1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "migration/vmstate.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "hw/qdev-properties.h"
21 #include "sysemu/tcg.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "target/arm/cpu-features.h"
25 #include "exec/exec-all.h"
26 #include "exec/memop.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30
31 /* IRQ number counting:
32 *
33 * the num-irq property counts the number of external IRQ lines
34 *
35 * NVICState::num_irq counts the total number of exceptions
36 * (external IRQs, the 15 internal exceptions including reset,
37 * and one for the unused exception number 0).
38 *
39 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
40 *
41 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
42 *
43 * Iterating through all exceptions should typically be done with
44 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
45 *
46 * The external qemu_irq lines are the NVIC's external IRQ lines,
47 * so line 0 is exception 16.
48 *
49 * In the terminology of the architecture manual, "interrupts" are
50 * a subcategory of exception referring to the external interrupts
51 * (which are exception numbers NVIC_FIRST_IRQ and upward).
52 * For historical reasons QEMU tends to use "interrupt" and
53 * "exception" more or less interchangeably.
54 */
55 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
56 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
57
58 /* Effective running priority of the CPU when no exception is active
59 * (higher than the highest possible priority value)
60 */
61 #define NVIC_NOEXC_PRIO 0x100
62 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
63 #define NVIC_NS_PRIO_LIMIT 0x80
64
65 static const uint8_t nvic_id[] = {
66 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
67 };
68
signal_sysresetreq(NVICState * s)69 static void signal_sysresetreq(NVICState *s)
70 {
71 if (qemu_irq_is_connected(s->sysresetreq)) {
72 qemu_irq_pulse(s->sysresetreq);
73 } else {
74 /*
75 * Default behaviour if the SoC doesn't need to wire up
76 * SYSRESETREQ (eg to a system reset controller of some kind):
77 * perform a system reset via the usual QEMU API.
78 */
79 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
80 }
81 }
82
nvic_pending_prio(NVICState * s)83 static int nvic_pending_prio(NVICState *s)
84 {
85 /* return the group priority of the current pending interrupt,
86 * or NVIC_NOEXC_PRIO if no interrupt is pending
87 */
88 return s->vectpending_prio;
89 }
90
91 /* Return the value of the ISCR RETTOBASE bit:
92 * 1 if there is exactly one active exception
93 * 0 if there is more than one active exception
94 * UNKNOWN if there are no active exceptions (we choose 1,
95 * which matches the choice Cortex-M3 is documented as making).
96 *
97 * NB: some versions of the documentation talk about this
98 * counting "active exceptions other than the one shown by IPSR";
99 * this is only different in the obscure corner case where guest
100 * code has manually deactivated an exception and is about
101 * to fail an exception-return integrity check. The definition
102 * above is the one from the v8M ARM ARM and is also in line
103 * with the behaviour documented for the Cortex-M3.
104 */
nvic_rettobase(NVICState * s)105 static bool nvic_rettobase(NVICState *s)
106 {
107 int irq, nhand = 0;
108 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
109
110 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
111 if (s->vectors[irq].active ||
112 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
113 s->sec_vectors[irq].active)) {
114 nhand++;
115 if (nhand == 2) {
116 return 0;
117 }
118 }
119 }
120
121 return 1;
122 }
123
124 /* Return the value of the ISCR ISRPENDING bit:
125 * 1 if an external interrupt is pending
126 * 0 if no external interrupt is pending
127 */
nvic_isrpending(NVICState * s)128 static bool nvic_isrpending(NVICState *s)
129 {
130 int irq;
131
132 /*
133 * We can shortcut if the highest priority pending interrupt
134 * happens to be external; if not we need to check the whole
135 * vectors[] array.
136 */
137 if (s->vectpending > NVIC_FIRST_IRQ) {
138 return true;
139 }
140
141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142 if (s->vectors[irq].pending) {
143 return true;
144 }
145 }
146 return false;
147 }
148
exc_is_banked(int exc)149 static bool exc_is_banked(int exc)
150 {
151 /* Return true if this is one of the limited set of exceptions which
152 * are banked (and thus have state in sec_vectors[])
153 */
154 return exc == ARMV7M_EXCP_HARD ||
155 exc == ARMV7M_EXCP_MEM ||
156 exc == ARMV7M_EXCP_USAGE ||
157 exc == ARMV7M_EXCP_SVC ||
158 exc == ARMV7M_EXCP_PENDSV ||
159 exc == ARMV7M_EXCP_SYSTICK;
160 }
161
162 /* Return a mask word which clears the subpriority bits from
163 * a priority value for an M-profile exception, leaving only
164 * the group priority.
165 */
nvic_gprio_mask(NVICState * s,bool secure)166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168 return ~0U << (s->prigroup[secure] + 1);
169 }
170
exc_targets_secure(NVICState * s,int exc)171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173 /* Return true if this non-banked exception targets Secure state. */
174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175 return false;
176 }
177
178 if (exc >= NVIC_FIRST_IRQ) {
179 return !s->itns[exc];
180 }
181
182 /* Function shouldn't be called for banked exceptions. */
183 assert(!exc_is_banked(exc));
184
185 switch (exc) {
186 case ARMV7M_EXCP_NMI:
187 case ARMV7M_EXCP_BUS:
188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189 case ARMV7M_EXCP_SECURE:
190 return true;
191 case ARMV7M_EXCP_DEBUG:
192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193 return false;
194 default:
195 /* reset, and reserved (unused) low exception numbers.
196 * We'll get called by code that loops through all the exception
197 * numbers, but it doesn't matter what we return here as these
198 * non-existent exceptions will never be pended or active.
199 */
200 return true;
201 }
202 }
203
exc_group_prio(NVICState * s,int rawprio,bool targets_secure)204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206 /* Return the group priority for this exception, given its raw
207 * (group-and-subgroup) priority value and whether it is targeting
208 * secure state or not.
209 */
210 if (rawprio < 0) {
211 return rawprio;
212 }
213 rawprio &= nvic_gprio_mask(s, targets_secure);
214 /* AIRCR.PRIS causes us to squash all NS priorities into the
215 * lower half of the total range
216 */
217 if (!targets_secure &&
218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220 }
221 return rawprio;
222 }
223
224 /* Recompute vectpending and exception_prio for a CPU which implements
225 * the Security extension
226 */
nvic_recompute_state_secure(NVICState * s)227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229 int i, bank;
230 int pend_prio = NVIC_NOEXC_PRIO;
231 int active_prio = NVIC_NOEXC_PRIO;
232 int pend_irq = 0;
233 bool pending_is_s_banked = false;
234 int pend_subprio = 0;
235
236 /* R_CQRV: precedence is by:
237 * - lowest group priority; if both the same then
238 * - lowest subpriority; if both the same then
239 * - lowest exception number; if both the same (ie banked) then
240 * - secure exception takes precedence
241 * Compare pseudocode RawExecutionPriority.
242 * Annoyingly, now we have two prigroup values (for S and NS)
243 * we can't do the loop comparison on raw priority values.
244 */
245 for (i = 1; i < s->num_irq; i++) {
246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247 VecInfo *vec;
248 int prio, subprio;
249 bool targets_secure;
250
251 if (bank == M_REG_S) {
252 if (!exc_is_banked(i)) {
253 continue;
254 }
255 vec = &s->sec_vectors[i];
256 targets_secure = true;
257 } else {
258 vec = &s->vectors[i];
259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260 }
261
262 prio = exc_group_prio(s, vec->prio, targets_secure);
263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264 if (vec->enabled && vec->pending &&
265 ((prio < pend_prio) ||
266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267 pend_prio = prio;
268 pend_subprio = subprio;
269 pend_irq = i;
270 pending_is_s_banked = (bank == M_REG_S);
271 }
272 if (vec->active && prio < active_prio) {
273 active_prio = prio;
274 }
275 }
276 }
277
278 s->vectpending_is_s_banked = pending_is_s_banked;
279 s->vectpending = pend_irq;
280 s->vectpending_prio = pend_prio;
281 s->exception_prio = active_prio;
282
283 trace_nvic_recompute_state_secure(s->vectpending,
284 s->vectpending_is_s_banked,
285 s->vectpending_prio,
286 s->exception_prio);
287 }
288
289 /* Recompute vectpending and exception_prio */
nvic_recompute_state(NVICState * s)290 static void nvic_recompute_state(NVICState *s)
291 {
292 int i;
293 int pend_prio = NVIC_NOEXC_PRIO;
294 int active_prio = NVIC_NOEXC_PRIO;
295 int pend_irq = 0;
296
297 /* In theory we could write one function that handled both
298 * the "security extension present" and "not present"; however
299 * the security related changes significantly complicate the
300 * recomputation just by themselves and mixing both cases together
301 * would be even worse, so we retain a separate non-secure-only
302 * version for CPUs which don't implement the security extension.
303 */
304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305 nvic_recompute_state_secure(s);
306 return;
307 }
308
309 for (i = 1; i < s->num_irq; i++) {
310 VecInfo *vec = &s->vectors[i];
311
312 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313 pend_prio = vec->prio;
314 pend_irq = i;
315 }
316 if (vec->active && vec->prio < active_prio) {
317 active_prio = vec->prio;
318 }
319 }
320
321 if (active_prio > 0) {
322 active_prio &= nvic_gprio_mask(s, false);
323 }
324
325 if (pend_prio > 0) {
326 pend_prio &= nvic_gprio_mask(s, false);
327 }
328
329 s->vectpending = pend_irq;
330 s->vectpending_prio = pend_prio;
331 s->exception_prio = active_prio;
332
333 trace_nvic_recompute_state(s->vectpending,
334 s->vectpending_prio,
335 s->exception_prio);
336 }
337
338 /* Return the current execution priority of the CPU
339 * (equivalent to the pseudocode ExecutionPriority function).
340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341 */
nvic_exec_prio(NVICState * s)342 static inline int nvic_exec_prio(NVICState *s)
343 {
344 CPUARMState *env = &s->cpu->env;
345 int running = NVIC_NOEXC_PRIO;
346
347 if (env->v7m.basepri[M_REG_NS] > 0) {
348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349 }
350
351 if (env->v7m.basepri[M_REG_S] > 0) {
352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353 if (running > basepri) {
354 running = basepri;
355 }
356 }
357
358 if (env->v7m.primask[M_REG_NS]) {
359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360 if (running > NVIC_NS_PRIO_LIMIT) {
361 running = NVIC_NS_PRIO_LIMIT;
362 }
363 } else {
364 running = 0;
365 }
366 }
367
368 if (env->v7m.primask[M_REG_S]) {
369 running = 0;
370 }
371
372 if (env->v7m.faultmask[M_REG_NS]) {
373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374 running = -1;
375 } else {
376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377 if (running > NVIC_NS_PRIO_LIMIT) {
378 running = NVIC_NS_PRIO_LIMIT;
379 }
380 } else {
381 running = 0;
382 }
383 }
384 }
385
386 if (env->v7m.faultmask[M_REG_S]) {
387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388 }
389
390 /* consider priority of active handler */
391 return MIN(running, s->exception_prio);
392 }
393
armv7m_nvic_neg_prio_requested(NVICState * s,bool secure)394 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
395 {
396 /* Return true if the requested execution priority is negative
397 * for the specified security state, ie that security state
398 * has an active NMI or HardFault or has set its FAULTMASK.
399 * Note that this is not the same as whether the execution
400 * priority is actually negative (for instance AIRCR.PRIS may
401 * mean we don't allow FAULTMASK_NS to actually make the execution
402 * priority negative). Compare pseudocode IsReqExcPriNeg().
403 */
404 if (s->cpu->env.v7m.faultmask[secure]) {
405 return true;
406 }
407
408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
409 s->vectors[ARMV7M_EXCP_HARD].active) {
410 return true;
411 }
412
413 if (s->vectors[ARMV7M_EXCP_NMI].active &&
414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
415 return true;
416 }
417
418 return false;
419 }
420
armv7m_nvic_can_take_pending_exception(NVICState * s)421 bool armv7m_nvic_can_take_pending_exception(NVICState *s)
422 {
423 return nvic_exec_prio(s) > nvic_pending_prio(s);
424 }
425
armv7m_nvic_raw_execution_priority(NVICState * s)426 int armv7m_nvic_raw_execution_priority(NVICState *s)
427 {
428 return s->exception_prio;
429 }
430
431 /* caller must call nvic_irq_update() after this.
432 * secure indicates the bank to use for banked exceptions (we assert if
433 * we are passed secure=true for a non-banked exception).
434 */
set_prio(NVICState * s,unsigned irq,bool secure,uint8_t prio)435 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
436 {
437 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
438 assert(irq < s->num_irq);
439
440 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
441
442 if (secure) {
443 assert(exc_is_banked(irq));
444 s->sec_vectors[irq].prio = prio;
445 } else {
446 s->vectors[irq].prio = prio;
447 }
448
449 trace_nvic_set_prio(irq, secure, prio);
450 }
451
452 /* Return the current raw priority register value.
453 * secure indicates the bank to use for banked exceptions (we assert if
454 * we are passed secure=true for a non-banked exception).
455 */
get_prio(NVICState * s,unsigned irq,bool secure)456 static int get_prio(NVICState *s, unsigned irq, bool secure)
457 {
458 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
459 assert(irq < s->num_irq);
460
461 if (secure) {
462 assert(exc_is_banked(irq));
463 return s->sec_vectors[irq].prio;
464 } else {
465 return s->vectors[irq].prio;
466 }
467 }
468
469 /* Recompute state and assert irq line accordingly.
470 * Must be called after changes to:
471 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
472 * prigroup
473 */
nvic_irq_update(NVICState * s)474 static void nvic_irq_update(NVICState *s)
475 {
476 int lvl;
477 int pend_prio;
478
479 nvic_recompute_state(s);
480 pend_prio = nvic_pending_prio(s);
481
482 /* Raise NVIC output if this IRQ would be taken, except that we
483 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
484 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
485 * to those CPU registers don't cause us to recalculate the NVIC
486 * pending info.
487 */
488 lvl = (pend_prio < s->exception_prio);
489 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
490 qemu_set_irq(s->excpout, lvl);
491 }
492
493 /**
494 * armv7m_nvic_clear_pending: mark the specified exception as not pending
495 * @opaque: the NVIC
496 * @irq: the exception number to mark as not pending
497 * @secure: false for non-banked exceptions or for the nonsecure
498 * version of a banked exception, true for the secure version of a banked
499 * exception.
500 *
501 * Marks the specified exception as not pending. Note that we will assert()
502 * if @secure is true and @irq does not specify one of the fixed set
503 * of architecturally banked exceptions.
504 */
armv7m_nvic_clear_pending(NVICState * s,int irq,bool secure)505 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure)
506 {
507 VecInfo *vec;
508
509 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
510
511 if (secure) {
512 assert(exc_is_banked(irq));
513 vec = &s->sec_vectors[irq];
514 } else {
515 vec = &s->vectors[irq];
516 }
517 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
518 if (vec->pending) {
519 vec->pending = 0;
520 nvic_irq_update(s);
521 }
522 }
523
do_armv7m_nvic_set_pending(void * opaque,int irq,bool secure,bool derived)524 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
525 bool derived)
526 {
527 /* Pend an exception, including possibly escalating it to HardFault.
528 *
529 * This function handles both "normal" pending of interrupts and
530 * exceptions, and also derived exceptions (ones which occur as
531 * a result of trying to take some other exception).
532 *
533 * If derived == true, the caller guarantees that we are part way through
534 * trying to take an exception (but have not yet called
535 * armv7m_nvic_acknowledge_irq() to make it active), and so:
536 * - s->vectpending is the "original exception" we were trying to take
537 * - irq is the "derived exception"
538 * - nvic_exec_prio(s) gives the priority before exception entry
539 * Here we handle the prioritization logic which the pseudocode puts
540 * in the DerivedLateArrival() function.
541 */
542
543 NVICState *s = (NVICState *)opaque;
544 bool banked = exc_is_banked(irq);
545 VecInfo *vec;
546 bool targets_secure;
547
548 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
549 assert(!secure || banked);
550
551 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
552
553 targets_secure = banked ? secure : exc_targets_secure(s, irq);
554
555 trace_nvic_set_pending(irq, secure, targets_secure,
556 derived, vec->enabled, vec->prio);
557
558 if (derived) {
559 /* Derived exceptions are always synchronous. */
560 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
561
562 if (irq == ARMV7M_EXCP_DEBUG &&
563 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
564 /* DebugMonitorFault, but its priority is lower than the
565 * preempted exception priority: just ignore it.
566 */
567 return;
568 }
569
570 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
571 /* If this is a terminal exception (one which means we cannot
572 * take the original exception, like a failure to read its
573 * vector table entry), then we must take the derived exception.
574 * If the derived exception can't take priority over the
575 * original exception, then we go into Lockup.
576 *
577 * For QEMU, we rely on the fact that a derived exception is
578 * terminal if and only if it's reported to us as HardFault,
579 * which saves having to have an extra argument is_terminal
580 * that we'd only use in one place.
581 */
582 cpu_abort(CPU(s->cpu),
583 "Lockup: can't take terminal derived exception "
584 "(original exception priority %d)\n",
585 s->vectpending_prio);
586 }
587 /* We now continue with the same code as for a normal pending
588 * exception, which will cause us to pend the derived exception.
589 * We'll then take either the original or the derived exception
590 * based on which is higher priority by the usual mechanism
591 * for selecting the highest priority pending interrupt.
592 */
593 }
594
595 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
596 /* If a synchronous exception is pending then it may be
597 * escalated to HardFault if:
598 * * it is equal or lower priority to current execution
599 * * it is disabled
600 * (ie we need to take it immediately but we can't do so).
601 * Asynchronous exceptions (and interrupts) simply remain pending.
602 *
603 * For QEMU, we don't have any imprecise (asynchronous) faults,
604 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
605 * synchronous.
606 * Debug exceptions are awkward because only Debug exceptions
607 * resulting from the BKPT instruction should be escalated,
608 * but we don't currently implement any Debug exceptions other
609 * than those that result from BKPT, so we treat all debug exceptions
610 * as needing escalation.
611 *
612 * This all means we can identify whether to escalate based only on
613 * the exception number and don't (yet) need the caller to explicitly
614 * tell us whether this exception is synchronous or not.
615 */
616 int running = nvic_exec_prio(s);
617 bool escalate = false;
618
619 if (exc_group_prio(s, vec->prio, secure) >= running) {
620 trace_nvic_escalate_prio(irq, vec->prio, running);
621 escalate = true;
622 } else if (!vec->enabled) {
623 trace_nvic_escalate_disabled(irq);
624 escalate = true;
625 }
626
627 if (escalate) {
628
629 /* We need to escalate this exception to a synchronous HardFault.
630 * If BFHFNMINS is set then we escalate to the banked HF for
631 * the target security state of the original exception; otherwise
632 * we take a Secure HardFault.
633 */
634 irq = ARMV7M_EXCP_HARD;
635 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
636 (targets_secure ||
637 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
638 vec = &s->sec_vectors[irq];
639 } else {
640 vec = &s->vectors[irq];
641 }
642 if (running <= vec->prio) {
643 /* We want to escalate to HardFault but we can't take the
644 * synchronous HardFault at this point either. This is a
645 * Lockup condition due to a guest bug. We don't model
646 * Lockup, so report via cpu_abort() instead.
647 */
648 cpu_abort(CPU(s->cpu),
649 "Lockup: can't escalate %d to HardFault "
650 "(current priority %d)\n", irq, running);
651 }
652
653 /* HF may be banked but there is only one shared HFSR */
654 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
655 }
656 }
657
658 if (!vec->pending) {
659 vec->pending = 1;
660 nvic_irq_update(s);
661 }
662 }
663
armv7m_nvic_set_pending(NVICState * s,int irq,bool secure)664 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure)
665 {
666 do_armv7m_nvic_set_pending(s, irq, secure, false);
667 }
668
armv7m_nvic_set_pending_derived(NVICState * s,int irq,bool secure)669 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure)
670 {
671 do_armv7m_nvic_set_pending(s, irq, secure, true);
672 }
673
armv7m_nvic_set_pending_lazyfp(NVICState * s,int irq,bool secure)674 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
675 {
676 /*
677 * Pend an exception during lazy FP stacking. This differs
678 * from the usual exception pending because the logic for
679 * whether we should escalate depends on the saved context
680 * in the FPCCR register, not on the current state of the CPU/NVIC.
681 */
682 bool banked = exc_is_banked(irq);
683 VecInfo *vec;
684 bool targets_secure;
685 bool escalate = false;
686 /*
687 * We will only look at bits in fpccr if this is a banked exception
688 * (in which case 'secure' tells us whether it is the S or NS version).
689 * All the bits for the non-banked exceptions are in fpccr_s.
690 */
691 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
692 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
693
694 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
695 assert(!secure || banked);
696
697 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
698
699 targets_secure = banked ? secure : exc_targets_secure(s, irq);
700
701 switch (irq) {
702 case ARMV7M_EXCP_DEBUG:
703 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
704 /* Ignore DebugMonitor exception */
705 return;
706 }
707 break;
708 case ARMV7M_EXCP_MEM:
709 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
710 break;
711 case ARMV7M_EXCP_USAGE:
712 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
713 break;
714 case ARMV7M_EXCP_BUS:
715 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
716 break;
717 case ARMV7M_EXCP_SECURE:
718 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
719 break;
720 default:
721 g_assert_not_reached();
722 }
723
724 if (escalate) {
725 /*
726 * Escalate to HardFault: faults that initially targeted Secure
727 * continue to do so, even if HF normally targets NonSecure.
728 */
729 irq = ARMV7M_EXCP_HARD;
730 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
731 (targets_secure ||
732 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
733 vec = &s->sec_vectors[irq];
734 } else {
735 vec = &s->vectors[irq];
736 }
737 }
738
739 if (!vec->enabled ||
740 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
741 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
742 /*
743 * We want to escalate to HardFault but the context the
744 * FP state belongs to prevents the exception pre-empting.
745 */
746 cpu_abort(CPU(s->cpu),
747 "Lockup: can't escalate to HardFault during "
748 "lazy FP register stacking\n");
749 }
750 }
751
752 if (escalate) {
753 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
754 }
755 if (!vec->pending) {
756 vec->pending = 1;
757 /*
758 * We do not call nvic_irq_update(), because we know our caller
759 * is going to handle causing us to take the exception by
760 * raising EXCP_LAZYFP, so raising the IRQ line would be
761 * pointless extra work. We just need to recompute the
762 * priorities so that armv7m_nvic_can_take_pending_exception()
763 * returns the right answer.
764 */
765 nvic_recompute_state(s);
766 }
767 }
768
769 /* Make pending IRQ active. */
armv7m_nvic_acknowledge_irq(NVICState * s)770 void armv7m_nvic_acknowledge_irq(NVICState *s)
771 {
772 CPUARMState *env = &s->cpu->env;
773 const int pending = s->vectpending;
774 const int running = nvic_exec_prio(s);
775 VecInfo *vec;
776
777 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
778
779 if (s->vectpending_is_s_banked) {
780 vec = &s->sec_vectors[pending];
781 } else {
782 vec = &s->vectors[pending];
783 }
784
785 assert(vec->enabled);
786 assert(vec->pending);
787
788 assert(s->vectpending_prio < running);
789
790 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
791
792 vec->active = 1;
793 vec->pending = 0;
794
795 write_v7m_exception(env, s->vectpending);
796
797 nvic_irq_update(s);
798 }
799
vectpending_targets_secure(NVICState * s)800 static bool vectpending_targets_secure(NVICState *s)
801 {
802 /* Return true if s->vectpending targets Secure state */
803 if (s->vectpending_is_s_banked) {
804 return true;
805 }
806 return !exc_is_banked(s->vectpending) &&
807 exc_targets_secure(s, s->vectpending);
808 }
809
armv7m_nvic_get_pending_irq_info(NVICState * s,int * pirq,bool * ptargets_secure)810 void armv7m_nvic_get_pending_irq_info(NVICState *s,
811 int *pirq, bool *ptargets_secure)
812 {
813 const int pending = s->vectpending;
814 bool targets_secure;
815
816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817
818 targets_secure = vectpending_targets_secure(s);
819
820 trace_nvic_get_pending_irq_info(pending, targets_secure);
821
822 *ptargets_secure = targets_secure;
823 *pirq = pending;
824 }
825
armv7m_nvic_complete_irq(NVICState * s,int irq,bool secure)826 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure)
827 {
828 VecInfo *vec = NULL;
829 int ret = 0;
830
831 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
832
833 trace_nvic_complete_irq(irq, secure);
834
835 if (secure && exc_is_banked(irq)) {
836 vec = &s->sec_vectors[irq];
837 } else {
838 vec = &s->vectors[irq];
839 }
840
841 /*
842 * Identify illegal exception return cases. We can't immediately
843 * return at this point because we still need to deactivate
844 * (either this exception or NMI/HardFault) first.
845 */
846 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
847 /*
848 * Return from a configurable exception targeting the opposite
849 * security state from the one we're trying to complete it for.
850 * Clear vec because it's not really the VecInfo for this
851 * (irq, secstate) so we mustn't deactivate it.
852 */
853 ret = -1;
854 vec = NULL;
855 } else if (!vec->active) {
856 /* Return from an inactive interrupt */
857 ret = -1;
858 } else {
859 /* Legal return, we will return the RETTOBASE bit value to the caller */
860 ret = nvic_rettobase(s);
861 }
862
863 /*
864 * For negative priorities, v8M will forcibly deactivate the appropriate
865 * NMI or HardFault regardless of what interrupt we're being asked to
866 * deactivate (compare the DeActivate() pseudocode). This is a guard
867 * against software returning from NMI or HardFault with a corrupted
868 * IPSR and leaving the CPU in a negative-priority state.
869 * v7M does not do this, but simply deactivates the requested interrupt.
870 */
871 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
872 switch (armv7m_nvic_raw_execution_priority(s)) {
873 case -1:
874 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
875 vec = &s->vectors[ARMV7M_EXCP_HARD];
876 } else {
877 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
878 }
879 break;
880 case -2:
881 vec = &s->vectors[ARMV7M_EXCP_NMI];
882 break;
883 case -3:
884 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
885 break;
886 default:
887 break;
888 }
889 }
890
891 if (!vec) {
892 return ret;
893 }
894
895 vec->active = 0;
896 if (vec->level) {
897 /* Re-pend the exception if it's still held high; only
898 * happens for external IRQs
899 */
900 assert(irq >= NVIC_FIRST_IRQ);
901 vec->pending = 1;
902 }
903
904 nvic_irq_update(s);
905
906 return ret;
907 }
908
armv7m_nvic_get_ready_status(NVICState * s,int irq,bool secure)909 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure)
910 {
911 /*
912 * Return whether an exception is "ready", i.e. it is enabled and is
913 * configured at a priority which would allow it to interrupt the
914 * current execution priority.
915 *
916 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
917 * for non-banked exceptions secure is always false; for banked exceptions
918 * it indicates which of the exceptions is required.
919 */
920 bool banked = exc_is_banked(irq);
921 VecInfo *vec;
922 int running = nvic_exec_prio(s);
923
924 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
925 assert(!secure || banked);
926
927 /*
928 * HardFault is an odd special case: we always check against -1,
929 * even if we're secure and HardFault has priority -3; we never
930 * need to check for enabled state.
931 */
932 if (irq == ARMV7M_EXCP_HARD) {
933 return running > -1;
934 }
935
936 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
937
938 return vec->enabled &&
939 exc_group_prio(s, vec->prio, secure) < running;
940 }
941
942 /* callback when external interrupt line is changed */
set_irq_level(void * opaque,int n,int level)943 static void set_irq_level(void *opaque, int n, int level)
944 {
945 NVICState *s = opaque;
946 VecInfo *vec;
947
948 n += NVIC_FIRST_IRQ;
949
950 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
951
952 trace_nvic_set_irq_level(n, level);
953
954 /* The pending status of an external interrupt is
955 * latched on rising edge and exception handler return.
956 *
957 * Pulsing the IRQ will always run the handler
958 * once, and the handler will re-run until the
959 * level is low when the handler completes.
960 */
961 vec = &s->vectors[n];
962 if (level != vec->level) {
963 vec->level = level;
964 if (level) {
965 armv7m_nvic_set_pending(s, n, false);
966 }
967 }
968 }
969
970 /* callback when external NMI line is changed */
nvic_nmi_trigger(void * opaque,int n,int level)971 static void nvic_nmi_trigger(void *opaque, int n, int level)
972 {
973 NVICState *s = opaque;
974
975 trace_nvic_set_nmi_level(level);
976
977 /*
978 * The architecture doesn't specify whether NMI should share
979 * the normal-interrupt behaviour of being resampled on
980 * exception handler return. We choose not to, so just
981 * set NMI pending here and don't track the current level.
982 */
983 if (level) {
984 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
985 }
986 }
987
nvic_readl(NVICState * s,uint32_t offset,MemTxAttrs attrs)988 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
989 {
990 ARMCPU *cpu = s->cpu;
991 uint32_t val;
992
993 switch (offset) {
994 case 4: /* Interrupt Control Type. */
995 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
996 goto bad_offset;
997 }
998 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
999 case 0xc: /* CPPWR */
1000 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1001 goto bad_offset;
1002 }
1003 /* We make the IMPDEF choice that nothing can ever go into a
1004 * non-retentive power state, which allows us to RAZ/WI this.
1005 */
1006 return 0;
1007 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1008 {
1009 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1010 int i;
1011
1012 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1013 goto bad_offset;
1014 }
1015 if (!attrs.secure) {
1016 return 0;
1017 }
1018 val = 0;
1019 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1020 if (s->itns[startvec + i]) {
1021 val |= (1 << i);
1022 }
1023 }
1024 return val;
1025 }
1026 case 0xcfc:
1027 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1028 goto bad_offset;
1029 }
1030 return cpu->revidr;
1031 case 0xd00: /* CPUID Base. */
1032 return cpu->midr;
1033 case 0xd04: /* Interrupt Control State (ICSR) */
1034 /* VECTACTIVE */
1035 val = cpu->env.v7m.exception;
1036 /* VECTPENDING */
1037 if (s->vectpending) {
1038 /*
1039 * From v8.1M VECTPENDING must read as 1 if accessed as
1040 * NonSecure and the highest priority pending and enabled
1041 * exception targets Secure.
1042 */
1043 int vp = s->vectpending;
1044 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
1045 vectpending_targets_secure(s)) {
1046 vp = 1;
1047 }
1048 val |= (vp & 0x1ff) << 12;
1049 }
1050 /* ISRPENDING - set if any external IRQ is pending */
1051 if (nvic_isrpending(s)) {
1052 val |= (1 << 22);
1053 }
1054 /* RETTOBASE - set if only one handler is active */
1055 if (nvic_rettobase(s)) {
1056 val |= (1 << 11);
1057 }
1058 if (attrs.secure) {
1059 /* PENDSTSET */
1060 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1061 val |= (1 << 26);
1062 }
1063 /* PENDSVSET */
1064 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1065 val |= (1 << 28);
1066 }
1067 } else {
1068 /* PENDSTSET */
1069 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1070 val |= (1 << 26);
1071 }
1072 /* PENDSVSET */
1073 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1074 val |= (1 << 28);
1075 }
1076 }
1077 /* NMIPENDSET */
1078 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1079 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1080 val |= (1 << 31);
1081 }
1082 /* ISRPREEMPT: RES0 when halting debug not implemented */
1083 /* STTNS: RES0 for the Main Extension */
1084 return val;
1085 case 0xd08: /* Vector Table Offset. */
1086 return cpu->env.v7m.vecbase[attrs.secure];
1087 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1088 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1089 if (attrs.secure) {
1090 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1091 val |= cpu->env.v7m.aircr;
1092 } else {
1093 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1094 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1095 * security isn't supported then BFHFNMINS is RAO (and
1096 * the bit in env.v7m.aircr is always set).
1097 */
1098 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1099 }
1100 }
1101 return val;
1102 case 0xd10: /* System Control. */
1103 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1104 goto bad_offset;
1105 }
1106 return cpu->env.v7m.scr[attrs.secure];
1107 case 0xd14: /* Configuration Control. */
1108 /*
1109 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1110 * and TRD (stored in the S copy of the register)
1111 */
1112 val = cpu->env.v7m.ccr[attrs.secure];
1113 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1114 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1115 if (!attrs.secure) {
1116 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1117 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1118 }
1119 }
1120 return val;
1121 case 0xd24: /* System Handler Control and State (SHCSR) */
1122 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1123 goto bad_offset;
1124 }
1125 val = 0;
1126 if (attrs.secure) {
1127 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1128 val |= (1 << 0);
1129 }
1130 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1131 val |= (1 << 2);
1132 }
1133 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1134 val |= (1 << 3);
1135 }
1136 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1137 val |= (1 << 7);
1138 }
1139 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1140 val |= (1 << 10);
1141 }
1142 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1143 val |= (1 << 11);
1144 }
1145 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1146 val |= (1 << 12);
1147 }
1148 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1149 val |= (1 << 13);
1150 }
1151 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1152 val |= (1 << 15);
1153 }
1154 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1155 val |= (1 << 16);
1156 }
1157 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1158 val |= (1 << 18);
1159 }
1160 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1161 val |= (1 << 21);
1162 }
1163 /* SecureFault is not banked but is always RAZ/WI to NS */
1164 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1165 val |= (1 << 4);
1166 }
1167 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1168 val |= (1 << 19);
1169 }
1170 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1171 val |= (1 << 20);
1172 }
1173 } else {
1174 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1175 val |= (1 << 0);
1176 }
1177 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1178 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1179 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1180 val |= (1 << 2);
1181 }
1182 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1183 val |= (1 << 21);
1184 }
1185 }
1186 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1187 val |= (1 << 3);
1188 }
1189 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1190 val |= (1 << 7);
1191 }
1192 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1193 val |= (1 << 10);
1194 }
1195 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1196 val |= (1 << 11);
1197 }
1198 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1199 val |= (1 << 12);
1200 }
1201 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1202 val |= (1 << 13);
1203 }
1204 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1205 val |= (1 << 15);
1206 }
1207 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1208 val |= (1 << 16);
1209 }
1210 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1211 val |= (1 << 18);
1212 }
1213 }
1214 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1215 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1216 val |= (1 << 1);
1217 }
1218 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1219 val |= (1 << 14);
1220 }
1221 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1222 val |= (1 << 17);
1223 }
1224 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1225 s->vectors[ARMV7M_EXCP_NMI].active) {
1226 /* NMIACT is not present in v7M */
1227 val |= (1 << 5);
1228 }
1229 }
1230
1231 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1232 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1233 val |= (1 << 8);
1234 }
1235 return val;
1236 case 0xd2c: /* Hard Fault Status. */
1237 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1238 goto bad_offset;
1239 }
1240 return cpu->env.v7m.hfsr;
1241 case 0xd30: /* Debug Fault Status. */
1242 return cpu->env.v7m.dfsr;
1243 case 0xd34: /* MMFAR MemManage Fault Address */
1244 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1245 goto bad_offset;
1246 }
1247 return cpu->env.v7m.mmfar[attrs.secure];
1248 case 0xd38: /* Bus Fault Address. */
1249 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1250 goto bad_offset;
1251 }
1252 if (!attrs.secure &&
1253 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1254 return 0;
1255 }
1256 return cpu->env.v7m.bfar;
1257 case 0xd3c: /* Aux Fault Status. */
1258 /* TODO: Implement fault status registers. */
1259 qemu_log_mask(LOG_UNIMP,
1260 "Aux Fault status registers unimplemented\n");
1261 return 0;
1262 case 0xd40: /* PFR0. */
1263 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1264 goto bad_offset;
1265 }
1266 return cpu->isar.id_pfr0;
1267 case 0xd44: /* PFR1. */
1268 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1269 goto bad_offset;
1270 }
1271 return cpu->isar.id_pfr1;
1272 case 0xd48: /* DFR0. */
1273 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1274 goto bad_offset;
1275 }
1276 return cpu->isar.id_dfr0;
1277 case 0xd4c: /* AFR0. */
1278 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1279 goto bad_offset;
1280 }
1281 return cpu->id_afr0;
1282 case 0xd50: /* MMFR0. */
1283 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1284 goto bad_offset;
1285 }
1286 return cpu->isar.id_mmfr0;
1287 case 0xd54: /* MMFR1. */
1288 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1289 goto bad_offset;
1290 }
1291 return cpu->isar.id_mmfr1;
1292 case 0xd58: /* MMFR2. */
1293 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1294 goto bad_offset;
1295 }
1296 return cpu->isar.id_mmfr2;
1297 case 0xd5c: /* MMFR3. */
1298 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1299 goto bad_offset;
1300 }
1301 return cpu->isar.id_mmfr3;
1302 case 0xd60: /* ISAR0. */
1303 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1304 goto bad_offset;
1305 }
1306 return cpu->isar.id_isar0;
1307 case 0xd64: /* ISAR1. */
1308 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1309 goto bad_offset;
1310 }
1311 return cpu->isar.id_isar1;
1312 case 0xd68: /* ISAR2. */
1313 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1314 goto bad_offset;
1315 }
1316 return cpu->isar.id_isar2;
1317 case 0xd6c: /* ISAR3. */
1318 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1319 goto bad_offset;
1320 }
1321 return cpu->isar.id_isar3;
1322 case 0xd70: /* ISAR4. */
1323 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1324 goto bad_offset;
1325 }
1326 return cpu->isar.id_isar4;
1327 case 0xd74: /* ISAR5. */
1328 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1329 goto bad_offset;
1330 }
1331 return cpu->isar.id_isar5;
1332 case 0xd78: /* CLIDR */
1333 return cpu->clidr;
1334 case 0xd7c: /* CTR */
1335 return cpu->ctr;
1336 case 0xd80: /* CSSIDR */
1337 {
1338 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1339 return cpu->ccsidr[idx];
1340 }
1341 case 0xd84: /* CSSELR */
1342 return cpu->env.v7m.csselr[attrs.secure];
1343 case 0xd88: /* CPACR */
1344 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1345 return 0;
1346 }
1347 return cpu->env.v7m.cpacr[attrs.secure];
1348 case 0xd8c: /* NSACR */
1349 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1350 return 0;
1351 }
1352 return cpu->env.v7m.nsacr;
1353 /* TODO: Implement debug registers. */
1354 case 0xd90: /* MPU_TYPE */
1355 /* Unified MPU; if the MPU is not present this value is zero */
1356 return cpu->pmsav7_dregion << 8;
1357 case 0xd94: /* MPU_CTRL */
1358 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1359 case 0xd98: /* MPU_RNR */
1360 return cpu->env.pmsav7.rnr[attrs.secure];
1361 case 0xd9c: /* MPU_RBAR */
1362 case 0xda4: /* MPU_RBAR_A1 */
1363 case 0xdac: /* MPU_RBAR_A2 */
1364 case 0xdb4: /* MPU_RBAR_A3 */
1365 {
1366 int region = cpu->env.pmsav7.rnr[attrs.secure];
1367
1368 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1369 /* PMSAv8M handling of the aliases is different from v7M:
1370 * aliases A1, A2, A3 override the low two bits of the region
1371 * number in MPU_RNR, and there is no 'region' field in the
1372 * RBAR register.
1373 */
1374 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1375 if (aliasno) {
1376 region = deposit32(region, 0, 2, aliasno);
1377 }
1378 if (region >= cpu->pmsav7_dregion) {
1379 return 0;
1380 }
1381 return cpu->env.pmsav8.rbar[attrs.secure][region];
1382 }
1383
1384 if (region >= cpu->pmsav7_dregion) {
1385 return 0;
1386 }
1387 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1388 }
1389 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1390 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1391 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1392 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1393 {
1394 int region = cpu->env.pmsav7.rnr[attrs.secure];
1395
1396 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1397 /* PMSAv8M handling of the aliases is different from v7M:
1398 * aliases A1, A2, A3 override the low two bits of the region
1399 * number in MPU_RNR.
1400 */
1401 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1402 if (aliasno) {
1403 region = deposit32(region, 0, 2, aliasno);
1404 }
1405 if (region >= cpu->pmsav7_dregion) {
1406 return 0;
1407 }
1408 return cpu->env.pmsav8.rlar[attrs.secure][region];
1409 }
1410
1411 if (region >= cpu->pmsav7_dregion) {
1412 return 0;
1413 }
1414 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1415 (cpu->env.pmsav7.drsr[region] & 0xffff);
1416 }
1417 case 0xdc0: /* MPU_MAIR0 */
1418 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1419 goto bad_offset;
1420 }
1421 return cpu->env.pmsav8.mair0[attrs.secure];
1422 case 0xdc4: /* MPU_MAIR1 */
1423 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1424 goto bad_offset;
1425 }
1426 return cpu->env.pmsav8.mair1[attrs.secure];
1427 case 0xdd0: /* SAU_CTRL */
1428 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1429 goto bad_offset;
1430 }
1431 if (!attrs.secure) {
1432 return 0;
1433 }
1434 return cpu->env.sau.ctrl;
1435 case 0xdd4: /* SAU_TYPE */
1436 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1437 goto bad_offset;
1438 }
1439 if (!attrs.secure) {
1440 return 0;
1441 }
1442 return cpu->sau_sregion;
1443 case 0xdd8: /* SAU_RNR */
1444 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1445 goto bad_offset;
1446 }
1447 if (!attrs.secure) {
1448 return 0;
1449 }
1450 return cpu->env.sau.rnr;
1451 case 0xddc: /* SAU_RBAR */
1452 {
1453 int region = cpu->env.sau.rnr;
1454
1455 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1456 goto bad_offset;
1457 }
1458 if (!attrs.secure) {
1459 return 0;
1460 }
1461 if (region >= cpu->sau_sregion) {
1462 return 0;
1463 }
1464 return cpu->env.sau.rbar[region];
1465 }
1466 case 0xde0: /* SAU_RLAR */
1467 {
1468 int region = cpu->env.sau.rnr;
1469
1470 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1471 goto bad_offset;
1472 }
1473 if (!attrs.secure) {
1474 return 0;
1475 }
1476 if (region >= cpu->sau_sregion) {
1477 return 0;
1478 }
1479 return cpu->env.sau.rlar[region];
1480 }
1481 case 0xde4: /* SFSR */
1482 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1483 goto bad_offset;
1484 }
1485 if (!attrs.secure) {
1486 return 0;
1487 }
1488 return cpu->env.v7m.sfsr;
1489 case 0xde8: /* SFAR */
1490 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491 goto bad_offset;
1492 }
1493 if (!attrs.secure) {
1494 return 0;
1495 }
1496 return cpu->env.v7m.sfar;
1497 case 0xf04: /* RFSR */
1498 if (!cpu_isar_feature(aa32_ras, cpu)) {
1499 goto bad_offset;
1500 }
1501 /* We provide minimal-RAS only: RFSR is RAZ/WI */
1502 return 0;
1503 case 0xf34: /* FPCCR */
1504 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1505 return 0;
1506 }
1507 if (attrs.secure) {
1508 return cpu->env.v7m.fpccr[M_REG_S];
1509 } else {
1510 /*
1511 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1512 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1513 * other non-banked bits RAZ.
1514 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1515 */
1516 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1517 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1518 R_V7M_FPCCR_CLRONRET_MASK |
1519 R_V7M_FPCCR_MONRDY_MASK;
1520
1521 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1522 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1523 }
1524
1525 value &= mask;
1526
1527 value |= cpu->env.v7m.fpccr[M_REG_NS];
1528 return value;
1529 }
1530 case 0xf38: /* FPCAR */
1531 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1532 return 0;
1533 }
1534 return cpu->env.v7m.fpcar[attrs.secure];
1535 case 0xf3c: /* FPDSCR */
1536 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1537 return 0;
1538 }
1539 return cpu->env.v7m.fpdscr[attrs.secure];
1540 case 0xf40: /* MVFR0 */
1541 return cpu->isar.mvfr0;
1542 case 0xf44: /* MVFR1 */
1543 return cpu->isar.mvfr1;
1544 case 0xf48: /* MVFR2 */
1545 return cpu->isar.mvfr2;
1546 default:
1547 bad_offset:
1548 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1549 return 0;
1550 }
1551 }
1552
nvic_writel(NVICState * s,uint32_t offset,uint32_t value,MemTxAttrs attrs)1553 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1554 MemTxAttrs attrs)
1555 {
1556 ARMCPU *cpu = s->cpu;
1557
1558 switch (offset) {
1559 case 0xc: /* CPPWR */
1560 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1561 goto bad_offset;
1562 }
1563 /* Make the IMPDEF choice to RAZ/WI this. */
1564 break;
1565 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1566 {
1567 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1568 int i;
1569
1570 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571 goto bad_offset;
1572 }
1573 if (!attrs.secure) {
1574 break;
1575 }
1576 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1577 s->itns[startvec + i] = (value >> i) & 1;
1578 }
1579 nvic_irq_update(s);
1580 break;
1581 }
1582 case 0xd04: /* Interrupt Control State (ICSR) */
1583 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1584 if (value & (1 << 31)) {
1585 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1586 } else if (value & (1 << 30) &&
1587 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1588 /* PENDNMICLR didn't exist in v7M */
1589 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1590 }
1591 }
1592 if (value & (1 << 28)) {
1593 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1594 } else if (value & (1 << 27)) {
1595 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1596 }
1597 if (value & (1 << 26)) {
1598 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1599 } else if (value & (1 << 25)) {
1600 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1601 }
1602 break;
1603 case 0xd08: /* Vector Table Offset. */
1604 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1605 break;
1606 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1607 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1608 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1609 if (attrs.secure ||
1610 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1611 signal_sysresetreq(s);
1612 }
1613 }
1614 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1615 qemu_log_mask(LOG_GUEST_ERROR,
1616 "Setting VECTCLRACTIVE when not in DEBUG mode "
1617 "is UNPREDICTABLE\n");
1618 }
1619 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1620 /* NB: this bit is RES0 in v8M */
1621 qemu_log_mask(LOG_GUEST_ERROR,
1622 "Setting VECTRESET when not in DEBUG mode "
1623 "is UNPREDICTABLE\n");
1624 }
1625 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1626 s->prigroup[attrs.secure] =
1627 extract32(value,
1628 R_V7M_AIRCR_PRIGROUP_SHIFT,
1629 R_V7M_AIRCR_PRIGROUP_LENGTH);
1630 }
1631 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1632 if (attrs.secure) {
1633 /* These bits are only writable by secure */
1634 cpu->env.v7m.aircr = value &
1635 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1636 R_V7M_AIRCR_BFHFNMINS_MASK |
1637 R_V7M_AIRCR_PRIS_MASK);
1638 /* BFHFNMINS changes the priority of Secure HardFault, and
1639 * allows a pending Non-secure HardFault to preempt (which
1640 * we implement by marking it enabled).
1641 */
1642 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1643 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1644 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1645 } else {
1646 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1647 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1648 }
1649 }
1650 nvic_irq_update(s);
1651 }
1652 break;
1653 case 0xd10: /* System Control. */
1654 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1655 goto bad_offset;
1656 }
1657 /* We don't implement deep-sleep so these bits are RAZ/WI.
1658 * The other bits in the register are banked.
1659 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1660 * is architecturally permitted.
1661 */
1662 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1663 cpu->env.v7m.scr[attrs.secure] = value;
1664 break;
1665 case 0xd14: /* Configuration Control. */
1666 {
1667 uint32_t mask;
1668
1669 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1670 goto bad_offset;
1671 }
1672
1673 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1674 mask = R_V7M_CCR_STKALIGN_MASK |
1675 R_V7M_CCR_BFHFNMIGN_MASK |
1676 R_V7M_CCR_DIV_0_TRP_MASK |
1677 R_V7M_CCR_UNALIGN_TRP_MASK |
1678 R_V7M_CCR_USERSETMPEND_MASK |
1679 R_V7M_CCR_NONBASETHRDENA_MASK;
1680 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1681 /* TRD is always RAZ/WI from NS */
1682 mask |= R_V7M_CCR_TRD_MASK;
1683 }
1684 value &= mask;
1685
1686 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1687 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1688 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1689 | R_V7M_CCR_STKALIGN_MASK;
1690 }
1691 if (attrs.secure) {
1692 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1693 cpu->env.v7m.ccr[M_REG_NS] =
1694 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1695 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1696 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1697 } else {
1698 /*
1699 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1700 * preserve the state currently in the NS element of the array
1701 */
1702 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1703 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1704 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1705 }
1706 }
1707
1708 cpu->env.v7m.ccr[attrs.secure] = value;
1709 break;
1710 }
1711 case 0xd24: /* System Handler Control and State (SHCSR) */
1712 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1713 goto bad_offset;
1714 }
1715 if (attrs.secure) {
1716 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1717 /* Secure HardFault active bit cannot be written */
1718 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1719 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1720 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1721 (value & (1 << 10)) != 0;
1722 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1723 (value & (1 << 11)) != 0;
1724 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1725 (value & (1 << 12)) != 0;
1726 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1727 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1728 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1729 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1730 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1731 (value & (1 << 18)) != 0;
1732 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1733 /* SecureFault not banked, but RAZ/WI to NS */
1734 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1735 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1736 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1737 } else {
1738 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1739 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1740 /* HARDFAULTPENDED is not present in v7M */
1741 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1742 }
1743 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1744 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1745 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1746 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1747 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1748 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1749 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1750 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1751 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1752 }
1753 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1754 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1755 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1756 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1757 }
1758 /* NMIACT can only be written if the write is of a zero, with
1759 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1760 */
1761 if (!attrs.secure && cpu->env.v7m.secure &&
1762 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1763 (value & (1 << 5)) == 0) {
1764 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1765 }
1766 /* HARDFAULTACT can only be written if the write is of a zero
1767 * to the non-secure HardFault state by the CPU in secure state.
1768 * The only case where we can be targeting the non-secure HF state
1769 * when in secure state is if this is a write via the NS alias
1770 * and BFHFNMINS is 1.
1771 */
1772 if (!attrs.secure && cpu->env.v7m.secure &&
1773 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1774 (value & (1 << 2)) == 0) {
1775 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1776 }
1777
1778 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1779 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1780 nvic_irq_update(s);
1781 break;
1782 case 0xd2c: /* Hard Fault Status. */
1783 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1784 goto bad_offset;
1785 }
1786 cpu->env.v7m.hfsr &= ~value; /* W1C */
1787 break;
1788 case 0xd30: /* Debug Fault Status. */
1789 cpu->env.v7m.dfsr &= ~value; /* W1C */
1790 break;
1791 case 0xd34: /* Mem Manage Address. */
1792 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1793 goto bad_offset;
1794 }
1795 cpu->env.v7m.mmfar[attrs.secure] = value;
1796 return;
1797 case 0xd38: /* Bus Fault Address. */
1798 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1799 goto bad_offset;
1800 }
1801 if (!attrs.secure &&
1802 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1803 return;
1804 }
1805 cpu->env.v7m.bfar = value;
1806 return;
1807 case 0xd3c: /* Aux Fault Status. */
1808 qemu_log_mask(LOG_UNIMP,
1809 "NVIC: Aux fault status registers unimplemented\n");
1810 break;
1811 case 0xd84: /* CSSELR */
1812 if (!arm_v7m_csselr_razwi(cpu)) {
1813 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1814 }
1815 break;
1816 case 0xd88: /* CPACR */
1817 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1818 /* We implement only the Floating Point extension's CP10/CP11 */
1819 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1820 }
1821 break;
1822 case 0xd8c: /* NSACR */
1823 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1824 /* We implement only the Floating Point extension's CP10/CP11 */
1825 cpu->env.v7m.nsacr = value & (3 << 10);
1826 }
1827 break;
1828 case 0xd90: /* MPU_TYPE */
1829 return; /* RO */
1830 case 0xd94: /* MPU_CTRL */
1831 if ((value &
1832 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1833 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1834 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1835 "UNPREDICTABLE\n");
1836 }
1837 cpu->env.v7m.mpu_ctrl[attrs.secure]
1838 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1839 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1840 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1841 tlb_flush(CPU(cpu));
1842 break;
1843 case 0xd98: /* MPU_RNR */
1844 if (value >= cpu->pmsav7_dregion) {
1845 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1846 PRIu32 "/%" PRIu32 "\n",
1847 value, cpu->pmsav7_dregion);
1848 } else {
1849 cpu->env.pmsav7.rnr[attrs.secure] = value;
1850 }
1851 break;
1852 case 0xd9c: /* MPU_RBAR */
1853 case 0xda4: /* MPU_RBAR_A1 */
1854 case 0xdac: /* MPU_RBAR_A2 */
1855 case 0xdb4: /* MPU_RBAR_A3 */
1856 {
1857 int region;
1858
1859 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1860 /* PMSAv8M handling of the aliases is different from v7M:
1861 * aliases A1, A2, A3 override the low two bits of the region
1862 * number in MPU_RNR, and there is no 'region' field in the
1863 * RBAR register.
1864 */
1865 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1866
1867 region = cpu->env.pmsav7.rnr[attrs.secure];
1868 if (aliasno) {
1869 region = deposit32(region, 0, 2, aliasno);
1870 }
1871 if (region >= cpu->pmsav7_dregion) {
1872 return;
1873 }
1874 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1875 tlb_flush(CPU(cpu));
1876 return;
1877 }
1878
1879 if (value & (1 << 4)) {
1880 /* VALID bit means use the region number specified in this
1881 * value and also update MPU_RNR.REGION with that value.
1882 */
1883 region = extract32(value, 0, 4);
1884 if (region >= cpu->pmsav7_dregion) {
1885 qemu_log_mask(LOG_GUEST_ERROR,
1886 "MPU region out of range %u/%" PRIu32 "\n",
1887 region, cpu->pmsav7_dregion);
1888 return;
1889 }
1890 cpu->env.pmsav7.rnr[attrs.secure] = region;
1891 } else {
1892 region = cpu->env.pmsav7.rnr[attrs.secure];
1893 }
1894
1895 if (region >= cpu->pmsav7_dregion) {
1896 return;
1897 }
1898
1899 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1900 tlb_flush(CPU(cpu));
1901 break;
1902 }
1903 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1904 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1905 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1906 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1907 {
1908 int region = cpu->env.pmsav7.rnr[attrs.secure];
1909
1910 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1911 /* PMSAv8M handling of the aliases is different from v7M:
1912 * aliases A1, A2, A3 override the low two bits of the region
1913 * number in MPU_RNR.
1914 */
1915 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1916
1917 region = cpu->env.pmsav7.rnr[attrs.secure];
1918 if (aliasno) {
1919 region = deposit32(region, 0, 2, aliasno);
1920 }
1921 if (region >= cpu->pmsav7_dregion) {
1922 return;
1923 }
1924 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1925 tlb_flush(CPU(cpu));
1926 return;
1927 }
1928
1929 if (region >= cpu->pmsav7_dregion) {
1930 return;
1931 }
1932
1933 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1934 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1935 tlb_flush(CPU(cpu));
1936 break;
1937 }
1938 case 0xdc0: /* MPU_MAIR0 */
1939 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1940 goto bad_offset;
1941 }
1942 if (cpu->pmsav7_dregion) {
1943 /* Register is RES0 if no MPU regions are implemented */
1944 cpu->env.pmsav8.mair0[attrs.secure] = value;
1945 }
1946 /* We don't need to do anything else because memory attributes
1947 * only affect cacheability, and we don't implement caching.
1948 */
1949 break;
1950 case 0xdc4: /* MPU_MAIR1 */
1951 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1952 goto bad_offset;
1953 }
1954 if (cpu->pmsav7_dregion) {
1955 /* Register is RES0 if no MPU regions are implemented */
1956 cpu->env.pmsav8.mair1[attrs.secure] = value;
1957 }
1958 /* We don't need to do anything else because memory attributes
1959 * only affect cacheability, and we don't implement caching.
1960 */
1961 break;
1962 case 0xdd0: /* SAU_CTRL */
1963 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1964 goto bad_offset;
1965 }
1966 if (!attrs.secure) {
1967 return;
1968 }
1969 cpu->env.sau.ctrl = value & 3;
1970 break;
1971 case 0xdd4: /* SAU_TYPE */
1972 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1973 goto bad_offset;
1974 }
1975 break;
1976 case 0xdd8: /* SAU_RNR */
1977 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1978 goto bad_offset;
1979 }
1980 if (!attrs.secure) {
1981 return;
1982 }
1983 if (value >= cpu->sau_sregion) {
1984 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1985 PRIu32 "/%" PRIu32 "\n",
1986 value, cpu->sau_sregion);
1987 } else {
1988 cpu->env.sau.rnr = value;
1989 }
1990 break;
1991 case 0xddc: /* SAU_RBAR */
1992 {
1993 int region = cpu->env.sau.rnr;
1994
1995 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1996 goto bad_offset;
1997 }
1998 if (!attrs.secure) {
1999 return;
2000 }
2001 if (region >= cpu->sau_sregion) {
2002 return;
2003 }
2004 cpu->env.sau.rbar[region] = value & ~0x1f;
2005 tlb_flush(CPU(cpu));
2006 break;
2007 }
2008 case 0xde0: /* SAU_RLAR */
2009 {
2010 int region = cpu->env.sau.rnr;
2011
2012 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2013 goto bad_offset;
2014 }
2015 if (!attrs.secure) {
2016 return;
2017 }
2018 if (region >= cpu->sau_sregion) {
2019 return;
2020 }
2021 cpu->env.sau.rlar[region] = value & ~0x1c;
2022 tlb_flush(CPU(cpu));
2023 break;
2024 }
2025 case 0xde4: /* SFSR */
2026 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2027 goto bad_offset;
2028 }
2029 if (!attrs.secure) {
2030 return;
2031 }
2032 cpu->env.v7m.sfsr &= ~value; /* W1C */
2033 break;
2034 case 0xde8: /* SFAR */
2035 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2036 goto bad_offset;
2037 }
2038 if (!attrs.secure) {
2039 return;
2040 }
2041 cpu->env.v7m.sfsr = value;
2042 break;
2043 case 0xf00: /* Software Triggered Interrupt Register */
2044 {
2045 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2046
2047 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2048 goto bad_offset;
2049 }
2050
2051 if (excnum < s->num_irq) {
2052 armv7m_nvic_set_pending(s, excnum, false);
2053 }
2054 break;
2055 }
2056 case 0xf04: /* RFSR */
2057 if (!cpu_isar_feature(aa32_ras, cpu)) {
2058 goto bad_offset;
2059 }
2060 /* We provide minimal-RAS only: RFSR is RAZ/WI */
2061 break;
2062 case 0xf34: /* FPCCR */
2063 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2064 /* Not all bits here are banked. */
2065 uint32_t fpccr_s;
2066
2067 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2068 /* Don't allow setting of bits not present in v7M */
2069 value &= (R_V7M_FPCCR_LSPACT_MASK |
2070 R_V7M_FPCCR_USER_MASK |
2071 R_V7M_FPCCR_THREAD_MASK |
2072 R_V7M_FPCCR_HFRDY_MASK |
2073 R_V7M_FPCCR_MMRDY_MASK |
2074 R_V7M_FPCCR_BFRDY_MASK |
2075 R_V7M_FPCCR_MONRDY_MASK |
2076 R_V7M_FPCCR_LSPEN_MASK |
2077 R_V7M_FPCCR_ASPEN_MASK);
2078 }
2079 value &= ~R_V7M_FPCCR_RES0_MASK;
2080
2081 if (!attrs.secure) {
2082 /* Some non-banked bits are configurably writable by NS */
2083 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2084 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2085 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2086 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2087 }
2088 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2089 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2090 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2091 }
2092 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2093 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2094 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2095 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2097 }
2098 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2099 {
2100 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2101 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2102 }
2103
2104 /*
2105 * All other non-banked bits are RAZ/WI from NS; write
2106 * just the banked bits to fpccr[M_REG_NS].
2107 */
2108 value &= R_V7M_FPCCR_BANKED_MASK;
2109 cpu->env.v7m.fpccr[M_REG_NS] = value;
2110 } else {
2111 fpccr_s = value;
2112 }
2113 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2114 }
2115 break;
2116 case 0xf38: /* FPCAR */
2117 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2118 value &= ~7;
2119 cpu->env.v7m.fpcar[attrs.secure] = value;
2120 }
2121 break;
2122 case 0xf3c: /* FPDSCR */
2123 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2124 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2125 if (cpu_isar_feature(any_fp16, cpu)) {
2126 mask |= FPCR_FZ16;
2127 }
2128 value &= mask;
2129 if (cpu_isar_feature(aa32_lob, cpu)) {
2130 value |= 4 << FPCR_LTPSIZE_SHIFT;
2131 }
2132 cpu->env.v7m.fpdscr[attrs.secure] = value;
2133 }
2134 break;
2135 case 0xf50: /* ICIALLU */
2136 case 0xf58: /* ICIMVAU */
2137 case 0xf5c: /* DCIMVAC */
2138 case 0xf60: /* DCISW */
2139 case 0xf64: /* DCCMVAU */
2140 case 0xf68: /* DCCMVAC */
2141 case 0xf6c: /* DCCSW */
2142 case 0xf70: /* DCCIMVAC */
2143 case 0xf74: /* DCCISW */
2144 case 0xf78: /* BPIALL */
2145 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2146 break;
2147 default:
2148 bad_offset:
2149 qemu_log_mask(LOG_GUEST_ERROR,
2150 "NVIC: Bad write offset 0x%x\n", offset);
2151 }
2152 }
2153
nvic_user_access_ok(NVICState * s,hwaddr offset,MemTxAttrs attrs)2154 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2155 {
2156 /* Return true if unprivileged access to this register is permitted. */
2157 switch (offset) {
2158 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2159 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2160 * controls access even though the CPU is in Secure state (I_QDKX).
2161 */
2162 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2163 default:
2164 /* All other user accesses cause a BusFault unconditionally */
2165 return false;
2166 }
2167 }
2168
shpr_bank(NVICState * s,int exc,MemTxAttrs attrs)2169 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2170 {
2171 /* Behaviour for the SHPR register field for this exception:
2172 * return M_REG_NS to use the nonsecure vector (including for
2173 * non-banked exceptions), M_REG_S for the secure version of
2174 * a banked exception, and -1 if this field should RAZ/WI.
2175 */
2176 switch (exc) {
2177 case ARMV7M_EXCP_MEM:
2178 case ARMV7M_EXCP_USAGE:
2179 case ARMV7M_EXCP_SVC:
2180 case ARMV7M_EXCP_PENDSV:
2181 case ARMV7M_EXCP_SYSTICK:
2182 /* Banked exceptions */
2183 return attrs.secure;
2184 case ARMV7M_EXCP_BUS:
2185 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2186 if (!attrs.secure &&
2187 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2188 return -1;
2189 }
2190 return M_REG_NS;
2191 case ARMV7M_EXCP_SECURE:
2192 /* Not banked, RAZ/WI from nonsecure */
2193 if (!attrs.secure) {
2194 return -1;
2195 }
2196 return M_REG_NS;
2197 case ARMV7M_EXCP_DEBUG:
2198 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2199 return M_REG_NS;
2200 case 8 ... 10:
2201 case 13:
2202 /* RES0 */
2203 return -1;
2204 default:
2205 /* Not reachable due to decode of SHPR register addresses */
2206 g_assert_not_reached();
2207 }
2208 }
2209
nvic_sysreg_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)2210 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2211 uint64_t *data, unsigned size,
2212 MemTxAttrs attrs)
2213 {
2214 NVICState *s = (NVICState *)opaque;
2215 uint32_t offset = addr;
2216 unsigned i, startvec, end;
2217 uint32_t val;
2218
2219 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2220 /* Generate BusFault for unprivileged accesses */
2221 return MEMTX_ERROR;
2222 }
2223
2224 switch (offset) {
2225 /* reads of set and clear both return the status */
2226 case 0x100 ... 0x13f: /* NVIC Set enable */
2227 offset += 0x80;
2228 /* fall through */
2229 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2230 val = 0;
2231 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2232
2233 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2234 if (s->vectors[startvec + i].enabled &&
2235 (attrs.secure || s->itns[startvec + i])) {
2236 val |= (1 << i);
2237 }
2238 }
2239 break;
2240 case 0x200 ... 0x23f: /* NVIC Set pend */
2241 offset += 0x80;
2242 /* fall through */
2243 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2244 val = 0;
2245 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2246 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2247 if (s->vectors[startvec + i].pending &&
2248 (attrs.secure || s->itns[startvec + i])) {
2249 val |= (1 << i);
2250 }
2251 }
2252 break;
2253 case 0x300 ... 0x33f: /* NVIC Active */
2254 val = 0;
2255
2256 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2257 break;
2258 }
2259
2260 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2261
2262 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2263 if (s->vectors[startvec + i].active &&
2264 (attrs.secure || s->itns[startvec + i])) {
2265 val |= (1 << i);
2266 }
2267 }
2268 break;
2269 case 0x400 ... 0x5ef: /* NVIC Priority */
2270 val = 0;
2271 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2272
2273 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2274 if (attrs.secure || s->itns[startvec + i]) {
2275 val |= s->vectors[startvec + i].prio << (8 * i);
2276 }
2277 }
2278 break;
2279 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2280 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2281 val = 0;
2282 break;
2283 }
2284 /* fall through */
2285 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2286 val = 0;
2287 for (i = 0; i < size; i++) {
2288 unsigned hdlidx = (offset - 0xd14) + i;
2289 int sbank = shpr_bank(s, hdlidx, attrs);
2290
2291 if (sbank < 0) {
2292 continue;
2293 }
2294 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2295 }
2296 break;
2297 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2298 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2299 val = 0;
2300 break;
2301 };
2302 /*
2303 * The BFSR bits [15:8] are shared between security states
2304 * and we store them in the NS copy. They are RAZ/WI for
2305 * NS code if AIRCR.BFHFNMINS is 0.
2306 */
2307 val = s->cpu->env.v7m.cfsr[attrs.secure];
2308 if (!attrs.secure &&
2309 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2310 val &= ~R_V7M_CFSR_BFSR_MASK;
2311 } else {
2312 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2313 }
2314 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2315 break;
2316 case 0xfe0 ... 0xfff: /* ID. */
2317 if (offset & 3) {
2318 val = 0;
2319 } else {
2320 val = nvic_id[(offset - 0xfe0) >> 2];
2321 }
2322 break;
2323 default:
2324 if (size == 4) {
2325 val = nvic_readl(s, offset, attrs);
2326 } else {
2327 qemu_log_mask(LOG_GUEST_ERROR,
2328 "NVIC: Bad read of size %d at offset 0x%x\n",
2329 size, offset);
2330 val = 0;
2331 }
2332 }
2333
2334 trace_nvic_sysreg_read(addr, val, size);
2335 *data = val;
2336 return MEMTX_OK;
2337 }
2338
nvic_sysreg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)2339 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2340 uint64_t value, unsigned size,
2341 MemTxAttrs attrs)
2342 {
2343 NVICState *s = (NVICState *)opaque;
2344 uint32_t offset = addr;
2345 unsigned i, startvec, end;
2346 unsigned setval = 0;
2347
2348 trace_nvic_sysreg_write(addr, value, size);
2349
2350 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2351 /* Generate BusFault for unprivileged accesses */
2352 return MEMTX_ERROR;
2353 }
2354
2355 switch (offset) {
2356 case 0x100 ... 0x13f: /* NVIC Set enable */
2357 offset += 0x80;
2358 setval = 1;
2359 /* fall through */
2360 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2361 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2362
2363 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2364 if (value & (1 << i) &&
2365 (attrs.secure || s->itns[startvec + i])) {
2366 s->vectors[startvec + i].enabled = setval;
2367 }
2368 }
2369 nvic_irq_update(s);
2370 goto exit_ok;
2371 case 0x200 ... 0x23f: /* NVIC Set pend */
2372 /* the special logic in armv7m_nvic_set_pending()
2373 * is not needed since IRQs are never escalated
2374 */
2375 offset += 0x80;
2376 setval = 1;
2377 /* fall through */
2378 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2379 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2380
2381 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2382 /*
2383 * Note that if the input line is still held high and the interrupt
2384 * is not active then rule R_CVJS requires that the Pending state
2385 * remains set; in that case we mustn't let it be cleared.
2386 */
2387 if (value & (1 << i) &&
2388 (attrs.secure || s->itns[startvec + i]) &&
2389 !(setval == 0 && s->vectors[startvec + i].level &&
2390 !s->vectors[startvec + i].active)) {
2391 s->vectors[startvec + i].pending = setval;
2392 }
2393 }
2394 nvic_irq_update(s);
2395 goto exit_ok;
2396 case 0x300 ... 0x33f: /* NVIC Active */
2397 goto exit_ok; /* R/O */
2398 case 0x400 ... 0x5ef: /* NVIC Priority */
2399 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2400
2401 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2402 if (attrs.secure || s->itns[startvec + i]) {
2403 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2404 }
2405 }
2406 nvic_irq_update(s);
2407 goto exit_ok;
2408 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2409 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2410 goto exit_ok;
2411 }
2412 /* fall through */
2413 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2414 for (i = 0; i < size; i++) {
2415 unsigned hdlidx = (offset - 0xd14) + i;
2416 int newprio = extract32(value, i * 8, 8);
2417 int sbank = shpr_bank(s, hdlidx, attrs);
2418
2419 if (sbank < 0) {
2420 continue;
2421 }
2422 set_prio(s, hdlidx, sbank, newprio);
2423 }
2424 nvic_irq_update(s);
2425 goto exit_ok;
2426 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2427 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2428 goto exit_ok;
2429 }
2430 /* All bits are W1C, so construct 32 bit value with 0s in
2431 * the parts not written by the access size
2432 */
2433 value <<= ((offset - 0xd28) * 8);
2434
2435 if (!attrs.secure &&
2436 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2437 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2438 value &= ~R_V7M_CFSR_BFSR_MASK;
2439 }
2440
2441 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2442 if (attrs.secure) {
2443 /* The BFSR bits [15:8] are shared between security states
2444 * and we store them in the NS copy.
2445 */
2446 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2447 }
2448 goto exit_ok;
2449 }
2450 if (size == 4) {
2451 nvic_writel(s, offset, value, attrs);
2452 goto exit_ok;
2453 }
2454 qemu_log_mask(LOG_GUEST_ERROR,
2455 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2456 /* This is UNPREDICTABLE; treat as RAZ/WI */
2457
2458 exit_ok:
2459 if (tcg_enabled()) {
2460 /* Ensure any changes made are reflected in the cached hflags. */
2461 arm_rebuild_hflags(&s->cpu->env);
2462 }
2463 return MEMTX_OK;
2464 }
2465
2466 static const MemoryRegionOps nvic_sysreg_ops = {
2467 .read_with_attrs = nvic_sysreg_read,
2468 .write_with_attrs = nvic_sysreg_write,
2469 .endianness = DEVICE_NATIVE_ENDIAN,
2470 };
2471
nvic_post_load(void * opaque,int version_id)2472 static int nvic_post_load(void *opaque, int version_id)
2473 {
2474 NVICState *s = opaque;
2475 unsigned i;
2476 int resetprio;
2477
2478 /* Check for out of range priority settings */
2479 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2480
2481 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2482 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2483 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2484 return 1;
2485 }
2486 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2487 if (s->vectors[i].prio & ~0xff) {
2488 return 1;
2489 }
2490 }
2491
2492 nvic_recompute_state(s);
2493
2494 return 0;
2495 }
2496
2497 static const VMStateDescription vmstate_VecInfo = {
2498 .name = "armv7m_nvic_info",
2499 .version_id = 1,
2500 .minimum_version_id = 1,
2501 .fields = (const VMStateField[]) {
2502 VMSTATE_INT16(prio, VecInfo),
2503 VMSTATE_UINT8(enabled, VecInfo),
2504 VMSTATE_UINT8(pending, VecInfo),
2505 VMSTATE_UINT8(active, VecInfo),
2506 VMSTATE_UINT8(level, VecInfo),
2507 VMSTATE_END_OF_LIST()
2508 }
2509 };
2510
nvic_security_needed(void * opaque)2511 static bool nvic_security_needed(void *opaque)
2512 {
2513 NVICState *s = opaque;
2514
2515 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2516 }
2517
nvic_security_post_load(void * opaque,int version_id)2518 static int nvic_security_post_load(void *opaque, int version_id)
2519 {
2520 NVICState *s = opaque;
2521 int i;
2522
2523 /* Check for out of range priority settings */
2524 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2525 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2526 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2527 * if the CPU state has been migrated yet; a mismatch won't
2528 * cause the emulation to blow up, though.
2529 */
2530 return 1;
2531 }
2532 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2533 if (s->sec_vectors[i].prio & ~0xff) {
2534 return 1;
2535 }
2536 }
2537 return 0;
2538 }
2539
2540 static const VMStateDescription vmstate_nvic_security = {
2541 .name = "armv7m_nvic/m-security",
2542 .version_id = 1,
2543 .minimum_version_id = 1,
2544 .needed = nvic_security_needed,
2545 .post_load = &nvic_security_post_load,
2546 .fields = (const VMStateField[]) {
2547 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2548 vmstate_VecInfo, VecInfo),
2549 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2550 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2551 VMSTATE_END_OF_LIST()
2552 }
2553 };
2554
2555 static const VMStateDescription vmstate_nvic = {
2556 .name = "armv7m_nvic",
2557 .version_id = 4,
2558 .minimum_version_id = 4,
2559 .post_load = &nvic_post_load,
2560 .fields = (const VMStateField[]) {
2561 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2562 vmstate_VecInfo, VecInfo),
2563 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2564 VMSTATE_END_OF_LIST()
2565 },
2566 .subsections = (const VMStateDescription * const []) {
2567 &vmstate_nvic_security,
2568 NULL
2569 }
2570 };
2571
2572 static Property props_nvic[] = {
2573 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2574 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2575 /*
2576 * Number of the maximum priority bits that can be used. 0 means
2577 * to use a reasonable default.
2578 */
2579 DEFINE_PROP_UINT8("num-prio-bits", NVICState, num_prio_bits, 0),
2580 DEFINE_PROP_END_OF_LIST()
2581 };
2582
armv7m_nvic_reset(DeviceState * dev)2583 static void armv7m_nvic_reset(DeviceState *dev)
2584 {
2585 int resetprio;
2586 NVICState *s = NVIC(dev);
2587
2588 memset(s->vectors, 0, sizeof(s->vectors));
2589 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2590 s->prigroup[M_REG_NS] = 0;
2591 s->prigroup[M_REG_S] = 0;
2592
2593 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2594 /* MEM, BUS, and USAGE are enabled through
2595 * the System Handler Control register
2596 */
2597 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2598 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2599 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2600
2601 /* DebugMonitor is enabled via DEMCR.MON_EN */
2602 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2603
2604 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2605 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2606 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2607 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2608
2609 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2610 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2611 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2612 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2613 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2614
2615 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2616 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2617 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2618 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2619 } else {
2620 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2621 }
2622
2623 /* Strictly speaking the reset handler should be enabled.
2624 * However, we don't simulate soft resets through the NVIC,
2625 * and the reset vector should never be pended.
2626 * So we leave it disabled to catch logic errors.
2627 */
2628
2629 s->exception_prio = NVIC_NOEXC_PRIO;
2630 s->vectpending = 0;
2631 s->vectpending_is_s_banked = false;
2632 s->vectpending_prio = NVIC_NOEXC_PRIO;
2633
2634 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2635 memset(s->itns, 0, sizeof(s->itns));
2636 } else {
2637 /* This state is constant and not guest accessible in a non-security
2638 * NVIC; we set the bits to true to avoid having to do a feature
2639 * bit check in the NVIC enable/pend/etc register accessors.
2640 */
2641 int i;
2642
2643 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2644 s->itns[i] = true;
2645 }
2646 }
2647
2648 if (tcg_enabled()) {
2649 /*
2650 * We updated state that affects the CPU's MMUidx and thus its
2651 * hflags; and we can't guarantee that we run before the CPU
2652 * reset function.
2653 */
2654 arm_rebuild_hflags(&s->cpu->env);
2655 }
2656 }
2657
nvic_systick_trigger(void * opaque,int n,int level)2658 static void nvic_systick_trigger(void *opaque, int n, int level)
2659 {
2660 NVICState *s = opaque;
2661
2662 if (level) {
2663 /* SysTick just asked us to pend its exception.
2664 * (This is different from an external interrupt line's
2665 * behaviour.)
2666 * n == 0 : NonSecure systick
2667 * n == 1 : Secure systick
2668 */
2669 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2670 }
2671 }
2672
armv7m_nvic_realize(DeviceState * dev,Error ** errp)2673 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2674 {
2675 NVICState *s = NVIC(dev);
2676
2677 /* The armv7m container object will have set our CPU pointer */
2678 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2679 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2680 return;
2681 }
2682
2683 if (s->num_irq > NVIC_MAX_IRQ) {
2684 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2685 return;
2686 }
2687
2688 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2689
2690 /* include space for internal exception vectors */
2691 s->num_irq += NVIC_FIRST_IRQ;
2692
2693 if (s->num_prio_bits == 0) {
2694 /*
2695 * If left unspecified, use 2 bits by default on Cortex-M0/M0+/M1
2696 * and 8 bits otherwise.
2697 */
2698 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2699 } else {
2700 uint8_t min_prio_bits =
2701 arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 3 : 2;
2702 if (s->num_prio_bits < min_prio_bits || s->num_prio_bits > 8) {
2703 error_setg(errp,
2704 "num-prio-bits %d is outside "
2705 "NVIC acceptable range [%d-8]",
2706 s->num_prio_bits, min_prio_bits);
2707 return;
2708 }
2709 }
2710
2711 /*
2712 * This device provides a single memory region which covers the
2713 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
2714 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
2715 */
2716 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2717 "nvic_sysregs", 0x1000);
2718 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
2719 }
2720
armv7m_nvic_instance_init(Object * obj)2721 static void armv7m_nvic_instance_init(Object *obj)
2722 {
2723 DeviceState *dev = DEVICE(obj);
2724 NVICState *nvic = NVIC(obj);
2725 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2726
2727 sysbus_init_irq(sbd, &nvic->excpout);
2728 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2729 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2730 M_REG_NUM_BANKS);
2731 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2732 }
2733
armv7m_nvic_class_init(ObjectClass * klass,void * data)2734 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2735 {
2736 DeviceClass *dc = DEVICE_CLASS(klass);
2737
2738 dc->vmsd = &vmstate_nvic;
2739 device_class_set_props(dc, props_nvic);
2740 device_class_set_legacy_reset(dc, armv7m_nvic_reset);
2741 dc->realize = armv7m_nvic_realize;
2742 }
2743
2744 static const TypeInfo armv7m_nvic_info = {
2745 .name = TYPE_NVIC,
2746 .parent = TYPE_SYS_BUS_DEVICE,
2747 .instance_init = armv7m_nvic_instance_init,
2748 .instance_size = sizeof(NVICState),
2749 .class_init = armv7m_nvic_class_init,
2750 .class_size = sizeof(SysBusDeviceClass),
2751 };
2752
armv7m_nvic_register_types(void)2753 static void armv7m_nvic_register_types(void)
2754 {
2755 type_register_static(&armv7m_nvic_info);
2756 }
2757
2758 type_init(armv7m_nvic_register_types)
2759