1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131 /**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226 }
227
228 /**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265 }
266
267 /**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320 {
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
585 {
586 struct ubi_work *wl_wrk;
587
588 ubi_assert(e);
589
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
592
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 if (!wl_wrk)
595 return -ENOMEM;
596
597 wl_wrk->func = &erase_worker;
598 wl_wrk->e = e;
599 wl_wrk->vol_id = vol_id;
600 wl_wrk->lnum = lnum;
601 wl_wrk->torture = torture;
602
603 if (nested)
604 __schedule_ubi_work(ubi, wl_wrk);
605 else
606 schedule_ubi_work(ubi, wl_wrk);
607 return 0;
608 }
609
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
622 {
623 struct ubi_work wl_wrk;
624
625 dbg_wl("sync erase of PEB %i", e->pnum);
626
627 wl_wrk.e = e;
628 wl_wrk.vol_id = vol_id;
629 wl_wrk.lnum = lnum;
630 wl_wrk.torture = torture;
631
632 return __erase_worker(ubi, &wl_wrk);
633 }
634
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 int shutdown)
649 {
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
656
657 kfree(wrk);
658 if (shutdown)
659 return 0;
660
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 if (!vidb)
663 return -ENOMEM;
664
665 vid_hdr = ubi_get_vid_hdr(vidb);
666
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
672
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674 if (!next_peb_for_wl(ubi, true) ||
675 #else
676 if (!ubi->free.rb_node ||
677 #endif
678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679 /*
680 * No free physical eraseblocks? Well, they must be waiting in
681 * the queue to be erased. Cancel movement - it will be
682 * triggered again when a free physical eraseblock appears.
683 *
684 * No used physical eraseblocks? They must be temporarily
685 * protected from being moved. They will be moved to the
686 * @ubi->used tree later and the wear-leveling will be
687 * triggered again.
688 */
689 dbg_wl("cancel WL, a list is empty: free %d, used %d",
690 !ubi->free.rb_node, !ubi->used.rb_node);
691 goto out_cancel;
692 }
693
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695 e1 = find_anchor_wl_entry(&ubi->used);
696 if (e1 && ubi->fm_anchor &&
697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698 ubi->fm_do_produce_anchor = 1;
699 /*
700 * fm_anchor is no longer considered a good anchor.
701 * NULL assignment also prevents multiple wear level checks
702 * of this PEB.
703 */
704 wl_tree_add(ubi->fm_anchor, &ubi->free);
705 ubi->fm_anchor = NULL;
706 ubi->free_count++;
707 }
708
709 if (ubi->fm_do_produce_anchor) {
710 if (!e1)
711 goto out_cancel;
712 e2 = get_peb_for_wl(ubi);
713 if (!e2)
714 goto out_cancel;
715
716 self_check_in_wl_tree(ubi, e1, &ubi->used);
717 rb_erase(&e1->u.rb, &ubi->used);
718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719 ubi->fm_do_produce_anchor = 0;
720 } else if (!ubi->scrub.rb_node) {
721 #else
722 if (!ubi->scrub.rb_node) {
723 #endif
724 /*
725 * Now pick the least worn-out used physical eraseblock and a
726 * highly worn-out free physical eraseblock. If the erase
727 * counters differ much enough, start wear-leveling.
728 */
729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730 e2 = get_peb_for_wl(ubi);
731 if (!e2)
732 goto out_cancel;
733
734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735 dbg_wl("no WL needed: min used EC %d, max free EC %d",
736 e1->ec, e2->ec);
737
738 /* Give the unused PEB back */
739 wl_tree_add(e2, &ubi->free);
740 ubi->free_count++;
741 goto out_cancel;
742 }
743 self_check_in_wl_tree(ubi, e1, &ubi->used);
744 rb_erase(&e1->u.rb, &ubi->used);
745 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746 e1->pnum, e1->ec, e2->pnum, e2->ec);
747 } else {
748 /* Perform scrubbing */
749 scrubbing = 1;
750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751 e2 = get_peb_for_wl(ubi);
752 if (!e2)
753 goto out_cancel;
754
755 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756 rb_erase(&e1->u.rb, &ubi->scrub);
757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758 }
759
760 ubi->move_from = e1;
761 ubi->move_to = e2;
762 spin_unlock(&ubi->wl_lock);
763
764 /*
765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766 * We so far do not know which logical eraseblock our physical
767 * eraseblock (@e1) belongs to. We have to read the volume identifier
768 * header first.
769 *
770 * Note, we are protected from this PEB being unmapped and erased. The
771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772 * which is being moved was unmapped.
773 */
774
775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776 if (err && err != UBI_IO_BITFLIPS) {
777 dst_leb_clean = 1;
778 if (err == UBI_IO_FF) {
779 /*
780 * We are trying to move PEB without a VID header. UBI
781 * always write VID headers shortly after the PEB was
782 * given, so we have a situation when it has not yet
783 * had a chance to write it, because it was preempted.
784 * So add this PEB to the protection queue so far,
785 * because presumably more data will be written there
786 * (including the missing VID header), and then we'll
787 * move it.
788 */
789 dbg_wl("PEB %d has no VID header", e1->pnum);
790 protect = 1;
791 goto out_not_moved;
792 } else if (err == UBI_IO_FF_BITFLIPS) {
793 /*
794 * The same situation as %UBI_IO_FF, but bit-flips were
795 * detected. It is better to schedule this PEB for
796 * scrubbing.
797 */
798 dbg_wl("PEB %d has no VID header but has bit-flips",
799 e1->pnum);
800 scrubbing = 1;
801 goto out_not_moved;
802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803 /*
804 * While a full scan would detect interrupted erasures
805 * at attach time we can face them here when attached from
806 * Fastmap.
807 */
808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809 e1->pnum);
810 erase = 1;
811 goto out_not_moved;
812 }
813
814 ubi_err(ubi, "error %d while reading VID header from PEB %d",
815 err, e1->pnum);
816 goto out_error;
817 }
818
819 vol_id = be32_to_cpu(vid_hdr->vol_id);
820 lnum = be32_to_cpu(vid_hdr->lnum);
821
822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823 if (err) {
824 if (err == MOVE_CANCEL_RACE) {
825 /*
826 * The LEB has not been moved because the volume is
827 * being deleted or the PEB has been put meanwhile. We
828 * should prevent this PEB from being selected for
829 * wear-leveling movement again, so put it to the
830 * protection queue.
831 */
832 protect = 1;
833 dst_leb_clean = 1;
834 goto out_not_moved;
835 }
836 if (err == MOVE_RETRY) {
837 /*
838 * For source PEB:
839 * 1. The scrubbing is set for scrub type PEB, it will
840 * be put back into ubi->scrub list.
841 * 2. Non-scrub type PEB will be put back into ubi->used
842 * list.
843 */
844 keep = 1;
845 dst_leb_clean = 1;
846 goto out_not_moved;
847 }
848 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
849 err == MOVE_TARGET_RD_ERR) {
850 /*
851 * Target PEB had bit-flips or write error - torture it.
852 */
853 torture = 1;
854 keep = 1;
855 goto out_not_moved;
856 }
857
858 if (err == MOVE_SOURCE_RD_ERR) {
859 /*
860 * An error happened while reading the source PEB. Do
861 * not switch to R/O mode in this case, and give the
862 * upper layers a possibility to recover from this,
863 * e.g. by unmapping corresponding LEB. Instead, just
864 * put this PEB to the @ubi->erroneous list to prevent
865 * UBI from trying to move it over and over again.
866 */
867 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
868 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
869 ubi->erroneous_peb_count);
870 goto out_error;
871 }
872 dst_leb_clean = 1;
873 erroneous = 1;
874 goto out_not_moved;
875 }
876
877 if (err < 0)
878 goto out_error;
879
880 ubi_assert(0);
881 }
882
883 /* The PEB has been successfully moved */
884 if (scrubbing)
885 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
886 e1->pnum, vol_id, lnum, e2->pnum);
887 ubi_free_vid_buf(vidb);
888
889 spin_lock(&ubi->wl_lock);
890 if (!ubi->move_to_put) {
891 wl_tree_add(e2, &ubi->used);
892 e2 = NULL;
893 }
894 ubi->move_from = ubi->move_to = NULL;
895 ubi->move_to_put = ubi->wl_scheduled = 0;
896 spin_unlock(&ubi->wl_lock);
897
898 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
899 if (err) {
900 if (e2) {
901 spin_lock(&ubi->wl_lock);
902 wl_entry_destroy(ubi, e2);
903 spin_unlock(&ubi->wl_lock);
904 }
905 goto out_ro;
906 }
907
908 if (e2) {
909 /*
910 * Well, the target PEB was put meanwhile, schedule it for
911 * erasure.
912 */
913 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
914 e2->pnum, vol_id, lnum);
915 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
916 if (err)
917 goto out_ro;
918 }
919
920 dbg_wl("done");
921 mutex_unlock(&ubi->move_mutex);
922 up_read(&ubi->fm_eba_sem);
923 return 0;
924
925 /*
926 * For some reasons the LEB was not moved, might be an error, might be
927 * something else. @e1 was not changed, so return it back. @e2 might
928 * have been changed, schedule it for erasure.
929 */
930 out_not_moved:
931 if (vol_id != -1)
932 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
933 e1->pnum, vol_id, lnum, e2->pnum, err);
934 else
935 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
936 e1->pnum, e2->pnum, err);
937 spin_lock(&ubi->wl_lock);
938 if (protect)
939 prot_queue_add(ubi, e1);
940 else if (erroneous) {
941 wl_tree_add(e1, &ubi->erroneous);
942 ubi->erroneous_peb_count += 1;
943 } else if (scrubbing)
944 wl_tree_add(e1, &ubi->scrub);
945 else if (keep)
946 wl_tree_add(e1, &ubi->used);
947 if (dst_leb_clean) {
948 wl_tree_add(e2, &ubi->free);
949 ubi->free_count++;
950 }
951
952 ubi_assert(!ubi->move_to_put);
953 ubi->move_from = ubi->move_to = NULL;
954 ubi->wl_scheduled = 0;
955 spin_unlock(&ubi->wl_lock);
956
957 ubi_free_vid_buf(vidb);
958 if (dst_leb_clean) {
959 ensure_wear_leveling(ubi, 1);
960 } else {
961 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
962 if (err)
963 goto out_ro;
964 }
965
966 if (erase) {
967 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
968 if (err)
969 goto out_ro;
970 }
971
972 mutex_unlock(&ubi->move_mutex);
973 up_read(&ubi->fm_eba_sem);
974 return 0;
975
976 out_error:
977 if (vol_id != -1)
978 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
979 err, e1->pnum, e2->pnum);
980 else
981 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
982 err, e1->pnum, vol_id, lnum, e2->pnum);
983 spin_lock(&ubi->wl_lock);
984 ubi->move_from = ubi->move_to = NULL;
985 ubi->move_to_put = ubi->wl_scheduled = 0;
986 wl_entry_destroy(ubi, e1);
987 wl_entry_destroy(ubi, e2);
988 spin_unlock(&ubi->wl_lock);
989
990 ubi_free_vid_buf(vidb);
991
992 out_ro:
993 ubi_ro_mode(ubi);
994 mutex_unlock(&ubi->move_mutex);
995 up_read(&ubi->fm_eba_sem);
996 ubi_assert(err != 0);
997 return err < 0 ? err : -EIO;
998
999 out_cancel:
1000 ubi->wl_scheduled = 0;
1001 spin_unlock(&ubi->wl_lock);
1002 mutex_unlock(&ubi->move_mutex);
1003 up_read(&ubi->fm_eba_sem);
1004 ubi_free_vid_buf(vidb);
1005 return 0;
1006 }
1007
1008 /**
1009 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1010 * @ubi: UBI device description object
1011 * @nested: set to non-zero if this function is called from UBI worker
1012 *
1013 * This function checks if it is time to start wear-leveling and schedules it
1014 * if yes. This function returns zero in case of success and a negative error
1015 * code in case of failure.
1016 */
1017 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1018 {
1019 int err = 0;
1020 struct ubi_work *wrk;
1021
1022 spin_lock(&ubi->wl_lock);
1023 if (ubi->wl_scheduled)
1024 /* Wear-leveling is already in the work queue */
1025 goto out_unlock;
1026
1027 /*
1028 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1029 * WL worker has to be scheduled anyway.
1030 */
1031 if (!ubi->scrub.rb_node) {
1032 #ifdef CONFIG_MTD_UBI_FASTMAP
1033 if (!need_wear_leveling(ubi))
1034 goto out_unlock;
1035 #else
1036 struct ubi_wl_entry *e1;
1037 struct ubi_wl_entry *e2;
1038
1039 if (!ubi->used.rb_node || !ubi->free.rb_node)
1040 /* No physical eraseblocks - no deal */
1041 goto out_unlock;
1042
1043 /*
1044 * We schedule wear-leveling only if the difference between the
1045 * lowest erase counter of used physical eraseblocks and a high
1046 * erase counter of free physical eraseblocks is greater than
1047 * %UBI_WL_THRESHOLD.
1048 */
1049 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1050 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1051
1052 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1053 goto out_unlock;
1054 #endif
1055 dbg_wl("schedule wear-leveling");
1056 } else
1057 dbg_wl("schedule scrubbing");
1058
1059 ubi->wl_scheduled = 1;
1060 spin_unlock(&ubi->wl_lock);
1061
1062 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1063 if (!wrk) {
1064 err = -ENOMEM;
1065 goto out_cancel;
1066 }
1067
1068 wrk->func = &wear_leveling_worker;
1069 if (nested)
1070 __schedule_ubi_work(ubi, wrk);
1071 else
1072 schedule_ubi_work(ubi, wrk);
1073 return err;
1074
1075 out_cancel:
1076 spin_lock(&ubi->wl_lock);
1077 ubi->wl_scheduled = 0;
1078 out_unlock:
1079 spin_unlock(&ubi->wl_lock);
1080 return err;
1081 }
1082
1083 /**
1084 * __erase_worker - physical eraseblock erase worker function.
1085 * @ubi: UBI device description object
1086 * @wl_wrk: the work object
1087 *
1088 * This function erases a physical eraseblock and perform torture testing if
1089 * needed. It also takes care about marking the physical eraseblock bad if
1090 * needed. Returns zero in case of success and a negative error code in case of
1091 * failure.
1092 */
1093 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1094 {
1095 struct ubi_wl_entry *e = wl_wrk->e;
1096 int pnum = e->pnum;
1097 int vol_id = wl_wrk->vol_id;
1098 int lnum = wl_wrk->lnum;
1099 int err, available_consumed = 0;
1100
1101 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1102 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1103
1104 err = sync_erase(ubi, e, wl_wrk->torture);
1105 if (!err) {
1106 spin_lock(&ubi->wl_lock);
1107
1108 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1109 e->pnum < UBI_FM_MAX_START) {
1110 /*
1111 * Abort anchor production, if needed it will be
1112 * enabled again in the wear leveling started below.
1113 */
1114 ubi->fm_anchor = e;
1115 ubi->fm_do_produce_anchor = 0;
1116 } else {
1117 wl_tree_add(e, &ubi->free);
1118 ubi->free_count++;
1119 }
1120
1121 spin_unlock(&ubi->wl_lock);
1122
1123 /*
1124 * One more erase operation has happened, take care about
1125 * protected physical eraseblocks.
1126 */
1127 serve_prot_queue(ubi);
1128
1129 /* And take care about wear-leveling */
1130 err = ensure_wear_leveling(ubi, 1);
1131 return err;
1132 }
1133
1134 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1135
1136 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1137 err == -EBUSY) {
1138 int err1;
1139
1140 /* Re-schedule the LEB for erasure */
1141 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1142 if (err1) {
1143 spin_lock(&ubi->wl_lock);
1144 wl_entry_destroy(ubi, e);
1145 spin_unlock(&ubi->wl_lock);
1146 err = err1;
1147 goto out_ro;
1148 }
1149 return err;
1150 }
1151
1152 spin_lock(&ubi->wl_lock);
1153 wl_entry_destroy(ubi, e);
1154 spin_unlock(&ubi->wl_lock);
1155 if (err != -EIO)
1156 /*
1157 * If this is not %-EIO, we have no idea what to do. Scheduling
1158 * this physical eraseblock for erasure again would cause
1159 * errors again and again. Well, lets switch to R/O mode.
1160 */
1161 goto out_ro;
1162
1163 /* It is %-EIO, the PEB went bad */
1164
1165 if (!ubi->bad_allowed) {
1166 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1167 goto out_ro;
1168 }
1169
1170 spin_lock(&ubi->volumes_lock);
1171 if (ubi->beb_rsvd_pebs == 0) {
1172 if (ubi->avail_pebs == 0) {
1173 spin_unlock(&ubi->volumes_lock);
1174 ubi_err(ubi, "no reserved/available physical eraseblocks");
1175 goto out_ro;
1176 }
1177 ubi->avail_pebs -= 1;
1178 available_consumed = 1;
1179 }
1180 spin_unlock(&ubi->volumes_lock);
1181
1182 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1183 err = ubi_io_mark_bad(ubi, pnum);
1184 if (err)
1185 goto out_ro;
1186
1187 spin_lock(&ubi->volumes_lock);
1188 if (ubi->beb_rsvd_pebs > 0) {
1189 if (available_consumed) {
1190 /*
1191 * The amount of reserved PEBs increased since we last
1192 * checked.
1193 */
1194 ubi->avail_pebs += 1;
1195 available_consumed = 0;
1196 }
1197 ubi->beb_rsvd_pebs -= 1;
1198 }
1199 ubi->bad_peb_count += 1;
1200 ubi->good_peb_count -= 1;
1201 ubi_calculate_reserved(ubi);
1202 if (available_consumed)
1203 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1204 else if (ubi->beb_rsvd_pebs)
1205 ubi_msg(ubi, "%d PEBs left in the reserve",
1206 ubi->beb_rsvd_pebs);
1207 else
1208 ubi_warn(ubi, "last PEB from the reserve was used");
1209 spin_unlock(&ubi->volumes_lock);
1210
1211 return err;
1212
1213 out_ro:
1214 if (available_consumed) {
1215 spin_lock(&ubi->volumes_lock);
1216 ubi->avail_pebs += 1;
1217 spin_unlock(&ubi->volumes_lock);
1218 }
1219 ubi_ro_mode(ubi);
1220 return err;
1221 }
1222
1223 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1224 int shutdown)
1225 {
1226 int ret;
1227
1228 if (shutdown) {
1229 struct ubi_wl_entry *e = wl_wrk->e;
1230
1231 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1232 kfree(wl_wrk);
1233 wl_entry_destroy(ubi, e);
1234 return 0;
1235 }
1236
1237 ret = __erase_worker(ubi, wl_wrk);
1238 kfree(wl_wrk);
1239 return ret;
1240 }
1241
1242 /**
1243 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1244 * @ubi: UBI device description object
1245 * @vol_id: the volume ID that last used this PEB
1246 * @lnum: the last used logical eraseblock number for the PEB
1247 * @pnum: physical eraseblock to return
1248 * @torture: if this physical eraseblock has to be tortured
1249 *
1250 * This function is called to return physical eraseblock @pnum to the pool of
1251 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1252 * occurred to this @pnum and it has to be tested. This function returns zero
1253 * in case of success, and a negative error code in case of failure.
1254 */
1255 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1256 int pnum, int torture)
1257 {
1258 int err;
1259 struct ubi_wl_entry *e;
1260
1261 dbg_wl("PEB %d", pnum);
1262 ubi_assert(pnum >= 0);
1263 ubi_assert(pnum < ubi->peb_count);
1264
1265 down_read(&ubi->fm_protect);
1266
1267 retry:
1268 spin_lock(&ubi->wl_lock);
1269 e = ubi->lookuptbl[pnum];
1270 if (!e) {
1271 /*
1272 * This wl entry has been removed for some errors by other
1273 * process (eg. wear leveling worker), corresponding process
1274 * (except __erase_worker, which cannot concurrent with
1275 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1276 * just ignore this wl entry.
1277 */
1278 spin_unlock(&ubi->wl_lock);
1279 up_read(&ubi->fm_protect);
1280 return 0;
1281 }
1282 if (e == ubi->move_from) {
1283 /*
1284 * User is putting the physical eraseblock which was selected to
1285 * be moved. It will be scheduled for erasure in the
1286 * wear-leveling worker.
1287 */
1288 dbg_wl("PEB %d is being moved, wait", pnum);
1289 spin_unlock(&ubi->wl_lock);
1290
1291 /* Wait for the WL worker by taking the @ubi->move_mutex */
1292 mutex_lock(&ubi->move_mutex);
1293 mutex_unlock(&ubi->move_mutex);
1294 goto retry;
1295 } else if (e == ubi->move_to) {
1296 /*
1297 * User is putting the physical eraseblock which was selected
1298 * as the target the data is moved to. It may happen if the EBA
1299 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1300 * but the WL sub-system has not put the PEB to the "used" tree
1301 * yet, but it is about to do this. So we just set a flag which
1302 * will tell the WL worker that the PEB is not needed anymore
1303 * and should be scheduled for erasure.
1304 */
1305 dbg_wl("PEB %d is the target of data moving", pnum);
1306 ubi_assert(!ubi->move_to_put);
1307 ubi->move_to_put = 1;
1308 spin_unlock(&ubi->wl_lock);
1309 up_read(&ubi->fm_protect);
1310 return 0;
1311 } else {
1312 if (in_wl_tree(e, &ubi->used)) {
1313 self_check_in_wl_tree(ubi, e, &ubi->used);
1314 rb_erase(&e->u.rb, &ubi->used);
1315 } else if (in_wl_tree(e, &ubi->scrub)) {
1316 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1317 rb_erase(&e->u.rb, &ubi->scrub);
1318 } else if (in_wl_tree(e, &ubi->erroneous)) {
1319 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1320 rb_erase(&e->u.rb, &ubi->erroneous);
1321 ubi->erroneous_peb_count -= 1;
1322 ubi_assert(ubi->erroneous_peb_count >= 0);
1323 /* Erroneous PEBs should be tortured */
1324 torture = 1;
1325 } else {
1326 err = prot_queue_del(ubi, e->pnum);
1327 if (err) {
1328 ubi_err(ubi, "PEB %d not found", pnum);
1329 ubi_ro_mode(ubi);
1330 spin_unlock(&ubi->wl_lock);
1331 up_read(&ubi->fm_protect);
1332 return err;
1333 }
1334 }
1335 }
1336 spin_unlock(&ubi->wl_lock);
1337
1338 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1339 if (err) {
1340 spin_lock(&ubi->wl_lock);
1341 wl_tree_add(e, &ubi->used);
1342 spin_unlock(&ubi->wl_lock);
1343 }
1344
1345 up_read(&ubi->fm_protect);
1346 return err;
1347 }
1348
1349 /**
1350 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1351 * @ubi: UBI device description object
1352 * @pnum: the physical eraseblock to schedule
1353 *
1354 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1355 * needs scrubbing. This function schedules a physical eraseblock for
1356 * scrubbing which is done in background. This function returns zero in case of
1357 * success and a negative error code in case of failure.
1358 */
1359 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1360 {
1361 struct ubi_wl_entry *e;
1362
1363 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1364
1365 retry:
1366 spin_lock(&ubi->wl_lock);
1367 e = ubi->lookuptbl[pnum];
1368 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1369 in_wl_tree(e, &ubi->erroneous)) {
1370 spin_unlock(&ubi->wl_lock);
1371 return 0;
1372 }
1373
1374 if (e == ubi->move_to) {
1375 /*
1376 * This physical eraseblock was used to move data to. The data
1377 * was moved but the PEB was not yet inserted to the proper
1378 * tree. We should just wait a little and let the WL worker
1379 * proceed.
1380 */
1381 spin_unlock(&ubi->wl_lock);
1382 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1383 yield();
1384 goto retry;
1385 }
1386
1387 if (in_wl_tree(e, &ubi->used)) {
1388 self_check_in_wl_tree(ubi, e, &ubi->used);
1389 rb_erase(&e->u.rb, &ubi->used);
1390 } else {
1391 int err;
1392
1393 err = prot_queue_del(ubi, e->pnum);
1394 if (err) {
1395 ubi_err(ubi, "PEB %d not found", pnum);
1396 ubi_ro_mode(ubi);
1397 spin_unlock(&ubi->wl_lock);
1398 return err;
1399 }
1400 }
1401
1402 wl_tree_add(e, &ubi->scrub);
1403 spin_unlock(&ubi->wl_lock);
1404
1405 /*
1406 * Technically scrubbing is the same as wear-leveling, so it is done
1407 * by the WL worker.
1408 */
1409 return ensure_wear_leveling(ubi, 0);
1410 }
1411
1412 /**
1413 * ubi_wl_flush - flush all pending works.
1414 * @ubi: UBI device description object
1415 * @vol_id: the volume id to flush for
1416 * @lnum: the logical eraseblock number to flush for
1417 *
1418 * This function executes all pending works for a particular volume id /
1419 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1420 * acts as a wildcard for all of the corresponding volume numbers or logical
1421 * eraseblock numbers. It returns zero in case of success and a negative error
1422 * code in case of failure.
1423 */
1424 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1425 {
1426 int err = 0;
1427 int found = 1;
1428
1429 /*
1430 * Erase while the pending works queue is not empty, but not more than
1431 * the number of currently pending works.
1432 */
1433 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1434 vol_id, lnum, ubi->works_count);
1435
1436 while (found) {
1437 struct ubi_work *wrk, *tmp;
1438 found = 0;
1439
1440 down_read(&ubi->work_sem);
1441 spin_lock(&ubi->wl_lock);
1442 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1443 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1444 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1445 list_del(&wrk->list);
1446 ubi->works_count -= 1;
1447 ubi_assert(ubi->works_count >= 0);
1448 spin_unlock(&ubi->wl_lock);
1449
1450 err = wrk->func(ubi, wrk, 0);
1451 if (err) {
1452 up_read(&ubi->work_sem);
1453 return err;
1454 }
1455
1456 spin_lock(&ubi->wl_lock);
1457 found = 1;
1458 break;
1459 }
1460 }
1461 spin_unlock(&ubi->wl_lock);
1462 up_read(&ubi->work_sem);
1463 }
1464
1465 /*
1466 * Make sure all the works which have been done in parallel are
1467 * finished.
1468 */
1469 down_write(&ubi->work_sem);
1470 up_write(&ubi->work_sem);
1471
1472 return err;
1473 }
1474
1475 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1476 {
1477 if (in_wl_tree(e, &ubi->scrub))
1478 return false;
1479 else if (in_wl_tree(e, &ubi->erroneous))
1480 return false;
1481 else if (ubi->move_from == e)
1482 return false;
1483 else if (ubi->move_to == e)
1484 return false;
1485
1486 return true;
1487 }
1488
1489 /**
1490 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1491 * @ubi: UBI device description object
1492 * @pnum: the physical eraseblock to schedule
1493 * @force: don't read the block, assume bitflips happened and take action.
1494 *
1495 * This function reads the given eraseblock and checks if bitflips occured.
1496 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1497 * If scrubbing is forced with @force, the eraseblock is not read,
1498 * but scheduled for scrubbing right away.
1499 *
1500 * Returns:
1501 * %EINVAL, PEB is out of range
1502 * %ENOENT, PEB is no longer used by UBI
1503 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1504 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1505 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1506 * %0, no bit flips detected
1507 */
1508 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1509 {
1510 int err = 0;
1511 struct ubi_wl_entry *e;
1512
1513 if (pnum < 0 || pnum >= ubi->peb_count) {
1514 err = -EINVAL;
1515 goto out;
1516 }
1517
1518 /*
1519 * Pause all parallel work, otherwise it can happen that the
1520 * erase worker frees a wl entry under us.
1521 */
1522 down_write(&ubi->work_sem);
1523
1524 /*
1525 * Make sure that the wl entry does not change state while
1526 * inspecting it.
1527 */
1528 spin_lock(&ubi->wl_lock);
1529 e = ubi->lookuptbl[pnum];
1530 if (!e) {
1531 spin_unlock(&ubi->wl_lock);
1532 err = -ENOENT;
1533 goto out_resume;
1534 }
1535
1536 /*
1537 * Does it make sense to check this PEB?
1538 */
1539 if (!scrub_possible(ubi, e)) {
1540 spin_unlock(&ubi->wl_lock);
1541 err = -EBUSY;
1542 goto out_resume;
1543 }
1544 spin_unlock(&ubi->wl_lock);
1545
1546 if (!force) {
1547 mutex_lock(&ubi->buf_mutex);
1548 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1549 mutex_unlock(&ubi->buf_mutex);
1550 }
1551
1552 if (force || err == UBI_IO_BITFLIPS) {
1553 /*
1554 * Okay, bit flip happened, let's figure out what we can do.
1555 */
1556 spin_lock(&ubi->wl_lock);
1557
1558 /*
1559 * Recheck. We released wl_lock, UBI might have killed the
1560 * wl entry under us.
1561 */
1562 e = ubi->lookuptbl[pnum];
1563 if (!e) {
1564 spin_unlock(&ubi->wl_lock);
1565 err = -ENOENT;
1566 goto out_resume;
1567 }
1568
1569 /*
1570 * Need to re-check state
1571 */
1572 if (!scrub_possible(ubi, e)) {
1573 spin_unlock(&ubi->wl_lock);
1574 err = -EBUSY;
1575 goto out_resume;
1576 }
1577
1578 if (in_pq(ubi, e)) {
1579 prot_queue_del(ubi, e->pnum);
1580 wl_tree_add(e, &ubi->scrub);
1581 spin_unlock(&ubi->wl_lock);
1582
1583 err = ensure_wear_leveling(ubi, 1);
1584 } else if (in_wl_tree(e, &ubi->used)) {
1585 rb_erase(&e->u.rb, &ubi->used);
1586 wl_tree_add(e, &ubi->scrub);
1587 spin_unlock(&ubi->wl_lock);
1588
1589 err = ensure_wear_leveling(ubi, 1);
1590 } else if (in_wl_tree(e, &ubi->free)) {
1591 rb_erase(&e->u.rb, &ubi->free);
1592 ubi->free_count--;
1593 spin_unlock(&ubi->wl_lock);
1594
1595 /*
1596 * This PEB is empty we can schedule it for
1597 * erasure right away. No wear leveling needed.
1598 */
1599 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1600 force ? 0 : 1, true);
1601 } else {
1602 spin_unlock(&ubi->wl_lock);
1603 err = -EAGAIN;
1604 }
1605
1606 if (!err && !force)
1607 err = -EUCLEAN;
1608 } else {
1609 err = 0;
1610 }
1611
1612 out_resume:
1613 up_write(&ubi->work_sem);
1614 out:
1615
1616 return err;
1617 }
1618
1619 /**
1620 * tree_destroy - destroy an RB-tree.
1621 * @ubi: UBI device description object
1622 * @root: the root of the tree to destroy
1623 */
1624 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1625 {
1626 struct rb_node *rb;
1627 struct ubi_wl_entry *e;
1628
1629 rb = root->rb_node;
1630 while (rb) {
1631 if (rb->rb_left)
1632 rb = rb->rb_left;
1633 else if (rb->rb_right)
1634 rb = rb->rb_right;
1635 else {
1636 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1637
1638 rb = rb_parent(rb);
1639 if (rb) {
1640 if (rb->rb_left == &e->u.rb)
1641 rb->rb_left = NULL;
1642 else
1643 rb->rb_right = NULL;
1644 }
1645
1646 wl_entry_destroy(ubi, e);
1647 }
1648 }
1649 }
1650
1651 /**
1652 * ubi_thread - UBI background thread.
1653 * @u: the UBI device description object pointer
1654 */
1655 int ubi_thread(void *u)
1656 {
1657 int failures = 0;
1658 struct ubi_device *ubi = u;
1659
1660 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1661 ubi->bgt_name, task_pid_nr(current));
1662
1663 set_freezable();
1664 for (;;) {
1665 int err;
1666
1667 if (kthread_should_stop())
1668 break;
1669
1670 if (try_to_freeze())
1671 continue;
1672
1673 spin_lock(&ubi->wl_lock);
1674 if (list_empty(&ubi->works) || ubi->ro_mode ||
1675 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1676 set_current_state(TASK_INTERRUPTIBLE);
1677 spin_unlock(&ubi->wl_lock);
1678
1679 /*
1680 * Check kthread_should_stop() after we set the task
1681 * state to guarantee that we either see the stop bit
1682 * and exit or the task state is reset to runnable such
1683 * that it's not scheduled out indefinitely and detects
1684 * the stop bit at kthread_should_stop().
1685 */
1686 if (kthread_should_stop()) {
1687 set_current_state(TASK_RUNNING);
1688 break;
1689 }
1690
1691 schedule();
1692 continue;
1693 }
1694 spin_unlock(&ubi->wl_lock);
1695
1696 err = do_work(ubi);
1697 if (err) {
1698 ubi_err(ubi, "%s: work failed with error code %d",
1699 ubi->bgt_name, err);
1700 if (failures++ > WL_MAX_FAILURES) {
1701 /*
1702 * Too many failures, disable the thread and
1703 * switch to read-only mode.
1704 */
1705 ubi_msg(ubi, "%s: %d consecutive failures",
1706 ubi->bgt_name, WL_MAX_FAILURES);
1707 ubi_ro_mode(ubi);
1708 ubi->thread_enabled = 0;
1709 continue;
1710 }
1711 } else
1712 failures = 0;
1713
1714 cond_resched();
1715 }
1716
1717 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1718 ubi->thread_enabled = 0;
1719 return 0;
1720 }
1721
1722 /**
1723 * shutdown_work - shutdown all pending works.
1724 * @ubi: UBI device description object
1725 */
1726 static void shutdown_work(struct ubi_device *ubi)
1727 {
1728 while (!list_empty(&ubi->works)) {
1729 struct ubi_work *wrk;
1730
1731 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1732 list_del(&wrk->list);
1733 wrk->func(ubi, wrk, 1);
1734 ubi->works_count -= 1;
1735 ubi_assert(ubi->works_count >= 0);
1736 }
1737 }
1738
1739 /**
1740 * erase_aeb - erase a PEB given in UBI attach info PEB
1741 * @ubi: UBI device description object
1742 * @aeb: UBI attach info PEB
1743 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1744 */
1745 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1746 {
1747 struct ubi_wl_entry *e;
1748 int err;
1749
1750 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1751 if (!e)
1752 return -ENOMEM;
1753
1754 e->pnum = aeb->pnum;
1755 e->ec = aeb->ec;
1756 ubi->lookuptbl[e->pnum] = e;
1757
1758 if (sync) {
1759 err = sync_erase(ubi, e, false);
1760 if (err)
1761 goto out_free;
1762
1763 wl_tree_add(e, &ubi->free);
1764 ubi->free_count++;
1765 } else {
1766 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1767 if (err)
1768 goto out_free;
1769 }
1770
1771 return 0;
1772
1773 out_free:
1774 wl_entry_destroy(ubi, e);
1775
1776 return err;
1777 }
1778
1779 /**
1780 * ubi_wl_init - initialize the WL sub-system using attaching information.
1781 * @ubi: UBI device description object
1782 * @ai: attaching information
1783 *
1784 * This function returns zero in case of success, and a negative error code in
1785 * case of failure.
1786 */
1787 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1788 {
1789 int err, i, reserved_pebs, found_pebs = 0;
1790 struct rb_node *rb1, *rb2;
1791 struct ubi_ainf_volume *av;
1792 struct ubi_ainf_peb *aeb, *tmp;
1793 struct ubi_wl_entry *e;
1794
1795 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1796 spin_lock_init(&ubi->wl_lock);
1797 mutex_init(&ubi->move_mutex);
1798 init_rwsem(&ubi->work_sem);
1799 ubi->max_ec = ai->max_ec;
1800 INIT_LIST_HEAD(&ubi->works);
1801
1802 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1803
1804 err = -ENOMEM;
1805 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1806 if (!ubi->lookuptbl)
1807 return err;
1808
1809 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1810 INIT_LIST_HEAD(&ubi->pq[i]);
1811 ubi->pq_head = 0;
1812
1813 ubi->free_count = 0;
1814 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1815 cond_resched();
1816
1817 err = erase_aeb(ubi, aeb, false);
1818 if (err)
1819 goto out_free;
1820
1821 found_pebs++;
1822 }
1823
1824 list_for_each_entry(aeb, &ai->free, u.list) {
1825 cond_resched();
1826
1827 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1828 if (!e) {
1829 err = -ENOMEM;
1830 goto out_free;
1831 }
1832
1833 e->pnum = aeb->pnum;
1834 e->ec = aeb->ec;
1835 ubi_assert(e->ec >= 0);
1836
1837 wl_tree_add(e, &ubi->free);
1838 ubi->free_count++;
1839
1840 ubi->lookuptbl[e->pnum] = e;
1841
1842 found_pebs++;
1843 }
1844
1845 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1846 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1847 cond_resched();
1848
1849 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1850 if (!e) {
1851 err = -ENOMEM;
1852 goto out_free;
1853 }
1854
1855 e->pnum = aeb->pnum;
1856 e->ec = aeb->ec;
1857 ubi->lookuptbl[e->pnum] = e;
1858
1859 if (!aeb->scrub) {
1860 dbg_wl("add PEB %d EC %d to the used tree",
1861 e->pnum, e->ec);
1862 wl_tree_add(e, &ubi->used);
1863 } else {
1864 dbg_wl("add PEB %d EC %d to the scrub tree",
1865 e->pnum, e->ec);
1866 wl_tree_add(e, &ubi->scrub);
1867 }
1868
1869 found_pebs++;
1870 }
1871 }
1872
1873 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1874 cond_resched();
1875
1876 e = ubi_find_fm_block(ubi, aeb->pnum);
1877
1878 if (e) {
1879 ubi_assert(!ubi->lookuptbl[e->pnum]);
1880 ubi->lookuptbl[e->pnum] = e;
1881 } else {
1882 bool sync = false;
1883
1884 /*
1885 * Usually old Fastmap PEBs are scheduled for erasure
1886 * and we don't have to care about them but if we face
1887 * an power cut before scheduling them we need to
1888 * take care of them here.
1889 */
1890 if (ubi->lookuptbl[aeb->pnum])
1891 continue;
1892
1893 /*
1894 * The fastmap update code might not find a free PEB for
1895 * writing the fastmap anchor to and then reuses the
1896 * current fastmap anchor PEB. When this PEB gets erased
1897 * and a power cut happens before it is written again we
1898 * must make sure that the fastmap attach code doesn't
1899 * find any outdated fastmap anchors, hence we erase the
1900 * outdated fastmap anchor PEBs synchronously here.
1901 */
1902 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1903 sync = true;
1904
1905 err = erase_aeb(ubi, aeb, sync);
1906 if (err)
1907 goto out_free;
1908 }
1909
1910 found_pebs++;
1911 }
1912
1913 dbg_wl("found %i PEBs", found_pebs);
1914
1915 ubi_assert(ubi->good_peb_count == found_pebs);
1916
1917 reserved_pebs = WL_RESERVED_PEBS;
1918 ubi_fastmap_init(ubi, &reserved_pebs);
1919
1920 if (ubi->avail_pebs < reserved_pebs) {
1921 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1922 ubi->avail_pebs, reserved_pebs);
1923 if (ubi->corr_peb_count)
1924 ubi_err(ubi, "%d PEBs are corrupted and not used",
1925 ubi->corr_peb_count);
1926 err = -ENOSPC;
1927 goto out_free;
1928 }
1929 ubi->avail_pebs -= reserved_pebs;
1930 ubi->rsvd_pebs += reserved_pebs;
1931
1932 /* Schedule wear-leveling if needed */
1933 err = ensure_wear_leveling(ubi, 0);
1934 if (err)
1935 goto out_free;
1936
1937 #ifdef CONFIG_MTD_UBI_FASTMAP
1938 if (!ubi->ro_mode && !ubi->fm_disabled)
1939 ubi_ensure_anchor_pebs(ubi);
1940 #endif
1941 return 0;
1942
1943 out_free:
1944 shutdown_work(ubi);
1945 tree_destroy(ubi, &ubi->used);
1946 tree_destroy(ubi, &ubi->free);
1947 tree_destroy(ubi, &ubi->scrub);
1948 kfree(ubi->lookuptbl);
1949 return err;
1950 }
1951
1952 /**
1953 * protection_queue_destroy - destroy the protection queue.
1954 * @ubi: UBI device description object
1955 */
1956 static void protection_queue_destroy(struct ubi_device *ubi)
1957 {
1958 int i;
1959 struct ubi_wl_entry *e, *tmp;
1960
1961 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1962 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1963 list_del(&e->u.list);
1964 wl_entry_destroy(ubi, e);
1965 }
1966 }
1967 }
1968
1969 /**
1970 * ubi_wl_close - close the wear-leveling sub-system.
1971 * @ubi: UBI device description object
1972 */
1973 void ubi_wl_close(struct ubi_device *ubi)
1974 {
1975 dbg_wl("close the WL sub-system");
1976 ubi_fastmap_close(ubi);
1977 shutdown_work(ubi);
1978 protection_queue_destroy(ubi);
1979 tree_destroy(ubi, &ubi->used);
1980 tree_destroy(ubi, &ubi->erroneous);
1981 tree_destroy(ubi, &ubi->free);
1982 tree_destroy(ubi, &ubi->scrub);
1983 kfree(ubi->lookuptbl);
1984 }
1985
1986 /**
1987 * self_check_ec - make sure that the erase counter of a PEB is correct.
1988 * @ubi: UBI device description object
1989 * @pnum: the physical eraseblock number to check
1990 * @ec: the erase counter to check
1991 *
1992 * This function returns zero if the erase counter of physical eraseblock @pnum
1993 * is equivalent to @ec, and a negative error code if not or if an error
1994 * occurred.
1995 */
1996 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1997 {
1998 int err;
1999 long long read_ec;
2000 struct ubi_ec_hdr *ec_hdr;
2001
2002 if (!ubi_dbg_chk_gen(ubi))
2003 return 0;
2004
2005 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2006 if (!ec_hdr)
2007 return -ENOMEM;
2008
2009 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2010 if (err && err != UBI_IO_BITFLIPS) {
2011 /* The header does not have to exist */
2012 err = 0;
2013 goto out_free;
2014 }
2015
2016 read_ec = be64_to_cpu(ec_hdr->ec);
2017 if (ec != read_ec && read_ec - ec > 1) {
2018 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2019 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2020 dump_stack();
2021 err = 1;
2022 } else
2023 err = 0;
2024
2025 out_free:
2026 kfree(ec_hdr);
2027 return err;
2028 }
2029
2030 /**
2031 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2032 * @ubi: UBI device description object
2033 * @e: the wear-leveling entry to check
2034 * @root: the root of the tree
2035 *
2036 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2037 * is not.
2038 */
2039 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2040 struct ubi_wl_entry *e, struct rb_root *root)
2041 {
2042 if (!ubi_dbg_chk_gen(ubi))
2043 return 0;
2044
2045 if (in_wl_tree(e, root))
2046 return 0;
2047
2048 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2049 e->pnum, e->ec, root);
2050 dump_stack();
2051 return -EINVAL;
2052 }
2053
2054 /**
2055 * self_check_in_pq - check if wear-leveling entry is in the protection
2056 * queue.
2057 * @ubi: UBI device description object
2058 * @e: the wear-leveling entry to check
2059 *
2060 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2061 */
2062 static int self_check_in_pq(const struct ubi_device *ubi,
2063 struct ubi_wl_entry *e)
2064 {
2065 if (!ubi_dbg_chk_gen(ubi))
2066 return 0;
2067
2068 if (in_pq(ubi, e))
2069 return 0;
2070
2071 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2072 e->pnum, e->ec);
2073 dump_stack();
2074 return -EINVAL;
2075 }
2076 #ifndef CONFIG_MTD_UBI_FASTMAP
2077 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2078 {
2079 struct ubi_wl_entry *e;
2080
2081 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2082 self_check_in_wl_tree(ubi, e, &ubi->free);
2083 ubi->free_count--;
2084 ubi_assert(ubi->free_count >= 0);
2085 rb_erase(&e->u.rb, &ubi->free);
2086
2087 return e;
2088 }
2089
2090 /**
2091 * produce_free_peb - produce a free physical eraseblock.
2092 * @ubi: UBI device description object
2093 *
2094 * This function tries to make a free PEB by means of synchronous execution of
2095 * pending works. This may be needed if, for example the background thread is
2096 * disabled. Returns zero in case of success and a negative error code in case
2097 * of failure.
2098 */
2099 static int produce_free_peb(struct ubi_device *ubi)
2100 {
2101 int err;
2102
2103 while (!ubi->free.rb_node && ubi->works_count) {
2104 spin_unlock(&ubi->wl_lock);
2105
2106 dbg_wl("do one work synchronously");
2107 err = do_work(ubi);
2108
2109 spin_lock(&ubi->wl_lock);
2110 if (err)
2111 return err;
2112 }
2113
2114 return 0;
2115 }
2116
2117 /**
2118 * ubi_wl_get_peb - get a physical eraseblock.
2119 * @ubi: UBI device description object
2120 *
2121 * This function returns a physical eraseblock in case of success and a
2122 * negative error code in case of failure.
2123 * Returns with ubi->fm_eba_sem held in read mode!
2124 */
2125 int ubi_wl_get_peb(struct ubi_device *ubi)
2126 {
2127 int err;
2128 struct ubi_wl_entry *e;
2129
2130 retry:
2131 down_read(&ubi->fm_eba_sem);
2132 spin_lock(&ubi->wl_lock);
2133 if (!ubi->free.rb_node) {
2134 if (ubi->works_count == 0) {
2135 ubi_err(ubi, "no free eraseblocks");
2136 ubi_assert(list_empty(&ubi->works));
2137 spin_unlock(&ubi->wl_lock);
2138 return -ENOSPC;
2139 }
2140
2141 err = produce_free_peb(ubi);
2142 if (err < 0) {
2143 spin_unlock(&ubi->wl_lock);
2144 return err;
2145 }
2146 spin_unlock(&ubi->wl_lock);
2147 up_read(&ubi->fm_eba_sem);
2148 goto retry;
2149
2150 }
2151 e = wl_get_wle(ubi);
2152 prot_queue_add(ubi, e);
2153 spin_unlock(&ubi->wl_lock);
2154
2155 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2156 ubi->peb_size - ubi->vid_hdr_aloffset);
2157 if (err) {
2158 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2159 return err;
2160 }
2161
2162 return e->pnum;
2163 }
2164 #else
2165 #include "fastmap-wl.c"
2166 #endif
2167