xref: /openbmc/linux/kernel/sched/deadline.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 	{}
47 };
48 
sched_dl_sysctl_init(void)49 static int __init sched_dl_sysctl_init(void)
50 {
51 	register_sysctl_init("kernel", sched_dl_sysctls);
52 	return 0;
53 }
54 late_initcall(sched_dl_sysctl_init);
55 #endif
56 
dl_task_of(struct sched_dl_entity * dl_se)57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
58 {
59 	return container_of(dl_se, struct task_struct, dl);
60 }
61 
rq_of_dl_rq(struct dl_rq * dl_rq)62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
63 {
64 	return container_of(dl_rq, struct rq, dl);
65 }
66 
dl_rq_of_se(struct sched_dl_entity * dl_se)67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
68 {
69 	struct task_struct *p = dl_task_of(dl_se);
70 	struct rq *rq = task_rq(p);
71 
72 	return &rq->dl;
73 }
74 
on_dl_rq(struct sched_dl_entity * dl_se)75 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
76 {
77 	return !RB_EMPTY_NODE(&dl_se->rb_node);
78 }
79 
80 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
82 {
83 	return dl_se->pi_se;
84 }
85 
is_dl_boosted(struct sched_dl_entity * dl_se)86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
87 {
88 	return pi_of(dl_se) != dl_se;
89 }
90 #else
pi_of(struct sched_dl_entity * dl_se)91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
92 {
93 	return dl_se;
94 }
95 
is_dl_boosted(struct sched_dl_entity * dl_se)96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
97 {
98 	return false;
99 }
100 #endif
101 
102 #ifdef CONFIG_SMP
dl_bw_of(int i)103 static inline struct dl_bw *dl_bw_of(int i)
104 {
105 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
106 			 "sched RCU must be held");
107 	return &cpu_rq(i)->rd->dl_bw;
108 }
109 
dl_bw_cpus(int i)110 static inline int dl_bw_cpus(int i)
111 {
112 	struct root_domain *rd = cpu_rq(i)->rd;
113 	int cpus;
114 
115 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
116 			 "sched RCU must be held");
117 
118 	if (cpumask_subset(rd->span, cpu_active_mask))
119 		return cpumask_weight(rd->span);
120 
121 	cpus = 0;
122 
123 	for_each_cpu_and(i, rd->span, cpu_active_mask)
124 		cpus++;
125 
126 	return cpus;
127 }
128 
__dl_bw_capacity(const struct cpumask * mask)129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
130 {
131 	unsigned long cap = 0;
132 	int i;
133 
134 	for_each_cpu_and(i, mask, cpu_active_mask)
135 		cap += capacity_orig_of(i);
136 
137 	return cap;
138 }
139 
140 /*
141  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
142  * of the CPU the task is running on rather rd's \Sum CPU capacity.
143  */
dl_bw_capacity(int i)144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 	if (!sched_asym_cpucap_active() &&
147 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
148 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
149 	} else {
150 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
151 				 "sched RCU must be held");
152 
153 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
154 	}
155 }
156 
dl_bw_visited(int cpu,u64 gen)157 static inline bool dl_bw_visited(int cpu, u64 gen)
158 {
159 	struct root_domain *rd = cpu_rq(cpu)->rd;
160 
161 	if (rd->visit_gen == gen)
162 		return true;
163 
164 	rd->visit_gen = gen;
165 	return false;
166 }
167 
168 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)169 void __dl_update(struct dl_bw *dl_b, s64 bw)
170 {
171 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
172 	int i;
173 
174 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
175 			 "sched RCU must be held");
176 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
177 		struct rq *rq = cpu_rq(i);
178 
179 		rq->dl.extra_bw += bw;
180 	}
181 }
182 #else
dl_bw_of(int i)183 static inline struct dl_bw *dl_bw_of(int i)
184 {
185 	return &cpu_rq(i)->dl.dl_bw;
186 }
187 
dl_bw_cpus(int i)188 static inline int dl_bw_cpus(int i)
189 {
190 	return 1;
191 }
192 
dl_bw_capacity(int i)193 static inline unsigned long dl_bw_capacity(int i)
194 {
195 	return SCHED_CAPACITY_SCALE;
196 }
197 
dl_bw_visited(int cpu,u64 gen)198 static inline bool dl_bw_visited(int cpu, u64 gen)
199 {
200 	return false;
201 }
202 
203 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)204 void __dl_update(struct dl_bw *dl_b, s64 bw)
205 {
206 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
207 
208 	dl->extra_bw += bw;
209 }
210 #endif
211 
212 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
214 {
215 	dl_b->total_bw -= tsk_bw;
216 	__dl_update(dl_b, (s32)tsk_bw / cpus);
217 }
218 
219 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
221 {
222 	dl_b->total_bw += tsk_bw;
223 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
224 }
225 
226 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
228 {
229 	return dl_b->bw != -1 &&
230 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
231 }
232 
233 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
235 {
236 	u64 old = dl_rq->running_bw;
237 
238 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
239 	dl_rq->running_bw += dl_bw;
240 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
241 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->running_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->running_bw -= dl_bw;
253 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
254 	if (dl_rq->running_bw > old)
255 		dl_rq->running_bw = 0;
256 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
257 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
258 }
259 
260 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
262 {
263 	u64 old = dl_rq->this_bw;
264 
265 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
266 	dl_rq->this_bw += dl_bw;
267 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
268 }
269 
270 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
272 {
273 	u64 old = dl_rq->this_bw;
274 
275 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
276 	dl_rq->this_bw -= dl_bw;
277 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
278 	if (dl_rq->this_bw > old)
279 		dl_rq->this_bw = 0;
280 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
281 }
282 
283 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_rq_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
295 }
296 
297 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
299 {
300 	if (!dl_entity_is_special(dl_se))
301 		__add_running_bw(dl_se->dl_bw, dl_rq);
302 }
303 
304 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 	if (!dl_entity_is_special(dl_se))
308 		__sub_running_bw(dl_se->dl_bw, dl_rq);
309 }
310 
dl_change_utilization(struct task_struct * p,u64 new_bw)311 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
312 {
313 	struct rq *rq;
314 
315 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
316 
317 	if (task_on_rq_queued(p))
318 		return;
319 
320 	rq = task_rq(p);
321 	if (p->dl.dl_non_contending) {
322 		sub_running_bw(&p->dl, &rq->dl);
323 		p->dl.dl_non_contending = 0;
324 		/*
325 		 * If the timer handler is currently running and the
326 		 * timer cannot be canceled, inactive_task_timer()
327 		 * will see that dl_not_contending is not set, and
328 		 * will not touch the rq's active utilization,
329 		 * so we are still safe.
330 		 */
331 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
332 			put_task_struct(p);
333 	}
334 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
335 	__add_rq_bw(new_bw, &rq->dl);
336 }
337 
338 static void __dl_clear_params(struct sched_dl_entity *dl_se);
339 
340 /*
341  * The utilization of a task cannot be immediately removed from
342  * the rq active utilization (running_bw) when the task blocks.
343  * Instead, we have to wait for the so called "0-lag time".
344  *
345  * If a task blocks before the "0-lag time", a timer (the inactive
346  * timer) is armed, and running_bw is decreased when the timer
347  * fires.
348  *
349  * If the task wakes up again before the inactive timer fires,
350  * the timer is canceled, whereas if the task wakes up after the
351  * inactive timer fired (and running_bw has been decreased) the
352  * task's utilization has to be added to running_bw again.
353  * A flag in the deadline scheduling entity (dl_non_contending)
354  * is used to avoid race conditions between the inactive timer handler
355  * and task wakeups.
356  *
357  * The following diagram shows how running_bw is updated. A task is
358  * "ACTIVE" when its utilization contributes to running_bw; an
359  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
360  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
361  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
362  * time already passed, which does not contribute to running_bw anymore.
363  *                              +------------------+
364  *             wakeup           |    ACTIVE        |
365  *          +------------------>+   contending     |
366  *          | add_running_bw    |                  |
367  *          |                   +----+------+------+
368  *          |                        |      ^
369  *          |                dequeue |      |
370  * +--------+-------+                |      |
371  * |                |   t >= 0-lag   |      | wakeup
372  * |    INACTIVE    |<---------------+      |
373  * |                | sub_running_bw |      |
374  * +--------+-------+                |      |
375  *          ^                        |      |
376  *          |              t < 0-lag |      |
377  *          |                        |      |
378  *          |                        V      |
379  *          |                   +----+------+------+
380  *          | sub_running_bw    |    ACTIVE        |
381  *          +-------------------+                  |
382  *            inactive timer    |  non contending  |
383  *            fired             +------------------+
384  *
385  * The task_non_contending() function is invoked when a task
386  * blocks, and checks if the 0-lag time already passed or
387  * not (in the first case, it directly updates running_bw;
388  * in the second case, it arms the inactive timer).
389  *
390  * The task_contending() function is invoked when a task wakes
391  * up, and checks if the task is still in the "ACTIVE non contending"
392  * state or not (in the second case, it updates running_bw).
393  */
task_non_contending(struct sched_dl_entity * dl_se)394 static void task_non_contending(struct sched_dl_entity *dl_se)
395 {
396 	struct hrtimer *timer = &dl_se->inactive_timer;
397 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
398 	struct rq *rq = rq_of_dl_rq(dl_rq);
399 	struct task_struct *p = dl_task_of(dl_se);
400 	s64 zerolag_time;
401 
402 	/*
403 	 * If this is a non-deadline task that has been boosted,
404 	 * do nothing
405 	 */
406 	if (dl_se->dl_runtime == 0)
407 		return;
408 
409 	if (dl_entity_is_special(dl_se))
410 		return;
411 
412 	WARN_ON(dl_se->dl_non_contending);
413 
414 	zerolag_time = dl_se->deadline -
415 		 div64_long((dl_se->runtime * dl_se->dl_period),
416 			dl_se->dl_runtime);
417 
418 	/*
419 	 * Using relative times instead of the absolute "0-lag time"
420 	 * allows to simplify the code
421 	 */
422 	zerolag_time -= rq_clock(rq);
423 
424 	/*
425 	 * If the "0-lag time" already passed, decrease the active
426 	 * utilization now, instead of starting a timer
427 	 */
428 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
429 		if (dl_task(p))
430 			sub_running_bw(dl_se, dl_rq);
431 
432 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
433 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
434 
435 			if (READ_ONCE(p->__state) == TASK_DEAD)
436 				sub_rq_bw(dl_se, &rq->dl);
437 			raw_spin_lock(&dl_b->lock);
438 			__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
439 			raw_spin_unlock(&dl_b->lock);
440 			__dl_clear_params(dl_se);
441 		}
442 
443 		return;
444 	}
445 
446 	dl_se->dl_non_contending = 1;
447 	get_task_struct(p);
448 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
449 }
450 
task_contending(struct sched_dl_entity * dl_se,int flags)451 static void task_contending(struct sched_dl_entity *dl_se, int flags)
452 {
453 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
454 
455 	/*
456 	 * If this is a non-deadline task that has been boosted,
457 	 * do nothing
458 	 */
459 	if (dl_se->dl_runtime == 0)
460 		return;
461 
462 	if (flags & ENQUEUE_MIGRATED)
463 		add_rq_bw(dl_se, dl_rq);
464 
465 	if (dl_se->dl_non_contending) {
466 		dl_se->dl_non_contending = 0;
467 		/*
468 		 * If the timer handler is currently running and the
469 		 * timer cannot be canceled, inactive_task_timer()
470 		 * will see that dl_not_contending is not set, and
471 		 * will not touch the rq's active utilization,
472 		 * so we are still safe.
473 		 */
474 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
475 			put_task_struct(dl_task_of(dl_se));
476 	} else {
477 		/*
478 		 * Since "dl_non_contending" is not set, the
479 		 * task's utilization has already been removed from
480 		 * active utilization (either when the task blocked,
481 		 * when the "inactive timer" fired).
482 		 * So, add it back.
483 		 */
484 		add_running_bw(dl_se, dl_rq);
485 	}
486 }
487 
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)488 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
489 {
490 	struct sched_dl_entity *dl_se = &p->dl;
491 
492 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
493 }
494 
495 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
496 
init_dl_bw(struct dl_bw * dl_b)497 void init_dl_bw(struct dl_bw *dl_b)
498 {
499 	raw_spin_lock_init(&dl_b->lock);
500 	if (global_rt_runtime() == RUNTIME_INF)
501 		dl_b->bw = -1;
502 	else
503 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
504 	dl_b->total_bw = 0;
505 }
506 
init_dl_rq(struct dl_rq * dl_rq)507 void init_dl_rq(struct dl_rq *dl_rq)
508 {
509 	dl_rq->root = RB_ROOT_CACHED;
510 
511 #ifdef CONFIG_SMP
512 	/* zero means no -deadline tasks */
513 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
514 
515 	dl_rq->dl_nr_migratory = 0;
516 	dl_rq->overloaded = 0;
517 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
518 #else
519 	init_dl_bw(&dl_rq->dl_bw);
520 #endif
521 
522 	dl_rq->running_bw = 0;
523 	dl_rq->this_bw = 0;
524 	init_dl_rq_bw_ratio(dl_rq);
525 }
526 
527 #ifdef CONFIG_SMP
528 
dl_overloaded(struct rq * rq)529 static inline int dl_overloaded(struct rq *rq)
530 {
531 	return atomic_read(&rq->rd->dlo_count);
532 }
533 
dl_set_overload(struct rq * rq)534 static inline void dl_set_overload(struct rq *rq)
535 {
536 	if (!rq->online)
537 		return;
538 
539 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
540 	/*
541 	 * Must be visible before the overload count is
542 	 * set (as in sched_rt.c).
543 	 *
544 	 * Matched by the barrier in pull_dl_task().
545 	 */
546 	smp_wmb();
547 	atomic_inc(&rq->rd->dlo_count);
548 }
549 
dl_clear_overload(struct rq * rq)550 static inline void dl_clear_overload(struct rq *rq)
551 {
552 	if (!rq->online)
553 		return;
554 
555 	atomic_dec(&rq->rd->dlo_count);
556 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
557 }
558 
update_dl_migration(struct dl_rq * dl_rq)559 static void update_dl_migration(struct dl_rq *dl_rq)
560 {
561 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
562 		if (!dl_rq->overloaded) {
563 			dl_set_overload(rq_of_dl_rq(dl_rq));
564 			dl_rq->overloaded = 1;
565 		}
566 	} else if (dl_rq->overloaded) {
567 		dl_clear_overload(rq_of_dl_rq(dl_rq));
568 		dl_rq->overloaded = 0;
569 	}
570 }
571 
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)572 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
573 {
574 	struct task_struct *p = dl_task_of(dl_se);
575 
576 	if (p->nr_cpus_allowed > 1)
577 		dl_rq->dl_nr_migratory++;
578 
579 	update_dl_migration(dl_rq);
580 }
581 
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)582 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
583 {
584 	struct task_struct *p = dl_task_of(dl_se);
585 
586 	if (p->nr_cpus_allowed > 1)
587 		dl_rq->dl_nr_migratory--;
588 
589 	update_dl_migration(dl_rq);
590 }
591 
592 #define __node_2_pdl(node) \
593 	rb_entry((node), struct task_struct, pushable_dl_tasks)
594 
__pushable_less(struct rb_node * a,const struct rb_node * b)595 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
596 {
597 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
598 }
599 
600 /*
601  * The list of pushable -deadline task is not a plist, like in
602  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
603  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)604 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
605 {
606 	struct rb_node *leftmost;
607 
608 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
609 
610 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
611 				 &rq->dl.pushable_dl_tasks_root,
612 				 __pushable_less);
613 	if (leftmost)
614 		rq->dl.earliest_dl.next = p->dl.deadline;
615 }
616 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 	struct dl_rq *dl_rq = &rq->dl;
620 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 	struct rb_node *leftmost;
622 
623 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 		return;
625 
626 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 	if (leftmost)
628 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629 
630 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
631 }
632 
has_pushable_dl_tasks(struct rq * rq)633 static inline int has_pushable_dl_tasks(struct rq *rq)
634 {
635 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
636 }
637 
638 static int push_dl_task(struct rq *rq);
639 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 	return rq->online && dl_task(prev);
643 }
644 
645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647 
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650 
deadline_queue_push_tasks(struct rq * rq)651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 	if (!has_pushable_dl_tasks(rq))
654 		return;
655 
656 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658 
deadline_queue_pull_task(struct rq * rq)659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663 
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 	struct rq *later_rq = NULL;
669 	struct dl_bw *dl_b;
670 
671 	later_rq = find_lock_later_rq(p, rq);
672 	if (!later_rq) {
673 		int cpu;
674 
675 		/*
676 		 * If we cannot preempt any rq, fall back to pick any
677 		 * online CPU:
678 		 */
679 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 		if (cpu >= nr_cpu_ids) {
681 			/*
682 			 * Failed to find any suitable CPU.
683 			 * The task will never come back!
684 			 */
685 			WARN_ON_ONCE(dl_bandwidth_enabled());
686 
687 			/*
688 			 * If admission control is disabled we
689 			 * try a little harder to let the task
690 			 * run.
691 			 */
692 			cpu = cpumask_any(cpu_active_mask);
693 		}
694 		later_rq = cpu_rq(cpu);
695 		double_lock_balance(rq, later_rq);
696 	}
697 
698 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 		/*
700 		 * Inactive timer is armed (or callback is running, but
701 		 * waiting for us to release rq locks). In any case, when it
702 		 * will fire (or continue), it will see running_bw of this
703 		 * task migrated to later_rq (and correctly handle it).
704 		 */
705 		sub_running_bw(&p->dl, &rq->dl);
706 		sub_rq_bw(&p->dl, &rq->dl);
707 
708 		add_rq_bw(&p->dl, &later_rq->dl);
709 		add_running_bw(&p->dl, &later_rq->dl);
710 	} else {
711 		sub_rq_bw(&p->dl, &rq->dl);
712 		add_rq_bw(&p->dl, &later_rq->dl);
713 	}
714 
715 	/*
716 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
717 	 * since p is still hanging out in the old (now moved to default) root
718 	 * domain.
719 	 */
720 	dl_b = &rq->rd->dl_bw;
721 	raw_spin_lock(&dl_b->lock);
722 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 	raw_spin_unlock(&dl_b->lock);
724 
725 	dl_b = &later_rq->rd->dl_bw;
726 	raw_spin_lock(&dl_b->lock);
727 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 	raw_spin_unlock(&dl_b->lock);
729 
730 	set_task_cpu(p, later_rq->cpu);
731 	double_unlock_balance(later_rq, rq);
732 
733 	return later_rq;
734 }
735 
736 #else
737 
738 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742 
743 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747 
748 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752 
753 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757 
deadline_queue_push_tasks(struct rq * rq)758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761 
deadline_queue_pull_task(struct rq * rq)762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766 
767 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
768 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
769 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
770 
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)771 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
772 					    struct rq *rq)
773 {
774 	/* for non-boosted task, pi_of(dl_se) == dl_se */
775 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
776 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
777 }
778 
779 /*
780  * We are being explicitly informed that a new instance is starting,
781  * and this means that:
782  *  - the absolute deadline of the entity has to be placed at
783  *    current time + relative deadline;
784  *  - the runtime of the entity has to be set to the maximum value.
785  *
786  * The capability of specifying such event is useful whenever a -deadline
787  * entity wants to (try to!) synchronize its behaviour with the scheduler's
788  * one, and to (try to!) reconcile itself with its own scheduling
789  * parameters.
790  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)791 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
792 {
793 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
794 	struct rq *rq = rq_of_dl_rq(dl_rq);
795 
796 	WARN_ON(is_dl_boosted(dl_se));
797 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
798 
799 	/*
800 	 * We are racing with the deadline timer. So, do nothing because
801 	 * the deadline timer handler will take care of properly recharging
802 	 * the runtime and postponing the deadline
803 	 */
804 	if (dl_se->dl_throttled)
805 		return;
806 
807 	/*
808 	 * We use the regular wall clock time to set deadlines in the
809 	 * future; in fact, we must consider execution overheads (time
810 	 * spent on hardirq context, etc.).
811 	 */
812 	replenish_dl_new_period(dl_se, rq);
813 }
814 
815 /*
816  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
817  * possibility of a entity lasting more than what it declared, and thus
818  * exhausting its runtime.
819  *
820  * Here we are interested in making runtime overrun possible, but we do
821  * not want a entity which is misbehaving to affect the scheduling of all
822  * other entities.
823  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
824  * is used, in order to confine each entity within its own bandwidth.
825  *
826  * This function deals exactly with that, and ensures that when the runtime
827  * of a entity is replenished, its deadline is also postponed. That ensures
828  * the overrunning entity can't interfere with other entity in the system and
829  * can't make them miss their deadlines. Reasons why this kind of overruns
830  * could happen are, typically, a entity voluntarily trying to overcome its
831  * runtime, or it just underestimated it during sched_setattr().
832  */
replenish_dl_entity(struct sched_dl_entity * dl_se)833 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
834 {
835 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
836 	struct rq *rq = rq_of_dl_rq(dl_rq);
837 
838 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
839 
840 	/*
841 	 * This could be the case for a !-dl task that is boosted.
842 	 * Just go with full inherited parameters.
843 	 */
844 	if (dl_se->dl_deadline == 0)
845 		replenish_dl_new_period(dl_se, rq);
846 
847 	if (dl_se->dl_yielded && dl_se->runtime > 0)
848 		dl_se->runtime = 0;
849 
850 	/*
851 	 * We keep moving the deadline away until we get some
852 	 * available runtime for the entity. This ensures correct
853 	 * handling of situations where the runtime overrun is
854 	 * arbitrary large.
855 	 */
856 	while (dl_se->runtime <= 0) {
857 		dl_se->deadline += pi_of(dl_se)->dl_period;
858 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
859 	}
860 
861 	/*
862 	 * At this point, the deadline really should be "in
863 	 * the future" with respect to rq->clock. If it's
864 	 * not, we are, for some reason, lagging too much!
865 	 * Anyway, after having warn userspace abut that,
866 	 * we still try to keep the things running by
867 	 * resetting the deadline and the budget of the
868 	 * entity.
869 	 */
870 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
871 		printk_deferred_once("sched: DL replenish lagged too much\n");
872 		replenish_dl_new_period(dl_se, rq);
873 	}
874 
875 	if (dl_se->dl_yielded)
876 		dl_se->dl_yielded = 0;
877 	if (dl_se->dl_throttled)
878 		dl_se->dl_throttled = 0;
879 }
880 
881 /*
882  * Here we check if --at time t-- an entity (which is probably being
883  * [re]activated or, in general, enqueued) can use its remaining runtime
884  * and its current deadline _without_ exceeding the bandwidth it is
885  * assigned (function returns true if it can't). We are in fact applying
886  * one of the CBS rules: when a task wakes up, if the residual runtime
887  * over residual deadline fits within the allocated bandwidth, then we
888  * can keep the current (absolute) deadline and residual budget without
889  * disrupting the schedulability of the system. Otherwise, we should
890  * refill the runtime and set the deadline a period in the future,
891  * because keeping the current (absolute) deadline of the task would
892  * result in breaking guarantees promised to other tasks (refer to
893  * Documentation/scheduler/sched-deadline.rst for more information).
894  *
895  * This function returns true if:
896  *
897  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
898  *
899  * IOW we can't recycle current parameters.
900  *
901  * Notice that the bandwidth check is done against the deadline. For
902  * task with deadline equal to period this is the same of using
903  * dl_period instead of dl_deadline in the equation above.
904  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)905 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
906 {
907 	u64 left, right;
908 
909 	/*
910 	 * left and right are the two sides of the equation above,
911 	 * after a bit of shuffling to use multiplications instead
912 	 * of divisions.
913 	 *
914 	 * Note that none of the time values involved in the two
915 	 * multiplications are absolute: dl_deadline and dl_runtime
916 	 * are the relative deadline and the maximum runtime of each
917 	 * instance, runtime is the runtime left for the last instance
918 	 * and (deadline - t), since t is rq->clock, is the time left
919 	 * to the (absolute) deadline. Even if overflowing the u64 type
920 	 * is very unlikely to occur in both cases, here we scale down
921 	 * as we want to avoid that risk at all. Scaling down by 10
922 	 * means that we reduce granularity to 1us. We are fine with it,
923 	 * since this is only a true/false check and, anyway, thinking
924 	 * of anything below microseconds resolution is actually fiction
925 	 * (but still we want to give the user that illusion >;).
926 	 */
927 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
928 	right = ((dl_se->deadline - t) >> DL_SCALE) *
929 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
930 
931 	return dl_time_before(right, left);
932 }
933 
934 /*
935  * Revised wakeup rule [1]: For self-suspending tasks, rather then
936  * re-initializing task's runtime and deadline, the revised wakeup
937  * rule adjusts the task's runtime to avoid the task to overrun its
938  * density.
939  *
940  * Reasoning: a task may overrun the density if:
941  *    runtime / (deadline - t) > dl_runtime / dl_deadline
942  *
943  * Therefore, runtime can be adjusted to:
944  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
945  *
946  * In such way that runtime will be equal to the maximum density
947  * the task can use without breaking any rule.
948  *
949  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
950  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
951  */
952 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)953 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
954 {
955 	u64 laxity = dl_se->deadline - rq_clock(rq);
956 
957 	/*
958 	 * If the task has deadline < period, and the deadline is in the past,
959 	 * it should already be throttled before this check.
960 	 *
961 	 * See update_dl_entity() comments for further details.
962 	 */
963 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
964 
965 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
966 }
967 
968 /*
969  * Regarding the deadline, a task with implicit deadline has a relative
970  * deadline == relative period. A task with constrained deadline has a
971  * relative deadline <= relative period.
972  *
973  * We support constrained deadline tasks. However, there are some restrictions
974  * applied only for tasks which do not have an implicit deadline. See
975  * update_dl_entity() to know more about such restrictions.
976  *
977  * The dl_is_implicit() returns true if the task has an implicit deadline.
978  */
dl_is_implicit(struct sched_dl_entity * dl_se)979 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
980 {
981 	return dl_se->dl_deadline == dl_se->dl_period;
982 }
983 
984 /*
985  * When a deadline entity is placed in the runqueue, its runtime and deadline
986  * might need to be updated. This is done by a CBS wake up rule. There are two
987  * different rules: 1) the original CBS; and 2) the Revisited CBS.
988  *
989  * When the task is starting a new period, the Original CBS is used. In this
990  * case, the runtime is replenished and a new absolute deadline is set.
991  *
992  * When a task is queued before the begin of the next period, using the
993  * remaining runtime and deadline could make the entity to overflow, see
994  * dl_entity_overflow() to find more about runtime overflow. When such case
995  * is detected, the runtime and deadline need to be updated.
996  *
997  * If the task has an implicit deadline, i.e., deadline == period, the Original
998  * CBS is applied. the runtime is replenished and a new absolute deadline is
999  * set, as in the previous cases.
1000  *
1001  * However, the Original CBS does not work properly for tasks with
1002  * deadline < period, which are said to have a constrained deadline. By
1003  * applying the Original CBS, a constrained deadline task would be able to run
1004  * runtime/deadline in a period. With deadline < period, the task would
1005  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1006  *
1007  * In order to prevent this misbehave, the Revisited CBS is used for
1008  * constrained deadline tasks when a runtime overflow is detected. In the
1009  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1010  * the remaining runtime of the task is reduced to avoid runtime overflow.
1011  * Please refer to the comments update_dl_revised_wakeup() function to find
1012  * more about the Revised CBS rule.
1013  */
update_dl_entity(struct sched_dl_entity * dl_se)1014 static void update_dl_entity(struct sched_dl_entity *dl_se)
1015 {
1016 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1017 	struct rq *rq = rq_of_dl_rq(dl_rq);
1018 
1019 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1020 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1021 
1022 		if (unlikely(!dl_is_implicit(dl_se) &&
1023 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1024 			     !is_dl_boosted(dl_se))) {
1025 			update_dl_revised_wakeup(dl_se, rq);
1026 			return;
1027 		}
1028 
1029 		replenish_dl_new_period(dl_se, rq);
1030 	}
1031 }
1032 
dl_next_period(struct sched_dl_entity * dl_se)1033 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1034 {
1035 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1036 }
1037 
1038 /*
1039  * If the entity depleted all its runtime, and if we want it to sleep
1040  * while waiting for some new execution time to become available, we
1041  * set the bandwidth replenishment timer to the replenishment instant
1042  * and try to activate it.
1043  *
1044  * Notice that it is important for the caller to know if the timer
1045  * actually started or not (i.e., the replenishment instant is in
1046  * the future or in the past).
1047  */
start_dl_timer(struct task_struct * p)1048 static int start_dl_timer(struct task_struct *p)
1049 {
1050 	struct sched_dl_entity *dl_se = &p->dl;
1051 	struct hrtimer *timer = &dl_se->dl_timer;
1052 	struct rq *rq = task_rq(p);
1053 	ktime_t now, act;
1054 	s64 delta;
1055 
1056 	lockdep_assert_rq_held(rq);
1057 
1058 	/*
1059 	 * We want the timer to fire at the deadline, but considering
1060 	 * that it is actually coming from rq->clock and not from
1061 	 * hrtimer's time base reading.
1062 	 */
1063 	act = ns_to_ktime(dl_next_period(dl_se));
1064 	now = hrtimer_cb_get_time(timer);
1065 	delta = ktime_to_ns(now) - rq_clock(rq);
1066 	act = ktime_add_ns(act, delta);
1067 
1068 	/*
1069 	 * If the expiry time already passed, e.g., because the value
1070 	 * chosen as the deadline is too small, don't even try to
1071 	 * start the timer in the past!
1072 	 */
1073 	if (ktime_us_delta(act, now) < 0)
1074 		return 0;
1075 
1076 	/*
1077 	 * !enqueued will guarantee another callback; even if one is already in
1078 	 * progress. This ensures a balanced {get,put}_task_struct().
1079 	 *
1080 	 * The race against __run_timer() clearing the enqueued state is
1081 	 * harmless because we're holding task_rq()->lock, therefore the timer
1082 	 * expiring after we've done the check will wait on its task_rq_lock()
1083 	 * and observe our state.
1084 	 */
1085 	if (!hrtimer_is_queued(timer)) {
1086 		get_task_struct(p);
1087 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1088 	}
1089 
1090 	return 1;
1091 }
1092 
1093 /*
1094  * This is the bandwidth enforcement timer callback. If here, we know
1095  * a task is not on its dl_rq, since the fact that the timer was running
1096  * means the task is throttled and needs a runtime replenishment.
1097  *
1098  * However, what we actually do depends on the fact the task is active,
1099  * (it is on its rq) or has been removed from there by a call to
1100  * dequeue_task_dl(). In the former case we must issue the runtime
1101  * replenishment and add the task back to the dl_rq; in the latter, we just
1102  * do nothing but clearing dl_throttled, so that runtime and deadline
1103  * updating (and the queueing back to dl_rq) will be done by the
1104  * next call to enqueue_task_dl().
1105  */
dl_task_timer(struct hrtimer * timer)1106 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1107 {
1108 	struct sched_dl_entity *dl_se = container_of(timer,
1109 						     struct sched_dl_entity,
1110 						     dl_timer);
1111 	struct task_struct *p = dl_task_of(dl_se);
1112 	struct rq_flags rf;
1113 	struct rq *rq;
1114 
1115 	rq = task_rq_lock(p, &rf);
1116 
1117 	/*
1118 	 * The task might have changed its scheduling policy to something
1119 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1120 	 */
1121 	if (!dl_task(p))
1122 		goto unlock;
1123 
1124 	/*
1125 	 * The task might have been boosted by someone else and might be in the
1126 	 * boosting/deboosting path, its not throttled.
1127 	 */
1128 	if (is_dl_boosted(dl_se))
1129 		goto unlock;
1130 
1131 	/*
1132 	 * Spurious timer due to start_dl_timer() race; or we already received
1133 	 * a replenishment from rt_mutex_setprio().
1134 	 */
1135 	if (!dl_se->dl_throttled)
1136 		goto unlock;
1137 
1138 	sched_clock_tick();
1139 	update_rq_clock(rq);
1140 
1141 	/*
1142 	 * If the throttle happened during sched-out; like:
1143 	 *
1144 	 *   schedule()
1145 	 *     deactivate_task()
1146 	 *       dequeue_task_dl()
1147 	 *         update_curr_dl()
1148 	 *           start_dl_timer()
1149 	 *         __dequeue_task_dl()
1150 	 *     prev->on_rq = 0;
1151 	 *
1152 	 * We can be both throttled and !queued. Replenish the counter
1153 	 * but do not enqueue -- wait for our wakeup to do that.
1154 	 */
1155 	if (!task_on_rq_queued(p)) {
1156 		replenish_dl_entity(dl_se);
1157 		goto unlock;
1158 	}
1159 
1160 #ifdef CONFIG_SMP
1161 	if (unlikely(!rq->online)) {
1162 		/*
1163 		 * If the runqueue is no longer available, migrate the
1164 		 * task elsewhere. This necessarily changes rq.
1165 		 */
1166 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1167 		rq = dl_task_offline_migration(rq, p);
1168 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1169 		update_rq_clock(rq);
1170 
1171 		/*
1172 		 * Now that the task has been migrated to the new RQ and we
1173 		 * have that locked, proceed as normal and enqueue the task
1174 		 * there.
1175 		 */
1176 	}
1177 #endif
1178 
1179 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1180 	if (dl_task(rq->curr))
1181 		wakeup_preempt_dl(rq, p, 0);
1182 	else
1183 		resched_curr(rq);
1184 
1185 #ifdef CONFIG_SMP
1186 	/*
1187 	 * Queueing this task back might have overloaded rq, check if we need
1188 	 * to kick someone away.
1189 	 */
1190 	if (has_pushable_dl_tasks(rq)) {
1191 		/*
1192 		 * Nothing relies on rq->lock after this, so its safe to drop
1193 		 * rq->lock.
1194 		 */
1195 		rq_unpin_lock(rq, &rf);
1196 		push_dl_task(rq);
1197 		rq_repin_lock(rq, &rf);
1198 	}
1199 #endif
1200 
1201 unlock:
1202 	task_rq_unlock(rq, p, &rf);
1203 
1204 	/*
1205 	 * This can free the task_struct, including this hrtimer, do not touch
1206 	 * anything related to that after this.
1207 	 */
1208 	put_task_struct(p);
1209 
1210 	return HRTIMER_NORESTART;
1211 }
1212 
init_dl_task_timer(struct sched_dl_entity * dl_se)1213 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1214 {
1215 	struct hrtimer *timer = &dl_se->dl_timer;
1216 
1217 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1218 	timer->function = dl_task_timer;
1219 }
1220 
1221 /*
1222  * During the activation, CBS checks if it can reuse the current task's
1223  * runtime and period. If the deadline of the task is in the past, CBS
1224  * cannot use the runtime, and so it replenishes the task. This rule
1225  * works fine for implicit deadline tasks (deadline == period), and the
1226  * CBS was designed for implicit deadline tasks. However, a task with
1227  * constrained deadline (deadline < period) might be awakened after the
1228  * deadline, but before the next period. In this case, replenishing the
1229  * task would allow it to run for runtime / deadline. As in this case
1230  * deadline < period, CBS enables a task to run for more than the
1231  * runtime / period. In a very loaded system, this can cause a domino
1232  * effect, making other tasks miss their deadlines.
1233  *
1234  * To avoid this problem, in the activation of a constrained deadline
1235  * task after the deadline but before the next period, throttle the
1236  * task and set the replenishing timer to the begin of the next period,
1237  * unless it is boosted.
1238  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1239 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1240 {
1241 	struct task_struct *p = dl_task_of(dl_se);
1242 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1243 
1244 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1245 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1246 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1247 			return;
1248 		dl_se->dl_throttled = 1;
1249 		if (dl_se->runtime > 0)
1250 			dl_se->runtime = 0;
1251 	}
1252 }
1253 
1254 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1255 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1256 {
1257 	return (dl_se->runtime <= 0);
1258 }
1259 
1260 /*
1261  * This function implements the GRUB accounting rule. According to the
1262  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1263  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1264  * where u is the utilization of the task, Umax is the maximum reclaimable
1265  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1266  * as the difference between the "total runqueue utilization" and the
1267  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1268  * reclaimable utilization.
1269  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1270  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1271  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1272  * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1273  * Since delta is a 64 bit variable, to have an overflow its value should be
1274  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1275  * not an issue here.
1276  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1277 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1278 {
1279 	u64 u_act;
1280 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1281 
1282 	/*
1283 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1284 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1285 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1286 	 * negative leading to wrong results.
1287 	 */
1288 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1289 		u_act = dl_se->dl_bw;
1290 	else
1291 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1292 
1293 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1294 	return (delta * u_act) >> BW_SHIFT;
1295 }
1296 
1297 /*
1298  * Update the current task's runtime statistics (provided it is still
1299  * a -deadline task and has not been removed from the dl_rq).
1300  */
update_curr_dl(struct rq * rq)1301 static void update_curr_dl(struct rq *rq)
1302 {
1303 	struct task_struct *curr = rq->curr;
1304 	struct sched_dl_entity *dl_se = &curr->dl;
1305 	s64 delta_exec, scaled_delta_exec;
1306 	int cpu = cpu_of(rq);
1307 
1308 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1309 		return;
1310 
1311 	/*
1312 	 * Consumed budget is computed considering the time as
1313 	 * observed by schedulable tasks (excluding time spent
1314 	 * in hardirq context, etc.). Deadlines are instead
1315 	 * computed using hard walltime. This seems to be the more
1316 	 * natural solution, but the full ramifications of this
1317 	 * approach need further study.
1318 	 */
1319 	delta_exec = update_curr_common(rq);
1320 	if (unlikely(delta_exec <= 0)) {
1321 		if (unlikely(dl_se->dl_yielded))
1322 			goto throttle;
1323 		return;
1324 	}
1325 
1326 	if (dl_entity_is_special(dl_se))
1327 		return;
1328 
1329 	/*
1330 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1331 	 * spare reclaimed bandwidth is used to clock down frequency.
1332 	 *
1333 	 * For the others, we still need to scale reservation parameters
1334 	 * according to current frequency and CPU maximum capacity.
1335 	 */
1336 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1337 		scaled_delta_exec = grub_reclaim(delta_exec,
1338 						 rq,
1339 						 &curr->dl);
1340 	} else {
1341 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1342 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1343 
1344 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1345 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1346 	}
1347 
1348 	dl_se->runtime -= scaled_delta_exec;
1349 
1350 throttle:
1351 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1352 		dl_se->dl_throttled = 1;
1353 
1354 		/* If requested, inform the user about runtime overruns. */
1355 		if (dl_runtime_exceeded(dl_se) &&
1356 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1357 			dl_se->dl_overrun = 1;
1358 
1359 		__dequeue_task_dl(rq, curr, 0);
1360 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1361 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1362 
1363 		if (!is_leftmost(curr, &rq->dl))
1364 			resched_curr(rq);
1365 	}
1366 
1367 	/*
1368 	 * Because -- for now -- we share the rt bandwidth, we need to
1369 	 * account our runtime there too, otherwise actual rt tasks
1370 	 * would be able to exceed the shared quota.
1371 	 *
1372 	 * Account to the root rt group for now.
1373 	 *
1374 	 * The solution we're working towards is having the RT groups scheduled
1375 	 * using deadline servers -- however there's a few nasties to figure
1376 	 * out before that can happen.
1377 	 */
1378 	if (rt_bandwidth_enabled()) {
1379 		struct rt_rq *rt_rq = &rq->rt;
1380 
1381 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1382 		/*
1383 		 * We'll let actual RT tasks worry about the overflow here, we
1384 		 * have our own CBS to keep us inline; only account when RT
1385 		 * bandwidth is relevant.
1386 		 */
1387 		if (sched_rt_bandwidth_account(rt_rq))
1388 			rt_rq->rt_time += delta_exec;
1389 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1390 	}
1391 }
1392 
inactive_task_timer(struct hrtimer * timer)1393 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1394 {
1395 	struct sched_dl_entity *dl_se = container_of(timer,
1396 						     struct sched_dl_entity,
1397 						     inactive_timer);
1398 	struct task_struct *p = dl_task_of(dl_se);
1399 	struct rq_flags rf;
1400 	struct rq *rq;
1401 
1402 	rq = task_rq_lock(p, &rf);
1403 
1404 	sched_clock_tick();
1405 	update_rq_clock(rq);
1406 
1407 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1408 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1409 
1410 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1411 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1412 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1413 			dl_se->dl_non_contending = 0;
1414 		}
1415 
1416 		raw_spin_lock(&dl_b->lock);
1417 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1418 		raw_spin_unlock(&dl_b->lock);
1419 		__dl_clear_params(dl_se);
1420 
1421 		goto unlock;
1422 	}
1423 	if (dl_se->dl_non_contending == 0)
1424 		goto unlock;
1425 
1426 	sub_running_bw(dl_se, &rq->dl);
1427 	dl_se->dl_non_contending = 0;
1428 unlock:
1429 	task_rq_unlock(rq, p, &rf);
1430 	put_task_struct(p);
1431 
1432 	return HRTIMER_NORESTART;
1433 }
1434 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1435 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1436 {
1437 	struct hrtimer *timer = &dl_se->inactive_timer;
1438 
1439 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1440 	timer->function = inactive_task_timer;
1441 }
1442 
1443 #define __node_2_dle(node) \
1444 	rb_entry((node), struct sched_dl_entity, rb_node)
1445 
1446 #ifdef CONFIG_SMP
1447 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1448 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1449 {
1450 	struct rq *rq = rq_of_dl_rq(dl_rq);
1451 
1452 	if (dl_rq->earliest_dl.curr == 0 ||
1453 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1454 		if (dl_rq->earliest_dl.curr == 0)
1455 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1456 		dl_rq->earliest_dl.curr = deadline;
1457 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1458 	}
1459 }
1460 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1461 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1462 {
1463 	struct rq *rq = rq_of_dl_rq(dl_rq);
1464 
1465 	/*
1466 	 * Since we may have removed our earliest (and/or next earliest)
1467 	 * task we must recompute them.
1468 	 */
1469 	if (!dl_rq->dl_nr_running) {
1470 		dl_rq->earliest_dl.curr = 0;
1471 		dl_rq->earliest_dl.next = 0;
1472 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1473 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1474 	} else {
1475 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1476 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1477 
1478 		dl_rq->earliest_dl.curr = entry->deadline;
1479 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1480 	}
1481 }
1482 
1483 #else
1484 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1485 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1486 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1487 
1488 #endif /* CONFIG_SMP */
1489 
1490 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1491 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1492 {
1493 	int prio = dl_task_of(dl_se)->prio;
1494 	u64 deadline = dl_se->deadline;
1495 
1496 	WARN_ON(!dl_prio(prio));
1497 	dl_rq->dl_nr_running++;
1498 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1499 
1500 	inc_dl_deadline(dl_rq, deadline);
1501 	inc_dl_migration(dl_se, dl_rq);
1502 }
1503 
1504 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1505 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1506 {
1507 	int prio = dl_task_of(dl_se)->prio;
1508 
1509 	WARN_ON(!dl_prio(prio));
1510 	WARN_ON(!dl_rq->dl_nr_running);
1511 	dl_rq->dl_nr_running--;
1512 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1513 
1514 	dec_dl_deadline(dl_rq, dl_se->deadline);
1515 	dec_dl_migration(dl_se, dl_rq);
1516 }
1517 
__dl_less(struct rb_node * a,const struct rb_node * b)1518 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1519 {
1520 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1521 }
1522 
1523 static inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1524 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1525 {
1526 	return &dl_task_of(dl_se)->stats;
1527 }
1528 
1529 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1530 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1531 {
1532 	struct sched_statistics *stats;
1533 
1534 	if (!schedstat_enabled())
1535 		return;
1536 
1537 	stats = __schedstats_from_dl_se(dl_se);
1538 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1539 }
1540 
1541 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1542 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1543 {
1544 	struct sched_statistics *stats;
1545 
1546 	if (!schedstat_enabled())
1547 		return;
1548 
1549 	stats = __schedstats_from_dl_se(dl_se);
1550 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1551 }
1552 
1553 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1554 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1555 {
1556 	struct sched_statistics *stats;
1557 
1558 	if (!schedstat_enabled())
1559 		return;
1560 
1561 	stats = __schedstats_from_dl_se(dl_se);
1562 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1563 }
1564 
1565 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1566 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1567 			int flags)
1568 {
1569 	if (!schedstat_enabled())
1570 		return;
1571 
1572 	if (flags & ENQUEUE_WAKEUP)
1573 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1574 }
1575 
1576 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1577 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1578 			int flags)
1579 {
1580 	struct task_struct *p = dl_task_of(dl_se);
1581 
1582 	if (!schedstat_enabled())
1583 		return;
1584 
1585 	if ((flags & DEQUEUE_SLEEP)) {
1586 		unsigned int state;
1587 
1588 		state = READ_ONCE(p->__state);
1589 		if (state & TASK_INTERRUPTIBLE)
1590 			__schedstat_set(p->stats.sleep_start,
1591 					rq_clock(rq_of_dl_rq(dl_rq)));
1592 
1593 		if (state & TASK_UNINTERRUPTIBLE)
1594 			__schedstat_set(p->stats.block_start,
1595 					rq_clock(rq_of_dl_rq(dl_rq)));
1596 	}
1597 }
1598 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1599 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1600 {
1601 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1602 
1603 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1604 
1605 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1606 
1607 	inc_dl_tasks(dl_se, dl_rq);
1608 }
1609 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1610 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1611 {
1612 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1613 
1614 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1615 		return;
1616 
1617 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1618 
1619 	RB_CLEAR_NODE(&dl_se->rb_node);
1620 
1621 	dec_dl_tasks(dl_se, dl_rq);
1622 }
1623 
1624 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1625 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1626 {
1627 	WARN_ON_ONCE(on_dl_rq(dl_se));
1628 
1629 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1630 
1631 	/*
1632 	 * Check if a constrained deadline task was activated
1633 	 * after the deadline but before the next period.
1634 	 * If that is the case, the task will be throttled and
1635 	 * the replenishment timer will be set to the next period.
1636 	 */
1637 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1638 		dl_check_constrained_dl(dl_se);
1639 
1640 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1641 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1642 
1643 		add_rq_bw(dl_se, dl_rq);
1644 		add_running_bw(dl_se, dl_rq);
1645 	}
1646 
1647 	/*
1648 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1649 	 * its budget it needs a replenishment and, since it now is on
1650 	 * its rq, the bandwidth timer callback (which clearly has not
1651 	 * run yet) will take care of this.
1652 	 * However, the active utilization does not depend on the fact
1653 	 * that the task is on the runqueue or not (but depends on the
1654 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1655 	 * In other words, even if a task is throttled its utilization must
1656 	 * be counted in the active utilization; hence, we need to call
1657 	 * add_running_bw().
1658 	 */
1659 	if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1660 		if (flags & ENQUEUE_WAKEUP)
1661 			task_contending(dl_se, flags);
1662 
1663 		return;
1664 	}
1665 
1666 	/*
1667 	 * If this is a wakeup or a new instance, the scheduling
1668 	 * parameters of the task might need updating. Otherwise,
1669 	 * we want a replenishment of its runtime.
1670 	 */
1671 	if (flags & ENQUEUE_WAKEUP) {
1672 		task_contending(dl_se, flags);
1673 		update_dl_entity(dl_se);
1674 	} else if (flags & ENQUEUE_REPLENISH) {
1675 		replenish_dl_entity(dl_se);
1676 	} else if ((flags & ENQUEUE_RESTORE) &&
1677 		  !is_dl_boosted(dl_se) &&
1678 		  dl_time_before(dl_se->deadline,
1679 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1680 		setup_new_dl_entity(dl_se);
1681 	}
1682 
1683 	__enqueue_dl_entity(dl_se);
1684 }
1685 
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)1686 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1687 {
1688 	__dequeue_dl_entity(dl_se);
1689 
1690 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1691 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1692 
1693 		sub_running_bw(dl_se, dl_rq);
1694 		sub_rq_bw(dl_se, dl_rq);
1695 	}
1696 
1697 	/*
1698 	 * This check allows to start the inactive timer (or to immediately
1699 	 * decrease the active utilization, if needed) in two cases:
1700 	 * when the task blocks and when it is terminating
1701 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1702 	 * way, because from GRUB's point of view the same thing is happening
1703 	 * (the task moves from "active contending" to "active non contending"
1704 	 * or "inactive")
1705 	 */
1706 	if (flags & DEQUEUE_SLEEP)
1707 		task_non_contending(dl_se);
1708 }
1709 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1710 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1711 {
1712 	if (is_dl_boosted(&p->dl)) {
1713 		/*
1714 		 * Because of delays in the detection of the overrun of a
1715 		 * thread's runtime, it might be the case that a thread
1716 		 * goes to sleep in a rt mutex with negative runtime. As
1717 		 * a consequence, the thread will be throttled.
1718 		 *
1719 		 * While waiting for the mutex, this thread can also be
1720 		 * boosted via PI, resulting in a thread that is throttled
1721 		 * and boosted at the same time.
1722 		 *
1723 		 * In this case, the boost overrides the throttle.
1724 		 */
1725 		if (p->dl.dl_throttled) {
1726 			/*
1727 			 * The replenish timer needs to be canceled. No
1728 			 * problem if it fires concurrently: boosted threads
1729 			 * are ignored in dl_task_timer().
1730 			 */
1731 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1732 			p->dl.dl_throttled = 0;
1733 		}
1734 	} else if (!dl_prio(p->normal_prio)) {
1735 		/*
1736 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1737 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1738 		 * replenishing it, as it's going to return back to its original
1739 		 * scheduling class after this. If it has been throttled, we need to
1740 		 * clear the flag, otherwise the task may wake up as throttled after
1741 		 * being boosted again with no means to replenish the runtime and clear
1742 		 * the throttle.
1743 		 */
1744 		p->dl.dl_throttled = 0;
1745 		if (!(flags & ENQUEUE_REPLENISH))
1746 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1747 					     task_pid_nr(p));
1748 
1749 		return;
1750 	}
1751 
1752 	check_schedstat_required();
1753 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1754 
1755 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1756 		flags |= ENQUEUE_MIGRATING;
1757 
1758 	enqueue_dl_entity(&p->dl, flags);
1759 
1760 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1761 		enqueue_pushable_dl_task(rq, p);
1762 }
1763 
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1764 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1765 {
1766 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1767 	dequeue_dl_entity(&p->dl, flags);
1768 
1769 	if (!p->dl.dl_throttled)
1770 		dequeue_pushable_dl_task(rq, p);
1771 }
1772 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1773 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1774 {
1775 	update_curr_dl(rq);
1776 
1777 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1778 		flags |= DEQUEUE_MIGRATING;
1779 
1780 	__dequeue_task_dl(rq, p, flags);
1781 }
1782 
1783 /*
1784  * Yield task semantic for -deadline tasks is:
1785  *
1786  *   get off from the CPU until our next instance, with
1787  *   a new runtime. This is of little use now, since we
1788  *   don't have a bandwidth reclaiming mechanism. Anyway,
1789  *   bandwidth reclaiming is planned for the future, and
1790  *   yield_task_dl will indicate that some spare budget
1791  *   is available for other task instances to use it.
1792  */
yield_task_dl(struct rq * rq)1793 static void yield_task_dl(struct rq *rq)
1794 {
1795 	/*
1796 	 * We make the task go to sleep until its current deadline by
1797 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1798 	 * it and the bandwidth timer will wake it up and will give it
1799 	 * new scheduling parameters (thanks to dl_yielded=1).
1800 	 */
1801 	rq->curr->dl.dl_yielded = 1;
1802 
1803 	update_rq_clock(rq);
1804 	update_curr_dl(rq);
1805 	/*
1806 	 * Tell update_rq_clock() that we've just updated,
1807 	 * so we don't do microscopic update in schedule()
1808 	 * and double the fastpath cost.
1809 	 */
1810 	rq_clock_skip_update(rq);
1811 }
1812 
1813 #ifdef CONFIG_SMP
1814 
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)1815 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1816 						 struct rq *rq)
1817 {
1818 	return (!rq->dl.dl_nr_running ||
1819 		dl_time_before(p->dl.deadline,
1820 			       rq->dl.earliest_dl.curr));
1821 }
1822 
1823 static int find_later_rq(struct task_struct *task);
1824 
1825 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)1826 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1827 {
1828 	struct task_struct *curr;
1829 	bool select_rq;
1830 	struct rq *rq;
1831 
1832 	if (!(flags & WF_TTWU))
1833 		goto out;
1834 
1835 	rq = cpu_rq(cpu);
1836 
1837 	rcu_read_lock();
1838 	curr = READ_ONCE(rq->curr); /* unlocked access */
1839 
1840 	/*
1841 	 * If we are dealing with a -deadline task, we must
1842 	 * decide where to wake it up.
1843 	 * If it has a later deadline and the current task
1844 	 * on this rq can't move (provided the waking task
1845 	 * can!) we prefer to send it somewhere else. On the
1846 	 * other hand, if it has a shorter deadline, we
1847 	 * try to make it stay here, it might be important.
1848 	 */
1849 	select_rq = unlikely(dl_task(curr)) &&
1850 		    (curr->nr_cpus_allowed < 2 ||
1851 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1852 		    p->nr_cpus_allowed > 1;
1853 
1854 	/*
1855 	 * Take the capacity of the CPU into account to
1856 	 * ensure it fits the requirement of the task.
1857 	 */
1858 	if (sched_asym_cpucap_active())
1859 		select_rq |= !dl_task_fits_capacity(p, cpu);
1860 
1861 	if (select_rq) {
1862 		int target = find_later_rq(p);
1863 
1864 		if (target != -1 &&
1865 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1866 			cpu = target;
1867 	}
1868 	rcu_read_unlock();
1869 
1870 out:
1871 	return cpu;
1872 }
1873 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1874 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1875 {
1876 	struct rq_flags rf;
1877 	struct rq *rq;
1878 
1879 	if (READ_ONCE(p->__state) != TASK_WAKING)
1880 		return;
1881 
1882 	rq = task_rq(p);
1883 	/*
1884 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1885 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1886 	 * rq->lock is not... So, lock it
1887 	 */
1888 	rq_lock(rq, &rf);
1889 	if (p->dl.dl_non_contending) {
1890 		update_rq_clock(rq);
1891 		sub_running_bw(&p->dl, &rq->dl);
1892 		p->dl.dl_non_contending = 0;
1893 		/*
1894 		 * If the timer handler is currently running and the
1895 		 * timer cannot be canceled, inactive_task_timer()
1896 		 * will see that dl_not_contending is not set, and
1897 		 * will not touch the rq's active utilization,
1898 		 * so we are still safe.
1899 		 */
1900 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1901 			put_task_struct(p);
1902 	}
1903 	sub_rq_bw(&p->dl, &rq->dl);
1904 	rq_unlock(rq, &rf);
1905 }
1906 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1907 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1908 {
1909 	/*
1910 	 * Current can't be migrated, useless to reschedule,
1911 	 * let's hope p can move out.
1912 	 */
1913 	if (rq->curr->nr_cpus_allowed == 1 ||
1914 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1915 		return;
1916 
1917 	/*
1918 	 * p is migratable, so let's not schedule it and
1919 	 * see if it is pushed or pulled somewhere else.
1920 	 */
1921 	if (p->nr_cpus_allowed != 1 &&
1922 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1923 		return;
1924 
1925 	resched_curr(rq);
1926 }
1927 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1928 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1929 {
1930 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1931 		/*
1932 		 * This is OK, because current is on_cpu, which avoids it being
1933 		 * picked for load-balance and preemption/IRQs are still
1934 		 * disabled avoiding further scheduler activity on it and we've
1935 		 * not yet started the picking loop.
1936 		 */
1937 		rq_unpin_lock(rq, rf);
1938 		pull_dl_task(rq);
1939 		rq_repin_lock(rq, rf);
1940 	}
1941 
1942 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1943 }
1944 #endif /* CONFIG_SMP */
1945 
1946 /*
1947  * Only called when both the current and waking task are -deadline
1948  * tasks.
1949  */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)1950 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
1951 				  int flags)
1952 {
1953 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1954 		resched_curr(rq);
1955 		return;
1956 	}
1957 
1958 #ifdef CONFIG_SMP
1959 	/*
1960 	 * In the unlikely case current and p have the same deadline
1961 	 * let us try to decide what's the best thing to do...
1962 	 */
1963 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1964 	    !test_tsk_need_resched(rq->curr))
1965 		check_preempt_equal_dl(rq, p);
1966 #endif /* CONFIG_SMP */
1967 }
1968 
1969 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1970 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1971 {
1972 	hrtick_start(rq, p->dl.runtime);
1973 }
1974 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1975 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1976 {
1977 }
1978 #endif
1979 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1980 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1981 {
1982 	struct sched_dl_entity *dl_se = &p->dl;
1983 	struct dl_rq *dl_rq = &rq->dl;
1984 
1985 	p->se.exec_start = rq_clock_task(rq);
1986 	if (on_dl_rq(&p->dl))
1987 		update_stats_wait_end_dl(dl_rq, dl_se);
1988 
1989 	/* You can't push away the running task */
1990 	dequeue_pushable_dl_task(rq, p);
1991 
1992 	if (!first)
1993 		return;
1994 
1995 	if (hrtick_enabled_dl(rq))
1996 		start_hrtick_dl(rq, p);
1997 
1998 	if (rq->curr->sched_class != &dl_sched_class)
1999 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2000 
2001 	deadline_queue_push_tasks(rq);
2002 }
2003 
pick_next_dl_entity(struct dl_rq * dl_rq)2004 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2005 {
2006 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2007 
2008 	if (!left)
2009 		return NULL;
2010 
2011 	return __node_2_dle(left);
2012 }
2013 
pick_task_dl(struct rq * rq)2014 static struct task_struct *pick_task_dl(struct rq *rq)
2015 {
2016 	struct sched_dl_entity *dl_se;
2017 	struct dl_rq *dl_rq = &rq->dl;
2018 	struct task_struct *p;
2019 
2020 	if (!sched_dl_runnable(rq))
2021 		return NULL;
2022 
2023 	dl_se = pick_next_dl_entity(dl_rq);
2024 	WARN_ON_ONCE(!dl_se);
2025 	p = dl_task_of(dl_se);
2026 
2027 	return p;
2028 }
2029 
pick_next_task_dl(struct rq * rq)2030 static struct task_struct *pick_next_task_dl(struct rq *rq)
2031 {
2032 	struct task_struct *p;
2033 
2034 	p = pick_task_dl(rq);
2035 	if (p)
2036 		set_next_task_dl(rq, p, true);
2037 
2038 	return p;
2039 }
2040 
put_prev_task_dl(struct rq * rq,struct task_struct * p)2041 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2042 {
2043 	struct sched_dl_entity *dl_se = &p->dl;
2044 	struct dl_rq *dl_rq = &rq->dl;
2045 
2046 	if (on_dl_rq(&p->dl))
2047 		update_stats_wait_start_dl(dl_rq, dl_se);
2048 
2049 	update_curr_dl(rq);
2050 
2051 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2052 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2053 		enqueue_pushable_dl_task(rq, p);
2054 }
2055 
2056 /*
2057  * scheduler tick hitting a task of our scheduling class.
2058  *
2059  * NOTE: This function can be called remotely by the tick offload that
2060  * goes along full dynticks. Therefore no local assumption can be made
2061  * and everything must be accessed through the @rq and @curr passed in
2062  * parameters.
2063  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2064 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2065 {
2066 	update_curr_dl(rq);
2067 
2068 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2069 	/*
2070 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2071 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2072 	 * be set and schedule() will start a new hrtick for the next task.
2073 	 */
2074 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2075 	    is_leftmost(p, &rq->dl))
2076 		start_hrtick_dl(rq, p);
2077 }
2078 
task_fork_dl(struct task_struct * p)2079 static void task_fork_dl(struct task_struct *p)
2080 {
2081 	/*
2082 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2083 	 * sched_fork()
2084 	 */
2085 }
2086 
2087 #ifdef CONFIG_SMP
2088 
2089 /* Only try algorithms three times */
2090 #define DL_MAX_TRIES 3
2091 
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2092 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2093 {
2094 	if (!task_on_cpu(rq, p) &&
2095 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2096 		return 1;
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Return the earliest pushable rq's task, which is suitable to be executed
2102  * on the CPU, NULL otherwise:
2103  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2104 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2105 {
2106 	struct task_struct *p = NULL;
2107 	struct rb_node *next_node;
2108 
2109 	if (!has_pushable_dl_tasks(rq))
2110 		return NULL;
2111 
2112 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2113 
2114 next_node:
2115 	if (next_node) {
2116 		p = __node_2_pdl(next_node);
2117 
2118 		if (pick_dl_task(rq, p, cpu))
2119 			return p;
2120 
2121 		next_node = rb_next(next_node);
2122 		goto next_node;
2123 	}
2124 
2125 	return NULL;
2126 }
2127 
2128 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2129 
find_later_rq(struct task_struct * task)2130 static int find_later_rq(struct task_struct *task)
2131 {
2132 	struct sched_domain *sd;
2133 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2134 	int this_cpu = smp_processor_id();
2135 	int cpu = task_cpu(task);
2136 
2137 	/* Make sure the mask is initialized first */
2138 	if (unlikely(!later_mask))
2139 		return -1;
2140 
2141 	if (task->nr_cpus_allowed == 1)
2142 		return -1;
2143 
2144 	/*
2145 	 * We have to consider system topology and task affinity
2146 	 * first, then we can look for a suitable CPU.
2147 	 */
2148 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2149 		return -1;
2150 
2151 	/*
2152 	 * If we are here, some targets have been found, including
2153 	 * the most suitable which is, among the runqueues where the
2154 	 * current tasks have later deadlines than the task's one, the
2155 	 * rq with the latest possible one.
2156 	 *
2157 	 * Now we check how well this matches with task's
2158 	 * affinity and system topology.
2159 	 *
2160 	 * The last CPU where the task run is our first
2161 	 * guess, since it is most likely cache-hot there.
2162 	 */
2163 	if (cpumask_test_cpu(cpu, later_mask))
2164 		return cpu;
2165 	/*
2166 	 * Check if this_cpu is to be skipped (i.e., it is
2167 	 * not in the mask) or not.
2168 	 */
2169 	if (!cpumask_test_cpu(this_cpu, later_mask))
2170 		this_cpu = -1;
2171 
2172 	rcu_read_lock();
2173 	for_each_domain(cpu, sd) {
2174 		if (sd->flags & SD_WAKE_AFFINE) {
2175 			int best_cpu;
2176 
2177 			/*
2178 			 * If possible, preempting this_cpu is
2179 			 * cheaper than migrating.
2180 			 */
2181 			if (this_cpu != -1 &&
2182 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2183 				rcu_read_unlock();
2184 				return this_cpu;
2185 			}
2186 
2187 			best_cpu = cpumask_any_and_distribute(later_mask,
2188 							      sched_domain_span(sd));
2189 			/*
2190 			 * Last chance: if a CPU being in both later_mask
2191 			 * and current sd span is valid, that becomes our
2192 			 * choice. Of course, the latest possible CPU is
2193 			 * already under consideration through later_mask.
2194 			 */
2195 			if (best_cpu < nr_cpu_ids) {
2196 				rcu_read_unlock();
2197 				return best_cpu;
2198 			}
2199 		}
2200 	}
2201 	rcu_read_unlock();
2202 
2203 	/*
2204 	 * At this point, all our guesses failed, we just return
2205 	 * 'something', and let the caller sort the things out.
2206 	 */
2207 	if (this_cpu != -1)
2208 		return this_cpu;
2209 
2210 	cpu = cpumask_any_distribute(later_mask);
2211 	if (cpu < nr_cpu_ids)
2212 		return cpu;
2213 
2214 	return -1;
2215 }
2216 
2217 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2218 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2219 {
2220 	struct rq *later_rq = NULL;
2221 	int tries;
2222 	int cpu;
2223 
2224 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2225 		cpu = find_later_rq(task);
2226 
2227 		if ((cpu == -1) || (cpu == rq->cpu))
2228 			break;
2229 
2230 		later_rq = cpu_rq(cpu);
2231 
2232 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2233 			/*
2234 			 * Target rq has tasks of equal or earlier deadline,
2235 			 * retrying does not release any lock and is unlikely
2236 			 * to yield a different result.
2237 			 */
2238 			later_rq = NULL;
2239 			break;
2240 		}
2241 
2242 		/* Retry if something changed. */
2243 		if (double_lock_balance(rq, later_rq)) {
2244 			if (unlikely(task_rq(task) != rq ||
2245 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2246 				     task_on_cpu(rq, task) ||
2247 				     !dl_task(task) ||
2248 				     is_migration_disabled(task) ||
2249 				     !task_on_rq_queued(task))) {
2250 				double_unlock_balance(rq, later_rq);
2251 				later_rq = NULL;
2252 				break;
2253 			}
2254 		}
2255 
2256 		/*
2257 		 * If the rq we found has no -deadline task, or
2258 		 * its earliest one has a later deadline than our
2259 		 * task, the rq is a good one.
2260 		 */
2261 		if (dl_task_is_earliest_deadline(task, later_rq))
2262 			break;
2263 
2264 		/* Otherwise we try again. */
2265 		double_unlock_balance(rq, later_rq);
2266 		later_rq = NULL;
2267 	}
2268 
2269 	return later_rq;
2270 }
2271 
pick_next_pushable_dl_task(struct rq * rq)2272 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2273 {
2274 	struct task_struct *p;
2275 
2276 	if (!has_pushable_dl_tasks(rq))
2277 		return NULL;
2278 
2279 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2280 
2281 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2282 	WARN_ON_ONCE(task_current(rq, p));
2283 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2284 
2285 	WARN_ON_ONCE(!task_on_rq_queued(p));
2286 	WARN_ON_ONCE(!dl_task(p));
2287 
2288 	return p;
2289 }
2290 
2291 /*
2292  * See if the non running -deadline tasks on this rq
2293  * can be sent to some other CPU where they can preempt
2294  * and start executing.
2295  */
push_dl_task(struct rq * rq)2296 static int push_dl_task(struct rq *rq)
2297 {
2298 	struct task_struct *next_task;
2299 	struct rq *later_rq;
2300 	int ret = 0;
2301 
2302 	if (!rq->dl.overloaded)
2303 		return 0;
2304 
2305 	next_task = pick_next_pushable_dl_task(rq);
2306 	if (!next_task)
2307 		return 0;
2308 
2309 retry:
2310 	/*
2311 	 * If next_task preempts rq->curr, and rq->curr
2312 	 * can move away, it makes sense to just reschedule
2313 	 * without going further in pushing next_task.
2314 	 */
2315 	if (dl_task(rq->curr) &&
2316 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2317 	    rq->curr->nr_cpus_allowed > 1) {
2318 		resched_curr(rq);
2319 		return 0;
2320 	}
2321 
2322 	if (is_migration_disabled(next_task))
2323 		return 0;
2324 
2325 	if (WARN_ON(next_task == rq->curr))
2326 		return 0;
2327 
2328 	/* We might release rq lock */
2329 	get_task_struct(next_task);
2330 
2331 	/* Will lock the rq it'll find */
2332 	later_rq = find_lock_later_rq(next_task, rq);
2333 	if (!later_rq) {
2334 		struct task_struct *task;
2335 
2336 		/*
2337 		 * We must check all this again, since
2338 		 * find_lock_later_rq releases rq->lock and it is
2339 		 * then possible that next_task has migrated.
2340 		 */
2341 		task = pick_next_pushable_dl_task(rq);
2342 		if (task == next_task) {
2343 			/*
2344 			 * The task is still there. We don't try
2345 			 * again, some other CPU will pull it when ready.
2346 			 */
2347 			goto out;
2348 		}
2349 
2350 		if (!task)
2351 			/* No more tasks */
2352 			goto out;
2353 
2354 		put_task_struct(next_task);
2355 		next_task = task;
2356 		goto retry;
2357 	}
2358 
2359 	deactivate_task(rq, next_task, 0);
2360 	set_task_cpu(next_task, later_rq->cpu);
2361 	activate_task(later_rq, next_task, 0);
2362 	ret = 1;
2363 
2364 	resched_curr(later_rq);
2365 
2366 	double_unlock_balance(rq, later_rq);
2367 
2368 out:
2369 	put_task_struct(next_task);
2370 
2371 	return ret;
2372 }
2373 
push_dl_tasks(struct rq * rq)2374 static void push_dl_tasks(struct rq *rq)
2375 {
2376 	/* push_dl_task() will return true if it moved a -deadline task */
2377 	while (push_dl_task(rq))
2378 		;
2379 }
2380 
pull_dl_task(struct rq * this_rq)2381 static void pull_dl_task(struct rq *this_rq)
2382 {
2383 	int this_cpu = this_rq->cpu, cpu;
2384 	struct task_struct *p, *push_task;
2385 	bool resched = false;
2386 	struct rq *src_rq;
2387 	u64 dmin = LONG_MAX;
2388 
2389 	if (likely(!dl_overloaded(this_rq)))
2390 		return;
2391 
2392 	/*
2393 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2394 	 * see overloaded we must also see the dlo_mask bit.
2395 	 */
2396 	smp_rmb();
2397 
2398 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2399 		if (this_cpu == cpu)
2400 			continue;
2401 
2402 		src_rq = cpu_rq(cpu);
2403 
2404 		/*
2405 		 * It looks racy, abd it is! However, as in sched_rt.c,
2406 		 * we are fine with this.
2407 		 */
2408 		if (this_rq->dl.dl_nr_running &&
2409 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2410 				   src_rq->dl.earliest_dl.next))
2411 			continue;
2412 
2413 		/* Might drop this_rq->lock */
2414 		push_task = NULL;
2415 		double_lock_balance(this_rq, src_rq);
2416 
2417 		/*
2418 		 * If there are no more pullable tasks on the
2419 		 * rq, we're done with it.
2420 		 */
2421 		if (src_rq->dl.dl_nr_running <= 1)
2422 			goto skip;
2423 
2424 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2425 
2426 		/*
2427 		 * We found a task to be pulled if:
2428 		 *  - it preempts our current (if there's one),
2429 		 *  - it will preempt the last one we pulled (if any).
2430 		 */
2431 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2432 		    dl_task_is_earliest_deadline(p, this_rq)) {
2433 			WARN_ON(p == src_rq->curr);
2434 			WARN_ON(!task_on_rq_queued(p));
2435 
2436 			/*
2437 			 * Then we pull iff p has actually an earlier
2438 			 * deadline than the current task of its runqueue.
2439 			 */
2440 			if (dl_time_before(p->dl.deadline,
2441 					   src_rq->curr->dl.deadline))
2442 				goto skip;
2443 
2444 			if (is_migration_disabled(p)) {
2445 				push_task = get_push_task(src_rq);
2446 			} else {
2447 				deactivate_task(src_rq, p, 0);
2448 				set_task_cpu(p, this_cpu);
2449 				activate_task(this_rq, p, 0);
2450 				dmin = p->dl.deadline;
2451 				resched = true;
2452 			}
2453 
2454 			/* Is there any other task even earlier? */
2455 		}
2456 skip:
2457 		double_unlock_balance(this_rq, src_rq);
2458 
2459 		if (push_task) {
2460 			preempt_disable();
2461 			raw_spin_rq_unlock(this_rq);
2462 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2463 					    push_task, &src_rq->push_work);
2464 			preempt_enable();
2465 			raw_spin_rq_lock(this_rq);
2466 		}
2467 	}
2468 
2469 	if (resched)
2470 		resched_curr(this_rq);
2471 }
2472 
2473 /*
2474  * Since the task is not running and a reschedule is not going to happen
2475  * anytime soon on its runqueue, we try pushing it away now.
2476  */
task_woken_dl(struct rq * rq,struct task_struct * p)2477 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2478 {
2479 	if (!task_on_cpu(rq, p) &&
2480 	    !test_tsk_need_resched(rq->curr) &&
2481 	    p->nr_cpus_allowed > 1 &&
2482 	    dl_task(rq->curr) &&
2483 	    (rq->curr->nr_cpus_allowed < 2 ||
2484 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2485 		push_dl_tasks(rq);
2486 	}
2487 }
2488 
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2489 static void set_cpus_allowed_dl(struct task_struct *p,
2490 				struct affinity_context *ctx)
2491 {
2492 	struct root_domain *src_rd;
2493 	struct rq *rq;
2494 
2495 	WARN_ON_ONCE(!dl_task(p));
2496 
2497 	rq = task_rq(p);
2498 	src_rd = rq->rd;
2499 	/*
2500 	 * Migrating a SCHED_DEADLINE task between exclusive
2501 	 * cpusets (different root_domains) entails a bandwidth
2502 	 * update. We already made space for us in the destination
2503 	 * domain (see cpuset_can_attach()).
2504 	 */
2505 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2506 		struct dl_bw *src_dl_b;
2507 
2508 		src_dl_b = dl_bw_of(cpu_of(rq));
2509 		/*
2510 		 * We now free resources of the root_domain we are migrating
2511 		 * off. In the worst case, sched_setattr() may temporary fail
2512 		 * until we complete the update.
2513 		 */
2514 		raw_spin_lock(&src_dl_b->lock);
2515 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2516 		raw_spin_unlock(&src_dl_b->lock);
2517 	}
2518 
2519 	set_cpus_allowed_common(p, ctx);
2520 }
2521 
2522 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2523 static void rq_online_dl(struct rq *rq)
2524 {
2525 	if (rq->dl.overloaded)
2526 		dl_set_overload(rq);
2527 
2528 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2529 	if (rq->dl.dl_nr_running > 0)
2530 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2531 }
2532 
2533 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2534 static void rq_offline_dl(struct rq *rq)
2535 {
2536 	if (rq->dl.overloaded)
2537 		dl_clear_overload(rq);
2538 
2539 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2540 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2541 }
2542 
init_sched_dl_class(void)2543 void __init init_sched_dl_class(void)
2544 {
2545 	unsigned int i;
2546 
2547 	for_each_possible_cpu(i)
2548 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2549 					GFP_KERNEL, cpu_to_node(i));
2550 }
2551 
dl_add_task_root_domain(struct task_struct * p)2552 void dl_add_task_root_domain(struct task_struct *p)
2553 {
2554 	struct rq_flags rf;
2555 	struct rq *rq;
2556 	struct dl_bw *dl_b;
2557 
2558 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2559 	if (!dl_task(p)) {
2560 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2561 		return;
2562 	}
2563 
2564 	rq = __task_rq_lock(p, &rf);
2565 
2566 	dl_b = &rq->rd->dl_bw;
2567 	raw_spin_lock(&dl_b->lock);
2568 
2569 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2570 
2571 	raw_spin_unlock(&dl_b->lock);
2572 
2573 	task_rq_unlock(rq, p, &rf);
2574 }
2575 
dl_clear_root_domain(struct root_domain * rd)2576 void dl_clear_root_domain(struct root_domain *rd)
2577 {
2578 	unsigned long flags;
2579 
2580 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2581 	rd->dl_bw.total_bw = 0;
2582 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2583 }
2584 
2585 #endif /* CONFIG_SMP */
2586 
switched_from_dl(struct rq * rq,struct task_struct * p)2587 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2588 {
2589 	/*
2590 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2591 	 * time is in the future). If the task switches back to dl before
2592 	 * the "inactive timer" fires, it can continue to consume its current
2593 	 * runtime using its current deadline. If it stays outside of
2594 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2595 	 * will reset the task parameters.
2596 	 */
2597 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2598 		task_non_contending(&p->dl);
2599 
2600 	/*
2601 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2602 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2603 	 */
2604 	dec_dl_tasks_cs(p);
2605 
2606 	if (!task_on_rq_queued(p)) {
2607 		/*
2608 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2609 		 * might migrate away from this rq while continuing to run on
2610 		 * some other class. We need to remove its contribution from
2611 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2612 		 */
2613 		if (p->dl.dl_non_contending)
2614 			sub_running_bw(&p->dl, &rq->dl);
2615 		sub_rq_bw(&p->dl, &rq->dl);
2616 	}
2617 
2618 	/*
2619 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2620 	 * at the 0-lag time, because the task could have been migrated
2621 	 * while SCHED_OTHER in the meanwhile.
2622 	 */
2623 	if (p->dl.dl_non_contending)
2624 		p->dl.dl_non_contending = 0;
2625 
2626 	/*
2627 	 * Since this might be the only -deadline task on the rq,
2628 	 * this is the right place to try to pull some other one
2629 	 * from an overloaded CPU, if any.
2630 	 */
2631 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2632 		return;
2633 
2634 	deadline_queue_pull_task(rq);
2635 }
2636 
2637 /*
2638  * When switching to -deadline, we may overload the rq, then
2639  * we try to push someone off, if possible.
2640  */
switched_to_dl(struct rq * rq,struct task_struct * p)2641 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2642 {
2643 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2644 		put_task_struct(p);
2645 
2646 	/*
2647 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2648 	 * track of that on its cpuset (for correct bandwidth tracking).
2649 	 */
2650 	inc_dl_tasks_cs(p);
2651 
2652 	/* If p is not queued we will update its parameters at next wakeup. */
2653 	if (!task_on_rq_queued(p)) {
2654 		add_rq_bw(&p->dl, &rq->dl);
2655 
2656 		return;
2657 	}
2658 
2659 	if (rq->curr != p) {
2660 #ifdef CONFIG_SMP
2661 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2662 			deadline_queue_push_tasks(rq);
2663 #endif
2664 		if (dl_task(rq->curr))
2665 			wakeup_preempt_dl(rq, p, 0);
2666 		else
2667 			resched_curr(rq);
2668 	} else {
2669 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2670 	}
2671 }
2672 
2673 /*
2674  * If the scheduling parameters of a -deadline task changed,
2675  * a push or pull operation might be needed.
2676  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2677 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2678 			    int oldprio)
2679 {
2680 	if (!task_on_rq_queued(p))
2681 		return;
2682 
2683 #ifdef CONFIG_SMP
2684 	/*
2685 	 * This might be too much, but unfortunately
2686 	 * we don't have the old deadline value, and
2687 	 * we can't argue if the task is increasing
2688 	 * or lowering its prio, so...
2689 	 */
2690 	if (!rq->dl.overloaded)
2691 		deadline_queue_pull_task(rq);
2692 
2693 	if (task_current(rq, p)) {
2694 		/*
2695 		 * If we now have a earlier deadline task than p,
2696 		 * then reschedule, provided p is still on this
2697 		 * runqueue.
2698 		 */
2699 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2700 			resched_curr(rq);
2701 	} else {
2702 		/*
2703 		 * Current may not be deadline in case p was throttled but we
2704 		 * have just replenished it (e.g. rt_mutex_setprio()).
2705 		 *
2706 		 * Otherwise, if p was given an earlier deadline, reschedule.
2707 		 */
2708 		if (!dl_task(rq->curr) ||
2709 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2710 			resched_curr(rq);
2711 	}
2712 #else
2713 	/*
2714 	 * We don't know if p has a earlier or later deadline, so let's blindly
2715 	 * set a (maybe not needed) rescheduling point.
2716 	 */
2717 	resched_curr(rq);
2718 #endif
2719 }
2720 
2721 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)2722 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2723 {
2724 	return p->dl.dl_throttled;
2725 }
2726 #endif
2727 
2728 DEFINE_SCHED_CLASS(dl) = {
2729 
2730 	.enqueue_task		= enqueue_task_dl,
2731 	.dequeue_task		= dequeue_task_dl,
2732 	.yield_task		= yield_task_dl,
2733 
2734 	.wakeup_preempt		= wakeup_preempt_dl,
2735 
2736 	.pick_next_task		= pick_next_task_dl,
2737 	.put_prev_task		= put_prev_task_dl,
2738 	.set_next_task		= set_next_task_dl,
2739 
2740 #ifdef CONFIG_SMP
2741 	.balance		= balance_dl,
2742 	.pick_task		= pick_task_dl,
2743 	.select_task_rq		= select_task_rq_dl,
2744 	.migrate_task_rq	= migrate_task_rq_dl,
2745 	.set_cpus_allowed       = set_cpus_allowed_dl,
2746 	.rq_online              = rq_online_dl,
2747 	.rq_offline             = rq_offline_dl,
2748 	.task_woken		= task_woken_dl,
2749 	.find_lock_rq		= find_lock_later_rq,
2750 #endif
2751 
2752 	.task_tick		= task_tick_dl,
2753 	.task_fork              = task_fork_dl,
2754 
2755 	.prio_changed           = prio_changed_dl,
2756 	.switched_from		= switched_from_dl,
2757 	.switched_to		= switched_to_dl,
2758 
2759 	.update_curr		= update_curr_dl,
2760 #ifdef CONFIG_SCHED_CORE
2761 	.task_is_throttled	= task_is_throttled_dl,
2762 #endif
2763 };
2764 
2765 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2766 static u64 dl_generation;
2767 
sched_dl_global_validate(void)2768 int sched_dl_global_validate(void)
2769 {
2770 	u64 runtime = global_rt_runtime();
2771 	u64 period = global_rt_period();
2772 	u64 new_bw = to_ratio(period, runtime);
2773 	u64 gen = ++dl_generation;
2774 	struct dl_bw *dl_b;
2775 	int cpu, cpus, ret = 0;
2776 	unsigned long flags;
2777 
2778 	/*
2779 	 * Here we want to check the bandwidth not being set to some
2780 	 * value smaller than the currently allocated bandwidth in
2781 	 * any of the root_domains.
2782 	 */
2783 	for_each_possible_cpu(cpu) {
2784 		rcu_read_lock_sched();
2785 
2786 		if (dl_bw_visited(cpu, gen))
2787 			goto next;
2788 
2789 		dl_b = dl_bw_of(cpu);
2790 		cpus = dl_bw_cpus(cpu);
2791 
2792 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2793 		if (new_bw * cpus < dl_b->total_bw)
2794 			ret = -EBUSY;
2795 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2796 
2797 next:
2798 		rcu_read_unlock_sched();
2799 
2800 		if (ret)
2801 			break;
2802 	}
2803 
2804 	return ret;
2805 }
2806 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2807 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2808 {
2809 	if (global_rt_runtime() == RUNTIME_INF) {
2810 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2811 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2812 	} else {
2813 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2814 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2815 		dl_rq->max_bw = dl_rq->extra_bw =
2816 			to_ratio(global_rt_period(), global_rt_runtime());
2817 	}
2818 }
2819 
sched_dl_do_global(void)2820 void sched_dl_do_global(void)
2821 {
2822 	u64 new_bw = -1;
2823 	u64 gen = ++dl_generation;
2824 	struct dl_bw *dl_b;
2825 	int cpu;
2826 	unsigned long flags;
2827 
2828 	if (global_rt_runtime() != RUNTIME_INF)
2829 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2830 
2831 	for_each_possible_cpu(cpu) {
2832 		rcu_read_lock_sched();
2833 
2834 		if (dl_bw_visited(cpu, gen)) {
2835 			rcu_read_unlock_sched();
2836 			continue;
2837 		}
2838 
2839 		dl_b = dl_bw_of(cpu);
2840 
2841 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2842 		dl_b->bw = new_bw;
2843 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2844 
2845 		rcu_read_unlock_sched();
2846 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2847 	}
2848 }
2849 
2850 /*
2851  * We must be sure that accepting a new task (or allowing changing the
2852  * parameters of an existing one) is consistent with the bandwidth
2853  * constraints. If yes, this function also accordingly updates the currently
2854  * allocated bandwidth to reflect the new situation.
2855  *
2856  * This function is called while holding p's rq->lock.
2857  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2858 int sched_dl_overflow(struct task_struct *p, int policy,
2859 		      const struct sched_attr *attr)
2860 {
2861 	u64 period = attr->sched_period ?: attr->sched_deadline;
2862 	u64 runtime = attr->sched_runtime;
2863 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2864 	int cpus, err = -1, cpu = task_cpu(p);
2865 	struct dl_bw *dl_b = dl_bw_of(cpu);
2866 	unsigned long cap;
2867 
2868 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2869 		return 0;
2870 
2871 	/* !deadline task may carry old deadline bandwidth */
2872 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2873 		return 0;
2874 
2875 	/*
2876 	 * Either if a task, enters, leave, or stays -deadline but changes
2877 	 * its parameters, we may need to update accordingly the total
2878 	 * allocated bandwidth of the container.
2879 	 */
2880 	raw_spin_lock(&dl_b->lock);
2881 	cpus = dl_bw_cpus(cpu);
2882 	cap = dl_bw_capacity(cpu);
2883 
2884 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2885 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2886 		if (hrtimer_active(&p->dl.inactive_timer))
2887 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2888 		__dl_add(dl_b, new_bw, cpus);
2889 		err = 0;
2890 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2891 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2892 		/*
2893 		 * XXX this is slightly incorrect: when the task
2894 		 * utilization decreases, we should delay the total
2895 		 * utilization change until the task's 0-lag point.
2896 		 * But this would require to set the task's "inactive
2897 		 * timer" when the task is not inactive.
2898 		 */
2899 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2900 		__dl_add(dl_b, new_bw, cpus);
2901 		dl_change_utilization(p, new_bw);
2902 		err = 0;
2903 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2904 		/*
2905 		 * Do not decrease the total deadline utilization here,
2906 		 * switched_from_dl() will take care to do it at the correct
2907 		 * (0-lag) time.
2908 		 */
2909 		err = 0;
2910 	}
2911 	raw_spin_unlock(&dl_b->lock);
2912 
2913 	return err;
2914 }
2915 
2916 /*
2917  * This function initializes the sched_dl_entity of a newly becoming
2918  * SCHED_DEADLINE task.
2919  *
2920  * Only the static values are considered here, the actual runtime and the
2921  * absolute deadline will be properly calculated when the task is enqueued
2922  * for the first time with its new policy.
2923  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2924 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2925 {
2926 	struct sched_dl_entity *dl_se = &p->dl;
2927 
2928 	dl_se->dl_runtime = attr->sched_runtime;
2929 	dl_se->dl_deadline = attr->sched_deadline;
2930 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2931 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2932 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2933 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2934 }
2935 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2936 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2937 {
2938 	struct sched_dl_entity *dl_se = &p->dl;
2939 
2940 	attr->sched_priority = p->rt_priority;
2941 	attr->sched_runtime = dl_se->dl_runtime;
2942 	attr->sched_deadline = dl_se->dl_deadline;
2943 	attr->sched_period = dl_se->dl_period;
2944 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2945 	attr->sched_flags |= dl_se->flags;
2946 }
2947 
2948 /*
2949  * This function validates the new parameters of a -deadline task.
2950  * We ask for the deadline not being zero, and greater or equal
2951  * than the runtime, as well as the period of being zero or
2952  * greater than deadline. Furthermore, we have to be sure that
2953  * user parameters are above the internal resolution of 1us (we
2954  * check sched_runtime only since it is always the smaller one) and
2955  * below 2^63 ns (we have to check both sched_deadline and
2956  * sched_period, as the latter can be zero).
2957  */
__checkparam_dl(const struct sched_attr * attr)2958 bool __checkparam_dl(const struct sched_attr *attr)
2959 {
2960 	u64 period, max, min;
2961 
2962 	/* special dl tasks don't actually use any parameter */
2963 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2964 		return true;
2965 
2966 	/* deadline != 0 */
2967 	if (attr->sched_deadline == 0)
2968 		return false;
2969 
2970 	/*
2971 	 * Since we truncate DL_SCALE bits, make sure we're at least
2972 	 * that big.
2973 	 */
2974 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2975 		return false;
2976 
2977 	/*
2978 	 * Since we use the MSB for wrap-around and sign issues, make
2979 	 * sure it's not set (mind that period can be equal to zero).
2980 	 */
2981 	if (attr->sched_deadline & (1ULL << 63) ||
2982 	    attr->sched_period & (1ULL << 63))
2983 		return false;
2984 
2985 	period = attr->sched_period;
2986 	if (!period)
2987 		period = attr->sched_deadline;
2988 
2989 	/* runtime <= deadline <= period (if period != 0) */
2990 	if (period < attr->sched_deadline ||
2991 	    attr->sched_deadline < attr->sched_runtime)
2992 		return false;
2993 
2994 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2995 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2996 
2997 	if (period < min || period > max)
2998 		return false;
2999 
3000 	return true;
3001 }
3002 
3003 /*
3004  * This function clears the sched_dl_entity static params.
3005  */
__dl_clear_params(struct sched_dl_entity * dl_se)3006 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3007 {
3008 	dl_se->dl_runtime		= 0;
3009 	dl_se->dl_deadline		= 0;
3010 	dl_se->dl_period		= 0;
3011 	dl_se->flags			= 0;
3012 	dl_se->dl_bw			= 0;
3013 	dl_se->dl_density		= 0;
3014 
3015 	dl_se->dl_throttled		= 0;
3016 	dl_se->dl_yielded		= 0;
3017 	dl_se->dl_non_contending	= 0;
3018 	dl_se->dl_overrun		= 0;
3019 
3020 #ifdef CONFIG_RT_MUTEXES
3021 	dl_se->pi_se			= dl_se;
3022 #endif
3023 }
3024 
init_dl_entity(struct sched_dl_entity * dl_se)3025 void init_dl_entity(struct sched_dl_entity *dl_se)
3026 {
3027 	RB_CLEAR_NODE(&dl_se->rb_node);
3028 	init_dl_task_timer(dl_se);
3029 	init_dl_inactive_task_timer(dl_se);
3030 	__dl_clear_params(dl_se);
3031 }
3032 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3033 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3034 {
3035 	struct sched_dl_entity *dl_se = &p->dl;
3036 
3037 	if (dl_se->dl_runtime != attr->sched_runtime ||
3038 	    dl_se->dl_deadline != attr->sched_deadline ||
3039 	    dl_se->dl_period != attr->sched_period ||
3040 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3041 		return true;
3042 
3043 	return false;
3044 }
3045 
3046 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3047 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3048 				 const struct cpumask *trial)
3049 {
3050 	unsigned long flags, cap;
3051 	struct dl_bw *cur_dl_b;
3052 	int ret = 1;
3053 
3054 	rcu_read_lock_sched();
3055 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3056 	cap = __dl_bw_capacity(trial);
3057 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3058 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3059 		ret = 0;
3060 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3061 	rcu_read_unlock_sched();
3062 
3063 	return ret;
3064 }
3065 
3066 enum dl_bw_request {
3067 	dl_bw_req_check_overflow = 0,
3068 	dl_bw_req_alloc,
3069 	dl_bw_req_free
3070 };
3071 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3072 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3073 {
3074 	unsigned long flags;
3075 	struct dl_bw *dl_b;
3076 	bool overflow = 0;
3077 
3078 	rcu_read_lock_sched();
3079 	dl_b = dl_bw_of(cpu);
3080 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3081 
3082 	if (req == dl_bw_req_free) {
3083 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3084 	} else {
3085 		unsigned long cap = dl_bw_capacity(cpu);
3086 
3087 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3088 
3089 		if (req == dl_bw_req_alloc && !overflow) {
3090 			/*
3091 			 * We reserve space in the destination
3092 			 * root_domain, as we can't fail after this point.
3093 			 * We will free resources in the source root_domain
3094 			 * later on (see set_cpus_allowed_dl()).
3095 			 */
3096 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3097 		}
3098 	}
3099 
3100 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3101 	rcu_read_unlock_sched();
3102 
3103 	return overflow ? -EBUSY : 0;
3104 }
3105 
dl_bw_check_overflow(int cpu)3106 int dl_bw_check_overflow(int cpu)
3107 {
3108 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3109 }
3110 
dl_bw_alloc(int cpu,u64 dl_bw)3111 int dl_bw_alloc(int cpu, u64 dl_bw)
3112 {
3113 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3114 }
3115 
dl_bw_free(int cpu,u64 dl_bw)3116 void dl_bw_free(int cpu, u64 dl_bw)
3117 {
3118 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3119 }
3120 #endif
3121 
3122 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3123 void print_dl_stats(struct seq_file *m, int cpu)
3124 {
3125 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3126 }
3127 #endif /* CONFIG_SCHED_DEBUG */
3128