xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/phy.c (revision e0d77d0f38aa60ca61b3ce6e60d64fad2aa0853d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <linux/ethtool.h>
6 
7 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
8 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
9 					  u16 *data, bool read, bool page_set);
10 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
11 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
12 					  u16 *data, bool read);
13 
14 /* Cable length tables */
15 static const u16 e1000_m88_cable_length_table[] = {
16 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
17 };
18 
19 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
20 		ARRAY_SIZE(e1000_m88_cable_length_table)
21 
22 static const u16 e1000_igp_2_cable_length_table[] = {
23 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
24 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
25 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
26 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
27 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
28 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
29 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
30 	124
31 };
32 
33 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
34 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
35 
36 /**
37  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
38  *  @hw: pointer to the HW structure
39  *
40  *  Read the PHY management control register and check whether a PHY reset
41  *  is blocked.  If a reset is not blocked return 0, otherwise
42  *  return E1000_BLK_PHY_RESET (12).
43  **/
e1000e_check_reset_block_generic(struct e1000_hw * hw)44 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
45 {
46 	u32 manc;
47 
48 	manc = er32(MANC);
49 
50 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
51 }
52 
53 /**
54  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
55  *  @hw: pointer to the HW structure
56  *
57  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
58  *  revision in the hardware structure.
59  **/
e1000e_get_phy_id(struct e1000_hw * hw)60 s32 e1000e_get_phy_id(struct e1000_hw *hw)
61 {
62 	struct e1000_phy_info *phy = &hw->phy;
63 	s32 ret_val = 0;
64 	u16 phy_id;
65 	u16 retry_count = 0;
66 
67 	if (!phy->ops.read_reg)
68 		return 0;
69 
70 	while (retry_count < 2) {
71 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
72 		if (ret_val)
73 			return ret_val;
74 
75 		phy->id = (u32)(phy_id << 16);
76 		usleep_range(20, 40);
77 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
78 		if (ret_val)
79 			return ret_val;
80 
81 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
82 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
83 
84 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
85 			return 0;
86 
87 		retry_count++;
88 	}
89 
90 	return 0;
91 }
92 
93 /**
94  *  e1000e_phy_reset_dsp - Reset PHY DSP
95  *  @hw: pointer to the HW structure
96  *
97  *  Reset the digital signal processor.
98  **/
e1000e_phy_reset_dsp(struct e1000_hw * hw)99 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
100 {
101 	s32 ret_val;
102 
103 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
104 	if (ret_val)
105 		return ret_val;
106 
107 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
108 }
109 
e1000e_disable_phy_retry(struct e1000_hw * hw)110 void e1000e_disable_phy_retry(struct e1000_hw *hw)
111 {
112 	hw->phy.retry_enabled = false;
113 }
114 
e1000e_enable_phy_retry(struct e1000_hw * hw)115 void e1000e_enable_phy_retry(struct e1000_hw *hw)
116 {
117 	hw->phy.retry_enabled = true;
118 }
119 
120 /**
121  *  e1000e_read_phy_reg_mdic - Read MDI control register
122  *  @hw: pointer to the HW structure
123  *  @offset: register offset to be read
124  *  @data: pointer to the read data
125  *
126  *  Reads the MDI control register in the PHY at offset and stores the
127  *  information read to data.
128  **/
e1000e_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)129 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
130 {
131 	u32 i, mdic = 0, retry_counter, retry_max;
132 	struct e1000_phy_info *phy = &hw->phy;
133 	bool success;
134 
135 	if (offset > MAX_PHY_REG_ADDRESS) {
136 		e_dbg("PHY Address %d is out of range\n", offset);
137 		return -E1000_ERR_PARAM;
138 	}
139 
140 	retry_max = phy->retry_enabled ? phy->retry_count : 0;
141 
142 	/* Set up Op-code, Phy Address, and register offset in the MDI
143 	 * Control register.  The MAC will take care of interfacing with the
144 	 * PHY to retrieve the desired data.
145 	 */
146 	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
147 		success = true;
148 
149 		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
150 			(phy->addr << E1000_MDIC_PHY_SHIFT) |
151 			(E1000_MDIC_OP_READ));
152 
153 		ew32(MDIC, mdic);
154 
155 		/* Poll the ready bit to see if the MDI read completed
156 		 * Increasing the time out as testing showed failures with
157 		 * the lower time out
158 		 */
159 		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
160 			udelay(50);
161 			mdic = er32(MDIC);
162 			if (mdic & E1000_MDIC_READY)
163 				break;
164 		}
165 		if (!(mdic & E1000_MDIC_READY)) {
166 			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
167 			      offset);
168 			success = false;
169 		}
170 		if (mdic & E1000_MDIC_ERROR) {
171 			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
172 			success = false;
173 		}
174 		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
175 			e_dbg("MDI Read offset error - requested %d, returned %d\n",
176 			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
177 			success = false;
178 		}
179 
180 		/* Allow some time after each MDIC transaction to avoid
181 		 * reading duplicate data in the next MDIC transaction.
182 		 */
183 		if (hw->mac.type == e1000_pch2lan)
184 			udelay(100);
185 
186 		if (success) {
187 			*data = (u16)mdic;
188 			return 0;
189 		}
190 
191 		if (retry_counter != retry_max) {
192 			e_dbg("Perform retry on PHY transaction...\n");
193 			mdelay(10);
194 		}
195 	}
196 
197 	return -E1000_ERR_PHY;
198 }
199 
200 /**
201  *  e1000e_write_phy_reg_mdic - Write MDI control register
202  *  @hw: pointer to the HW structure
203  *  @offset: register offset to write to
204  *  @data: data to write to register at offset
205  *
206  *  Writes data to MDI control register in the PHY at offset.
207  **/
e1000e_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)208 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
209 {
210 	u32 i, mdic = 0, retry_counter, retry_max;
211 	struct e1000_phy_info *phy = &hw->phy;
212 	bool success;
213 
214 	if (offset > MAX_PHY_REG_ADDRESS) {
215 		e_dbg("PHY Address %d is out of range\n", offset);
216 		return -E1000_ERR_PARAM;
217 	}
218 
219 	retry_max = phy->retry_enabled ? phy->retry_count : 0;
220 
221 	/* Set up Op-code, Phy Address, and register offset in the MDI
222 	 * Control register.  The MAC will take care of interfacing with the
223 	 * PHY to retrieve the desired data.
224 	 */
225 	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
226 		success = true;
227 
228 		mdic = (((u32)data) |
229 			(offset << E1000_MDIC_REG_SHIFT) |
230 			(phy->addr << E1000_MDIC_PHY_SHIFT) |
231 			(E1000_MDIC_OP_WRITE));
232 
233 		ew32(MDIC, mdic);
234 
235 		/* Poll the ready bit to see if the MDI read completed
236 		 * Increasing the time out as testing showed failures with
237 		 * the lower time out
238 		 */
239 		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
240 			udelay(50);
241 			mdic = er32(MDIC);
242 			if (mdic & E1000_MDIC_READY)
243 				break;
244 		}
245 		if (!(mdic & E1000_MDIC_READY)) {
246 			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
247 			      offset);
248 			success = false;
249 		}
250 		if (mdic & E1000_MDIC_ERROR) {
251 			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
252 			success = false;
253 		}
254 		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
255 			e_dbg("MDI Write offset error - requested %d, returned %d\n",
256 			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
257 			success = false;
258 		}
259 
260 		/* Allow some time after each MDIC transaction to avoid
261 		 * reading duplicate data in the next MDIC transaction.
262 		 */
263 		if (hw->mac.type == e1000_pch2lan)
264 			udelay(100);
265 
266 		if (success)
267 			return 0;
268 
269 		if (retry_counter != retry_max) {
270 			e_dbg("Perform retry on PHY transaction...\n");
271 			mdelay(10);
272 		}
273 	}
274 
275 	return -E1000_ERR_PHY;
276 }
277 
278 /**
279  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
280  *  @hw: pointer to the HW structure
281  *  @offset: register offset to be read
282  *  @data: pointer to the read data
283  *
284  *  Acquires semaphore, if necessary, then reads the PHY register at offset
285  *  and storing the retrieved information in data.  Release any acquired
286  *  semaphores before exiting.
287  **/
e1000e_read_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 * data)288 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
289 {
290 	s32 ret_val;
291 
292 	ret_val = hw->phy.ops.acquire(hw);
293 	if (ret_val)
294 		return ret_val;
295 
296 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
297 					   data);
298 
299 	hw->phy.ops.release(hw);
300 
301 	return ret_val;
302 }
303 
304 /**
305  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
306  *  @hw: pointer to the HW structure
307  *  @offset: register offset to write to
308  *  @data: data to write at register offset
309  *
310  *  Acquires semaphore, if necessary, then writes the data to PHY register
311  *  at the offset.  Release any acquired semaphores before exiting.
312  **/
e1000e_write_phy_reg_m88(struct e1000_hw * hw,u32 offset,u16 data)313 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
314 {
315 	s32 ret_val;
316 
317 	ret_val = hw->phy.ops.acquire(hw);
318 	if (ret_val)
319 		return ret_val;
320 
321 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
322 					    data);
323 
324 	hw->phy.ops.release(hw);
325 
326 	return ret_val;
327 }
328 
329 /**
330  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
331  *  @hw: pointer to the HW structure
332  *  @page: page to set (shifted left when necessary)
333  *
334  *  Sets PHY page required for PHY register access.  Assumes semaphore is
335  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
336  *  must set it appropriately (if necessary) after this function returns.
337  **/
e1000_set_page_igp(struct e1000_hw * hw,u16 page)338 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
339 {
340 	e_dbg("Setting page 0x%x\n", page);
341 
342 	hw->phy.addr = 1;
343 
344 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
345 }
346 
347 /**
348  *  __e1000e_read_phy_reg_igp - Read igp PHY register
349  *  @hw: pointer to the HW structure
350  *  @offset: register offset to be read
351  *  @data: pointer to the read data
352  *  @locked: semaphore has already been acquired or not
353  *
354  *  Acquires semaphore, if necessary, then reads the PHY register at offset
355  *  and stores the retrieved information in data.  Release any acquired
356  *  semaphores before exiting.
357  **/
__e1000e_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)358 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
359 				     bool locked)
360 {
361 	s32 ret_val = 0;
362 
363 	if (!locked) {
364 		if (!hw->phy.ops.acquire)
365 			return 0;
366 
367 		ret_val = hw->phy.ops.acquire(hw);
368 		if (ret_val)
369 			return ret_val;
370 	}
371 
372 	if (offset > MAX_PHY_MULTI_PAGE_REG)
373 		ret_val = e1000e_write_phy_reg_mdic(hw,
374 						    IGP01E1000_PHY_PAGE_SELECT,
375 						    (u16)offset);
376 	if (!ret_val)
377 		ret_val = e1000e_read_phy_reg_mdic(hw,
378 						   MAX_PHY_REG_ADDRESS & offset,
379 						   data);
380 	if (!locked)
381 		hw->phy.ops.release(hw);
382 
383 	return ret_val;
384 }
385 
386 /**
387  *  e1000e_read_phy_reg_igp - Read igp PHY register
388  *  @hw: pointer to the HW structure
389  *  @offset: register offset to be read
390  *  @data: pointer to the read data
391  *
392  *  Acquires semaphore then reads the PHY register at offset and stores the
393  *  retrieved information in data.
394  *  Release the acquired semaphore before exiting.
395  **/
e1000e_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)396 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
397 {
398 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
399 }
400 
401 /**
402  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
403  *  @hw: pointer to the HW structure
404  *  @offset: register offset to be read
405  *  @data: pointer to the read data
406  *
407  *  Reads the PHY register at offset and stores the retrieved information
408  *  in data.  Assumes semaphore already acquired.
409  **/
e1000e_read_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 * data)410 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
411 {
412 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
413 }
414 
415 /**
416  *  __e1000e_write_phy_reg_igp - Write igp PHY register
417  *  @hw: pointer to the HW structure
418  *  @offset: register offset to write to
419  *  @data: data to write at register offset
420  *  @locked: semaphore has already been acquired or not
421  *
422  *  Acquires semaphore, if necessary, then writes the data to PHY register
423  *  at the offset.  Release any acquired semaphores before exiting.
424  **/
__e1000e_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data,bool locked)425 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
426 				      bool locked)
427 {
428 	s32 ret_val = 0;
429 
430 	if (!locked) {
431 		if (!hw->phy.ops.acquire)
432 			return 0;
433 
434 		ret_val = hw->phy.ops.acquire(hw);
435 		if (ret_val)
436 			return ret_val;
437 	}
438 
439 	if (offset > MAX_PHY_MULTI_PAGE_REG)
440 		ret_val = e1000e_write_phy_reg_mdic(hw,
441 						    IGP01E1000_PHY_PAGE_SELECT,
442 						    (u16)offset);
443 	if (!ret_val)
444 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
445 						    offset, data);
446 	if (!locked)
447 		hw->phy.ops.release(hw);
448 
449 	return ret_val;
450 }
451 
452 /**
453  *  e1000e_write_phy_reg_igp - Write igp PHY register
454  *  @hw: pointer to the HW structure
455  *  @offset: register offset to write to
456  *  @data: data to write at register offset
457  *
458  *  Acquires semaphore then writes the data to PHY register
459  *  at the offset.  Release any acquired semaphores before exiting.
460  **/
e1000e_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)461 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
462 {
463 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
464 }
465 
466 /**
467  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
468  *  @hw: pointer to the HW structure
469  *  @offset: register offset to write to
470  *  @data: data to write at register offset
471  *
472  *  Writes the data to PHY register at the offset.
473  *  Assumes semaphore already acquired.
474  **/
e1000e_write_phy_reg_igp_locked(struct e1000_hw * hw,u32 offset,u16 data)475 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
476 {
477 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
478 }
479 
480 /**
481  *  __e1000_read_kmrn_reg - Read kumeran register
482  *  @hw: pointer to the HW structure
483  *  @offset: register offset to be read
484  *  @data: pointer to the read data
485  *  @locked: semaphore has already been acquired or not
486  *
487  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
488  *  using the kumeran interface.  The information retrieved is stored in data.
489  *  Release any acquired semaphores before exiting.
490  **/
__e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data,bool locked)491 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
492 				 bool locked)
493 {
494 	u32 kmrnctrlsta;
495 
496 	if (!locked) {
497 		s32 ret_val = 0;
498 
499 		if (!hw->phy.ops.acquire)
500 			return 0;
501 
502 		ret_val = hw->phy.ops.acquire(hw);
503 		if (ret_val)
504 			return ret_val;
505 	}
506 
507 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
508 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
509 	ew32(KMRNCTRLSTA, kmrnctrlsta);
510 	e1e_flush();
511 
512 	udelay(2);
513 
514 	kmrnctrlsta = er32(KMRNCTRLSTA);
515 	*data = (u16)kmrnctrlsta;
516 
517 	if (!locked)
518 		hw->phy.ops.release(hw);
519 
520 	return 0;
521 }
522 
523 /**
524  *  e1000e_read_kmrn_reg -  Read kumeran register
525  *  @hw: pointer to the HW structure
526  *  @offset: register offset to be read
527  *  @data: pointer to the read data
528  *
529  *  Acquires semaphore then reads the PHY register at offset using the
530  *  kumeran interface.  The information retrieved is stored in data.
531  *  Release the acquired semaphore before exiting.
532  **/
e1000e_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data)533 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
534 {
535 	return __e1000_read_kmrn_reg(hw, offset, data, false);
536 }
537 
538 /**
539  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
540  *  @hw: pointer to the HW structure
541  *  @offset: register offset to be read
542  *  @data: pointer to the read data
543  *
544  *  Reads the PHY register at offset using the kumeran interface.  The
545  *  information retrieved is stored in data.
546  *  Assumes semaphore already acquired.
547  **/
e1000e_read_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 * data)548 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
549 {
550 	return __e1000_read_kmrn_reg(hw, offset, data, true);
551 }
552 
553 /**
554  *  __e1000_write_kmrn_reg - Write kumeran register
555  *  @hw: pointer to the HW structure
556  *  @offset: register offset to write to
557  *  @data: data to write at register offset
558  *  @locked: semaphore has already been acquired or not
559  *
560  *  Acquires semaphore, if necessary.  Then write the data to PHY register
561  *  at the offset using the kumeran interface.  Release any acquired semaphores
562  *  before exiting.
563  **/
__e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data,bool locked)564 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
565 				  bool locked)
566 {
567 	u32 kmrnctrlsta;
568 
569 	if (!locked) {
570 		s32 ret_val = 0;
571 
572 		if (!hw->phy.ops.acquire)
573 			return 0;
574 
575 		ret_val = hw->phy.ops.acquire(hw);
576 		if (ret_val)
577 			return ret_val;
578 	}
579 
580 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
581 		       E1000_KMRNCTRLSTA_OFFSET) | data;
582 	ew32(KMRNCTRLSTA, kmrnctrlsta);
583 	e1e_flush();
584 
585 	udelay(2);
586 
587 	if (!locked)
588 		hw->phy.ops.release(hw);
589 
590 	return 0;
591 }
592 
593 /**
594  *  e1000e_write_kmrn_reg -  Write kumeran register
595  *  @hw: pointer to the HW structure
596  *  @offset: register offset to write to
597  *  @data: data to write at register offset
598  *
599  *  Acquires semaphore then writes the data to the PHY register at the offset
600  *  using the kumeran interface.  Release the acquired semaphore before exiting.
601  **/
e1000e_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data)602 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
603 {
604 	return __e1000_write_kmrn_reg(hw, offset, data, false);
605 }
606 
607 /**
608  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
609  *  @hw: pointer to the HW structure
610  *  @offset: register offset to write to
611  *  @data: data to write at register offset
612  *
613  *  Write the data to PHY register at the offset using the kumeran interface.
614  *  Assumes semaphore already acquired.
615  **/
e1000e_write_kmrn_reg_locked(struct e1000_hw * hw,u32 offset,u16 data)616 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
617 {
618 	return __e1000_write_kmrn_reg(hw, offset, data, true);
619 }
620 
621 /**
622  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
623  *  @hw: pointer to the HW structure
624  *
625  *  Sets up Master/slave mode
626  **/
e1000_set_master_slave_mode(struct e1000_hw * hw)627 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
628 {
629 	s32 ret_val;
630 	u16 phy_data;
631 
632 	/* Resolve Master/Slave mode */
633 	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
634 	if (ret_val)
635 		return ret_val;
636 
637 	/* load defaults for future use */
638 	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
639 	    ((phy_data & CTL1000_AS_MASTER) ?
640 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
641 
642 	switch (hw->phy.ms_type) {
643 	case e1000_ms_force_master:
644 		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
645 		break;
646 	case e1000_ms_force_slave:
647 		phy_data |= CTL1000_ENABLE_MASTER;
648 		phy_data &= ~(CTL1000_AS_MASTER);
649 		break;
650 	case e1000_ms_auto:
651 		phy_data &= ~CTL1000_ENABLE_MASTER;
652 		fallthrough;
653 	default:
654 		break;
655 	}
656 
657 	return e1e_wphy(hw, MII_CTRL1000, phy_data);
658 }
659 
660 /**
661  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
662  *  @hw: pointer to the HW structure
663  *
664  *  Sets up Carrier-sense on Transmit and downshift values.
665  **/
e1000_copper_link_setup_82577(struct e1000_hw * hw)666 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
667 {
668 	s32 ret_val;
669 	u16 phy_data;
670 
671 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
672 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
673 	if (ret_val)
674 		return ret_val;
675 
676 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
677 
678 	/* Enable downshift */
679 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
680 
681 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
682 	if (ret_val)
683 		return ret_val;
684 
685 	/* Set MDI/MDIX mode */
686 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
687 	if (ret_val)
688 		return ret_val;
689 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
690 	/* Options:
691 	 *   0 - Auto (default)
692 	 *   1 - MDI mode
693 	 *   2 - MDI-X mode
694 	 */
695 	switch (hw->phy.mdix) {
696 	case 1:
697 		break;
698 	case 2:
699 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
700 		break;
701 	case 0:
702 	default:
703 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
704 		break;
705 	}
706 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
707 	if (ret_val)
708 		return ret_val;
709 
710 	return e1000_set_master_slave_mode(hw);
711 }
712 
713 /**
714  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
715  *  @hw: pointer to the HW structure
716  *
717  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
718  *  and downshift values are set also.
719  **/
e1000e_copper_link_setup_m88(struct e1000_hw * hw)720 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
721 {
722 	struct e1000_phy_info *phy = &hw->phy;
723 	s32 ret_val;
724 	u16 phy_data;
725 
726 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
727 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
728 	if (ret_val)
729 		return ret_val;
730 
731 	/* For BM PHY this bit is downshift enable */
732 	if (phy->type != e1000_phy_bm)
733 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
734 
735 	/* Options:
736 	 *   MDI/MDI-X = 0 (default)
737 	 *   0 - Auto for all speeds
738 	 *   1 - MDI mode
739 	 *   2 - MDI-X mode
740 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
741 	 */
742 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
743 
744 	switch (phy->mdix) {
745 	case 1:
746 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
747 		break;
748 	case 2:
749 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
750 		break;
751 	case 3:
752 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
753 		break;
754 	case 0:
755 	default:
756 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
757 		break;
758 	}
759 
760 	/* Options:
761 	 *   disable_polarity_correction = 0 (default)
762 	 *       Automatic Correction for Reversed Cable Polarity
763 	 *   0 - Disabled
764 	 *   1 - Enabled
765 	 */
766 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
767 	if (phy->disable_polarity_correction)
768 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
769 
770 	/* Enable downshift on BM (disabled by default) */
771 	if (phy->type == e1000_phy_bm) {
772 		/* For 82574/82583, first disable then enable downshift */
773 		if (phy->id == BME1000_E_PHY_ID_R2) {
774 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
775 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
776 					   phy_data);
777 			if (ret_val)
778 				return ret_val;
779 			/* Commit the changes. */
780 			ret_val = phy->ops.commit(hw);
781 			if (ret_val) {
782 				e_dbg("Error committing the PHY changes\n");
783 				return ret_val;
784 			}
785 		}
786 
787 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
788 	}
789 
790 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
791 	if (ret_val)
792 		return ret_val;
793 
794 	if ((phy->type == e1000_phy_m88) &&
795 	    (phy->revision < E1000_REVISION_4) &&
796 	    (phy->id != BME1000_E_PHY_ID_R2)) {
797 		/* Force TX_CLK in the Extended PHY Specific Control Register
798 		 * to 25MHz clock.
799 		 */
800 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
801 		if (ret_val)
802 			return ret_val;
803 
804 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
805 
806 		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
807 			/* 82573L PHY - set the downshift counter to 5x. */
808 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
809 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
810 		} else {
811 			/* Configure Master and Slave downshift values */
812 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
813 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
814 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
815 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
816 		}
817 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
818 		if (ret_val)
819 			return ret_val;
820 	}
821 
822 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
823 		/* Set PHY page 0, register 29 to 0x0003 */
824 		ret_val = e1e_wphy(hw, 29, 0x0003);
825 		if (ret_val)
826 			return ret_val;
827 
828 		/* Set PHY page 0, register 30 to 0x0000 */
829 		ret_val = e1e_wphy(hw, 30, 0x0000);
830 		if (ret_val)
831 			return ret_val;
832 	}
833 
834 	/* Commit the changes. */
835 	if (phy->ops.commit) {
836 		ret_val = phy->ops.commit(hw);
837 		if (ret_val) {
838 			e_dbg("Error committing the PHY changes\n");
839 			return ret_val;
840 		}
841 	}
842 
843 	if (phy->type == e1000_phy_82578) {
844 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
845 		if (ret_val)
846 			return ret_val;
847 
848 		/* 82578 PHY - set the downshift count to 1x. */
849 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
850 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
851 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
852 		if (ret_val)
853 			return ret_val;
854 	}
855 
856 	return 0;
857 }
858 
859 /**
860  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
861  *  @hw: pointer to the HW structure
862  *
863  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
864  *  igp PHY's.
865  **/
e1000e_copper_link_setup_igp(struct e1000_hw * hw)866 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
867 {
868 	struct e1000_phy_info *phy = &hw->phy;
869 	s32 ret_val;
870 	u16 data;
871 
872 	ret_val = e1000_phy_hw_reset(hw);
873 	if (ret_val) {
874 		e_dbg("Error resetting the PHY.\n");
875 		return ret_val;
876 	}
877 
878 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
879 	 * timeout issues when LFS is enabled.
880 	 */
881 	msleep(100);
882 
883 	/* disable lplu d0 during driver init */
884 	if (hw->phy.ops.set_d0_lplu_state) {
885 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
886 		if (ret_val) {
887 			e_dbg("Error Disabling LPLU D0\n");
888 			return ret_val;
889 		}
890 	}
891 	/* Configure mdi-mdix settings */
892 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
893 	if (ret_val)
894 		return ret_val;
895 
896 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
897 
898 	switch (phy->mdix) {
899 	case 1:
900 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
901 		break;
902 	case 2:
903 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
904 		break;
905 	case 0:
906 	default:
907 		data |= IGP01E1000_PSCR_AUTO_MDIX;
908 		break;
909 	}
910 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
911 	if (ret_val)
912 		return ret_val;
913 
914 	/* set auto-master slave resolution settings */
915 	if (hw->mac.autoneg) {
916 		/* when autonegotiation advertisement is only 1000Mbps then we
917 		 * should disable SmartSpeed and enable Auto MasterSlave
918 		 * resolution as hardware default.
919 		 */
920 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
921 			/* Disable SmartSpeed */
922 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
923 					   &data);
924 			if (ret_val)
925 				return ret_val;
926 
927 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
928 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
929 					   data);
930 			if (ret_val)
931 				return ret_val;
932 
933 			/* Set auto Master/Slave resolution process */
934 			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
935 			if (ret_val)
936 				return ret_val;
937 
938 			data &= ~CTL1000_ENABLE_MASTER;
939 			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
940 			if (ret_val)
941 				return ret_val;
942 		}
943 
944 		ret_val = e1000_set_master_slave_mode(hw);
945 	}
946 
947 	return ret_val;
948 }
949 
950 /**
951  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
952  *  @hw: pointer to the HW structure
953  *
954  *  Reads the MII auto-neg advertisement register and/or the 1000T control
955  *  register and if the PHY is already setup for auto-negotiation, then
956  *  return successful.  Otherwise, setup advertisement and flow control to
957  *  the appropriate values for the wanted auto-negotiation.
958  **/
e1000_phy_setup_autoneg(struct e1000_hw * hw)959 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
960 {
961 	struct e1000_phy_info *phy = &hw->phy;
962 	s32 ret_val;
963 	u16 mii_autoneg_adv_reg;
964 	u16 mii_1000t_ctrl_reg = 0;
965 
966 	phy->autoneg_advertised &= phy->autoneg_mask;
967 
968 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
969 	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
970 	if (ret_val)
971 		return ret_val;
972 
973 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
974 		/* Read the MII 1000Base-T Control Register (Address 9). */
975 		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
976 		if (ret_val)
977 			return ret_val;
978 	}
979 
980 	/* Need to parse both autoneg_advertised and fc and set up
981 	 * the appropriate PHY registers.  First we will parse for
982 	 * autoneg_advertised software override.  Since we can advertise
983 	 * a plethora of combinations, we need to check each bit
984 	 * individually.
985 	 */
986 
987 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
988 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
989 	 * the  1000Base-T Control Register (Address 9).
990 	 */
991 	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
992 				 ADVERTISE_100HALF |
993 				 ADVERTISE_10FULL | ADVERTISE_10HALF);
994 	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
995 
996 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
997 
998 	/* Do we want to advertise 10 Mb Half Duplex? */
999 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000 		e_dbg("Advertise 10mb Half duplex\n");
1001 		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1002 	}
1003 
1004 	/* Do we want to advertise 10 Mb Full Duplex? */
1005 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006 		e_dbg("Advertise 10mb Full duplex\n");
1007 		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1008 	}
1009 
1010 	/* Do we want to advertise 100 Mb Half Duplex? */
1011 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012 		e_dbg("Advertise 100mb Half duplex\n");
1013 		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1014 	}
1015 
1016 	/* Do we want to advertise 100 Mb Full Duplex? */
1017 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018 		e_dbg("Advertise 100mb Full duplex\n");
1019 		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1020 	}
1021 
1022 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025 
1026 	/* Do we want to advertise 1000 Mb Full Duplex? */
1027 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028 		e_dbg("Advertise 1000mb Full duplex\n");
1029 		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1030 	}
1031 
1032 	/* Check for a software override of the flow control settings, and
1033 	 * setup the PHY advertisement registers accordingly.  If
1034 	 * auto-negotiation is enabled, then software will have to set the
1035 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1036 	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1037 	 * negotiation.
1038 	 *
1039 	 * The possible values of the "fc" parameter are:
1040 	 *      0:  Flow control is completely disabled
1041 	 *      1:  Rx flow control is enabled (we can receive pause frames
1042 	 *          but not send pause frames).
1043 	 *      2:  Tx flow control is enabled (we can send pause frames
1044 	 *          but we do not support receiving pause frames).
1045 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1046 	 *  other:  No software override.  The flow control configuration
1047 	 *          in the EEPROM is used.
1048 	 */
1049 	switch (hw->fc.current_mode) {
1050 	case e1000_fc_none:
1051 		/* Flow control (Rx & Tx) is completely disabled by a
1052 		 * software over-ride.
1053 		 */
1054 		mii_autoneg_adv_reg &=
1055 		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1056 		phy->autoneg_advertised &=
1057 		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1058 		break;
1059 	case e1000_fc_rx_pause:
1060 		/* Rx Flow control is enabled, and Tx Flow control is
1061 		 * disabled, by a software over-ride.
1062 		 *
1063 		 * Since there really isn't a way to advertise that we are
1064 		 * capable of Rx Pause ONLY, we will advertise that we
1065 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066 		 * (in e1000e_config_fc_after_link_up) we will disable the
1067 		 * hw's ability to send PAUSE frames.
1068 		 */
1069 		mii_autoneg_adv_reg |=
1070 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1071 		phy->autoneg_advertised |=
1072 		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1073 		break;
1074 	case e1000_fc_tx_pause:
1075 		/* Tx Flow control is enabled, and Rx Flow control is
1076 		 * disabled, by a software over-ride.
1077 		 */
1078 		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1079 		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1080 		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1081 		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1082 		break;
1083 	case e1000_fc_full:
1084 		/* Flow control (both Rx and Tx) is enabled by a software
1085 		 * over-ride.
1086 		 */
1087 		mii_autoneg_adv_reg |=
1088 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1089 		phy->autoneg_advertised |=
1090 		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1091 		break;
1092 	default:
1093 		e_dbg("Flow control param set incorrectly\n");
1094 		return -E1000_ERR_CONFIG;
1095 	}
1096 
1097 	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1098 	if (ret_val)
1099 		return ret_val;
1100 
1101 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1102 
1103 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1104 		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1105 
1106 	return ret_val;
1107 }
1108 
1109 /**
1110  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1111  *  @hw: pointer to the HW structure
1112  *
1113  *  Performs initial bounds checking on autoneg advertisement parameter, then
1114  *  configure to advertise the full capability.  Setup the PHY to autoneg
1115  *  and restart the negotiation process between the link partner.  If
1116  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1117  **/
e1000_copper_link_autoneg(struct e1000_hw * hw)1118 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1119 {
1120 	struct e1000_phy_info *phy = &hw->phy;
1121 	s32 ret_val;
1122 	u16 phy_ctrl;
1123 
1124 	/* Perform some bounds checking on the autoneg advertisement
1125 	 * parameter.
1126 	 */
1127 	phy->autoneg_advertised &= phy->autoneg_mask;
1128 
1129 	/* If autoneg_advertised is zero, we assume it was not defaulted
1130 	 * by the calling code so we set to advertise full capability.
1131 	 */
1132 	if (!phy->autoneg_advertised)
1133 		phy->autoneg_advertised = phy->autoneg_mask;
1134 
1135 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1136 	ret_val = e1000_phy_setup_autoneg(hw);
1137 	if (ret_val) {
1138 		e_dbg("Error Setting up Auto-Negotiation\n");
1139 		return ret_val;
1140 	}
1141 	e_dbg("Restarting Auto-Neg\n");
1142 
1143 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1144 	 * the Auto Neg Restart bit in the PHY control register.
1145 	 */
1146 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1147 	if (ret_val)
1148 		return ret_val;
1149 
1150 	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1151 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1152 	if (ret_val)
1153 		return ret_val;
1154 
1155 	/* Does the user want to wait for Auto-Neg to complete here, or
1156 	 * check at a later time (for example, callback routine).
1157 	 */
1158 	if (phy->autoneg_wait_to_complete) {
1159 		ret_val = e1000_wait_autoneg(hw);
1160 		if (ret_val) {
1161 			e_dbg("Error while waiting for autoneg to complete\n");
1162 			return ret_val;
1163 		}
1164 	}
1165 
1166 	hw->mac.get_link_status = true;
1167 
1168 	return ret_val;
1169 }
1170 
1171 /**
1172  *  e1000e_setup_copper_link - Configure copper link settings
1173  *  @hw: pointer to the HW structure
1174  *
1175  *  Calls the appropriate function to configure the link for auto-neg or forced
1176  *  speed and duplex.  Then we check for link, once link is established calls
1177  *  to configure collision distance and flow control are called.  If link is
1178  *  not established, we return -E1000_ERR_PHY (-2).
1179  **/
e1000e_setup_copper_link(struct e1000_hw * hw)1180 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1181 {
1182 	s32 ret_val;
1183 	bool link;
1184 
1185 	if (hw->mac.autoneg) {
1186 		/* Setup autoneg and flow control advertisement and perform
1187 		 * autonegotiation.
1188 		 */
1189 		ret_val = e1000_copper_link_autoneg(hw);
1190 		if (ret_val)
1191 			return ret_val;
1192 	} else {
1193 		/* PHY will be set to 10H, 10F, 100H or 100F
1194 		 * depending on user settings.
1195 		 */
1196 		e_dbg("Forcing Speed and Duplex\n");
1197 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1198 		if (ret_val) {
1199 			e_dbg("Error Forcing Speed and Duplex\n");
1200 			return ret_val;
1201 		}
1202 	}
1203 
1204 	/* Check link status. Wait up to 100 microseconds for link to become
1205 	 * valid.
1206 	 */
1207 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1208 					      &link);
1209 	if (ret_val)
1210 		return ret_val;
1211 
1212 	if (link) {
1213 		e_dbg("Valid link established!!!\n");
1214 		hw->mac.ops.config_collision_dist(hw);
1215 		ret_val = e1000e_config_fc_after_link_up(hw);
1216 	} else {
1217 		e_dbg("Unable to establish link!!!\n");
1218 	}
1219 
1220 	return ret_val;
1221 }
1222 
1223 /**
1224  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1225  *  @hw: pointer to the HW structure
1226  *
1227  *  Calls the PHY setup function to force speed and duplex.  Clears the
1228  *  auto-crossover to force MDI manually.  Waits for link and returns
1229  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1230  **/
e1000e_phy_force_speed_duplex_igp(struct e1000_hw * hw)1231 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1232 {
1233 	struct e1000_phy_info *phy = &hw->phy;
1234 	s32 ret_val;
1235 	u16 phy_data;
1236 	bool link;
1237 
1238 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1239 	if (ret_val)
1240 		return ret_val;
1241 
1242 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1243 
1244 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1245 	if (ret_val)
1246 		return ret_val;
1247 
1248 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1249 	 * forced whenever speed and duplex are forced.
1250 	 */
1251 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1252 	if (ret_val)
1253 		return ret_val;
1254 
1255 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1256 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1257 
1258 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1259 	if (ret_val)
1260 		return ret_val;
1261 
1262 	e_dbg("IGP PSCR: %X\n", phy_data);
1263 
1264 	udelay(1);
1265 
1266 	if (phy->autoneg_wait_to_complete) {
1267 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1268 
1269 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1270 						      100000, &link);
1271 		if (ret_val)
1272 			return ret_val;
1273 
1274 		if (!link)
1275 			e_dbg("Link taking longer than expected.\n");
1276 
1277 		/* Try once more */
1278 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1279 						      100000, &link);
1280 	}
1281 
1282 	return ret_val;
1283 }
1284 
1285 /**
1286  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Calls the PHY setup function to force speed and duplex.  Clears the
1290  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1291  *  changes.  If time expires while waiting for link up, we reset the DSP.
1292  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1293  *  successful completion, else return corresponding error code.
1294  **/
e1000e_phy_force_speed_duplex_m88(struct e1000_hw * hw)1295 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1296 {
1297 	struct e1000_phy_info *phy = &hw->phy;
1298 	s32 ret_val;
1299 	u16 phy_data;
1300 	bool link;
1301 
1302 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1303 	 * forced whenever speed and duplex are forced.
1304 	 */
1305 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1306 	if (ret_val)
1307 		return ret_val;
1308 
1309 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1310 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1311 	if (ret_val)
1312 		return ret_val;
1313 
1314 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1315 
1316 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1317 	if (ret_val)
1318 		return ret_val;
1319 
1320 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1321 
1322 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1323 	if (ret_val)
1324 		return ret_val;
1325 
1326 	/* Reset the phy to commit changes. */
1327 	if (hw->phy.ops.commit) {
1328 		ret_val = hw->phy.ops.commit(hw);
1329 		if (ret_val)
1330 			return ret_val;
1331 	}
1332 
1333 	if (phy->autoneg_wait_to_complete) {
1334 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1335 
1336 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1337 						      100000, &link);
1338 		if (ret_val)
1339 			return ret_val;
1340 
1341 		if (!link) {
1342 			if (hw->phy.type != e1000_phy_m88) {
1343 				e_dbg("Link taking longer than expected.\n");
1344 			} else {
1345 				/* We didn't get link.
1346 				 * Reset the DSP and cross our fingers.
1347 				 */
1348 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1349 						   0x001d);
1350 				if (ret_val)
1351 					return ret_val;
1352 				ret_val = e1000e_phy_reset_dsp(hw);
1353 				if (ret_val)
1354 					return ret_val;
1355 			}
1356 		}
1357 
1358 		/* Try once more */
1359 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1360 						      100000, &link);
1361 		if (ret_val)
1362 			return ret_val;
1363 	}
1364 
1365 	if (hw->phy.type != e1000_phy_m88)
1366 		return 0;
1367 
1368 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1369 	if (ret_val)
1370 		return ret_val;
1371 
1372 	/* Resetting the phy means we need to re-force TX_CLK in the
1373 	 * Extended PHY Specific Control Register to 25MHz clock from
1374 	 * the reset value of 2.5MHz.
1375 	 */
1376 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1377 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1378 	if (ret_val)
1379 		return ret_val;
1380 
1381 	/* In addition, we must re-enable CRS on Tx for both half and full
1382 	 * duplex.
1383 	 */
1384 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1385 	if (ret_val)
1386 		return ret_val;
1387 
1388 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1389 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1390 
1391 	return ret_val;
1392 }
1393 
1394 /**
1395  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Forces the speed and duplex settings of the PHY.
1399  *  This is a function pointer entry point only called by
1400  *  PHY setup routines.
1401  **/
e1000_phy_force_speed_duplex_ife(struct e1000_hw * hw)1402 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1403 {
1404 	struct e1000_phy_info *phy = &hw->phy;
1405 	s32 ret_val;
1406 	u16 data;
1407 	bool link;
1408 
1409 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1410 	if (ret_val)
1411 		return ret_val;
1412 
1413 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1414 
1415 	ret_val = e1e_wphy(hw, MII_BMCR, data);
1416 	if (ret_val)
1417 		return ret_val;
1418 
1419 	/* Disable MDI-X support for 10/100 */
1420 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1421 	if (ret_val)
1422 		return ret_val;
1423 
1424 	data &= ~IFE_PMC_AUTO_MDIX;
1425 	data &= ~IFE_PMC_FORCE_MDIX;
1426 
1427 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1428 	if (ret_val)
1429 		return ret_val;
1430 
1431 	e_dbg("IFE PMC: %X\n", data);
1432 
1433 	udelay(1);
1434 
1435 	if (phy->autoneg_wait_to_complete) {
1436 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1437 
1438 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1439 						      100000, &link);
1440 		if (ret_val)
1441 			return ret_val;
1442 
1443 		if (!link)
1444 			e_dbg("Link taking longer than expected.\n");
1445 
1446 		/* Try once more */
1447 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1448 						      100000, &link);
1449 		if (ret_val)
1450 			return ret_val;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1458  *  @hw: pointer to the HW structure
1459  *  @phy_ctrl: pointer to current value of MII_BMCR
1460  *
1461  *  Forces speed and duplex on the PHY by doing the following: disable flow
1462  *  control, force speed/duplex on the MAC, disable auto speed detection,
1463  *  disable auto-negotiation, configure duplex, configure speed, configure
1464  *  the collision distance, write configuration to CTRL register.  The
1465  *  caller must write to the MII_BMCR register for these settings to
1466  *  take affect.
1467  **/
e1000e_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1468 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1469 {
1470 	struct e1000_mac_info *mac = &hw->mac;
1471 	u32 ctrl;
1472 
1473 	/* Turn off flow control when forcing speed/duplex */
1474 	hw->fc.current_mode = e1000_fc_none;
1475 
1476 	/* Force speed/duplex on the mac */
1477 	ctrl = er32(CTRL);
1478 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1479 	ctrl &= ~E1000_CTRL_SPD_SEL;
1480 
1481 	/* Disable Auto Speed Detection */
1482 	ctrl &= ~E1000_CTRL_ASDE;
1483 
1484 	/* Disable autoneg on the phy */
1485 	*phy_ctrl &= ~BMCR_ANENABLE;
1486 
1487 	/* Forcing Full or Half Duplex? */
1488 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1489 		ctrl &= ~E1000_CTRL_FD;
1490 		*phy_ctrl &= ~BMCR_FULLDPLX;
1491 		e_dbg("Half Duplex\n");
1492 	} else {
1493 		ctrl |= E1000_CTRL_FD;
1494 		*phy_ctrl |= BMCR_FULLDPLX;
1495 		e_dbg("Full Duplex\n");
1496 	}
1497 
1498 	/* Forcing 10mb or 100mb? */
1499 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1500 		ctrl |= E1000_CTRL_SPD_100;
1501 		*phy_ctrl |= BMCR_SPEED100;
1502 		*phy_ctrl &= ~BMCR_SPEED1000;
1503 		e_dbg("Forcing 100mb\n");
1504 	} else {
1505 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1506 		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1507 		e_dbg("Forcing 10mb\n");
1508 	}
1509 
1510 	hw->mac.ops.config_collision_dist(hw);
1511 
1512 	ew32(CTRL, ctrl);
1513 }
1514 
1515 /**
1516  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1517  *  @hw: pointer to the HW structure
1518  *  @active: boolean used to enable/disable lplu
1519  *
1520  *  Success returns 0, Failure returns 1
1521  *
1522  *  The low power link up (lplu) state is set to the power management level D3
1523  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1524  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1525  *  is used during Dx states where the power conservation is most important.
1526  *  During driver activity, SmartSpeed should be enabled so performance is
1527  *  maintained.
1528  **/
e1000e_set_d3_lplu_state(struct e1000_hw * hw,bool active)1529 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1530 {
1531 	struct e1000_phy_info *phy = &hw->phy;
1532 	s32 ret_val;
1533 	u16 data;
1534 
1535 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1536 	if (ret_val)
1537 		return ret_val;
1538 
1539 	if (!active) {
1540 		data &= ~IGP02E1000_PM_D3_LPLU;
1541 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1542 		if (ret_val)
1543 			return ret_val;
1544 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1545 		 * during Dx states where the power conservation is most
1546 		 * important.  During driver activity we should enable
1547 		 * SmartSpeed, so performance is maintained.
1548 		 */
1549 		if (phy->smart_speed == e1000_smart_speed_on) {
1550 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1551 					   &data);
1552 			if (ret_val)
1553 				return ret_val;
1554 
1555 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1556 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557 					   data);
1558 			if (ret_val)
1559 				return ret_val;
1560 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1561 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1562 					   &data);
1563 			if (ret_val)
1564 				return ret_val;
1565 
1566 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1567 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568 					   data);
1569 			if (ret_val)
1570 				return ret_val;
1571 		}
1572 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1573 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1574 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1575 		data |= IGP02E1000_PM_D3_LPLU;
1576 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1577 		if (ret_val)
1578 			return ret_val;
1579 
1580 		/* When LPLU is enabled, we should disable SmartSpeed */
1581 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1582 		if (ret_val)
1583 			return ret_val;
1584 
1585 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1586 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1587 	}
1588 
1589 	return ret_val;
1590 }
1591 
1592 /**
1593  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1594  *  @hw: pointer to the HW structure
1595  *
1596  *  Success returns 0, Failure returns 1
1597  *
1598  *  A downshift is detected by querying the PHY link health.
1599  **/
e1000e_check_downshift(struct e1000_hw * hw)1600 s32 e1000e_check_downshift(struct e1000_hw *hw)
1601 {
1602 	struct e1000_phy_info *phy = &hw->phy;
1603 	s32 ret_val;
1604 	u16 phy_data, offset, mask;
1605 
1606 	switch (phy->type) {
1607 	case e1000_phy_m88:
1608 	case e1000_phy_gg82563:
1609 	case e1000_phy_bm:
1610 	case e1000_phy_82578:
1611 		offset = M88E1000_PHY_SPEC_STATUS;
1612 		mask = M88E1000_PSSR_DOWNSHIFT;
1613 		break;
1614 	case e1000_phy_igp_2:
1615 	case e1000_phy_igp_3:
1616 		offset = IGP01E1000_PHY_LINK_HEALTH;
1617 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1618 		break;
1619 	default:
1620 		/* speed downshift not supported */
1621 		phy->speed_downgraded = false;
1622 		return 0;
1623 	}
1624 
1625 	ret_val = e1e_rphy(hw, offset, &phy_data);
1626 
1627 	if (!ret_val)
1628 		phy->speed_downgraded = !!(phy_data & mask);
1629 
1630 	return ret_val;
1631 }
1632 
1633 /**
1634  *  e1000_check_polarity_m88 - Checks the polarity.
1635  *  @hw: pointer to the HW structure
1636  *
1637  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638  *
1639  *  Polarity is determined based on the PHY specific status register.
1640  **/
e1000_check_polarity_m88(struct e1000_hw * hw)1641 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1642 {
1643 	struct e1000_phy_info *phy = &hw->phy;
1644 	s32 ret_val;
1645 	u16 data;
1646 
1647 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1648 
1649 	if (!ret_val)
1650 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1651 				       ? e1000_rev_polarity_reversed
1652 				       : e1000_rev_polarity_normal);
1653 
1654 	return ret_val;
1655 }
1656 
1657 /**
1658  *  e1000_check_polarity_igp - Checks the polarity.
1659  *  @hw: pointer to the HW structure
1660  *
1661  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662  *
1663  *  Polarity is determined based on the PHY port status register, and the
1664  *  current speed (since there is no polarity at 100Mbps).
1665  **/
e1000_check_polarity_igp(struct e1000_hw * hw)1666 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1667 {
1668 	struct e1000_phy_info *phy = &hw->phy;
1669 	s32 ret_val;
1670 	u16 data, offset, mask;
1671 
1672 	/* Polarity is determined based on the speed of
1673 	 * our connection.
1674 	 */
1675 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1676 	if (ret_val)
1677 		return ret_val;
1678 
1679 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1680 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1681 		offset = IGP01E1000_PHY_PCS_INIT_REG;
1682 		mask = IGP01E1000_PHY_POLARITY_MASK;
1683 	} else {
1684 		/* This really only applies to 10Mbps since
1685 		 * there is no polarity for 100Mbps (always 0).
1686 		 */
1687 		offset = IGP01E1000_PHY_PORT_STATUS;
1688 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1689 	}
1690 
1691 	ret_val = e1e_rphy(hw, offset, &data);
1692 
1693 	if (!ret_val)
1694 		phy->cable_polarity = ((data & mask)
1695 				       ? e1000_rev_polarity_reversed
1696 				       : e1000_rev_polarity_normal);
1697 
1698 	return ret_val;
1699 }
1700 
1701 /**
1702  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Polarity is determined on the polarity reversal feature being enabled.
1706  **/
e1000_check_polarity_ife(struct e1000_hw * hw)1707 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1708 {
1709 	struct e1000_phy_info *phy = &hw->phy;
1710 	s32 ret_val;
1711 	u16 phy_data, offset, mask;
1712 
1713 	/* Polarity is determined based on the reversal feature being enabled.
1714 	 */
1715 	if (phy->polarity_correction) {
1716 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1717 		mask = IFE_PESC_POLARITY_REVERSED;
1718 	} else {
1719 		offset = IFE_PHY_SPECIAL_CONTROL;
1720 		mask = IFE_PSC_FORCE_POLARITY;
1721 	}
1722 
1723 	ret_val = e1e_rphy(hw, offset, &phy_data);
1724 
1725 	if (!ret_val)
1726 		phy->cable_polarity = ((phy_data & mask)
1727 				       ? e1000_rev_polarity_reversed
1728 				       : e1000_rev_polarity_normal);
1729 
1730 	return ret_val;
1731 }
1732 
1733 /**
1734  *  e1000_wait_autoneg - Wait for auto-neg completion
1735  *  @hw: pointer to the HW structure
1736  *
1737  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1738  *  limit to expire, which ever happens first.
1739  **/
e1000_wait_autoneg(struct e1000_hw * hw)1740 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1741 {
1742 	s32 ret_val = 0;
1743 	u16 i, phy_status;
1744 
1745 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1746 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1747 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1748 		if (ret_val)
1749 			break;
1750 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1751 		if (ret_val)
1752 			break;
1753 		if (phy_status & BMSR_ANEGCOMPLETE)
1754 			break;
1755 		msleep(100);
1756 	}
1757 
1758 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1759 	 * has completed.
1760 	 */
1761 	return ret_val;
1762 }
1763 
1764 /**
1765  *  e1000e_phy_has_link_generic - Polls PHY for link
1766  *  @hw: pointer to the HW structure
1767  *  @iterations: number of times to poll for link
1768  *  @usec_interval: delay between polling attempts
1769  *  @success: pointer to whether polling was successful or not
1770  *
1771  *  Polls the PHY status register for link, 'iterations' number of times.
1772  **/
e1000e_phy_has_link_generic(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1773 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1774 				u32 usec_interval, bool *success)
1775 {
1776 	s32 ret_val = 0;
1777 	u16 i, phy_status;
1778 
1779 	*success = false;
1780 	for (i = 0; i < iterations; i++) {
1781 		/* Some PHYs require the MII_BMSR register to be read
1782 		 * twice due to the link bit being sticky.  No harm doing
1783 		 * it across the board.
1784 		 */
1785 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1786 		if (ret_val) {
1787 			/* If the first read fails, another entity may have
1788 			 * ownership of the resources, wait and try again to
1789 			 * see if they have relinquished the resources yet.
1790 			 */
1791 			if (usec_interval >= 1000)
1792 				msleep(usec_interval / 1000);
1793 			else
1794 				udelay(usec_interval);
1795 		}
1796 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1797 		if (ret_val)
1798 			break;
1799 		if (phy_status & BMSR_LSTATUS) {
1800 			*success = true;
1801 			break;
1802 		}
1803 		if (usec_interval >= 1000)
1804 			msleep(usec_interval / 1000);
1805 		else
1806 			udelay(usec_interval);
1807 	}
1808 
1809 	return ret_val;
1810 }
1811 
1812 /**
1813  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  Reads the PHY specific status register to retrieve the cable length
1817  *  information.  The cable length is determined by averaging the minimum and
1818  *  maximum values to get the "average" cable length.  The m88 PHY has four
1819  *  possible cable length values, which are:
1820  *	Register Value		Cable Length
1821  *	0			< 50 meters
1822  *	1			50 - 80 meters
1823  *	2			80 - 110 meters
1824  *	3			110 - 140 meters
1825  *	4			> 140 meters
1826  **/
e1000e_get_cable_length_m88(struct e1000_hw * hw)1827 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1828 {
1829 	struct e1000_phy_info *phy = &hw->phy;
1830 	s32 ret_val;
1831 	u16 phy_data, index;
1832 
1833 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1834 	if (ret_val)
1835 		return ret_val;
1836 
1837 	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1838 
1839 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1840 		return -E1000_ERR_PHY;
1841 
1842 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1843 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1844 
1845 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1852  *  @hw: pointer to the HW structure
1853  *
1854  *  The automatic gain control (agc) normalizes the amplitude of the
1855  *  received signal, adjusting for the attenuation produced by the
1856  *  cable.  By reading the AGC registers, which represent the
1857  *  combination of coarse and fine gain value, the value can be put
1858  *  into a lookup table to obtain the approximate cable length
1859  *  for each channel.
1860  **/
e1000e_get_cable_length_igp_2(struct e1000_hw * hw)1861 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1862 {
1863 	struct e1000_phy_info *phy = &hw->phy;
1864 	s32 ret_val;
1865 	u16 phy_data, i, agc_value = 0;
1866 	u16 cur_agc_index, max_agc_index = 0;
1867 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1868 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1869 		IGP02E1000_PHY_AGC_A,
1870 		IGP02E1000_PHY_AGC_B,
1871 		IGP02E1000_PHY_AGC_C,
1872 		IGP02E1000_PHY_AGC_D
1873 	};
1874 
1875 	/* Read the AGC registers for all channels */
1876 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1877 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1878 		if (ret_val)
1879 			return ret_val;
1880 
1881 		/* Getting bits 15:9, which represent the combination of
1882 		 * coarse and fine gain values.  The result is a number
1883 		 * that can be put into the lookup table to obtain the
1884 		 * approximate cable length.
1885 		 */
1886 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1887 				 IGP02E1000_AGC_LENGTH_MASK);
1888 
1889 		/* Array index bound check. */
1890 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1891 		    (cur_agc_index == 0))
1892 			return -E1000_ERR_PHY;
1893 
1894 		/* Remove min & max AGC values from calculation. */
1895 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1896 		    e1000_igp_2_cable_length_table[cur_agc_index])
1897 			min_agc_index = cur_agc_index;
1898 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1899 		    e1000_igp_2_cable_length_table[cur_agc_index])
1900 			max_agc_index = cur_agc_index;
1901 
1902 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1903 	}
1904 
1905 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1906 		      e1000_igp_2_cable_length_table[max_agc_index]);
1907 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1908 
1909 	/* Calculate cable length with the error range of +/- 10 meters. */
1910 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1911 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1912 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1913 
1914 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1915 
1916 	return 0;
1917 }
1918 
1919 /**
1920  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1921  *  @hw: pointer to the HW structure
1922  *
1923  *  Valid for only copper links.  Read the PHY status register (sticky read)
1924  *  to verify that link is up.  Read the PHY special control register to
1925  *  determine the polarity and 10base-T extended distance.  Read the PHY
1926  *  special status register to determine MDI/MDIx and current speed.  If
1927  *  speed is 1000, then determine cable length, local and remote receiver.
1928  **/
e1000e_get_phy_info_m88(struct e1000_hw * hw)1929 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1930 {
1931 	struct e1000_phy_info *phy = &hw->phy;
1932 	s32 ret_val;
1933 	u16 phy_data;
1934 	bool link;
1935 
1936 	if (phy->media_type != e1000_media_type_copper) {
1937 		e_dbg("Phy info is only valid for copper media\n");
1938 		return -E1000_ERR_CONFIG;
1939 	}
1940 
1941 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1942 	if (ret_val)
1943 		return ret_val;
1944 
1945 	if (!link) {
1946 		e_dbg("Phy info is only valid if link is up\n");
1947 		return -E1000_ERR_CONFIG;
1948 	}
1949 
1950 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1951 	if (ret_val)
1952 		return ret_val;
1953 
1954 	phy->polarity_correction = !!(phy_data &
1955 				      M88E1000_PSCR_POLARITY_REVERSAL);
1956 
1957 	ret_val = e1000_check_polarity_m88(hw);
1958 	if (ret_val)
1959 		return ret_val;
1960 
1961 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1962 	if (ret_val)
1963 		return ret_val;
1964 
1965 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1966 
1967 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1968 		ret_val = hw->phy.ops.get_cable_length(hw);
1969 		if (ret_val)
1970 			return ret_val;
1971 
1972 		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1973 		if (ret_val)
1974 			return ret_val;
1975 
1976 		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1977 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1978 
1979 		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1980 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1981 	} else {
1982 		/* Set values to "undefined" */
1983 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1984 		phy->local_rx = e1000_1000t_rx_status_undefined;
1985 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1986 	}
1987 
1988 	return ret_val;
1989 }
1990 
1991 /**
1992  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1993  *  @hw: pointer to the HW structure
1994  *
1995  *  Read PHY status to determine if link is up.  If link is up, then
1996  *  set/determine 10base-T extended distance and polarity correction.  Read
1997  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1998  *  determine on the cable length, local and remote receiver.
1999  **/
e1000e_get_phy_info_igp(struct e1000_hw * hw)2000 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2001 {
2002 	struct e1000_phy_info *phy = &hw->phy;
2003 	s32 ret_val;
2004 	u16 data;
2005 	bool link;
2006 
2007 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2008 	if (ret_val)
2009 		return ret_val;
2010 
2011 	if (!link) {
2012 		e_dbg("Phy info is only valid if link is up\n");
2013 		return -E1000_ERR_CONFIG;
2014 	}
2015 
2016 	phy->polarity_correction = true;
2017 
2018 	ret_val = e1000_check_polarity_igp(hw);
2019 	if (ret_val)
2020 		return ret_val;
2021 
2022 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2023 	if (ret_val)
2024 		return ret_val;
2025 
2026 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2027 
2028 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2029 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2030 		ret_val = phy->ops.get_cable_length(hw);
2031 		if (ret_val)
2032 			return ret_val;
2033 
2034 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2035 		if (ret_val)
2036 			return ret_val;
2037 
2038 		phy->local_rx = (data & LPA_1000LOCALRXOK)
2039 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2040 
2041 		phy->remote_rx = (data & LPA_1000REMRXOK)
2042 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2043 	} else {
2044 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2045 		phy->local_rx = e1000_1000t_rx_status_undefined;
2046 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2047 	}
2048 
2049 	return ret_val;
2050 }
2051 
2052 /**
2053  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2054  *  @hw: pointer to the HW structure
2055  *
2056  *  Populates "phy" structure with various feature states.
2057  **/
e1000_get_phy_info_ife(struct e1000_hw * hw)2058 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2059 {
2060 	struct e1000_phy_info *phy = &hw->phy;
2061 	s32 ret_val;
2062 	u16 data;
2063 	bool link;
2064 
2065 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2066 	if (ret_val)
2067 		return ret_val;
2068 
2069 	if (!link) {
2070 		e_dbg("Phy info is only valid if link is up\n");
2071 		return -E1000_ERR_CONFIG;
2072 	}
2073 
2074 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2075 	if (ret_val)
2076 		return ret_val;
2077 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2078 
2079 	if (phy->polarity_correction) {
2080 		ret_val = e1000_check_polarity_ife(hw);
2081 		if (ret_val)
2082 			return ret_val;
2083 	} else {
2084 		/* Polarity is forced */
2085 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2086 				       ? e1000_rev_polarity_reversed
2087 				       : e1000_rev_polarity_normal);
2088 	}
2089 
2090 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2091 	if (ret_val)
2092 		return ret_val;
2093 
2094 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2095 
2096 	/* The following parameters are undefined for 10/100 operation. */
2097 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2098 	phy->local_rx = e1000_1000t_rx_status_undefined;
2099 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2100 
2101 	return 0;
2102 }
2103 
2104 /**
2105  *  e1000e_phy_sw_reset - PHY software reset
2106  *  @hw: pointer to the HW structure
2107  *
2108  *  Does a software reset of the PHY by reading the PHY control register and
2109  *  setting/write the control register reset bit to the PHY.
2110  **/
e1000e_phy_sw_reset(struct e1000_hw * hw)2111 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2112 {
2113 	s32 ret_val;
2114 	u16 phy_ctrl;
2115 
2116 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2117 	if (ret_val)
2118 		return ret_val;
2119 
2120 	phy_ctrl |= BMCR_RESET;
2121 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2122 	if (ret_val)
2123 		return ret_val;
2124 
2125 	udelay(1);
2126 
2127 	return ret_val;
2128 }
2129 
2130 /**
2131  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2132  *  @hw: pointer to the HW structure
2133  *
2134  *  Verify the reset block is not blocking us from resetting.  Acquire
2135  *  semaphore (if necessary) and read/set/write the device control reset
2136  *  bit in the PHY.  Wait the appropriate delay time for the device to
2137  *  reset and release the semaphore (if necessary).
2138  **/
e1000e_phy_hw_reset_generic(struct e1000_hw * hw)2139 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2140 {
2141 	struct e1000_phy_info *phy = &hw->phy;
2142 	s32 ret_val;
2143 	u32 ctrl;
2144 
2145 	if (phy->ops.check_reset_block) {
2146 		ret_val = phy->ops.check_reset_block(hw);
2147 		if (ret_val)
2148 			return 0;
2149 	}
2150 
2151 	ret_val = phy->ops.acquire(hw);
2152 	if (ret_val)
2153 		return ret_val;
2154 
2155 	ctrl = er32(CTRL);
2156 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2157 	e1e_flush();
2158 
2159 	udelay(phy->reset_delay_us);
2160 
2161 	ew32(CTRL, ctrl);
2162 	e1e_flush();
2163 
2164 	usleep_range(150, 300);
2165 
2166 	phy->ops.release(hw);
2167 
2168 	return phy->ops.get_cfg_done(hw);
2169 }
2170 
2171 /**
2172  *  e1000e_get_cfg_done_generic - Generic configuration done
2173  *  @hw: pointer to the HW structure
2174  *
2175  *  Generic function to wait 10 milli-seconds for configuration to complete
2176  *  and return success.
2177  **/
e1000e_get_cfg_done_generic(struct e1000_hw __always_unused * hw)2178 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2179 {
2180 	mdelay(10);
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2187  *  @hw: pointer to the HW structure
2188  *
2189  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2190  **/
e1000e_phy_init_script_igp3(struct e1000_hw * hw)2191 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2192 {
2193 	e_dbg("Running IGP 3 PHY init script\n");
2194 
2195 	/* PHY init IGP 3 */
2196 	/* Enable rise/fall, 10-mode work in class-A */
2197 	e1e_wphy(hw, 0x2F5B, 0x9018);
2198 	/* Remove all caps from Replica path filter */
2199 	e1e_wphy(hw, 0x2F52, 0x0000);
2200 	/* Bias trimming for ADC, AFE and Driver (Default) */
2201 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2202 	/* Increase Hybrid poly bias */
2203 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2204 	/* Add 4% to Tx amplitude in Gig mode */
2205 	e1e_wphy(hw, 0x2010, 0x10B0);
2206 	/* Disable trimming (TTT) */
2207 	e1e_wphy(hw, 0x2011, 0x0000);
2208 	/* Poly DC correction to 94.6% + 2% for all channels */
2209 	e1e_wphy(hw, 0x20DD, 0x249A);
2210 	/* ABS DC correction to 95.9% */
2211 	e1e_wphy(hw, 0x20DE, 0x00D3);
2212 	/* BG temp curve trim */
2213 	e1e_wphy(hw, 0x28B4, 0x04CE);
2214 	/* Increasing ADC OPAMP stage 1 currents to max */
2215 	e1e_wphy(hw, 0x2F70, 0x29E4);
2216 	/* Force 1000 ( required for enabling PHY regs configuration) */
2217 	e1e_wphy(hw, 0x0000, 0x0140);
2218 	/* Set upd_freq to 6 */
2219 	e1e_wphy(hw, 0x1F30, 0x1606);
2220 	/* Disable NPDFE */
2221 	e1e_wphy(hw, 0x1F31, 0xB814);
2222 	/* Disable adaptive fixed FFE (Default) */
2223 	e1e_wphy(hw, 0x1F35, 0x002A);
2224 	/* Enable FFE hysteresis */
2225 	e1e_wphy(hw, 0x1F3E, 0x0067);
2226 	/* Fixed FFE for short cable lengths */
2227 	e1e_wphy(hw, 0x1F54, 0x0065);
2228 	/* Fixed FFE for medium cable lengths */
2229 	e1e_wphy(hw, 0x1F55, 0x002A);
2230 	/* Fixed FFE for long cable lengths */
2231 	e1e_wphy(hw, 0x1F56, 0x002A);
2232 	/* Enable Adaptive Clip Threshold */
2233 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2234 	/* AHT reset limit to 1 */
2235 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2236 	/* Set AHT master delay to 127 msec */
2237 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2238 	/* Set scan bits for AHT */
2239 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2240 	/* Set AHT Preset bits */
2241 	e1e_wphy(hw, 0x1F79, 0x0210);
2242 	/* Change integ_factor of channel A to 3 */
2243 	e1e_wphy(hw, 0x1895, 0x0003);
2244 	/* Change prop_factor of channels BCD to 8 */
2245 	e1e_wphy(hw, 0x1796, 0x0008);
2246 	/* Change cg_icount + enable integbp for channels BCD */
2247 	e1e_wphy(hw, 0x1798, 0xD008);
2248 	/* Change cg_icount + enable integbp + change prop_factor_master
2249 	 * to 8 for channel A
2250 	 */
2251 	e1e_wphy(hw, 0x1898, 0xD918);
2252 	/* Disable AHT in Slave mode on channel A */
2253 	e1e_wphy(hw, 0x187A, 0x0800);
2254 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2255 	 * Enable SPD+B2B
2256 	 */
2257 	e1e_wphy(hw, 0x0019, 0x008D);
2258 	/* Enable restart AN on an1000_dis change */
2259 	e1e_wphy(hw, 0x001B, 0x2080);
2260 	/* Enable wh_fifo read clock in 10/100 modes */
2261 	e1e_wphy(hw, 0x0014, 0x0045);
2262 	/* Restart AN, Speed selection is 1000 */
2263 	e1e_wphy(hw, 0x0000, 0x1340);
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  *  e1000e_get_phy_type_from_id - Get PHY type from id
2270  *  @phy_id: phy_id read from the phy
2271  *
2272  *  Returns the phy type from the id.
2273  **/
e1000e_get_phy_type_from_id(u32 phy_id)2274 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2275 {
2276 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2277 
2278 	switch (phy_id) {
2279 	case M88E1000_I_PHY_ID:
2280 	case M88E1000_E_PHY_ID:
2281 	case M88E1111_I_PHY_ID:
2282 	case M88E1011_I_PHY_ID:
2283 		phy_type = e1000_phy_m88;
2284 		break;
2285 	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2286 		phy_type = e1000_phy_igp_2;
2287 		break;
2288 	case GG82563_E_PHY_ID:
2289 		phy_type = e1000_phy_gg82563;
2290 		break;
2291 	case IGP03E1000_E_PHY_ID:
2292 		phy_type = e1000_phy_igp_3;
2293 		break;
2294 	case IFE_E_PHY_ID:
2295 	case IFE_PLUS_E_PHY_ID:
2296 	case IFE_C_E_PHY_ID:
2297 		phy_type = e1000_phy_ife;
2298 		break;
2299 	case BME1000_E_PHY_ID:
2300 	case BME1000_E_PHY_ID_R2:
2301 		phy_type = e1000_phy_bm;
2302 		break;
2303 	case I82578_E_PHY_ID:
2304 		phy_type = e1000_phy_82578;
2305 		break;
2306 	case I82577_E_PHY_ID:
2307 		phy_type = e1000_phy_82577;
2308 		break;
2309 	case I82579_E_PHY_ID:
2310 		phy_type = e1000_phy_82579;
2311 		break;
2312 	case I217_E_PHY_ID:
2313 		phy_type = e1000_phy_i217;
2314 		break;
2315 	default:
2316 		phy_type = e1000_phy_unknown;
2317 		break;
2318 	}
2319 	return phy_type;
2320 }
2321 
2322 /**
2323  *  e1000e_determine_phy_address - Determines PHY address.
2324  *  @hw: pointer to the HW structure
2325  *
2326  *  This uses a trial and error method to loop through possible PHY
2327  *  addresses. It tests each by reading the PHY ID registers and
2328  *  checking for a match.
2329  **/
e1000e_determine_phy_address(struct e1000_hw * hw)2330 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2331 {
2332 	u32 phy_addr = 0;
2333 	u32 i;
2334 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2335 
2336 	hw->phy.id = phy_type;
2337 
2338 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2339 		hw->phy.addr = phy_addr;
2340 		i = 0;
2341 
2342 		do {
2343 			e1000e_get_phy_id(hw);
2344 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2345 
2346 			/* If phy_type is valid, break - we found our
2347 			 * PHY address
2348 			 */
2349 			if (phy_type != e1000_phy_unknown)
2350 				return 0;
2351 
2352 			usleep_range(1000, 2000);
2353 			i++;
2354 		} while (i < 10);
2355 	}
2356 
2357 	return -E1000_ERR_PHY_TYPE;
2358 }
2359 
2360 /**
2361  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2362  *  @page: page to access
2363  *  @reg: register to check
2364  *
2365  *  Returns the phy address for the page requested.
2366  **/
e1000_get_phy_addr_for_bm_page(u32 page,u32 reg)2367 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2368 {
2369 	u32 phy_addr = 2;
2370 
2371 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2372 		phy_addr = 1;
2373 
2374 	return phy_addr;
2375 }
2376 
2377 /**
2378  *  e1000e_write_phy_reg_bm - Write BM PHY register
2379  *  @hw: pointer to the HW structure
2380  *  @offset: register offset to write to
2381  *  @data: data to write at register offset
2382  *
2383  *  Acquires semaphore, if necessary, then writes the data to PHY register
2384  *  at the offset.  Release any acquired semaphores before exiting.
2385  **/
e1000e_write_phy_reg_bm(struct e1000_hw * hw,u32 offset,u16 data)2386 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2387 {
2388 	s32 ret_val;
2389 	u32 page = offset >> IGP_PAGE_SHIFT;
2390 
2391 	ret_val = hw->phy.ops.acquire(hw);
2392 	if (ret_val)
2393 		return ret_val;
2394 
2395 	/* Page 800 works differently than the rest so it has its own func */
2396 	if (page == BM_WUC_PAGE) {
2397 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2398 							 false, false);
2399 		goto release;
2400 	}
2401 
2402 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2403 
2404 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2405 		u32 page_shift, page_select;
2406 
2407 		/* Page select is register 31 for phy address 1 and 22 for
2408 		 * phy address 2 and 3. Page select is shifted only for
2409 		 * phy address 1.
2410 		 */
2411 		if (hw->phy.addr == 1) {
2412 			page_shift = IGP_PAGE_SHIFT;
2413 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2414 		} else {
2415 			page_shift = 0;
2416 			page_select = BM_PHY_PAGE_SELECT;
2417 		}
2418 
2419 		/* Page is shifted left, PHY expects (page x 32) */
2420 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2421 						    (page << page_shift));
2422 		if (ret_val)
2423 			goto release;
2424 	}
2425 
2426 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2427 					    data);
2428 
2429 release:
2430 	hw->phy.ops.release(hw);
2431 	return ret_val;
2432 }
2433 
2434 /**
2435  *  e1000e_read_phy_reg_bm - Read BM PHY register
2436  *  @hw: pointer to the HW structure
2437  *  @offset: register offset to be read
2438  *  @data: pointer to the read data
2439  *
2440  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2441  *  and storing the retrieved information in data.  Release any acquired
2442  *  semaphores before exiting.
2443  **/
e1000e_read_phy_reg_bm(struct e1000_hw * hw,u32 offset,u16 * data)2444 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2445 {
2446 	s32 ret_val;
2447 	u32 page = offset >> IGP_PAGE_SHIFT;
2448 
2449 	ret_val = hw->phy.ops.acquire(hw);
2450 	if (ret_val)
2451 		return ret_val;
2452 
2453 	/* Page 800 works differently than the rest so it has its own func */
2454 	if (page == BM_WUC_PAGE) {
2455 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2456 							 true, false);
2457 		goto release;
2458 	}
2459 
2460 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2461 
2462 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2463 		u32 page_shift, page_select;
2464 
2465 		/* Page select is register 31 for phy address 1 and 22 for
2466 		 * phy address 2 and 3. Page select is shifted only for
2467 		 * phy address 1.
2468 		 */
2469 		if (hw->phy.addr == 1) {
2470 			page_shift = IGP_PAGE_SHIFT;
2471 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2472 		} else {
2473 			page_shift = 0;
2474 			page_select = BM_PHY_PAGE_SELECT;
2475 		}
2476 
2477 		/* Page is shifted left, PHY expects (page x 32) */
2478 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2479 						    (page << page_shift));
2480 		if (ret_val)
2481 			goto release;
2482 	}
2483 
2484 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2485 					   data);
2486 release:
2487 	hw->phy.ops.release(hw);
2488 	return ret_val;
2489 }
2490 
2491 /**
2492  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2493  *  @hw: pointer to the HW structure
2494  *  @offset: register offset to be read
2495  *  @data: pointer to the read data
2496  *
2497  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2498  *  and storing the retrieved information in data.  Release any acquired
2499  *  semaphores before exiting.
2500  **/
e1000e_read_phy_reg_bm2(struct e1000_hw * hw,u32 offset,u16 * data)2501 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2502 {
2503 	s32 ret_val;
2504 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2505 
2506 	ret_val = hw->phy.ops.acquire(hw);
2507 	if (ret_val)
2508 		return ret_val;
2509 
2510 	/* Page 800 works differently than the rest so it has its own func */
2511 	if (page == BM_WUC_PAGE) {
2512 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2513 							 true, false);
2514 		goto release;
2515 	}
2516 
2517 	hw->phy.addr = 1;
2518 
2519 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2520 		/* Page is shifted left, PHY expects (page x 32) */
2521 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2522 						    page);
2523 
2524 		if (ret_val)
2525 			goto release;
2526 	}
2527 
2528 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2529 					   data);
2530 release:
2531 	hw->phy.ops.release(hw);
2532 	return ret_val;
2533 }
2534 
2535 /**
2536  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2537  *  @hw: pointer to the HW structure
2538  *  @offset: register offset to write to
2539  *  @data: data to write at register offset
2540  *
2541  *  Acquires semaphore, if necessary, then writes the data to PHY register
2542  *  at the offset.  Release any acquired semaphores before exiting.
2543  **/
e1000e_write_phy_reg_bm2(struct e1000_hw * hw,u32 offset,u16 data)2544 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2545 {
2546 	s32 ret_val;
2547 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2548 
2549 	ret_val = hw->phy.ops.acquire(hw);
2550 	if (ret_val)
2551 		return ret_val;
2552 
2553 	/* Page 800 works differently than the rest so it has its own func */
2554 	if (page == BM_WUC_PAGE) {
2555 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2556 							 false, false);
2557 		goto release;
2558 	}
2559 
2560 	hw->phy.addr = 1;
2561 
2562 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2563 		/* Page is shifted left, PHY expects (page x 32) */
2564 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2565 						    page);
2566 
2567 		if (ret_val)
2568 			goto release;
2569 	}
2570 
2571 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2572 					    data);
2573 
2574 release:
2575 	hw->phy.ops.release(hw);
2576 	return ret_val;
2577 }
2578 
2579 /**
2580  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2581  *  @hw: pointer to the HW structure
2582  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2583  *
2584  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2585  *  address to store contents of the BM_WUC_ENABLE_REG register.
2586  **/
e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw * hw,u16 * phy_reg)2587 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2588 {
2589 	s32 ret_val;
2590 	u16 temp;
2591 
2592 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2593 	hw->phy.addr = 1;
2594 
2595 	/* Select Port Control Registers page */
2596 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2597 	if (ret_val) {
2598 		e_dbg("Could not set Port Control page\n");
2599 		return ret_val;
2600 	}
2601 
2602 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2603 	if (ret_val) {
2604 		e_dbg("Could not read PHY register %d.%d\n",
2605 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2606 		return ret_val;
2607 	}
2608 
2609 	/* Enable both PHY wakeup mode and Wakeup register page writes.
2610 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2611 	 */
2612 	temp = *phy_reg;
2613 	temp |= BM_WUC_ENABLE_BIT;
2614 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2615 
2616 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2617 	if (ret_val) {
2618 		e_dbg("Could not write PHY register %d.%d\n",
2619 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2620 		return ret_val;
2621 	}
2622 
2623 	/* Select Host Wakeup Registers page - caller now able to write
2624 	 * registers on the Wakeup registers page
2625 	 */
2626 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2627 }
2628 
2629 /**
2630  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2631  *  @hw: pointer to the HW structure
2632  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2633  *
2634  *  Restore BM_WUC_ENABLE_REG to its original value.
2635  *
2636  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2637  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2638  *  caller.
2639  **/
e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw * hw,u16 * phy_reg)2640 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2641 {
2642 	s32 ret_val;
2643 
2644 	/* Select Port Control Registers page */
2645 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2646 	if (ret_val) {
2647 		e_dbg("Could not set Port Control page\n");
2648 		return ret_val;
2649 	}
2650 
2651 	/* Restore 769.17 to its original value */
2652 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2653 	if (ret_val)
2654 		e_dbg("Could not restore PHY register %d.%d\n",
2655 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656 
2657 	return ret_val;
2658 }
2659 
2660 /**
2661  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2662  *  @hw: pointer to the HW structure
2663  *  @offset: register offset to be read or written
2664  *  @data: pointer to the data to read or write
2665  *  @read: determines if operation is read or write
2666  *  @page_set: BM_WUC_PAGE already set and access enabled
2667  *
2668  *  Read the PHY register at offset and store the retrieved information in
2669  *  data, or write data to PHY register at offset.  Note the procedure to
2670  *  access the PHY wakeup registers is different than reading the other PHY
2671  *  registers. It works as such:
2672  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2673  *  2) Set page to 800 for host (801 if we were manageability)
2674  *  3) Write the address using the address opcode (0x11)
2675  *  4) Read or write the data using the data opcode (0x12)
2676  *  5) Restore 769.17.2 to its original value
2677  *
2678  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2679  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2680  *
2681  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2682  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2683  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2684  **/
e1000_access_phy_wakeup_reg_bm(struct e1000_hw * hw,u32 offset,u16 * data,bool read,bool page_set)2685 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2686 					  u16 *data, bool read, bool page_set)
2687 {
2688 	s32 ret_val;
2689 	u16 reg = BM_PHY_REG_NUM(offset);
2690 	u16 page = BM_PHY_REG_PAGE(offset);
2691 	u16 phy_reg = 0;
2692 
2693 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2694 	if ((hw->mac.type == e1000_pchlan) &&
2695 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2696 		e_dbg("Attempting to access page %d while gig enabled.\n",
2697 		      page);
2698 
2699 	if (!page_set) {
2700 		/* Enable access to PHY wakeup registers */
2701 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2702 		if (ret_val) {
2703 			e_dbg("Could not enable PHY wakeup reg access\n");
2704 			return ret_val;
2705 		}
2706 	}
2707 
2708 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2709 
2710 	/* Write the Wakeup register page offset value using opcode 0x11 */
2711 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2712 	if (ret_val) {
2713 		e_dbg("Could not write address opcode to page %d\n", page);
2714 		return ret_val;
2715 	}
2716 
2717 	if (read) {
2718 		/* Read the Wakeup register page value using opcode 0x12 */
2719 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2720 						   data);
2721 	} else {
2722 		/* Write the Wakeup register page value using opcode 0x12 */
2723 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2724 						    *data);
2725 	}
2726 
2727 	if (ret_val) {
2728 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2729 		return ret_val;
2730 	}
2731 
2732 	if (!page_set)
2733 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2734 
2735 	return ret_val;
2736 }
2737 
2738 /**
2739  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2740  * @hw: pointer to the HW structure
2741  *
2742  * In the case of a PHY power down to save power, or to turn off link during a
2743  * driver unload, or wake on lan is not enabled, restore the link to previous
2744  * settings.
2745  **/
e1000_power_up_phy_copper(struct e1000_hw * hw)2746 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2747 {
2748 	u16 mii_reg = 0;
2749 	int ret;
2750 
2751 	/* The PHY will retain its settings across a power down/up cycle */
2752 	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2753 	if (ret) {
2754 		e_dbg("Error reading PHY register\n");
2755 		return;
2756 	}
2757 	mii_reg &= ~BMCR_PDOWN;
2758 	e1e_wphy(hw, MII_BMCR, mii_reg);
2759 }
2760 
2761 /**
2762  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2763  * @hw: pointer to the HW structure
2764  *
2765  * In the case of a PHY power down to save power, or to turn off link during a
2766  * driver unload, or wake on lan is not enabled, restore the link to previous
2767  * settings.
2768  **/
e1000_power_down_phy_copper(struct e1000_hw * hw)2769 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2770 {
2771 	u16 mii_reg = 0;
2772 	int ret;
2773 
2774 	/* The PHY will retain its settings across a power down/up cycle */
2775 	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2776 	if (ret) {
2777 		e_dbg("Error reading PHY register\n");
2778 		return;
2779 	}
2780 	mii_reg |= BMCR_PDOWN;
2781 	e1e_wphy(hw, MII_BMCR, mii_reg);
2782 	usleep_range(1000, 2000);
2783 }
2784 
2785 /**
2786  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2787  *  @hw: pointer to the HW structure
2788  *  @offset: register offset to be read
2789  *  @data: pointer to the read data
2790  *  @locked: semaphore has already been acquired or not
2791  *  @page_set: BM_WUC_PAGE already set and access enabled
2792  *
2793  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2794  *  and stores the retrieved information in data.  Release any acquired
2795  *  semaphore before exiting.
2796  **/
__e1000_read_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 * data,bool locked,bool page_set)2797 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2798 				   bool locked, bool page_set)
2799 {
2800 	s32 ret_val;
2801 	u16 page = BM_PHY_REG_PAGE(offset);
2802 	u16 reg = BM_PHY_REG_NUM(offset);
2803 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2804 
2805 	if (!locked) {
2806 		ret_val = hw->phy.ops.acquire(hw);
2807 		if (ret_val)
2808 			return ret_val;
2809 	}
2810 
2811 	/* Page 800 works differently than the rest so it has its own func */
2812 	if (page == BM_WUC_PAGE) {
2813 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2814 							 true, page_set);
2815 		goto out;
2816 	}
2817 
2818 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2819 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2820 							 data, true);
2821 		goto out;
2822 	}
2823 
2824 	if (!page_set) {
2825 		if (page == HV_INTC_FC_PAGE_START)
2826 			page = 0;
2827 
2828 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2829 			/* Page is shifted left, PHY expects (page x 32) */
2830 			ret_val = e1000_set_page_igp(hw,
2831 						     (page << IGP_PAGE_SHIFT));
2832 
2833 			hw->phy.addr = phy_addr;
2834 
2835 			if (ret_val)
2836 				goto out;
2837 		}
2838 	}
2839 
2840 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2841 	      page << IGP_PAGE_SHIFT, reg);
2842 
2843 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2844 out:
2845 	if (!locked)
2846 		hw->phy.ops.release(hw);
2847 
2848 	return ret_val;
2849 }
2850 
2851 /**
2852  *  e1000_read_phy_reg_hv -  Read HV PHY register
2853  *  @hw: pointer to the HW structure
2854  *  @offset: register offset to be read
2855  *  @data: pointer to the read data
2856  *
2857  *  Acquires semaphore then reads the PHY register at offset and stores
2858  *  the retrieved information in data.  Release the acquired semaphore
2859  *  before exiting.
2860  **/
e1000_read_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 * data)2861 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2862 {
2863 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2864 }
2865 
2866 /**
2867  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2868  *  @hw: pointer to the HW structure
2869  *  @offset: register offset to be read
2870  *  @data: pointer to the read data
2871  *
2872  *  Reads the PHY register at offset and stores the retrieved information
2873  *  in data.  Assumes semaphore already acquired.
2874  **/
e1000_read_phy_reg_hv_locked(struct e1000_hw * hw,u32 offset,u16 * data)2875 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2876 {
2877 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2878 }
2879 
2880 /**
2881  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2882  *  @hw: pointer to the HW structure
2883  *  @offset: register offset to write to
2884  *  @data: data to write at register offset
2885  *
2886  *  Reads the PHY register at offset and stores the retrieved information
2887  *  in data.  Assumes semaphore already acquired and page already set.
2888  **/
e1000_read_phy_reg_page_hv(struct e1000_hw * hw,u32 offset,u16 * data)2889 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2890 {
2891 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2892 }
2893 
2894 /**
2895  *  __e1000_write_phy_reg_hv - Write HV PHY register
2896  *  @hw: pointer to the HW structure
2897  *  @offset: register offset to write to
2898  *  @data: data to write at register offset
2899  *  @locked: semaphore has already been acquired or not
2900  *  @page_set: BM_WUC_PAGE already set and access enabled
2901  *
2902  *  Acquires semaphore, if necessary, then writes the data to PHY register
2903  *  at the offset.  Release any acquired semaphores before exiting.
2904  **/
__e1000_write_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 data,bool locked,bool page_set)2905 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2906 				    bool locked, bool page_set)
2907 {
2908 	s32 ret_val;
2909 	u16 page = BM_PHY_REG_PAGE(offset);
2910 	u16 reg = BM_PHY_REG_NUM(offset);
2911 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2912 
2913 	if (!locked) {
2914 		ret_val = hw->phy.ops.acquire(hw);
2915 		if (ret_val)
2916 			return ret_val;
2917 	}
2918 
2919 	/* Page 800 works differently than the rest so it has its own func */
2920 	if (page == BM_WUC_PAGE) {
2921 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2922 							 false, page_set);
2923 		goto out;
2924 	}
2925 
2926 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2927 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2928 							 &data, false);
2929 		goto out;
2930 	}
2931 
2932 	if (!page_set) {
2933 		if (page == HV_INTC_FC_PAGE_START)
2934 			page = 0;
2935 
2936 		/* Workaround MDIO accesses being disabled after entering IEEE
2937 		 * Power Down (when bit 11 of the PHY Control register is set)
2938 		 */
2939 		if ((hw->phy.type == e1000_phy_82578) &&
2940 		    (hw->phy.revision >= 1) &&
2941 		    (hw->phy.addr == 2) &&
2942 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2943 			u16 data2 = 0x7EFF;
2944 
2945 			ret_val = e1000_access_phy_debug_regs_hv(hw,
2946 								 BIT(6) | 0x3,
2947 								 &data2, false);
2948 			if (ret_val)
2949 				goto out;
2950 		}
2951 
2952 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2953 			/* Page is shifted left, PHY expects (page x 32) */
2954 			ret_val = e1000_set_page_igp(hw,
2955 						     (page << IGP_PAGE_SHIFT));
2956 
2957 			hw->phy.addr = phy_addr;
2958 
2959 			if (ret_val)
2960 				goto out;
2961 		}
2962 	}
2963 
2964 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2965 	      page << IGP_PAGE_SHIFT, reg);
2966 
2967 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2968 					    data);
2969 
2970 out:
2971 	if (!locked)
2972 		hw->phy.ops.release(hw);
2973 
2974 	return ret_val;
2975 }
2976 
2977 /**
2978  *  e1000_write_phy_reg_hv - Write HV PHY register
2979  *  @hw: pointer to the HW structure
2980  *  @offset: register offset to write to
2981  *  @data: data to write at register offset
2982  *
2983  *  Acquires semaphore then writes the data to PHY register at the offset.
2984  *  Release the acquired semaphores before exiting.
2985  **/
e1000_write_phy_reg_hv(struct e1000_hw * hw,u32 offset,u16 data)2986 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2987 {
2988 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2989 }
2990 
2991 /**
2992  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2993  *  @hw: pointer to the HW structure
2994  *  @offset: register offset to write to
2995  *  @data: data to write at register offset
2996  *
2997  *  Writes the data to PHY register at the offset.  Assumes semaphore
2998  *  already acquired.
2999  **/
e1000_write_phy_reg_hv_locked(struct e1000_hw * hw,u32 offset,u16 data)3000 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3001 {
3002 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3003 }
3004 
3005 /**
3006  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3007  *  @hw: pointer to the HW structure
3008  *  @offset: register offset to write to
3009  *  @data: data to write at register offset
3010  *
3011  *  Writes the data to PHY register at the offset.  Assumes semaphore
3012  *  already acquired and page already set.
3013  **/
e1000_write_phy_reg_page_hv(struct e1000_hw * hw,u32 offset,u16 data)3014 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3015 {
3016 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3017 }
3018 
3019 /**
3020  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3021  *  @page: page to be accessed
3022  **/
e1000_get_phy_addr_for_hv_page(u32 page)3023 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3024 {
3025 	u32 phy_addr = 2;
3026 
3027 	if (page >= HV_INTC_FC_PAGE_START)
3028 		phy_addr = 1;
3029 
3030 	return phy_addr;
3031 }
3032 
3033 /**
3034  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3035  *  @hw: pointer to the HW structure
3036  *  @offset: register offset to be read or written
3037  *  @data: pointer to the data to be read or written
3038  *  @read: determines if operation is read or write
3039  *
3040  *  Reads the PHY register at offset and stores the retrieved information
3041  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3042  *  to access these regs uses the address port and data port to read/write.
3043  *  These accesses done with PHY address 2 and without using pages.
3044  **/
e1000_access_phy_debug_regs_hv(struct e1000_hw * hw,u32 offset,u16 * data,bool read)3045 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3046 					  u16 *data, bool read)
3047 {
3048 	s32 ret_val;
3049 	u32 addr_reg;
3050 	u32 data_reg;
3051 
3052 	/* This takes care of the difference with desktop vs mobile phy */
3053 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3054 		    I82578_ADDR_REG : I82577_ADDR_REG);
3055 	data_reg = addr_reg + 1;
3056 
3057 	/* All operations in this function are phy address 2 */
3058 	hw->phy.addr = 2;
3059 
3060 	/* masking with 0x3F to remove the page from offset */
3061 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3062 	if (ret_val) {
3063 		e_dbg("Could not write the Address Offset port register\n");
3064 		return ret_val;
3065 	}
3066 
3067 	/* Read or write the data value next */
3068 	if (read)
3069 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3070 	else
3071 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3072 
3073 	if (ret_val)
3074 		e_dbg("Could not access the Data port register\n");
3075 
3076 	return ret_val;
3077 }
3078 
3079 /**
3080  *  e1000_link_stall_workaround_hv - Si workaround
3081  *  @hw: pointer to the HW structure
3082  *
3083  *  This function works around a Si bug where the link partner can get
3084  *  a link up indication before the PHY does.  If small packets are sent
3085  *  by the link partner they can be placed in the packet buffer without
3086  *  being properly accounted for by the PHY and will stall preventing
3087  *  further packets from being received.  The workaround is to clear the
3088  *  packet buffer after the PHY detects link up.
3089  **/
e1000_link_stall_workaround_hv(struct e1000_hw * hw)3090 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3091 {
3092 	s32 ret_val = 0;
3093 	u16 data;
3094 
3095 	if (hw->phy.type != e1000_phy_82578)
3096 		return 0;
3097 
3098 	/* Do not apply workaround if in PHY loopback bit 14 set */
3099 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3100 	if (ret_val) {
3101 		e_dbg("Error reading PHY register\n");
3102 		return ret_val;
3103 	}
3104 	if (data & BMCR_LOOPBACK)
3105 		return 0;
3106 
3107 	/* check if link is up and at 1Gbps */
3108 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3109 	if (ret_val)
3110 		return ret_val;
3111 
3112 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3113 		 BM_CS_STATUS_SPEED_MASK);
3114 
3115 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3116 		     BM_CS_STATUS_SPEED_1000))
3117 		return 0;
3118 
3119 	msleep(200);
3120 
3121 	/* flush the packets in the fifo buffer */
3122 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3123 			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3124 			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3125 	if (ret_val)
3126 		return ret_val;
3127 
3128 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3129 }
3130 
3131 /**
3132  *  e1000_check_polarity_82577 - Checks the polarity.
3133  *  @hw: pointer to the HW structure
3134  *
3135  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3136  *
3137  *  Polarity is determined based on the PHY specific status register.
3138  **/
e1000_check_polarity_82577(struct e1000_hw * hw)3139 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3140 {
3141 	struct e1000_phy_info *phy = &hw->phy;
3142 	s32 ret_val;
3143 	u16 data;
3144 
3145 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3146 
3147 	if (!ret_val)
3148 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3149 				       ? e1000_rev_polarity_reversed
3150 				       : e1000_rev_polarity_normal);
3151 
3152 	return ret_val;
3153 }
3154 
3155 /**
3156  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3157  *  @hw: pointer to the HW structure
3158  *
3159  *  Calls the PHY setup function to force speed and duplex.
3160  **/
e1000_phy_force_speed_duplex_82577(struct e1000_hw * hw)3161 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3162 {
3163 	struct e1000_phy_info *phy = &hw->phy;
3164 	s32 ret_val;
3165 	u16 phy_data;
3166 	bool link;
3167 
3168 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3169 	if (ret_val)
3170 		return ret_val;
3171 
3172 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3173 
3174 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3175 	if (ret_val)
3176 		return ret_val;
3177 
3178 	udelay(1);
3179 
3180 	if (phy->autoneg_wait_to_complete) {
3181 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3182 
3183 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3184 						      100000, &link);
3185 		if (ret_val)
3186 			return ret_val;
3187 
3188 		if (!link)
3189 			e_dbg("Link taking longer than expected.\n");
3190 
3191 		/* Try once more */
3192 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3193 						      100000, &link);
3194 	}
3195 
3196 	return ret_val;
3197 }
3198 
3199 /**
3200  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3201  *  @hw: pointer to the HW structure
3202  *
3203  *  Read PHY status to determine if link is up.  If link is up, then
3204  *  set/determine 10base-T extended distance and polarity correction.  Read
3205  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3206  *  determine on the cable length, local and remote receiver.
3207  **/
e1000_get_phy_info_82577(struct e1000_hw * hw)3208 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3209 {
3210 	struct e1000_phy_info *phy = &hw->phy;
3211 	s32 ret_val;
3212 	u16 data;
3213 	bool link;
3214 
3215 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3216 	if (ret_val)
3217 		return ret_val;
3218 
3219 	if (!link) {
3220 		e_dbg("Phy info is only valid if link is up\n");
3221 		return -E1000_ERR_CONFIG;
3222 	}
3223 
3224 	phy->polarity_correction = true;
3225 
3226 	ret_val = e1000_check_polarity_82577(hw);
3227 	if (ret_val)
3228 		return ret_val;
3229 
3230 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3231 	if (ret_val)
3232 		return ret_val;
3233 
3234 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3235 
3236 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3237 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3238 		ret_val = hw->phy.ops.get_cable_length(hw);
3239 		if (ret_val)
3240 			return ret_val;
3241 
3242 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3243 		if (ret_val)
3244 			return ret_val;
3245 
3246 		phy->local_rx = (data & LPA_1000LOCALRXOK)
3247 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3248 
3249 		phy->remote_rx = (data & LPA_1000REMRXOK)
3250 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3251 	} else {
3252 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3253 		phy->local_rx = e1000_1000t_rx_status_undefined;
3254 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3255 	}
3256 
3257 	return 0;
3258 }
3259 
3260 /**
3261  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3262  *  @hw: pointer to the HW structure
3263  *
3264  * Reads the diagnostic status register and verifies result is valid before
3265  * placing it in the phy_cable_length field.
3266  **/
e1000_get_cable_length_82577(struct e1000_hw * hw)3267 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3268 {
3269 	struct e1000_phy_info *phy = &hw->phy;
3270 	s32 ret_val;
3271 	u16 phy_data, length;
3272 
3273 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3274 	if (ret_val)
3275 		return ret_val;
3276 
3277 	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
3278 
3279 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3280 		return -E1000_ERR_PHY;
3281 
3282 	phy->cable_length = length;
3283 
3284 	return 0;
3285 }
3286