1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 #include "xfs_file.h"
28
29 #include <linux/dax.h>
30 #include <linux/falloc.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mman.h>
33 #include <linux/fadvise.h>
34 #include <linux/mount.h>
35
36 static const struct vm_operations_struct xfs_file_vm_ops;
37
38 /*
39 * Decide if the given file range is aligned to the size of the fundamental
40 * allocation unit for the file.
41 */
42 bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)43 xfs_is_falloc_aligned(
44 struct xfs_inode *ip,
45 loff_t pos,
46 long long int len)
47 {
48 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip);
49
50 if (!is_power_of_2(alloc_unit)) {
51 u32 mod;
52
53 div_u64_rem(pos, alloc_unit, &mod);
54 if (mod)
55 return false;
56 div_u64_rem(len, alloc_unit, &mod);
57 return mod == 0;
58 }
59
60 return !((pos | len) & (alloc_unit - 1));
61 }
62
63 /*
64 * Fsync operations on directories are much simpler than on regular files,
65 * as there is no file data to flush, and thus also no need for explicit
66 * cache flush operations, and there are no non-transaction metadata updates
67 * on directories either.
68 */
69 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)70 xfs_dir_fsync(
71 struct file *file,
72 loff_t start,
73 loff_t end,
74 int datasync)
75 {
76 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
77
78 trace_xfs_dir_fsync(ip);
79 return xfs_log_force_inode(ip);
80 }
81
82 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)83 xfs_fsync_seq(
84 struct xfs_inode *ip,
85 bool datasync)
86 {
87 if (!xfs_ipincount(ip))
88 return 0;
89 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
90 return 0;
91 return ip->i_itemp->ili_commit_seq;
92 }
93
94 /*
95 * All metadata updates are logged, which means that we just have to flush the
96 * log up to the latest LSN that touched the inode.
97 *
98 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
99 * the log force before we clear the ili_fsync_fields field. This ensures that
100 * we don't get a racing sync operation that does not wait for the metadata to
101 * hit the journal before returning. If we race with clearing ili_fsync_fields,
102 * then all that will happen is the log force will do nothing as the lsn will
103 * already be on disk. We can't race with setting ili_fsync_fields because that
104 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
105 * shared until after the ili_fsync_fields is cleared.
106 */
107 static int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)108 xfs_fsync_flush_log(
109 struct xfs_inode *ip,
110 bool datasync,
111 int *log_flushed)
112 {
113 int error = 0;
114 xfs_csn_t seq;
115
116 xfs_ilock(ip, XFS_ILOCK_SHARED);
117 seq = xfs_fsync_seq(ip, datasync);
118 if (seq) {
119 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
120 log_flushed);
121
122 spin_lock(&ip->i_itemp->ili_lock);
123 ip->i_itemp->ili_fsync_fields = 0;
124 spin_unlock(&ip->i_itemp->ili_lock);
125 }
126 xfs_iunlock(ip, XFS_ILOCK_SHARED);
127 return error;
128 }
129
130 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)131 xfs_file_fsync(
132 struct file *file,
133 loff_t start,
134 loff_t end,
135 int datasync)
136 {
137 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
138 struct xfs_mount *mp = ip->i_mount;
139 int error, err2;
140 int log_flushed = 0;
141
142 trace_xfs_file_fsync(ip);
143
144 error = file_write_and_wait_range(file, start, end);
145 if (error)
146 return error;
147
148 if (xfs_is_shutdown(mp))
149 return -EIO;
150
151 xfs_iflags_clear(ip, XFS_ITRUNCATED);
152
153 /*
154 * If we have an RT and/or log subvolume we need to make sure to flush
155 * the write cache the device used for file data first. This is to
156 * ensure newly written file data make it to disk before logging the new
157 * inode size in case of an extending write.
158 */
159 if (XFS_IS_REALTIME_INODE(ip))
160 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
161 else if (mp->m_logdev_targp != mp->m_ddev_targp)
162 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
163
164 /*
165 * Any inode that has dirty modifications in the log is pinned. The
166 * racy check here for a pinned inode will not catch modifications
167 * that happen concurrently to the fsync call, but fsync semantics
168 * only require to sync previously completed I/O.
169 */
170 if (xfs_ipincount(ip)) {
171 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
172 if (err2 && !error)
173 error = err2;
174 }
175
176 /*
177 * If we only have a single device, and the log force about was
178 * a no-op we might have to flush the data device cache here.
179 * This can only happen for fdatasync/O_DSYNC if we were overwriting
180 * an already allocated file and thus do not have any metadata to
181 * commit.
182 */
183 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
184 mp->m_logdev_targp == mp->m_ddev_targp) {
185 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
186 if (err2 && !error)
187 error = err2;
188 }
189
190 return error;
191 }
192
193 static int
xfs_ilock_iocb(struct kiocb * iocb,unsigned int lock_mode)194 xfs_ilock_iocb(
195 struct kiocb *iocb,
196 unsigned int lock_mode)
197 {
198 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
199
200 if (iocb->ki_flags & IOCB_NOWAIT) {
201 if (!xfs_ilock_nowait(ip, lock_mode))
202 return -EAGAIN;
203 } else {
204 xfs_ilock(ip, lock_mode);
205 }
206
207 return 0;
208 }
209
210 static int
xfs_ilock_iocb_for_write(struct kiocb * iocb,unsigned int * lock_mode)211 xfs_ilock_iocb_for_write(
212 struct kiocb *iocb,
213 unsigned int *lock_mode)
214 {
215 ssize_t ret;
216 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
217
218 ret = xfs_ilock_iocb(iocb, *lock_mode);
219 if (ret)
220 return ret;
221
222 if (*lock_mode == XFS_IOLOCK_EXCL)
223 return 0;
224 if (!xfs_iflags_test(ip, XFS_IREMAPPING))
225 return 0;
226
227 xfs_iunlock(ip, *lock_mode);
228 *lock_mode = XFS_IOLOCK_EXCL;
229 return xfs_ilock_iocb(iocb, *lock_mode);
230 }
231
232 static unsigned int
xfs_ilock_for_write_fault(struct xfs_inode * ip)233 xfs_ilock_for_write_fault(
234 struct xfs_inode *ip)
235 {
236 /* get a shared lock if no remapping in progress */
237 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
238 if (!xfs_iflags_test(ip, XFS_IREMAPPING))
239 return XFS_MMAPLOCK_SHARED;
240
241 /* wait for remapping to complete */
242 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
243 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
244 return XFS_MMAPLOCK_EXCL;
245 }
246
247 STATIC ssize_t
xfs_file_dio_read(struct kiocb * iocb,struct iov_iter * to)248 xfs_file_dio_read(
249 struct kiocb *iocb,
250 struct iov_iter *to)
251 {
252 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
253 ssize_t ret;
254
255 trace_xfs_file_direct_read(iocb, to);
256
257 if (!iov_iter_count(to))
258 return 0; /* skip atime */
259
260 file_accessed(iocb->ki_filp);
261
262 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
263 if (ret)
264 return ret;
265 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
266 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
267
268 return ret;
269 }
270
271 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)272 xfs_file_dax_read(
273 struct kiocb *iocb,
274 struct iov_iter *to)
275 {
276 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
277 ssize_t ret = 0;
278
279 trace_xfs_file_dax_read(iocb, to);
280
281 if (!iov_iter_count(to))
282 return 0; /* skip atime */
283
284 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
285 if (ret)
286 return ret;
287 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
288 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
289
290 file_accessed(iocb->ki_filp);
291 return ret;
292 }
293
294 STATIC ssize_t
xfs_file_buffered_read(struct kiocb * iocb,struct iov_iter * to)295 xfs_file_buffered_read(
296 struct kiocb *iocb,
297 struct iov_iter *to)
298 {
299 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
300 ssize_t ret;
301
302 trace_xfs_file_buffered_read(iocb, to);
303
304 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
305 if (ret)
306 return ret;
307 ret = generic_file_read_iter(iocb, to);
308 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
309
310 return ret;
311 }
312
313 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)314 xfs_file_read_iter(
315 struct kiocb *iocb,
316 struct iov_iter *to)
317 {
318 struct inode *inode = file_inode(iocb->ki_filp);
319 struct xfs_mount *mp = XFS_I(inode)->i_mount;
320 ssize_t ret = 0;
321
322 XFS_STATS_INC(mp, xs_read_calls);
323
324 if (xfs_is_shutdown(mp))
325 return -EIO;
326
327 if (IS_DAX(inode))
328 ret = xfs_file_dax_read(iocb, to);
329 else if (iocb->ki_flags & IOCB_DIRECT)
330 ret = xfs_file_dio_read(iocb, to);
331 else
332 ret = xfs_file_buffered_read(iocb, to);
333
334 if (ret > 0)
335 XFS_STATS_ADD(mp, xs_read_bytes, ret);
336 return ret;
337 }
338
339 STATIC ssize_t
xfs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)340 xfs_file_splice_read(
341 struct file *in,
342 loff_t *ppos,
343 struct pipe_inode_info *pipe,
344 size_t len,
345 unsigned int flags)
346 {
347 struct inode *inode = file_inode(in);
348 struct xfs_inode *ip = XFS_I(inode);
349 struct xfs_mount *mp = ip->i_mount;
350 ssize_t ret = 0;
351
352 XFS_STATS_INC(mp, xs_read_calls);
353
354 if (xfs_is_shutdown(mp))
355 return -EIO;
356
357 trace_xfs_file_splice_read(ip, *ppos, len);
358
359 xfs_ilock(ip, XFS_IOLOCK_SHARED);
360 ret = filemap_splice_read(in, ppos, pipe, len, flags);
361 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
362 if (ret > 0)
363 XFS_STATS_ADD(mp, xs_read_bytes, ret);
364 return ret;
365 }
366
367 /*
368 * Common pre-write limit and setup checks.
369 *
370 * Called with the iolocked held either shared and exclusive according to
371 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
372 * if called for a direct write beyond i_size.
373 */
374 STATIC ssize_t
xfs_file_write_checks(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock)375 xfs_file_write_checks(
376 struct kiocb *iocb,
377 struct iov_iter *from,
378 unsigned int *iolock)
379 {
380 struct file *file = iocb->ki_filp;
381 struct inode *inode = file->f_mapping->host;
382 struct xfs_inode *ip = XFS_I(inode);
383 ssize_t error = 0;
384 size_t count = iov_iter_count(from);
385 bool drained_dio = false;
386 loff_t isize;
387
388 restart:
389 error = generic_write_checks(iocb, from);
390 if (error <= 0)
391 return error;
392
393 if (iocb->ki_flags & IOCB_NOWAIT) {
394 error = break_layout(inode, false);
395 if (error == -EWOULDBLOCK)
396 error = -EAGAIN;
397 } else {
398 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
399 }
400
401 if (error)
402 return error;
403
404 /*
405 * For changing security info in file_remove_privs() we need i_rwsem
406 * exclusively.
407 */
408 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
409 xfs_iunlock(ip, *iolock);
410 *iolock = XFS_IOLOCK_EXCL;
411 error = xfs_ilock_iocb(iocb, *iolock);
412 if (error) {
413 *iolock = 0;
414 return error;
415 }
416 goto restart;
417 }
418
419 /*
420 * If the offset is beyond the size of the file, we need to zero any
421 * blocks that fall between the existing EOF and the start of this
422 * write. If zeroing is needed and we are currently holding the iolock
423 * shared, we need to update it to exclusive which implies having to
424 * redo all checks before.
425 *
426 * We need to serialise against EOF updates that occur in IO completions
427 * here. We want to make sure that nobody is changing the size while we
428 * do this check until we have placed an IO barrier (i.e. hold the
429 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
430 * spinlock effectively forms a memory barrier once we have the
431 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
432 * hence be able to correctly determine if we need to run zeroing.
433 *
434 * We can do an unlocked check here safely as IO completion can only
435 * extend EOF. Truncate is locked out at this point, so the EOF can
436 * not move backwards, only forwards. Hence we only need to take the
437 * slow path and spin locks when we are at or beyond the current EOF.
438 */
439 if (iocb->ki_pos <= i_size_read(inode))
440 goto out;
441
442 spin_lock(&ip->i_flags_lock);
443 isize = i_size_read(inode);
444 if (iocb->ki_pos > isize) {
445 spin_unlock(&ip->i_flags_lock);
446
447 if (iocb->ki_flags & IOCB_NOWAIT)
448 return -EAGAIN;
449
450 if (!drained_dio) {
451 if (*iolock == XFS_IOLOCK_SHARED) {
452 xfs_iunlock(ip, *iolock);
453 *iolock = XFS_IOLOCK_EXCL;
454 xfs_ilock(ip, *iolock);
455 iov_iter_reexpand(from, count);
456 }
457 /*
458 * We now have an IO submission barrier in place, but
459 * AIO can do EOF updates during IO completion and hence
460 * we now need to wait for all of them to drain. Non-AIO
461 * DIO will have drained before we are given the
462 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
463 * no-op.
464 */
465 inode_dio_wait(inode);
466 drained_dio = true;
467 goto restart;
468 }
469
470 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
471 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
472 if (error)
473 return error;
474 } else
475 spin_unlock(&ip->i_flags_lock);
476
477 out:
478 return kiocb_modified(iocb);
479 }
480
481 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)482 xfs_dio_write_end_io(
483 struct kiocb *iocb,
484 ssize_t size,
485 int error,
486 unsigned flags)
487 {
488 struct inode *inode = file_inode(iocb->ki_filp);
489 struct xfs_inode *ip = XFS_I(inode);
490 loff_t offset = iocb->ki_pos;
491 unsigned int nofs_flag;
492
493 trace_xfs_end_io_direct_write(ip, offset, size);
494
495 if (xfs_is_shutdown(ip->i_mount))
496 return -EIO;
497
498 if (error)
499 return error;
500 if (!size)
501 return 0;
502
503 /*
504 * Capture amount written on completion as we can't reliably account
505 * for it on submission.
506 */
507 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
508
509 /*
510 * We can allocate memory here while doing writeback on behalf of
511 * memory reclaim. To avoid memory allocation deadlocks set the
512 * task-wide nofs context for the following operations.
513 */
514 nofs_flag = memalloc_nofs_save();
515
516 if (flags & IOMAP_DIO_COW) {
517 error = xfs_reflink_end_cow(ip, offset, size);
518 if (error)
519 goto out;
520 }
521
522 /*
523 * Unwritten conversion updates the in-core isize after extent
524 * conversion but before updating the on-disk size. Updating isize any
525 * earlier allows a racing dio read to find unwritten extents before
526 * they are converted.
527 */
528 if (flags & IOMAP_DIO_UNWRITTEN) {
529 error = xfs_iomap_write_unwritten(ip, offset, size, true);
530 goto out;
531 }
532
533 /*
534 * We need to update the in-core inode size here so that we don't end up
535 * with the on-disk inode size being outside the in-core inode size. We
536 * have no other method of updating EOF for AIO, so always do it here
537 * if necessary.
538 *
539 * We need to lock the test/set EOF update as we can be racing with
540 * other IO completions here to update the EOF. Failing to serialise
541 * here can result in EOF moving backwards and Bad Things Happen when
542 * that occurs.
543 *
544 * As IO completion only ever extends EOF, we can do an unlocked check
545 * here to avoid taking the spinlock. If we land within the current EOF,
546 * then we do not need to do an extending update at all, and we don't
547 * need to take the lock to check this. If we race with an update moving
548 * EOF, then we'll either still be beyond EOF and need to take the lock,
549 * or we'll be within EOF and we don't need to take it at all.
550 */
551 if (offset + size <= i_size_read(inode))
552 goto out;
553
554 spin_lock(&ip->i_flags_lock);
555 if (offset + size > i_size_read(inode)) {
556 i_size_write(inode, offset + size);
557 spin_unlock(&ip->i_flags_lock);
558 error = xfs_setfilesize(ip, offset, size);
559 } else {
560 spin_unlock(&ip->i_flags_lock);
561 }
562
563 out:
564 memalloc_nofs_restore(nofs_flag);
565 return error;
566 }
567
568 static const struct iomap_dio_ops xfs_dio_write_ops = {
569 .end_io = xfs_dio_write_end_io,
570 };
571
572 /*
573 * Handle block aligned direct I/O writes
574 */
575 static noinline ssize_t
xfs_file_dio_write_aligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)576 xfs_file_dio_write_aligned(
577 struct xfs_inode *ip,
578 struct kiocb *iocb,
579 struct iov_iter *from)
580 {
581 unsigned int iolock = XFS_IOLOCK_SHARED;
582 ssize_t ret;
583
584 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
585 if (ret)
586 return ret;
587 ret = xfs_file_write_checks(iocb, from, &iolock);
588 if (ret)
589 goto out_unlock;
590
591 /*
592 * We don't need to hold the IOLOCK exclusively across the IO, so demote
593 * the iolock back to shared if we had to take the exclusive lock in
594 * xfs_file_write_checks() for other reasons.
595 */
596 if (iolock == XFS_IOLOCK_EXCL) {
597 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
598 iolock = XFS_IOLOCK_SHARED;
599 }
600 trace_xfs_file_direct_write(iocb, from);
601 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
602 &xfs_dio_write_ops, 0, NULL, 0);
603 out_unlock:
604 if (iolock)
605 xfs_iunlock(ip, iolock);
606 return ret;
607 }
608
609 /*
610 * Handle block unaligned direct I/O writes
611 *
612 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
613 * them to be done in parallel with reads and other direct I/O writes. However,
614 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
615 * to do sub-block zeroing and that requires serialisation against other direct
616 * I/O to the same block. In this case we need to serialise the submission of
617 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
618 * In the case where sub-block zeroing is not required, we can do concurrent
619 * sub-block dios to the same block successfully.
620 *
621 * Optimistically submit the I/O using the shared lock first, but use the
622 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
623 * if block allocation or partial block zeroing would be required. In that case
624 * we try again with the exclusive lock.
625 */
626 static noinline ssize_t
xfs_file_dio_write_unaligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)627 xfs_file_dio_write_unaligned(
628 struct xfs_inode *ip,
629 struct kiocb *iocb,
630 struct iov_iter *from)
631 {
632 size_t isize = i_size_read(VFS_I(ip));
633 size_t count = iov_iter_count(from);
634 unsigned int iolock = XFS_IOLOCK_SHARED;
635 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
636 ssize_t ret;
637
638 /*
639 * Extending writes need exclusivity because of the sub-block zeroing
640 * that the DIO code always does for partial tail blocks beyond EOF, so
641 * don't even bother trying the fast path in this case.
642 */
643 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
644 if (iocb->ki_flags & IOCB_NOWAIT)
645 return -EAGAIN;
646 retry_exclusive:
647 iolock = XFS_IOLOCK_EXCL;
648 flags = IOMAP_DIO_FORCE_WAIT;
649 }
650
651 ret = xfs_ilock_iocb_for_write(iocb, &iolock);
652 if (ret)
653 return ret;
654
655 /*
656 * We can't properly handle unaligned direct I/O to reflink files yet,
657 * as we can't unshare a partial block.
658 */
659 if (xfs_is_cow_inode(ip)) {
660 trace_xfs_reflink_bounce_dio_write(iocb, from);
661 ret = -ENOTBLK;
662 goto out_unlock;
663 }
664
665 ret = xfs_file_write_checks(iocb, from, &iolock);
666 if (ret)
667 goto out_unlock;
668
669 /*
670 * If we are doing exclusive unaligned I/O, this must be the only I/O
671 * in-flight. Otherwise we risk data corruption due to unwritten extent
672 * conversions from the AIO end_io handler. Wait for all other I/O to
673 * drain first.
674 */
675 if (flags & IOMAP_DIO_FORCE_WAIT)
676 inode_dio_wait(VFS_I(ip));
677
678 trace_xfs_file_direct_write(iocb, from);
679 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
680 &xfs_dio_write_ops, flags, NULL, 0);
681
682 /*
683 * Retry unaligned I/O with exclusive blocking semantics if the DIO
684 * layer rejected it for mapping or locking reasons. If we are doing
685 * nonblocking user I/O, propagate the error.
686 */
687 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
688 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
689 xfs_iunlock(ip, iolock);
690 goto retry_exclusive;
691 }
692
693 out_unlock:
694 if (iolock)
695 xfs_iunlock(ip, iolock);
696 return ret;
697 }
698
699 static ssize_t
xfs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)700 xfs_file_dio_write(
701 struct kiocb *iocb,
702 struct iov_iter *from)
703 {
704 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
705 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
706 size_t count = iov_iter_count(from);
707
708 /* direct I/O must be aligned to device logical sector size */
709 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
710 return -EINVAL;
711 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
712 return xfs_file_dio_write_unaligned(ip, iocb, from);
713 return xfs_file_dio_write_aligned(ip, iocb, from);
714 }
715
716 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)717 xfs_file_dax_write(
718 struct kiocb *iocb,
719 struct iov_iter *from)
720 {
721 struct inode *inode = iocb->ki_filp->f_mapping->host;
722 struct xfs_inode *ip = XFS_I(inode);
723 unsigned int iolock = XFS_IOLOCK_EXCL;
724 ssize_t ret, error = 0;
725 loff_t pos;
726
727 ret = xfs_ilock_iocb(iocb, iolock);
728 if (ret)
729 return ret;
730 ret = xfs_file_write_checks(iocb, from, &iolock);
731 if (ret)
732 goto out;
733
734 pos = iocb->ki_pos;
735
736 trace_xfs_file_dax_write(iocb, from);
737 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
738 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
739 i_size_write(inode, iocb->ki_pos);
740 error = xfs_setfilesize(ip, pos, ret);
741 }
742 out:
743 if (iolock)
744 xfs_iunlock(ip, iolock);
745 if (error)
746 return error;
747
748 if (ret > 0) {
749 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
750
751 /* Handle various SYNC-type writes */
752 ret = generic_write_sync(iocb, ret);
753 }
754 return ret;
755 }
756
757 STATIC ssize_t
xfs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)758 xfs_file_buffered_write(
759 struct kiocb *iocb,
760 struct iov_iter *from)
761 {
762 struct inode *inode = iocb->ki_filp->f_mapping->host;
763 struct xfs_inode *ip = XFS_I(inode);
764 ssize_t ret;
765 bool cleared_space = false;
766 unsigned int iolock;
767
768 write_retry:
769 iolock = XFS_IOLOCK_EXCL;
770 ret = xfs_ilock_iocb(iocb, iolock);
771 if (ret)
772 return ret;
773
774 ret = xfs_file_write_checks(iocb, from, &iolock);
775 if (ret)
776 goto out;
777
778 trace_xfs_file_buffered_write(iocb, from);
779 ret = iomap_file_buffered_write(iocb, from,
780 &xfs_buffered_write_iomap_ops);
781
782 /*
783 * If we hit a space limit, try to free up some lingering preallocated
784 * space before returning an error. In the case of ENOSPC, first try to
785 * write back all dirty inodes to free up some of the excess reserved
786 * metadata space. This reduces the chances that the eofblocks scan
787 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
788 * also behaves as a filter to prevent too many eofblocks scans from
789 * running at the same time. Use a synchronous scan to increase the
790 * effectiveness of the scan.
791 */
792 if (ret == -EDQUOT && !cleared_space) {
793 xfs_iunlock(ip, iolock);
794 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
795 cleared_space = true;
796 goto write_retry;
797 } else if (ret == -ENOSPC && !cleared_space) {
798 struct xfs_icwalk icw = {0};
799
800 cleared_space = true;
801 xfs_flush_inodes(ip->i_mount);
802
803 xfs_iunlock(ip, iolock);
804 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
805 xfs_blockgc_free_space(ip->i_mount, &icw);
806 goto write_retry;
807 }
808
809 out:
810 if (iolock)
811 xfs_iunlock(ip, iolock);
812
813 if (ret > 0) {
814 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
815 /* Handle various SYNC-type writes */
816 ret = generic_write_sync(iocb, ret);
817 }
818 return ret;
819 }
820
821 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)822 xfs_file_write_iter(
823 struct kiocb *iocb,
824 struct iov_iter *from)
825 {
826 struct inode *inode = iocb->ki_filp->f_mapping->host;
827 struct xfs_inode *ip = XFS_I(inode);
828 ssize_t ret;
829 size_t ocount = iov_iter_count(from);
830
831 XFS_STATS_INC(ip->i_mount, xs_write_calls);
832
833 if (ocount == 0)
834 return 0;
835
836 if (xfs_is_shutdown(ip->i_mount))
837 return -EIO;
838
839 if (IS_DAX(inode))
840 return xfs_file_dax_write(iocb, from);
841
842 if (iocb->ki_flags & IOCB_DIRECT) {
843 /*
844 * Allow a directio write to fall back to a buffered
845 * write *only* in the case that we're doing a reflink
846 * CoW. In all other directio scenarios we do not
847 * allow an operation to fall back to buffered mode.
848 */
849 ret = xfs_file_dio_write(iocb, from);
850 if (ret != -ENOTBLK)
851 return ret;
852 }
853
854 return xfs_file_buffered_write(iocb, from);
855 }
856
857 static void
xfs_wait_dax_page(struct inode * inode)858 xfs_wait_dax_page(
859 struct inode *inode)
860 {
861 struct xfs_inode *ip = XFS_I(inode);
862
863 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
864 schedule();
865 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
866 }
867
868 int
xfs_break_dax_layouts(struct inode * inode,bool * retry)869 xfs_break_dax_layouts(
870 struct inode *inode,
871 bool *retry)
872 {
873 struct page *page;
874
875 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
876
877 page = dax_layout_busy_page(inode->i_mapping);
878 if (!page)
879 return 0;
880
881 *retry = true;
882 return ___wait_var_event(&page->_refcount,
883 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
884 0, 0, xfs_wait_dax_page(inode));
885 }
886
887 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)888 xfs_break_layouts(
889 struct inode *inode,
890 uint *iolock,
891 enum layout_break_reason reason)
892 {
893 bool retry;
894 int error;
895
896 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
897
898 do {
899 retry = false;
900 switch (reason) {
901 case BREAK_UNMAP:
902 error = xfs_break_dax_layouts(inode, &retry);
903 if (error || retry)
904 break;
905 fallthrough;
906 case BREAK_WRITE:
907 error = xfs_break_leased_layouts(inode, iolock, &retry);
908 break;
909 default:
910 WARN_ON_ONCE(1);
911 error = -EINVAL;
912 }
913 } while (error == 0 && retry);
914
915 return error;
916 }
917
918 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)919 static inline bool xfs_file_sync_writes(struct file *filp)
920 {
921 struct xfs_inode *ip = XFS_I(file_inode(filp));
922
923 if (xfs_has_wsync(ip->i_mount))
924 return true;
925 if (filp->f_flags & (__O_SYNC | O_DSYNC))
926 return true;
927 if (IS_SYNC(file_inode(filp)))
928 return true;
929
930 return false;
931 }
932
933 #define XFS_FALLOC_FL_SUPPORTED \
934 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
935 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
936 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
937
938 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)939 xfs_file_fallocate(
940 struct file *file,
941 int mode,
942 loff_t offset,
943 loff_t len)
944 {
945 struct inode *inode = file_inode(file);
946 struct xfs_inode *ip = XFS_I(inode);
947 long error;
948 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
949 loff_t new_size = 0;
950 bool do_file_insert = false;
951
952 if (!S_ISREG(inode->i_mode))
953 return -EINVAL;
954 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
955 return -EOPNOTSUPP;
956
957 xfs_ilock(ip, iolock);
958 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
959 if (error)
960 goto out_unlock;
961
962 /*
963 * Must wait for all AIO to complete before we continue as AIO can
964 * change the file size on completion without holding any locks we
965 * currently hold. We must do this first because AIO can update both
966 * the on disk and in memory inode sizes, and the operations that follow
967 * require the in-memory size to be fully up-to-date.
968 */
969 inode_dio_wait(inode);
970
971 /*
972 * Now AIO and DIO has drained we flush and (if necessary) invalidate
973 * the cached range over the first operation we are about to run.
974 *
975 * We care about zero and collapse here because they both run a hole
976 * punch over the range first. Because that can zero data, and the range
977 * of invalidation for the shift operations is much larger, we still do
978 * the required flush for collapse in xfs_prepare_shift().
979 *
980 * Insert has the same range requirements as collapse, and we extend the
981 * file first which can zero data. Hence insert has the same
982 * flush/invalidate requirements as collapse and so they are both
983 * handled at the right time by xfs_prepare_shift().
984 */
985 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
986 FALLOC_FL_COLLAPSE_RANGE)) {
987 error = xfs_flush_unmap_range(ip, offset, len);
988 if (error)
989 goto out_unlock;
990 }
991
992 error = file_modified(file);
993 if (error)
994 goto out_unlock;
995
996 if (mode & FALLOC_FL_PUNCH_HOLE) {
997 error = xfs_free_file_space(ip, offset, len);
998 if (error)
999 goto out_unlock;
1000 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1001 if (!xfs_is_falloc_aligned(ip, offset, len)) {
1002 error = -EINVAL;
1003 goto out_unlock;
1004 }
1005
1006 /*
1007 * There is no need to overlap collapse range with EOF,
1008 * in which case it is effectively a truncate operation
1009 */
1010 if (offset + len >= i_size_read(inode)) {
1011 error = -EINVAL;
1012 goto out_unlock;
1013 }
1014
1015 new_size = i_size_read(inode) - len;
1016
1017 error = xfs_collapse_file_space(ip, offset, len);
1018 if (error)
1019 goto out_unlock;
1020 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1021 loff_t isize = i_size_read(inode);
1022
1023 if (!xfs_is_falloc_aligned(ip, offset, len)) {
1024 error = -EINVAL;
1025 goto out_unlock;
1026 }
1027
1028 /*
1029 * New inode size must not exceed ->s_maxbytes, accounting for
1030 * possible signed overflow.
1031 */
1032 if (inode->i_sb->s_maxbytes - isize < len) {
1033 error = -EFBIG;
1034 goto out_unlock;
1035 }
1036 new_size = isize + len;
1037
1038 /* Offset should be less than i_size */
1039 if (offset >= isize) {
1040 error = -EINVAL;
1041 goto out_unlock;
1042 }
1043 do_file_insert = true;
1044 } else {
1045 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1046 offset + len > i_size_read(inode)) {
1047 new_size = offset + len;
1048 error = inode_newsize_ok(inode, new_size);
1049 if (error)
1050 goto out_unlock;
1051 }
1052
1053 if (mode & FALLOC_FL_ZERO_RANGE) {
1054 /*
1055 * Punch a hole and prealloc the range. We use a hole
1056 * punch rather than unwritten extent conversion for two
1057 * reasons:
1058 *
1059 * 1.) Hole punch handles partial block zeroing for us.
1060 * 2.) If prealloc returns ENOSPC, the file range is
1061 * still zero-valued by virtue of the hole punch.
1062 */
1063 unsigned int blksize = i_blocksize(inode);
1064
1065 trace_xfs_zero_file_space(ip);
1066
1067 error = xfs_free_file_space(ip, offset, len);
1068 if (error)
1069 goto out_unlock;
1070
1071 len = round_up(offset + len, blksize) -
1072 round_down(offset, blksize);
1073 offset = round_down(offset, blksize);
1074 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1075 error = xfs_reflink_unshare(ip, offset, len);
1076 if (error)
1077 goto out_unlock;
1078 } else {
1079 /*
1080 * If always_cow mode we can't use preallocations and
1081 * thus should not create them.
1082 */
1083 if (xfs_is_always_cow_inode(ip)) {
1084 error = -EOPNOTSUPP;
1085 goto out_unlock;
1086 }
1087 }
1088
1089 if (!xfs_is_always_cow_inode(ip)) {
1090 error = xfs_alloc_file_space(ip, offset, len);
1091 if (error)
1092 goto out_unlock;
1093 }
1094 }
1095
1096 /* Change file size if needed */
1097 if (new_size) {
1098 struct iattr iattr;
1099
1100 iattr.ia_valid = ATTR_SIZE;
1101 iattr.ia_size = new_size;
1102 error = xfs_vn_setattr_size(file_mnt_idmap(file),
1103 file_dentry(file), &iattr);
1104 if (error)
1105 goto out_unlock;
1106 }
1107
1108 /*
1109 * Perform hole insertion now that the file size has been
1110 * updated so that if we crash during the operation we don't
1111 * leave shifted extents past EOF and hence losing access to
1112 * the data that is contained within them.
1113 */
1114 if (do_file_insert) {
1115 error = xfs_insert_file_space(ip, offset, len);
1116 if (error)
1117 goto out_unlock;
1118 }
1119
1120 if (xfs_file_sync_writes(file))
1121 error = xfs_log_force_inode(ip);
1122
1123 out_unlock:
1124 xfs_iunlock(ip, iolock);
1125 return error;
1126 }
1127
1128 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1129 xfs_file_fadvise(
1130 struct file *file,
1131 loff_t start,
1132 loff_t end,
1133 int advice)
1134 {
1135 struct xfs_inode *ip = XFS_I(file_inode(file));
1136 int ret;
1137 int lockflags = 0;
1138
1139 /*
1140 * Operations creating pages in page cache need protection from hole
1141 * punching and similar ops
1142 */
1143 if (advice == POSIX_FADV_WILLNEED) {
1144 lockflags = XFS_IOLOCK_SHARED;
1145 xfs_ilock(ip, lockflags);
1146 }
1147 ret = generic_fadvise(file, start, end, advice);
1148 if (lockflags)
1149 xfs_iunlock(ip, lockflags);
1150 return ret;
1151 }
1152
1153 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1154 xfs_file_remap_range(
1155 struct file *file_in,
1156 loff_t pos_in,
1157 struct file *file_out,
1158 loff_t pos_out,
1159 loff_t len,
1160 unsigned int remap_flags)
1161 {
1162 struct inode *inode_in = file_inode(file_in);
1163 struct xfs_inode *src = XFS_I(inode_in);
1164 struct inode *inode_out = file_inode(file_out);
1165 struct xfs_inode *dest = XFS_I(inode_out);
1166 struct xfs_mount *mp = src->i_mount;
1167 loff_t remapped = 0;
1168 xfs_extlen_t cowextsize;
1169 int ret;
1170
1171 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1172 return -EINVAL;
1173
1174 if (!xfs_has_reflink(mp))
1175 return -EOPNOTSUPP;
1176
1177 if (xfs_is_shutdown(mp))
1178 return -EIO;
1179
1180 /* Prepare and then clone file data. */
1181 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1182 &len, remap_flags);
1183 if (ret || len == 0)
1184 return ret;
1185
1186 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1187
1188 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1189 &remapped);
1190 if (ret)
1191 goto out_unlock;
1192
1193 /*
1194 * Carry the cowextsize hint from src to dest if we're sharing the
1195 * entire source file to the entire destination file, the source file
1196 * has a cowextsize hint, and the destination file does not.
1197 */
1198 cowextsize = 0;
1199 if (pos_in == 0 && len == i_size_read(inode_in) &&
1200 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1201 pos_out == 0 && len >= i_size_read(inode_out) &&
1202 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1203 cowextsize = src->i_cowextsize;
1204
1205 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1206 remap_flags);
1207 if (ret)
1208 goto out_unlock;
1209
1210 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1211 xfs_log_force_inode(dest);
1212 out_unlock:
1213 xfs_iunlock2_remapping(src, dest);
1214 if (ret)
1215 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1216 /*
1217 * If the caller did not set CAN_SHORTEN, then it is not prepared to
1218 * handle partial results -- either the whole remap succeeds, or we
1219 * must say why it did not. In this case, any error should be returned
1220 * to the caller.
1221 */
1222 if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1223 return ret;
1224 return remapped > 0 ? remapped : ret;
1225 }
1226
1227 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1228 xfs_file_open(
1229 struct inode *inode,
1230 struct file *file)
1231 {
1232 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1233 return -EIO;
1234 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
1235 FMODE_DIO_PARALLEL_WRITE | FMODE_CAN_ODIRECT;
1236 return generic_file_open(inode, file);
1237 }
1238
1239 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1240 xfs_dir_open(
1241 struct inode *inode,
1242 struct file *file)
1243 {
1244 struct xfs_inode *ip = XFS_I(inode);
1245 unsigned int mode;
1246 int error;
1247
1248 error = xfs_file_open(inode, file);
1249 if (error)
1250 return error;
1251
1252 /*
1253 * If there are any blocks, read-ahead block 0 as we're almost
1254 * certain to have the next operation be a read there.
1255 */
1256 mode = xfs_ilock_data_map_shared(ip);
1257 if (ip->i_df.if_nextents > 0)
1258 error = xfs_dir3_data_readahead(ip, 0, 0);
1259 xfs_iunlock(ip, mode);
1260 return error;
1261 }
1262
1263 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1264 xfs_file_release(
1265 struct inode *inode,
1266 struct file *filp)
1267 {
1268 return xfs_release(XFS_I(inode));
1269 }
1270
1271 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1272 xfs_file_readdir(
1273 struct file *file,
1274 struct dir_context *ctx)
1275 {
1276 struct inode *inode = file_inode(file);
1277 xfs_inode_t *ip = XFS_I(inode);
1278 size_t bufsize;
1279
1280 /*
1281 * The Linux API doesn't pass down the total size of the buffer
1282 * we read into down to the filesystem. With the filldir concept
1283 * it's not needed for correct information, but the XFS dir2 leaf
1284 * code wants an estimate of the buffer size to calculate it's
1285 * readahead window and size the buffers used for mapping to
1286 * physical blocks.
1287 *
1288 * Try to give it an estimate that's good enough, maybe at some
1289 * point we can change the ->readdir prototype to include the
1290 * buffer size. For now we use the current glibc buffer size.
1291 */
1292 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1293
1294 return xfs_readdir(NULL, ip, ctx, bufsize);
1295 }
1296
1297 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1298 xfs_file_llseek(
1299 struct file *file,
1300 loff_t offset,
1301 int whence)
1302 {
1303 struct inode *inode = file->f_mapping->host;
1304
1305 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1306 return -EIO;
1307
1308 switch (whence) {
1309 default:
1310 return generic_file_llseek(file, offset, whence);
1311 case SEEK_HOLE:
1312 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1313 break;
1314 case SEEK_DATA:
1315 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1316 break;
1317 }
1318
1319 if (offset < 0)
1320 return offset;
1321 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1322 }
1323
1324 #ifdef CONFIG_FS_DAX
1325 static inline vm_fault_t
xfs_dax_fault(struct vm_fault * vmf,unsigned int order,bool write_fault,pfn_t * pfn)1326 xfs_dax_fault(
1327 struct vm_fault *vmf,
1328 unsigned int order,
1329 bool write_fault,
1330 pfn_t *pfn)
1331 {
1332 return dax_iomap_fault(vmf, order, pfn, NULL,
1333 (write_fault && !vmf->cow_page) ?
1334 &xfs_dax_write_iomap_ops :
1335 &xfs_read_iomap_ops);
1336 }
1337 #else
1338 static inline vm_fault_t
xfs_dax_fault(struct vm_fault * vmf,unsigned int order,bool write_fault,pfn_t * pfn)1339 xfs_dax_fault(
1340 struct vm_fault *vmf,
1341 unsigned int order,
1342 bool write_fault,
1343 pfn_t *pfn)
1344 {
1345 ASSERT(0);
1346 return VM_FAULT_SIGBUS;
1347 }
1348 #endif
1349
1350 /*
1351 * Locking for serialisation of IO during page faults. This results in a lock
1352 * ordering of:
1353 *
1354 * mmap_lock (MM)
1355 * sb_start_pagefault(vfs, freeze)
1356 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1357 * page_lock (MM)
1358 * i_lock (XFS - extent map serialisation)
1359 */
1360 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,unsigned int order,bool write_fault)1361 __xfs_filemap_fault(
1362 struct vm_fault *vmf,
1363 unsigned int order,
1364 bool write_fault)
1365 {
1366 struct inode *inode = file_inode(vmf->vma->vm_file);
1367 struct xfs_inode *ip = XFS_I(inode);
1368 vm_fault_t ret;
1369 unsigned int lock_mode = 0;
1370
1371 trace_xfs_filemap_fault(ip, order, write_fault);
1372
1373 if (write_fault) {
1374 sb_start_pagefault(inode->i_sb);
1375 file_update_time(vmf->vma->vm_file);
1376 }
1377
1378 if (IS_DAX(inode) || write_fault)
1379 lock_mode = xfs_ilock_for_write_fault(XFS_I(inode));
1380
1381 if (IS_DAX(inode)) {
1382 pfn_t pfn;
1383
1384 ret = xfs_dax_fault(vmf, order, write_fault, &pfn);
1385 if (ret & VM_FAULT_NEEDDSYNC)
1386 ret = dax_finish_sync_fault(vmf, order, pfn);
1387 } else if (write_fault) {
1388 ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1389 } else {
1390 ret = filemap_fault(vmf);
1391 }
1392
1393 if (lock_mode)
1394 xfs_iunlock(XFS_I(inode), lock_mode);
1395
1396 if (write_fault)
1397 sb_end_pagefault(inode->i_sb);
1398 return ret;
1399 }
1400
1401 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1402 xfs_is_write_fault(
1403 struct vm_fault *vmf)
1404 {
1405 return (vmf->flags & FAULT_FLAG_WRITE) &&
1406 (vmf->vma->vm_flags & VM_SHARED);
1407 }
1408
1409 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1410 xfs_filemap_fault(
1411 struct vm_fault *vmf)
1412 {
1413 /* DAX can shortcut the normal fault path on write faults! */
1414 return __xfs_filemap_fault(vmf, 0,
1415 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1416 xfs_is_write_fault(vmf));
1417 }
1418
1419 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,unsigned int order)1420 xfs_filemap_huge_fault(
1421 struct vm_fault *vmf,
1422 unsigned int order)
1423 {
1424 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1425 return VM_FAULT_FALLBACK;
1426
1427 /* DAX can shortcut the normal fault path on write faults! */
1428 return __xfs_filemap_fault(vmf, order,
1429 xfs_is_write_fault(vmf));
1430 }
1431
1432 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1433 xfs_filemap_page_mkwrite(
1434 struct vm_fault *vmf)
1435 {
1436 return __xfs_filemap_fault(vmf, 0, true);
1437 }
1438
1439 /*
1440 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1441 * on write faults. In reality, it needs to serialise against truncate and
1442 * prepare memory for writing so handle is as standard write fault.
1443 */
1444 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1445 xfs_filemap_pfn_mkwrite(
1446 struct vm_fault *vmf)
1447 {
1448
1449 return __xfs_filemap_fault(vmf, 0, true);
1450 }
1451
1452 static const struct vm_operations_struct xfs_file_vm_ops = {
1453 .fault = xfs_filemap_fault,
1454 .huge_fault = xfs_filemap_huge_fault,
1455 .map_pages = filemap_map_pages,
1456 .page_mkwrite = xfs_filemap_page_mkwrite,
1457 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1458 };
1459
1460 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1461 xfs_file_mmap(
1462 struct file *file,
1463 struct vm_area_struct *vma)
1464 {
1465 struct inode *inode = file_inode(file);
1466 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1467
1468 /*
1469 * We don't support synchronous mappings for non-DAX files and
1470 * for DAX files if underneath dax_device is not synchronous.
1471 */
1472 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1473 return -EOPNOTSUPP;
1474
1475 file_accessed(file);
1476 vma->vm_ops = &xfs_file_vm_ops;
1477 if (IS_DAX(inode))
1478 vm_flags_set(vma, VM_HUGEPAGE);
1479 return 0;
1480 }
1481
1482 const struct file_operations xfs_file_operations = {
1483 .llseek = xfs_file_llseek,
1484 .read_iter = xfs_file_read_iter,
1485 .write_iter = xfs_file_write_iter,
1486 .splice_read = xfs_file_splice_read,
1487 .splice_write = iter_file_splice_write,
1488 .iopoll = iocb_bio_iopoll,
1489 .unlocked_ioctl = xfs_file_ioctl,
1490 #ifdef CONFIG_COMPAT
1491 .compat_ioctl = xfs_file_compat_ioctl,
1492 #endif
1493 .mmap = xfs_file_mmap,
1494 .mmap_supported_flags = MAP_SYNC,
1495 .open = xfs_file_open,
1496 .release = xfs_file_release,
1497 .fsync = xfs_file_fsync,
1498 .get_unmapped_area = thp_get_unmapped_area,
1499 .fallocate = xfs_file_fallocate,
1500 .fadvise = xfs_file_fadvise,
1501 .remap_file_range = xfs_file_remap_range,
1502 };
1503
1504 const struct file_operations xfs_dir_file_operations = {
1505 .open = xfs_dir_open,
1506 .read = generic_read_dir,
1507 .iterate_shared = xfs_file_readdir,
1508 .llseek = generic_file_llseek,
1509 .unlocked_ioctl = xfs_file_ioctl,
1510 #ifdef CONFIG_COMPAT
1511 .compat_ioctl = xfs_file_compat_ioctl,
1512 #endif
1513 .fsync = xfs_dir_fsync,
1514 };
1515