1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK 0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK 0x87c0ffff
23 #endif
24
25 /* Bits in XER */
26 #define XER_SO 0x80000000U
27 #define XER_OV 0x40000000U
28 #define XER_CA 0x20000000U
29 #define XER_OV32 0x00080000U
30 #define XER_CA32 0x00040000U
31
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35
36 #ifdef CONFIG_PPC_FPU
37 /*
38 * Functions in ldstfp.S
39 */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49
50 #ifdef __powerpc64__
51 /*
52 * Functions in quad.S
53 */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58 unsigned int *crp);
59 #endif
60
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE 1
63 #define IS_BE 0
64 #else
65 #define IS_LE 0
66 #define IS_BE 1
67 #endif
68
69 /*
70 * Emulate the truncation of 64 bit values in 32-bit mode.
71 */
truncate_if_32bit(unsigned long msr,unsigned long val)72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73 unsigned long val)
74 {
75 if ((msr & MSR_64BIT) == 0)
76 val &= 0xffffffffUL;
77 return val;
78 }
79
80 /*
81 * Determine whether a conditional branch instruction would branch.
82 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)83 static nokprobe_inline int branch_taken(unsigned int instr,
84 const struct pt_regs *regs,
85 struct instruction_op *op)
86 {
87 unsigned int bo = (instr >> 21) & 0x1f;
88 unsigned int bi;
89
90 if ((bo & 4) == 0) {
91 /* decrement counter */
92 op->type |= DECCTR;
93 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 return 0;
95 }
96 if ((bo & 0x10) == 0) {
97 /* check bit from CR */
98 bi = (instr >> 16) & 0x1f;
99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 return 0;
101 }
102 return 1;
103 }
104
address_ok(struct pt_regs * regs,unsigned long ea,int nb)105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 unsigned long ea, int nb)
107 {
108 if (!user_mode(regs))
109 return 1;
110 if (access_ok((void __user *)ea, nb))
111 return 1;
112 if (access_ok((void __user *)ea, 1))
113 /* Access overlaps the end of the user region */
114 regs->dar = TASK_SIZE_MAX - 1;
115 else
116 regs->dar = ea;
117 return 0;
118 }
119
120 /*
121 * Calculate effective address for a D-form instruction
122 */
dform_ea(unsigned int instr,const struct pt_regs * regs)123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 const struct pt_regs *regs)
125 {
126 int ra;
127 unsigned long ea;
128
129 ra = (instr >> 16) & 0x1f;
130 ea = (signed short) instr; /* sign-extend */
131 if (ra)
132 ea += regs->gpr[ra];
133
134 return ea;
135 }
136
137 #ifdef __powerpc64__
138 /*
139 * Calculate effective address for a DS-form instruction
140 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 const struct pt_regs *regs)
143 {
144 int ra;
145 unsigned long ea;
146
147 ra = (instr >> 16) & 0x1f;
148 ea = (signed short) (instr & ~3); /* sign-extend */
149 if (ra)
150 ea += regs->gpr[ra];
151
152 return ea;
153 }
154
155 /*
156 * Calculate effective address for a DQ-form instruction
157 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 const struct pt_regs *regs)
160 {
161 int ra;
162 unsigned long ea;
163
164 ra = (instr >> 16) & 0x1f;
165 ea = (signed short) (instr & ~0xf); /* sign-extend */
166 if (ra)
167 ea += regs->gpr[ra];
168
169 return ea;
170 }
171 #endif /* __powerpc64 */
172
173 /*
174 * Calculate effective address for an X-form instruction
175 */
xform_ea(unsigned int instr,const struct pt_regs * regs)176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 const struct pt_regs *regs)
178 {
179 int ra, rb;
180 unsigned long ea;
181
182 ra = (instr >> 16) & 0x1f;
183 rb = (instr >> 11) & 0x1f;
184 ea = regs->gpr[rb];
185 if (ra)
186 ea += regs->gpr[ra];
187
188 return ea;
189 }
190
191 /*
192 * Calculate effective address for a MLS:D-form / 8LS:D-form
193 * prefixed instruction
194 */
mlsd_8lsd_ea(unsigned int instr,unsigned int suffix,const struct pt_regs * regs)195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 unsigned int suffix,
197 const struct pt_regs *regs)
198 {
199 int ra, prefix_r;
200 unsigned int dd;
201 unsigned long ea, d0, d1, d;
202
203 prefix_r = GET_PREFIX_R(instr);
204 ra = GET_PREFIX_RA(suffix);
205
206 d0 = instr & 0x3ffff;
207 d1 = suffix & 0xffff;
208 d = (d0 << 16) | d1;
209
210 /*
211 * sign extend a 34 bit number
212 */
213 dd = (unsigned int)(d >> 2);
214 ea = (signed int)dd;
215 ea = (ea << 2) | (d & 0x3);
216
217 if (!prefix_r && ra)
218 ea += regs->gpr[ra];
219 else if (!prefix_r && !ra)
220 ; /* Leave ea as is */
221 else if (prefix_r)
222 ea += regs->nip;
223
224 /*
225 * (prefix_r && ra) is an invalid form. Should already be
226 * checked for by caller!
227 */
228
229 return ea;
230 }
231
232 /*
233 * Return the largest power of 2, not greater than sizeof(unsigned long),
234 * such that x is a multiple of it.
235 */
max_align(unsigned long x)236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238 x |= sizeof(unsigned long);
239 return x & -x; /* isolates rightmost bit */
240 }
241
byterev_2(unsigned long x)242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246
byterev_4(unsigned long x)247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252
253 #ifdef __powerpc64__
byterev_8(unsigned long x)254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256 return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259
do_byte_reverse(void * ptr,int nb)260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262 switch (nb) {
263 case 2:
264 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265 break;
266 case 4:
267 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268 break;
269 #ifdef __powerpc64__
270 case 8:
271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272 break;
273 case 16: {
274 unsigned long *up = (unsigned long *)ptr;
275 unsigned long tmp;
276 tmp = byterev_8(up[0]);
277 up[0] = byterev_8(up[1]);
278 up[1] = tmp;
279 break;
280 }
281 case 32: {
282 unsigned long *up = (unsigned long *)ptr;
283 unsigned long tmp;
284
285 tmp = byterev_8(up[0]);
286 up[0] = byterev_8(up[3]);
287 up[3] = tmp;
288 tmp = byterev_8(up[2]);
289 up[2] = byterev_8(up[1]);
290 up[1] = tmp;
291 break;
292 }
293
294 #endif
295 default:
296 WARN_ON_ONCE(1);
297 }
298 }
299
300 static __always_inline int
__read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303 unsigned long x = 0;
304
305 switch (nb) {
306 case 1:
307 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308 break;
309 case 2:
310 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311 break;
312 case 4:
313 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314 break;
315 #ifdef __powerpc64__
316 case 8:
317 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318 break;
319 #endif
320 }
321 *dest = x;
322 return 0;
323
324 Efault:
325 regs->dar = ea;
326 return -EFAULT;
327 }
328
329 static nokprobe_inline int
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332 int err;
333
334 if (is_kernel_addr(ea))
335 return __read_mem_aligned(dest, ea, nb, regs);
336
337 if (user_read_access_begin((void __user *)ea, nb)) {
338 err = __read_mem_aligned(dest, ea, nb, regs);
339 user_read_access_end();
340 } else {
341 err = -EFAULT;
342 regs->dar = ea;
343 }
344
345 return err;
346 }
347
348 /*
349 * Copy from userspace to a buffer, using the largest possible
350 * aligned accesses, up to sizeof(long).
351 */
__copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354 int c;
355
356 for (; nb > 0; nb -= c) {
357 c = max_align(ea);
358 if (c > nb)
359 c = max_align(nb);
360 switch (c) {
361 case 1:
362 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363 break;
364 case 2:
365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366 break;
367 case 4:
368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369 break;
370 #ifdef __powerpc64__
371 case 8:
372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373 break;
374 #endif
375 }
376 dest += c;
377 ea += c;
378 }
379 return 0;
380
381 Efault:
382 regs->dar = ea;
383 return -EFAULT;
384 }
385
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388 int err;
389
390 if (is_kernel_addr(ea))
391 return __copy_mem_in(dest, ea, nb, regs);
392
393 if (user_read_access_begin((void __user *)ea, nb)) {
394 err = __copy_mem_in(dest, ea, nb, regs);
395 user_read_access_end();
396 } else {
397 err = -EFAULT;
398 regs->dar = ea;
399 }
400
401 return err;
402 }
403
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 unsigned long ea, int nb,
406 struct pt_regs *regs)
407 {
408 union {
409 unsigned long ul;
410 u8 b[sizeof(unsigned long)];
411 } u;
412 int i;
413 int err;
414
415 u.ul = 0;
416 i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 err = copy_mem_in(&u.b[i], ea, nb, regs);
418 if (!err)
419 *dest = u.ul;
420 return err;
421 }
422
423 /*
424 * Read memory at address ea for nb bytes, return 0 for success
425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
426 * If nb < sizeof(long), the result is right-justified on BE systems.
427 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 struct pt_regs *regs)
430 {
431 if (!address_ok(regs, ea, nb))
432 return -EFAULT;
433 if ((ea & (nb - 1)) == 0)
434 return read_mem_aligned(dest, ea, nb, regs);
435 return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438
439 static __always_inline int
__write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442 switch (nb) {
443 case 1:
444 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445 break;
446 case 2:
447 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448 break;
449 case 4:
450 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451 break;
452 #ifdef __powerpc64__
453 case 8:
454 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455 break;
456 #endif
457 }
458 return 0;
459
460 Efault:
461 regs->dar = ea;
462 return -EFAULT;
463 }
464
465 static nokprobe_inline int
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468 int err;
469
470 if (is_kernel_addr(ea))
471 return __write_mem_aligned(val, ea, nb, regs);
472
473 if (user_write_access_begin((void __user *)ea, nb)) {
474 err = __write_mem_aligned(val, ea, nb, regs);
475 user_write_access_end();
476 } else {
477 err = -EFAULT;
478 regs->dar = ea;
479 }
480
481 return err;
482 }
483
484 /*
485 * Copy from a buffer to userspace, using the largest possible
486 * aligned accesses, up to sizeof(long).
487 */
__copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490 int c;
491
492 for (; nb > 0; nb -= c) {
493 c = max_align(ea);
494 if (c > nb)
495 c = max_align(nb);
496 switch (c) {
497 case 1:
498 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499 break;
500 case 2:
501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502 break;
503 case 4:
504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505 break;
506 #ifdef __powerpc64__
507 case 8:
508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509 break;
510 #endif
511 }
512 dest += c;
513 ea += c;
514 }
515 return 0;
516
517 Efault:
518 regs->dar = ea;
519 return -EFAULT;
520 }
521
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524 int err;
525
526 if (is_kernel_addr(ea))
527 return __copy_mem_out(dest, ea, nb, regs);
528
529 if (user_write_access_begin((void __user *)ea, nb)) {
530 err = __copy_mem_out(dest, ea, nb, regs);
531 user_write_access_end();
532 } else {
533 err = -EFAULT;
534 regs->dar = ea;
535 }
536
537 return err;
538 }
539
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 unsigned long ea, int nb,
542 struct pt_regs *regs)
543 {
544 union {
545 unsigned long ul;
546 u8 b[sizeof(unsigned long)];
547 } u;
548 int i;
549
550 u.ul = val;
551 i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554
555 /*
556 * Write memory at address ea for nb bytes, return 0 for success
557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
558 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560 struct pt_regs *regs)
561 {
562 if (!address_ok(regs, ea, nb))
563 return -EFAULT;
564 if ((ea & (nb - 1)) == 0)
565 return write_mem_aligned(val, ea, nb, regs);
566 return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569
570 #ifdef CONFIG_PPC_FPU
571 /*
572 * These access either the real FP register or the image in the
573 * thread_struct, depending on regs->msr & MSR_FP.
574 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 struct pt_regs *regs, bool cross_endian)
577 {
578 int err, rn, nb;
579 union {
580 int i;
581 unsigned int u;
582 float f;
583 double d[2];
584 unsigned long l[2];
585 u8 b[2 * sizeof(double)];
586 } u;
587
588 nb = GETSIZE(op->type);
589 if (nb > sizeof(u))
590 return -EINVAL;
591 if (!address_ok(regs, ea, nb))
592 return -EFAULT;
593 rn = op->reg;
594 err = copy_mem_in(u.b, ea, nb, regs);
595 if (err)
596 return err;
597 if (unlikely(cross_endian)) {
598 do_byte_reverse(u.b, min(nb, 8));
599 if (nb == 16)
600 do_byte_reverse(&u.b[8], 8);
601 }
602 preempt_disable();
603 if (nb == 4) {
604 if (op->type & FPCONV)
605 conv_sp_to_dp(&u.f, &u.d[0]);
606 else if (op->type & SIGNEXT)
607 u.l[0] = u.i;
608 else
609 u.l[0] = u.u;
610 }
611 if (regs->msr & MSR_FP)
612 put_fpr(rn, &u.d[0]);
613 else
614 current->thread.TS_FPR(rn) = u.l[0];
615 if (nb == 16) {
616 /* lfdp */
617 rn |= 1;
618 if (regs->msr & MSR_FP)
619 put_fpr(rn, &u.d[1]);
620 else
621 current->thread.TS_FPR(rn) = u.l[1];
622 }
623 preempt_enable();
624 return 0;
625 }
626 NOKPROBE_SYMBOL(do_fp_load);
627
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)628 static int do_fp_store(struct instruction_op *op, unsigned long ea,
629 struct pt_regs *regs, bool cross_endian)
630 {
631 int rn, nb;
632 union {
633 unsigned int u;
634 float f;
635 double d[2];
636 unsigned long l[2];
637 u8 b[2 * sizeof(double)];
638 } u;
639
640 nb = GETSIZE(op->type);
641 if (nb > sizeof(u))
642 return -EINVAL;
643 if (!address_ok(regs, ea, nb))
644 return -EFAULT;
645 rn = op->reg;
646 preempt_disable();
647 if (regs->msr & MSR_FP)
648 get_fpr(rn, &u.d[0]);
649 else
650 u.l[0] = current->thread.TS_FPR(rn);
651 if (nb == 4) {
652 if (op->type & FPCONV)
653 conv_dp_to_sp(&u.d[0], &u.f);
654 else
655 u.u = u.l[0];
656 }
657 if (nb == 16) {
658 rn |= 1;
659 if (regs->msr & MSR_FP)
660 get_fpr(rn, &u.d[1]);
661 else
662 u.l[1] = current->thread.TS_FPR(rn);
663 }
664 preempt_enable();
665 if (unlikely(cross_endian)) {
666 do_byte_reverse(u.b, min(nb, 8));
667 if (nb == 16)
668 do_byte_reverse(&u.b[8], 8);
669 }
670 return copy_mem_out(u.b, ea, nb, regs);
671 }
672 NOKPROBE_SYMBOL(do_fp_store);
673 #endif
674
675 #ifdef CONFIG_ALTIVEC
676 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
678 int size, struct pt_regs *regs,
679 bool cross_endian)
680 {
681 int err;
682 union {
683 __vector128 v;
684 u8 b[sizeof(__vector128)];
685 } u = {};
686
687 if (size > sizeof(u))
688 return -EINVAL;
689
690 if (!address_ok(regs, ea & ~0xfUL, 16))
691 return -EFAULT;
692 /* align to multiple of size */
693 ea &= ~(size - 1);
694 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
695 if (err)
696 return err;
697 if (unlikely(cross_endian))
698 do_byte_reverse(&u.b[ea & 0xf], size);
699 preempt_disable();
700 if (regs->msr & MSR_VEC)
701 put_vr(rn, &u.v);
702 else
703 current->thread.vr_state.vr[rn] = u.v;
704 preempt_enable();
705 return 0;
706 }
707
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
709 int size, struct pt_regs *regs,
710 bool cross_endian)
711 {
712 union {
713 __vector128 v;
714 u8 b[sizeof(__vector128)];
715 } u;
716
717 if (size > sizeof(u))
718 return -EINVAL;
719
720 if (!address_ok(regs, ea & ~0xfUL, 16))
721 return -EFAULT;
722 /* align to multiple of size */
723 ea &= ~(size - 1);
724
725 preempt_disable();
726 if (regs->msr & MSR_VEC)
727 get_vr(rn, &u.v);
728 else
729 u.v = current->thread.vr_state.vr[rn];
730 preempt_enable();
731 if (unlikely(cross_endian))
732 do_byte_reverse(&u.b[ea & 0xf], size);
733 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
734 }
735 #endif /* CONFIG_ALTIVEC */
736
737 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
739 int reg, bool cross_endian)
740 {
741 int err;
742
743 if (!address_ok(regs, ea, 16))
744 return -EFAULT;
745 /* if aligned, should be atomic */
746 if ((ea & 0xf) == 0) {
747 err = do_lq(ea, ®s->gpr[reg]);
748 } else {
749 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
750 if (!err)
751 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
752 }
753 if (!err && unlikely(cross_endian))
754 do_byte_reverse(®s->gpr[reg], 16);
755 return err;
756 }
757
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
759 int reg, bool cross_endian)
760 {
761 int err;
762 unsigned long vals[2];
763
764 if (!address_ok(regs, ea, 16))
765 return -EFAULT;
766 vals[0] = regs->gpr[reg];
767 vals[1] = regs->gpr[reg + 1];
768 if (unlikely(cross_endian))
769 do_byte_reverse(vals, 16);
770
771 /* if aligned, should be atomic */
772 if ((ea & 0xf) == 0)
773 return do_stq(ea, vals[0], vals[1]);
774
775 err = write_mem(vals[IS_LE], ea, 8, regs);
776 if (!err)
777 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
778 return err;
779 }
780 #endif /* __powerpc64 */
781
782 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)783 static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
784 const void *mem, bool rev)
785 {
786 int size, read_size;
787 int i, j;
788 const unsigned int *wp;
789 const unsigned short *hp;
790 const unsigned char *bp;
791
792 size = GETSIZE(op->type);
793 reg->d[0] = reg->d[1] = 0;
794
795 switch (op->element_size) {
796 case 32:
797 /* [p]lxvp[x] */
798 case 16:
799 /* whole vector; lxv[x] or lxvl[l] */
800 if (size == 0)
801 break;
802 memcpy(reg, mem, size);
803 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
804 rev = !rev;
805 if (rev)
806 do_byte_reverse(reg, size);
807 break;
808 case 8:
809 /* scalar loads, lxvd2x, lxvdsx */
810 read_size = (size >= 8) ? 8 : size;
811 i = IS_LE ? 8 : 8 - read_size;
812 memcpy(®->b[i], mem, read_size);
813 if (rev)
814 do_byte_reverse(®->b[i], 8);
815 if (size < 8) {
816 if (op->type & SIGNEXT) {
817 /* size == 4 is the only case here */
818 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
819 } else if (op->vsx_flags & VSX_FPCONV) {
820 preempt_disable();
821 conv_sp_to_dp(®->fp[1 + IS_LE],
822 ®->dp[IS_LE]);
823 preempt_enable();
824 }
825 } else {
826 if (size == 16) {
827 unsigned long v = *(unsigned long *)(mem + 8);
828 reg->d[IS_BE] = !rev ? v : byterev_8(v);
829 } else if (op->vsx_flags & VSX_SPLAT)
830 reg->d[IS_BE] = reg->d[IS_LE];
831 }
832 break;
833 case 4:
834 /* lxvw4x, lxvwsx */
835 wp = mem;
836 for (j = 0; j < size / 4; ++j) {
837 i = IS_LE ? 3 - j : j;
838 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
839 }
840 if (op->vsx_flags & VSX_SPLAT) {
841 u32 val = reg->w[IS_LE ? 3 : 0];
842 for (; j < 4; ++j) {
843 i = IS_LE ? 3 - j : j;
844 reg->w[i] = val;
845 }
846 }
847 break;
848 case 2:
849 /* lxvh8x */
850 hp = mem;
851 for (j = 0; j < size / 2; ++j) {
852 i = IS_LE ? 7 - j : j;
853 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
854 }
855 break;
856 case 1:
857 /* lxvb16x */
858 bp = mem;
859 for (j = 0; j < size; ++j) {
860 i = IS_LE ? 15 - j : j;
861 reg->b[i] = *bp++;
862 }
863 break;
864 }
865 }
866
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)867 static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
868 void *mem, bool rev)
869 {
870 int size, write_size;
871 int i, j;
872 union vsx_reg buf;
873 unsigned int *wp;
874 unsigned short *hp;
875 unsigned char *bp;
876
877 size = GETSIZE(op->type);
878
879 switch (op->element_size) {
880 case 32:
881 /* [p]stxvp[x] */
882 if (size == 0)
883 break;
884 if (rev) {
885 /* reverse 32 bytes */
886 union vsx_reg buf32[2];
887 buf32[0].d[0] = byterev_8(reg[1].d[1]);
888 buf32[0].d[1] = byterev_8(reg[1].d[0]);
889 buf32[1].d[0] = byterev_8(reg[0].d[1]);
890 buf32[1].d[1] = byterev_8(reg[0].d[0]);
891 memcpy(mem, buf32, size);
892 } else {
893 memcpy(mem, reg, size);
894 }
895 break;
896 case 16:
897 /* stxv, stxvx, stxvl, stxvll */
898 if (size == 0)
899 break;
900 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
901 rev = !rev;
902 if (rev) {
903 /* reverse 16 bytes */
904 buf.d[0] = byterev_8(reg->d[1]);
905 buf.d[1] = byterev_8(reg->d[0]);
906 reg = &buf;
907 }
908 memcpy(mem, reg, size);
909 break;
910 case 8:
911 /* scalar stores, stxvd2x */
912 write_size = (size >= 8) ? 8 : size;
913 i = IS_LE ? 8 : 8 - write_size;
914 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
915 buf.d[0] = buf.d[1] = 0;
916 preempt_disable();
917 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
918 preempt_enable();
919 reg = &buf;
920 }
921 memcpy(mem, ®->b[i], write_size);
922 if (size == 16)
923 memcpy(mem + 8, ®->d[IS_BE], 8);
924 if (unlikely(rev)) {
925 do_byte_reverse(mem, write_size);
926 if (size == 16)
927 do_byte_reverse(mem + 8, 8);
928 }
929 break;
930 case 4:
931 /* stxvw4x */
932 wp = mem;
933 for (j = 0; j < size / 4; ++j) {
934 i = IS_LE ? 3 - j : j;
935 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
936 }
937 break;
938 case 2:
939 /* stxvh8x */
940 hp = mem;
941 for (j = 0; j < size / 2; ++j) {
942 i = IS_LE ? 7 - j : j;
943 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
944 }
945 break;
946 case 1:
947 /* stvxb16x */
948 bp = mem;
949 for (j = 0; j < size; ++j) {
950 i = IS_LE ? 15 - j : j;
951 *bp++ = reg->b[i];
952 }
953 break;
954 }
955 }
956
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)957 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
958 unsigned long ea, struct pt_regs *regs,
959 bool cross_endian)
960 {
961 int reg = op->reg;
962 int i, j, nr_vsx_regs;
963 u8 mem[32];
964 union vsx_reg buf[2];
965 int size = GETSIZE(op->type);
966
967 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
968 return -EFAULT;
969
970 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
971 emulate_vsx_load(op, buf, mem, cross_endian);
972 preempt_disable();
973 if (reg < 32) {
974 /* FP regs + extensions */
975 if (regs->msr & MSR_FP) {
976 for (i = 0; i < nr_vsx_regs; i++) {
977 j = IS_LE ? nr_vsx_regs - i - 1 : i;
978 load_vsrn(reg + i, &buf[j].v);
979 }
980 } else {
981 for (i = 0; i < nr_vsx_regs; i++) {
982 j = IS_LE ? nr_vsx_regs - i - 1 : i;
983 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
984 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
985 }
986 }
987 } else {
988 if (regs->msr & MSR_VEC) {
989 for (i = 0; i < nr_vsx_regs; i++) {
990 j = IS_LE ? nr_vsx_regs - i - 1 : i;
991 load_vsrn(reg + i, &buf[j].v);
992 }
993 } else {
994 for (i = 0; i < nr_vsx_regs; i++) {
995 j = IS_LE ? nr_vsx_regs - i - 1 : i;
996 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
997 }
998 }
999 }
1000 preempt_enable();
1001 return 0;
1002 }
1003
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)1004 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1005 unsigned long ea, struct pt_regs *regs,
1006 bool cross_endian)
1007 {
1008 int reg = op->reg;
1009 int i, j, nr_vsx_regs;
1010 u8 mem[32];
1011 union vsx_reg buf[2];
1012 int size = GETSIZE(op->type);
1013
1014 if (!address_ok(regs, ea, size))
1015 return -EFAULT;
1016
1017 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1018 preempt_disable();
1019 if (reg < 32) {
1020 /* FP regs + extensions */
1021 if (regs->msr & MSR_FP) {
1022 for (i = 0; i < nr_vsx_regs; i++) {
1023 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1024 store_vsrn(reg + i, &buf[j].v);
1025 }
1026 } else {
1027 for (i = 0; i < nr_vsx_regs; i++) {
1028 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1029 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1030 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1031 }
1032 }
1033 } else {
1034 if (regs->msr & MSR_VEC) {
1035 for (i = 0; i < nr_vsx_regs; i++) {
1036 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1037 store_vsrn(reg + i, &buf[j].v);
1038 }
1039 } else {
1040 for (i = 0; i < nr_vsx_regs; i++) {
1041 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1042 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1043 }
1044 }
1045 }
1046 preempt_enable();
1047 emulate_vsx_store(op, buf, mem, cross_endian);
1048 return copy_mem_out(mem, ea, size, regs);
1049 }
1050 #endif /* CONFIG_VSX */
1051
__emulate_dcbz(unsigned long ea)1052 static __always_inline int __emulate_dcbz(unsigned long ea)
1053 {
1054 unsigned long i;
1055 unsigned long size = l1_dcache_bytes();
1056
1057 for (i = 0; i < size; i += sizeof(long))
1058 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1059
1060 return 0;
1061
1062 Efault:
1063 return -EFAULT;
1064 }
1065
emulate_dcbz(unsigned long ea,struct pt_regs * regs)1066 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1067 {
1068 int err;
1069 unsigned long size = l1_dcache_bytes();
1070
1071 ea = truncate_if_32bit(regs->msr, ea);
1072 ea &= ~(size - 1);
1073 if (!address_ok(regs, ea, size))
1074 return -EFAULT;
1075
1076 if (is_kernel_addr(ea)) {
1077 err = __emulate_dcbz(ea);
1078 } else if (user_write_access_begin((void __user *)ea, size)) {
1079 err = __emulate_dcbz(ea);
1080 user_write_access_end();
1081 } else {
1082 err = -EFAULT;
1083 }
1084
1085 if (err)
1086 regs->dar = ea;
1087
1088
1089 return err;
1090 }
1091 NOKPROBE_SYMBOL(emulate_dcbz);
1092
1093 #define __put_user_asmx(x, addr, err, op, cr) \
1094 __asm__ __volatile__( \
1095 ".machine push\n" \
1096 ".machine power8\n" \
1097 "1: " op " %2,0,%3\n" \
1098 ".machine pop\n" \
1099 " mfcr %1\n" \
1100 "2:\n" \
1101 ".section .fixup,\"ax\"\n" \
1102 "3: li %0,%4\n" \
1103 " b 2b\n" \
1104 ".previous\n" \
1105 EX_TABLE(1b, 3b) \
1106 : "=r" (err), "=r" (cr) \
1107 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1108
1109 #define __get_user_asmx(x, addr, err, op) \
1110 __asm__ __volatile__( \
1111 ".machine push\n" \
1112 ".machine power8\n" \
1113 "1: "op" %1,0,%2\n" \
1114 ".machine pop\n" \
1115 "2:\n" \
1116 ".section .fixup,\"ax\"\n" \
1117 "3: li %0,%3\n" \
1118 " b 2b\n" \
1119 ".previous\n" \
1120 EX_TABLE(1b, 3b) \
1121 : "=r" (err), "=r" (x) \
1122 : "r" (addr), "i" (-EFAULT), "0" (err))
1123
1124 #define __cacheop_user_asmx(addr, err, op) \
1125 __asm__ __volatile__( \
1126 "1: "op" 0,%1\n" \
1127 "2:\n" \
1128 ".section .fixup,\"ax\"\n" \
1129 "3: li %0,%3\n" \
1130 " b 2b\n" \
1131 ".previous\n" \
1132 EX_TABLE(1b, 3b) \
1133 : "=r" (err) \
1134 : "r" (addr), "i" (-EFAULT), "0" (err))
1135
set_cr0(const struct pt_regs * regs,struct instruction_op * op)1136 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1137 struct instruction_op *op)
1138 {
1139 long val = op->val;
1140
1141 op->type |= SETCC;
1142 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1143 if (!(regs->msr & MSR_64BIT))
1144 val = (int) val;
1145 if (val < 0)
1146 op->ccval |= 0x80000000;
1147 else if (val > 0)
1148 op->ccval |= 0x40000000;
1149 else
1150 op->ccval |= 0x20000000;
1151 }
1152
set_ca32(struct instruction_op * op,bool val)1153 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1154 {
1155 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1156 if (val)
1157 op->xerval |= XER_CA32;
1158 else
1159 op->xerval &= ~XER_CA32;
1160 }
1161 }
1162
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)1163 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1164 struct instruction_op *op, int rd,
1165 unsigned long val1, unsigned long val2,
1166 unsigned long carry_in)
1167 {
1168 unsigned long val = val1 + val2;
1169
1170 if (carry_in)
1171 ++val;
1172 op->type = COMPUTE | SETREG | SETXER;
1173 op->reg = rd;
1174 op->val = val;
1175 val = truncate_if_32bit(regs->msr, val);
1176 val1 = truncate_if_32bit(regs->msr, val1);
1177 op->xerval = regs->xer;
1178 if (val < val1 || (carry_in && val == val1))
1179 op->xerval |= XER_CA;
1180 else
1181 op->xerval &= ~XER_CA;
1182
1183 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1184 (carry_in && (unsigned int)val == (unsigned int)val1));
1185 }
1186
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1187 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1188 struct instruction_op *op,
1189 long v1, long v2, int crfld)
1190 {
1191 unsigned int crval, shift;
1192
1193 op->type = COMPUTE | SETCC;
1194 crval = (regs->xer >> 31) & 1; /* get SO bit */
1195 if (v1 < v2)
1196 crval |= 8;
1197 else if (v1 > v2)
1198 crval |= 4;
1199 else
1200 crval |= 2;
1201 shift = (7 - crfld) * 4;
1202 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1203 }
1204
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1205 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1206 struct instruction_op *op,
1207 unsigned long v1,
1208 unsigned long v2, int crfld)
1209 {
1210 unsigned int crval, shift;
1211
1212 op->type = COMPUTE | SETCC;
1213 crval = (regs->xer >> 31) & 1; /* get SO bit */
1214 if (v1 < v2)
1215 crval |= 8;
1216 else if (v1 > v2)
1217 crval |= 4;
1218 else
1219 crval |= 2;
1220 shift = (7 - crfld) * 4;
1221 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1222 }
1223
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1224 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1225 struct instruction_op *op,
1226 unsigned long v1, unsigned long v2)
1227 {
1228 unsigned long long out_val, mask;
1229 int i;
1230
1231 out_val = 0;
1232 for (i = 0; i < 8; i++) {
1233 mask = 0xffUL << (i * 8);
1234 if ((v1 & mask) == (v2 & mask))
1235 out_val |= mask;
1236 }
1237 op->val = out_val;
1238 }
1239
1240 /*
1241 * The size parameter is used to adjust the equivalent popcnt instruction.
1242 * popcntb = 8, popcntw = 32, popcntd = 64
1243 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1244 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1245 struct instruction_op *op,
1246 unsigned long v1, int size)
1247 {
1248 unsigned long long out = v1;
1249
1250 out -= (out >> 1) & 0x5555555555555555ULL;
1251 out = (0x3333333333333333ULL & out) +
1252 (0x3333333333333333ULL & (out >> 2));
1253 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1254
1255 if (size == 8) { /* popcntb */
1256 op->val = out;
1257 return;
1258 }
1259 out += out >> 8;
1260 out += out >> 16;
1261 if (size == 32) { /* popcntw */
1262 op->val = out & 0x0000003f0000003fULL;
1263 return;
1264 }
1265
1266 out = (out + (out >> 32)) & 0x7f;
1267 op->val = out; /* popcntd */
1268 }
1269
1270 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1271 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1272 struct instruction_op *op,
1273 unsigned long v1, unsigned long v2)
1274 {
1275 unsigned char perm, idx;
1276 unsigned int i;
1277
1278 perm = 0;
1279 for (i = 0; i < 8; i++) {
1280 idx = (v1 >> (i * 8)) & 0xff;
1281 if (idx < 64)
1282 if (v2 & PPC_BIT(idx))
1283 perm |= 1 << i;
1284 }
1285 op->val = perm;
1286 }
1287 #endif /* CONFIG_PPC64 */
1288 /*
1289 * The size parameter adjusts the equivalent prty instruction.
1290 * prtyw = 32, prtyd = 64
1291 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1292 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1293 struct instruction_op *op,
1294 unsigned long v, int size)
1295 {
1296 unsigned long long res = v ^ (v >> 8);
1297
1298 res ^= res >> 16;
1299 if (size == 32) { /* prtyw */
1300 op->val = res & 0x0000000100000001ULL;
1301 return;
1302 }
1303
1304 res ^= res >> 32;
1305 op->val = res & 1; /*prtyd */
1306 }
1307
trap_compare(long v1,long v2)1308 static nokprobe_inline int trap_compare(long v1, long v2)
1309 {
1310 int ret = 0;
1311
1312 if (v1 < v2)
1313 ret |= 0x10;
1314 else if (v1 > v2)
1315 ret |= 0x08;
1316 else
1317 ret |= 0x04;
1318 if ((unsigned long)v1 < (unsigned long)v2)
1319 ret |= 0x02;
1320 else if ((unsigned long)v1 > (unsigned long)v2)
1321 ret |= 0x01;
1322 return ret;
1323 }
1324
1325 /*
1326 * Elements of 32-bit rotate and mask instructions.
1327 */
1328 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1329 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1330 #ifdef __powerpc64__
1331 #define MASK64_L(mb) (~0UL >> (mb))
1332 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1333 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1334 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1335 #else
1336 #define DATA32(x) (x)
1337 #endif
1338 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1339
1340 /*
1341 * Decode an instruction, and return information about it in *op
1342 * without changing *regs.
1343 * Integer arithmetic and logical instructions, branches, and barrier
1344 * instructions can be emulated just using the information in *op.
1345 *
1346 * Return value is 1 if the instruction can be emulated just by
1347 * updating *regs with the information in *op, -1 if we need the
1348 * GPRs but *regs doesn't contain the full register set, or 0
1349 * otherwise.
1350 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,ppc_inst_t instr)1351 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1352 ppc_inst_t instr)
1353 {
1354 #ifdef CONFIG_PPC64
1355 unsigned int suffixopcode, prefixtype, prefix_r;
1356 #endif
1357 unsigned int opcode, ra, rb, rc, rd, spr, u;
1358 unsigned long int imm;
1359 unsigned long int val, val2;
1360 unsigned int mb, me, sh;
1361 unsigned int word, suffix;
1362 long ival;
1363
1364 word = ppc_inst_val(instr);
1365 suffix = ppc_inst_suffix(instr);
1366
1367 op->type = COMPUTE;
1368
1369 opcode = ppc_inst_primary_opcode(instr);
1370 switch (opcode) {
1371 case 16: /* bc */
1372 op->type = BRANCH;
1373 imm = (signed short)(word & 0xfffc);
1374 if ((word & 2) == 0)
1375 imm += regs->nip;
1376 op->val = truncate_if_32bit(regs->msr, imm);
1377 if (word & 1)
1378 op->type |= SETLK;
1379 if (branch_taken(word, regs, op))
1380 op->type |= BRTAKEN;
1381 return 1;
1382 case 17: /* sc */
1383 if ((word & 0xfe2) == 2)
1384 op->type = SYSCALL;
1385 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1386 (word & 0xfe3) == 1) { /* scv */
1387 op->type = SYSCALL_VECTORED_0;
1388 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1389 goto unknown_opcode;
1390 } else
1391 op->type = UNKNOWN;
1392 return 0;
1393 case 18: /* b */
1394 op->type = BRANCH | BRTAKEN;
1395 imm = word & 0x03fffffc;
1396 if (imm & 0x02000000)
1397 imm -= 0x04000000;
1398 if ((word & 2) == 0)
1399 imm += regs->nip;
1400 op->val = truncate_if_32bit(regs->msr, imm);
1401 if (word & 1)
1402 op->type |= SETLK;
1403 return 1;
1404 case 19:
1405 switch ((word >> 1) & 0x3ff) {
1406 case 0: /* mcrf */
1407 op->type = COMPUTE + SETCC;
1408 rd = 7 - ((word >> 23) & 0x7);
1409 ra = 7 - ((word >> 18) & 0x7);
1410 rd *= 4;
1411 ra *= 4;
1412 val = (regs->ccr >> ra) & 0xf;
1413 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1414 return 1;
1415
1416 case 16: /* bclr */
1417 case 528: /* bcctr */
1418 op->type = BRANCH;
1419 imm = (word & 0x400)? regs->ctr: regs->link;
1420 op->val = truncate_if_32bit(regs->msr, imm);
1421 if (word & 1)
1422 op->type |= SETLK;
1423 if (branch_taken(word, regs, op))
1424 op->type |= BRTAKEN;
1425 return 1;
1426
1427 case 18: /* rfid, scary */
1428 if (regs->msr & MSR_PR)
1429 goto priv;
1430 op->type = RFI;
1431 return 0;
1432
1433 case 150: /* isync */
1434 op->type = BARRIER | BARRIER_ISYNC;
1435 return 1;
1436
1437 case 33: /* crnor */
1438 case 129: /* crandc */
1439 case 193: /* crxor */
1440 case 225: /* crnand */
1441 case 257: /* crand */
1442 case 289: /* creqv */
1443 case 417: /* crorc */
1444 case 449: /* cror */
1445 op->type = COMPUTE + SETCC;
1446 ra = (word >> 16) & 0x1f;
1447 rb = (word >> 11) & 0x1f;
1448 rd = (word >> 21) & 0x1f;
1449 ra = (regs->ccr >> (31 - ra)) & 1;
1450 rb = (regs->ccr >> (31 - rb)) & 1;
1451 val = (word >> (6 + ra * 2 + rb)) & 1;
1452 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1453 (val << (31 - rd));
1454 return 1;
1455 }
1456 break;
1457 case 31:
1458 switch ((word >> 1) & 0x3ff) {
1459 case 598: /* sync */
1460 op->type = BARRIER + BARRIER_SYNC;
1461 #ifdef __powerpc64__
1462 switch ((word >> 21) & 3) {
1463 case 1: /* lwsync */
1464 op->type = BARRIER + BARRIER_LWSYNC;
1465 break;
1466 case 2: /* ptesync */
1467 op->type = BARRIER + BARRIER_PTESYNC;
1468 break;
1469 }
1470 #endif
1471 return 1;
1472
1473 case 854: /* eieio */
1474 op->type = BARRIER + BARRIER_EIEIO;
1475 return 1;
1476 }
1477 break;
1478 }
1479
1480 rd = (word >> 21) & 0x1f;
1481 ra = (word >> 16) & 0x1f;
1482 rb = (word >> 11) & 0x1f;
1483 rc = (word >> 6) & 0x1f;
1484
1485 switch (opcode) {
1486 #ifdef __powerpc64__
1487 case 1:
1488 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1489 goto unknown_opcode;
1490
1491 prefix_r = GET_PREFIX_R(word);
1492 ra = GET_PREFIX_RA(suffix);
1493 rd = (suffix >> 21) & 0x1f;
1494 op->reg = rd;
1495 op->val = regs->gpr[rd];
1496 suffixopcode = get_op(suffix);
1497 prefixtype = (word >> 24) & 0x3;
1498 switch (prefixtype) {
1499 case 2:
1500 if (prefix_r && ra)
1501 return 0;
1502 switch (suffixopcode) {
1503 case 14: /* paddi */
1504 op->type = COMPUTE | PREFIXED;
1505 op->val = mlsd_8lsd_ea(word, suffix, regs);
1506 goto compute_done;
1507 }
1508 }
1509 break;
1510 case 2: /* tdi */
1511 if (rd & trap_compare(regs->gpr[ra], (short) word))
1512 goto trap;
1513 return 1;
1514 #endif
1515 case 3: /* twi */
1516 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1517 goto trap;
1518 return 1;
1519
1520 #ifdef __powerpc64__
1521 case 4:
1522 /*
1523 * There are very many instructions with this primary opcode
1524 * introduced in the ISA as early as v2.03. However, the ones
1525 * we currently emulate were all introduced with ISA 3.0
1526 */
1527 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1528 goto unknown_opcode;
1529
1530 switch (word & 0x3f) {
1531 case 48: /* maddhd */
1532 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1533 "=r" (op->val) : "r" (regs->gpr[ra]),
1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535 goto compute_done;
1536
1537 case 49: /* maddhdu */
1538 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1539 "=r" (op->val) : "r" (regs->gpr[ra]),
1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541 goto compute_done;
1542
1543 case 51: /* maddld */
1544 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1545 "=r" (op->val) : "r" (regs->gpr[ra]),
1546 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1547 goto compute_done;
1548 }
1549
1550 /*
1551 * There are other instructions from ISA 3.0 with the same
1552 * primary opcode which do not have emulation support yet.
1553 */
1554 goto unknown_opcode;
1555 #endif
1556
1557 case 7: /* mulli */
1558 op->val = regs->gpr[ra] * (short) word;
1559 goto compute_done;
1560
1561 case 8: /* subfic */
1562 imm = (short) word;
1563 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1564 return 1;
1565
1566 case 10: /* cmpli */
1567 imm = (unsigned short) word;
1568 val = regs->gpr[ra];
1569 #ifdef __powerpc64__
1570 if ((rd & 1) == 0)
1571 val = (unsigned int) val;
1572 #endif
1573 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1574 return 1;
1575
1576 case 11: /* cmpi */
1577 imm = (short) word;
1578 val = regs->gpr[ra];
1579 #ifdef __powerpc64__
1580 if ((rd & 1) == 0)
1581 val = (int) val;
1582 #endif
1583 do_cmp_signed(regs, op, val, imm, rd >> 2);
1584 return 1;
1585
1586 case 12: /* addic */
1587 imm = (short) word;
1588 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1589 return 1;
1590
1591 case 13: /* addic. */
1592 imm = (short) word;
1593 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1594 set_cr0(regs, op);
1595 return 1;
1596
1597 case 14: /* addi */
1598 imm = (short) word;
1599 if (ra)
1600 imm += regs->gpr[ra];
1601 op->val = imm;
1602 goto compute_done;
1603
1604 case 15: /* addis */
1605 imm = ((short) word) << 16;
1606 if (ra)
1607 imm += regs->gpr[ra];
1608 op->val = imm;
1609 goto compute_done;
1610
1611 case 19:
1612 if (((word >> 1) & 0x1f) == 2) {
1613 /* addpcis */
1614 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1615 goto unknown_opcode;
1616 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1617 imm |= (word >> 15) & 0x3e; /* d1 field */
1618 op->val = regs->nip + (imm << 16) + 4;
1619 goto compute_done;
1620 }
1621 op->type = UNKNOWN;
1622 return 0;
1623
1624 case 20: /* rlwimi */
1625 mb = (word >> 6) & 0x1f;
1626 me = (word >> 1) & 0x1f;
1627 val = DATA32(regs->gpr[rd]);
1628 imm = MASK32(mb, me);
1629 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1630 goto logical_done;
1631
1632 case 21: /* rlwinm */
1633 mb = (word >> 6) & 0x1f;
1634 me = (word >> 1) & 0x1f;
1635 val = DATA32(regs->gpr[rd]);
1636 op->val = ROTATE(val, rb) & MASK32(mb, me);
1637 goto logical_done;
1638
1639 case 23: /* rlwnm */
1640 mb = (word >> 6) & 0x1f;
1641 me = (word >> 1) & 0x1f;
1642 rb = regs->gpr[rb] & 0x1f;
1643 val = DATA32(regs->gpr[rd]);
1644 op->val = ROTATE(val, rb) & MASK32(mb, me);
1645 goto logical_done;
1646
1647 case 24: /* ori */
1648 op->val = regs->gpr[rd] | (unsigned short) word;
1649 goto logical_done_nocc;
1650
1651 case 25: /* oris */
1652 imm = (unsigned short) word;
1653 op->val = regs->gpr[rd] | (imm << 16);
1654 goto logical_done_nocc;
1655
1656 case 26: /* xori */
1657 op->val = regs->gpr[rd] ^ (unsigned short) word;
1658 goto logical_done_nocc;
1659
1660 case 27: /* xoris */
1661 imm = (unsigned short) word;
1662 op->val = regs->gpr[rd] ^ (imm << 16);
1663 goto logical_done_nocc;
1664
1665 case 28: /* andi. */
1666 op->val = regs->gpr[rd] & (unsigned short) word;
1667 set_cr0(regs, op);
1668 goto logical_done_nocc;
1669
1670 case 29: /* andis. */
1671 imm = (unsigned short) word;
1672 op->val = regs->gpr[rd] & (imm << 16);
1673 set_cr0(regs, op);
1674 goto logical_done_nocc;
1675
1676 #ifdef __powerpc64__
1677 case 30: /* rld* */
1678 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1679 val = regs->gpr[rd];
1680 if ((word & 0x10) == 0) {
1681 sh = rb | ((word & 2) << 4);
1682 val = ROTATE(val, sh);
1683 switch ((word >> 2) & 3) {
1684 case 0: /* rldicl */
1685 val &= MASK64_L(mb);
1686 break;
1687 case 1: /* rldicr */
1688 val &= MASK64_R(mb);
1689 break;
1690 case 2: /* rldic */
1691 val &= MASK64(mb, 63 - sh);
1692 break;
1693 case 3: /* rldimi */
1694 imm = MASK64(mb, 63 - sh);
1695 val = (regs->gpr[ra] & ~imm) |
1696 (val & imm);
1697 }
1698 op->val = val;
1699 goto logical_done;
1700 } else {
1701 sh = regs->gpr[rb] & 0x3f;
1702 val = ROTATE(val, sh);
1703 switch ((word >> 1) & 7) {
1704 case 0: /* rldcl */
1705 op->val = val & MASK64_L(mb);
1706 goto logical_done;
1707 case 1: /* rldcr */
1708 op->val = val & MASK64_R(mb);
1709 goto logical_done;
1710 }
1711 }
1712 #endif
1713 op->type = UNKNOWN; /* illegal instruction */
1714 return 0;
1715
1716 case 31:
1717 /* isel occupies 32 minor opcodes */
1718 if (((word >> 1) & 0x1f) == 15) {
1719 mb = (word >> 6) & 0x1f; /* bc field */
1720 val = (regs->ccr >> (31 - mb)) & 1;
1721 val2 = (ra) ? regs->gpr[ra] : 0;
1722
1723 op->val = (val) ? val2 : regs->gpr[rb];
1724 goto compute_done;
1725 }
1726
1727 switch ((word >> 1) & 0x3ff) {
1728 case 4: /* tw */
1729 if (rd == 0x1f ||
1730 (rd & trap_compare((int)regs->gpr[ra],
1731 (int)regs->gpr[rb])))
1732 goto trap;
1733 return 1;
1734 #ifdef __powerpc64__
1735 case 68: /* td */
1736 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1737 goto trap;
1738 return 1;
1739 #endif
1740 case 83: /* mfmsr */
1741 if (regs->msr & MSR_PR)
1742 goto priv;
1743 op->type = MFMSR;
1744 op->reg = rd;
1745 return 0;
1746 case 146: /* mtmsr */
1747 if (regs->msr & MSR_PR)
1748 goto priv;
1749 op->type = MTMSR;
1750 op->reg = rd;
1751 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1752 return 0;
1753 #ifdef CONFIG_PPC64
1754 case 178: /* mtmsrd */
1755 if (regs->msr & MSR_PR)
1756 goto priv;
1757 op->type = MTMSR;
1758 op->reg = rd;
1759 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1760 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1761 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1762 op->val = imm;
1763 return 0;
1764 #endif
1765
1766 case 19: /* mfcr */
1767 imm = 0xffffffffUL;
1768 if ((word >> 20) & 1) {
1769 imm = 0xf0000000UL;
1770 for (sh = 0; sh < 8; ++sh) {
1771 if (word & (0x80000 >> sh))
1772 break;
1773 imm >>= 4;
1774 }
1775 }
1776 op->val = regs->ccr & imm;
1777 goto compute_done;
1778
1779 case 128: /* setb */
1780 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1781 goto unknown_opcode;
1782 /*
1783 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1784 * Since each CR field is 4 bits,
1785 * we can simply mask off the bottom two bits (bfa * 4)
1786 * to yield the first bit in the CR field.
1787 */
1788 ra = ra & ~0x3;
1789 /* 'val' stores bits of the CR field (bfa) */
1790 val = regs->ccr >> (CR0_SHIFT - ra);
1791 /* checks if the LT bit of CR field (bfa) is set */
1792 if (val & 8)
1793 op->val = -1;
1794 /* checks if the GT bit of CR field (bfa) is set */
1795 else if (val & 4)
1796 op->val = 1;
1797 else
1798 op->val = 0;
1799 goto compute_done;
1800
1801 case 144: /* mtcrf */
1802 op->type = COMPUTE + SETCC;
1803 imm = 0xf0000000UL;
1804 val = regs->gpr[rd];
1805 op->ccval = regs->ccr;
1806 for (sh = 0; sh < 8; ++sh) {
1807 if (word & (0x80000 >> sh))
1808 op->ccval = (op->ccval & ~imm) |
1809 (val & imm);
1810 imm >>= 4;
1811 }
1812 return 1;
1813
1814 case 339: /* mfspr */
1815 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1816 op->type = MFSPR;
1817 op->reg = rd;
1818 op->spr = spr;
1819 if (spr == SPRN_XER || spr == SPRN_LR ||
1820 spr == SPRN_CTR)
1821 return 1;
1822 return 0;
1823
1824 case 467: /* mtspr */
1825 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1826 op->type = MTSPR;
1827 op->val = regs->gpr[rd];
1828 op->spr = spr;
1829 if (spr == SPRN_XER || spr == SPRN_LR ||
1830 spr == SPRN_CTR)
1831 return 1;
1832 return 0;
1833
1834 /*
1835 * Compare instructions
1836 */
1837 case 0: /* cmp */
1838 val = regs->gpr[ra];
1839 val2 = regs->gpr[rb];
1840 #ifdef __powerpc64__
1841 if ((rd & 1) == 0) {
1842 /* word (32-bit) compare */
1843 val = (int) val;
1844 val2 = (int) val2;
1845 }
1846 #endif
1847 do_cmp_signed(regs, op, val, val2, rd >> 2);
1848 return 1;
1849
1850 case 32: /* cmpl */
1851 val = regs->gpr[ra];
1852 val2 = regs->gpr[rb];
1853 #ifdef __powerpc64__
1854 if ((rd & 1) == 0) {
1855 /* word (32-bit) compare */
1856 val = (unsigned int) val;
1857 val2 = (unsigned int) val2;
1858 }
1859 #endif
1860 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1861 return 1;
1862
1863 case 508: /* cmpb */
1864 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1865 goto logical_done_nocc;
1866
1867 /*
1868 * Arithmetic instructions
1869 */
1870 case 8: /* subfc */
1871 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1872 regs->gpr[rb], 1);
1873 goto arith_done;
1874 #ifdef __powerpc64__
1875 case 9: /* mulhdu */
1876 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1877 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1878 goto arith_done;
1879 #endif
1880 case 10: /* addc */
1881 add_with_carry(regs, op, rd, regs->gpr[ra],
1882 regs->gpr[rb], 0);
1883 goto arith_done;
1884
1885 case 11: /* mulhwu */
1886 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1887 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1888 goto arith_done;
1889
1890 case 40: /* subf */
1891 op->val = regs->gpr[rb] - regs->gpr[ra];
1892 goto arith_done;
1893 #ifdef __powerpc64__
1894 case 73: /* mulhd */
1895 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1896 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1897 goto arith_done;
1898 #endif
1899 case 75: /* mulhw */
1900 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1901 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1902 goto arith_done;
1903
1904 case 104: /* neg */
1905 op->val = -regs->gpr[ra];
1906 goto arith_done;
1907
1908 case 136: /* subfe */
1909 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1910 regs->gpr[rb], regs->xer & XER_CA);
1911 goto arith_done;
1912
1913 case 138: /* adde */
1914 add_with_carry(regs, op, rd, regs->gpr[ra],
1915 regs->gpr[rb], regs->xer & XER_CA);
1916 goto arith_done;
1917
1918 case 200: /* subfze */
1919 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1920 regs->xer & XER_CA);
1921 goto arith_done;
1922
1923 case 202: /* addze */
1924 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1925 regs->xer & XER_CA);
1926 goto arith_done;
1927
1928 case 232: /* subfme */
1929 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1930 regs->xer & XER_CA);
1931 goto arith_done;
1932 #ifdef __powerpc64__
1933 case 233: /* mulld */
1934 op->val = regs->gpr[ra] * regs->gpr[rb];
1935 goto arith_done;
1936 #endif
1937 case 234: /* addme */
1938 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1939 regs->xer & XER_CA);
1940 goto arith_done;
1941
1942 case 235: /* mullw */
1943 op->val = (long)(int) regs->gpr[ra] *
1944 (int) regs->gpr[rb];
1945
1946 goto arith_done;
1947 #ifdef __powerpc64__
1948 case 265: /* modud */
1949 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950 goto unknown_opcode;
1951 op->val = regs->gpr[ra] % regs->gpr[rb];
1952 goto compute_done;
1953 #endif
1954 case 266: /* add */
1955 op->val = regs->gpr[ra] + regs->gpr[rb];
1956 goto arith_done;
1957
1958 case 267: /* moduw */
1959 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1960 goto unknown_opcode;
1961 op->val = (unsigned int) regs->gpr[ra] %
1962 (unsigned int) regs->gpr[rb];
1963 goto compute_done;
1964 #ifdef __powerpc64__
1965 case 457: /* divdu */
1966 op->val = regs->gpr[ra] / regs->gpr[rb];
1967 goto arith_done;
1968 #endif
1969 case 459: /* divwu */
1970 op->val = (unsigned int) regs->gpr[ra] /
1971 (unsigned int) regs->gpr[rb];
1972 goto arith_done;
1973 #ifdef __powerpc64__
1974 case 489: /* divd */
1975 op->val = (long int) regs->gpr[ra] /
1976 (long int) regs->gpr[rb];
1977 goto arith_done;
1978 #endif
1979 case 491: /* divw */
1980 op->val = (int) regs->gpr[ra] /
1981 (int) regs->gpr[rb];
1982 goto arith_done;
1983 #ifdef __powerpc64__
1984 case 425: /* divde[.] */
1985 asm volatile(PPC_DIVDE(%0, %1, %2) :
1986 "=r" (op->val) : "r" (regs->gpr[ra]),
1987 "r" (regs->gpr[rb]));
1988 goto arith_done;
1989 case 393: /* divdeu[.] */
1990 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1991 "=r" (op->val) : "r" (regs->gpr[ra]),
1992 "r" (regs->gpr[rb]));
1993 goto arith_done;
1994 #endif
1995 case 755: /* darn */
1996 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1997 goto unknown_opcode;
1998 switch (ra & 0x3) {
1999 case 0:
2000 /* 32-bit conditioned */
2001 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2002 goto compute_done;
2003
2004 case 1:
2005 /* 64-bit conditioned */
2006 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2007 goto compute_done;
2008
2009 case 2:
2010 /* 64-bit raw */
2011 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2012 goto compute_done;
2013 }
2014
2015 goto unknown_opcode;
2016 #ifdef __powerpc64__
2017 case 777: /* modsd */
2018 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2019 goto unknown_opcode;
2020 op->val = (long int) regs->gpr[ra] %
2021 (long int) regs->gpr[rb];
2022 goto compute_done;
2023 #endif
2024 case 779: /* modsw */
2025 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2026 goto unknown_opcode;
2027 op->val = (int) regs->gpr[ra] %
2028 (int) regs->gpr[rb];
2029 goto compute_done;
2030
2031
2032 /*
2033 * Logical instructions
2034 */
2035 case 26: /* cntlzw */
2036 val = (unsigned int) regs->gpr[rd];
2037 op->val = ( val ? __builtin_clz(val) : 32 );
2038 goto logical_done;
2039 #ifdef __powerpc64__
2040 case 58: /* cntlzd */
2041 val = regs->gpr[rd];
2042 op->val = ( val ? __builtin_clzl(val) : 64 );
2043 goto logical_done;
2044 #endif
2045 case 28: /* and */
2046 op->val = regs->gpr[rd] & regs->gpr[rb];
2047 goto logical_done;
2048
2049 case 60: /* andc */
2050 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2051 goto logical_done;
2052
2053 case 122: /* popcntb */
2054 do_popcnt(regs, op, regs->gpr[rd], 8);
2055 goto logical_done_nocc;
2056
2057 case 124: /* nor */
2058 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2059 goto logical_done;
2060
2061 case 154: /* prtyw */
2062 do_prty(regs, op, regs->gpr[rd], 32);
2063 goto logical_done_nocc;
2064
2065 case 186: /* prtyd */
2066 do_prty(regs, op, regs->gpr[rd], 64);
2067 goto logical_done_nocc;
2068 #ifdef CONFIG_PPC64
2069 case 252: /* bpermd */
2070 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2071 goto logical_done_nocc;
2072 #endif
2073 case 284: /* xor */
2074 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2075 goto logical_done;
2076
2077 case 316: /* xor */
2078 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2079 goto logical_done;
2080
2081 case 378: /* popcntw */
2082 do_popcnt(regs, op, regs->gpr[rd], 32);
2083 goto logical_done_nocc;
2084
2085 case 412: /* orc */
2086 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2087 goto logical_done;
2088
2089 case 444: /* or */
2090 op->val = regs->gpr[rd] | regs->gpr[rb];
2091 goto logical_done;
2092
2093 case 476: /* nand */
2094 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2095 goto logical_done;
2096 #ifdef CONFIG_PPC64
2097 case 506: /* popcntd */
2098 do_popcnt(regs, op, regs->gpr[rd], 64);
2099 goto logical_done_nocc;
2100 #endif
2101 case 538: /* cnttzw */
2102 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2103 goto unknown_opcode;
2104 val = (unsigned int) regs->gpr[rd];
2105 op->val = (val ? __builtin_ctz(val) : 32);
2106 goto logical_done;
2107 #ifdef __powerpc64__
2108 case 570: /* cnttzd */
2109 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2110 goto unknown_opcode;
2111 val = regs->gpr[rd];
2112 op->val = (val ? __builtin_ctzl(val) : 64);
2113 goto logical_done;
2114 #endif
2115 case 922: /* extsh */
2116 op->val = (signed short) regs->gpr[rd];
2117 goto logical_done;
2118
2119 case 954: /* extsb */
2120 op->val = (signed char) regs->gpr[rd];
2121 goto logical_done;
2122 #ifdef __powerpc64__
2123 case 986: /* extsw */
2124 op->val = (signed int) regs->gpr[rd];
2125 goto logical_done;
2126 #endif
2127
2128 /*
2129 * Shift instructions
2130 */
2131 case 24: /* slw */
2132 sh = regs->gpr[rb] & 0x3f;
2133 if (sh < 32)
2134 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2135 else
2136 op->val = 0;
2137 goto logical_done;
2138
2139 case 536: /* srw */
2140 sh = regs->gpr[rb] & 0x3f;
2141 if (sh < 32)
2142 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2143 else
2144 op->val = 0;
2145 goto logical_done;
2146
2147 case 792: /* sraw */
2148 op->type = COMPUTE + SETREG + SETXER;
2149 sh = regs->gpr[rb] & 0x3f;
2150 ival = (signed int) regs->gpr[rd];
2151 op->val = ival >> (sh < 32 ? sh : 31);
2152 op->xerval = regs->xer;
2153 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2154 op->xerval |= XER_CA;
2155 else
2156 op->xerval &= ~XER_CA;
2157 set_ca32(op, op->xerval & XER_CA);
2158 goto logical_done;
2159
2160 case 824: /* srawi */
2161 op->type = COMPUTE + SETREG + SETXER;
2162 sh = rb;
2163 ival = (signed int) regs->gpr[rd];
2164 op->val = ival >> sh;
2165 op->xerval = regs->xer;
2166 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2167 op->xerval |= XER_CA;
2168 else
2169 op->xerval &= ~XER_CA;
2170 set_ca32(op, op->xerval & XER_CA);
2171 goto logical_done;
2172
2173 #ifdef __powerpc64__
2174 case 27: /* sld */
2175 sh = regs->gpr[rb] & 0x7f;
2176 if (sh < 64)
2177 op->val = regs->gpr[rd] << sh;
2178 else
2179 op->val = 0;
2180 goto logical_done;
2181
2182 case 539: /* srd */
2183 sh = regs->gpr[rb] & 0x7f;
2184 if (sh < 64)
2185 op->val = regs->gpr[rd] >> sh;
2186 else
2187 op->val = 0;
2188 goto logical_done;
2189
2190 case 794: /* srad */
2191 op->type = COMPUTE + SETREG + SETXER;
2192 sh = regs->gpr[rb] & 0x7f;
2193 ival = (signed long int) regs->gpr[rd];
2194 op->val = ival >> (sh < 64 ? sh : 63);
2195 op->xerval = regs->xer;
2196 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2197 op->xerval |= XER_CA;
2198 else
2199 op->xerval &= ~XER_CA;
2200 set_ca32(op, op->xerval & XER_CA);
2201 goto logical_done;
2202
2203 case 826: /* sradi with sh_5 = 0 */
2204 case 827: /* sradi with sh_5 = 1 */
2205 op->type = COMPUTE + SETREG + SETXER;
2206 sh = rb | ((word & 2) << 4);
2207 ival = (signed long int) regs->gpr[rd];
2208 op->val = ival >> sh;
2209 op->xerval = regs->xer;
2210 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2211 op->xerval |= XER_CA;
2212 else
2213 op->xerval &= ~XER_CA;
2214 set_ca32(op, op->xerval & XER_CA);
2215 goto logical_done;
2216
2217 case 890: /* extswsli with sh_5 = 0 */
2218 case 891: /* extswsli with sh_5 = 1 */
2219 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2220 goto unknown_opcode;
2221 op->type = COMPUTE + SETREG;
2222 sh = rb | ((word & 2) << 4);
2223 val = (signed int) regs->gpr[rd];
2224 if (sh)
2225 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2226 else
2227 op->val = val;
2228 goto logical_done;
2229
2230 #endif /* __powerpc64__ */
2231
2232 /*
2233 * Cache instructions
2234 */
2235 case 54: /* dcbst */
2236 op->type = MKOP(CACHEOP, DCBST, 0);
2237 op->ea = xform_ea(word, regs);
2238 return 0;
2239
2240 case 86: /* dcbf */
2241 op->type = MKOP(CACHEOP, DCBF, 0);
2242 op->ea = xform_ea(word, regs);
2243 return 0;
2244
2245 case 246: /* dcbtst */
2246 op->type = MKOP(CACHEOP, DCBTST, 0);
2247 op->ea = xform_ea(word, regs);
2248 op->reg = rd;
2249 return 0;
2250
2251 case 278: /* dcbt */
2252 op->type = MKOP(CACHEOP, DCBTST, 0);
2253 op->ea = xform_ea(word, regs);
2254 op->reg = rd;
2255 return 0;
2256
2257 case 982: /* icbi */
2258 op->type = MKOP(CACHEOP, ICBI, 0);
2259 op->ea = xform_ea(word, regs);
2260 return 0;
2261
2262 case 1014: /* dcbz */
2263 op->type = MKOP(CACHEOP, DCBZ, 0);
2264 op->ea = xform_ea(word, regs);
2265 return 0;
2266 }
2267 break;
2268 }
2269
2270 /*
2271 * Loads and stores.
2272 */
2273 op->type = UNKNOWN;
2274 op->update_reg = ra;
2275 op->reg = rd;
2276 op->val = regs->gpr[rd];
2277 u = (word >> 20) & UPDATE;
2278 op->vsx_flags = 0;
2279
2280 switch (opcode) {
2281 case 31:
2282 u = word & UPDATE;
2283 op->ea = xform_ea(word, regs);
2284 switch ((word >> 1) & 0x3ff) {
2285 case 20: /* lwarx */
2286 op->type = MKOP(LARX, 0, 4);
2287 break;
2288
2289 case 150: /* stwcx. */
2290 op->type = MKOP(STCX, 0, 4);
2291 break;
2292
2293 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2294 case 52: /* lbarx */
2295 op->type = MKOP(LARX, 0, 1);
2296 break;
2297
2298 case 694: /* stbcx. */
2299 op->type = MKOP(STCX, 0, 1);
2300 break;
2301
2302 case 116: /* lharx */
2303 op->type = MKOP(LARX, 0, 2);
2304 break;
2305
2306 case 726: /* sthcx. */
2307 op->type = MKOP(STCX, 0, 2);
2308 break;
2309 #endif
2310 #ifdef __powerpc64__
2311 case 84: /* ldarx */
2312 op->type = MKOP(LARX, 0, 8);
2313 break;
2314
2315 case 214: /* stdcx. */
2316 op->type = MKOP(STCX, 0, 8);
2317 break;
2318
2319 case 276: /* lqarx */
2320 if (!((rd & 1) || rd == ra || rd == rb))
2321 op->type = MKOP(LARX, 0, 16);
2322 break;
2323
2324 case 182: /* stqcx. */
2325 if (!(rd & 1))
2326 op->type = MKOP(STCX, 0, 16);
2327 break;
2328 #endif
2329
2330 case 23: /* lwzx */
2331 case 55: /* lwzux */
2332 op->type = MKOP(LOAD, u, 4);
2333 break;
2334
2335 case 87: /* lbzx */
2336 case 119: /* lbzux */
2337 op->type = MKOP(LOAD, u, 1);
2338 break;
2339
2340 #ifdef CONFIG_ALTIVEC
2341 /*
2342 * Note: for the load/store vector element instructions,
2343 * bits of the EA say which field of the VMX register to use.
2344 */
2345 case 7: /* lvebx */
2346 op->type = MKOP(LOAD_VMX, 0, 1);
2347 op->element_size = 1;
2348 break;
2349
2350 case 39: /* lvehx */
2351 op->type = MKOP(LOAD_VMX, 0, 2);
2352 op->element_size = 2;
2353 break;
2354
2355 case 71: /* lvewx */
2356 op->type = MKOP(LOAD_VMX, 0, 4);
2357 op->element_size = 4;
2358 break;
2359
2360 case 103: /* lvx */
2361 case 359: /* lvxl */
2362 op->type = MKOP(LOAD_VMX, 0, 16);
2363 op->element_size = 16;
2364 break;
2365
2366 case 135: /* stvebx */
2367 op->type = MKOP(STORE_VMX, 0, 1);
2368 op->element_size = 1;
2369 break;
2370
2371 case 167: /* stvehx */
2372 op->type = MKOP(STORE_VMX, 0, 2);
2373 op->element_size = 2;
2374 break;
2375
2376 case 199: /* stvewx */
2377 op->type = MKOP(STORE_VMX, 0, 4);
2378 op->element_size = 4;
2379 break;
2380
2381 case 231: /* stvx */
2382 case 487: /* stvxl */
2383 op->type = MKOP(STORE_VMX, 0, 16);
2384 break;
2385 #endif /* CONFIG_ALTIVEC */
2386
2387 #ifdef __powerpc64__
2388 case 21: /* ldx */
2389 case 53: /* ldux */
2390 op->type = MKOP(LOAD, u, 8);
2391 break;
2392
2393 case 149: /* stdx */
2394 case 181: /* stdux */
2395 op->type = MKOP(STORE, u, 8);
2396 break;
2397 #endif
2398
2399 case 151: /* stwx */
2400 case 183: /* stwux */
2401 op->type = MKOP(STORE, u, 4);
2402 break;
2403
2404 case 215: /* stbx */
2405 case 247: /* stbux */
2406 op->type = MKOP(STORE, u, 1);
2407 break;
2408
2409 case 279: /* lhzx */
2410 case 311: /* lhzux */
2411 op->type = MKOP(LOAD, u, 2);
2412 break;
2413
2414 #ifdef __powerpc64__
2415 case 341: /* lwax */
2416 case 373: /* lwaux */
2417 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2418 break;
2419 #endif
2420
2421 case 343: /* lhax */
2422 case 375: /* lhaux */
2423 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2424 break;
2425
2426 case 407: /* sthx */
2427 case 439: /* sthux */
2428 op->type = MKOP(STORE, u, 2);
2429 break;
2430
2431 #ifdef __powerpc64__
2432 case 532: /* ldbrx */
2433 op->type = MKOP(LOAD, BYTEREV, 8);
2434 break;
2435
2436 #endif
2437 case 533: /* lswx */
2438 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2439 break;
2440
2441 case 534: /* lwbrx */
2442 op->type = MKOP(LOAD, BYTEREV, 4);
2443 break;
2444
2445 case 597: /* lswi */
2446 if (rb == 0)
2447 rb = 32; /* # bytes to load */
2448 op->type = MKOP(LOAD_MULTI, 0, rb);
2449 op->ea = ra ? regs->gpr[ra] : 0;
2450 break;
2451
2452 #ifdef CONFIG_PPC_FPU
2453 case 535: /* lfsx */
2454 case 567: /* lfsux */
2455 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2456 break;
2457
2458 case 599: /* lfdx */
2459 case 631: /* lfdux */
2460 op->type = MKOP(LOAD_FP, u, 8);
2461 break;
2462
2463 case 663: /* stfsx */
2464 case 695: /* stfsux */
2465 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2466 break;
2467
2468 case 727: /* stfdx */
2469 case 759: /* stfdux */
2470 op->type = MKOP(STORE_FP, u, 8);
2471 break;
2472
2473 #ifdef __powerpc64__
2474 case 791: /* lfdpx */
2475 op->type = MKOP(LOAD_FP, 0, 16);
2476 break;
2477
2478 case 855: /* lfiwax */
2479 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2480 break;
2481
2482 case 887: /* lfiwzx */
2483 op->type = MKOP(LOAD_FP, 0, 4);
2484 break;
2485
2486 case 919: /* stfdpx */
2487 op->type = MKOP(STORE_FP, 0, 16);
2488 break;
2489
2490 case 983: /* stfiwx */
2491 op->type = MKOP(STORE_FP, 0, 4);
2492 break;
2493 #endif /* __powerpc64 */
2494 #endif /* CONFIG_PPC_FPU */
2495
2496 #ifdef __powerpc64__
2497 case 660: /* stdbrx */
2498 op->type = MKOP(STORE, BYTEREV, 8);
2499 op->val = byterev_8(regs->gpr[rd]);
2500 break;
2501
2502 #endif
2503 case 661: /* stswx */
2504 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2505 break;
2506
2507 case 662: /* stwbrx */
2508 op->type = MKOP(STORE, BYTEREV, 4);
2509 op->val = byterev_4(regs->gpr[rd]);
2510 break;
2511
2512 case 725: /* stswi */
2513 if (rb == 0)
2514 rb = 32; /* # bytes to store */
2515 op->type = MKOP(STORE_MULTI, 0, rb);
2516 op->ea = ra ? regs->gpr[ra] : 0;
2517 break;
2518
2519 case 790: /* lhbrx */
2520 op->type = MKOP(LOAD, BYTEREV, 2);
2521 break;
2522
2523 case 918: /* sthbrx */
2524 op->type = MKOP(STORE, BYTEREV, 2);
2525 op->val = byterev_2(regs->gpr[rd]);
2526 break;
2527
2528 #ifdef CONFIG_VSX
2529 case 12: /* lxsiwzx */
2530 op->reg = rd | ((word & 1) << 5);
2531 op->type = MKOP(LOAD_VSX, 0, 4);
2532 op->element_size = 8;
2533 break;
2534
2535 case 76: /* lxsiwax */
2536 op->reg = rd | ((word & 1) << 5);
2537 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2538 op->element_size = 8;
2539 break;
2540
2541 case 140: /* stxsiwx */
2542 op->reg = rd | ((word & 1) << 5);
2543 op->type = MKOP(STORE_VSX, 0, 4);
2544 op->element_size = 8;
2545 break;
2546
2547 case 268: /* lxvx */
2548 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2549 goto unknown_opcode;
2550 op->reg = rd | ((word & 1) << 5);
2551 op->type = MKOP(LOAD_VSX, 0, 16);
2552 op->element_size = 16;
2553 op->vsx_flags = VSX_CHECK_VEC;
2554 break;
2555
2556 case 269: /* lxvl */
2557 case 301: { /* lxvll */
2558 int nb;
2559 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2560 goto unknown_opcode;
2561 op->reg = rd | ((word & 1) << 5);
2562 op->ea = ra ? regs->gpr[ra] : 0;
2563 nb = regs->gpr[rb] & 0xff;
2564 if (nb > 16)
2565 nb = 16;
2566 op->type = MKOP(LOAD_VSX, 0, nb);
2567 op->element_size = 16;
2568 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2569 VSX_CHECK_VEC;
2570 break;
2571 }
2572 case 332: /* lxvdsx */
2573 op->reg = rd | ((word & 1) << 5);
2574 op->type = MKOP(LOAD_VSX, 0, 8);
2575 op->element_size = 8;
2576 op->vsx_flags = VSX_SPLAT;
2577 break;
2578
2579 case 333: /* lxvpx */
2580 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2581 goto unknown_opcode;
2582 op->reg = VSX_REGISTER_XTP(rd);
2583 op->type = MKOP(LOAD_VSX, 0, 32);
2584 op->element_size = 32;
2585 break;
2586
2587 case 364: /* lxvwsx */
2588 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2589 goto unknown_opcode;
2590 op->reg = rd | ((word & 1) << 5);
2591 op->type = MKOP(LOAD_VSX, 0, 4);
2592 op->element_size = 4;
2593 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2594 break;
2595
2596 case 396: /* stxvx */
2597 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2598 goto unknown_opcode;
2599 op->reg = rd | ((word & 1) << 5);
2600 op->type = MKOP(STORE_VSX, 0, 16);
2601 op->element_size = 16;
2602 op->vsx_flags = VSX_CHECK_VEC;
2603 break;
2604
2605 case 397: /* stxvl */
2606 case 429: { /* stxvll */
2607 int nb;
2608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2609 goto unknown_opcode;
2610 op->reg = rd | ((word & 1) << 5);
2611 op->ea = ra ? regs->gpr[ra] : 0;
2612 nb = regs->gpr[rb] & 0xff;
2613 if (nb > 16)
2614 nb = 16;
2615 op->type = MKOP(STORE_VSX, 0, nb);
2616 op->element_size = 16;
2617 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2618 VSX_CHECK_VEC;
2619 break;
2620 }
2621 case 461: /* stxvpx */
2622 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2623 goto unknown_opcode;
2624 op->reg = VSX_REGISTER_XTP(rd);
2625 op->type = MKOP(STORE_VSX, 0, 32);
2626 op->element_size = 32;
2627 break;
2628 case 524: /* lxsspx */
2629 op->reg = rd | ((word & 1) << 5);
2630 op->type = MKOP(LOAD_VSX, 0, 4);
2631 op->element_size = 8;
2632 op->vsx_flags = VSX_FPCONV;
2633 break;
2634
2635 case 588: /* lxsdx */
2636 op->reg = rd | ((word & 1) << 5);
2637 op->type = MKOP(LOAD_VSX, 0, 8);
2638 op->element_size = 8;
2639 break;
2640
2641 case 652: /* stxsspx */
2642 op->reg = rd | ((word & 1) << 5);
2643 op->type = MKOP(STORE_VSX, 0, 4);
2644 op->element_size = 8;
2645 op->vsx_flags = VSX_FPCONV;
2646 break;
2647
2648 case 716: /* stxsdx */
2649 op->reg = rd | ((word & 1) << 5);
2650 op->type = MKOP(STORE_VSX, 0, 8);
2651 op->element_size = 8;
2652 break;
2653
2654 case 780: /* lxvw4x */
2655 op->reg = rd | ((word & 1) << 5);
2656 op->type = MKOP(LOAD_VSX, 0, 16);
2657 op->element_size = 4;
2658 break;
2659
2660 case 781: /* lxsibzx */
2661 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2662 goto unknown_opcode;
2663 op->reg = rd | ((word & 1) << 5);
2664 op->type = MKOP(LOAD_VSX, 0, 1);
2665 op->element_size = 8;
2666 op->vsx_flags = VSX_CHECK_VEC;
2667 break;
2668
2669 case 812: /* lxvh8x */
2670 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2671 goto unknown_opcode;
2672 op->reg = rd | ((word & 1) << 5);
2673 op->type = MKOP(LOAD_VSX, 0, 16);
2674 op->element_size = 2;
2675 op->vsx_flags = VSX_CHECK_VEC;
2676 break;
2677
2678 case 813: /* lxsihzx */
2679 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2680 goto unknown_opcode;
2681 op->reg = rd | ((word & 1) << 5);
2682 op->type = MKOP(LOAD_VSX, 0, 2);
2683 op->element_size = 8;
2684 op->vsx_flags = VSX_CHECK_VEC;
2685 break;
2686
2687 case 844: /* lxvd2x */
2688 op->reg = rd | ((word & 1) << 5);
2689 op->type = MKOP(LOAD_VSX, 0, 16);
2690 op->element_size = 8;
2691 break;
2692
2693 case 876: /* lxvb16x */
2694 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2695 goto unknown_opcode;
2696 op->reg = rd | ((word & 1) << 5);
2697 op->type = MKOP(LOAD_VSX, 0, 16);
2698 op->element_size = 1;
2699 op->vsx_flags = VSX_CHECK_VEC;
2700 break;
2701
2702 case 908: /* stxvw4x */
2703 op->reg = rd | ((word & 1) << 5);
2704 op->type = MKOP(STORE_VSX, 0, 16);
2705 op->element_size = 4;
2706 break;
2707
2708 case 909: /* stxsibx */
2709 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2710 goto unknown_opcode;
2711 op->reg = rd | ((word & 1) << 5);
2712 op->type = MKOP(STORE_VSX, 0, 1);
2713 op->element_size = 8;
2714 op->vsx_flags = VSX_CHECK_VEC;
2715 break;
2716
2717 case 940: /* stxvh8x */
2718 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2719 goto unknown_opcode;
2720 op->reg = rd | ((word & 1) << 5);
2721 op->type = MKOP(STORE_VSX, 0, 16);
2722 op->element_size = 2;
2723 op->vsx_flags = VSX_CHECK_VEC;
2724 break;
2725
2726 case 941: /* stxsihx */
2727 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2728 goto unknown_opcode;
2729 op->reg = rd | ((word & 1) << 5);
2730 op->type = MKOP(STORE_VSX, 0, 2);
2731 op->element_size = 8;
2732 op->vsx_flags = VSX_CHECK_VEC;
2733 break;
2734
2735 case 972: /* stxvd2x */
2736 op->reg = rd | ((word & 1) << 5);
2737 op->type = MKOP(STORE_VSX, 0, 16);
2738 op->element_size = 8;
2739 break;
2740
2741 case 1004: /* stxvb16x */
2742 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2743 goto unknown_opcode;
2744 op->reg = rd | ((word & 1) << 5);
2745 op->type = MKOP(STORE_VSX, 0, 16);
2746 op->element_size = 1;
2747 op->vsx_flags = VSX_CHECK_VEC;
2748 break;
2749
2750 #endif /* CONFIG_VSX */
2751 }
2752 break;
2753
2754 case 32: /* lwz */
2755 case 33: /* lwzu */
2756 op->type = MKOP(LOAD, u, 4);
2757 op->ea = dform_ea(word, regs);
2758 break;
2759
2760 case 34: /* lbz */
2761 case 35: /* lbzu */
2762 op->type = MKOP(LOAD, u, 1);
2763 op->ea = dform_ea(word, regs);
2764 break;
2765
2766 case 36: /* stw */
2767 case 37: /* stwu */
2768 op->type = MKOP(STORE, u, 4);
2769 op->ea = dform_ea(word, regs);
2770 break;
2771
2772 case 38: /* stb */
2773 case 39: /* stbu */
2774 op->type = MKOP(STORE, u, 1);
2775 op->ea = dform_ea(word, regs);
2776 break;
2777
2778 case 40: /* lhz */
2779 case 41: /* lhzu */
2780 op->type = MKOP(LOAD, u, 2);
2781 op->ea = dform_ea(word, regs);
2782 break;
2783
2784 case 42: /* lha */
2785 case 43: /* lhau */
2786 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2787 op->ea = dform_ea(word, regs);
2788 break;
2789
2790 case 44: /* sth */
2791 case 45: /* sthu */
2792 op->type = MKOP(STORE, u, 2);
2793 op->ea = dform_ea(word, regs);
2794 break;
2795
2796 case 46: /* lmw */
2797 if (ra >= rd)
2798 break; /* invalid form, ra in range to load */
2799 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2800 op->ea = dform_ea(word, regs);
2801 break;
2802
2803 case 47: /* stmw */
2804 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2805 op->ea = dform_ea(word, regs);
2806 break;
2807
2808 #ifdef CONFIG_PPC_FPU
2809 case 48: /* lfs */
2810 case 49: /* lfsu */
2811 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2812 op->ea = dform_ea(word, regs);
2813 break;
2814
2815 case 50: /* lfd */
2816 case 51: /* lfdu */
2817 op->type = MKOP(LOAD_FP, u, 8);
2818 op->ea = dform_ea(word, regs);
2819 break;
2820
2821 case 52: /* stfs */
2822 case 53: /* stfsu */
2823 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2824 op->ea = dform_ea(word, regs);
2825 break;
2826
2827 case 54: /* stfd */
2828 case 55: /* stfdu */
2829 op->type = MKOP(STORE_FP, u, 8);
2830 op->ea = dform_ea(word, regs);
2831 break;
2832 #endif
2833
2834 #ifdef __powerpc64__
2835 case 56: /* lq */
2836 if (!((rd & 1) || (rd == ra)))
2837 op->type = MKOP(LOAD, 0, 16);
2838 op->ea = dqform_ea(word, regs);
2839 break;
2840 #endif
2841
2842 #ifdef CONFIG_VSX
2843 case 57: /* lfdp, lxsd, lxssp */
2844 op->ea = dsform_ea(word, regs);
2845 switch (word & 3) {
2846 case 0: /* lfdp */
2847 if (rd & 1)
2848 break; /* reg must be even */
2849 op->type = MKOP(LOAD_FP, 0, 16);
2850 break;
2851 case 2: /* lxsd */
2852 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853 goto unknown_opcode;
2854 op->reg = rd + 32;
2855 op->type = MKOP(LOAD_VSX, 0, 8);
2856 op->element_size = 8;
2857 op->vsx_flags = VSX_CHECK_VEC;
2858 break;
2859 case 3: /* lxssp */
2860 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861 goto unknown_opcode;
2862 op->reg = rd + 32;
2863 op->type = MKOP(LOAD_VSX, 0, 4);
2864 op->element_size = 8;
2865 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2866 break;
2867 }
2868 break;
2869 #endif /* CONFIG_VSX */
2870
2871 #ifdef __powerpc64__
2872 case 58: /* ld[u], lwa */
2873 op->ea = dsform_ea(word, regs);
2874 switch (word & 3) {
2875 case 0: /* ld */
2876 op->type = MKOP(LOAD, 0, 8);
2877 break;
2878 case 1: /* ldu */
2879 op->type = MKOP(LOAD, UPDATE, 8);
2880 break;
2881 case 2: /* lwa */
2882 op->type = MKOP(LOAD, SIGNEXT, 4);
2883 break;
2884 }
2885 break;
2886 #endif
2887
2888 #ifdef CONFIG_VSX
2889 case 6:
2890 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2891 goto unknown_opcode;
2892 op->ea = dqform_ea(word, regs);
2893 op->reg = VSX_REGISTER_XTP(rd);
2894 op->element_size = 32;
2895 switch (word & 0xf) {
2896 case 0: /* lxvp */
2897 op->type = MKOP(LOAD_VSX, 0, 32);
2898 break;
2899 case 1: /* stxvp */
2900 op->type = MKOP(STORE_VSX, 0, 32);
2901 break;
2902 }
2903 break;
2904
2905 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2906 switch (word & 7) {
2907 case 0: /* stfdp with LSB of DS field = 0 */
2908 case 4: /* stfdp with LSB of DS field = 1 */
2909 op->ea = dsform_ea(word, regs);
2910 op->type = MKOP(STORE_FP, 0, 16);
2911 break;
2912
2913 case 1: /* lxv */
2914 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2915 goto unknown_opcode;
2916 op->ea = dqform_ea(word, regs);
2917 if (word & 8)
2918 op->reg = rd + 32;
2919 op->type = MKOP(LOAD_VSX, 0, 16);
2920 op->element_size = 16;
2921 op->vsx_flags = VSX_CHECK_VEC;
2922 break;
2923
2924 case 2: /* stxsd with LSB of DS field = 0 */
2925 case 6: /* stxsd with LSB of DS field = 1 */
2926 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2927 goto unknown_opcode;
2928 op->ea = dsform_ea(word, regs);
2929 op->reg = rd + 32;
2930 op->type = MKOP(STORE_VSX, 0, 8);
2931 op->element_size = 8;
2932 op->vsx_flags = VSX_CHECK_VEC;
2933 break;
2934
2935 case 3: /* stxssp with LSB of DS field = 0 */
2936 case 7: /* stxssp with LSB of DS field = 1 */
2937 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2938 goto unknown_opcode;
2939 op->ea = dsform_ea(word, regs);
2940 op->reg = rd + 32;
2941 op->type = MKOP(STORE_VSX, 0, 4);
2942 op->element_size = 8;
2943 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2944 break;
2945
2946 case 5: /* stxv */
2947 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2948 goto unknown_opcode;
2949 op->ea = dqform_ea(word, regs);
2950 if (word & 8)
2951 op->reg = rd + 32;
2952 op->type = MKOP(STORE_VSX, 0, 16);
2953 op->element_size = 16;
2954 op->vsx_flags = VSX_CHECK_VEC;
2955 break;
2956 }
2957 break;
2958 #endif /* CONFIG_VSX */
2959
2960 #ifdef __powerpc64__
2961 case 62: /* std[u] */
2962 op->ea = dsform_ea(word, regs);
2963 switch (word & 3) {
2964 case 0: /* std */
2965 op->type = MKOP(STORE, 0, 8);
2966 break;
2967 case 1: /* stdu */
2968 op->type = MKOP(STORE, UPDATE, 8);
2969 break;
2970 case 2: /* stq */
2971 if (!(rd & 1))
2972 op->type = MKOP(STORE, 0, 16);
2973 break;
2974 }
2975 break;
2976 case 1: /* Prefixed instructions */
2977 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2978 goto unknown_opcode;
2979
2980 prefix_r = GET_PREFIX_R(word);
2981 ra = GET_PREFIX_RA(suffix);
2982 op->update_reg = ra;
2983 rd = (suffix >> 21) & 0x1f;
2984 op->reg = rd;
2985 op->val = regs->gpr[rd];
2986
2987 suffixopcode = get_op(suffix);
2988 prefixtype = (word >> 24) & 0x3;
2989 switch (prefixtype) {
2990 case 0: /* Type 00 Eight-Byte Load/Store */
2991 if (prefix_r && ra)
2992 break;
2993 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2994 switch (suffixopcode) {
2995 case 41: /* plwa */
2996 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2997 break;
2998 #ifdef CONFIG_VSX
2999 case 42: /* plxsd */
3000 op->reg = rd + 32;
3001 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3002 op->element_size = 8;
3003 op->vsx_flags = VSX_CHECK_VEC;
3004 break;
3005 case 43: /* plxssp */
3006 op->reg = rd + 32;
3007 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3008 op->element_size = 8;
3009 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3010 break;
3011 case 46: /* pstxsd */
3012 op->reg = rd + 32;
3013 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3014 op->element_size = 8;
3015 op->vsx_flags = VSX_CHECK_VEC;
3016 break;
3017 case 47: /* pstxssp */
3018 op->reg = rd + 32;
3019 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3020 op->element_size = 8;
3021 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3022 break;
3023 case 51: /* plxv1 */
3024 op->reg += 32;
3025 fallthrough;
3026 case 50: /* plxv0 */
3027 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3028 op->element_size = 16;
3029 op->vsx_flags = VSX_CHECK_VEC;
3030 break;
3031 case 55: /* pstxv1 */
3032 op->reg = rd + 32;
3033 fallthrough;
3034 case 54: /* pstxv0 */
3035 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3036 op->element_size = 16;
3037 op->vsx_flags = VSX_CHECK_VEC;
3038 break;
3039 #endif /* CONFIG_VSX */
3040 case 56: /* plq */
3041 op->type = MKOP(LOAD, PREFIXED, 16);
3042 break;
3043 case 57: /* pld */
3044 op->type = MKOP(LOAD, PREFIXED, 8);
3045 break;
3046 #ifdef CONFIG_VSX
3047 case 58: /* plxvp */
3048 op->reg = VSX_REGISTER_XTP(rd);
3049 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3050 op->element_size = 32;
3051 break;
3052 #endif /* CONFIG_VSX */
3053 case 60: /* pstq */
3054 op->type = MKOP(STORE, PREFIXED, 16);
3055 break;
3056 case 61: /* pstd */
3057 op->type = MKOP(STORE, PREFIXED, 8);
3058 break;
3059 #ifdef CONFIG_VSX
3060 case 62: /* pstxvp */
3061 op->reg = VSX_REGISTER_XTP(rd);
3062 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3063 op->element_size = 32;
3064 break;
3065 #endif /* CONFIG_VSX */
3066 }
3067 break;
3068 case 1: /* Type 01 Eight-Byte Register-to-Register */
3069 break;
3070 case 2: /* Type 10 Modified Load/Store */
3071 if (prefix_r && ra)
3072 break;
3073 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3074 switch (suffixopcode) {
3075 case 32: /* plwz */
3076 op->type = MKOP(LOAD, PREFIXED, 4);
3077 break;
3078 case 34: /* plbz */
3079 op->type = MKOP(LOAD, PREFIXED, 1);
3080 break;
3081 case 36: /* pstw */
3082 op->type = MKOP(STORE, PREFIXED, 4);
3083 break;
3084 case 38: /* pstb */
3085 op->type = MKOP(STORE, PREFIXED, 1);
3086 break;
3087 case 40: /* plhz */
3088 op->type = MKOP(LOAD, PREFIXED, 2);
3089 break;
3090 case 42: /* plha */
3091 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3092 break;
3093 case 44: /* psth */
3094 op->type = MKOP(STORE, PREFIXED, 2);
3095 break;
3096 case 48: /* plfs */
3097 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3098 break;
3099 case 50: /* plfd */
3100 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3101 break;
3102 case 52: /* pstfs */
3103 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3104 break;
3105 case 54: /* pstfd */
3106 op->type = MKOP(STORE_FP, PREFIXED, 8);
3107 break;
3108 }
3109 break;
3110 case 3: /* Type 11 Modified Register-to-Register */
3111 break;
3112 }
3113 #endif /* __powerpc64__ */
3114
3115 }
3116
3117 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3118 switch (GETTYPE(op->type)) {
3119 case LOAD:
3120 if (ra == rd)
3121 goto unknown_opcode;
3122 fallthrough;
3123 case STORE:
3124 case LOAD_FP:
3125 case STORE_FP:
3126 if (ra == 0)
3127 goto unknown_opcode;
3128 }
3129 }
3130
3131 #ifdef CONFIG_VSX
3132 if ((GETTYPE(op->type) == LOAD_VSX ||
3133 GETTYPE(op->type) == STORE_VSX) &&
3134 !cpu_has_feature(CPU_FTR_VSX)) {
3135 return -1;
3136 }
3137 #endif /* CONFIG_VSX */
3138
3139 return 0;
3140
3141 unknown_opcode:
3142 op->type = UNKNOWN;
3143 return 0;
3144
3145 logical_done:
3146 if (word & 1)
3147 set_cr0(regs, op);
3148 logical_done_nocc:
3149 op->reg = ra;
3150 op->type |= SETREG;
3151 return 1;
3152
3153 arith_done:
3154 if (word & 1)
3155 set_cr0(regs, op);
3156 compute_done:
3157 op->reg = rd;
3158 op->type |= SETREG;
3159 return 1;
3160
3161 priv:
3162 op->type = INTERRUPT | 0x700;
3163 op->val = SRR1_PROGPRIV;
3164 return 0;
3165
3166 trap:
3167 op->type = INTERRUPT | 0x700;
3168 op->val = SRR1_PROGTRAP;
3169 return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(analyse_instr);
3172 NOKPROBE_SYMBOL(analyse_instr);
3173
3174 /*
3175 * For PPC32 we always use stwu with r1 to change the stack pointer.
3176 * So this emulated store may corrupt the exception frame, now we
3177 * have to provide the exception frame trampoline, which is pushed
3178 * below the kprobed function stack. So we only update gpr[1] but
3179 * don't emulate the real store operation. We will do real store
3180 * operation safely in exception return code by checking this flag.
3181 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)3182 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3183 {
3184 /*
3185 * Check if we already set since that means we'll
3186 * lose the previous value.
3187 */
3188 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3189 set_thread_flag(TIF_EMULATE_STACK_STORE);
3190 return 0;
3191 }
3192
do_signext(unsigned long * valp,int size)3193 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3194 {
3195 switch (size) {
3196 case 2:
3197 *valp = (signed short) *valp;
3198 break;
3199 case 4:
3200 *valp = (signed int) *valp;
3201 break;
3202 }
3203 }
3204
do_byterev(unsigned long * valp,int size)3205 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3206 {
3207 switch (size) {
3208 case 2:
3209 *valp = byterev_2(*valp);
3210 break;
3211 case 4:
3212 *valp = byterev_4(*valp);
3213 break;
3214 #ifdef __powerpc64__
3215 case 8:
3216 *valp = byterev_8(*valp);
3217 break;
3218 #endif
3219 }
3220 }
3221
3222 /*
3223 * Emulate an instruction that can be executed just by updating
3224 * fields in *regs.
3225 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)3226 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3227 {
3228 unsigned long next_pc;
3229
3230 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3231 switch (GETTYPE(op->type)) {
3232 case COMPUTE:
3233 if (op->type & SETREG)
3234 regs->gpr[op->reg] = op->val;
3235 if (op->type & SETCC)
3236 regs->ccr = op->ccval;
3237 if (op->type & SETXER)
3238 regs->xer = op->xerval;
3239 break;
3240
3241 case BRANCH:
3242 if (op->type & SETLK)
3243 regs->link = next_pc;
3244 if (op->type & BRTAKEN)
3245 next_pc = op->val;
3246 if (op->type & DECCTR)
3247 --regs->ctr;
3248 break;
3249
3250 case BARRIER:
3251 switch (op->type & BARRIER_MASK) {
3252 case BARRIER_SYNC:
3253 mb();
3254 break;
3255 case BARRIER_ISYNC:
3256 isync();
3257 break;
3258 case BARRIER_EIEIO:
3259 eieio();
3260 break;
3261 #ifdef CONFIG_PPC64
3262 case BARRIER_LWSYNC:
3263 asm volatile("lwsync" : : : "memory");
3264 break;
3265 case BARRIER_PTESYNC:
3266 asm volatile("ptesync" : : : "memory");
3267 break;
3268 #endif
3269 }
3270 break;
3271
3272 case MFSPR:
3273 switch (op->spr) {
3274 case SPRN_XER:
3275 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3276 break;
3277 case SPRN_LR:
3278 regs->gpr[op->reg] = regs->link;
3279 break;
3280 case SPRN_CTR:
3281 regs->gpr[op->reg] = regs->ctr;
3282 break;
3283 default:
3284 WARN_ON_ONCE(1);
3285 }
3286 break;
3287
3288 case MTSPR:
3289 switch (op->spr) {
3290 case SPRN_XER:
3291 regs->xer = op->val & 0xffffffffUL;
3292 break;
3293 case SPRN_LR:
3294 regs->link = op->val;
3295 break;
3296 case SPRN_CTR:
3297 regs->ctr = op->val;
3298 break;
3299 default:
3300 WARN_ON_ONCE(1);
3301 }
3302 break;
3303
3304 default:
3305 WARN_ON_ONCE(1);
3306 }
3307 regs_set_return_ip(regs, next_pc);
3308 }
3309 NOKPROBE_SYMBOL(emulate_update_regs);
3310
3311 /*
3312 * Emulate a previously-analysed load or store instruction.
3313 * Return values are:
3314 * 0 = instruction emulated successfully
3315 * -EFAULT = address out of range or access faulted (regs->dar
3316 * contains the faulting address)
3317 * -EACCES = misaligned access, instruction requires alignment
3318 * -EINVAL = unknown operation in *op
3319 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)3320 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3321 {
3322 int err, size, type;
3323 int i, rd, nb;
3324 unsigned int cr;
3325 unsigned long val;
3326 unsigned long ea;
3327 bool cross_endian;
3328
3329 err = 0;
3330 size = GETSIZE(op->type);
3331 type = GETTYPE(op->type);
3332 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3333 ea = truncate_if_32bit(regs->msr, op->ea);
3334
3335 switch (type) {
3336 case LARX:
3337 if (ea & (size - 1))
3338 return -EACCES; /* can't handle misaligned */
3339 if (!address_ok(regs, ea, size))
3340 return -EFAULT;
3341 err = 0;
3342 val = 0;
3343 switch (size) {
3344 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3345 case 1:
3346 __get_user_asmx(val, ea, err, "lbarx");
3347 break;
3348 case 2:
3349 __get_user_asmx(val, ea, err, "lharx");
3350 break;
3351 #endif
3352 case 4:
3353 __get_user_asmx(val, ea, err, "lwarx");
3354 break;
3355 #ifdef __powerpc64__
3356 case 8:
3357 __get_user_asmx(val, ea, err, "ldarx");
3358 break;
3359 case 16:
3360 err = do_lqarx(ea, ®s->gpr[op->reg]);
3361 break;
3362 #endif
3363 default:
3364 return -EINVAL;
3365 }
3366 if (err) {
3367 regs->dar = ea;
3368 break;
3369 }
3370 if (size < 16)
3371 regs->gpr[op->reg] = val;
3372 break;
3373
3374 case STCX:
3375 if (ea & (size - 1))
3376 return -EACCES; /* can't handle misaligned */
3377 if (!address_ok(regs, ea, size))
3378 return -EFAULT;
3379 err = 0;
3380 switch (size) {
3381 #ifdef __powerpc64__
3382 case 1:
3383 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3384 break;
3385 case 2:
3386 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3387 break;
3388 #endif
3389 case 4:
3390 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3391 break;
3392 #ifdef __powerpc64__
3393 case 8:
3394 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3395 break;
3396 case 16:
3397 err = do_stqcx(ea, regs->gpr[op->reg],
3398 regs->gpr[op->reg + 1], &cr);
3399 break;
3400 #endif
3401 default:
3402 return -EINVAL;
3403 }
3404 if (!err)
3405 regs->ccr = (regs->ccr & 0x0fffffff) |
3406 (cr & 0xe0000000) |
3407 ((regs->xer >> 3) & 0x10000000);
3408 else
3409 regs->dar = ea;
3410 break;
3411
3412 case LOAD:
3413 #ifdef __powerpc64__
3414 if (size == 16) {
3415 err = emulate_lq(regs, ea, op->reg, cross_endian);
3416 break;
3417 }
3418 #endif
3419 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3420 if (!err) {
3421 if (op->type & SIGNEXT)
3422 do_signext(®s->gpr[op->reg], size);
3423 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3424 do_byterev(®s->gpr[op->reg], size);
3425 }
3426 break;
3427
3428 #ifdef CONFIG_PPC_FPU
3429 case LOAD_FP:
3430 /*
3431 * If the instruction is in userspace, we can emulate it even
3432 * if the VMX state is not live, because we have the state
3433 * stored in the thread_struct. If the instruction is in
3434 * the kernel, we must not touch the state in the thread_struct.
3435 */
3436 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3437 return 0;
3438 err = do_fp_load(op, ea, regs, cross_endian);
3439 break;
3440 #endif
3441 #ifdef CONFIG_ALTIVEC
3442 case LOAD_VMX:
3443 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3444 return 0;
3445 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3446 break;
3447 #endif
3448 #ifdef CONFIG_VSX
3449 case LOAD_VSX: {
3450 unsigned long msrbit = MSR_VSX;
3451
3452 /*
3453 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3454 * when the target of the instruction is a vector register.
3455 */
3456 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3457 msrbit = MSR_VEC;
3458 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3459 return 0;
3460 err = do_vsx_load(op, ea, regs, cross_endian);
3461 break;
3462 }
3463 #endif
3464 case LOAD_MULTI:
3465 if (!address_ok(regs, ea, size))
3466 return -EFAULT;
3467 rd = op->reg;
3468 for (i = 0; i < size; i += 4) {
3469 unsigned int v32 = 0;
3470
3471 nb = size - i;
3472 if (nb > 4)
3473 nb = 4;
3474 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3475 if (err)
3476 break;
3477 if (unlikely(cross_endian))
3478 v32 = byterev_4(v32);
3479 regs->gpr[rd] = v32;
3480 ea += 4;
3481 /* reg number wraps from 31 to 0 for lsw[ix] */
3482 rd = (rd + 1) & 0x1f;
3483 }
3484 break;
3485
3486 case STORE:
3487 #ifdef __powerpc64__
3488 if (size == 16) {
3489 err = emulate_stq(regs, ea, op->reg, cross_endian);
3490 break;
3491 }
3492 #endif
3493 if ((op->type & UPDATE) && size == sizeof(long) &&
3494 op->reg == 1 && op->update_reg == 1 &&
3495 !(regs->msr & MSR_PR) &&
3496 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3497 err = handle_stack_update(ea, regs);
3498 break;
3499 }
3500 if (unlikely(cross_endian))
3501 do_byterev(&op->val, size);
3502 err = write_mem(op->val, ea, size, regs);
3503 break;
3504
3505 #ifdef CONFIG_PPC_FPU
3506 case STORE_FP:
3507 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3508 return 0;
3509 err = do_fp_store(op, ea, regs, cross_endian);
3510 break;
3511 #endif
3512 #ifdef CONFIG_ALTIVEC
3513 case STORE_VMX:
3514 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3515 return 0;
3516 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3517 break;
3518 #endif
3519 #ifdef CONFIG_VSX
3520 case STORE_VSX: {
3521 unsigned long msrbit = MSR_VSX;
3522
3523 /*
3524 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3525 * when the target of the instruction is a vector register.
3526 */
3527 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3528 msrbit = MSR_VEC;
3529 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3530 return 0;
3531 err = do_vsx_store(op, ea, regs, cross_endian);
3532 break;
3533 }
3534 #endif
3535 case STORE_MULTI:
3536 if (!address_ok(regs, ea, size))
3537 return -EFAULT;
3538 rd = op->reg;
3539 for (i = 0; i < size; i += 4) {
3540 unsigned int v32 = regs->gpr[rd];
3541
3542 nb = size - i;
3543 if (nb > 4)
3544 nb = 4;
3545 if (unlikely(cross_endian))
3546 v32 = byterev_4(v32);
3547 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3548 if (err)
3549 break;
3550 ea += 4;
3551 /* reg number wraps from 31 to 0 for stsw[ix] */
3552 rd = (rd + 1) & 0x1f;
3553 }
3554 break;
3555
3556 default:
3557 return -EINVAL;
3558 }
3559
3560 if (err)
3561 return err;
3562
3563 if (op->type & UPDATE)
3564 regs->gpr[op->update_reg] = op->ea;
3565
3566 return 0;
3567 }
3568 NOKPROBE_SYMBOL(emulate_loadstore);
3569
3570 /*
3571 * Emulate instructions that cause a transfer of control,
3572 * loads and stores, and a few other instructions.
3573 * Returns 1 if the step was emulated, 0 if not,
3574 * or -1 if the instruction is one that should not be stepped,
3575 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3576 */
emulate_step(struct pt_regs * regs,ppc_inst_t instr)3577 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3578 {
3579 struct instruction_op op;
3580 int r, err, type;
3581 unsigned long val;
3582 unsigned long ea;
3583
3584 r = analyse_instr(&op, regs, instr);
3585 if (r < 0)
3586 return r;
3587 if (r > 0) {
3588 emulate_update_regs(regs, &op);
3589 return 1;
3590 }
3591
3592 err = 0;
3593 type = GETTYPE(op.type);
3594
3595 if (OP_IS_LOAD_STORE(type)) {
3596 err = emulate_loadstore(regs, &op);
3597 if (err)
3598 return 0;
3599 goto instr_done;
3600 }
3601
3602 switch (type) {
3603 case CACHEOP:
3604 ea = truncate_if_32bit(regs->msr, op.ea);
3605 if (!address_ok(regs, ea, 8))
3606 return 0;
3607 switch (op.type & CACHEOP_MASK) {
3608 case DCBST:
3609 __cacheop_user_asmx(ea, err, "dcbst");
3610 break;
3611 case DCBF:
3612 __cacheop_user_asmx(ea, err, "dcbf");
3613 break;
3614 case DCBTST:
3615 if (op.reg == 0)
3616 prefetchw((void *) ea);
3617 break;
3618 case DCBT:
3619 if (op.reg == 0)
3620 prefetch((void *) ea);
3621 break;
3622 case ICBI:
3623 __cacheop_user_asmx(ea, err, "icbi");
3624 break;
3625 case DCBZ:
3626 err = emulate_dcbz(ea, regs);
3627 break;
3628 }
3629 if (err) {
3630 regs->dar = ea;
3631 return 0;
3632 }
3633 goto instr_done;
3634
3635 case MFMSR:
3636 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3637 goto instr_done;
3638
3639 case MTMSR:
3640 val = regs->gpr[op.reg];
3641 if ((val & MSR_RI) == 0)
3642 /* can't step mtmsr[d] that would clear MSR_RI */
3643 return -1;
3644 /* here op.val is the mask of bits to change */
3645 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3646 goto instr_done;
3647
3648 case SYSCALL: /* sc */
3649 /*
3650 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3651 * single step a system call instruction:
3652 *
3653 * Successful completion for an instruction means that the
3654 * instruction caused no other interrupt. Thus a Trace
3655 * interrupt never occurs for a System Call or System Call
3656 * Vectored instruction, or for a Trap instruction that
3657 * traps.
3658 */
3659 return -1;
3660 case SYSCALL_VECTORED_0: /* scv 0 */
3661 return -1;
3662 case RFI:
3663 return -1;
3664 }
3665 return 0;
3666
3667 instr_done:
3668 regs_set_return_ip(regs,
3669 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3670 return 1;
3671 }
3672 NOKPROBE_SYMBOL(emulate_step);
3673