1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165 }
166
free_devices(struct list_head * devices,struct mapped_device * md)167 static void free_devices(struct list_head *devices, struct mapped_device *md)
168 {
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179 }
180
181 static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
dm_table_destroy(struct dm_table * t)183 void dm_table_destroy(struct dm_table *t)
184 {
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212 }
213
214 /*
215 * See if we've already got a device in the list.
216 */
find_device(struct list_head * l,dev_t dev)217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218 {
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226 }
227
228 /*
229 * If possible, this checks an area of a destination device is invalid.
230 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233 {
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305 }
306
307 /*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315 {
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330 }
331
332 /*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341 {
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358 #ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361 #endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394 out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399 unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402 }
403 EXPORT_SYMBOL(dm_get_device);
404
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407 {
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429 }
430
431 /*
432 * Decrement a device's use count and remove it if necessary.
433 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)434 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435 {
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460 unlock_ret:
461 up_write(&t->devices_lock);
462 }
463 EXPORT_SYMBOL(dm_put_device);
464
465 /*
466 * Checks to see if the target joins onto the end of the table.
467 */
adjoin(struct dm_table * t,struct dm_target * ti)468 static int adjoin(struct dm_table *t, struct dm_target *ti)
469 {
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477 }
478
479 /*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
realloc_argv(unsigned int * size,char ** old_argv)489 static char **realloc_argv(unsigned int *size, char **old_argv)
490 {
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv) {
504 if (old_argv)
505 memcpy(argv, old_argv, *size * sizeof(*argv));
506 *size = new_size;
507 }
508
509 kfree(old_argv);
510 return argv;
511 }
512
513 /*
514 * Destructively splits up the argument list to pass to ctr.
515 */
dm_split_args(int * argc,char *** argvp,char * input)516 int dm_split_args(int *argc, char ***argvp, char *input)
517 {
518 char *start, *end = input, *out, **argv = NULL;
519 unsigned int array_size = 0;
520
521 *argc = 0;
522
523 if (!input) {
524 *argvp = NULL;
525 return 0;
526 }
527
528 argv = realloc_argv(&array_size, argv);
529 if (!argv)
530 return -ENOMEM;
531
532 while (1) {
533 /* Skip whitespace */
534 start = skip_spaces(end);
535
536 if (!*start)
537 break; /* success, we hit the end */
538
539 /* 'out' is used to remove any back-quotes */
540 end = out = start;
541 while (*end) {
542 /* Everything apart from '\0' can be quoted */
543 if (*end == '\\' && *(end + 1)) {
544 *out++ = *(end + 1);
545 end += 2;
546 continue;
547 }
548
549 if (isspace(*end))
550 break; /* end of token */
551
552 *out++ = *end++;
553 }
554
555 /* have we already filled the array ? */
556 if ((*argc + 1) > array_size) {
557 argv = realloc_argv(&array_size, argv);
558 if (!argv)
559 return -ENOMEM;
560 }
561
562 /* we know this is whitespace */
563 if (*end)
564 end++;
565
566 /* terminate the string and put it in the array */
567 *out = '\0';
568 argv[*argc] = start;
569 (*argc)++;
570 }
571
572 *argvp = argv;
573 return 0;
574 }
575
576 /*
577 * Impose necessary and sufficient conditions on a devices's table such
578 * that any incoming bio which respects its logical_block_size can be
579 * processed successfully. If it falls across the boundary between
580 * two or more targets, the size of each piece it gets split into must
581 * be compatible with the logical_block_size of the target processing it.
582 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)583 static int validate_hardware_logical_block_alignment(struct dm_table *t,
584 struct queue_limits *limits)
585 {
586 /*
587 * This function uses arithmetic modulo the logical_block_size
588 * (in units of 512-byte sectors).
589 */
590 unsigned short device_logical_block_size_sects =
591 limits->logical_block_size >> SECTOR_SHIFT;
592
593 /*
594 * Offset of the start of the next table entry, mod logical_block_size.
595 */
596 unsigned short next_target_start = 0;
597
598 /*
599 * Given an aligned bio that extends beyond the end of a
600 * target, how many sectors must the next target handle?
601 */
602 unsigned short remaining = 0;
603
604 struct dm_target *ti;
605 struct queue_limits ti_limits;
606 unsigned int i;
607
608 /*
609 * Check each entry in the table in turn.
610 */
611 for (i = 0; i < t->num_targets; i++) {
612 ti = dm_table_get_target(t, i);
613
614 blk_set_stacking_limits(&ti_limits);
615
616 /* combine all target devices' limits */
617 if (ti->type->iterate_devices)
618 ti->type->iterate_devices(ti, dm_set_device_limits,
619 &ti_limits);
620
621 /*
622 * If the remaining sectors fall entirely within this
623 * table entry are they compatible with its logical_block_size?
624 */
625 if (remaining < ti->len &&
626 remaining & ((ti_limits.logical_block_size >>
627 SECTOR_SHIFT) - 1))
628 break; /* Error */
629
630 next_target_start =
631 (unsigned short) ((next_target_start + ti->len) &
632 (device_logical_block_size_sects - 1));
633 remaining = next_target_start ?
634 device_logical_block_size_sects - next_target_start : 0;
635 }
636
637 if (remaining) {
638 DMERR("%s: table line %u (start sect %llu len %llu) "
639 "not aligned to h/w logical block size %u",
640 dm_device_name(t->md), i,
641 (unsigned long long) ti->begin,
642 (unsigned long long) ti->len,
643 limits->logical_block_size);
644 return -EINVAL;
645 }
646
647 return 0;
648 }
649
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)650 int dm_table_add_target(struct dm_table *t, const char *type,
651 sector_t start, sector_t len, char *params)
652 {
653 int r = -EINVAL, argc;
654 char **argv;
655 struct dm_target *ti;
656
657 if (t->singleton) {
658 DMERR("%s: target type %s must appear alone in table",
659 dm_device_name(t->md), t->targets->type->name);
660 return -EINVAL;
661 }
662
663 BUG_ON(t->num_targets >= t->num_allocated);
664
665 ti = t->targets + t->num_targets;
666 memset(ti, 0, sizeof(*ti));
667
668 if (!len) {
669 DMERR("%s: zero-length target", dm_device_name(t->md));
670 return -EINVAL;
671 }
672 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) {
673 DMERR("%s: too large device", dm_device_name(t->md));
674 return -EINVAL;
675 }
676
677 ti->type = dm_get_target_type(type);
678 if (!ti->type) {
679 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
680 return -EINVAL;
681 }
682
683 if (dm_target_needs_singleton(ti->type)) {
684 if (t->num_targets) {
685 ti->error = "singleton target type must appear alone in table";
686 goto bad;
687 }
688 t->singleton = true;
689 }
690
691 if (dm_target_always_writeable(ti->type) &&
692 !(t->mode & BLK_OPEN_WRITE)) {
693 ti->error = "target type may not be included in a read-only table";
694 goto bad;
695 }
696
697 if (t->immutable_target_type) {
698 if (t->immutable_target_type != ti->type) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 } else if (dm_target_is_immutable(ti->type)) {
703 if (t->num_targets) {
704 ti->error = "immutable target type cannot be mixed with other target types";
705 goto bad;
706 }
707 t->immutable_target_type = ti->type;
708 }
709
710 if (dm_target_has_integrity(ti->type))
711 t->integrity_added = 1;
712
713 ti->table = t;
714 ti->begin = start;
715 ti->len = len;
716 ti->error = "Unknown error";
717
718 /*
719 * Does this target adjoin the previous one ?
720 */
721 if (!adjoin(t, ti)) {
722 ti->error = "Gap in table";
723 goto bad;
724 }
725
726 r = dm_split_args(&argc, &argv, params);
727 if (r) {
728 ti->error = "couldn't split parameters";
729 goto bad;
730 }
731
732 r = ti->type->ctr(ti, argc, argv);
733 kfree(argv);
734 if (r)
735 goto bad;
736
737 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
738
739 if (!ti->num_discard_bios && ti->discards_supported)
740 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
741 dm_device_name(t->md), type);
742
743 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
744 static_branch_enable(&swap_bios_enabled);
745
746 return 0;
747
748 bad:
749 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
750 dm_put_target_type(ti->type);
751 return r;
752 }
753
754 /*
755 * Target argument parsing helpers.
756 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)757 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
758 unsigned int *value, char **error, unsigned int grouped)
759 {
760 const char *arg_str = dm_shift_arg(arg_set);
761 char dummy;
762
763 if (!arg_str ||
764 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
765 (*value < arg->min) ||
766 (*value > arg->max) ||
767 (grouped && arg_set->argc < *value)) {
768 *error = arg->error;
769 return -EINVAL;
770 }
771
772 return 0;
773 }
774
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)775 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
776 unsigned int *value, char **error)
777 {
778 return validate_next_arg(arg, arg_set, value, error, 0);
779 }
780 EXPORT_SYMBOL(dm_read_arg);
781
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)782 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
783 unsigned int *value, char **error)
784 {
785 return validate_next_arg(arg, arg_set, value, error, 1);
786 }
787 EXPORT_SYMBOL(dm_read_arg_group);
788
dm_shift_arg(struct dm_arg_set * as)789 const char *dm_shift_arg(struct dm_arg_set *as)
790 {
791 char *r;
792
793 if (as->argc) {
794 as->argc--;
795 r = *as->argv;
796 as->argv++;
797 return r;
798 }
799
800 return NULL;
801 }
802 EXPORT_SYMBOL(dm_shift_arg);
803
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)804 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
805 {
806 BUG_ON(as->argc < num_args);
807 as->argc -= num_args;
808 as->argv += num_args;
809 }
810 EXPORT_SYMBOL(dm_consume_args);
811
__table_type_bio_based(enum dm_queue_mode table_type)812 static bool __table_type_bio_based(enum dm_queue_mode table_type)
813 {
814 return (table_type == DM_TYPE_BIO_BASED ||
815 table_type == DM_TYPE_DAX_BIO_BASED);
816 }
817
__table_type_request_based(enum dm_queue_mode table_type)818 static bool __table_type_request_based(enum dm_queue_mode table_type)
819 {
820 return table_type == DM_TYPE_REQUEST_BASED;
821 }
822
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)823 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
824 {
825 t->type = type;
826 }
827 EXPORT_SYMBOL_GPL(dm_table_set_type);
828
829 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)830 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
831 sector_t start, sector_t len, void *data)
832 {
833 if (dev->dax_dev)
834 return false;
835
836 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
837 return true;
838 }
839
840 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)841 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
842 sector_t start, sector_t len, void *data)
843 {
844 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
845 }
846
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)847 static bool dm_table_supports_dax(struct dm_table *t,
848 iterate_devices_callout_fn iterate_fn)
849 {
850 /* Ensure that all targets support DAX. */
851 for (unsigned int i = 0; i < t->num_targets; i++) {
852 struct dm_target *ti = dm_table_get_target(t, i);
853
854 if (!ti->type->direct_access)
855 return false;
856
857 if (!ti->type->iterate_devices ||
858 ti->type->iterate_devices(ti, iterate_fn, NULL))
859 return false;
860 }
861
862 return true;
863 }
864
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)865 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867 {
868 struct block_device *bdev = dev->bdev;
869 struct request_queue *q = bdev_get_queue(bdev);
870
871 /* request-based cannot stack on partitions! */
872 if (bdev_is_partition(bdev))
873 return false;
874
875 return queue_is_mq(q);
876 }
877
dm_table_determine_type(struct dm_table * t)878 static int dm_table_determine_type(struct dm_table *t)
879 {
880 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
881 struct dm_target *ti;
882 struct list_head *devices = dm_table_get_devices(t);
883 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
884
885 if (t->type != DM_TYPE_NONE) {
886 /* target already set the table's type */
887 if (t->type == DM_TYPE_BIO_BASED) {
888 /* possibly upgrade to a variant of bio-based */
889 goto verify_bio_based;
890 }
891 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
892 goto verify_rq_based;
893 }
894
895 for (unsigned int i = 0; i < t->num_targets; i++) {
896 ti = dm_table_get_target(t, i);
897 if (dm_target_hybrid(ti))
898 hybrid = 1;
899 else if (dm_target_request_based(ti))
900 request_based = 1;
901 else
902 bio_based = 1;
903
904 if (bio_based && request_based) {
905 DMERR("Inconsistent table: different target types can't be mixed up");
906 return -EINVAL;
907 }
908 }
909
910 if (hybrid && !bio_based && !request_based) {
911 /*
912 * The targets can work either way.
913 * Determine the type from the live device.
914 * Default to bio-based if device is new.
915 */
916 if (__table_type_request_based(live_md_type))
917 request_based = 1;
918 else
919 bio_based = 1;
920 }
921
922 if (bio_based) {
923 verify_bio_based:
924 /* We must use this table as bio-based */
925 t->type = DM_TYPE_BIO_BASED;
926 if (dm_table_supports_dax(t, device_not_dax_capable) ||
927 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
928 t->type = DM_TYPE_DAX_BIO_BASED;
929 }
930 return 0;
931 }
932
933 BUG_ON(!request_based); /* No targets in this table */
934
935 t->type = DM_TYPE_REQUEST_BASED;
936
937 verify_rq_based:
938 /*
939 * Request-based dm supports only tables that have a single target now.
940 * To support multiple targets, request splitting support is needed,
941 * and that needs lots of changes in the block-layer.
942 * (e.g. request completion process for partial completion.)
943 */
944 if (t->num_targets > 1) {
945 DMERR("request-based DM doesn't support multiple targets");
946 return -EINVAL;
947 }
948
949 if (list_empty(devices)) {
950 int srcu_idx;
951 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
952
953 /* inherit live table's type */
954 if (live_table)
955 t->type = live_table->type;
956 dm_put_live_table(t->md, srcu_idx);
957 return 0;
958 }
959
960 ti = dm_table_get_immutable_target(t);
961 if (!ti) {
962 DMERR("table load rejected: immutable target is required");
963 return -EINVAL;
964 } else if (ti->max_io_len) {
965 DMERR("table load rejected: immutable target that splits IO is not supported");
966 return -EINVAL;
967 }
968
969 /* Non-request-stackable devices can't be used for request-based dm */
970 if (!ti->type->iterate_devices ||
971 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
972 DMERR("table load rejected: including non-request-stackable devices");
973 return -EINVAL;
974 }
975
976 return 0;
977 }
978
dm_table_get_type(struct dm_table * t)979 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
980 {
981 return t->type;
982 }
983
dm_table_get_immutable_target_type(struct dm_table * t)984 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
985 {
986 return t->immutable_target_type;
987 }
988
dm_table_get_immutable_target(struct dm_table * t)989 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
990 {
991 /* Immutable target is implicitly a singleton */
992 if (t->num_targets > 1 ||
993 !dm_target_is_immutable(t->targets[0].type))
994 return NULL;
995
996 return t->targets;
997 }
998
dm_table_get_wildcard_target(struct dm_table * t)999 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1000 {
1001 for (unsigned int i = 0; i < t->num_targets; i++) {
1002 struct dm_target *ti = dm_table_get_target(t, i);
1003
1004 if (dm_target_is_wildcard(ti->type))
1005 return ti;
1006 }
1007
1008 return NULL;
1009 }
1010
dm_table_bio_based(struct dm_table * t)1011 bool dm_table_bio_based(struct dm_table *t)
1012 {
1013 return __table_type_bio_based(dm_table_get_type(t));
1014 }
1015
dm_table_request_based(struct dm_table * t)1016 bool dm_table_request_based(struct dm_table *t)
1017 {
1018 return __table_type_request_based(dm_table_get_type(t));
1019 }
1020
1021 static bool dm_table_supports_poll(struct dm_table *t);
1022
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1023 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1024 {
1025 enum dm_queue_mode type = dm_table_get_type(t);
1026 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1027 unsigned int min_pool_size = 0, pool_size;
1028 struct dm_md_mempools *pools;
1029
1030 if (unlikely(type == DM_TYPE_NONE)) {
1031 DMERR("no table type is set, can't allocate mempools");
1032 return -EINVAL;
1033 }
1034
1035 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1036 if (!pools)
1037 return -ENOMEM;
1038
1039 if (type == DM_TYPE_REQUEST_BASED) {
1040 pool_size = dm_get_reserved_rq_based_ios();
1041 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1042 goto init_bs;
1043 }
1044
1045 for (unsigned int i = 0; i < t->num_targets; i++) {
1046 struct dm_target *ti = dm_table_get_target(t, i);
1047
1048 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1049 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1050 }
1051 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1052 front_pad = roundup(per_io_data_size,
1053 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1054
1055 io_front_pad = roundup(per_io_data_size,
1056 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1057 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1058 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1059 goto out_free_pools;
1060 if (t->integrity_supported &&
1061 bioset_integrity_create(&pools->io_bs, pool_size))
1062 goto out_free_pools;
1063 init_bs:
1064 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1065 goto out_free_pools;
1066 if (t->integrity_supported &&
1067 bioset_integrity_create(&pools->bs, pool_size))
1068 goto out_free_pools;
1069
1070 t->mempools = pools;
1071 return 0;
1072
1073 out_free_pools:
1074 dm_free_md_mempools(pools);
1075 return -ENOMEM;
1076 }
1077
setup_indexes(struct dm_table * t)1078 static int setup_indexes(struct dm_table *t)
1079 {
1080 int i;
1081 unsigned int total = 0;
1082 sector_t *indexes;
1083
1084 /* allocate the space for *all* the indexes */
1085 for (i = t->depth - 2; i >= 0; i--) {
1086 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1087 total += t->counts[i];
1088 }
1089
1090 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1091 if (!indexes)
1092 return -ENOMEM;
1093
1094 /* set up internal nodes, bottom-up */
1095 for (i = t->depth - 2; i >= 0; i--) {
1096 t->index[i] = indexes;
1097 indexes += (KEYS_PER_NODE * t->counts[i]);
1098 setup_btree_index(i, t);
1099 }
1100
1101 return 0;
1102 }
1103
1104 /*
1105 * Builds the btree to index the map.
1106 */
dm_table_build_index(struct dm_table * t)1107 static int dm_table_build_index(struct dm_table *t)
1108 {
1109 int r = 0;
1110 unsigned int leaf_nodes;
1111
1112 /* how many indexes will the btree have ? */
1113 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1114 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1115
1116 /* leaf layer has already been set up */
1117 t->counts[t->depth - 1] = leaf_nodes;
1118 t->index[t->depth - 1] = t->highs;
1119
1120 if (t->depth >= 2)
1121 r = setup_indexes(t);
1122
1123 return r;
1124 }
1125
integrity_profile_exists(struct gendisk * disk)1126 static bool integrity_profile_exists(struct gendisk *disk)
1127 {
1128 return !!blk_get_integrity(disk);
1129 }
1130
1131 /*
1132 * Get a disk whose integrity profile reflects the table's profile.
1133 * Returns NULL if integrity support was inconsistent or unavailable.
1134 */
dm_table_get_integrity_disk(struct dm_table * t)1135 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1136 {
1137 struct list_head *devices = dm_table_get_devices(t);
1138 struct dm_dev_internal *dd = NULL;
1139 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1140
1141 for (unsigned int i = 0; i < t->num_targets; i++) {
1142 struct dm_target *ti = dm_table_get_target(t, i);
1143
1144 if (!dm_target_passes_integrity(ti->type))
1145 goto no_integrity;
1146 }
1147
1148 list_for_each_entry(dd, devices, list) {
1149 template_disk = dd->dm_dev->bdev->bd_disk;
1150 if (!integrity_profile_exists(template_disk))
1151 goto no_integrity;
1152 else if (prev_disk &&
1153 blk_integrity_compare(prev_disk, template_disk) < 0)
1154 goto no_integrity;
1155 prev_disk = template_disk;
1156 }
1157
1158 return template_disk;
1159
1160 no_integrity:
1161 if (prev_disk)
1162 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1163 dm_device_name(t->md),
1164 prev_disk->disk_name,
1165 template_disk->disk_name);
1166 return NULL;
1167 }
1168
1169 /*
1170 * Register the mapped device for blk_integrity support if the
1171 * underlying devices have an integrity profile. But all devices may
1172 * not have matching profiles (checking all devices isn't reliable
1173 * during table load because this table may use other DM device(s) which
1174 * must be resumed before they will have an initialized integity
1175 * profile). Consequently, stacked DM devices force a 2 stage integrity
1176 * profile validation: First pass during table load, final pass during
1177 * resume.
1178 */
dm_table_register_integrity(struct dm_table * t)1179 static int dm_table_register_integrity(struct dm_table *t)
1180 {
1181 struct mapped_device *md = t->md;
1182 struct gendisk *template_disk = NULL;
1183
1184 /* If target handles integrity itself do not register it here. */
1185 if (t->integrity_added)
1186 return 0;
1187
1188 template_disk = dm_table_get_integrity_disk(t);
1189 if (!template_disk)
1190 return 0;
1191
1192 if (!integrity_profile_exists(dm_disk(md))) {
1193 t->integrity_supported = true;
1194 /*
1195 * Register integrity profile during table load; we can do
1196 * this because the final profile must match during resume.
1197 */
1198 blk_integrity_register(dm_disk(md),
1199 blk_get_integrity(template_disk));
1200 return 0;
1201 }
1202
1203 /*
1204 * If DM device already has an initialized integrity
1205 * profile the new profile should not conflict.
1206 */
1207 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1208 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1209 dm_device_name(t->md),
1210 template_disk->disk_name);
1211 return 1;
1212 }
1213
1214 /* Preserve existing integrity profile */
1215 t->integrity_supported = true;
1216 return 0;
1217 }
1218
1219 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1220
1221 struct dm_crypto_profile {
1222 struct blk_crypto_profile profile;
1223 struct mapped_device *md;
1224 };
1225
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1226 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1227 sector_t start, sector_t len, void *data)
1228 {
1229 const struct blk_crypto_key *key = data;
1230
1231 blk_crypto_evict_key(dev->bdev, key);
1232 return 0;
1233 }
1234
1235 /*
1236 * When an inline encryption key is evicted from a device-mapper device, evict
1237 * it from all the underlying devices.
1238 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1239 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1240 const struct blk_crypto_key *key, unsigned int slot)
1241 {
1242 struct mapped_device *md =
1243 container_of(profile, struct dm_crypto_profile, profile)->md;
1244 struct dm_table *t;
1245 int srcu_idx;
1246
1247 t = dm_get_live_table(md, &srcu_idx);
1248 if (!t)
1249 goto put_live_table;
1250
1251 for (unsigned int i = 0; i < t->num_targets; i++) {
1252 struct dm_target *ti = dm_table_get_target(t, i);
1253
1254 if (!ti->type->iterate_devices)
1255 continue;
1256 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1257 (void *)key);
1258 }
1259
1260 put_live_table:
1261 dm_put_live_table(md, srcu_idx);
1262 return 0;
1263 }
1264
1265 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1266 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1267 sector_t start, sector_t len, void *data)
1268 {
1269 struct blk_crypto_profile *parent = data;
1270 struct blk_crypto_profile *child =
1271 bdev_get_queue(dev->bdev)->crypto_profile;
1272
1273 blk_crypto_intersect_capabilities(parent, child);
1274 return 0;
1275 }
1276
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1277 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1278 {
1279 struct dm_crypto_profile *dmcp = container_of(profile,
1280 struct dm_crypto_profile,
1281 profile);
1282
1283 if (!profile)
1284 return;
1285
1286 blk_crypto_profile_destroy(profile);
1287 kfree(dmcp);
1288 }
1289
dm_table_destroy_crypto_profile(struct dm_table * t)1290 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1291 {
1292 dm_destroy_crypto_profile(t->crypto_profile);
1293 t->crypto_profile = NULL;
1294 }
1295
1296 /*
1297 * Constructs and initializes t->crypto_profile with a crypto profile that
1298 * represents the common set of crypto capabilities of the devices described by
1299 * the dm_table. However, if the constructed crypto profile doesn't support all
1300 * crypto capabilities that are supported by the current mapped_device, it
1301 * returns an error instead, since we don't support removing crypto capabilities
1302 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1303 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1304 */
dm_table_construct_crypto_profile(struct dm_table * t)1305 static int dm_table_construct_crypto_profile(struct dm_table *t)
1306 {
1307 struct dm_crypto_profile *dmcp;
1308 struct blk_crypto_profile *profile;
1309 unsigned int i;
1310 bool empty_profile = true;
1311
1312 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1313 if (!dmcp)
1314 return -ENOMEM;
1315 dmcp->md = t->md;
1316
1317 profile = &dmcp->profile;
1318 blk_crypto_profile_init(profile, 0);
1319 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1320 profile->max_dun_bytes_supported = UINT_MAX;
1321 memset(profile->modes_supported, 0xFF,
1322 sizeof(profile->modes_supported));
1323
1324 for (i = 0; i < t->num_targets; i++) {
1325 struct dm_target *ti = dm_table_get_target(t, i);
1326
1327 if (!dm_target_passes_crypto(ti->type)) {
1328 blk_crypto_intersect_capabilities(profile, NULL);
1329 break;
1330 }
1331 if (!ti->type->iterate_devices)
1332 continue;
1333 ti->type->iterate_devices(ti,
1334 device_intersect_crypto_capabilities,
1335 profile);
1336 }
1337
1338 if (t->md->queue &&
1339 !blk_crypto_has_capabilities(profile,
1340 t->md->queue->crypto_profile)) {
1341 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1342 dm_destroy_crypto_profile(profile);
1343 return -EINVAL;
1344 }
1345
1346 /*
1347 * If the new profile doesn't actually support any crypto capabilities,
1348 * we may as well represent it with a NULL profile.
1349 */
1350 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1351 if (profile->modes_supported[i]) {
1352 empty_profile = false;
1353 break;
1354 }
1355 }
1356
1357 if (empty_profile) {
1358 dm_destroy_crypto_profile(profile);
1359 profile = NULL;
1360 }
1361
1362 /*
1363 * t->crypto_profile is only set temporarily while the table is being
1364 * set up, and it gets set to NULL after the profile has been
1365 * transferred to the request_queue.
1366 */
1367 t->crypto_profile = profile;
1368
1369 return 0;
1370 }
1371
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1372 static void dm_update_crypto_profile(struct request_queue *q,
1373 struct dm_table *t)
1374 {
1375 if (!t->crypto_profile)
1376 return;
1377
1378 /* Make the crypto profile less restrictive. */
1379 if (!q->crypto_profile) {
1380 blk_crypto_register(t->crypto_profile, q);
1381 } else {
1382 blk_crypto_update_capabilities(q->crypto_profile,
1383 t->crypto_profile);
1384 dm_destroy_crypto_profile(t->crypto_profile);
1385 }
1386 t->crypto_profile = NULL;
1387 }
1388
1389 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1390
dm_table_construct_crypto_profile(struct dm_table * t)1391 static int dm_table_construct_crypto_profile(struct dm_table *t)
1392 {
1393 return 0;
1394 }
1395
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1396 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1397 {
1398 }
1399
dm_table_destroy_crypto_profile(struct dm_table * t)1400 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1401 {
1402 }
1403
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1404 static void dm_update_crypto_profile(struct request_queue *q,
1405 struct dm_table *t)
1406 {
1407 }
1408
1409 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1410
1411 /*
1412 * Prepares the table for use by building the indices,
1413 * setting the type, and allocating mempools.
1414 */
dm_table_complete(struct dm_table * t)1415 int dm_table_complete(struct dm_table *t)
1416 {
1417 int r;
1418
1419 r = dm_table_determine_type(t);
1420 if (r) {
1421 DMERR("unable to determine table type");
1422 return r;
1423 }
1424
1425 r = dm_table_build_index(t);
1426 if (r) {
1427 DMERR("unable to build btrees");
1428 return r;
1429 }
1430
1431 r = dm_table_register_integrity(t);
1432 if (r) {
1433 DMERR("could not register integrity profile.");
1434 return r;
1435 }
1436
1437 r = dm_table_construct_crypto_profile(t);
1438 if (r) {
1439 DMERR("could not construct crypto profile.");
1440 return r;
1441 }
1442
1443 r = dm_table_alloc_md_mempools(t, t->md);
1444 if (r)
1445 DMERR("unable to allocate mempools");
1446
1447 return r;
1448 }
1449
1450 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1451 void dm_table_event_callback(struct dm_table *t,
1452 void (*fn)(void *), void *context)
1453 {
1454 mutex_lock(&_event_lock);
1455 t->event_fn = fn;
1456 t->event_context = context;
1457 mutex_unlock(&_event_lock);
1458 }
1459
dm_table_event(struct dm_table * t)1460 void dm_table_event(struct dm_table *t)
1461 {
1462 mutex_lock(&_event_lock);
1463 if (t->event_fn)
1464 t->event_fn(t->event_context);
1465 mutex_unlock(&_event_lock);
1466 }
1467 EXPORT_SYMBOL(dm_table_event);
1468
dm_table_get_size(struct dm_table * t)1469 inline sector_t dm_table_get_size(struct dm_table *t)
1470 {
1471 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1472 }
1473 EXPORT_SYMBOL(dm_table_get_size);
1474
1475 /*
1476 * Search the btree for the correct target.
1477 *
1478 * Caller should check returned pointer for NULL
1479 * to trap I/O beyond end of device.
1480 */
dm_table_find_target(struct dm_table * t,sector_t sector)1481 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1482 {
1483 unsigned int l, n = 0, k = 0;
1484 sector_t *node;
1485
1486 if (unlikely(sector >= dm_table_get_size(t)))
1487 return NULL;
1488
1489 for (l = 0; l < t->depth; l++) {
1490 n = get_child(n, k);
1491 node = get_node(t, l, n);
1492
1493 for (k = 0; k < KEYS_PER_NODE; k++)
1494 if (node[k] >= sector)
1495 break;
1496 }
1497
1498 return &t->targets[(KEYS_PER_NODE * n) + k];
1499 }
1500
device_not_poll_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1501 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1502 sector_t start, sector_t len, void *data)
1503 {
1504 struct request_queue *q = bdev_get_queue(dev->bdev);
1505
1506 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1507 }
1508
1509 /*
1510 * type->iterate_devices() should be called when the sanity check needs to
1511 * iterate and check all underlying data devices. iterate_devices() will
1512 * iterate all underlying data devices until it encounters a non-zero return
1513 * code, returned by whether the input iterate_devices_callout_fn, or
1514 * iterate_devices() itself internally.
1515 *
1516 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1517 * iterate multiple underlying devices internally, in which case a non-zero
1518 * return code returned by iterate_devices_callout_fn will stop the iteration
1519 * in advance.
1520 *
1521 * Cases requiring _any_ underlying device supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_any_dev_attr(), or call
1523 * it directly. @func should handle semantics of positive examples, e.g.
1524 * capable of something.
1525 *
1526 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1527 * should use the iteration structure like dm_table_supports_nowait() or
1528 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1529 * uses an @anti_func that handle semantics of counter examples, e.g. not
1530 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1531 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1532 static bool dm_table_any_dev_attr(struct dm_table *t,
1533 iterate_devices_callout_fn func, void *data)
1534 {
1535 for (unsigned int i = 0; i < t->num_targets; i++) {
1536 struct dm_target *ti = dm_table_get_target(t, i);
1537
1538 if (ti->type->iterate_devices &&
1539 ti->type->iterate_devices(ti, func, data))
1540 return true;
1541 }
1542
1543 return false;
1544 }
1545
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1546 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1547 sector_t start, sector_t len, void *data)
1548 {
1549 unsigned int *num_devices = data;
1550
1551 (*num_devices)++;
1552
1553 return 0;
1554 }
1555
dm_table_supports_poll(struct dm_table * t)1556 static bool dm_table_supports_poll(struct dm_table *t)
1557 {
1558 for (unsigned int i = 0; i < t->num_targets; i++) {
1559 struct dm_target *ti = dm_table_get_target(t, i);
1560
1561 if (!ti->type->iterate_devices ||
1562 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1563 return false;
1564 }
1565
1566 return true;
1567 }
1568
1569 /*
1570 * Check whether a table has no data devices attached using each
1571 * target's iterate_devices method.
1572 * Returns false if the result is unknown because a target doesn't
1573 * support iterate_devices.
1574 */
dm_table_has_no_data_devices(struct dm_table * t)1575 bool dm_table_has_no_data_devices(struct dm_table *t)
1576 {
1577 for (unsigned int i = 0; i < t->num_targets; i++) {
1578 struct dm_target *ti = dm_table_get_target(t, i);
1579 unsigned int num_devices = 0;
1580
1581 if (!ti->type->iterate_devices)
1582 return false;
1583
1584 ti->type->iterate_devices(ti, count_device, &num_devices);
1585 if (num_devices)
1586 return false;
1587 }
1588
1589 return true;
1590 }
1591
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1592 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1593 sector_t start, sector_t len, void *data)
1594 {
1595 struct request_queue *q = bdev_get_queue(dev->bdev);
1596 enum blk_zoned_model *zoned_model = data;
1597
1598 return blk_queue_zoned_model(q) != *zoned_model;
1599 }
1600
1601 /*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1608 static bool dm_table_supports_zoned_model(struct dm_table *t,
1609 enum blk_zoned_model zoned_model)
1610 {
1611 for (unsigned int i = 0; i < t->num_targets; i++) {
1612 struct dm_target *ti = dm_table_get_target(t, i);
1613
1614 if (dm_target_supports_zoned_hm(ti->type)) {
1615 if (!ti->type->iterate_devices ||
1616 ti->type->iterate_devices(ti, device_not_zoned_model,
1617 &zoned_model))
1618 return false;
1619 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1620 if (zoned_model == BLK_ZONED_HM)
1621 return false;
1622 }
1623 }
1624
1625 return true;
1626 }
1627
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1628 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1629 sector_t start, sector_t len, void *data)
1630 {
1631 unsigned int *zone_sectors = data;
1632
1633 if (!bdev_is_zoned(dev->bdev))
1634 return 0;
1635 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1636 }
1637
1638 /*
1639 * Check consistency of zoned model and zone sectors across all targets. For
1640 * zone sectors, if the destination device is a zoned block device, it shall
1641 * have the specified zone_sectors.
1642 */
validate_hardware_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1643 static int validate_hardware_zoned_model(struct dm_table *t,
1644 enum blk_zoned_model zoned_model,
1645 unsigned int zone_sectors)
1646 {
1647 if (zoned_model == BLK_ZONED_NONE)
1648 return 0;
1649
1650 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1651 DMERR("%s: zoned model is not consistent across all devices",
1652 dm_device_name(t->md));
1653 return -EINVAL;
1654 }
1655
1656 /* Check zone size validity and compatibility */
1657 if (!zone_sectors || !is_power_of_2(zone_sectors))
1658 return -EINVAL;
1659
1660 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1661 DMERR("%s: zone sectors is not consistent across all zoned devices",
1662 dm_device_name(t->md));
1663 return -EINVAL;
1664 }
1665
1666 return 0;
1667 }
1668
1669 /*
1670 * Establish the new table's queue_limits and validate them.
1671 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1672 int dm_calculate_queue_limits(struct dm_table *t,
1673 struct queue_limits *limits)
1674 {
1675 struct queue_limits ti_limits;
1676 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1677 unsigned int zone_sectors = 0;
1678
1679 blk_set_stacking_limits(limits);
1680
1681 for (unsigned int i = 0; i < t->num_targets; i++) {
1682 struct dm_target *ti = dm_table_get_target(t, i);
1683
1684 blk_set_stacking_limits(&ti_limits);
1685
1686 if (!ti->type->iterate_devices) {
1687 /* Set I/O hints portion of queue limits */
1688 if (ti->type->io_hints)
1689 ti->type->io_hints(ti, &ti_limits);
1690 goto combine_limits;
1691 }
1692
1693 /*
1694 * Combine queue limits of all the devices this target uses.
1695 */
1696 ti->type->iterate_devices(ti, dm_set_device_limits,
1697 &ti_limits);
1698
1699 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1700 /*
1701 * After stacking all limits, validate all devices
1702 * in table support this zoned model and zone sectors.
1703 */
1704 zoned_model = ti_limits.zoned;
1705 zone_sectors = ti_limits.chunk_sectors;
1706 }
1707
1708 /* Set I/O hints portion of queue limits */
1709 if (ti->type->io_hints)
1710 ti->type->io_hints(ti, &ti_limits);
1711
1712 /*
1713 * Check each device area is consistent with the target's
1714 * overall queue limits.
1715 */
1716 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1717 &ti_limits))
1718 return -EINVAL;
1719
1720 combine_limits:
1721 /*
1722 * Merge this target's queue limits into the overall limits
1723 * for the table.
1724 */
1725 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1726 DMWARN("%s: adding target device (start sect %llu len %llu) "
1727 "caused an alignment inconsistency",
1728 dm_device_name(t->md),
1729 (unsigned long long) ti->begin,
1730 (unsigned long long) ti->len);
1731 }
1732
1733 /*
1734 * Verify that the zoned model and zone sectors, as determined before
1735 * any .io_hints override, are the same across all devices in the table.
1736 * - this is especially relevant if .io_hints is emulating a disk-managed
1737 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1738 * BUT...
1739 */
1740 if (limits->zoned != BLK_ZONED_NONE) {
1741 /*
1742 * ...IF the above limits stacking determined a zoned model
1743 * validate that all of the table's devices conform to it.
1744 */
1745 zoned_model = limits->zoned;
1746 zone_sectors = limits->chunk_sectors;
1747 }
1748 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1749 return -EINVAL;
1750
1751 return validate_hardware_logical_block_alignment(t, limits);
1752 }
1753
1754 /*
1755 * Verify that all devices have an integrity profile that matches the
1756 * DM device's registered integrity profile. If the profiles don't
1757 * match then unregister the DM device's integrity profile.
1758 */
dm_table_verify_integrity(struct dm_table * t)1759 static void dm_table_verify_integrity(struct dm_table *t)
1760 {
1761 struct gendisk *template_disk = NULL;
1762
1763 if (t->integrity_added)
1764 return;
1765
1766 if (t->integrity_supported) {
1767 /*
1768 * Verify that the original integrity profile
1769 * matches all the devices in this table.
1770 */
1771 template_disk = dm_table_get_integrity_disk(t);
1772 if (template_disk &&
1773 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1774 return;
1775 }
1776
1777 if (integrity_profile_exists(dm_disk(t->md))) {
1778 DMWARN("%s: unable to establish an integrity profile",
1779 dm_device_name(t->md));
1780 blk_integrity_unregister(dm_disk(t->md));
1781 }
1782 }
1783
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1784 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1785 sector_t start, sector_t len, void *data)
1786 {
1787 unsigned long flush = (unsigned long) data;
1788 struct request_queue *q = bdev_get_queue(dev->bdev);
1789
1790 return (q->queue_flags & flush);
1791 }
1792
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1793 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1794 {
1795 /*
1796 * Require at least one underlying device to support flushes.
1797 * t->devices includes internal dm devices such as mirror logs
1798 * so we need to use iterate_devices here, which targets
1799 * supporting flushes must provide.
1800 */
1801 for (unsigned int i = 0; i < t->num_targets; i++) {
1802 struct dm_target *ti = dm_table_get_target(t, i);
1803
1804 if (!ti->num_flush_bios)
1805 continue;
1806
1807 if (ti->flush_supported)
1808 return true;
1809
1810 if (ti->type->iterate_devices &&
1811 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1812 return true;
1813 }
1814
1815 return false;
1816 }
1817
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1818 static int device_dax_write_cache_enabled(struct dm_target *ti,
1819 struct dm_dev *dev, sector_t start,
1820 sector_t len, void *data)
1821 {
1822 struct dax_device *dax_dev = dev->dax_dev;
1823
1824 if (!dax_dev)
1825 return false;
1826
1827 if (dax_write_cache_enabled(dax_dev))
1828 return true;
1829 return false;
1830 }
1831
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1832 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1833 sector_t start, sector_t len, void *data)
1834 {
1835 return !bdev_nonrot(dev->bdev);
1836 }
1837
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1838 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1839 sector_t start, sector_t len, void *data)
1840 {
1841 struct request_queue *q = bdev_get_queue(dev->bdev);
1842
1843 return !blk_queue_add_random(q);
1844 }
1845
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1846 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1847 sector_t start, sector_t len, void *data)
1848 {
1849 struct request_queue *q = bdev_get_queue(dev->bdev);
1850
1851 return !q->limits.max_write_zeroes_sectors;
1852 }
1853
dm_table_supports_write_zeroes(struct dm_table * t)1854 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1855 {
1856 for (unsigned int i = 0; i < t->num_targets; i++) {
1857 struct dm_target *ti = dm_table_get_target(t, i);
1858
1859 if (!ti->num_write_zeroes_bios)
1860 return false;
1861
1862 if (!ti->type->iterate_devices ||
1863 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1864 return false;
1865 }
1866
1867 return true;
1868 }
1869
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1870 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1871 sector_t start, sector_t len, void *data)
1872 {
1873 return !bdev_nowait(dev->bdev);
1874 }
1875
dm_table_supports_nowait(struct dm_table * t)1876 static bool dm_table_supports_nowait(struct dm_table *t)
1877 {
1878 for (unsigned int i = 0; i < t->num_targets; i++) {
1879 struct dm_target *ti = dm_table_get_target(t, i);
1880
1881 if (!dm_target_supports_nowait(ti->type))
1882 return false;
1883
1884 if (!ti->type->iterate_devices ||
1885 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1886 return false;
1887 }
1888
1889 return true;
1890 }
1891
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1892 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1893 sector_t start, sector_t len, void *data)
1894 {
1895 return !bdev_max_discard_sectors(dev->bdev);
1896 }
1897
dm_table_supports_discards(struct dm_table * t)1898 static bool dm_table_supports_discards(struct dm_table *t)
1899 {
1900 for (unsigned int i = 0; i < t->num_targets; i++) {
1901 struct dm_target *ti = dm_table_get_target(t, i);
1902
1903 if (!ti->num_discard_bios)
1904 return false;
1905
1906 /*
1907 * Either the target provides discard support (as implied by setting
1908 * 'discards_supported') or it relies on _all_ data devices having
1909 * discard support.
1910 */
1911 if (!ti->discards_supported &&
1912 (!ti->type->iterate_devices ||
1913 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1914 return false;
1915 }
1916
1917 return true;
1918 }
1919
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1920 static int device_not_secure_erase_capable(struct dm_target *ti,
1921 struct dm_dev *dev, sector_t start,
1922 sector_t len, void *data)
1923 {
1924 return !bdev_max_secure_erase_sectors(dev->bdev);
1925 }
1926
dm_table_supports_secure_erase(struct dm_table * t)1927 static bool dm_table_supports_secure_erase(struct dm_table *t)
1928 {
1929 for (unsigned int i = 0; i < t->num_targets; i++) {
1930 struct dm_target *ti = dm_table_get_target(t, i);
1931
1932 if (!ti->num_secure_erase_bios)
1933 return false;
1934
1935 if (!ti->type->iterate_devices ||
1936 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1937 return false;
1938 }
1939
1940 return true;
1941 }
1942
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1943 static int device_requires_stable_pages(struct dm_target *ti,
1944 struct dm_dev *dev, sector_t start,
1945 sector_t len, void *data)
1946 {
1947 return bdev_stable_writes(dev->bdev);
1948 }
1949
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1950 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1951 struct queue_limits *limits)
1952 {
1953 bool wc = false, fua = false;
1954 int r;
1955
1956 /*
1957 * Copy table's limits to the DM device's request_queue
1958 */
1959 q->limits = *limits;
1960
1961 if (dm_table_supports_nowait(t))
1962 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1963 else
1964 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1965
1966 if (!dm_table_supports_discards(t)) {
1967 q->limits.max_discard_sectors = 0;
1968 q->limits.max_hw_discard_sectors = 0;
1969 q->limits.discard_granularity = 0;
1970 q->limits.discard_alignment = 0;
1971 q->limits.discard_misaligned = 0;
1972 }
1973
1974 if (!dm_table_supports_secure_erase(t))
1975 q->limits.max_secure_erase_sectors = 0;
1976
1977 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1978 wc = true;
1979 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1980 fua = true;
1981 }
1982 blk_queue_write_cache(q, wc, fua);
1983
1984 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1985 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1986 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1987 set_dax_synchronous(t->md->dax_dev);
1988 } else
1989 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1990
1991 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1992 dax_write_cache(t->md->dax_dev, true);
1993
1994 /* Ensure that all underlying devices are non-rotational. */
1995 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1996 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1997 else
1998 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1999
2000 if (!dm_table_supports_write_zeroes(t))
2001 q->limits.max_write_zeroes_sectors = 0;
2002
2003 dm_table_verify_integrity(t);
2004
2005 /*
2006 * Some devices don't use blk_integrity but still want stable pages
2007 * because they do their own checksumming.
2008 * If any underlying device requires stable pages, a table must require
2009 * them as well. Only targets that support iterate_devices are considered:
2010 * don't want error, zero, etc to require stable pages.
2011 */
2012 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2013 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2014 else
2015 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2016
2017 /*
2018 * Determine whether or not this queue's I/O timings contribute
2019 * to the entropy pool, Only request-based targets use this.
2020 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2021 * have it set.
2022 */
2023 if (blk_queue_add_random(q) &&
2024 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2025 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2026
2027 /*
2028 * For a zoned target, setup the zones related queue attributes
2029 * and resources necessary for zone append emulation if necessary.
2030 */
2031 if (blk_queue_is_zoned(q)) {
2032 r = dm_set_zones_restrictions(t, q);
2033 if (r)
2034 return r;
2035 if (!static_key_enabled(&zoned_enabled.key))
2036 static_branch_enable(&zoned_enabled);
2037 }
2038
2039 dm_update_crypto_profile(q, t);
2040 disk_update_readahead(t->md->disk);
2041
2042 /*
2043 * Check for request-based device is left to
2044 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2045 *
2046 * For bio-based device, only set QUEUE_FLAG_POLL when all
2047 * underlying devices supporting polling.
2048 */
2049 if (__table_type_bio_based(t->type)) {
2050 if (dm_table_supports_poll(t))
2051 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2052 else
2053 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2054 }
2055
2056 return 0;
2057 }
2058
dm_table_get_devices(struct dm_table * t)2059 struct list_head *dm_table_get_devices(struct dm_table *t)
2060 {
2061 return &t->devices;
2062 }
2063
dm_table_get_mode(struct dm_table * t)2064 blk_mode_t dm_table_get_mode(struct dm_table *t)
2065 {
2066 return t->mode;
2067 }
2068 EXPORT_SYMBOL(dm_table_get_mode);
2069
2070 enum suspend_mode {
2071 PRESUSPEND,
2072 PRESUSPEND_UNDO,
2073 POSTSUSPEND,
2074 };
2075
suspend_targets(struct dm_table * t,enum suspend_mode mode)2076 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2077 {
2078 lockdep_assert_held(&t->md->suspend_lock);
2079
2080 for (unsigned int i = 0; i < t->num_targets; i++) {
2081 struct dm_target *ti = dm_table_get_target(t, i);
2082
2083 switch (mode) {
2084 case PRESUSPEND:
2085 if (ti->type->presuspend)
2086 ti->type->presuspend(ti);
2087 break;
2088 case PRESUSPEND_UNDO:
2089 if (ti->type->presuspend_undo)
2090 ti->type->presuspend_undo(ti);
2091 break;
2092 case POSTSUSPEND:
2093 if (ti->type->postsuspend)
2094 ti->type->postsuspend(ti);
2095 break;
2096 }
2097 }
2098 }
2099
dm_table_presuspend_targets(struct dm_table * t)2100 void dm_table_presuspend_targets(struct dm_table *t)
2101 {
2102 if (!t)
2103 return;
2104
2105 suspend_targets(t, PRESUSPEND);
2106 }
2107
dm_table_presuspend_undo_targets(struct dm_table * t)2108 void dm_table_presuspend_undo_targets(struct dm_table *t)
2109 {
2110 if (!t)
2111 return;
2112
2113 suspend_targets(t, PRESUSPEND_UNDO);
2114 }
2115
dm_table_postsuspend_targets(struct dm_table * t)2116 void dm_table_postsuspend_targets(struct dm_table *t)
2117 {
2118 if (!t)
2119 return;
2120
2121 suspend_targets(t, POSTSUSPEND);
2122 }
2123
dm_table_resume_targets(struct dm_table * t)2124 int dm_table_resume_targets(struct dm_table *t)
2125 {
2126 unsigned int i;
2127 int r = 0;
2128
2129 lockdep_assert_held(&t->md->suspend_lock);
2130
2131 for (i = 0; i < t->num_targets; i++) {
2132 struct dm_target *ti = dm_table_get_target(t, i);
2133
2134 if (!ti->type->preresume)
2135 continue;
2136
2137 r = ti->type->preresume(ti);
2138 if (r) {
2139 DMERR("%s: %s: preresume failed, error = %d",
2140 dm_device_name(t->md), ti->type->name, r);
2141 return r;
2142 }
2143 }
2144
2145 for (i = 0; i < t->num_targets; i++) {
2146 struct dm_target *ti = dm_table_get_target(t, i);
2147
2148 if (ti->type->resume)
2149 ti->type->resume(ti);
2150 }
2151
2152 return 0;
2153 }
2154
dm_table_get_md(struct dm_table * t)2155 struct mapped_device *dm_table_get_md(struct dm_table *t)
2156 {
2157 return t->md;
2158 }
2159 EXPORT_SYMBOL(dm_table_get_md);
2160
dm_table_device_name(struct dm_table * t)2161 const char *dm_table_device_name(struct dm_table *t)
2162 {
2163 return dm_device_name(t->md);
2164 }
2165 EXPORT_SYMBOL_GPL(dm_table_device_name);
2166
dm_table_run_md_queue_async(struct dm_table * t)2167 void dm_table_run_md_queue_async(struct dm_table *t)
2168 {
2169 if (!dm_table_request_based(t))
2170 return;
2171
2172 if (t->md->queue)
2173 blk_mq_run_hw_queues(t->md->queue, true);
2174 }
2175 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2176
2177