xref: /openbmc/linux/net/openvswitch/actions.c (revision aad29a73199b7fbccfbabea3f1ee627ad1924f52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "drop.h"
31 #include "flow.h"
32 #include "conntrack.h"
33 #include "vport.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
36 
37 struct deferred_action {
38 	struct sk_buff *skb;
39 	const struct nlattr *actions;
40 	int actions_len;
41 
42 	/* Store pkt_key clone when creating deferred action. */
43 	struct sw_flow_key pkt_key;
44 };
45 
46 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
48 	unsigned long dst;
49 	struct vport *vport;
50 	struct ovs_skb_cb cb;
51 	__be16 inner_protocol;
52 	u16 network_offset;	/* valid only for MPLS */
53 	u16 vlan_tci;
54 	__be16 vlan_proto;
55 	unsigned int l2_len;
56 	u8 mac_proto;
57 	u8 l2_data[MAX_L2_LEN];
58 };
59 
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61 
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 struct action_fifo {
66 	int head;
67 	int tail;
68 	/* Deferred action fifo queue storage. */
69 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 };
71 
72 struct action_flow_keys {
73 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 };
75 
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
79 
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81  * space. Return NULL if out of key spaces.
82  */
clone_key(const struct sw_flow_key * key_)83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84 {
85 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 	int level = this_cpu_read(exec_actions_level);
87 	struct sw_flow_key *key = NULL;
88 
89 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 		key = &keys->key[level - 1];
91 		*key = *key_;
92 	}
93 
94 	return key;
95 }
96 
action_fifo_init(struct action_fifo * fifo)97 static void action_fifo_init(struct action_fifo *fifo)
98 {
99 	fifo->head = 0;
100 	fifo->tail = 0;
101 }
102 
action_fifo_is_empty(const struct action_fifo * fifo)103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
104 {
105 	return (fifo->head == fifo->tail);
106 }
107 
action_fifo_get(struct action_fifo * fifo)108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109 {
110 	if (action_fifo_is_empty(fifo))
111 		return NULL;
112 
113 	return &fifo->fifo[fifo->tail++];
114 }
115 
action_fifo_put(struct action_fifo * fifo)116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117 {
118 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 		return NULL;
120 
121 	return &fifo->fifo[fifo->head++];
122 }
123 
124 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 				    const struct sw_flow_key *key,
127 				    const struct nlattr *actions,
128 				    const int actions_len)
129 {
130 	struct action_fifo *fifo;
131 	struct deferred_action *da;
132 
133 	fifo = this_cpu_ptr(action_fifos);
134 	da = action_fifo_put(fifo);
135 	if (da) {
136 		da->skb = skb;
137 		da->actions = actions;
138 		da->actions_len = actions_len;
139 		da->pkt_key = *key;
140 	}
141 
142 	return da;
143 }
144 
invalidate_flow_key(struct sw_flow_key * key)145 static void invalidate_flow_key(struct sw_flow_key *key)
146 {
147 	key->mac_proto |= SW_FLOW_KEY_INVALID;
148 }
149 
is_flow_key_valid(const struct sw_flow_key * key)150 static bool is_flow_key_valid(const struct sw_flow_key *key)
151 {
152 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 }
154 
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 			 struct sw_flow_key *key,
157 			 u32 recirc_id,
158 			 const struct nlattr *actions, int len,
159 			 bool last, bool clone_flow_key);
160 
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 			      struct sw_flow_key *key,
163 			      const struct nlattr *attr, int len);
164 
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167 {
168 	int err;
169 
170 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171 	if (err)
172 		return err;
173 
174 	if (!mac_len)
175 		key->mac_proto = MAC_PROTO_NONE;
176 
177 	invalidate_flow_key(key);
178 	return 0;
179 }
180 
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 		    const __be16 ethertype)
183 {
184 	int err;
185 
186 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188 	if (err)
189 		return err;
190 
191 	if (ethertype == htons(ETH_P_TEB))
192 		key->mac_proto = MAC_PROTO_ETHERNET;
193 
194 	invalidate_flow_key(key);
195 	return 0;
196 }
197 
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 		    const __be32 *mpls_lse, const __be32 *mask)
200 {
201 	struct mpls_shim_hdr *stack;
202 	__be32 lse;
203 	int err;
204 
205 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206 		return -ENOMEM;
207 
208 	stack = mpls_hdr(skb);
209 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 	err = skb_mpls_update_lse(skb, lse);
211 	if (err)
212 		return err;
213 
214 	flow_key->mpls.lse[0] = lse;
215 	return 0;
216 }
217 
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219 {
220 	int err;
221 
222 	err = skb_vlan_pop(skb);
223 	if (skb_vlan_tag_present(skb)) {
224 		invalidate_flow_key(key);
225 	} else {
226 		key->eth.vlan.tci = 0;
227 		key->eth.vlan.tpid = 0;
228 	}
229 	return err;
230 }
231 
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 		     const struct ovs_action_push_vlan *vlan)
234 {
235 	if (skb_vlan_tag_present(skb)) {
236 		invalidate_flow_key(key);
237 	} else {
238 		key->eth.vlan.tci = vlan->vlan_tci;
239 		key->eth.vlan.tpid = vlan->vlan_tpid;
240 	}
241 	return skb_vlan_push(skb, vlan->vlan_tpid,
242 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243 }
244 
245 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247 {
248 	u16 *dst = (u16 *)dst_;
249 	const u16 *src = (const u16 *)src_;
250 	const u16 *mask = (const u16 *)mask_;
251 
252 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
255 }
256 
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 			const struct ovs_key_ethernet *key,
259 			const struct ovs_key_ethernet *mask)
260 {
261 	int err;
262 
263 	err = skb_ensure_writable(skb, ETH_HLEN);
264 	if (unlikely(err))
265 		return err;
266 
267 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268 
269 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270 			       mask->eth_src);
271 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272 			       mask->eth_dst);
273 
274 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275 
276 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278 	return 0;
279 }
280 
281 /* pop_eth does not support VLAN packets as this action is never called
282  * for them.
283  */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286 	int err;
287 
288 	err = skb_eth_pop(skb);
289 	if (err)
290 		return err;
291 
292 	/* safe right before invalidate_flow_key */
293 	key->mac_proto = MAC_PROTO_NONE;
294 	invalidate_flow_key(key);
295 	return 0;
296 }
297 
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 		    const struct ovs_action_push_eth *ethh)
300 {
301 	int err;
302 
303 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 			   ethh->addresses.eth_src);
305 	if (err)
306 		return err;
307 
308 	/* safe right before invalidate_flow_key */
309 	key->mac_proto = MAC_PROTO_ETHERNET;
310 	invalidate_flow_key(key);
311 	return 0;
312 }
313 
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)314 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
315 		    const struct nshhdr *nh)
316 {
317 	int err;
318 
319 	err = nsh_push(skb, nh);
320 	if (err)
321 		return err;
322 
323 	/* safe right before invalidate_flow_key */
324 	key->mac_proto = MAC_PROTO_NONE;
325 	invalidate_flow_key(key);
326 	return 0;
327 }
328 
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)329 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
330 {
331 	int err;
332 
333 	err = nsh_pop(skb);
334 	if (err)
335 		return err;
336 
337 	/* safe right before invalidate_flow_key */
338 	if (skb->protocol == htons(ETH_P_TEB))
339 		key->mac_proto = MAC_PROTO_ETHERNET;
340 	else
341 		key->mac_proto = MAC_PROTO_NONE;
342 	invalidate_flow_key(key);
343 	return 0;
344 }
345 
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)346 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
347 				  __be32 addr, __be32 new_addr)
348 {
349 	int transport_len = skb->len - skb_transport_offset(skb);
350 
351 	if (nh->frag_off & htons(IP_OFFSET))
352 		return;
353 
354 	if (nh->protocol == IPPROTO_TCP) {
355 		if (likely(transport_len >= sizeof(struct tcphdr)))
356 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
357 						 addr, new_addr, true);
358 	} else if (nh->protocol == IPPROTO_UDP) {
359 		if (likely(transport_len >= sizeof(struct udphdr))) {
360 			struct udphdr *uh = udp_hdr(skb);
361 
362 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
363 				inet_proto_csum_replace4(&uh->check, skb,
364 							 addr, new_addr, true);
365 				if (!uh->check)
366 					uh->check = CSUM_MANGLED_0;
367 			}
368 		}
369 	}
370 }
371 
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)372 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
373 			__be32 *addr, __be32 new_addr)
374 {
375 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
376 	csum_replace4(&nh->check, *addr, new_addr);
377 	skb_clear_hash(skb);
378 	ovs_ct_clear(skb, NULL);
379 	*addr = new_addr;
380 }
381 
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])382 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
383 				 __be32 addr[4], const __be32 new_addr[4])
384 {
385 	int transport_len = skb->len - skb_transport_offset(skb);
386 
387 	if (l4_proto == NEXTHDR_TCP) {
388 		if (likely(transport_len >= sizeof(struct tcphdr)))
389 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
390 						  addr, new_addr, true);
391 	} else if (l4_proto == NEXTHDR_UDP) {
392 		if (likely(transport_len >= sizeof(struct udphdr))) {
393 			struct udphdr *uh = udp_hdr(skb);
394 
395 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
396 				inet_proto_csum_replace16(&uh->check, skb,
397 							  addr, new_addr, true);
398 				if (!uh->check)
399 					uh->check = CSUM_MANGLED_0;
400 			}
401 		}
402 	} else if (l4_proto == NEXTHDR_ICMP) {
403 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
404 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
405 						  skb, addr, new_addr, true);
406 	}
407 }
408 
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])409 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
410 			   const __be32 mask[4], __be32 masked[4])
411 {
412 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
413 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
414 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
415 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
416 }
417 
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)418 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
419 			  __be32 addr[4], const __be32 new_addr[4],
420 			  bool recalculate_csum)
421 {
422 	if (recalculate_csum)
423 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
424 
425 	skb_clear_hash(skb);
426 	ovs_ct_clear(skb, NULL);
427 	memcpy(addr, new_addr, sizeof(__be32[4]));
428 }
429 
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)430 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
431 {
432 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
433 
434 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
435 
436 	if (skb->ip_summed == CHECKSUM_COMPLETE)
437 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
438 			     (__force __wsum)(ipv6_tclass << 12));
439 
440 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
441 }
442 
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)443 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
444 {
445 	u32 ofl;
446 
447 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
448 	fl = OVS_MASKED(ofl, fl, mask);
449 
450 	/* Bits 21-24 are always unmasked, so this retains their values. */
451 	nh->flow_lbl[0] = (u8)(fl >> 16);
452 	nh->flow_lbl[1] = (u8)(fl >> 8);
453 	nh->flow_lbl[2] = (u8)fl;
454 
455 	if (skb->ip_summed == CHECKSUM_COMPLETE)
456 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
457 }
458 
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)459 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
460 {
461 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
462 
463 	if (skb->ip_summed == CHECKSUM_COMPLETE)
464 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
465 			     (__force __wsum)(new_ttl << 8));
466 	nh->hop_limit = new_ttl;
467 }
468 
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)469 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
470 		       u8 mask)
471 {
472 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
473 
474 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
475 	nh->ttl = new_ttl;
476 }
477 
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)478 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
479 		    const struct ovs_key_ipv4 *key,
480 		    const struct ovs_key_ipv4 *mask)
481 {
482 	struct iphdr *nh;
483 	__be32 new_addr;
484 	int err;
485 
486 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
487 				  sizeof(struct iphdr));
488 	if (unlikely(err))
489 		return err;
490 
491 	nh = ip_hdr(skb);
492 
493 	/* Setting an IP addresses is typically only a side effect of
494 	 * matching on them in the current userspace implementation, so it
495 	 * makes sense to check if the value actually changed.
496 	 */
497 	if (mask->ipv4_src) {
498 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
499 
500 		if (unlikely(new_addr != nh->saddr)) {
501 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
502 			flow_key->ipv4.addr.src = new_addr;
503 		}
504 	}
505 	if (mask->ipv4_dst) {
506 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
507 
508 		if (unlikely(new_addr != nh->daddr)) {
509 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
510 			flow_key->ipv4.addr.dst = new_addr;
511 		}
512 	}
513 	if (mask->ipv4_tos) {
514 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
515 		flow_key->ip.tos = nh->tos;
516 	}
517 	if (mask->ipv4_ttl) {
518 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
519 		flow_key->ip.ttl = nh->ttl;
520 	}
521 
522 	return 0;
523 }
524 
is_ipv6_mask_nonzero(const __be32 addr[4])525 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
526 {
527 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
528 }
529 
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)530 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
531 		    const struct ovs_key_ipv6 *key,
532 		    const struct ovs_key_ipv6 *mask)
533 {
534 	struct ipv6hdr *nh;
535 	int err;
536 
537 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
538 				  sizeof(struct ipv6hdr));
539 	if (unlikely(err))
540 		return err;
541 
542 	nh = ipv6_hdr(skb);
543 
544 	/* Setting an IP addresses is typically only a side effect of
545 	 * matching on them in the current userspace implementation, so it
546 	 * makes sense to check if the value actually changed.
547 	 */
548 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
549 		__be32 *saddr = (__be32 *)&nh->saddr;
550 		__be32 masked[4];
551 
552 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
553 
554 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
555 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
556 				      true);
557 			memcpy(&flow_key->ipv6.addr.src, masked,
558 			       sizeof(flow_key->ipv6.addr.src));
559 		}
560 	}
561 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
562 		unsigned int offset = 0;
563 		int flags = IP6_FH_F_SKIP_RH;
564 		bool recalc_csum = true;
565 		__be32 *daddr = (__be32 *)&nh->daddr;
566 		__be32 masked[4];
567 
568 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
569 
570 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
571 			if (ipv6_ext_hdr(nh->nexthdr))
572 				recalc_csum = (ipv6_find_hdr(skb, &offset,
573 							     NEXTHDR_ROUTING,
574 							     NULL, &flags)
575 					       != NEXTHDR_ROUTING);
576 
577 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
578 				      recalc_csum);
579 			memcpy(&flow_key->ipv6.addr.dst, masked,
580 			       sizeof(flow_key->ipv6.addr.dst));
581 		}
582 	}
583 	if (mask->ipv6_tclass) {
584 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
585 		flow_key->ip.tos = ipv6_get_dsfield(nh);
586 	}
587 	if (mask->ipv6_label) {
588 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
589 			    ntohl(mask->ipv6_label));
590 		flow_key->ipv6.label =
591 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
592 	}
593 	if (mask->ipv6_hlimit) {
594 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
595 		flow_key->ip.ttl = nh->hop_limit;
596 	}
597 	return 0;
598 }
599 
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)600 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
601 		   const struct nlattr *a)
602 {
603 	struct nshhdr *nh;
604 	size_t length;
605 	int err;
606 	u8 flags;
607 	u8 ttl;
608 	int i;
609 
610 	struct ovs_key_nsh key;
611 	struct ovs_key_nsh mask;
612 
613 	err = nsh_key_from_nlattr(a, &key, &mask);
614 	if (err)
615 		return err;
616 
617 	/* Make sure the NSH base header is there */
618 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
619 		return -ENOMEM;
620 
621 	nh = nsh_hdr(skb);
622 	length = nsh_hdr_len(nh);
623 
624 	/* Make sure the whole NSH header is there */
625 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
626 				       length);
627 	if (unlikely(err))
628 		return err;
629 
630 	nh = nsh_hdr(skb);
631 	skb_postpull_rcsum(skb, nh, length);
632 	flags = nsh_get_flags(nh);
633 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
634 	flow_key->nsh.base.flags = flags;
635 	ttl = nsh_get_ttl(nh);
636 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
637 	flow_key->nsh.base.ttl = ttl;
638 	nsh_set_flags_and_ttl(nh, flags, ttl);
639 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
640 				  mask.base.path_hdr);
641 	flow_key->nsh.base.path_hdr = nh->path_hdr;
642 	switch (nh->mdtype) {
643 	case NSH_M_TYPE1:
644 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
645 			nh->md1.context[i] =
646 			    OVS_MASKED(nh->md1.context[i], key.context[i],
647 				       mask.context[i]);
648 		}
649 		memcpy(flow_key->nsh.context, nh->md1.context,
650 		       sizeof(nh->md1.context));
651 		break;
652 	case NSH_M_TYPE2:
653 		memset(flow_key->nsh.context, 0,
654 		       sizeof(flow_key->nsh.context));
655 		break;
656 	default:
657 		return -EINVAL;
658 	}
659 	skb_postpush_rcsum(skb, nh, length);
660 	return 0;
661 }
662 
663 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)664 static void set_tp_port(struct sk_buff *skb, __be16 *port,
665 			__be16 new_port, __sum16 *check)
666 {
667 	ovs_ct_clear(skb, NULL);
668 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
669 	*port = new_port;
670 }
671 
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)672 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
673 		   const struct ovs_key_udp *key,
674 		   const struct ovs_key_udp *mask)
675 {
676 	struct udphdr *uh;
677 	__be16 src, dst;
678 	int err;
679 
680 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
681 				  sizeof(struct udphdr));
682 	if (unlikely(err))
683 		return err;
684 
685 	uh = udp_hdr(skb);
686 	/* Either of the masks is non-zero, so do not bother checking them. */
687 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
688 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
689 
690 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
691 		if (likely(src != uh->source)) {
692 			set_tp_port(skb, &uh->source, src, &uh->check);
693 			flow_key->tp.src = src;
694 		}
695 		if (likely(dst != uh->dest)) {
696 			set_tp_port(skb, &uh->dest, dst, &uh->check);
697 			flow_key->tp.dst = dst;
698 		}
699 
700 		if (unlikely(!uh->check))
701 			uh->check = CSUM_MANGLED_0;
702 	} else {
703 		uh->source = src;
704 		uh->dest = dst;
705 		flow_key->tp.src = src;
706 		flow_key->tp.dst = dst;
707 		ovs_ct_clear(skb, NULL);
708 	}
709 
710 	skb_clear_hash(skb);
711 
712 	return 0;
713 }
714 
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)715 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716 		   const struct ovs_key_tcp *key,
717 		   const struct ovs_key_tcp *mask)
718 {
719 	struct tcphdr *th;
720 	__be16 src, dst;
721 	int err;
722 
723 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724 				  sizeof(struct tcphdr));
725 	if (unlikely(err))
726 		return err;
727 
728 	th = tcp_hdr(skb);
729 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
730 	if (likely(src != th->source)) {
731 		set_tp_port(skb, &th->source, src, &th->check);
732 		flow_key->tp.src = src;
733 	}
734 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
735 	if (likely(dst != th->dest)) {
736 		set_tp_port(skb, &th->dest, dst, &th->check);
737 		flow_key->tp.dst = dst;
738 	}
739 	skb_clear_hash(skb);
740 
741 	return 0;
742 }
743 
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)744 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
745 		    const struct ovs_key_sctp *key,
746 		    const struct ovs_key_sctp *mask)
747 {
748 	unsigned int sctphoff = skb_transport_offset(skb);
749 	struct sctphdr *sh;
750 	__le32 old_correct_csum, new_csum, old_csum;
751 	int err;
752 
753 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
754 	if (unlikely(err))
755 		return err;
756 
757 	sh = sctp_hdr(skb);
758 	old_csum = sh->checksum;
759 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
760 
761 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
762 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
763 
764 	new_csum = sctp_compute_cksum(skb, sctphoff);
765 
766 	/* Carry any checksum errors through. */
767 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
768 
769 	skb_clear_hash(skb);
770 	ovs_ct_clear(skb, NULL);
771 
772 	flow_key->tp.src = sh->source;
773 	flow_key->tp.dst = sh->dest;
774 
775 	return 0;
776 }
777 
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)778 static int ovs_vport_output(struct net *net, struct sock *sk,
779 			    struct sk_buff *skb)
780 {
781 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
782 	struct vport *vport = data->vport;
783 
784 	if (skb_cow_head(skb, data->l2_len) < 0) {
785 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
786 		return -ENOMEM;
787 	}
788 
789 	__skb_dst_copy(skb, data->dst);
790 	*OVS_CB(skb) = data->cb;
791 	skb->inner_protocol = data->inner_protocol;
792 	if (data->vlan_tci & VLAN_CFI_MASK)
793 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
794 	else
795 		__vlan_hwaccel_clear_tag(skb);
796 
797 	/* Reconstruct the MAC header.  */
798 	skb_push(skb, data->l2_len);
799 	memcpy(skb->data, &data->l2_data, data->l2_len);
800 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
801 	skb_reset_mac_header(skb);
802 
803 	if (eth_p_mpls(skb->protocol)) {
804 		skb->inner_network_header = skb->network_header;
805 		skb_set_network_header(skb, data->network_offset);
806 		skb_reset_mac_len(skb);
807 	}
808 
809 	ovs_vport_send(vport, skb, data->mac_proto);
810 	return 0;
811 }
812 
813 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)814 ovs_dst_get_mtu(const struct dst_entry *dst)
815 {
816 	return dst->dev->mtu;
817 }
818 
819 static struct dst_ops ovs_dst_ops = {
820 	.family = AF_UNSPEC,
821 	.mtu = ovs_dst_get_mtu,
822 };
823 
824 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
825  * ovs_vport_output(), which is called once per fragmented packet.
826  */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)827 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
828 			 u16 orig_network_offset, u8 mac_proto)
829 {
830 	unsigned int hlen = skb_network_offset(skb);
831 	struct ovs_frag_data *data;
832 
833 	data = this_cpu_ptr(&ovs_frag_data_storage);
834 	data->dst = skb->_skb_refdst;
835 	data->vport = vport;
836 	data->cb = *OVS_CB(skb);
837 	data->inner_protocol = skb->inner_protocol;
838 	data->network_offset = orig_network_offset;
839 	if (skb_vlan_tag_present(skb))
840 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
841 	else
842 		data->vlan_tci = 0;
843 	data->vlan_proto = skb->vlan_proto;
844 	data->mac_proto = mac_proto;
845 	data->l2_len = hlen;
846 	memcpy(&data->l2_data, skb->data, hlen);
847 
848 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
849 	skb_pull(skb, hlen);
850 }
851 
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)852 static void ovs_fragment(struct net *net, struct vport *vport,
853 			 struct sk_buff *skb, u16 mru,
854 			 struct sw_flow_key *key)
855 {
856 	enum ovs_drop_reason reason;
857 	u16 orig_network_offset = 0;
858 
859 	if (eth_p_mpls(skb->protocol)) {
860 		orig_network_offset = skb_network_offset(skb);
861 		skb->network_header = skb->inner_network_header;
862 	}
863 
864 	if (skb_network_offset(skb) > MAX_L2_LEN) {
865 		OVS_NLERR(1, "L2 header too long to fragment");
866 		reason = OVS_DROP_FRAG_L2_TOO_LONG;
867 		goto err;
868 	}
869 
870 	if (key->eth.type == htons(ETH_P_IP)) {
871 		struct rtable ovs_rt = { 0 };
872 		unsigned long orig_dst;
873 
874 		prepare_frag(vport, skb, orig_network_offset,
875 			     ovs_key_mac_proto(key));
876 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
877 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
878 		ovs_rt.dst.dev = vport->dev;
879 
880 		orig_dst = skb->_skb_refdst;
881 		skb_dst_set_noref(skb, &ovs_rt.dst);
882 		IPCB(skb)->frag_max_size = mru;
883 
884 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
885 		refdst_drop(orig_dst);
886 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
887 		unsigned long orig_dst;
888 		struct rt6_info ovs_rt;
889 
890 		prepare_frag(vport, skb, orig_network_offset,
891 			     ovs_key_mac_proto(key));
892 		memset(&ovs_rt, 0, sizeof(ovs_rt));
893 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
894 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
895 		ovs_rt.dst.dev = vport->dev;
896 
897 		orig_dst = skb->_skb_refdst;
898 		skb_dst_set_noref(skb, &ovs_rt.dst);
899 		IP6CB(skb)->frag_max_size = mru;
900 
901 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
902 		refdst_drop(orig_dst);
903 	} else {
904 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
905 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
906 			  vport->dev->mtu);
907 		reason = OVS_DROP_FRAG_INVALID_PROTO;
908 		goto err;
909 	}
910 
911 	return;
912 err:
913 	ovs_kfree_skb_reason(skb, reason);
914 }
915 
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)916 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
917 		      struct sw_flow_key *key)
918 {
919 	struct vport *vport = ovs_vport_rcu(dp, out_port);
920 
921 	if (likely(vport &&
922 		   netif_running(vport->dev) &&
923 		   netif_carrier_ok(vport->dev))) {
924 		u16 mru = OVS_CB(skb)->mru;
925 		u32 cutlen = OVS_CB(skb)->cutlen;
926 
927 		if (unlikely(cutlen > 0)) {
928 			if (skb->len - cutlen > ovs_mac_header_len(key))
929 				pskb_trim(skb, skb->len - cutlen);
930 			else
931 				pskb_trim(skb, ovs_mac_header_len(key));
932 		}
933 
934 		/* Need to set the pkt_type to involve the routing layer.  The
935 		 * packet movement through the OVS datapath doesn't generally
936 		 * use routing, but this is needed for tunnel cases.
937 		 */
938 		skb->pkt_type = PACKET_OUTGOING;
939 
940 		if (likely(!mru ||
941 		           (skb->len <= mru + vport->dev->hard_header_len))) {
942 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
943 		} else if (mru <= vport->dev->mtu) {
944 			struct net *net = read_pnet(&dp->net);
945 
946 			ovs_fragment(net, vport, skb, mru, key);
947 		} else {
948 			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
949 		}
950 	} else {
951 		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
952 	}
953 }
954 
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)955 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
956 			    struct sw_flow_key *key, const struct nlattr *attr,
957 			    const struct nlattr *actions, int actions_len,
958 			    uint32_t cutlen)
959 {
960 	struct dp_upcall_info upcall;
961 	const struct nlattr *a;
962 	int rem;
963 
964 	memset(&upcall, 0, sizeof(upcall));
965 	upcall.cmd = OVS_PACKET_CMD_ACTION;
966 	upcall.mru = OVS_CB(skb)->mru;
967 
968 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
969 	     a = nla_next(a, &rem)) {
970 		switch (nla_type(a)) {
971 		case OVS_USERSPACE_ATTR_USERDATA:
972 			upcall.userdata = a;
973 			break;
974 
975 		case OVS_USERSPACE_ATTR_PID:
976 			if (dp->user_features &
977 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
978 				upcall.portid =
979 				  ovs_dp_get_upcall_portid(dp,
980 							   smp_processor_id());
981 			else
982 				upcall.portid = nla_get_u32(a);
983 			break;
984 
985 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
986 			/* Get out tunnel info. */
987 			struct vport *vport;
988 
989 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
990 			if (vport) {
991 				int err;
992 
993 				err = dev_fill_metadata_dst(vport->dev, skb);
994 				if (!err)
995 					upcall.egress_tun_info = skb_tunnel_info(skb);
996 			}
997 
998 			break;
999 		}
1000 
1001 		case OVS_USERSPACE_ATTR_ACTIONS: {
1002 			/* Include actions. */
1003 			upcall.actions = actions;
1004 			upcall.actions_len = actions_len;
1005 			break;
1006 		}
1007 
1008 		} /* End of switch. */
1009 	}
1010 
1011 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1012 }
1013 
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1014 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1015 				     struct sw_flow_key *key,
1016 				     const struct nlattr *attr)
1017 {
1018 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1019 	struct nlattr *actions = nla_data(attr);
1020 
1021 	if (nla_len(actions))
1022 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1023 				     nla_len(actions), true, false);
1024 
1025 	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1026 	return 0;
1027 }
1028 
1029 /* When 'last' is true, sample() should always consume the 'skb'.
1030  * Otherwise, sample() should keep 'skb' intact regardless what
1031  * actions are executed within sample().
1032  */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1033 static int sample(struct datapath *dp, struct sk_buff *skb,
1034 		  struct sw_flow_key *key, const struct nlattr *attr,
1035 		  bool last)
1036 {
1037 	struct nlattr *actions;
1038 	struct nlattr *sample_arg;
1039 	int rem = nla_len(attr);
1040 	const struct sample_arg *arg;
1041 	bool clone_flow_key;
1042 
1043 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1044 	sample_arg = nla_data(attr);
1045 	arg = nla_data(sample_arg);
1046 	actions = nla_next(sample_arg, &rem);
1047 
1048 	if ((arg->probability != U32_MAX) &&
1049 	    (!arg->probability || get_random_u32() > arg->probability)) {
1050 		if (last)
1051 			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1052 		return 0;
1053 	}
1054 
1055 	clone_flow_key = !arg->exec;
1056 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1057 			     clone_flow_key);
1058 }
1059 
1060 /* When 'last' is true, clone() should always consume the 'skb'.
1061  * Otherwise, clone() should keep 'skb' intact regardless what
1062  * actions are executed within clone().
1063  */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1064 static int clone(struct datapath *dp, struct sk_buff *skb,
1065 		 struct sw_flow_key *key, const struct nlattr *attr,
1066 		 bool last)
1067 {
1068 	struct nlattr *actions;
1069 	struct nlattr *clone_arg;
1070 	int rem = nla_len(attr);
1071 	bool dont_clone_flow_key;
1072 
1073 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1074 	clone_arg = nla_data(attr);
1075 	dont_clone_flow_key = nla_get_u32(clone_arg);
1076 	actions = nla_next(clone_arg, &rem);
1077 
1078 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1079 			     !dont_clone_flow_key);
1080 }
1081 
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1082 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1083 			 const struct nlattr *attr)
1084 {
1085 	struct ovs_action_hash *hash_act = nla_data(attr);
1086 	u32 hash = 0;
1087 
1088 	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1089 		/* OVS_HASH_ALG_L4 hasing type. */
1090 		hash = skb_get_hash(skb);
1091 	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1092 		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1093 		 * extend past an encapsulated header.
1094 		 */
1095 		hash = __skb_get_hash_symmetric(skb);
1096 	}
1097 
1098 	hash = jhash_1word(hash, hash_act->hash_basis);
1099 	if (!hash)
1100 		hash = 0x1;
1101 
1102 	key->ovs_flow_hash = hash;
1103 }
1104 
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1105 static int execute_set_action(struct sk_buff *skb,
1106 			      struct sw_flow_key *flow_key,
1107 			      const struct nlattr *a)
1108 {
1109 	/* Only tunnel set execution is supported without a mask. */
1110 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1111 		struct ovs_tunnel_info *tun = nla_data(a);
1112 
1113 		skb_dst_drop(skb);
1114 		dst_hold((struct dst_entry *)tun->tun_dst);
1115 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1116 		return 0;
1117 	}
1118 
1119 	return -EINVAL;
1120 }
1121 
1122 /* Mask is at the midpoint of the data. */
1123 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1124 
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1125 static int execute_masked_set_action(struct sk_buff *skb,
1126 				     struct sw_flow_key *flow_key,
1127 				     const struct nlattr *a)
1128 {
1129 	int err = 0;
1130 
1131 	switch (nla_type(a)) {
1132 	case OVS_KEY_ATTR_PRIORITY:
1133 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1134 			       *get_mask(a, u32 *));
1135 		flow_key->phy.priority = skb->priority;
1136 		break;
1137 
1138 	case OVS_KEY_ATTR_SKB_MARK:
1139 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1140 		flow_key->phy.skb_mark = skb->mark;
1141 		break;
1142 
1143 	case OVS_KEY_ATTR_TUNNEL_INFO:
1144 		/* Masked data not supported for tunnel. */
1145 		err = -EINVAL;
1146 		break;
1147 
1148 	case OVS_KEY_ATTR_ETHERNET:
1149 		err = set_eth_addr(skb, flow_key, nla_data(a),
1150 				   get_mask(a, struct ovs_key_ethernet *));
1151 		break;
1152 
1153 	case OVS_KEY_ATTR_NSH:
1154 		err = set_nsh(skb, flow_key, a);
1155 		break;
1156 
1157 	case OVS_KEY_ATTR_IPV4:
1158 		err = set_ipv4(skb, flow_key, nla_data(a),
1159 			       get_mask(a, struct ovs_key_ipv4 *));
1160 		break;
1161 
1162 	case OVS_KEY_ATTR_IPV6:
1163 		err = set_ipv6(skb, flow_key, nla_data(a),
1164 			       get_mask(a, struct ovs_key_ipv6 *));
1165 		break;
1166 
1167 	case OVS_KEY_ATTR_TCP:
1168 		err = set_tcp(skb, flow_key, nla_data(a),
1169 			      get_mask(a, struct ovs_key_tcp *));
1170 		break;
1171 
1172 	case OVS_KEY_ATTR_UDP:
1173 		err = set_udp(skb, flow_key, nla_data(a),
1174 			      get_mask(a, struct ovs_key_udp *));
1175 		break;
1176 
1177 	case OVS_KEY_ATTR_SCTP:
1178 		err = set_sctp(skb, flow_key, nla_data(a),
1179 			       get_mask(a, struct ovs_key_sctp *));
1180 		break;
1181 
1182 	case OVS_KEY_ATTR_MPLS:
1183 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1184 								    __be32 *));
1185 		break;
1186 
1187 	case OVS_KEY_ATTR_CT_STATE:
1188 	case OVS_KEY_ATTR_CT_ZONE:
1189 	case OVS_KEY_ATTR_CT_MARK:
1190 	case OVS_KEY_ATTR_CT_LABELS:
1191 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1192 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1193 		err = -EINVAL;
1194 		break;
1195 	}
1196 
1197 	return err;
1198 }
1199 
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1200 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1201 			  struct sw_flow_key *key,
1202 			  const struct nlattr *a, bool last)
1203 {
1204 	u32 recirc_id;
1205 
1206 	if (!is_flow_key_valid(key)) {
1207 		int err;
1208 
1209 		err = ovs_flow_key_update(skb, key);
1210 		if (err)
1211 			return err;
1212 	}
1213 	BUG_ON(!is_flow_key_valid(key));
1214 
1215 	recirc_id = nla_get_u32(a);
1216 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1217 }
1218 
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1219 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1220 				 struct sw_flow_key *key,
1221 				 const struct nlattr *attr, bool last)
1222 {
1223 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1224 	const struct nlattr *actions, *cpl_arg;
1225 	int len, max_len, rem = nla_len(attr);
1226 	const struct check_pkt_len_arg *arg;
1227 	bool clone_flow_key;
1228 
1229 	/* The first netlink attribute in 'attr' is always
1230 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1231 	 */
1232 	cpl_arg = nla_data(attr);
1233 	arg = nla_data(cpl_arg);
1234 
1235 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1236 	max_len = arg->pkt_len;
1237 
1238 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1239 	    len <= max_len) {
1240 		/* Second netlink attribute in 'attr' is always
1241 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1242 		 */
1243 		actions = nla_next(cpl_arg, &rem);
1244 		clone_flow_key = !arg->exec_for_lesser_equal;
1245 	} else {
1246 		/* Third netlink attribute in 'attr' is always
1247 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1248 		 */
1249 		actions = nla_next(cpl_arg, &rem);
1250 		actions = nla_next(actions, &rem);
1251 		clone_flow_key = !arg->exec_for_greater;
1252 	}
1253 
1254 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1255 			     nla_len(actions), last, clone_flow_key);
1256 }
1257 
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1258 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1259 {
1260 	int err;
1261 
1262 	if (skb->protocol == htons(ETH_P_IPV6)) {
1263 		struct ipv6hdr *nh;
1264 
1265 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1266 					  sizeof(*nh));
1267 		if (unlikely(err))
1268 			return err;
1269 
1270 		nh = ipv6_hdr(skb);
1271 
1272 		if (nh->hop_limit <= 1)
1273 			return -EHOSTUNREACH;
1274 
1275 		key->ip.ttl = --nh->hop_limit;
1276 	} else if (skb->protocol == htons(ETH_P_IP)) {
1277 		struct iphdr *nh;
1278 		u8 old_ttl;
1279 
1280 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1281 					  sizeof(*nh));
1282 		if (unlikely(err))
1283 			return err;
1284 
1285 		nh = ip_hdr(skb);
1286 		if (nh->ttl <= 1)
1287 			return -EHOSTUNREACH;
1288 
1289 		old_ttl = nh->ttl--;
1290 		csum_replace2(&nh->check, htons(old_ttl << 8),
1291 			      htons(nh->ttl << 8));
1292 		key->ip.ttl = nh->ttl;
1293 	}
1294 	return 0;
1295 }
1296 
1297 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1298 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1299 			      struct sw_flow_key *key,
1300 			      const struct nlattr *attr, int len)
1301 {
1302 	const struct nlattr *a;
1303 	int rem;
1304 
1305 	for (a = attr, rem = len; rem > 0;
1306 	     a = nla_next(a, &rem)) {
1307 		int err = 0;
1308 
1309 		if (trace_ovs_do_execute_action_enabled())
1310 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1311 
1312 		/* Actions that rightfully have to consume the skb should do it
1313 		 * and return directly.
1314 		 */
1315 		switch (nla_type(a)) {
1316 		case OVS_ACTION_ATTR_OUTPUT: {
1317 			int port = nla_get_u32(a);
1318 			struct sk_buff *clone;
1319 
1320 			/* Every output action needs a separate clone
1321 			 * of 'skb', In case the output action is the
1322 			 * last action, cloning can be avoided.
1323 			 */
1324 			if (nla_is_last(a, rem)) {
1325 				do_output(dp, skb, port, key);
1326 				/* 'skb' has been used for output.
1327 				 */
1328 				return 0;
1329 			}
1330 
1331 			clone = skb_clone(skb, GFP_ATOMIC);
1332 			if (clone)
1333 				do_output(dp, clone, port, key);
1334 			OVS_CB(skb)->cutlen = 0;
1335 			break;
1336 		}
1337 
1338 		case OVS_ACTION_ATTR_TRUNC: {
1339 			struct ovs_action_trunc *trunc = nla_data(a);
1340 
1341 			if (skb->len > trunc->max_len)
1342 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1343 			break;
1344 		}
1345 
1346 		case OVS_ACTION_ATTR_USERSPACE:
1347 			output_userspace(dp, skb, key, a, attr,
1348 						     len, OVS_CB(skb)->cutlen);
1349 			OVS_CB(skb)->cutlen = 0;
1350 			if (nla_is_last(a, rem)) {
1351 				consume_skb(skb);
1352 				return 0;
1353 			}
1354 			break;
1355 
1356 		case OVS_ACTION_ATTR_HASH:
1357 			execute_hash(skb, key, a);
1358 			break;
1359 
1360 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1361 			struct ovs_action_push_mpls *mpls = nla_data(a);
1362 
1363 			err = push_mpls(skb, key, mpls->mpls_lse,
1364 					mpls->mpls_ethertype, skb->mac_len);
1365 			break;
1366 		}
1367 		case OVS_ACTION_ATTR_ADD_MPLS: {
1368 			struct ovs_action_add_mpls *mpls = nla_data(a);
1369 			__u16 mac_len = 0;
1370 
1371 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1372 				mac_len = skb->mac_len;
1373 
1374 			err = push_mpls(skb, key, mpls->mpls_lse,
1375 					mpls->mpls_ethertype, mac_len);
1376 			break;
1377 		}
1378 		case OVS_ACTION_ATTR_POP_MPLS:
1379 			err = pop_mpls(skb, key, nla_get_be16(a));
1380 			break;
1381 
1382 		case OVS_ACTION_ATTR_PUSH_VLAN:
1383 			err = push_vlan(skb, key, nla_data(a));
1384 			break;
1385 
1386 		case OVS_ACTION_ATTR_POP_VLAN:
1387 			err = pop_vlan(skb, key);
1388 			break;
1389 
1390 		case OVS_ACTION_ATTR_RECIRC: {
1391 			bool last = nla_is_last(a, rem);
1392 
1393 			err = execute_recirc(dp, skb, key, a, last);
1394 			if (last) {
1395 				/* If this is the last action, the skb has
1396 				 * been consumed or freed.
1397 				 * Return immediately.
1398 				 */
1399 				return err;
1400 			}
1401 			break;
1402 		}
1403 
1404 		case OVS_ACTION_ATTR_SET:
1405 			err = execute_set_action(skb, key, nla_data(a));
1406 			break;
1407 
1408 		case OVS_ACTION_ATTR_SET_MASKED:
1409 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1410 			err = execute_masked_set_action(skb, key, nla_data(a));
1411 			break;
1412 
1413 		case OVS_ACTION_ATTR_SAMPLE: {
1414 			bool last = nla_is_last(a, rem);
1415 
1416 			err = sample(dp, skb, key, a, last);
1417 			if (last)
1418 				return err;
1419 
1420 			break;
1421 		}
1422 
1423 		case OVS_ACTION_ATTR_CT:
1424 			if (!is_flow_key_valid(key)) {
1425 				err = ovs_flow_key_update(skb, key);
1426 				if (err)
1427 					return err;
1428 			}
1429 
1430 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1431 					     nla_data(a));
1432 
1433 			/* Hide stolen IP fragments from user space. */
1434 			if (err)
1435 				return err == -EINPROGRESS ? 0 : err;
1436 			break;
1437 
1438 		case OVS_ACTION_ATTR_CT_CLEAR:
1439 			err = ovs_ct_clear(skb, key);
1440 			break;
1441 
1442 		case OVS_ACTION_ATTR_PUSH_ETH:
1443 			err = push_eth(skb, key, nla_data(a));
1444 			break;
1445 
1446 		case OVS_ACTION_ATTR_POP_ETH:
1447 			err = pop_eth(skb, key);
1448 			break;
1449 
1450 		case OVS_ACTION_ATTR_PUSH_NSH: {
1451 			u8 buffer[NSH_HDR_MAX_LEN];
1452 			struct nshhdr *nh = (struct nshhdr *)buffer;
1453 
1454 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1455 						  NSH_HDR_MAX_LEN);
1456 			if (unlikely(err))
1457 				break;
1458 			err = push_nsh(skb, key, nh);
1459 			break;
1460 		}
1461 
1462 		case OVS_ACTION_ATTR_POP_NSH:
1463 			err = pop_nsh(skb, key);
1464 			break;
1465 
1466 		case OVS_ACTION_ATTR_METER:
1467 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1468 				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1469 				return 0;
1470 			}
1471 			break;
1472 
1473 		case OVS_ACTION_ATTR_CLONE: {
1474 			bool last = nla_is_last(a, rem);
1475 
1476 			err = clone(dp, skb, key, a, last);
1477 			if (last)
1478 				return err;
1479 
1480 			break;
1481 		}
1482 
1483 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1484 			bool last = nla_is_last(a, rem);
1485 
1486 			err = execute_check_pkt_len(dp, skb, key, a, last);
1487 			if (last)
1488 				return err;
1489 
1490 			break;
1491 		}
1492 
1493 		case OVS_ACTION_ATTR_DEC_TTL:
1494 			err = execute_dec_ttl(skb, key);
1495 			if (err == -EHOSTUNREACH)
1496 				return dec_ttl_exception_handler(dp, skb,
1497 								 key, a);
1498 			break;
1499 
1500 		case OVS_ACTION_ATTR_DROP: {
1501 			enum ovs_drop_reason reason = nla_get_u32(a)
1502 				? OVS_DROP_EXPLICIT_WITH_ERROR
1503 				: OVS_DROP_EXPLICIT;
1504 
1505 			ovs_kfree_skb_reason(skb, reason);
1506 			return 0;
1507 		}
1508 		}
1509 
1510 		if (unlikely(err)) {
1511 			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1512 			return err;
1513 		}
1514 	}
1515 
1516 	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1517 	return 0;
1518 }
1519 
1520 /* Execute the actions on the clone of the packet. The effect of the
1521  * execution does not affect the original 'skb' nor the original 'key'.
1522  *
1523  * The execution may be deferred in case the actions can not be executed
1524  * immediately.
1525  */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1526 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1527 			 struct sw_flow_key *key, u32 recirc_id,
1528 			 const struct nlattr *actions, int len,
1529 			 bool last, bool clone_flow_key)
1530 {
1531 	struct deferred_action *da;
1532 	struct sw_flow_key *clone;
1533 
1534 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1535 	if (!skb) {
1536 		/* Out of memory, skip this action.
1537 		 */
1538 		return 0;
1539 	}
1540 
1541 	/* When clone_flow_key is false, the 'key' will not be change
1542 	 * by the actions, then the 'key' can be used directly.
1543 	 * Otherwise, try to clone key from the next recursion level of
1544 	 * 'flow_keys'. If clone is successful, execute the actions
1545 	 * without deferring.
1546 	 */
1547 	clone = clone_flow_key ? clone_key(key) : key;
1548 	if (clone) {
1549 		int err = 0;
1550 
1551 		if (actions) { /* Sample action */
1552 			if (clone_flow_key)
1553 				__this_cpu_inc(exec_actions_level);
1554 
1555 			err = do_execute_actions(dp, skb, clone,
1556 						 actions, len);
1557 
1558 			if (clone_flow_key)
1559 				__this_cpu_dec(exec_actions_level);
1560 		} else { /* Recirc action */
1561 			clone->recirc_id = recirc_id;
1562 			ovs_dp_process_packet(skb, clone);
1563 		}
1564 		return err;
1565 	}
1566 
1567 	/* Out of 'flow_keys' space. Defer actions */
1568 	da = add_deferred_actions(skb, key, actions, len);
1569 	if (da) {
1570 		if (!actions) { /* Recirc action */
1571 			key = &da->pkt_key;
1572 			key->recirc_id = recirc_id;
1573 		}
1574 	} else {
1575 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1576 		 * log an error.
1577 		 */
1578 		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1579 
1580 		if (net_ratelimit()) {
1581 			if (actions) { /* Sample action */
1582 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1583 					ovs_dp_name(dp));
1584 			} else {  /* Recirc action */
1585 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1586 					ovs_dp_name(dp), recirc_id);
1587 			}
1588 		}
1589 	}
1590 	return 0;
1591 }
1592 
process_deferred_actions(struct datapath * dp)1593 static void process_deferred_actions(struct datapath *dp)
1594 {
1595 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1596 
1597 	/* Do not touch the FIFO in case there is no deferred actions. */
1598 	if (action_fifo_is_empty(fifo))
1599 		return;
1600 
1601 	/* Finishing executing all deferred actions. */
1602 	do {
1603 		struct deferred_action *da = action_fifo_get(fifo);
1604 		struct sk_buff *skb = da->skb;
1605 		struct sw_flow_key *key = &da->pkt_key;
1606 		const struct nlattr *actions = da->actions;
1607 		int actions_len = da->actions_len;
1608 
1609 		if (actions)
1610 			do_execute_actions(dp, skb, key, actions, actions_len);
1611 		else
1612 			ovs_dp_process_packet(skb, key);
1613 	} while (!action_fifo_is_empty(fifo));
1614 
1615 	/* Reset FIFO for the next packet.  */
1616 	action_fifo_init(fifo);
1617 }
1618 
1619 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1620 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1621 			const struct sw_flow_actions *acts,
1622 			struct sw_flow_key *key)
1623 {
1624 	int err, level;
1625 
1626 	level = __this_cpu_inc_return(exec_actions_level);
1627 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1628 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1629 				     ovs_dp_name(dp));
1630 		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1631 		err = -ENETDOWN;
1632 		goto out;
1633 	}
1634 
1635 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1636 	err = do_execute_actions(dp, skb, key,
1637 				 acts->actions, acts->actions_len);
1638 
1639 	if (level == 1)
1640 		process_deferred_actions(dp);
1641 
1642 out:
1643 	__this_cpu_dec(exec_actions_level);
1644 	return err;
1645 }
1646 
action_fifos_init(void)1647 int action_fifos_init(void)
1648 {
1649 	action_fifos = alloc_percpu(struct action_fifo);
1650 	if (!action_fifos)
1651 		return -ENOMEM;
1652 
1653 	flow_keys = alloc_percpu(struct action_flow_keys);
1654 	if (!flow_keys) {
1655 		free_percpu(action_fifos);
1656 		return -ENOMEM;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
action_fifos_exit(void)1662 void action_fifos_exit(void)
1663 {
1664 	free_percpu(action_fifos);
1665 	free_percpu(flow_keys);
1666 }
1667