xref: /openbmc/linux/net/dsa/dsa.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_mdio.h>
19 #include <linux/of_net.h>
20 #include <net/dsa_stubs.h>
21 #include <net/sch_generic.h>
22 
23 #include "devlink.h"
24 #include "dsa.h"
25 #include "master.h"
26 #include "netlink.h"
27 #include "port.h"
28 #include "slave.h"
29 #include "switch.h"
30 #include "tag.h"
31 
32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
33 
34 static DEFINE_MUTEX(dsa2_mutex);
35 LIST_HEAD(dsa_tree_list);
36 
37 static struct workqueue_struct *dsa_owq;
38 
39 /* Track the bridges with forwarding offload enabled */
40 static unsigned long dsa_fwd_offloading_bridges;
41 
dsa_schedule_work(struct work_struct * work)42 bool dsa_schedule_work(struct work_struct *work)
43 {
44 	return queue_work(dsa_owq, work);
45 }
46 
dsa_flush_workqueue(void)47 void dsa_flush_workqueue(void)
48 {
49 	flush_workqueue(dsa_owq);
50 }
51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52 
53 /**
54  * dsa_lag_map() - Map LAG structure to a linear LAG array
55  * @dst: Tree in which to record the mapping.
56  * @lag: LAG structure that is to be mapped to the tree's array.
57  *
58  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59  * two spaces. The size of the mapping space is determined by the
60  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61  * it unset if it is not needed, in which case these functions become
62  * no-ops.
63  */
dsa_lag_map(struct dsa_switch_tree * dst,struct dsa_lag * lag)64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65 {
66 	unsigned int id;
67 
68 	for (id = 1; id <= dst->lags_len; id++) {
69 		if (!dsa_lag_by_id(dst, id)) {
70 			dst->lags[id - 1] = lag;
71 			lag->id = id;
72 			return;
73 		}
74 	}
75 
76 	/* No IDs left, which is OK. Some drivers do not need it. The
77 	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 	 * returns an error for this device when joining the LAG. The
79 	 * driver can then return -EOPNOTSUPP back to DSA, which will
80 	 * fall back to a software LAG.
81 	 */
82 }
83 
84 /**
85  * dsa_lag_unmap() - Remove a LAG ID mapping
86  * @dst: Tree in which the mapping is recorded.
87  * @lag: LAG structure that was mapped.
88  *
89  * As there may be multiple users of the mapping, it is only removed
90  * if there are no other references to it.
91  */
dsa_lag_unmap(struct dsa_switch_tree * dst,struct dsa_lag * lag)92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93 {
94 	unsigned int id;
95 
96 	dsa_lags_foreach_id(id, dst) {
97 		if (dsa_lag_by_id(dst, id) == lag) {
98 			dst->lags[id - 1] = NULL;
99 			lag->id = 0;
100 			break;
101 		}
102 	}
103 }
104 
dsa_tree_lag_find(struct dsa_switch_tree * dst,const struct net_device * lag_dev)105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 				  const struct net_device *lag_dev)
107 {
108 	struct dsa_port *dp;
109 
110 	list_for_each_entry(dp, &dst->ports, list)
111 		if (dsa_port_lag_dev_get(dp) == lag_dev)
112 			return dp->lag;
113 
114 	return NULL;
115 }
116 
dsa_tree_bridge_find(struct dsa_switch_tree * dst,const struct net_device * br)117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 					const struct net_device *br)
119 {
120 	struct dsa_port *dp;
121 
122 	list_for_each_entry(dp, &dst->ports, list)
123 		if (dsa_port_bridge_dev_get(dp) == br)
124 			return dp->bridge;
125 
126 	return NULL;
127 }
128 
dsa_bridge_num_find(const struct net_device * bridge_dev)129 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130 {
131 	struct dsa_switch_tree *dst;
132 
133 	list_for_each_entry(dst, &dsa_tree_list, list) {
134 		struct dsa_bridge *bridge;
135 
136 		bridge = dsa_tree_bridge_find(dst, bridge_dev);
137 		if (bridge)
138 			return bridge->num;
139 	}
140 
141 	return 0;
142 }
143 
dsa_bridge_num_get(const struct net_device * bridge_dev,int max)144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145 {
146 	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147 
148 	/* Switches without FDB isolation support don't get unique
149 	 * bridge numbering
150 	 */
151 	if (!max)
152 		return 0;
153 
154 	if (!bridge_num) {
155 		/* First port that requests FDB isolation or TX forwarding
156 		 * offload for this bridge
157 		 */
158 		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159 						DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 						1);
161 		if (bridge_num >= max)
162 			return 0;
163 
164 		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165 	}
166 
167 	return bridge_num;
168 }
169 
dsa_bridge_num_put(const struct net_device * bridge_dev,unsigned int bridge_num)170 void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 			unsigned int bridge_num)
172 {
173 	/* Since we refcount bridges, we know that when we call this function
174 	 * it is no longer in use, so we can just go ahead and remove it from
175 	 * the bit mask.
176 	 */
177 	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178 }
179 
dsa_switch_find(int tree_index,int sw_index)180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181 {
182 	struct dsa_switch_tree *dst;
183 	struct dsa_port *dp;
184 
185 	list_for_each_entry(dst, &dsa_tree_list, list) {
186 		if (dst->index != tree_index)
187 			continue;
188 
189 		list_for_each_entry(dp, &dst->ports, list) {
190 			if (dp->ds->index != sw_index)
191 				continue;
192 
193 			return dp->ds;
194 		}
195 	}
196 
197 	return NULL;
198 }
199 EXPORT_SYMBOL_GPL(dsa_switch_find);
200 
dsa_tree_find(int index)201 static struct dsa_switch_tree *dsa_tree_find(int index)
202 {
203 	struct dsa_switch_tree *dst;
204 
205 	list_for_each_entry(dst, &dsa_tree_list, list)
206 		if (dst->index == index)
207 			return dst;
208 
209 	return NULL;
210 }
211 
dsa_tree_alloc(int index)212 static struct dsa_switch_tree *dsa_tree_alloc(int index)
213 {
214 	struct dsa_switch_tree *dst;
215 
216 	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217 	if (!dst)
218 		return NULL;
219 
220 	dst->index = index;
221 
222 	INIT_LIST_HEAD(&dst->rtable);
223 
224 	INIT_LIST_HEAD(&dst->ports);
225 
226 	INIT_LIST_HEAD(&dst->list);
227 	list_add_tail(&dst->list, &dsa_tree_list);
228 
229 	kref_init(&dst->refcount);
230 
231 	return dst;
232 }
233 
dsa_tree_free(struct dsa_switch_tree * dst)234 static void dsa_tree_free(struct dsa_switch_tree *dst)
235 {
236 	if (dst->tag_ops)
237 		dsa_tag_driver_put(dst->tag_ops);
238 	list_del(&dst->list);
239 	kfree(dst);
240 }
241 
dsa_tree_get(struct dsa_switch_tree * dst)242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243 {
244 	if (dst)
245 		kref_get(&dst->refcount);
246 
247 	return dst;
248 }
249 
dsa_tree_touch(int index)250 static struct dsa_switch_tree *dsa_tree_touch(int index)
251 {
252 	struct dsa_switch_tree *dst;
253 
254 	dst = dsa_tree_find(index);
255 	if (dst)
256 		return dsa_tree_get(dst);
257 	else
258 		return dsa_tree_alloc(index);
259 }
260 
dsa_tree_release(struct kref * ref)261 static void dsa_tree_release(struct kref *ref)
262 {
263 	struct dsa_switch_tree *dst;
264 
265 	dst = container_of(ref, struct dsa_switch_tree, refcount);
266 
267 	dsa_tree_free(dst);
268 }
269 
dsa_tree_put(struct dsa_switch_tree * dst)270 static void dsa_tree_put(struct dsa_switch_tree *dst)
271 {
272 	if (dst)
273 		kref_put(&dst->refcount, dsa_tree_release);
274 }
275 
dsa_tree_find_port_by_node(struct dsa_switch_tree * dst,struct device_node * dn)276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 						   struct device_node *dn)
278 {
279 	struct dsa_port *dp;
280 
281 	list_for_each_entry(dp, &dst->ports, list)
282 		if (dp->dn == dn)
283 			return dp;
284 
285 	return NULL;
286 }
287 
dsa_link_touch(struct dsa_port * dp,struct dsa_port * link_dp)288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 				       struct dsa_port *link_dp)
290 {
291 	struct dsa_switch *ds = dp->ds;
292 	struct dsa_switch_tree *dst;
293 	struct dsa_link *dl;
294 
295 	dst = ds->dst;
296 
297 	list_for_each_entry(dl, &dst->rtable, list)
298 		if (dl->dp == dp && dl->link_dp == link_dp)
299 			return dl;
300 
301 	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302 	if (!dl)
303 		return NULL;
304 
305 	dl->dp = dp;
306 	dl->link_dp = link_dp;
307 
308 	INIT_LIST_HEAD(&dl->list);
309 	list_add_tail(&dl->list, &dst->rtable);
310 
311 	return dl;
312 }
313 
dsa_port_setup_routing_table(struct dsa_port * dp)314 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315 {
316 	struct dsa_switch *ds = dp->ds;
317 	struct dsa_switch_tree *dst = ds->dst;
318 	struct device_node *dn = dp->dn;
319 	struct of_phandle_iterator it;
320 	struct dsa_port *link_dp;
321 	struct dsa_link *dl;
322 	int err;
323 
324 	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 		link_dp = dsa_tree_find_port_by_node(dst, it.node);
326 		if (!link_dp) {
327 			of_node_put(it.node);
328 			return false;
329 		}
330 
331 		dl = dsa_link_touch(dp, link_dp);
332 		if (!dl) {
333 			of_node_put(it.node);
334 			return false;
335 		}
336 	}
337 
338 	return true;
339 }
340 
dsa_tree_setup_routing_table(struct dsa_switch_tree * dst)341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342 {
343 	bool complete = true;
344 	struct dsa_port *dp;
345 
346 	list_for_each_entry(dp, &dst->ports, list) {
347 		if (dsa_port_is_dsa(dp)) {
348 			complete = dsa_port_setup_routing_table(dp);
349 			if (!complete)
350 				break;
351 		}
352 	}
353 
354 	return complete;
355 }
356 
dsa_tree_find_first_cpu(struct dsa_switch_tree * dst)357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358 {
359 	struct dsa_port *dp;
360 
361 	list_for_each_entry(dp, &dst->ports, list)
362 		if (dsa_port_is_cpu(dp))
363 			return dp;
364 
365 	return NULL;
366 }
367 
dsa_tree_find_first_master(struct dsa_switch_tree * dst)368 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
369 {
370 	struct device_node *ethernet;
371 	struct net_device *master;
372 	struct dsa_port *cpu_dp;
373 
374 	cpu_dp = dsa_tree_find_first_cpu(dst);
375 	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
376 	master = of_find_net_device_by_node(ethernet);
377 	of_node_put(ethernet);
378 
379 	return master;
380 }
381 
382 /* Assign the default CPU port (the first one in the tree) to all ports of the
383  * fabric which don't already have one as part of their own switch.
384  */
dsa_tree_setup_default_cpu(struct dsa_switch_tree * dst)385 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386 {
387 	struct dsa_port *cpu_dp, *dp;
388 
389 	cpu_dp = dsa_tree_find_first_cpu(dst);
390 	if (!cpu_dp) {
391 		pr_err("DSA: tree %d has no CPU port\n", dst->index);
392 		return -EINVAL;
393 	}
394 
395 	list_for_each_entry(dp, &dst->ports, list) {
396 		if (dp->cpu_dp)
397 			continue;
398 
399 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
400 			dp->cpu_dp = cpu_dp;
401 	}
402 
403 	return 0;
404 }
405 
406 static struct dsa_port *
dsa_switch_preferred_default_local_cpu_port(struct dsa_switch * ds)407 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
408 {
409 	struct dsa_port *cpu_dp;
410 
411 	if (!ds->ops->preferred_default_local_cpu_port)
412 		return NULL;
413 
414 	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
415 	if (!cpu_dp)
416 		return NULL;
417 
418 	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
419 		return NULL;
420 
421 	return cpu_dp;
422 }
423 
424 /* Perform initial assignment of CPU ports to user ports and DSA links in the
425  * fabric, giving preference to CPU ports local to each switch. Default to
426  * using the first CPU port in the switch tree if the port does not have a CPU
427  * port local to this switch.
428  */
dsa_tree_setup_cpu_ports(struct dsa_switch_tree * dst)429 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
430 {
431 	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
432 
433 	list_for_each_entry(cpu_dp, &dst->ports, list) {
434 		if (!dsa_port_is_cpu(cpu_dp))
435 			continue;
436 
437 		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
438 		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
439 			continue;
440 
441 		/* Prefer a local CPU port */
442 		dsa_switch_for_each_port(dp, cpu_dp->ds) {
443 			/* Prefer the first local CPU port found */
444 			if (dp->cpu_dp)
445 				continue;
446 
447 			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
448 				dp->cpu_dp = cpu_dp;
449 		}
450 	}
451 
452 	return dsa_tree_setup_default_cpu(dst);
453 }
454 
dsa_tree_teardown_cpu_ports(struct dsa_switch_tree * dst)455 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
456 {
457 	struct dsa_port *dp;
458 
459 	list_for_each_entry(dp, &dst->ports, list)
460 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
461 			dp->cpu_dp = NULL;
462 }
463 
dsa_port_setup(struct dsa_port * dp)464 static int dsa_port_setup(struct dsa_port *dp)
465 {
466 	bool dsa_port_link_registered = false;
467 	struct dsa_switch *ds = dp->ds;
468 	bool dsa_port_enabled = false;
469 	int err = 0;
470 
471 	if (dp->setup)
472 		return 0;
473 
474 	err = dsa_port_devlink_setup(dp);
475 	if (err)
476 		return err;
477 
478 	switch (dp->type) {
479 	case DSA_PORT_TYPE_UNUSED:
480 		dsa_port_disable(dp);
481 		break;
482 	case DSA_PORT_TYPE_CPU:
483 		if (dp->dn) {
484 			err = dsa_shared_port_link_register_of(dp);
485 			if (err)
486 				break;
487 			dsa_port_link_registered = true;
488 		} else {
489 			dev_warn(ds->dev,
490 				 "skipping link registration for CPU port %d\n",
491 				 dp->index);
492 		}
493 
494 		err = dsa_port_enable(dp, NULL);
495 		if (err)
496 			break;
497 		dsa_port_enabled = true;
498 
499 		break;
500 	case DSA_PORT_TYPE_DSA:
501 		if (dp->dn) {
502 			err = dsa_shared_port_link_register_of(dp);
503 			if (err)
504 				break;
505 			dsa_port_link_registered = true;
506 		} else {
507 			dev_warn(ds->dev,
508 				 "skipping link registration for DSA port %d\n",
509 				 dp->index);
510 		}
511 
512 		err = dsa_port_enable(dp, NULL);
513 		if (err)
514 			break;
515 		dsa_port_enabled = true;
516 
517 		break;
518 	case DSA_PORT_TYPE_USER:
519 		of_get_mac_address(dp->dn, dp->mac);
520 		err = dsa_slave_create(dp);
521 		break;
522 	}
523 
524 	if (err && dsa_port_enabled)
525 		dsa_port_disable(dp);
526 	if (err && dsa_port_link_registered)
527 		dsa_shared_port_link_unregister_of(dp);
528 	if (err) {
529 		dsa_port_devlink_teardown(dp);
530 		return err;
531 	}
532 
533 	dp->setup = true;
534 
535 	return 0;
536 }
537 
dsa_port_teardown(struct dsa_port * dp)538 static void dsa_port_teardown(struct dsa_port *dp)
539 {
540 	if (!dp->setup)
541 		return;
542 
543 	switch (dp->type) {
544 	case DSA_PORT_TYPE_UNUSED:
545 		break;
546 	case DSA_PORT_TYPE_CPU:
547 		dsa_port_disable(dp);
548 		if (dp->dn)
549 			dsa_shared_port_link_unregister_of(dp);
550 		break;
551 	case DSA_PORT_TYPE_DSA:
552 		dsa_port_disable(dp);
553 		if (dp->dn)
554 			dsa_shared_port_link_unregister_of(dp);
555 		break;
556 	case DSA_PORT_TYPE_USER:
557 		if (dp->slave) {
558 			dsa_slave_destroy(dp->slave);
559 			dp->slave = NULL;
560 		}
561 		break;
562 	}
563 
564 	dsa_port_devlink_teardown(dp);
565 
566 	dp->setup = false;
567 }
568 
dsa_port_setup_as_unused(struct dsa_port * dp)569 static int dsa_port_setup_as_unused(struct dsa_port *dp)
570 {
571 	dp->type = DSA_PORT_TYPE_UNUSED;
572 	return dsa_port_setup(dp);
573 }
574 
dsa_switch_setup_tag_protocol(struct dsa_switch * ds)575 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
576 {
577 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
578 	struct dsa_switch_tree *dst = ds->dst;
579 	int err;
580 
581 	if (tag_ops->proto == dst->default_proto)
582 		goto connect;
583 
584 	rtnl_lock();
585 	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
586 	rtnl_unlock();
587 	if (err) {
588 		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
589 			tag_ops->name, ERR_PTR(err));
590 		return err;
591 	}
592 
593 connect:
594 	if (tag_ops->connect) {
595 		err = tag_ops->connect(ds);
596 		if (err)
597 			return err;
598 	}
599 
600 	if (ds->ops->connect_tag_protocol) {
601 		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
602 		if (err) {
603 			dev_err(ds->dev,
604 				"Unable to connect to tag protocol \"%s\": %pe\n",
605 				tag_ops->name, ERR_PTR(err));
606 			goto disconnect;
607 		}
608 	}
609 
610 	return 0;
611 
612 disconnect:
613 	if (tag_ops->disconnect)
614 		tag_ops->disconnect(ds);
615 
616 	return err;
617 }
618 
dsa_switch_teardown_tag_protocol(struct dsa_switch * ds)619 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
620 {
621 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
622 
623 	if (tag_ops->disconnect)
624 		tag_ops->disconnect(ds);
625 }
626 
dsa_switch_setup(struct dsa_switch * ds)627 static int dsa_switch_setup(struct dsa_switch *ds)
628 {
629 	struct device_node *dn;
630 	int err;
631 
632 	if (ds->setup)
633 		return 0;
634 
635 	/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
636 	 * driver and before ops->setup() has run, since the switch drivers and
637 	 * the slave MDIO bus driver rely on these values for probing PHY
638 	 * devices or not
639 	 */
640 	ds->phys_mii_mask |= dsa_user_ports(ds);
641 
642 	err = dsa_switch_devlink_alloc(ds);
643 	if (err)
644 		return err;
645 
646 	err = dsa_switch_register_notifier(ds);
647 	if (err)
648 		goto devlink_free;
649 
650 	ds->configure_vlan_while_not_filtering = true;
651 
652 	err = ds->ops->setup(ds);
653 	if (err < 0)
654 		goto unregister_notifier;
655 
656 	err = dsa_switch_setup_tag_protocol(ds);
657 	if (err)
658 		goto teardown;
659 
660 	if (!ds->slave_mii_bus && ds->ops->phy_read) {
661 		ds->slave_mii_bus = mdiobus_alloc();
662 		if (!ds->slave_mii_bus) {
663 			err = -ENOMEM;
664 			goto teardown;
665 		}
666 
667 		dsa_slave_mii_bus_init(ds);
668 
669 		dn = of_get_child_by_name(ds->dev->of_node, "mdio");
670 
671 		err = of_mdiobus_register(ds->slave_mii_bus, dn);
672 		of_node_put(dn);
673 		if (err < 0)
674 			goto free_slave_mii_bus;
675 	}
676 
677 	dsa_switch_devlink_register(ds);
678 
679 	ds->setup = true;
680 	return 0;
681 
682 free_slave_mii_bus:
683 	if (ds->slave_mii_bus && ds->ops->phy_read)
684 		mdiobus_free(ds->slave_mii_bus);
685 teardown:
686 	if (ds->ops->teardown)
687 		ds->ops->teardown(ds);
688 unregister_notifier:
689 	dsa_switch_unregister_notifier(ds);
690 devlink_free:
691 	dsa_switch_devlink_free(ds);
692 	return err;
693 }
694 
dsa_switch_teardown(struct dsa_switch * ds)695 static void dsa_switch_teardown(struct dsa_switch *ds)
696 {
697 	if (!ds->setup)
698 		return;
699 
700 	dsa_switch_devlink_unregister(ds);
701 
702 	if (ds->slave_mii_bus && ds->ops->phy_read) {
703 		mdiobus_unregister(ds->slave_mii_bus);
704 		mdiobus_free(ds->slave_mii_bus);
705 		ds->slave_mii_bus = NULL;
706 	}
707 
708 	dsa_switch_teardown_tag_protocol(ds);
709 
710 	if (ds->ops->teardown)
711 		ds->ops->teardown(ds);
712 
713 	dsa_switch_unregister_notifier(ds);
714 
715 	dsa_switch_devlink_free(ds);
716 
717 	ds->setup = false;
718 }
719 
720 /* First tear down the non-shared, then the shared ports. This ensures that
721  * all work items scheduled by our switchdev handlers for user ports have
722  * completed before we destroy the refcounting kept on the shared ports.
723  */
dsa_tree_teardown_ports(struct dsa_switch_tree * dst)724 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
725 {
726 	struct dsa_port *dp;
727 
728 	list_for_each_entry(dp, &dst->ports, list)
729 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
730 			dsa_port_teardown(dp);
731 
732 	dsa_flush_workqueue();
733 
734 	list_for_each_entry(dp, &dst->ports, list)
735 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
736 			dsa_port_teardown(dp);
737 }
738 
dsa_tree_teardown_switches(struct dsa_switch_tree * dst)739 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
740 {
741 	struct dsa_port *dp;
742 
743 	list_for_each_entry(dp, &dst->ports, list)
744 		dsa_switch_teardown(dp->ds);
745 }
746 
747 /* Bring shared ports up first, then non-shared ports */
dsa_tree_setup_ports(struct dsa_switch_tree * dst)748 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
749 {
750 	struct dsa_port *dp;
751 	int err = 0;
752 
753 	list_for_each_entry(dp, &dst->ports, list) {
754 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
755 			err = dsa_port_setup(dp);
756 			if (err)
757 				goto teardown;
758 		}
759 	}
760 
761 	list_for_each_entry(dp, &dst->ports, list) {
762 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
763 			err = dsa_port_setup(dp);
764 			if (err) {
765 				err = dsa_port_setup_as_unused(dp);
766 				if (err)
767 					goto teardown;
768 			}
769 		}
770 	}
771 
772 	return 0;
773 
774 teardown:
775 	dsa_tree_teardown_ports(dst);
776 
777 	return err;
778 }
779 
dsa_tree_setup_switches(struct dsa_switch_tree * dst)780 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
781 {
782 	struct dsa_port *dp;
783 	int err = 0;
784 
785 	list_for_each_entry(dp, &dst->ports, list) {
786 		err = dsa_switch_setup(dp->ds);
787 		if (err) {
788 			dsa_tree_teardown_switches(dst);
789 			break;
790 		}
791 	}
792 
793 	return err;
794 }
795 
dsa_tree_setup_master(struct dsa_switch_tree * dst)796 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
797 {
798 	struct dsa_port *cpu_dp;
799 	int err = 0;
800 
801 	rtnl_lock();
802 
803 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
804 		struct net_device *master = cpu_dp->master;
805 		bool admin_up = (master->flags & IFF_UP) &&
806 				!qdisc_tx_is_noop(master);
807 
808 		err = dsa_master_setup(master, cpu_dp);
809 		if (err)
810 			break;
811 
812 		/* Replay master state event */
813 		dsa_tree_master_admin_state_change(dst, master, admin_up);
814 		dsa_tree_master_oper_state_change(dst, master,
815 						  netif_oper_up(master));
816 	}
817 
818 	rtnl_unlock();
819 
820 	return err;
821 }
822 
dsa_tree_teardown_master(struct dsa_switch_tree * dst)823 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
824 {
825 	struct dsa_port *cpu_dp;
826 
827 	rtnl_lock();
828 
829 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
830 		struct net_device *master = cpu_dp->master;
831 
832 		/* Synthesizing an "admin down" state is sufficient for
833 		 * the switches to get a notification if the master is
834 		 * currently up and running.
835 		 */
836 		dsa_tree_master_admin_state_change(dst, master, false);
837 
838 		dsa_master_teardown(master);
839 	}
840 
841 	rtnl_unlock();
842 }
843 
dsa_tree_setup_lags(struct dsa_switch_tree * dst)844 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
845 {
846 	unsigned int len = 0;
847 	struct dsa_port *dp;
848 
849 	list_for_each_entry(dp, &dst->ports, list) {
850 		if (dp->ds->num_lag_ids > len)
851 			len = dp->ds->num_lag_ids;
852 	}
853 
854 	if (!len)
855 		return 0;
856 
857 	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
858 	if (!dst->lags)
859 		return -ENOMEM;
860 
861 	dst->lags_len = len;
862 	return 0;
863 }
864 
dsa_tree_teardown_lags(struct dsa_switch_tree * dst)865 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
866 {
867 	kfree(dst->lags);
868 }
869 
dsa_tree_teardown_routing_table(struct dsa_switch_tree * dst)870 static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst)
871 {
872 	struct dsa_link *dl, *next;
873 
874 	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
875 		list_del(&dl->list);
876 		kfree(dl);
877 	}
878 }
879 
dsa_tree_setup(struct dsa_switch_tree * dst)880 static int dsa_tree_setup(struct dsa_switch_tree *dst)
881 {
882 	bool complete;
883 	int err;
884 
885 	if (dst->setup) {
886 		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
887 		       dst->index);
888 		return -EEXIST;
889 	}
890 
891 	complete = dsa_tree_setup_routing_table(dst);
892 	if (!complete)
893 		return 0;
894 
895 	err = dsa_tree_setup_cpu_ports(dst);
896 	if (err)
897 		goto teardown_rtable;
898 
899 	err = dsa_tree_setup_switches(dst);
900 	if (err)
901 		goto teardown_cpu_ports;
902 
903 	err = dsa_tree_setup_ports(dst);
904 	if (err)
905 		goto teardown_switches;
906 
907 	err = dsa_tree_setup_master(dst);
908 	if (err)
909 		goto teardown_ports;
910 
911 	err = dsa_tree_setup_lags(dst);
912 	if (err)
913 		goto teardown_master;
914 
915 	dst->setup = true;
916 
917 	pr_info("DSA: tree %d setup\n", dst->index);
918 
919 	return 0;
920 
921 teardown_master:
922 	dsa_tree_teardown_master(dst);
923 teardown_ports:
924 	dsa_tree_teardown_ports(dst);
925 teardown_switches:
926 	dsa_tree_teardown_switches(dst);
927 teardown_cpu_ports:
928 	dsa_tree_teardown_cpu_ports(dst);
929 teardown_rtable:
930 	dsa_tree_teardown_routing_table(dst);
931 
932 	return err;
933 }
934 
dsa_tree_teardown(struct dsa_switch_tree * dst)935 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
936 {
937 	if (!dst->setup)
938 		return;
939 
940 	dsa_tree_teardown_lags(dst);
941 
942 	dsa_tree_teardown_master(dst);
943 
944 	dsa_tree_teardown_ports(dst);
945 
946 	dsa_tree_teardown_switches(dst);
947 
948 	dsa_tree_teardown_cpu_ports(dst);
949 
950 	dsa_tree_teardown_routing_table(dst);
951 
952 	pr_info("DSA: tree %d torn down\n", dst->index);
953 
954 	dst->setup = false;
955 }
956 
dsa_tree_bind_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops)957 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
958 				   const struct dsa_device_ops *tag_ops)
959 {
960 	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
961 	struct dsa_notifier_tag_proto_info info;
962 	int err;
963 
964 	dst->tag_ops = tag_ops;
965 
966 	/* Notify the switches from this tree about the connection
967 	 * to the new tagger
968 	 */
969 	info.tag_ops = tag_ops;
970 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
971 	if (err && err != -EOPNOTSUPP)
972 		goto out_disconnect;
973 
974 	/* Notify the old tagger about the disconnection from this tree */
975 	info.tag_ops = old_tag_ops;
976 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
977 
978 	return 0;
979 
980 out_disconnect:
981 	info.tag_ops = tag_ops;
982 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
983 	dst->tag_ops = old_tag_ops;
984 
985 	return err;
986 }
987 
988 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
989  * is that all DSA switches within a tree share the same tagger, otherwise
990  * they would have formed disjoint trees (different "dsa,member" values).
991  */
dsa_tree_change_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops,const struct dsa_device_ops * old_tag_ops)992 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
993 			      const struct dsa_device_ops *tag_ops,
994 			      const struct dsa_device_ops *old_tag_ops)
995 {
996 	struct dsa_notifier_tag_proto_info info;
997 	struct dsa_port *dp;
998 	int err = -EBUSY;
999 
1000 	if (!rtnl_trylock())
1001 		return restart_syscall();
1002 
1003 	/* At the moment we don't allow changing the tag protocol under
1004 	 * traffic. The rtnl_mutex also happens to serialize concurrent
1005 	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
1006 	 * restriction, there needs to be another mutex which serializes this.
1007 	 */
1008 	dsa_tree_for_each_user_port(dp, dst) {
1009 		if (dsa_port_to_master(dp)->flags & IFF_UP)
1010 			goto out_unlock;
1011 
1012 		if (dp->slave->flags & IFF_UP)
1013 			goto out_unlock;
1014 	}
1015 
1016 	/* Notify the tag protocol change */
1017 	info.tag_ops = tag_ops;
1018 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1019 	if (err)
1020 		goto out_unwind_tagger;
1021 
1022 	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1023 	if (err)
1024 		goto out_unwind_tagger;
1025 
1026 	rtnl_unlock();
1027 
1028 	return 0;
1029 
1030 out_unwind_tagger:
1031 	info.tag_ops = old_tag_ops;
1032 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1033 out_unlock:
1034 	rtnl_unlock();
1035 	return err;
1036 }
1037 
dsa_tree_master_state_change(struct dsa_switch_tree * dst,struct net_device * master)1038 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1039 					 struct net_device *master)
1040 {
1041 	struct dsa_notifier_master_state_info info;
1042 	struct dsa_port *cpu_dp = master->dsa_ptr;
1043 
1044 	info.master = master;
1045 	info.operational = dsa_port_master_is_operational(cpu_dp);
1046 
1047 	dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1048 }
1049 
dsa_tree_master_admin_state_change(struct dsa_switch_tree * dst,struct net_device * master,bool up)1050 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1051 					struct net_device *master,
1052 					bool up)
1053 {
1054 	struct dsa_port *cpu_dp = master->dsa_ptr;
1055 	bool notify = false;
1056 
1057 	/* Don't keep track of admin state on LAG DSA masters,
1058 	 * but rather just of physical DSA masters
1059 	 */
1060 	if (netif_is_lag_master(master))
1061 		return;
1062 
1063 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1064 	    (up && cpu_dp->master_oper_up))
1065 		notify = true;
1066 
1067 	cpu_dp->master_admin_up = up;
1068 
1069 	if (notify)
1070 		dsa_tree_master_state_change(dst, master);
1071 }
1072 
dsa_tree_master_oper_state_change(struct dsa_switch_tree * dst,struct net_device * master,bool up)1073 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1074 				       struct net_device *master,
1075 				       bool up)
1076 {
1077 	struct dsa_port *cpu_dp = master->dsa_ptr;
1078 	bool notify = false;
1079 
1080 	/* Don't keep track of oper state on LAG DSA masters,
1081 	 * but rather just of physical DSA masters
1082 	 */
1083 	if (netif_is_lag_master(master))
1084 		return;
1085 
1086 	if ((dsa_port_master_is_operational(cpu_dp)) !=
1087 	    (cpu_dp->master_admin_up && up))
1088 		notify = true;
1089 
1090 	cpu_dp->master_oper_up = up;
1091 
1092 	if (notify)
1093 		dsa_tree_master_state_change(dst, master);
1094 }
1095 
dsa_port_touch(struct dsa_switch * ds,int index)1096 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1097 {
1098 	struct dsa_switch_tree *dst = ds->dst;
1099 	struct dsa_port *dp;
1100 
1101 	dsa_switch_for_each_port(dp, ds)
1102 		if (dp->index == index)
1103 			return dp;
1104 
1105 	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1106 	if (!dp)
1107 		return NULL;
1108 
1109 	dp->ds = ds;
1110 	dp->index = index;
1111 
1112 	mutex_init(&dp->addr_lists_lock);
1113 	mutex_init(&dp->vlans_lock);
1114 	INIT_LIST_HEAD(&dp->fdbs);
1115 	INIT_LIST_HEAD(&dp->mdbs);
1116 	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1117 	INIT_LIST_HEAD(&dp->list);
1118 	list_add_tail(&dp->list, &dst->ports);
1119 
1120 	return dp;
1121 }
1122 
dsa_port_parse_user(struct dsa_port * dp,const char * name)1123 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1124 {
1125 	dp->type = DSA_PORT_TYPE_USER;
1126 	dp->name = name;
1127 
1128 	return 0;
1129 }
1130 
dsa_port_parse_dsa(struct dsa_port * dp)1131 static int dsa_port_parse_dsa(struct dsa_port *dp)
1132 {
1133 	dp->type = DSA_PORT_TYPE_DSA;
1134 
1135 	return 0;
1136 }
1137 
dsa_get_tag_protocol(struct dsa_port * dp,struct net_device * master)1138 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1139 						  struct net_device *master)
1140 {
1141 	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1142 	struct dsa_switch *mds, *ds = dp->ds;
1143 	unsigned int mdp_upstream;
1144 	struct dsa_port *mdp;
1145 
1146 	/* It is possible to stack DSA switches onto one another when that
1147 	 * happens the switch driver may want to know if its tagging protocol
1148 	 * is going to work in such a configuration.
1149 	 */
1150 	if (dsa_slave_dev_check(master)) {
1151 		mdp = dsa_slave_to_port(master);
1152 		mds = mdp->ds;
1153 		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1154 		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1155 							  DSA_TAG_PROTO_NONE);
1156 	}
1157 
1158 	/* If the master device is not itself a DSA slave in a disjoint DSA
1159 	 * tree, then return immediately.
1160 	 */
1161 	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1162 }
1163 
dsa_port_parse_cpu(struct dsa_port * dp,struct net_device * master,const char * user_protocol)1164 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1165 			      const char *user_protocol)
1166 {
1167 	const struct dsa_device_ops *tag_ops = NULL;
1168 	struct dsa_switch *ds = dp->ds;
1169 	struct dsa_switch_tree *dst = ds->dst;
1170 	enum dsa_tag_protocol default_proto;
1171 
1172 	/* Find out which protocol the switch would prefer. */
1173 	default_proto = dsa_get_tag_protocol(dp, master);
1174 	if (dst->default_proto) {
1175 		if (dst->default_proto != default_proto) {
1176 			dev_err(ds->dev,
1177 				"A DSA switch tree can have only one tagging protocol\n");
1178 			return -EINVAL;
1179 		}
1180 	} else {
1181 		dst->default_proto = default_proto;
1182 	}
1183 
1184 	/* See if the user wants to override that preference. */
1185 	if (user_protocol) {
1186 		if (!ds->ops->change_tag_protocol) {
1187 			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1188 			return -EINVAL;
1189 		}
1190 
1191 		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1192 		if (IS_ERR(tag_ops)) {
1193 			dev_warn(ds->dev,
1194 				 "Failed to find a tagging driver for protocol %s, using default\n",
1195 				 user_protocol);
1196 			tag_ops = NULL;
1197 		}
1198 	}
1199 
1200 	if (!tag_ops)
1201 		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1202 
1203 	if (IS_ERR(tag_ops)) {
1204 		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1205 			return -EPROBE_DEFER;
1206 
1207 		dev_warn(ds->dev, "No tagger for this switch\n");
1208 		return PTR_ERR(tag_ops);
1209 	}
1210 
1211 	if (dst->tag_ops) {
1212 		if (dst->tag_ops != tag_ops) {
1213 			dev_err(ds->dev,
1214 				"A DSA switch tree can have only one tagging protocol\n");
1215 
1216 			dsa_tag_driver_put(tag_ops);
1217 			return -EINVAL;
1218 		}
1219 
1220 		/* In the case of multiple CPU ports per switch, the tagging
1221 		 * protocol is still reference-counted only per switch tree.
1222 		 */
1223 		dsa_tag_driver_put(tag_ops);
1224 	} else {
1225 		dst->tag_ops = tag_ops;
1226 	}
1227 
1228 	dp->master = master;
1229 	dp->type = DSA_PORT_TYPE_CPU;
1230 	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1231 	dp->dst = dst;
1232 
1233 	/* At this point, the tree may be configured to use a different
1234 	 * tagger than the one chosen by the switch driver during
1235 	 * .setup, in the case when a user selects a custom protocol
1236 	 * through the DT.
1237 	 *
1238 	 * This is resolved by syncing the driver with the tree in
1239 	 * dsa_switch_setup_tag_protocol once .setup has run and the
1240 	 * driver is ready to accept calls to .change_tag_protocol. If
1241 	 * the driver does not support the custom protocol at that
1242 	 * point, the tree is wholly rejected, thereby ensuring that the
1243 	 * tree and driver are always in agreement on the protocol to
1244 	 * use.
1245 	 */
1246 	return 0;
1247 }
1248 
dsa_port_parse_of(struct dsa_port * dp,struct device_node * dn)1249 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1250 {
1251 	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1252 	const char *name = of_get_property(dn, "label", NULL);
1253 	bool link = of_property_read_bool(dn, "link");
1254 
1255 	dp->dn = dn;
1256 
1257 	if (ethernet) {
1258 		struct net_device *master;
1259 		const char *user_protocol;
1260 
1261 		master = of_find_net_device_by_node(ethernet);
1262 		of_node_put(ethernet);
1263 		if (!master)
1264 			return -EPROBE_DEFER;
1265 
1266 		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1267 		return dsa_port_parse_cpu(dp, master, user_protocol);
1268 	}
1269 
1270 	if (link)
1271 		return dsa_port_parse_dsa(dp);
1272 
1273 	return dsa_port_parse_user(dp, name);
1274 }
1275 
dsa_switch_parse_ports_of(struct dsa_switch * ds,struct device_node * dn)1276 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1277 				     struct device_node *dn)
1278 {
1279 	struct device_node *ports, *port;
1280 	struct dsa_port *dp;
1281 	int err = 0;
1282 	u32 reg;
1283 
1284 	ports = of_get_child_by_name(dn, "ports");
1285 	if (!ports) {
1286 		/* The second possibility is "ethernet-ports" */
1287 		ports = of_get_child_by_name(dn, "ethernet-ports");
1288 		if (!ports) {
1289 			dev_err(ds->dev, "no ports child node found\n");
1290 			return -EINVAL;
1291 		}
1292 	}
1293 
1294 	for_each_available_child_of_node(ports, port) {
1295 		err = of_property_read_u32(port, "reg", &reg);
1296 		if (err) {
1297 			of_node_put(port);
1298 			goto out_put_node;
1299 		}
1300 
1301 		if (reg >= ds->num_ports) {
1302 			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1303 				port, reg, ds->num_ports);
1304 			of_node_put(port);
1305 			err = -EINVAL;
1306 			goto out_put_node;
1307 		}
1308 
1309 		dp = dsa_to_port(ds, reg);
1310 
1311 		err = dsa_port_parse_of(dp, port);
1312 		if (err) {
1313 			of_node_put(port);
1314 			goto out_put_node;
1315 		}
1316 	}
1317 
1318 out_put_node:
1319 	of_node_put(ports);
1320 	return err;
1321 }
1322 
dsa_switch_parse_member_of(struct dsa_switch * ds,struct device_node * dn)1323 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1324 				      struct device_node *dn)
1325 {
1326 	u32 m[2] = { 0, 0 };
1327 	int sz;
1328 
1329 	/* Don't error out if this optional property isn't found */
1330 	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1331 	if (sz < 0 && sz != -EINVAL)
1332 		return sz;
1333 
1334 	ds->index = m[1];
1335 
1336 	ds->dst = dsa_tree_touch(m[0]);
1337 	if (!ds->dst)
1338 		return -ENOMEM;
1339 
1340 	if (dsa_switch_find(ds->dst->index, ds->index)) {
1341 		dev_err(ds->dev,
1342 			"A DSA switch with index %d already exists in tree %d\n",
1343 			ds->index, ds->dst->index);
1344 		return -EEXIST;
1345 	}
1346 
1347 	if (ds->dst->last_switch < ds->index)
1348 		ds->dst->last_switch = ds->index;
1349 
1350 	return 0;
1351 }
1352 
dsa_switch_touch_ports(struct dsa_switch * ds)1353 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1354 {
1355 	struct dsa_port *dp;
1356 	int port;
1357 
1358 	for (port = 0; port < ds->num_ports; port++) {
1359 		dp = dsa_port_touch(ds, port);
1360 		if (!dp)
1361 			return -ENOMEM;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
dsa_switch_parse_of(struct dsa_switch * ds,struct device_node * dn)1367 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1368 {
1369 	int err;
1370 
1371 	err = dsa_switch_parse_member_of(ds, dn);
1372 	if (err)
1373 		return err;
1374 
1375 	err = dsa_switch_touch_ports(ds);
1376 	if (err)
1377 		return err;
1378 
1379 	return dsa_switch_parse_ports_of(ds, dn);
1380 }
1381 
dev_is_class(struct device * dev,void * class)1382 static int dev_is_class(struct device *dev, void *class)
1383 {
1384 	if (dev->class != NULL && !strcmp(dev->class->name, class))
1385 		return 1;
1386 
1387 	return 0;
1388 }
1389 
dev_find_class(struct device * parent,char * class)1390 static struct device *dev_find_class(struct device *parent, char *class)
1391 {
1392 	if (dev_is_class(parent, class)) {
1393 		get_device(parent);
1394 		return parent;
1395 	}
1396 
1397 	return device_find_child(parent, class, dev_is_class);
1398 }
1399 
dsa_dev_to_net_device(struct device * dev)1400 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1401 {
1402 	struct device *d;
1403 
1404 	d = dev_find_class(dev, "net");
1405 	if (d != NULL) {
1406 		struct net_device *nd;
1407 
1408 		nd = to_net_dev(d);
1409 		dev_hold(nd);
1410 		put_device(d);
1411 
1412 		return nd;
1413 	}
1414 
1415 	return NULL;
1416 }
1417 
dsa_port_parse(struct dsa_port * dp,const char * name,struct device * dev)1418 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1419 			  struct device *dev)
1420 {
1421 	if (!strcmp(name, "cpu")) {
1422 		struct net_device *master;
1423 
1424 		master = dsa_dev_to_net_device(dev);
1425 		if (!master)
1426 			return -EPROBE_DEFER;
1427 
1428 		dev_put(master);
1429 
1430 		return dsa_port_parse_cpu(dp, master, NULL);
1431 	}
1432 
1433 	if (!strcmp(name, "dsa"))
1434 		return dsa_port_parse_dsa(dp);
1435 
1436 	return dsa_port_parse_user(dp, name);
1437 }
1438 
dsa_switch_parse_ports(struct dsa_switch * ds,struct dsa_chip_data * cd)1439 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1440 				  struct dsa_chip_data *cd)
1441 {
1442 	bool valid_name_found = false;
1443 	struct dsa_port *dp;
1444 	struct device *dev;
1445 	const char *name;
1446 	unsigned int i;
1447 	int err;
1448 
1449 	for (i = 0; i < DSA_MAX_PORTS; i++) {
1450 		name = cd->port_names[i];
1451 		dev = cd->netdev[i];
1452 		dp = dsa_to_port(ds, i);
1453 
1454 		if (!name)
1455 			continue;
1456 
1457 		err = dsa_port_parse(dp, name, dev);
1458 		if (err)
1459 			return err;
1460 
1461 		valid_name_found = true;
1462 	}
1463 
1464 	if (!valid_name_found && i == DSA_MAX_PORTS)
1465 		return -EINVAL;
1466 
1467 	return 0;
1468 }
1469 
dsa_switch_parse(struct dsa_switch * ds,struct dsa_chip_data * cd)1470 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1471 {
1472 	int err;
1473 
1474 	ds->cd = cd;
1475 
1476 	/* We don't support interconnected switches nor multiple trees via
1477 	 * platform data, so this is the unique switch of the tree.
1478 	 */
1479 	ds->index = 0;
1480 	ds->dst = dsa_tree_touch(0);
1481 	if (!ds->dst)
1482 		return -ENOMEM;
1483 
1484 	err = dsa_switch_touch_ports(ds);
1485 	if (err)
1486 		return err;
1487 
1488 	return dsa_switch_parse_ports(ds, cd);
1489 }
1490 
dsa_switch_release_ports(struct dsa_switch * ds)1491 static void dsa_switch_release_ports(struct dsa_switch *ds)
1492 {
1493 	struct dsa_mac_addr *a, *tmp;
1494 	struct dsa_port *dp, *next;
1495 	struct dsa_vlan *v, *n;
1496 
1497 	dsa_switch_for_each_port_safe(dp, next, ds) {
1498 		/* These are either entries that upper layers lost track of
1499 		 * (probably due to bugs), or installed through interfaces
1500 		 * where one does not necessarily have to remove them, like
1501 		 * ndo_dflt_fdb_add().
1502 		 */
1503 		list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
1504 			dev_info(ds->dev,
1505 				 "Cleaning up unicast address %pM vid %u from port %d\n",
1506 				 a->addr, a->vid, dp->index);
1507 			list_del(&a->list);
1508 			kfree(a);
1509 		}
1510 
1511 		list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
1512 			dev_info(ds->dev,
1513 				 "Cleaning up multicast address %pM vid %u from port %d\n",
1514 				 a->addr, a->vid, dp->index);
1515 			list_del(&a->list);
1516 			kfree(a);
1517 		}
1518 
1519 		/* These are entries that upper layers have lost track of,
1520 		 * probably due to bugs, but also due to dsa_port_do_vlan_del()
1521 		 * having failed and the VLAN entry still lingering on.
1522 		 */
1523 		list_for_each_entry_safe(v, n, &dp->vlans, list) {
1524 			dev_info(ds->dev,
1525 				 "Cleaning up vid %u from port %d\n",
1526 				 v->vid, dp->index);
1527 			list_del(&v->list);
1528 			kfree(v);
1529 		}
1530 
1531 		list_del(&dp->list);
1532 		kfree(dp);
1533 	}
1534 }
1535 
dsa_switch_probe(struct dsa_switch * ds)1536 static int dsa_switch_probe(struct dsa_switch *ds)
1537 {
1538 	struct dsa_switch_tree *dst;
1539 	struct dsa_chip_data *pdata;
1540 	struct device_node *np;
1541 	int err;
1542 
1543 	if (!ds->dev)
1544 		return -ENODEV;
1545 
1546 	pdata = ds->dev->platform_data;
1547 	np = ds->dev->of_node;
1548 
1549 	if (!ds->num_ports)
1550 		return -EINVAL;
1551 
1552 	if (np) {
1553 		err = dsa_switch_parse_of(ds, np);
1554 		if (err)
1555 			dsa_switch_release_ports(ds);
1556 	} else if (pdata) {
1557 		err = dsa_switch_parse(ds, pdata);
1558 		if (err)
1559 			dsa_switch_release_ports(ds);
1560 	} else {
1561 		err = -ENODEV;
1562 	}
1563 
1564 	if (err)
1565 		return err;
1566 
1567 	dst = ds->dst;
1568 	dsa_tree_get(dst);
1569 	err = dsa_tree_setup(dst);
1570 	if (err) {
1571 		dsa_switch_release_ports(ds);
1572 		dsa_tree_put(dst);
1573 	}
1574 
1575 	return err;
1576 }
1577 
dsa_register_switch(struct dsa_switch * ds)1578 int dsa_register_switch(struct dsa_switch *ds)
1579 {
1580 	int err;
1581 
1582 	mutex_lock(&dsa2_mutex);
1583 	err = dsa_switch_probe(ds);
1584 	dsa_tree_put(ds->dst);
1585 	mutex_unlock(&dsa2_mutex);
1586 
1587 	return err;
1588 }
1589 EXPORT_SYMBOL_GPL(dsa_register_switch);
1590 
dsa_switch_remove(struct dsa_switch * ds)1591 static void dsa_switch_remove(struct dsa_switch *ds)
1592 {
1593 	struct dsa_switch_tree *dst = ds->dst;
1594 
1595 	dsa_tree_teardown(dst);
1596 	dsa_switch_release_ports(ds);
1597 	dsa_tree_put(dst);
1598 }
1599 
dsa_unregister_switch(struct dsa_switch * ds)1600 void dsa_unregister_switch(struct dsa_switch *ds)
1601 {
1602 	mutex_lock(&dsa2_mutex);
1603 	dsa_switch_remove(ds);
1604 	mutex_unlock(&dsa2_mutex);
1605 }
1606 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1607 
1608 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1609  * blocking that operation from completion, due to the dev_hold taken inside
1610  * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1611  * the DSA master, so that the system can reboot successfully.
1612  */
dsa_switch_shutdown(struct dsa_switch * ds)1613 void dsa_switch_shutdown(struct dsa_switch *ds)
1614 {
1615 	struct net_device *master, *slave_dev;
1616 	struct dsa_port *dp;
1617 
1618 	mutex_lock(&dsa2_mutex);
1619 
1620 	if (!ds->setup)
1621 		goto out;
1622 
1623 	rtnl_lock();
1624 
1625 	dsa_switch_for_each_user_port(dp, ds) {
1626 		master = dsa_port_to_master(dp);
1627 		slave_dev = dp->slave;
1628 
1629 		netdev_upper_dev_unlink(master, slave_dev);
1630 	}
1631 
1632 	/* Disconnect from further netdevice notifiers on the master,
1633 	 * since netdev_uses_dsa() will now return false.
1634 	 */
1635 	dsa_switch_for_each_cpu_port(dp, ds)
1636 		dp->master->dsa_ptr = NULL;
1637 
1638 	rtnl_unlock();
1639 out:
1640 	mutex_unlock(&dsa2_mutex);
1641 }
1642 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1643 
1644 #ifdef CONFIG_PM_SLEEP
dsa_port_is_initialized(const struct dsa_port * dp)1645 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1646 {
1647 	return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1648 }
1649 
dsa_switch_suspend(struct dsa_switch * ds)1650 int dsa_switch_suspend(struct dsa_switch *ds)
1651 {
1652 	struct dsa_port *dp;
1653 	int ret = 0;
1654 
1655 	/* Suspend slave network devices */
1656 	dsa_switch_for_each_port(dp, ds) {
1657 		if (!dsa_port_is_initialized(dp))
1658 			continue;
1659 
1660 		ret = dsa_slave_suspend(dp->slave);
1661 		if (ret)
1662 			return ret;
1663 	}
1664 
1665 	if (ds->ops->suspend)
1666 		ret = ds->ops->suspend(ds);
1667 
1668 	return ret;
1669 }
1670 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1671 
dsa_switch_resume(struct dsa_switch * ds)1672 int dsa_switch_resume(struct dsa_switch *ds)
1673 {
1674 	struct dsa_port *dp;
1675 	int ret = 0;
1676 
1677 	if (ds->ops->resume)
1678 		ret = ds->ops->resume(ds);
1679 
1680 	if (ret)
1681 		return ret;
1682 
1683 	/* Resume slave network devices */
1684 	dsa_switch_for_each_port(dp, ds) {
1685 		if (!dsa_port_is_initialized(dp))
1686 			continue;
1687 
1688 		ret = dsa_slave_resume(dp->slave);
1689 		if (ret)
1690 			return ret;
1691 	}
1692 
1693 	return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1696 #endif
1697 
dsa_port_from_netdev(struct net_device * netdev)1698 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1699 {
1700 	if (!netdev || !dsa_slave_dev_check(netdev))
1701 		return ERR_PTR(-ENODEV);
1702 
1703 	return dsa_slave_to_port(netdev);
1704 }
1705 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1706 
dsa_db_equal(const struct dsa_db * a,const struct dsa_db * b)1707 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1708 {
1709 	if (a->type != b->type)
1710 		return false;
1711 
1712 	switch (a->type) {
1713 	case DSA_DB_PORT:
1714 		return a->dp == b->dp;
1715 	case DSA_DB_LAG:
1716 		return a->lag.dev == b->lag.dev;
1717 	case DSA_DB_BRIDGE:
1718 		return a->bridge.num == b->bridge.num;
1719 	default:
1720 		WARN_ON(1);
1721 		return false;
1722 	}
1723 }
1724 
dsa_fdb_present_in_other_db(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1725 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1726 				 const unsigned char *addr, u16 vid,
1727 				 struct dsa_db db)
1728 {
1729 	struct dsa_port *dp = dsa_to_port(ds, port);
1730 	struct dsa_mac_addr *a;
1731 
1732 	lockdep_assert_held(&dp->addr_lists_lock);
1733 
1734 	list_for_each_entry(a, &dp->fdbs, list) {
1735 		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1736 			continue;
1737 
1738 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1739 			return true;
1740 	}
1741 
1742 	return false;
1743 }
1744 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1745 
dsa_mdb_present_in_other_db(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1746 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1747 				 const struct switchdev_obj_port_mdb *mdb,
1748 				 struct dsa_db db)
1749 {
1750 	struct dsa_port *dp = dsa_to_port(ds, port);
1751 	struct dsa_mac_addr *a;
1752 
1753 	lockdep_assert_held(&dp->addr_lists_lock);
1754 
1755 	list_for_each_entry(a, &dp->mdbs, list) {
1756 		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1757 			continue;
1758 
1759 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1760 			return true;
1761 	}
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1766 
1767 static const struct dsa_stubs __dsa_stubs = {
1768 	.master_hwtstamp_validate = __dsa_master_hwtstamp_validate,
1769 };
1770 
dsa_register_stubs(void)1771 static void dsa_register_stubs(void)
1772 {
1773 	dsa_stubs = &__dsa_stubs;
1774 }
1775 
dsa_unregister_stubs(void)1776 static void dsa_unregister_stubs(void)
1777 {
1778 	dsa_stubs = NULL;
1779 }
1780 
dsa_init_module(void)1781 static int __init dsa_init_module(void)
1782 {
1783 	int rc;
1784 
1785 	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1786 					  WQ_MEM_RECLAIM);
1787 	if (!dsa_owq)
1788 		return -ENOMEM;
1789 
1790 	rc = dsa_slave_register_notifier();
1791 	if (rc)
1792 		goto register_notifier_fail;
1793 
1794 	dev_add_pack(&dsa_pack_type);
1795 
1796 	rc = rtnl_link_register(&dsa_link_ops);
1797 	if (rc)
1798 		goto netlink_register_fail;
1799 
1800 	dsa_register_stubs();
1801 
1802 	return 0;
1803 
1804 netlink_register_fail:
1805 	dsa_slave_unregister_notifier();
1806 	dev_remove_pack(&dsa_pack_type);
1807 register_notifier_fail:
1808 	destroy_workqueue(dsa_owq);
1809 
1810 	return rc;
1811 }
1812 module_init(dsa_init_module);
1813 
dsa_cleanup_module(void)1814 static void __exit dsa_cleanup_module(void)
1815 {
1816 	dsa_unregister_stubs();
1817 
1818 	rtnl_link_unregister(&dsa_link_ops);
1819 
1820 	dsa_slave_unregister_notifier();
1821 	dev_remove_pack(&dsa_pack_type);
1822 	destroy_workqueue(dsa_owq);
1823 }
1824 module_exit(dsa_cleanup_module);
1825 
1826 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1827 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1828 MODULE_LICENSE("GPL");
1829 MODULE_ALIAS("platform:dsa");
1830