits for the address.  This puts the
4153 	 * EEPROM into write/erase mode.
4154 	 */
4155 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4156 				(u16)(eeprom->opcode_bits + 2));
4157 
4158 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4159 
4160 	/* Prepare the EEPROM */
4161 	e1000_standby_eeprom(hw);
4162 
4163 	while (words_written < words) {
4164 		/* Send the Write command (3-bit opcode + addr) */
4165 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4166 					eeprom->opcode_bits);
4167 
4168 		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4169 					eeprom->address_bits);
4170 
4171 		/* Send the data */
4172 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4173 
4174 		/* Toggle the CS line.  This in effect tells the EEPROM to
4175 		 * execute the previous command.
4176 		 */
4177 		e1000_standby_eeprom(hw);
4178 
4179 		/* Read DO repeatedly until it is high (equal to '1').  The
4180 		 * EEPROM will signal that the command has been completed by
4181 		 * raising the DO signal. If DO does not go high in 10
4182 		 * milliseconds, then error out.
4183 		 */
4184 		for (i = 0; i < 200; i++) {
4185 			eecd = er32(EECD);
4186 			if (eecd & E1000_EECD_DO)
4187 				break;
4188 			udelay(50);
4189 		}
4190 		if (i == 200) {
4191 			e_dbg("EEPROM Write did not complete\n");
4192 			return -E1000_ERR_EEPROM;
4193 		}
4194 
4195 		/* Recover from write */
4196 		e1000_standby_eeprom(hw);
4197 		cond_resched();
4198 
4199 		words_written++;
4200 	}
4201 
4202 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4203 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4204 	 * the 10 of the dummy address as part of the opcode than it is to shift
4205 	 * it over the correct number of bits for the address.  This takes the
4206 	 * EEPROM out of write/erase mode.
4207 	 */
4208 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4209 				(u16)(eeprom->opcode_bits + 2));
4210 
4211 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4212 
4213 	return E1000_SUCCESS;
4214 }
4215 
4216 /**
4217  * e1000_read_mac_addr - read the adapters MAC from eeprom
4218  * @hw: Struct containing variables accessed by shared code
4219  *
4220  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4221  * second function of dual function devices
4222  */
e1000_read_mac_addr(struct e1000_hw * hw)4223 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4224 {
4225 	u16 offset;
4226 	u16 eeprom_data, i;
4227 
4228 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4229 		offset = i >> 1;
4230 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4231 			e_dbg("EEPROM Read Error\n");
4232 			return -E1000_ERR_EEPROM;
4233 		}
4234 		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4235 		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4236 	}
4237 
4238 	switch (hw->mac_type) {
4239 	default:
4240 		break;
4241 	case e1000_82546:
4242 	case e1000_82546_rev_3:
4243 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4244 			hw->perm_mac_addr[5] ^= 0x01;
4245 		break;
4246 	}
4247 
4248 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4249 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4250 	return E1000_SUCCESS;
4251 }
4252 
4253 /**
4254  * e1000_init_rx_addrs - Initializes receive address filters.
4255  * @hw: Struct containing variables accessed by shared code
4256  *
4257  * Places the MAC address in receive address register 0 and clears the rest
4258  * of the receive address registers. Clears the multicast table. Assumes
4259  * the receiver is in reset when the routine is called.
4260  */
e1000_init_rx_addrs(struct e1000_hw * hw)4261 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4262 {
4263 	u32 i;
4264 	u32 rar_num;
4265 
4266 	/* Setup the receive address. */
4267 	e_dbg("Programming MAC Address into RAR[0]\n");
4268 
4269 	e1000_rar_set(hw, hw->mac_addr, 0);
4270 
4271 	rar_num = E1000_RAR_ENTRIES;
4272 
4273 	/* Zero out the following 14 receive addresses. RAR[15] is for
4274 	 * manageability
4275 	 */
4276 	e_dbg("Clearing RAR[1-14]\n");
4277 	for (i = 1; i < rar_num; i++) {
4278 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4279 		E1000_WRITE_FLUSH();
4280 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4281 		E1000_WRITE_FLUSH();
4282 	}
4283 }
4284 
4285 /**
4286  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4287  * @hw: Struct containing variables accessed by shared code
4288  * @mc_addr: the multicast address to hash
4289  */
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)4290 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4291 {
4292 	u32 hash_value = 0;
4293 
4294 	/* The portion of the address that is used for the hash table is
4295 	 * determined by the mc_filter_type setting.
4296 	 */
4297 	switch (hw->mc_filter_type) {
4298 		/* [0] [1] [2] [3] [4] [5]
4299 		 * 01  AA  00  12  34  56
4300 		 * LSB                 MSB
4301 		 */
4302 	case 0:
4303 		/* [47:36] i.e. 0x563 for above example address */
4304 		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4305 		break;
4306 	case 1:
4307 		/* [46:35] i.e. 0xAC6 for above example address */
4308 		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4309 		break;
4310 	case 2:
4311 		/* [45:34] i.e. 0x5D8 for above example address */
4312 		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4313 		break;
4314 	case 3:
4315 		/* [43:32] i.e. 0x634 for above example address */
4316 		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4317 		break;
4318 	}
4319 
4320 	hash_value &= 0xFFF;
4321 	return hash_value;
4322 }
4323 
4324 /**
4325  * e1000_rar_set - Puts an ethernet address into a receive address register.
4326  * @hw: Struct containing variables accessed by shared code
4327  * @addr: Address to put into receive address register
4328  * @index: Receive address register to write
4329  */
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)4330 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4331 {
4332 	u32 rar_low, rar_high;
4333 
4334 	/* HW expects these in little endian so we reverse the byte order
4335 	 * from network order (big endian) to little endian
4336 	 */
4337 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4338 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4339 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4340 
4341 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4342 	 * unit hang.
4343 	 *
4344 	 * Description:
4345 	 * If there are any Rx frames queued up or otherwise present in the HW
4346 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4347 	 * hang.  To work around this issue, we have to disable receives and
4348 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4349 	 * redirect all Rx traffic to manageability and then reset the HW.
4350 	 * This flushes away Rx frames, and (since the redirections to
4351 	 * manageability persists across resets) keeps new ones from coming in
4352 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4353 	 * addresses and undo the re-direction to manageability.
4354 	 * Now, frames are coming in again, but the MAC won't accept them, so
4355 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4356 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4357 	 * on our merry way.
4358 	 */
4359 	switch (hw->mac_type) {
4360 	default:
4361 		/* Indicate to hardware the Address is Valid. */
4362 		rar_high |= E1000_RAH_AV;
4363 		break;
4364 	}
4365 
4366 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4367 	E1000_WRITE_FLUSH();
4368 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4369 	E1000_WRITE_FLUSH();
4370 }
4371 
4372 /**
4373  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4374  * @hw: Struct containing variables accessed by shared code
4375  * @offset: Offset in VLAN filter table to write
4376  * @value: Value to write into VLAN filter table
4377  */
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)4378 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4379 {
4380 	u32 temp;
4381 
4382 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4383 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4384 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4385 		E1000_WRITE_FLUSH();
4386 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4387 		E1000_WRITE_FLUSH();
4388 	} else {
4389 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4390 		E1000_WRITE_FLUSH();
4391 	}
4392 }
4393 
4394 /**
4395  * e1000_clear_vfta - Clears the VLAN filter table
4396  * @hw: Struct containing variables accessed by shared code
4397  */
e1000_clear_vfta(struct e1000_hw * hw)4398 static void e1000_clear_vfta(struct e1000_hw *hw)
4399 {
4400 	u32 offset;
4401 
4402 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4403 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
4404 		E1000_WRITE_FLUSH();
4405 	}
4406 }
4407 
e1000_id_led_init(struct e1000_hw * hw)4408 static s32 e1000_id_led_init(struct e1000_hw *hw)
4409 {
4410 	u32 ledctl;
4411 	const u32 ledctl_mask = 0x000000FF;
4412 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4413 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4414 	u16 eeprom_data, i, temp;
4415 	const u16 led_mask = 0x0F;
4416 
4417 	if (hw->mac_type < e1000_82540) {
4418 		/* Nothing to do */
4419 		return E1000_SUCCESS;
4420 	}
4421 
4422 	ledctl = er32(LEDCTL);
4423 	hw->ledctl_default = ledctl;
4424 	hw->ledctl_mode1 = hw->ledctl_default;
4425 	hw->ledctl_mode2 = hw->ledctl_default;
4426 
4427 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4428 		e_dbg("EEPROM Read Error\n");
4429 		return -E1000_ERR_EEPROM;
4430 	}
4431 
4432 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4433 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4434 		eeprom_data = ID_LED_DEFAULT;
4435 	}
4436 
4437 	for (i = 0; i < 4; i++) {
4438 		temp = (eeprom_data >> (i << 2)) & led_mask;
4439 		switch (temp) {
4440 		case ID_LED_ON1_DEF2:
4441 		case ID_LED_ON1_ON2:
4442 		case ID_LED_ON1_OFF2:
4443 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4444 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4445 			break;
4446 		case ID_LED_OFF1_DEF2:
4447 		case ID_LED_OFF1_ON2:
4448 		case ID_LED_OFF1_OFF2:
4449 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4450 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4451 			break;
4452 		default:
4453 			/* Do nothing */
4454 			break;
4455 		}
4456 		switch (temp) {
4457 		case ID_LED_DEF1_ON2:
4458 		case ID_LED_ON1_ON2:
4459 		case ID_LED_OFF1_ON2:
4460 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4461 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4462 			break;
4463 		case ID_LED_DEF1_OFF2:
4464 		case ID_LED_ON1_OFF2:
4465 		case ID_LED_OFF1_OFF2:
4466 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4467 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4468 			break;
4469 		default:
4470 			/* Do nothing */
4471 			break;
4472 		}
4473 	}
4474 	return E1000_SUCCESS;
4475 }
4476 
4477 /**
4478  * e1000_setup_led
4479  * @hw: Struct containing variables accessed by shared code
4480  *
4481  * Prepares SW controlable LED for use and saves the current state of the LED.
4482  */
e1000_setup_led(struct e1000_hw * hw)4483 s32 e1000_setup_led(struct e1000_hw *hw)
4484 {
4485 	u32 ledctl;
4486 	s32 ret_val = E1000_SUCCESS;
4487 
4488 	switch (hw->mac_type) {
4489 	case e1000_82542_rev2_0:
4490 	case e1000_82542_rev2_1:
4491 	case e1000_82543:
4492 	case e1000_82544:
4493 		/* No setup necessary */
4494 		break;
4495 	case e1000_82541:
4496 	case e1000_82547:
4497 	case e1000_82541_rev_2:
4498 	case e1000_82547_rev_2:
4499 		/* Turn off PHY Smart Power Down (if enabled) */
4500 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4501 					     &hw->phy_spd_default);
4502 		if (ret_val)
4503 			return ret_val;
4504 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505 					      (u16)(hw->phy_spd_default &
4506 						     ~IGP01E1000_GMII_SPD));
4507 		if (ret_val)
4508 			return ret_val;
4509 		fallthrough;
4510 	default:
4511 		if (hw->media_type == e1000_media_type_fiber) {
4512 			ledctl = er32(LEDCTL);
4513 			/* Save current LEDCTL settings */
4514 			hw->ledctl_default = ledctl;
4515 			/* Turn off LED0 */
4516 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4517 				    E1000_LEDCTL_LED0_BLINK |
4518 				    E1000_LEDCTL_LED0_MODE_MASK);
4519 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4520 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4521 			ew32(LEDCTL, ledctl);
4522 		} else if (hw->media_type == e1000_media_type_copper)
4523 			ew32(LEDCTL, hw->ledctl_mode1);
4524 		break;
4525 	}
4526 
4527 	return E1000_SUCCESS;
4528 }
4529 
4530 /**
4531  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4532  * @hw: Struct containing variables accessed by shared code
4533  */
e1000_cleanup_led(struct e1000_hw * hw)4534 s32 e1000_cleanup_led(struct e1000_hw *hw)
4535 {
4536 	s32 ret_val = E1000_SUCCESS;
4537 
4538 	switch (hw->mac_type) {
4539 	case e1000_82542_rev2_0:
4540 	case e1000_82542_rev2_1:
4541 	case e1000_82543:
4542 	case e1000_82544:
4543 		/* No cleanup necessary */
4544 		break;
4545 	case e1000_82541:
4546 	case e1000_82547:
4547 	case e1000_82541_rev_2:
4548 	case e1000_82547_rev_2:
4549 		/* Turn on PHY Smart Power Down (if previously enabled) */
4550 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551 					      hw->phy_spd_default);
4552 		if (ret_val)
4553 			return ret_val;
4554 		fallthrough;
4555 	default:
4556 		/* Restore LEDCTL settings */
4557 		ew32(LEDCTL, hw->ledctl_default);
4558 		break;
4559 	}
4560 
4561 	return E1000_SUCCESS;
4562 }
4563 
4564 /**
4565  * e1000_led_on - Turns on the software controllable LED
4566  * @hw: Struct containing variables accessed by shared code
4567  */
e1000_led_on(struct e1000_hw * hw)4568 s32 e1000_led_on(struct e1000_hw *hw)
4569 {
4570 	u32 ctrl = er32(CTRL);
4571 
4572 	switch (hw->mac_type) {
4573 	case e1000_82542_rev2_0:
4574 	case e1000_82542_rev2_1:
4575 	case e1000_82543:
4576 		/* Set SW Defineable Pin 0 to turn on the LED */
4577 		ctrl |= E1000_CTRL_SWDPIN0;
4578 		ctrl |= E1000_CTRL_SWDPIO0;
4579 		break;
4580 	case e1000_82544:
4581 		if (hw->media_type == e1000_media_type_fiber) {
4582 			/* Set SW Defineable Pin 0 to turn on the LED */
4583 			ctrl |= E1000_CTRL_SWDPIN0;
4584 			ctrl |= E1000_CTRL_SWDPIO0;
4585 		} else {
4586 			/* Clear SW Defineable Pin 0 to turn on the LED */
4587 			ctrl &= ~E1000_CTRL_SWDPIN0;
4588 			ctrl |= E1000_CTRL_SWDPIO0;
4589 		}
4590 		break;
4591 	default:
4592 		if (hw->media_type == e1000_media_type_fiber) {
4593 			/* Clear SW Defineable Pin 0 to turn on the LED */
4594 			ctrl &= ~E1000_CTRL_SWDPIN0;
4595 			ctrl |= E1000_CTRL_SWDPIO0;
4596 		} else if (hw->media_type == e1000_media_type_copper) {
4597 			ew32(LEDCTL, hw->ledctl_mode2);
4598 			return E1000_SUCCESS;
4599 		}
4600 		break;
4601 	}
4602 
4603 	ew32(CTRL, ctrl);
4604 
4605 	return E1000_SUCCESS;
4606 }
4607 
4608 /**
4609  * e1000_led_off - Turns off the software controllable LED
4610  * @hw: Struct containing variables accessed by shared code
4611  */
e1000_led_off(struct e1000_hw * hw)4612 s32 e1000_led_off(struct e1000_hw *hw)
4613 {
4614 	u32 ctrl = er32(CTRL);
4615 
4616 	switch (hw->mac_type) {
4617 	case e1000_82542_rev2_0:
4618 	case e1000_82542_rev2_1:
4619 	case e1000_82543:
4620 		/* Clear SW Defineable Pin 0 to turn off the LED */
4621 		ctrl &= ~E1000_CTRL_SWDPIN0;
4622 		ctrl |= E1000_CTRL_SWDPIO0;
4623 		break;
4624 	case e1000_82544:
4625 		if (hw->media_type == e1000_media_type_fiber) {
4626 			/* Clear SW Defineable Pin 0 to turn off the LED */
4627 			ctrl &= ~E1000_CTRL_SWDPIN0;
4628 			ctrl |= E1000_CTRL_SWDPIO0;
4629 		} else {
4630 			/* Set SW Defineable Pin 0 to turn off the LED */
4631 			ctrl |= E1000_CTRL_SWDPIN0;
4632 			ctrl |= E1000_CTRL_SWDPIO0;
4633 		}
4634 		break;
4635 	default:
4636 		if (hw->media_type == e1000_media_type_fiber) {
4637 			/* Set SW Defineable Pin 0 to turn off the LED */
4638 			ctrl |= E1000_CTRL_SWDPIN0;
4639 			ctrl |= E1000_CTRL_SWDPIO0;
4640 		} else if (hw->media_type == e1000_media_type_copper) {
4641 			ew32(LEDCTL, hw->ledctl_mode1);
4642 			return E1000_SUCCESS;
4643 		}
4644 		break;
4645 	}
4646 
4647 	ew32(CTRL, ctrl);
4648 
4649 	return E1000_SUCCESS;
4650 }
4651 
4652 /**
4653  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4654  * @hw: Struct containing variables accessed by shared code
4655  */
e1000_clear_hw_cntrs(struct e1000_hw * hw)4656 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4657 {
4658 	er32(CRCERRS);
4659 	er32(SYMERRS);
4660 	er32(MPC);
4661 	er32(SCC);
4662 	er32(ECOL);
4663 	er32(MCC);
4664 	er32(LATECOL);
4665 	er32(COLC);
4666 	er32(DC);
4667 	er32(SEC);
4668 	er32(RLEC);
4669 	er32(XONRXC);
4670 	er32(XONTXC);
4671 	er32(XOFFRXC);
4672 	er32(XOFFTXC);
4673 	er32(FCRUC);
4674 
4675 	er32(PRC64);
4676 	er32(PRC127);
4677 	er32(PRC255);
4678 	er32(PRC511);
4679 	er32(PRC1023);
4680 	er32(PRC1522);
4681 
4682 	er32(GPRC);
4683 	er32(BPRC);
4684 	er32(MPRC);
4685 	er32(GPTC);
4686 	er32(GORCL);
4687 	er32(GORCH);
4688 	er32(GOTCL);
4689 	er32(GOTCH);
4690 	er32(RNBC);
4691 	er32(RUC);
4692 	er32(RFC);
4693 	er32(ROC);
4694 	er32(RJC);
4695 	er32(TORL);
4696 	er32(TORH);
4697 	er32(TOTL);
4698 	er32(TOTH);
4699 	er32(TPR);
4700 	er32(TPT);
4701 
4702 	er32(PTC64);
4703 	er32(PTC127);
4704 	er32(PTC255);
4705 	er32(PTC511);
4706 	er32(PTC1023);
4707 	er32(PTC1522);
4708 
4709 	er32(MPTC);
4710 	er32(BPTC);
4711 
4712 	if (hw->mac_type < e1000_82543)
4713 		return;
4714 
4715 	er32(ALGNERRC);
4716 	er32(RXERRC);
4717 	er32(TNCRS);
4718 	er32(CEXTERR);
4719 	er32(TSCTC);
4720 	er32(TSCTFC);
4721 
4722 	if (hw->mac_type <= e1000_82544)
4723 		return;
4724 
4725 	er32(MGTPRC);
4726 	er32(MGTPDC);
4727 	er32(MGTPTC);
4728 }
4729 
4730 /**
4731  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4732  * @hw: Struct containing variables accessed by shared code
4733  *
4734  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4735  * hw->ifs_params_forced to true. However, you must initialize hw->
4736  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4737  * before calling this function.
4738  */
e1000_reset_adaptive(struct e1000_hw * hw)4739 void e1000_reset_adaptive(struct e1000_hw *hw)
4740 {
4741 	if (hw->adaptive_ifs) {
4742 		if (!hw->ifs_params_forced) {
4743 			hw->current_ifs_val = 0;
4744 			hw->ifs_min_val = IFS_MIN;
4745 			hw->ifs_max_val = IFS_MAX;
4746 			hw->ifs_step_size = IFS_STEP;
4747 			hw->ifs_ratio = IFS_RATIO;
4748 		}
4749 		hw->in_ifs_mode = false;
4750 		ew32(AIT, 0);
4751 	} else {
4752 		e_dbg("Not in Adaptive IFS mode!\n");
4753 	}
4754 }
4755 
4756 /**
4757  * e1000_update_adaptive - update adaptive IFS
4758  * @hw: Struct containing variables accessed by shared code
4759  *
4760  * Called during the callback/watchdog routine to update IFS value based on
4761  * the ratio of transmits to collisions.
4762  */
e1000_update_adaptive(struct e1000_hw * hw)4763 void e1000_update_adaptive(struct e1000_hw *hw)
4764 {
4765 	if (hw->adaptive_ifs) {
4766 		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4767 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4768 				hw->in_ifs_mode = true;
4769 				if (hw->current_ifs_val < hw->ifs_max_val) {
4770 					if (hw->current_ifs_val == 0)
4771 						hw->current_ifs_val =
4772 						    hw->ifs_min_val;
4773 					else
4774 						hw->current_ifs_val +=
4775 						    hw->ifs_step_size;
4776 					ew32(AIT, hw->current_ifs_val);
4777 				}
4778 			}
4779 		} else {
4780 			if (hw->in_ifs_mode &&
4781 			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4782 				hw->current_ifs_val = 0;
4783 				hw->in_ifs_mode = false;
4784 				ew32(AIT, 0);
4785 			}
4786 		}
4787 	} else {
4788 		e_dbg("Not in Adaptive IFS mode!\n");
4789 	}
4790 }
4791 
4792 /**
4793  * e1000_get_bus_info
4794  * @hw: Struct containing variables accessed by shared code
4795  *
4796  * Gets the current PCI bus type, speed, and width of the hardware
4797  */
e1000_get_bus_info(struct e1000_hw * hw)4798 void e1000_get_bus_info(struct e1000_hw *hw)
4799 {
4800 	u32 status;
4801 
4802 	switch (hw->mac_type) {
4803 	case e1000_82542_rev2_0:
4804 	case e1000_82542_rev2_1:
4805 		hw->bus_type = e1000_bus_type_pci;
4806 		hw->bus_speed = e1000_bus_speed_unknown;
4807 		hw->bus_width = e1000_bus_width_unknown;
4808 		break;
4809 	default:
4810 		status = er32(STATUS);
4811 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4812 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4813 
4814 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4815 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4816 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4817 		} else if (hw->bus_type == e1000_bus_type_pci) {
4818 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4819 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4820 		} else {
4821 			switch (status & E1000_STATUS_PCIX_SPEED) {
4822 			case E1000_STATUS_PCIX_SPEED_66:
4823 				hw->bus_speed = e1000_bus_speed_66;
4824 				break;
4825 			case E1000_STATUS_PCIX_SPEED_100:
4826 				hw->bus_speed = e1000_bus_speed_100;
4827 				break;
4828 			case E1000_STATUS_PCIX_SPEED_133:
4829 				hw->bus_speed = e1000_bus_speed_133;
4830 				break;
4831 			default:
4832 				hw->bus_speed = e1000_bus_speed_reserved;
4833 				break;
4834 			}
4835 		}
4836 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4837 		    e1000_bus_width_64 : e1000_bus_width_32;
4838 		break;
4839 	}
4840 }
4841 
4842 /**
4843  * e1000_write_reg_io
4844  * @hw: Struct containing variables accessed by shared code
4845  * @offset: offset to write to
4846  * @value: value to write
4847  *
4848  * Writes a value to one of the devices registers using port I/O (as opposed to
4849  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4850  */
e1000_write_reg_io(struct e1000_hw * hw,u32 offset,u32 value)4851 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4852 {
4853 	unsigned long io_addr = hw->io_base;
4854 	unsigned long io_data = hw->io_base + 4;
4855 
4856 	e1000_io_write(hw, io_addr, offset);
4857 	e1000_io_write(hw, io_data, value);
4858 }
4859 
4860 /**
4861  * e1000_get_cable_length - Estimates the cable length.
4862  * @hw: Struct containing variables accessed by shared code
4863  * @min_length: The estimated minimum length
4864  * @max_length: The estimated maximum length
4865  *
4866  * returns: - E1000_ERR_XXX
4867  *            E1000_SUCCESS
4868  *
4869  * This function always returns a ranged length (minimum & maximum).
4870  * So for M88 phy's, this function interprets the one value returned from the
4871  * register to the minimum and maximum range.
4872  * For IGP phy's, the function calculates the range by the AGC registers.
4873  */
e1000_get_cable_length(struct e1000_hw * hw,u16 * min_length,u16 * max_length)4874 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4875 				  u16 *max_length)
4876 {
4877 	s32 ret_val;
4878 	u16 agc_value = 0;
4879 	u16 i, phy_data;
4880 	u16 cable_length;
4881 
4882 	*min_length = *max_length = 0;
4883 
4884 	/* Use old method for Phy older than IGP */
4885 	if (hw->phy_type == e1000_phy_m88) {
4886 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4887 					     &phy_data);
4888 		if (ret_val)
4889 			return ret_val;
4890 		cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
4891 
4892 		/* Convert the enum value to ranged values */
4893 		switch (cable_length) {
4894 		case e1000_cable_length_50:
4895 			*min_length = 0;
4896 			*max_length = e1000_igp_cable_length_50;
4897 			break;
4898 		case e1000_cable_length_50_80:
4899 			*min_length = e1000_igp_cable_length_50;
4900 			*max_length = e1000_igp_cable_length_80;
4901 			break;
4902 		case e1000_cable_length_80_110:
4903 			*min_length = e1000_igp_cable_length_80;
4904 			*max_length = e1000_igp_cable_length_110;
4905 			break;
4906 		case e1000_cable_length_110_140:
4907 			*min_length = e1000_igp_cable_length_110;
4908 			*max_length = e1000_igp_cable_length_140;
4909 			break;
4910 		case e1000_cable_length_140:
4911 			*min_length = e1000_igp_cable_length_140;
4912 			*max_length = e1000_igp_cable_length_170;
4913 			break;
4914 		default:
4915 			return -E1000_ERR_PHY;
4916 		}
4917 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4918 		u16 cur_agc_value;
4919 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4920 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4921 		       IGP01E1000_PHY_AGC_A,
4922 		       IGP01E1000_PHY_AGC_B,
4923 		       IGP01E1000_PHY_AGC_C,
4924 		       IGP01E1000_PHY_AGC_D
4925 		};
4926 		/* Read the AGC registers for all channels */
4927 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4928 			ret_val =
4929 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4930 			if (ret_val)
4931 				return ret_val;
4932 
4933 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4934 
4935 			/* Value bound check. */
4936 			if ((cur_agc_value >=
4937 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4938 			    (cur_agc_value == 0))
4939 				return -E1000_ERR_PHY;
4940 
4941 			agc_value += cur_agc_value;
4942 
4943 			/* Update minimal AGC value. */
4944 			if (min_agc_value > cur_agc_value)
4945 				min_agc_value = cur_agc_value;
4946 		}
4947 
4948 		/* Remove the minimal AGC result for length < 50m */
4949 		if (agc_value <
4950 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4951 			agc_value -= min_agc_value;
4952 
4953 			/* Get the average length of the remaining 3 channels */
4954 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4955 		} else {
4956 			/* Get the average length of all the 4 channels. */
4957 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4958 		}
4959 
4960 		/* Set the range of the calculated length. */
4961 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4962 				IGP01E1000_AGC_RANGE) > 0) ?
4963 		    (e1000_igp_cable_length_table[agc_value] -
4964 		     IGP01E1000_AGC_RANGE) : 0;
4965 		*max_length = e1000_igp_cable_length_table[agc_value] +
4966 		    IGP01E1000_AGC_RANGE;
4967 	}
4968 
4969 	return E1000_SUCCESS;
4970 }
4971 
4972 /**
4973  * e1000_check_polarity - Check the cable polarity
4974  * @hw: Struct containing variables accessed by shared code
4975  * @polarity: output parameter : 0 - Polarity is not reversed
4976  *                               1 - Polarity is reversed.
4977  *
4978  * returns: - E1000_ERR_XXX
4979  *            E1000_SUCCESS
4980  *
4981  * For phy's older than IGP, this function simply reads the polarity bit in the
4982  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4983  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4984  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4985  * IGP01E1000_PHY_PCS_INIT_REG.
4986  */
e1000_check_polarity(struct e1000_hw * hw,e1000_rev_polarity * polarity)4987 static s32 e1000_check_polarity(struct e1000_hw *hw,
4988 				e1000_rev_polarity *polarity)
4989 {
4990 	s32 ret_val;
4991 	u16 phy_data;
4992 
4993 	if (hw->phy_type == e1000_phy_m88) {
4994 		/* return the Polarity bit in the Status register. */
4995 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4996 					     &phy_data);
4997 		if (ret_val)
4998 			return ret_val;
4999 		*polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ?
5000 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5001 
5002 	} else if (hw->phy_type == e1000_phy_igp) {
5003 		/* Read the Status register to check the speed */
5004 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5005 					     &phy_data);
5006 		if (ret_val)
5007 			return ret_val;
5008 
5009 		/* If speed is 1000 Mbps, must read the
5010 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5011 		 */
5012 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5013 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5014 			/* Read the GIG initialization PCS register (0x00B4) */
5015 			ret_val =
5016 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5017 					       &phy_data);
5018 			if (ret_val)
5019 				return ret_val;
5020 
5021 			/* Check the polarity bits */
5022 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5023 			    e1000_rev_polarity_reversed :
5024 			    e1000_rev_polarity_normal;
5025 		} else {
5026 			/* For 10 Mbps, read the polarity bit in the status
5027 			 * register. (for 100 Mbps this bit is always 0)
5028 			 */
5029 			*polarity =
5030 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5031 			    e1000_rev_polarity_reversed :
5032 			    e1000_rev_polarity_normal;
5033 		}
5034 	}
5035 	return E1000_SUCCESS;
5036 }
5037 
5038 /**
5039  * e1000_check_downshift - Check if Downshift occurred
5040  * @hw: Struct containing variables accessed by shared code
5041  *
5042  * returns: - E1000_ERR_XXX
5043  *            E1000_SUCCESS
5044  *
5045  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5046  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5047  * Link Health register.  In IGP this bit is latched high, so the driver must
5048  * read it immediately after link is established.
5049  */
e1000_check_downshift(struct e1000_hw * hw)5050 static s32 e1000_check_downshift(struct e1000_hw *hw)
5051 {
5052 	s32 ret_val;
5053 	u16 phy_data;
5054 
5055 	if (hw->phy_type == e1000_phy_igp) {
5056 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5057 					     &phy_data);
5058 		if (ret_val)
5059 			return ret_val;
5060 
5061 		hw->speed_downgraded =
5062 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5063 	} else if (hw->phy_type == e1000_phy_m88) {
5064 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5065 					     &phy_data);
5066 		if (ret_val)
5067 			return ret_val;
5068 
5069 		hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT,
5070 						 phy_data);
5071 	}
5072 
5073 	return E1000_SUCCESS;
5074 }
5075 
5076 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5077 	IGP01E1000_PHY_AGC_PARAM_A,
5078 	IGP01E1000_PHY_AGC_PARAM_B,
5079 	IGP01E1000_PHY_AGC_PARAM_C,
5080 	IGP01E1000_PHY_AGC_PARAM_D
5081 };
5082 
e1000_1000Mb_check_cable_length(struct e1000_hw * hw)5083 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5084 {
5085 	u16 min_length, max_length;
5086 	u16 phy_data, i;
5087 	s32 ret_val;
5088 
5089 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5090 	if (ret_val)
5091 		return ret_val;
5092 
5093 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5094 		return 0;
5095 
5096 	if (min_length >= e1000_igp_cable_length_50) {
5097 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5098 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5099 						     &phy_data);
5100 			if (ret_val)
5101 				return ret_val;
5102 
5103 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5104 
5105 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5106 						      phy_data);
5107 			if (ret_val)
5108 				return ret_val;
5109 		}
5110 		hw->dsp_config_state = e1000_dsp_config_activated;
5111 	} else {
5112 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5113 		u32 idle_errs = 0;
5114 
5115 		/* clear previous idle error counts */
5116 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5117 		if (ret_val)
5118 			return ret_val;
5119 
5120 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5121 			udelay(1000);
5122 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5123 						     &phy_data);
5124 			if (ret_val)
5125 				return ret_val;
5126 
5127 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5128 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5129 				hw->ffe_config_state = e1000_ffe_config_active;
5130 
5131 				ret_val = e1000_write_phy_reg(hw,
5132 							      IGP01E1000_PHY_DSP_FFE,
5133 							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5134 				if (ret_val)
5135 					return ret_val;
5136 				break;
5137 			}
5138 
5139 			if (idle_errs)
5140 				ffe_idle_err_timeout =
5141 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5142 		}
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 /**
5149  * e1000_config_dsp_after_link_change
5150  * @hw: Struct containing variables accessed by shared code
5151  * @link_up: was link up at the time this was called
5152  *
5153  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5154  *            E1000_SUCCESS at any other case.
5155  *
5156  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5157  * gigabit link is achieved to improve link quality.
5158  */
5159 
e1000_config_dsp_after_link_change(struct e1000_hw * hw,bool link_up)5160 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5161 {
5162 	s32 ret_val;
5163 	u16 phy_data, phy_saved_data, speed, duplex, i;
5164 
5165 	if (hw->phy_type != e1000_phy_igp)
5166 		return E1000_SUCCESS;
5167 
5168 	if (link_up) {
5169 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5170 		if (ret_val) {
5171 			e_dbg("Error getting link speed and duplex\n");
5172 			return ret_val;
5173 		}
5174 
5175 		if (speed == SPEED_1000) {
5176 			ret_val = e1000_1000Mb_check_cable_length(hw);
5177 			if (ret_val)
5178 				return ret_val;
5179 		}
5180 	} else {
5181 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5182 			/* Save off the current value of register 0x2F5B to be
5183 			 * restored at the end of the routines.
5184 			 */
5185 			ret_val =
5186 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5187 
5188 			if (ret_val)
5189 				return ret_val;
5190 
5191 			/* Disable the PHY transmitter */
5192 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5193 
5194 			if (ret_val)
5195 				return ret_val;
5196 
5197 			msleep(20);
5198 
5199 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5200 						      IGP01E1000_IEEE_FORCE_GIGA);
5201 			if (ret_val)
5202 				return ret_val;
5203 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5204 				ret_val =
5205 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5206 						       &phy_data);
5207 				if (ret_val)
5208 					return ret_val;
5209 
5210 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5211 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5212 
5213 				ret_val =
5214 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5215 							phy_data);
5216 				if (ret_val)
5217 					return ret_val;
5218 			}
5219 
5220 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5221 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5222 			if (ret_val)
5223 				return ret_val;
5224 
5225 			msleep(20);
5226 
5227 			/* Now enable the transmitter */
5228 			ret_val =
5229 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5230 
5231 			if (ret_val)
5232 				return ret_val;
5233 
5234 			hw->dsp_config_state = e1000_dsp_config_enabled;
5235 		}
5236 
5237 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5238 			/* Save off the current value of register 0x2F5B to be
5239 			 * restored at the end of the routines.
5240 			 */
5241 			ret_val =
5242 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5243 
5244 			if (ret_val)
5245 				return ret_val;
5246 
5247 			/* Disable the PHY transmitter */
5248 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5249 
5250 			if (ret_val)
5251 				return ret_val;
5252 
5253 			msleep(20);
5254 
5255 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5256 						      IGP01E1000_IEEE_FORCE_GIGA);
5257 			if (ret_val)
5258 				return ret_val;
5259 			ret_val =
5260 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5261 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5262 			if (ret_val)
5263 				return ret_val;
5264 
5265 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5266 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5267 			if (ret_val)
5268 				return ret_val;
5269 
5270 			msleep(20);
5271 
5272 			/* Now enable the transmitter */
5273 			ret_val =
5274 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5275 
5276 			if (ret_val)
5277 				return ret_val;
5278 
5279 			hw->ffe_config_state = e1000_ffe_config_enabled;
5280 		}
5281 	}
5282 	return E1000_SUCCESS;
5283 }
5284 
5285 /**
5286  * e1000_set_phy_mode - Set PHY to class A mode
5287  * @hw: Struct containing variables accessed by shared code
5288  *
5289  * Assumes the following operations will follow to enable the new class mode.
5290  *  1. Do a PHY soft reset
5291  *  2. Restart auto-negotiation or force link.
5292  */
e1000_set_phy_mode(struct e1000_hw * hw)5293 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5294 {
5295 	s32 ret_val;
5296 	u16 eeprom_data;
5297 
5298 	if ((hw->mac_type == e1000_82545_rev_3) &&
5299 	    (hw->media_type == e1000_media_type_copper)) {
5300 		ret_val =
5301 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5302 				      &eeprom_data);
5303 		if (ret_val)
5304 			return ret_val;
5305 
5306 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5307 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5308 			ret_val =
5309 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5310 						0x000B);
5311 			if (ret_val)
5312 				return ret_val;
5313 			ret_val =
5314 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5315 						0x8104);
5316 			if (ret_val)
5317 				return ret_val;
5318 
5319 			hw->phy_reset_disable = false;
5320 		}
5321 	}
5322 
5323 	return E1000_SUCCESS;
5324 }
5325 
5326 /**
5327  * e1000_set_d3_lplu_state - set d3 link power state
5328  * @hw: Struct containing variables accessed by shared code
5329  * @active: true to enable lplu false to disable lplu.
5330  *
5331  * This function sets the lplu state according to the active flag.  When
5332  * activating lplu this function also disables smart speed and vise versa.
5333  * lplu will not be activated unless the device autonegotiation advertisement
5334  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5335  *
5336  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5337  *            E1000_SUCCESS at any other case.
5338  */
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)5339 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5340 {
5341 	s32 ret_val;
5342 	u16 phy_data;
5343 
5344 	if (hw->phy_type != e1000_phy_igp)
5345 		return E1000_SUCCESS;
5346 
5347 	/* During driver activity LPLU should not be used or it will attain link
5348 	 * from the lowest speeds starting from 10Mbps. The capability is used
5349 	 * for Dx transitions and states
5350 	 */
5351 	if (hw->mac_type == e1000_82541_rev_2 ||
5352 	    hw->mac_type == e1000_82547_rev_2) {
5353 		ret_val =
5354 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5355 		if (ret_val)
5356 			return ret_val;
5357 	}
5358 
5359 	if (!active) {
5360 		if (hw->mac_type == e1000_82541_rev_2 ||
5361 		    hw->mac_type == e1000_82547_rev_2) {
5362 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5363 			ret_val =
5364 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5365 						phy_data);
5366 			if (ret_val)
5367 				return ret_val;
5368 		}
5369 
5370 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5371 		 * during Dx states where the power conservation is most
5372 		 * important.  During driver activity we should enable
5373 		 * SmartSpeed, so performance is maintained.
5374 		 */
5375 		if (hw->smart_speed == e1000_smart_speed_on) {
5376 			ret_val =
5377 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5378 					       &phy_data);
5379 			if (ret_val)
5380 				return ret_val;
5381 
5382 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5383 			ret_val =
5384 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5385 						phy_data);
5386 			if (ret_val)
5387 				return ret_val;
5388 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5389 			ret_val =
5390 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391 					       &phy_data);
5392 			if (ret_val)
5393 				return ret_val;
5394 
5395 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5396 			ret_val =
5397 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5398 						phy_data);
5399 			if (ret_val)
5400 				return ret_val;
5401 		}
5402 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5403 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5404 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5405 		if (hw->mac_type == e1000_82541_rev_2 ||
5406 		    hw->mac_type == e1000_82547_rev_2) {
5407 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5408 			ret_val =
5409 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5410 						phy_data);
5411 			if (ret_val)
5412 				return ret_val;
5413 		}
5414 
5415 		/* When LPLU is enabled we should disable SmartSpeed */
5416 		ret_val =
5417 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5418 				       &phy_data);
5419 		if (ret_val)
5420 			return ret_val;
5421 
5422 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5423 		ret_val =
5424 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425 					phy_data);
5426 		if (ret_val)
5427 			return ret_val;
5428 	}
5429 	return E1000_SUCCESS;
5430 }
5431 
5432 /**
5433  * e1000_set_vco_speed
5434  * @hw: Struct containing variables accessed by shared code
5435  *
5436  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5437  */
e1000_set_vco_speed(struct e1000_hw * hw)5438 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5439 {
5440 	s32 ret_val;
5441 	u16 default_page = 0;
5442 	u16 phy_data;
5443 
5444 	switch (hw->mac_type) {
5445 	case e1000_82545_rev_3:
5446 	case e1000_82546_rev_3:
5447 		break;
5448 	default:
5449 		return E1000_SUCCESS;
5450 	}
5451 
5452 	/* Set PHY register 30, page 5, bit 8 to 0 */
5453 
5454 	ret_val =
5455 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5456 	if (ret_val)
5457 		return ret_val;
5458 
5459 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5460 	if (ret_val)
5461 		return ret_val;
5462 
5463 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5464 	if (ret_val)
5465 		return ret_val;
5466 
5467 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5468 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5469 	if (ret_val)
5470 		return ret_val;
5471 
5472 	/* Set PHY register 30, page 4, bit 11 to 1 */
5473 
5474 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5475 	if (ret_val)
5476 		return ret_val;
5477 
5478 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5479 	if (ret_val)
5480 		return ret_val;
5481 
5482 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5483 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5484 	if (ret_val)
5485 		return ret_val;
5486 
5487 	ret_val =
5488 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5489 	if (ret_val)
5490 		return ret_val;
5491 
5492 	return E1000_SUCCESS;
5493 }
5494 
5495 /**
5496  * e1000_enable_mng_pass_thru - check for bmc pass through
5497  * @hw: Struct containing variables accessed by shared code
5498  *
5499  * Verifies the hardware needs to allow ARPs to be processed by the host
5500  * returns: - true/false
5501  */
e1000_enable_mng_pass_thru(struct e1000_hw * hw)5502 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5503 {
5504 	u32 manc;
5505 
5506 	if (hw->asf_firmware_present) {
5507 		manc = er32(MANC);
5508 
5509 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5510 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5511 			return false;
5512 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5513 			return true;
5514 	}
5515 	return false;
5516 }
5517 
e1000_polarity_reversal_workaround(struct e1000_hw * hw)5518 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5519 {
5520 	s32 ret_val;
5521 	u16 mii_status_reg;
5522 	u16 i;
5523 
5524 	/* Polarity reversal workaround for forced 10F/10H links. */
5525 
5526 	/* Disable the transmitter on the PHY */
5527 
5528 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5529 	if (ret_val)
5530 		return ret_val;
5531 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5532 	if (ret_val)
5533 		return ret_val;
5534 
5535 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5536 	if (ret_val)
5537 		return ret_val;
5538 
5539 	/* This loop will early-out if the NO link condition has been met. */
5540 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5541 		/* Read the MII Status Register and wait for Link Status bit
5542 		 * to be clear.
5543 		 */
5544 
5545 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5546 		if (ret_val)
5547 			return ret_val;
5548 
5549 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5550 		if (ret_val)
5551 			return ret_val;
5552 
5553 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5554 			break;
5555 		msleep(100);
5556 	}
5557 
5558 	/* Recommended delay time after link has been lost */
5559 	msleep(1000);
5560 
5561 	/* Now we will re-enable th transmitter on the PHY */
5562 
5563 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5564 	if (ret_val)
5565 		return ret_val;
5566 	msleep(50);
5567 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5568 	if (ret_val)
5569 		return ret_val;
5570 	msleep(50);
5571 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5572 	if (ret_val)
5573 		return ret_val;
5574 	msleep(50);
5575 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5576 	if (ret_val)
5577 		return ret_val;
5578 
5579 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5580 	if (ret_val)
5581 		return ret_val;
5582 
5583 	/* This loop will early-out if the link condition has been met. */
5584 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5585 		/* Read the MII Status Register and wait for Link Status bit
5586 		 * to be set.
5587 		 */
5588 
5589 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5590 		if (ret_val)
5591 			return ret_val;
5592 
5593 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5594 		if (ret_val)
5595 			return ret_val;
5596 
5597 		if (mii_status_reg & MII_SR_LINK_STATUS)
5598 			break;
5599 		msleep(100);
5600 	}
5601 	return E1000_SUCCESS;
5602 }
5603 
5604 /**
5605  * e1000_get_auto_rd_done
5606  * @hw: Struct containing variables accessed by shared code
5607  *
5608  * Check for EEPROM Auto Read bit done.
5609  * returns: - E1000_ERR_RESET if fail to reset MAC
5610  *            E1000_SUCCESS at any other case.
5611  */
e1000_get_auto_rd_done(struct e1000_hw * hw)5612 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5613 {
5614 	msleep(5);
5615 	return E1000_SUCCESS;
5616 }
5617 
5618 /**
5619  * e1000_get_phy_cfg_done
5620  * @hw: Struct containing variables accessed by shared code
5621  *
5622  * Checks if the PHY configuration is done
5623  * returns: - E1000_ERR_RESET if fail to reset MAC
5624  *            E1000_SUCCESS at any other case.
5625  */
e1000_get_phy_cfg_done(struct e1000_hw * hw)5626 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5627 {
5628 	msleep(10);
5629 	return E1000_SUCCESS;
5630 }
5631