xref: /openbmc/linux/mm/vmalloc.c (revision 55b7acbd15b15e75c6df468c72177a6b32e648cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
set_nohugeiomap(char * str)55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
set_nohugevmalloc(char * str)68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
is_vmalloc_addr(const void * x)78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(ptep_get(pte)));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 		phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 			     pgtbl_mod_mask *mask)
323 {
324 	pte_t *pte;
325 
326 	pte = pte_offset_kernel(pmd, addr);
327 	do {
328 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 	} while (pte++, addr += PAGE_SIZE, addr != end);
331 	*mask |= PGTBL_PTE_MODIFIED;
332 }
333 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 			     pgtbl_mod_mask *mask)
336 {
337 	pmd_t *pmd;
338 	unsigned long next;
339 	int cleared;
340 
341 	pmd = pmd_offset(pud, addr);
342 	do {
343 		next = pmd_addr_end(addr, end);
344 
345 		cleared = pmd_clear_huge(pmd);
346 		if (cleared || pmd_bad(*pmd))
347 			*mask |= PGTBL_PMD_MODIFIED;
348 
349 		if (cleared)
350 			continue;
351 		if (pmd_none_or_clear_bad(pmd))
352 			continue;
353 		vunmap_pte_range(pmd, addr, next, mask);
354 
355 		cond_resched();
356 	} while (pmd++, addr = next, addr != end);
357 }
358 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 			     pgtbl_mod_mask *mask)
361 {
362 	pud_t *pud;
363 	unsigned long next;
364 	int cleared;
365 
366 	pud = pud_offset(p4d, addr);
367 	do {
368 		next = pud_addr_end(addr, end);
369 
370 		cleared = pud_clear_huge(pud);
371 		if (cleared || pud_bad(*pud))
372 			*mask |= PGTBL_PUD_MODIFIED;
373 
374 		if (cleared)
375 			continue;
376 		if (pud_none_or_clear_bad(pud))
377 			continue;
378 		vunmap_pmd_range(pud, addr, next, mask);
379 	} while (pud++, addr = next, addr != end);
380 }
381 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			     pgtbl_mod_mask *mask)
384 {
385 	p4d_t *p4d;
386 	unsigned long next;
387 
388 	p4d = p4d_offset(pgd, addr);
389 	do {
390 		next = p4d_addr_end(addr, end);
391 
392 		p4d_clear_huge(p4d);
393 		if (p4d_bad(*p4d))
394 			*mask |= PGTBL_P4D_MODIFIED;
395 
396 		if (p4d_none_or_clear_bad(p4d))
397 			continue;
398 		vunmap_pud_range(p4d, addr, next, mask);
399 	} while (p4d++, addr = next, addr != end);
400 }
401 
402 /*
403  * vunmap_range_noflush is similar to vunmap_range, but does not
404  * flush caches or TLBs.
405  *
406  * The caller is responsible for calling flush_cache_vmap() before calling
407  * this function, and flush_tlb_kernel_range after it has returned
408  * successfully (and before the addresses are expected to cause a page fault
409  * or be re-mapped for something else, if TLB flushes are being delayed or
410  * coalesced).
411  *
412  * This is an internal function only. Do not use outside mm/.
413  */
__vunmap_range_noflush(unsigned long start,unsigned long end)414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 	unsigned long next;
417 	pgd_t *pgd;
418 	unsigned long addr = start;
419 	pgtbl_mod_mask mask = 0;
420 
421 	BUG_ON(addr >= end);
422 	pgd = pgd_offset_k(addr);
423 	do {
424 		next = pgd_addr_end(addr, end);
425 		if (pgd_bad(*pgd))
426 			mask |= PGTBL_PGD_MODIFIED;
427 		if (pgd_none_or_clear_bad(pgd))
428 			continue;
429 		vunmap_p4d_range(pgd, addr, next, &mask);
430 	} while (pgd++, addr = next, addr != end);
431 
432 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 		arch_sync_kernel_mappings(start, end);
434 }
435 
vunmap_range_noflush(unsigned long start,unsigned long end)436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 	kmsan_vunmap_range_noflush(start, end);
439 	__vunmap_range_noflush(start, end);
440 }
441 
442 /**
443  * vunmap_range - unmap kernel virtual addresses
444  * @addr: start of the VM area to unmap
445  * @end: end of the VM area to unmap (non-inclusive)
446  *
447  * Clears any present PTEs in the virtual address range, flushes TLBs and
448  * caches. Any subsequent access to the address before it has been re-mapped
449  * is a kernel bug.
450  */
vunmap_range(unsigned long addr,unsigned long end)451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 	flush_cache_vunmap(addr, end);
454 	vunmap_range_noflush(addr, end);
455 	flush_tlb_kernel_range(addr, end);
456 }
457 
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 		pgtbl_mod_mask *mask)
461 {
462 	int err = 0;
463 	pte_t *pte;
464 
465 	/*
466 	 * nr is a running index into the array which helps higher level
467 	 * callers keep track of where we're up to.
468 	 */
469 
470 	pte = pte_alloc_kernel_track(pmd, addr, mask);
471 	if (!pte)
472 		return -ENOMEM;
473 	do {
474 		struct page *page = pages[*nr];
475 
476 		if (WARN_ON(!pte_none(ptep_get(pte)))) {
477 			err = -EBUSY;
478 			break;
479 		}
480 		if (WARN_ON(!page)) {
481 			err = -ENOMEM;
482 			break;
483 		}
484 		if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
485 			err = -EINVAL;
486 			break;
487 		}
488 
489 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
490 		(*nr)++;
491 	} while (pte++, addr += PAGE_SIZE, addr != end);
492 	*mask |= PGTBL_PTE_MODIFIED;
493 
494 	return err;
495 }
496 
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)497 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
498 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
499 		pgtbl_mod_mask *mask)
500 {
501 	pmd_t *pmd;
502 	unsigned long next;
503 
504 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
505 	if (!pmd)
506 		return -ENOMEM;
507 	do {
508 		next = pmd_addr_end(addr, end);
509 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
510 			return -ENOMEM;
511 	} while (pmd++, addr = next, addr != end);
512 	return 0;
513 }
514 
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)515 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
516 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
517 		pgtbl_mod_mask *mask)
518 {
519 	pud_t *pud;
520 	unsigned long next;
521 
522 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
523 	if (!pud)
524 		return -ENOMEM;
525 	do {
526 		next = pud_addr_end(addr, end);
527 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
528 			return -ENOMEM;
529 	} while (pud++, addr = next, addr != end);
530 	return 0;
531 }
532 
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)533 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
534 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
535 		pgtbl_mod_mask *mask)
536 {
537 	p4d_t *p4d;
538 	unsigned long next;
539 
540 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
541 	if (!p4d)
542 		return -ENOMEM;
543 	do {
544 		next = p4d_addr_end(addr, end);
545 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
546 			return -ENOMEM;
547 	} while (p4d++, addr = next, addr != end);
548 	return 0;
549 }
550 
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)551 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
552 		pgprot_t prot, struct page **pages)
553 {
554 	unsigned long start = addr;
555 	pgd_t *pgd;
556 	unsigned long next;
557 	int err = 0;
558 	int nr = 0;
559 	pgtbl_mod_mask mask = 0;
560 
561 	BUG_ON(addr >= end);
562 	pgd = pgd_offset_k(addr);
563 	do {
564 		next = pgd_addr_end(addr, end);
565 		if (pgd_bad(*pgd))
566 			mask |= PGTBL_PGD_MODIFIED;
567 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
568 		if (err)
569 			break;
570 	} while (pgd++, addr = next, addr != end);
571 
572 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
573 		arch_sync_kernel_mappings(start, end);
574 
575 	return err;
576 }
577 
578 /*
579  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
580  * flush caches.
581  *
582  * The caller is responsible for calling flush_cache_vmap() after this
583  * function returns successfully and before the addresses are accessed.
584  *
585  * This is an internal function only. Do not use outside mm/.
586  */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)587 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
588 		pgprot_t prot, struct page **pages, unsigned int page_shift)
589 {
590 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
591 
592 	WARN_ON(page_shift < PAGE_SHIFT);
593 
594 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
595 			page_shift == PAGE_SHIFT)
596 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
597 
598 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
599 		int err;
600 
601 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
602 					page_to_phys(pages[i]), prot,
603 					page_shift);
604 		if (err)
605 			return err;
606 
607 		addr += 1UL << page_shift;
608 	}
609 
610 	return 0;
611 }
612 
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)613 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
614 		pgprot_t prot, struct page **pages, unsigned int page_shift)
615 {
616 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
617 						 page_shift);
618 
619 	if (ret)
620 		return ret;
621 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 }
623 
624 /**
625  * vmap_pages_range - map pages to a kernel virtual address
626  * @addr: start of the VM area to map
627  * @end: end of the VM area to map (non-inclusive)
628  * @prot: page protection flags to use
629  * @pages: pages to map (always PAGE_SIZE pages)
630  * @page_shift: maximum shift that the pages may be mapped with, @pages must
631  * be aligned and contiguous up to at least this shift.
632  *
633  * RETURNS:
634  * 0 on success, -errno on failure.
635  */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)636 static int vmap_pages_range(unsigned long addr, unsigned long end,
637 		pgprot_t prot, struct page **pages, unsigned int page_shift)
638 {
639 	int err;
640 
641 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 	flush_cache_vmap(addr, end);
643 	return err;
644 }
645 
is_vmalloc_or_module_addr(const void * x)646 int is_vmalloc_or_module_addr(const void *x)
647 {
648 	/*
649 	 * ARM, x86-64 and sparc64 put modules in a special place,
650 	 * and fall back on vmalloc() if that fails. Others
651 	 * just put it in the vmalloc space.
652 	 */
653 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
654 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
655 	if (addr >= MODULES_VADDR && addr < MODULES_END)
656 		return 1;
657 #endif
658 	return is_vmalloc_addr(x);
659 }
660 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
661 
662 /*
663  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
664  * return the tail page that corresponds to the base page address, which
665  * matches small vmap mappings.
666  */
vmalloc_to_page(const void * vmalloc_addr)667 struct page *vmalloc_to_page(const void *vmalloc_addr)
668 {
669 	unsigned long addr = (unsigned long) vmalloc_addr;
670 	struct page *page = NULL;
671 	pgd_t *pgd = pgd_offset_k(addr);
672 	p4d_t *p4d;
673 	pud_t *pud;
674 	pmd_t *pmd;
675 	pte_t *ptep, pte;
676 
677 	/*
678 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
679 	 * architectures that do not vmalloc module space
680 	 */
681 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
682 
683 	if (pgd_none(*pgd))
684 		return NULL;
685 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
686 		return NULL; /* XXX: no allowance for huge pgd */
687 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
688 		return NULL;
689 
690 	p4d = p4d_offset(pgd, addr);
691 	if (p4d_none(*p4d))
692 		return NULL;
693 	if (p4d_leaf(*p4d))
694 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
695 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
696 		return NULL;
697 
698 	pud = pud_offset(p4d, addr);
699 	if (pud_none(*pud))
700 		return NULL;
701 	if (pud_leaf(*pud))
702 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
703 	if (WARN_ON_ONCE(pud_bad(*pud)))
704 		return NULL;
705 
706 	pmd = pmd_offset(pud, addr);
707 	if (pmd_none(*pmd))
708 		return NULL;
709 	if (pmd_leaf(*pmd))
710 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
711 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
712 		return NULL;
713 
714 	ptep = pte_offset_kernel(pmd, addr);
715 	pte = ptep_get(ptep);
716 	if (pte_present(pte))
717 		page = pte_page(pte);
718 
719 	return page;
720 }
721 EXPORT_SYMBOL(vmalloc_to_page);
722 
723 /*
724  * Map a vmalloc()-space virtual address to the physical page frame number.
725  */
vmalloc_to_pfn(const void * vmalloc_addr)726 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
727 {
728 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
729 }
730 EXPORT_SYMBOL(vmalloc_to_pfn);
731 
732 
733 /*** Global kva allocator ***/
734 
735 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
736 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
737 
738 
739 static DEFINE_SPINLOCK(vmap_area_lock);
740 static DEFINE_SPINLOCK(free_vmap_area_lock);
741 /* Export for kexec only */
742 LIST_HEAD(vmap_area_list);
743 static struct rb_root vmap_area_root = RB_ROOT;
744 static bool vmap_initialized __read_mostly;
745 
746 static struct rb_root purge_vmap_area_root = RB_ROOT;
747 static LIST_HEAD(purge_vmap_area_list);
748 static DEFINE_SPINLOCK(purge_vmap_area_lock);
749 
750 /*
751  * This kmem_cache is used for vmap_area objects. Instead of
752  * allocating from slab we reuse an object from this cache to
753  * make things faster. Especially in "no edge" splitting of
754  * free block.
755  */
756 static struct kmem_cache *vmap_area_cachep;
757 
758 /*
759  * This linked list is used in pair with free_vmap_area_root.
760  * It gives O(1) access to prev/next to perform fast coalescing.
761  */
762 static LIST_HEAD(free_vmap_area_list);
763 
764 /*
765  * This augment red-black tree represents the free vmap space.
766  * All vmap_area objects in this tree are sorted by va->va_start
767  * address. It is used for allocation and merging when a vmap
768  * object is released.
769  *
770  * Each vmap_area node contains a maximum available free block
771  * of its sub-tree, right or left. Therefore it is possible to
772  * find a lowest match of free area.
773  */
774 static struct rb_root free_vmap_area_root = RB_ROOT;
775 
776 /*
777  * Preload a CPU with one object for "no edge" split case. The
778  * aim is to get rid of allocations from the atomic context, thus
779  * to use more permissive allocation masks.
780  */
781 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
782 
783 static __always_inline unsigned long
va_size(struct vmap_area * va)784 va_size(struct vmap_area *va)
785 {
786 	return (va->va_end - va->va_start);
787 }
788 
789 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)790 get_subtree_max_size(struct rb_node *node)
791 {
792 	struct vmap_area *va;
793 
794 	va = rb_entry_safe(node, struct vmap_area, rb_node);
795 	return va ? va->subtree_max_size : 0;
796 }
797 
798 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
799 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
800 
801 static void reclaim_and_purge_vmap_areas(void);
802 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
803 static void drain_vmap_area_work(struct work_struct *work);
804 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
805 
806 static atomic_long_t nr_vmalloc_pages;
807 
vmalloc_nr_pages(void)808 unsigned long vmalloc_nr_pages(void)
809 {
810 	return atomic_long_read(&nr_vmalloc_pages);
811 }
812 
813 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
find_vmap_area_exceed_addr(unsigned long addr)814 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
815 {
816 	struct vmap_area *va = NULL;
817 	struct rb_node *n = vmap_area_root.rb_node;
818 
819 	addr = (unsigned long)kasan_reset_tag((void *)addr);
820 
821 	while (n) {
822 		struct vmap_area *tmp;
823 
824 		tmp = rb_entry(n, struct vmap_area, rb_node);
825 		if (tmp->va_end > addr) {
826 			va = tmp;
827 			if (tmp->va_start <= addr)
828 				break;
829 
830 			n = n->rb_left;
831 		} else
832 			n = n->rb_right;
833 	}
834 
835 	return va;
836 }
837 
__find_vmap_area(unsigned long addr,struct rb_root * root)838 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
839 {
840 	struct rb_node *n = root->rb_node;
841 
842 	addr = (unsigned long)kasan_reset_tag((void *)addr);
843 
844 	while (n) {
845 		struct vmap_area *va;
846 
847 		va = rb_entry(n, struct vmap_area, rb_node);
848 		if (addr < va->va_start)
849 			n = n->rb_left;
850 		else if (addr >= va->va_end)
851 			n = n->rb_right;
852 		else
853 			return va;
854 	}
855 
856 	return NULL;
857 }
858 
859 /*
860  * This function returns back addresses of parent node
861  * and its left or right link for further processing.
862  *
863  * Otherwise NULL is returned. In that case all further
864  * steps regarding inserting of conflicting overlap range
865  * have to be declined and actually considered as a bug.
866  */
867 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)868 find_va_links(struct vmap_area *va,
869 	struct rb_root *root, struct rb_node *from,
870 	struct rb_node **parent)
871 {
872 	struct vmap_area *tmp_va;
873 	struct rb_node **link;
874 
875 	if (root) {
876 		link = &root->rb_node;
877 		if (unlikely(!*link)) {
878 			*parent = NULL;
879 			return link;
880 		}
881 	} else {
882 		link = &from;
883 	}
884 
885 	/*
886 	 * Go to the bottom of the tree. When we hit the last point
887 	 * we end up with parent rb_node and correct direction, i name
888 	 * it link, where the new va->rb_node will be attached to.
889 	 */
890 	do {
891 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
892 
893 		/*
894 		 * During the traversal we also do some sanity check.
895 		 * Trigger the BUG() if there are sides(left/right)
896 		 * or full overlaps.
897 		 */
898 		if (va->va_end <= tmp_va->va_start)
899 			link = &(*link)->rb_left;
900 		else if (va->va_start >= tmp_va->va_end)
901 			link = &(*link)->rb_right;
902 		else {
903 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
904 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
905 
906 			return NULL;
907 		}
908 	} while (*link);
909 
910 	*parent = &tmp_va->rb_node;
911 	return link;
912 }
913 
914 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)915 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
916 {
917 	struct list_head *list;
918 
919 	if (unlikely(!parent))
920 		/*
921 		 * The red-black tree where we try to find VA neighbors
922 		 * before merging or inserting is empty, i.e. it means
923 		 * there is no free vmap space. Normally it does not
924 		 * happen but we handle this case anyway.
925 		 */
926 		return NULL;
927 
928 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
929 	return (&parent->rb_right == link ? list->next : list);
930 }
931 
932 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)933 __link_va(struct vmap_area *va, struct rb_root *root,
934 	struct rb_node *parent, struct rb_node **link,
935 	struct list_head *head, bool augment)
936 {
937 	/*
938 	 * VA is still not in the list, but we can
939 	 * identify its future previous list_head node.
940 	 */
941 	if (likely(parent)) {
942 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
943 		if (&parent->rb_right != link)
944 			head = head->prev;
945 	}
946 
947 	/* Insert to the rb-tree */
948 	rb_link_node(&va->rb_node, parent, link);
949 	if (augment) {
950 		/*
951 		 * Some explanation here. Just perform simple insertion
952 		 * to the tree. We do not set va->subtree_max_size to
953 		 * its current size before calling rb_insert_augmented().
954 		 * It is because we populate the tree from the bottom
955 		 * to parent levels when the node _is_ in the tree.
956 		 *
957 		 * Therefore we set subtree_max_size to zero after insertion,
958 		 * to let __augment_tree_propagate_from() puts everything to
959 		 * the correct order later on.
960 		 */
961 		rb_insert_augmented(&va->rb_node,
962 			root, &free_vmap_area_rb_augment_cb);
963 		va->subtree_max_size = 0;
964 	} else {
965 		rb_insert_color(&va->rb_node, root);
966 	}
967 
968 	/* Address-sort this list */
969 	list_add(&va->list, head);
970 }
971 
972 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)973 link_va(struct vmap_area *va, struct rb_root *root,
974 	struct rb_node *parent, struct rb_node **link,
975 	struct list_head *head)
976 {
977 	__link_va(va, root, parent, link, head, false);
978 }
979 
980 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)981 link_va_augment(struct vmap_area *va, struct rb_root *root,
982 	struct rb_node *parent, struct rb_node **link,
983 	struct list_head *head)
984 {
985 	__link_va(va, root, parent, link, head, true);
986 }
987 
988 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)989 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
990 {
991 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
992 		return;
993 
994 	if (augment)
995 		rb_erase_augmented(&va->rb_node,
996 			root, &free_vmap_area_rb_augment_cb);
997 	else
998 		rb_erase(&va->rb_node, root);
999 
1000 	list_del_init(&va->list);
1001 	RB_CLEAR_NODE(&va->rb_node);
1002 }
1003 
1004 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1005 unlink_va(struct vmap_area *va, struct rb_root *root)
1006 {
1007 	__unlink_va(va, root, false);
1008 }
1009 
1010 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1011 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1012 {
1013 	__unlink_va(va, root, true);
1014 }
1015 
1016 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1017 /*
1018  * Gets called when remove the node and rotate.
1019  */
1020 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1021 compute_subtree_max_size(struct vmap_area *va)
1022 {
1023 	return max3(va_size(va),
1024 		get_subtree_max_size(va->rb_node.rb_left),
1025 		get_subtree_max_size(va->rb_node.rb_right));
1026 }
1027 
1028 static void
augment_tree_propagate_check(void)1029 augment_tree_propagate_check(void)
1030 {
1031 	struct vmap_area *va;
1032 	unsigned long computed_size;
1033 
1034 	list_for_each_entry(va, &free_vmap_area_list, list) {
1035 		computed_size = compute_subtree_max_size(va);
1036 		if (computed_size != va->subtree_max_size)
1037 			pr_emerg("tree is corrupted: %lu, %lu\n",
1038 				va_size(va), va->subtree_max_size);
1039 	}
1040 }
1041 #endif
1042 
1043 /*
1044  * This function populates subtree_max_size from bottom to upper
1045  * levels starting from VA point. The propagation must be done
1046  * when VA size is modified by changing its va_start/va_end. Or
1047  * in case of newly inserting of VA to the tree.
1048  *
1049  * It means that __augment_tree_propagate_from() must be called:
1050  * - After VA has been inserted to the tree(free path);
1051  * - After VA has been shrunk(allocation path);
1052  * - After VA has been increased(merging path).
1053  *
1054  * Please note that, it does not mean that upper parent nodes
1055  * and their subtree_max_size are recalculated all the time up
1056  * to the root node.
1057  *
1058  *       4--8
1059  *        /\
1060  *       /  \
1061  *      /    \
1062  *    2--2  8--8
1063  *
1064  * For example if we modify the node 4, shrinking it to 2, then
1065  * no any modification is required. If we shrink the node 2 to 1
1066  * its subtree_max_size is updated only, and set to 1. If we shrink
1067  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1068  * node becomes 4--6.
1069  */
1070 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1071 augment_tree_propagate_from(struct vmap_area *va)
1072 {
1073 	/*
1074 	 * Populate the tree from bottom towards the root until
1075 	 * the calculated maximum available size of checked node
1076 	 * is equal to its current one.
1077 	 */
1078 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1079 
1080 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1081 	augment_tree_propagate_check();
1082 #endif
1083 }
1084 
1085 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1086 insert_vmap_area(struct vmap_area *va,
1087 	struct rb_root *root, struct list_head *head)
1088 {
1089 	struct rb_node **link;
1090 	struct rb_node *parent;
1091 
1092 	link = find_va_links(va, root, NULL, &parent);
1093 	if (link)
1094 		link_va(va, root, parent, link, head);
1095 }
1096 
1097 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1098 insert_vmap_area_augment(struct vmap_area *va,
1099 	struct rb_node *from, struct rb_root *root,
1100 	struct list_head *head)
1101 {
1102 	struct rb_node **link;
1103 	struct rb_node *parent;
1104 
1105 	if (from)
1106 		link = find_va_links(va, NULL, from, &parent);
1107 	else
1108 		link = find_va_links(va, root, NULL, &parent);
1109 
1110 	if (link) {
1111 		link_va_augment(va, root, parent, link, head);
1112 		augment_tree_propagate_from(va);
1113 	}
1114 }
1115 
1116 /*
1117  * Merge de-allocated chunk of VA memory with previous
1118  * and next free blocks. If coalesce is not done a new
1119  * free area is inserted. If VA has been merged, it is
1120  * freed.
1121  *
1122  * Please note, it can return NULL in case of overlap
1123  * ranges, followed by WARN() report. Despite it is a
1124  * buggy behaviour, a system can be alive and keep
1125  * ongoing.
1126  */
1127 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1128 __merge_or_add_vmap_area(struct vmap_area *va,
1129 	struct rb_root *root, struct list_head *head, bool augment)
1130 {
1131 	struct vmap_area *sibling;
1132 	struct list_head *next;
1133 	struct rb_node **link;
1134 	struct rb_node *parent;
1135 	bool merged = false;
1136 
1137 	/*
1138 	 * Find a place in the tree where VA potentially will be
1139 	 * inserted, unless it is merged with its sibling/siblings.
1140 	 */
1141 	link = find_va_links(va, root, NULL, &parent);
1142 	if (!link)
1143 		return NULL;
1144 
1145 	/*
1146 	 * Get next node of VA to check if merging can be done.
1147 	 */
1148 	next = get_va_next_sibling(parent, link);
1149 	if (unlikely(next == NULL))
1150 		goto insert;
1151 
1152 	/*
1153 	 * start            end
1154 	 * |                |
1155 	 * |<------VA------>|<-----Next----->|
1156 	 *                  |                |
1157 	 *                  start            end
1158 	 */
1159 	if (next != head) {
1160 		sibling = list_entry(next, struct vmap_area, list);
1161 		if (sibling->va_start == va->va_end) {
1162 			sibling->va_start = va->va_start;
1163 
1164 			/* Free vmap_area object. */
1165 			kmem_cache_free(vmap_area_cachep, va);
1166 
1167 			/* Point to the new merged area. */
1168 			va = sibling;
1169 			merged = true;
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * start            end
1175 	 * |                |
1176 	 * |<-----Prev----->|<------VA------>|
1177 	 *                  |                |
1178 	 *                  start            end
1179 	 */
1180 	if (next->prev != head) {
1181 		sibling = list_entry(next->prev, struct vmap_area, list);
1182 		if (sibling->va_end == va->va_start) {
1183 			/*
1184 			 * If both neighbors are coalesced, it is important
1185 			 * to unlink the "next" node first, followed by merging
1186 			 * with "previous" one. Otherwise the tree might not be
1187 			 * fully populated if a sibling's augmented value is
1188 			 * "normalized" because of rotation operations.
1189 			 */
1190 			if (merged)
1191 				__unlink_va(va, root, augment);
1192 
1193 			sibling->va_end = va->va_end;
1194 
1195 			/* Free vmap_area object. */
1196 			kmem_cache_free(vmap_area_cachep, va);
1197 
1198 			/* Point to the new merged area. */
1199 			va = sibling;
1200 			merged = true;
1201 		}
1202 	}
1203 
1204 insert:
1205 	if (!merged)
1206 		__link_va(va, root, parent, link, head, augment);
1207 
1208 	return va;
1209 }
1210 
1211 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1212 merge_or_add_vmap_area(struct vmap_area *va,
1213 	struct rb_root *root, struct list_head *head)
1214 {
1215 	return __merge_or_add_vmap_area(va, root, head, false);
1216 }
1217 
1218 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1219 merge_or_add_vmap_area_augment(struct vmap_area *va,
1220 	struct rb_root *root, struct list_head *head)
1221 {
1222 	va = __merge_or_add_vmap_area(va, root, head, true);
1223 	if (va)
1224 		augment_tree_propagate_from(va);
1225 
1226 	return va;
1227 }
1228 
1229 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1230 is_within_this_va(struct vmap_area *va, unsigned long size,
1231 	unsigned long align, unsigned long vstart)
1232 {
1233 	unsigned long nva_start_addr;
1234 
1235 	if (va->va_start > vstart)
1236 		nva_start_addr = ALIGN(va->va_start, align);
1237 	else
1238 		nva_start_addr = ALIGN(vstart, align);
1239 
1240 	/* Can be overflowed due to big size or alignment. */
1241 	if (nva_start_addr + size < nva_start_addr ||
1242 			nva_start_addr < vstart)
1243 		return false;
1244 
1245 	return (nva_start_addr + size <= va->va_end);
1246 }
1247 
1248 /*
1249  * Find the first free block(lowest start address) in the tree,
1250  * that will accomplish the request corresponding to passing
1251  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1252  * a search length is adjusted to account for worst case alignment
1253  * overhead.
1254  */
1255 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1256 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1257 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1258 {
1259 	struct vmap_area *va;
1260 	struct rb_node *node;
1261 	unsigned long length;
1262 
1263 	/* Start from the root. */
1264 	node = root->rb_node;
1265 
1266 	/* Adjust the search size for alignment overhead. */
1267 	length = adjust_search_size ? size + align - 1 : size;
1268 
1269 	while (node) {
1270 		va = rb_entry(node, struct vmap_area, rb_node);
1271 
1272 		if (get_subtree_max_size(node->rb_left) >= length &&
1273 				vstart < va->va_start) {
1274 			node = node->rb_left;
1275 		} else {
1276 			if (is_within_this_va(va, size, align, vstart))
1277 				return va;
1278 
1279 			/*
1280 			 * Does not make sense to go deeper towards the right
1281 			 * sub-tree if it does not have a free block that is
1282 			 * equal or bigger to the requested search length.
1283 			 */
1284 			if (get_subtree_max_size(node->rb_right) >= length) {
1285 				node = node->rb_right;
1286 				continue;
1287 			}
1288 
1289 			/*
1290 			 * OK. We roll back and find the first right sub-tree,
1291 			 * that will satisfy the search criteria. It can happen
1292 			 * due to "vstart" restriction or an alignment overhead
1293 			 * that is bigger then PAGE_SIZE.
1294 			 */
1295 			while ((node = rb_parent(node))) {
1296 				va = rb_entry(node, struct vmap_area, rb_node);
1297 				if (is_within_this_va(va, size, align, vstart))
1298 					return va;
1299 
1300 				if (get_subtree_max_size(node->rb_right) >= length &&
1301 						vstart <= va->va_start) {
1302 					/*
1303 					 * Shift the vstart forward. Please note, we update it with
1304 					 * parent's start address adding "1" because we do not want
1305 					 * to enter same sub-tree after it has already been checked
1306 					 * and no suitable free block found there.
1307 					 */
1308 					vstart = va->va_start + 1;
1309 					node = node->rb_right;
1310 					break;
1311 				}
1312 			}
1313 		}
1314 	}
1315 
1316 	return NULL;
1317 }
1318 
1319 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1320 #include <linux/random.h>
1321 
1322 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1323 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1324 	unsigned long align, unsigned long vstart)
1325 {
1326 	struct vmap_area *va;
1327 
1328 	list_for_each_entry(va, head, list) {
1329 		if (!is_within_this_va(va, size, align, vstart))
1330 			continue;
1331 
1332 		return va;
1333 	}
1334 
1335 	return NULL;
1336 }
1337 
1338 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1339 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1340 			     unsigned long size, unsigned long align)
1341 {
1342 	struct vmap_area *va_1, *va_2;
1343 	unsigned long vstart;
1344 	unsigned int rnd;
1345 
1346 	get_random_bytes(&rnd, sizeof(rnd));
1347 	vstart = VMALLOC_START + rnd;
1348 
1349 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1350 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1351 
1352 	if (va_1 != va_2)
1353 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1354 			va_1, va_2, vstart);
1355 }
1356 #endif
1357 
1358 enum fit_type {
1359 	NOTHING_FIT = 0,
1360 	FL_FIT_TYPE = 1,	/* full fit */
1361 	LE_FIT_TYPE = 2,	/* left edge fit */
1362 	RE_FIT_TYPE = 3,	/* right edge fit */
1363 	NE_FIT_TYPE = 4		/* no edge fit */
1364 };
1365 
1366 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1367 classify_va_fit_type(struct vmap_area *va,
1368 	unsigned long nva_start_addr, unsigned long size)
1369 {
1370 	enum fit_type type;
1371 
1372 	/* Check if it is within VA. */
1373 	if (nva_start_addr < va->va_start ||
1374 			nva_start_addr + size > va->va_end)
1375 		return NOTHING_FIT;
1376 
1377 	/* Now classify. */
1378 	if (va->va_start == nva_start_addr) {
1379 		if (va->va_end == nva_start_addr + size)
1380 			type = FL_FIT_TYPE;
1381 		else
1382 			type = LE_FIT_TYPE;
1383 	} else if (va->va_end == nva_start_addr + size) {
1384 		type = RE_FIT_TYPE;
1385 	} else {
1386 		type = NE_FIT_TYPE;
1387 	}
1388 
1389 	return type;
1390 }
1391 
1392 static __always_inline int
adjust_va_to_fit_type(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1393 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1394 		      struct vmap_area *va, unsigned long nva_start_addr,
1395 		      unsigned long size)
1396 {
1397 	struct vmap_area *lva = NULL;
1398 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1399 
1400 	if (type == FL_FIT_TYPE) {
1401 		/*
1402 		 * No need to split VA, it fully fits.
1403 		 *
1404 		 * |               |
1405 		 * V      NVA      V
1406 		 * |---------------|
1407 		 */
1408 		unlink_va_augment(va, root);
1409 		kmem_cache_free(vmap_area_cachep, va);
1410 	} else if (type == LE_FIT_TYPE) {
1411 		/*
1412 		 * Split left edge of fit VA.
1413 		 *
1414 		 * |       |
1415 		 * V  NVA  V   R
1416 		 * |-------|-------|
1417 		 */
1418 		va->va_start += size;
1419 	} else if (type == RE_FIT_TYPE) {
1420 		/*
1421 		 * Split right edge of fit VA.
1422 		 *
1423 		 *         |       |
1424 		 *     L   V  NVA  V
1425 		 * |-------|-------|
1426 		 */
1427 		va->va_end = nva_start_addr;
1428 	} else if (type == NE_FIT_TYPE) {
1429 		/*
1430 		 * Split no edge of fit VA.
1431 		 *
1432 		 *     |       |
1433 		 *   L V  NVA  V R
1434 		 * |---|-------|---|
1435 		 */
1436 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1437 		if (unlikely(!lva)) {
1438 			/*
1439 			 * For percpu allocator we do not do any pre-allocation
1440 			 * and leave it as it is. The reason is it most likely
1441 			 * never ends up with NE_FIT_TYPE splitting. In case of
1442 			 * percpu allocations offsets and sizes are aligned to
1443 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1444 			 * are its main fitting cases.
1445 			 *
1446 			 * There are a few exceptions though, as an example it is
1447 			 * a first allocation (early boot up) when we have "one"
1448 			 * big free space that has to be split.
1449 			 *
1450 			 * Also we can hit this path in case of regular "vmap"
1451 			 * allocations, if "this" current CPU was not preloaded.
1452 			 * See the comment in alloc_vmap_area() why. If so, then
1453 			 * GFP_NOWAIT is used instead to get an extra object for
1454 			 * split purpose. That is rare and most time does not
1455 			 * occur.
1456 			 *
1457 			 * What happens if an allocation gets failed. Basically,
1458 			 * an "overflow" path is triggered to purge lazily freed
1459 			 * areas to free some memory, then, the "retry" path is
1460 			 * triggered to repeat one more time. See more details
1461 			 * in alloc_vmap_area() function.
1462 			 */
1463 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1464 			if (!lva)
1465 				return -1;
1466 		}
1467 
1468 		/*
1469 		 * Build the remainder.
1470 		 */
1471 		lva->va_start = va->va_start;
1472 		lva->va_end = nva_start_addr;
1473 
1474 		/*
1475 		 * Shrink this VA to remaining size.
1476 		 */
1477 		va->va_start = nva_start_addr + size;
1478 	} else {
1479 		return -1;
1480 	}
1481 
1482 	if (type != FL_FIT_TYPE) {
1483 		augment_tree_propagate_from(va);
1484 
1485 		if (lva)	/* type == NE_FIT_TYPE */
1486 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Returns a start address of the newly allocated area, if success.
1494  * Otherwise a vend is returned that indicates failure.
1495  */
1496 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1497 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1498 	unsigned long size, unsigned long align,
1499 	unsigned long vstart, unsigned long vend)
1500 {
1501 	bool adjust_search_size = true;
1502 	unsigned long nva_start_addr;
1503 	struct vmap_area *va;
1504 	int ret;
1505 
1506 	/*
1507 	 * Do not adjust when:
1508 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1509 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1510 	 *      aligned anyway;
1511 	 *   b) a short range where a requested size corresponds to exactly
1512 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1513 	 *      With adjusted search length an allocation would not succeed.
1514 	 */
1515 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1516 		adjust_search_size = false;
1517 
1518 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1519 	if (unlikely(!va))
1520 		return vend;
1521 
1522 	if (va->va_start > vstart)
1523 		nva_start_addr = ALIGN(va->va_start, align);
1524 	else
1525 		nva_start_addr = ALIGN(vstart, align);
1526 
1527 	/* Check the "vend" restriction. */
1528 	if (nva_start_addr + size > vend)
1529 		return vend;
1530 
1531 	/* Update the free vmap_area. */
1532 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1533 	if (WARN_ON_ONCE(ret))
1534 		return vend;
1535 
1536 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1537 	find_vmap_lowest_match_check(root, head, size, align);
1538 #endif
1539 
1540 	return nva_start_addr;
1541 }
1542 
1543 /*
1544  * Free a region of KVA allocated by alloc_vmap_area
1545  */
free_vmap_area(struct vmap_area * va)1546 static void free_vmap_area(struct vmap_area *va)
1547 {
1548 	/*
1549 	 * Remove from the busy tree/list.
1550 	 */
1551 	spin_lock(&vmap_area_lock);
1552 	unlink_va(va, &vmap_area_root);
1553 	spin_unlock(&vmap_area_lock);
1554 
1555 	/*
1556 	 * Insert/Merge it back to the free tree/list.
1557 	 */
1558 	spin_lock(&free_vmap_area_lock);
1559 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1560 	spin_unlock(&free_vmap_area_lock);
1561 }
1562 
1563 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1564 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1565 {
1566 	struct vmap_area *va = NULL;
1567 
1568 	/*
1569 	 * Preload this CPU with one extra vmap_area object. It is used
1570 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1571 	 * a CPU that does an allocation is preloaded.
1572 	 *
1573 	 * We do it in non-atomic context, thus it allows us to use more
1574 	 * permissive allocation masks to be more stable under low memory
1575 	 * condition and high memory pressure.
1576 	 */
1577 	if (!this_cpu_read(ne_fit_preload_node))
1578 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1579 
1580 	spin_lock(lock);
1581 
1582 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1583 		kmem_cache_free(vmap_area_cachep, va);
1584 }
1585 
1586 /*
1587  * Allocate a region of KVA of the specified size and alignment, within the
1588  * vstart and vend.
1589  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags)1590 static struct vmap_area *alloc_vmap_area(unsigned long size,
1591 				unsigned long align,
1592 				unsigned long vstart, unsigned long vend,
1593 				int node, gfp_t gfp_mask,
1594 				unsigned long va_flags)
1595 {
1596 	struct vmap_area *va;
1597 	unsigned long freed;
1598 	unsigned long addr;
1599 	int purged = 0;
1600 	int ret;
1601 
1602 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1603 		return ERR_PTR(-EINVAL);
1604 
1605 	if (unlikely(!vmap_initialized))
1606 		return ERR_PTR(-EBUSY);
1607 
1608 	might_sleep();
1609 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1610 
1611 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1612 	if (unlikely(!va))
1613 		return ERR_PTR(-ENOMEM);
1614 
1615 	/*
1616 	 * Only scan the relevant parts containing pointers to other objects
1617 	 * to avoid false negatives.
1618 	 */
1619 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1620 
1621 retry:
1622 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1623 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1624 		size, align, vstart, vend);
1625 	spin_unlock(&free_vmap_area_lock);
1626 
1627 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1628 
1629 	/*
1630 	 * If an allocation fails, the "vend" address is
1631 	 * returned. Therefore trigger the overflow path.
1632 	 */
1633 	if (unlikely(addr == vend))
1634 		goto overflow;
1635 
1636 	va->va_start = addr;
1637 	va->va_end = addr + size;
1638 	va->vm = NULL;
1639 	va->flags = va_flags;
1640 
1641 	spin_lock(&vmap_area_lock);
1642 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1643 	spin_unlock(&vmap_area_lock);
1644 
1645 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1646 	BUG_ON(va->va_start < vstart);
1647 	BUG_ON(va->va_end > vend);
1648 
1649 	ret = kasan_populate_vmalloc(addr, size);
1650 	if (ret) {
1651 		free_vmap_area(va);
1652 		return ERR_PTR(ret);
1653 	}
1654 
1655 	return va;
1656 
1657 overflow:
1658 	if (!purged) {
1659 		reclaim_and_purge_vmap_areas();
1660 		purged = 1;
1661 		goto retry;
1662 	}
1663 
1664 	freed = 0;
1665 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1666 
1667 	if (freed > 0) {
1668 		purged = 0;
1669 		goto retry;
1670 	}
1671 
1672 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1673 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1674 			size);
1675 
1676 	kmem_cache_free(vmap_area_cachep, va);
1677 	return ERR_PTR(-EBUSY);
1678 }
1679 
register_vmap_purge_notifier(struct notifier_block * nb)1680 int register_vmap_purge_notifier(struct notifier_block *nb)
1681 {
1682 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1683 }
1684 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1685 
unregister_vmap_purge_notifier(struct notifier_block * nb)1686 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1687 {
1688 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1689 }
1690 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1691 
1692 /*
1693  * lazy_max_pages is the maximum amount of virtual address space we gather up
1694  * before attempting to purge with a TLB flush.
1695  *
1696  * There is a tradeoff here: a larger number will cover more kernel page tables
1697  * and take slightly longer to purge, but it will linearly reduce the number of
1698  * global TLB flushes that must be performed. It would seem natural to scale
1699  * this number up linearly with the number of CPUs (because vmapping activity
1700  * could also scale linearly with the number of CPUs), however it is likely
1701  * that in practice, workloads might be constrained in other ways that mean
1702  * vmap activity will not scale linearly with CPUs. Also, I want to be
1703  * conservative and not introduce a big latency on huge systems, so go with
1704  * a less aggressive log scale. It will still be an improvement over the old
1705  * code, and it will be simple to change the scale factor if we find that it
1706  * becomes a problem on bigger systems.
1707  */
lazy_max_pages(void)1708 static unsigned long lazy_max_pages(void)
1709 {
1710 	unsigned int log;
1711 
1712 	log = fls(num_online_cpus());
1713 
1714 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1715 }
1716 
1717 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1718 
1719 /*
1720  * Serialize vmap purging.  There is no actual critical section protected
1721  * by this lock, but we want to avoid concurrent calls for performance
1722  * reasons and to make the pcpu_get_vm_areas more deterministic.
1723  */
1724 static DEFINE_MUTEX(vmap_purge_lock);
1725 
1726 /* for per-CPU blocks */
1727 static void purge_fragmented_blocks_allcpus(void);
1728 
1729 /*
1730  * Purges all lazily-freed vmap areas.
1731  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1732 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1733 {
1734 	unsigned long resched_threshold;
1735 	unsigned int num_purged_areas = 0;
1736 	struct list_head local_purge_list;
1737 	struct vmap_area *va, *n_va;
1738 
1739 	lockdep_assert_held(&vmap_purge_lock);
1740 
1741 	spin_lock(&purge_vmap_area_lock);
1742 	purge_vmap_area_root = RB_ROOT;
1743 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1744 	spin_unlock(&purge_vmap_area_lock);
1745 
1746 	if (unlikely(list_empty(&local_purge_list)))
1747 		goto out;
1748 
1749 	start = min(start,
1750 		list_first_entry(&local_purge_list,
1751 			struct vmap_area, list)->va_start);
1752 
1753 	end = max(end,
1754 		list_last_entry(&local_purge_list,
1755 			struct vmap_area, list)->va_end);
1756 
1757 	flush_tlb_kernel_range(start, end);
1758 	resched_threshold = lazy_max_pages() << 1;
1759 
1760 	spin_lock(&free_vmap_area_lock);
1761 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1762 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1763 		unsigned long orig_start = va->va_start;
1764 		unsigned long orig_end = va->va_end;
1765 
1766 		/*
1767 		 * Finally insert or merge lazily-freed area. It is
1768 		 * detached and there is no need to "unlink" it from
1769 		 * anything.
1770 		 */
1771 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1772 				&free_vmap_area_list);
1773 
1774 		if (!va)
1775 			continue;
1776 
1777 		if (is_vmalloc_or_module_addr((void *)orig_start))
1778 			kasan_release_vmalloc(orig_start, orig_end,
1779 					      va->va_start, va->va_end);
1780 
1781 		atomic_long_sub(nr, &vmap_lazy_nr);
1782 		num_purged_areas++;
1783 
1784 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1785 			cond_resched_lock(&free_vmap_area_lock);
1786 	}
1787 	spin_unlock(&free_vmap_area_lock);
1788 
1789 out:
1790 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1791 	return num_purged_areas > 0;
1792 }
1793 
1794 /*
1795  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1796  */
reclaim_and_purge_vmap_areas(void)1797 static void reclaim_and_purge_vmap_areas(void)
1798 
1799 {
1800 	mutex_lock(&vmap_purge_lock);
1801 	purge_fragmented_blocks_allcpus();
1802 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1803 	mutex_unlock(&vmap_purge_lock);
1804 }
1805 
drain_vmap_area_work(struct work_struct * work)1806 static void drain_vmap_area_work(struct work_struct *work)
1807 {
1808 	unsigned long nr_lazy;
1809 
1810 	do {
1811 		mutex_lock(&vmap_purge_lock);
1812 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1813 		mutex_unlock(&vmap_purge_lock);
1814 
1815 		/* Recheck if further work is required. */
1816 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1817 	} while (nr_lazy > lazy_max_pages());
1818 }
1819 
1820 /*
1821  * Free a vmap area, caller ensuring that the area has been unmapped,
1822  * unlinked and flush_cache_vunmap had been called for the correct
1823  * range previously.
1824  */
free_vmap_area_noflush(struct vmap_area * va)1825 static void free_vmap_area_noflush(struct vmap_area *va)
1826 {
1827 	unsigned long nr_lazy_max = lazy_max_pages();
1828 	unsigned long va_start = va->va_start;
1829 	unsigned long nr_lazy;
1830 
1831 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1832 		return;
1833 
1834 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1835 				PAGE_SHIFT, &vmap_lazy_nr);
1836 
1837 	/*
1838 	 * Merge or place it to the purge tree/list.
1839 	 */
1840 	spin_lock(&purge_vmap_area_lock);
1841 	merge_or_add_vmap_area(va,
1842 		&purge_vmap_area_root, &purge_vmap_area_list);
1843 	spin_unlock(&purge_vmap_area_lock);
1844 
1845 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1846 
1847 	/* After this point, we may free va at any time */
1848 	if (unlikely(nr_lazy > nr_lazy_max))
1849 		schedule_work(&drain_vmap_work);
1850 }
1851 
1852 /*
1853  * Free and unmap a vmap area
1854  */
free_unmap_vmap_area(struct vmap_area * va)1855 static void free_unmap_vmap_area(struct vmap_area *va)
1856 {
1857 	flush_cache_vunmap(va->va_start, va->va_end);
1858 	vunmap_range_noflush(va->va_start, va->va_end);
1859 	if (debug_pagealloc_enabled_static())
1860 		flush_tlb_kernel_range(va->va_start, va->va_end);
1861 
1862 	free_vmap_area_noflush(va);
1863 }
1864 
find_vmap_area(unsigned long addr)1865 struct vmap_area *find_vmap_area(unsigned long addr)
1866 {
1867 	struct vmap_area *va;
1868 
1869 	spin_lock(&vmap_area_lock);
1870 	va = __find_vmap_area(addr, &vmap_area_root);
1871 	spin_unlock(&vmap_area_lock);
1872 
1873 	return va;
1874 }
1875 
find_unlink_vmap_area(unsigned long addr)1876 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1877 {
1878 	struct vmap_area *va;
1879 
1880 	spin_lock(&vmap_area_lock);
1881 	va = __find_vmap_area(addr, &vmap_area_root);
1882 	if (va)
1883 		unlink_va(va, &vmap_area_root);
1884 	spin_unlock(&vmap_area_lock);
1885 
1886 	return va;
1887 }
1888 
1889 /*** Per cpu kva allocator ***/
1890 
1891 /*
1892  * vmap space is limited especially on 32 bit architectures. Ensure there is
1893  * room for at least 16 percpu vmap blocks per CPU.
1894  */
1895 /*
1896  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1897  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1898  * instead (we just need a rough idea)
1899  */
1900 #if BITS_PER_LONG == 32
1901 #define VMALLOC_SPACE		(128UL*1024*1024)
1902 #else
1903 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1904 #endif
1905 
1906 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1907 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1908 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1909 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1910 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1911 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1912 #define VMAP_BBMAP_BITS		\
1913 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1914 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1915 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1916 
1917 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1918 
1919 /*
1920  * Purge threshold to prevent overeager purging of fragmented blocks for
1921  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1922  */
1923 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1924 
1925 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1926 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1927 #define VMAP_FLAGS_MASK		0x3
1928 
1929 struct vmap_block_queue {
1930 	spinlock_t lock;
1931 	struct list_head free;
1932 
1933 	/*
1934 	 * An xarray requires an extra memory dynamically to
1935 	 * be allocated. If it is an issue, we can use rb-tree
1936 	 * instead.
1937 	 */
1938 	struct xarray vmap_blocks;
1939 };
1940 
1941 struct vmap_block {
1942 	spinlock_t lock;
1943 	struct vmap_area *va;
1944 	unsigned long free, dirty;
1945 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1946 	unsigned long dirty_min, dirty_max; /*< dirty range */
1947 	struct list_head free_list;
1948 	struct rcu_head rcu_head;
1949 	struct list_head purge;
1950 	unsigned int cpu;
1951 };
1952 
1953 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1954 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1955 
1956 /*
1957  * In order to fast access to any "vmap_block" associated with a
1958  * specific address, we use a hash.
1959  *
1960  * A per-cpu vmap_block_queue is used in both ways, to serialize
1961  * an access to free block chains among CPUs(alloc path) and it
1962  * also acts as a vmap_block hash(alloc/free paths). It means we
1963  * overload it, since we already have the per-cpu array which is
1964  * used as a hash table. When used as a hash a 'cpu' passed to
1965  * per_cpu() is not actually a CPU but rather a hash index.
1966  *
1967  * A hash function is addr_to_vb_xa() which hashes any address
1968  * to a specific index(in a hash) it belongs to. This then uses a
1969  * per_cpu() macro to access an array with generated index.
1970  *
1971  * An example:
1972  *
1973  *  CPU_1  CPU_2  CPU_0
1974  *    |      |      |
1975  *    V      V      V
1976  * 0     10     20     30     40     50     60
1977  * |------|------|------|------|------|------|...<vmap address space>
1978  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1979  *
1980  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1981  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1982  *
1983  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1984  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1985  *
1986  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1987  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1988  *
1989  * This technique almost always avoids lock contention on insert/remove,
1990  * however xarray spinlocks protect against any contention that remains.
1991  */
1992 static struct xarray *
addr_to_vb_xa(unsigned long addr)1993 addr_to_vb_xa(unsigned long addr)
1994 {
1995 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
1996 
1997 	/*
1998 	 * Please note, nr_cpu_ids points on a highest set
1999 	 * possible bit, i.e. we never invoke cpumask_next()
2000 	 * if an index points on it which is nr_cpu_ids - 1.
2001 	 */
2002 	if (!cpu_possible(index))
2003 		index = cpumask_next(index, cpu_possible_mask);
2004 
2005 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2006 }
2007 
2008 /*
2009  * We should probably have a fallback mechanism to allocate virtual memory
2010  * out of partially filled vmap blocks. However vmap block sizing should be
2011  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2012  * big problem.
2013  */
2014 
addr_to_vb_idx(unsigned long addr)2015 static unsigned long addr_to_vb_idx(unsigned long addr)
2016 {
2017 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2018 	addr /= VMAP_BLOCK_SIZE;
2019 	return addr;
2020 }
2021 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2022 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2023 {
2024 	unsigned long addr;
2025 
2026 	addr = va_start + (pages_off << PAGE_SHIFT);
2027 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2028 	return (void *)addr;
2029 }
2030 
2031 /**
2032  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2033  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2034  * @order:    how many 2^order pages should be occupied in newly allocated block
2035  * @gfp_mask: flags for the page level allocator
2036  *
2037  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2038  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2039 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2040 {
2041 	struct vmap_block_queue *vbq;
2042 	struct vmap_block *vb;
2043 	struct vmap_area *va;
2044 	struct xarray *xa;
2045 	unsigned long vb_idx;
2046 	int node, err;
2047 	void *vaddr;
2048 
2049 	node = numa_node_id();
2050 
2051 	vb = kmalloc_node(sizeof(struct vmap_block),
2052 			gfp_mask & GFP_RECLAIM_MASK, node);
2053 	if (unlikely(!vb))
2054 		return ERR_PTR(-ENOMEM);
2055 
2056 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2057 					VMALLOC_START, VMALLOC_END,
2058 					node, gfp_mask,
2059 					VMAP_RAM|VMAP_BLOCK);
2060 	if (IS_ERR(va)) {
2061 		kfree(vb);
2062 		return ERR_CAST(va);
2063 	}
2064 
2065 	vaddr = vmap_block_vaddr(va->va_start, 0);
2066 	spin_lock_init(&vb->lock);
2067 	vb->va = va;
2068 	/* At least something should be left free */
2069 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2070 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2071 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2072 	vb->dirty = 0;
2073 	vb->dirty_min = VMAP_BBMAP_BITS;
2074 	vb->dirty_max = 0;
2075 	bitmap_set(vb->used_map, 0, (1UL << order));
2076 	INIT_LIST_HEAD(&vb->free_list);
2077 	vb->cpu = raw_smp_processor_id();
2078 
2079 	xa = addr_to_vb_xa(va->va_start);
2080 	vb_idx = addr_to_vb_idx(va->va_start);
2081 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2082 	if (err) {
2083 		kfree(vb);
2084 		free_vmap_area(va);
2085 		return ERR_PTR(err);
2086 	}
2087 	/*
2088 	 * list_add_tail_rcu could happened in another core
2089 	 * rather than vb->cpu due to task migration, which
2090 	 * is safe as list_add_tail_rcu will ensure the list's
2091 	 * integrity together with list_for_each_rcu from read
2092 	 * side.
2093 	 */
2094 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2095 	spin_lock(&vbq->lock);
2096 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2097 	spin_unlock(&vbq->lock);
2098 
2099 	return vaddr;
2100 }
2101 
free_vmap_block(struct vmap_block * vb)2102 static void free_vmap_block(struct vmap_block *vb)
2103 {
2104 	struct vmap_block *tmp;
2105 	struct xarray *xa;
2106 
2107 	xa = addr_to_vb_xa(vb->va->va_start);
2108 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2109 	BUG_ON(tmp != vb);
2110 
2111 	spin_lock(&vmap_area_lock);
2112 	unlink_va(vb->va, &vmap_area_root);
2113 	spin_unlock(&vmap_area_lock);
2114 
2115 	free_vmap_area_noflush(vb->va);
2116 	kfree_rcu(vb, rcu_head);
2117 }
2118 
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2119 static bool purge_fragmented_block(struct vmap_block *vb,
2120 		struct list_head *purge_list, bool force_purge)
2121 {
2122 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2123 
2124 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2125 	    vb->dirty == VMAP_BBMAP_BITS)
2126 		return false;
2127 
2128 	/* Don't overeagerly purge usable blocks unless requested */
2129 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2130 		return false;
2131 
2132 	/* prevent further allocs after releasing lock */
2133 	WRITE_ONCE(vb->free, 0);
2134 	/* prevent purging it again */
2135 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2136 	vb->dirty_min = 0;
2137 	vb->dirty_max = VMAP_BBMAP_BITS;
2138 	spin_lock(&vbq->lock);
2139 	list_del_rcu(&vb->free_list);
2140 	spin_unlock(&vbq->lock);
2141 	list_add_tail(&vb->purge, purge_list);
2142 	return true;
2143 }
2144 
free_purged_blocks(struct list_head * purge_list)2145 static void free_purged_blocks(struct list_head *purge_list)
2146 {
2147 	struct vmap_block *vb, *n_vb;
2148 
2149 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2150 		list_del(&vb->purge);
2151 		free_vmap_block(vb);
2152 	}
2153 }
2154 
purge_fragmented_blocks(int cpu)2155 static void purge_fragmented_blocks(int cpu)
2156 {
2157 	LIST_HEAD(purge);
2158 	struct vmap_block *vb;
2159 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2160 
2161 	rcu_read_lock();
2162 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2163 		unsigned long free = READ_ONCE(vb->free);
2164 		unsigned long dirty = READ_ONCE(vb->dirty);
2165 
2166 		if (free + dirty != VMAP_BBMAP_BITS ||
2167 		    dirty == VMAP_BBMAP_BITS)
2168 			continue;
2169 
2170 		spin_lock(&vb->lock);
2171 		purge_fragmented_block(vb, &purge, true);
2172 		spin_unlock(&vb->lock);
2173 	}
2174 	rcu_read_unlock();
2175 	free_purged_blocks(&purge);
2176 }
2177 
purge_fragmented_blocks_allcpus(void)2178 static void purge_fragmented_blocks_allcpus(void)
2179 {
2180 	int cpu;
2181 
2182 	for_each_possible_cpu(cpu)
2183 		purge_fragmented_blocks(cpu);
2184 }
2185 
vb_alloc(unsigned long size,gfp_t gfp_mask)2186 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2187 {
2188 	struct vmap_block_queue *vbq;
2189 	struct vmap_block *vb;
2190 	void *vaddr = NULL;
2191 	unsigned int order;
2192 
2193 	BUG_ON(offset_in_page(size));
2194 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2195 	if (WARN_ON(size == 0)) {
2196 		/*
2197 		 * Allocating 0 bytes isn't what caller wants since
2198 		 * get_order(0) returns funny result. Just warn and terminate
2199 		 * early.
2200 		 */
2201 		return NULL;
2202 	}
2203 	order = get_order(size);
2204 
2205 	rcu_read_lock();
2206 	vbq = raw_cpu_ptr(&vmap_block_queue);
2207 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2208 		unsigned long pages_off;
2209 
2210 		if (READ_ONCE(vb->free) < (1UL << order))
2211 			continue;
2212 
2213 		spin_lock(&vb->lock);
2214 		if (vb->free < (1UL << order)) {
2215 			spin_unlock(&vb->lock);
2216 			continue;
2217 		}
2218 
2219 		pages_off = VMAP_BBMAP_BITS - vb->free;
2220 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2221 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2222 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2223 		if (vb->free == 0) {
2224 			spin_lock(&vbq->lock);
2225 			list_del_rcu(&vb->free_list);
2226 			spin_unlock(&vbq->lock);
2227 		}
2228 
2229 		spin_unlock(&vb->lock);
2230 		break;
2231 	}
2232 
2233 	rcu_read_unlock();
2234 
2235 	/* Allocate new block if nothing was found */
2236 	if (!vaddr)
2237 		vaddr = new_vmap_block(order, gfp_mask);
2238 
2239 	return vaddr;
2240 }
2241 
vb_free(unsigned long addr,unsigned long size)2242 static void vb_free(unsigned long addr, unsigned long size)
2243 {
2244 	unsigned long offset;
2245 	unsigned int order;
2246 	struct vmap_block *vb;
2247 	struct xarray *xa;
2248 
2249 	BUG_ON(offset_in_page(size));
2250 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2251 
2252 	flush_cache_vunmap(addr, addr + size);
2253 
2254 	order = get_order(size);
2255 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2256 
2257 	xa = addr_to_vb_xa(addr);
2258 	vb = xa_load(xa, addr_to_vb_idx(addr));
2259 
2260 	spin_lock(&vb->lock);
2261 	bitmap_clear(vb->used_map, offset, (1UL << order));
2262 	spin_unlock(&vb->lock);
2263 
2264 	vunmap_range_noflush(addr, addr + size);
2265 
2266 	if (debug_pagealloc_enabled_static())
2267 		flush_tlb_kernel_range(addr, addr + size);
2268 
2269 	spin_lock(&vb->lock);
2270 
2271 	/* Expand the not yet TLB flushed dirty range */
2272 	vb->dirty_min = min(vb->dirty_min, offset);
2273 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2274 
2275 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2276 	if (vb->dirty == VMAP_BBMAP_BITS) {
2277 		BUG_ON(vb->free);
2278 		spin_unlock(&vb->lock);
2279 		free_vmap_block(vb);
2280 	} else
2281 		spin_unlock(&vb->lock);
2282 }
2283 
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2284 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2285 {
2286 	LIST_HEAD(purge_list);
2287 	int cpu;
2288 
2289 	if (unlikely(!vmap_initialized))
2290 		return;
2291 
2292 	mutex_lock(&vmap_purge_lock);
2293 
2294 	for_each_possible_cpu(cpu) {
2295 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2296 		struct vmap_block *vb;
2297 		unsigned long idx;
2298 
2299 		rcu_read_lock();
2300 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2301 			spin_lock(&vb->lock);
2302 
2303 			/*
2304 			 * Try to purge a fragmented block first. If it's
2305 			 * not purgeable, check whether there is dirty
2306 			 * space to be flushed.
2307 			 */
2308 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2309 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2310 				unsigned long va_start = vb->va->va_start;
2311 				unsigned long s, e;
2312 
2313 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2314 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2315 
2316 				start = min(s, start);
2317 				end   = max(e, end);
2318 
2319 				/* Prevent that this is flushed again */
2320 				vb->dirty_min = VMAP_BBMAP_BITS;
2321 				vb->dirty_max = 0;
2322 
2323 				flush = 1;
2324 			}
2325 			spin_unlock(&vb->lock);
2326 		}
2327 		rcu_read_unlock();
2328 	}
2329 	free_purged_blocks(&purge_list);
2330 
2331 	if (!__purge_vmap_area_lazy(start, end) && flush)
2332 		flush_tlb_kernel_range(start, end);
2333 	mutex_unlock(&vmap_purge_lock);
2334 }
2335 
2336 /**
2337  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2338  *
2339  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2340  * to amortize TLB flushing overheads. What this means is that any page you
2341  * have now, may, in a former life, have been mapped into kernel virtual
2342  * address by the vmap layer and so there might be some CPUs with TLB entries
2343  * still referencing that page (additional to the regular 1:1 kernel mapping).
2344  *
2345  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2346  * be sure that none of the pages we have control over will have any aliases
2347  * from the vmap layer.
2348  */
vm_unmap_aliases(void)2349 void vm_unmap_aliases(void)
2350 {
2351 	unsigned long start = ULONG_MAX, end = 0;
2352 	int flush = 0;
2353 
2354 	_vm_unmap_aliases(start, end, flush);
2355 }
2356 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2357 
2358 /**
2359  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2360  * @mem: the pointer returned by vm_map_ram
2361  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2362  */
vm_unmap_ram(const void * mem,unsigned int count)2363 void vm_unmap_ram(const void *mem, unsigned int count)
2364 {
2365 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2366 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2367 	struct vmap_area *va;
2368 
2369 	might_sleep();
2370 	BUG_ON(!addr);
2371 	BUG_ON(addr < VMALLOC_START);
2372 	BUG_ON(addr > VMALLOC_END);
2373 	BUG_ON(!PAGE_ALIGNED(addr));
2374 
2375 	kasan_poison_vmalloc(mem, size);
2376 
2377 	if (likely(count <= VMAP_MAX_ALLOC)) {
2378 		debug_check_no_locks_freed(mem, size);
2379 		vb_free(addr, size);
2380 		return;
2381 	}
2382 
2383 	va = find_unlink_vmap_area(addr);
2384 	if (WARN_ON_ONCE(!va))
2385 		return;
2386 
2387 	debug_check_no_locks_freed((void *)va->va_start,
2388 				    (va->va_end - va->va_start));
2389 	free_unmap_vmap_area(va);
2390 }
2391 EXPORT_SYMBOL(vm_unmap_ram);
2392 
2393 /**
2394  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2395  * @pages: an array of pointers to the pages to be mapped
2396  * @count: number of pages
2397  * @node: prefer to allocate data structures on this node
2398  *
2399  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2400  * faster than vmap so it's good.  But if you mix long-life and short-life
2401  * objects with vm_map_ram(), it could consume lots of address space through
2402  * fragmentation (especially on a 32bit machine).  You could see failures in
2403  * the end.  Please use this function for short-lived objects.
2404  *
2405  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2406  */
vm_map_ram(struct page ** pages,unsigned int count,int node)2407 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2408 {
2409 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2410 	unsigned long addr;
2411 	void *mem;
2412 
2413 	if (likely(count <= VMAP_MAX_ALLOC)) {
2414 		mem = vb_alloc(size, GFP_KERNEL);
2415 		if (IS_ERR(mem))
2416 			return NULL;
2417 		addr = (unsigned long)mem;
2418 	} else {
2419 		struct vmap_area *va;
2420 		va = alloc_vmap_area(size, PAGE_SIZE,
2421 				VMALLOC_START, VMALLOC_END,
2422 				node, GFP_KERNEL, VMAP_RAM);
2423 		if (IS_ERR(va))
2424 			return NULL;
2425 
2426 		addr = va->va_start;
2427 		mem = (void *)addr;
2428 	}
2429 
2430 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2431 				pages, PAGE_SHIFT) < 0) {
2432 		vm_unmap_ram(mem, count);
2433 		return NULL;
2434 	}
2435 
2436 	/*
2437 	 * Mark the pages as accessible, now that they are mapped.
2438 	 * With hardware tag-based KASAN, marking is skipped for
2439 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2440 	 */
2441 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2442 
2443 	return mem;
2444 }
2445 EXPORT_SYMBOL(vm_map_ram);
2446 
2447 static struct vm_struct *vmlist __initdata;
2448 
vm_area_page_order(struct vm_struct * vm)2449 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2450 {
2451 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2452 	return vm->page_order;
2453 #else
2454 	return 0;
2455 #endif
2456 }
2457 
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)2458 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2459 {
2460 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2461 	vm->page_order = order;
2462 #else
2463 	BUG_ON(order != 0);
2464 #endif
2465 }
2466 
2467 /**
2468  * vm_area_add_early - add vmap area early during boot
2469  * @vm: vm_struct to add
2470  *
2471  * This function is used to add fixed kernel vm area to vmlist before
2472  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2473  * should contain proper values and the other fields should be zero.
2474  *
2475  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2476  */
vm_area_add_early(struct vm_struct * vm)2477 void __init vm_area_add_early(struct vm_struct *vm)
2478 {
2479 	struct vm_struct *tmp, **p;
2480 
2481 	BUG_ON(vmap_initialized);
2482 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2483 		if (tmp->addr >= vm->addr) {
2484 			BUG_ON(tmp->addr < vm->addr + vm->size);
2485 			break;
2486 		} else
2487 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2488 	}
2489 	vm->next = *p;
2490 	*p = vm;
2491 }
2492 
2493 /**
2494  * vm_area_register_early - register vmap area early during boot
2495  * @vm: vm_struct to register
2496  * @align: requested alignment
2497  *
2498  * This function is used to register kernel vm area before
2499  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2500  * proper values on entry and other fields should be zero.  On return,
2501  * vm->addr contains the allocated address.
2502  *
2503  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2504  */
vm_area_register_early(struct vm_struct * vm,size_t align)2505 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2506 {
2507 	unsigned long addr = ALIGN(VMALLOC_START, align);
2508 	struct vm_struct *cur, **p;
2509 
2510 	BUG_ON(vmap_initialized);
2511 
2512 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2513 		if ((unsigned long)cur->addr - addr >= vm->size)
2514 			break;
2515 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2516 	}
2517 
2518 	BUG_ON(addr > VMALLOC_END - vm->size);
2519 	vm->addr = (void *)addr;
2520 	vm->next = *p;
2521 	*p = vm;
2522 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2523 }
2524 
vmap_init_free_space(void)2525 static void vmap_init_free_space(void)
2526 {
2527 	unsigned long vmap_start = 1;
2528 	const unsigned long vmap_end = ULONG_MAX;
2529 	struct vmap_area *busy, *free;
2530 
2531 	/*
2532 	 *     B     F     B     B     B     F
2533 	 * -|-----|.....|-----|-----|-----|.....|-
2534 	 *  |           The KVA space           |
2535 	 *  |<--------------------------------->|
2536 	 */
2537 	list_for_each_entry(busy, &vmap_area_list, list) {
2538 		if (busy->va_start - vmap_start > 0) {
2539 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2540 			if (!WARN_ON_ONCE(!free)) {
2541 				free->va_start = vmap_start;
2542 				free->va_end = busy->va_start;
2543 
2544 				insert_vmap_area_augment(free, NULL,
2545 					&free_vmap_area_root,
2546 						&free_vmap_area_list);
2547 			}
2548 		}
2549 
2550 		vmap_start = busy->va_end;
2551 	}
2552 
2553 	if (vmap_end - vmap_start > 0) {
2554 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2555 		if (!WARN_ON_ONCE(!free)) {
2556 			free->va_start = vmap_start;
2557 			free->va_end = vmap_end;
2558 
2559 			insert_vmap_area_augment(free, NULL,
2560 				&free_vmap_area_root,
2561 					&free_vmap_area_list);
2562 		}
2563 	}
2564 }
2565 
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2566 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2567 	struct vmap_area *va, unsigned long flags, const void *caller)
2568 {
2569 	vm->flags = flags;
2570 	vm->addr = (void *)va->va_start;
2571 	vm->size = va->va_end - va->va_start;
2572 	vm->caller = caller;
2573 	va->vm = vm;
2574 }
2575 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2576 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2577 			      unsigned long flags, const void *caller)
2578 {
2579 	spin_lock(&vmap_area_lock);
2580 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2581 	spin_unlock(&vmap_area_lock);
2582 }
2583 
clear_vm_uninitialized_flag(struct vm_struct * vm)2584 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2585 {
2586 	/*
2587 	 * Before removing VM_UNINITIALIZED,
2588 	 * we should make sure that vm has proper values.
2589 	 * Pair with smp_rmb() in show_numa_info().
2590 	 */
2591 	smp_wmb();
2592 	vm->flags &= ~VM_UNINITIALIZED;
2593 }
2594 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2595 static struct vm_struct *__get_vm_area_node(unsigned long size,
2596 		unsigned long align, unsigned long shift, unsigned long flags,
2597 		unsigned long start, unsigned long end, int node,
2598 		gfp_t gfp_mask, const void *caller)
2599 {
2600 	struct vmap_area *va;
2601 	struct vm_struct *area;
2602 	unsigned long requested_size = size;
2603 
2604 	BUG_ON(in_interrupt());
2605 	size = ALIGN(size, 1ul << shift);
2606 	if (unlikely(!size))
2607 		return NULL;
2608 
2609 	if (flags & VM_IOREMAP)
2610 		align = 1ul << clamp_t(int, get_count_order_long(size),
2611 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2612 
2613 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2614 	if (unlikely(!area))
2615 		return NULL;
2616 
2617 	if (!(flags & VM_NO_GUARD))
2618 		size += PAGE_SIZE;
2619 
2620 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2621 	if (IS_ERR(va)) {
2622 		kfree(area);
2623 		return NULL;
2624 	}
2625 
2626 	setup_vmalloc_vm(area, va, flags, caller);
2627 
2628 	/*
2629 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2630 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2631 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2632 	 * getting mapped in __vmalloc_node_range().
2633 	 * With hardware tag-based KASAN, marking is skipped for
2634 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2635 	 */
2636 	if (!(flags & VM_ALLOC))
2637 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2638 						    KASAN_VMALLOC_PROT_NORMAL);
2639 
2640 	return area;
2641 }
2642 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2643 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2644 				       unsigned long start, unsigned long end,
2645 				       const void *caller)
2646 {
2647 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2648 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2649 }
2650 
2651 /**
2652  * get_vm_area - reserve a contiguous kernel virtual area
2653  * @size:	 size of the area
2654  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2655  *
2656  * Search an area of @size in the kernel virtual mapping area,
2657  * and reserved it for out purposes.  Returns the area descriptor
2658  * on success or %NULL on failure.
2659  *
2660  * Return: the area descriptor on success or %NULL on failure.
2661  */
get_vm_area(unsigned long size,unsigned long flags)2662 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2663 {
2664 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2665 				  VMALLOC_START, VMALLOC_END,
2666 				  NUMA_NO_NODE, GFP_KERNEL,
2667 				  __builtin_return_address(0));
2668 }
2669 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2670 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2671 				const void *caller)
2672 {
2673 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2674 				  VMALLOC_START, VMALLOC_END,
2675 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2676 }
2677 
2678 /**
2679  * find_vm_area - find a continuous kernel virtual area
2680  * @addr:	  base address
2681  *
2682  * Search for the kernel VM area starting at @addr, and return it.
2683  * It is up to the caller to do all required locking to keep the returned
2684  * pointer valid.
2685  *
2686  * Return: the area descriptor on success or %NULL on failure.
2687  */
find_vm_area(const void * addr)2688 struct vm_struct *find_vm_area(const void *addr)
2689 {
2690 	struct vmap_area *va;
2691 
2692 	va = find_vmap_area((unsigned long)addr);
2693 	if (!va)
2694 		return NULL;
2695 
2696 	return va->vm;
2697 }
2698 
2699 /**
2700  * remove_vm_area - find and remove a continuous kernel virtual area
2701  * @addr:	    base address
2702  *
2703  * Search for the kernel VM area starting at @addr, and remove it.
2704  * This function returns the found VM area, but using it is NOT safe
2705  * on SMP machines, except for its size or flags.
2706  *
2707  * Return: the area descriptor on success or %NULL on failure.
2708  */
remove_vm_area(const void * addr)2709 struct vm_struct *remove_vm_area(const void *addr)
2710 {
2711 	struct vmap_area *va;
2712 	struct vm_struct *vm;
2713 
2714 	might_sleep();
2715 
2716 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2717 			addr))
2718 		return NULL;
2719 
2720 	va = find_unlink_vmap_area((unsigned long)addr);
2721 	if (!va || !va->vm)
2722 		return NULL;
2723 	vm = va->vm;
2724 
2725 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2726 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2727 	kasan_free_module_shadow(vm);
2728 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2729 
2730 	free_unmap_vmap_area(va);
2731 	return vm;
2732 }
2733 
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2734 static inline void set_area_direct_map(const struct vm_struct *area,
2735 				       int (*set_direct_map)(struct page *page))
2736 {
2737 	int i;
2738 
2739 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2740 	for (i = 0; i < area->nr_pages; i++)
2741 		if (page_address(area->pages[i]))
2742 			set_direct_map(area->pages[i]);
2743 }
2744 
2745 /*
2746  * Flush the vm mapping and reset the direct map.
2747  */
vm_reset_perms(struct vm_struct * area)2748 static void vm_reset_perms(struct vm_struct *area)
2749 {
2750 	unsigned long start = ULONG_MAX, end = 0;
2751 	unsigned int page_order = vm_area_page_order(area);
2752 	int flush_dmap = 0;
2753 	int i;
2754 
2755 	/*
2756 	 * Find the start and end range of the direct mappings to make sure that
2757 	 * the vm_unmap_aliases() flush includes the direct map.
2758 	 */
2759 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2760 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2761 
2762 		if (addr) {
2763 			unsigned long page_size;
2764 
2765 			page_size = PAGE_SIZE << page_order;
2766 			start = min(addr, start);
2767 			end = max(addr + page_size, end);
2768 			flush_dmap = 1;
2769 		}
2770 	}
2771 
2772 	/*
2773 	 * Set direct map to something invalid so that it won't be cached if
2774 	 * there are any accesses after the TLB flush, then flush the TLB and
2775 	 * reset the direct map permissions to the default.
2776 	 */
2777 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2778 	_vm_unmap_aliases(start, end, flush_dmap);
2779 	set_area_direct_map(area, set_direct_map_default_noflush);
2780 }
2781 
delayed_vfree_work(struct work_struct * w)2782 static void delayed_vfree_work(struct work_struct *w)
2783 {
2784 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2785 	struct llist_node *t, *llnode;
2786 
2787 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2788 		vfree(llnode);
2789 }
2790 
2791 /**
2792  * vfree_atomic - release memory allocated by vmalloc()
2793  * @addr:	  memory base address
2794  *
2795  * This one is just like vfree() but can be called in any atomic context
2796  * except NMIs.
2797  */
vfree_atomic(const void * addr)2798 void vfree_atomic(const void *addr)
2799 {
2800 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2801 
2802 	BUG_ON(in_nmi());
2803 	kmemleak_free(addr);
2804 
2805 	/*
2806 	 * Use raw_cpu_ptr() because this can be called from preemptible
2807 	 * context. Preemption is absolutely fine here, because the llist_add()
2808 	 * implementation is lockless, so it works even if we are adding to
2809 	 * another cpu's list. schedule_work() should be fine with this too.
2810 	 */
2811 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2812 		schedule_work(&p->wq);
2813 }
2814 
2815 /**
2816  * vfree - Release memory allocated by vmalloc()
2817  * @addr:  Memory base address
2818  *
2819  * Free the virtually continuous memory area starting at @addr, as obtained
2820  * from one of the vmalloc() family of APIs.  This will usually also free the
2821  * physical memory underlying the virtual allocation, but that memory is
2822  * reference counted, so it will not be freed until the last user goes away.
2823  *
2824  * If @addr is NULL, no operation is performed.
2825  *
2826  * Context:
2827  * May sleep if called *not* from interrupt context.
2828  * Must not be called in NMI context (strictly speaking, it could be
2829  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2830  * conventions for vfree() arch-dependent would be a really bad idea).
2831  */
vfree(const void * addr)2832 void vfree(const void *addr)
2833 {
2834 	struct vm_struct *vm;
2835 	int i;
2836 
2837 	if (unlikely(in_interrupt())) {
2838 		vfree_atomic(addr);
2839 		return;
2840 	}
2841 
2842 	BUG_ON(in_nmi());
2843 	kmemleak_free(addr);
2844 	might_sleep();
2845 
2846 	if (!addr)
2847 		return;
2848 
2849 	vm = remove_vm_area(addr);
2850 	if (unlikely(!vm)) {
2851 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2852 				addr);
2853 		return;
2854 	}
2855 
2856 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2857 		vm_reset_perms(vm);
2858 	for (i = 0; i < vm->nr_pages; i++) {
2859 		struct page *page = vm->pages[i];
2860 
2861 		BUG_ON(!page);
2862 		if (!(vm->flags & VM_MAP_PUT_PAGES))
2863 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2864 		/*
2865 		 * High-order allocs for huge vmallocs are split, so
2866 		 * can be freed as an array of order-0 allocations
2867 		 */
2868 		__free_page(page);
2869 		cond_resched();
2870 	}
2871 	if (!(vm->flags & VM_MAP_PUT_PAGES))
2872 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2873 	kvfree(vm->pages);
2874 	kfree(vm);
2875 }
2876 EXPORT_SYMBOL(vfree);
2877 
2878 /**
2879  * vunmap - release virtual mapping obtained by vmap()
2880  * @addr:   memory base address
2881  *
2882  * Free the virtually contiguous memory area starting at @addr,
2883  * which was created from the page array passed to vmap().
2884  *
2885  * Must not be called in interrupt context.
2886  */
vunmap(const void * addr)2887 void vunmap(const void *addr)
2888 {
2889 	struct vm_struct *vm;
2890 
2891 	BUG_ON(in_interrupt());
2892 	might_sleep();
2893 
2894 	if (!addr)
2895 		return;
2896 	vm = remove_vm_area(addr);
2897 	if (unlikely(!vm)) {
2898 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2899 				addr);
2900 		return;
2901 	}
2902 	kfree(vm);
2903 }
2904 EXPORT_SYMBOL(vunmap);
2905 
2906 /**
2907  * vmap - map an array of pages into virtually contiguous space
2908  * @pages: array of page pointers
2909  * @count: number of pages to map
2910  * @flags: vm_area->flags
2911  * @prot: page protection for the mapping
2912  *
2913  * Maps @count pages from @pages into contiguous kernel virtual space.
2914  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2915  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2916  * are transferred from the caller to vmap(), and will be freed / dropped when
2917  * vfree() is called on the return value.
2918  *
2919  * Return: the address of the area or %NULL on failure
2920  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2921 void *vmap(struct page **pages, unsigned int count,
2922 	   unsigned long flags, pgprot_t prot)
2923 {
2924 	struct vm_struct *area;
2925 	unsigned long addr;
2926 	unsigned long size;		/* In bytes */
2927 
2928 	might_sleep();
2929 
2930 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2931 		return NULL;
2932 
2933 	/*
2934 	 * Your top guard is someone else's bottom guard. Not having a top
2935 	 * guard compromises someone else's mappings too.
2936 	 */
2937 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2938 		flags &= ~VM_NO_GUARD;
2939 
2940 	if (count > totalram_pages())
2941 		return NULL;
2942 
2943 	size = (unsigned long)count << PAGE_SHIFT;
2944 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2945 	if (!area)
2946 		return NULL;
2947 
2948 	addr = (unsigned long)area->addr;
2949 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2950 				pages, PAGE_SHIFT) < 0) {
2951 		vunmap(area->addr);
2952 		return NULL;
2953 	}
2954 
2955 	if (flags & VM_MAP_PUT_PAGES) {
2956 		area->pages = pages;
2957 		area->nr_pages = count;
2958 	}
2959 	return area->addr;
2960 }
2961 EXPORT_SYMBOL(vmap);
2962 
2963 #ifdef CONFIG_VMAP_PFN
2964 struct vmap_pfn_data {
2965 	unsigned long	*pfns;
2966 	pgprot_t	prot;
2967 	unsigned int	idx;
2968 };
2969 
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2970 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2971 {
2972 	struct vmap_pfn_data *data = private;
2973 	unsigned long pfn = data->pfns[data->idx];
2974 	pte_t ptent;
2975 
2976 	if (WARN_ON_ONCE(pfn_valid(pfn)))
2977 		return -EINVAL;
2978 
2979 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2980 	set_pte_at(&init_mm, addr, pte, ptent);
2981 
2982 	data->idx++;
2983 	return 0;
2984 }
2985 
2986 /**
2987  * vmap_pfn - map an array of PFNs into virtually contiguous space
2988  * @pfns: array of PFNs
2989  * @count: number of pages to map
2990  * @prot: page protection for the mapping
2991  *
2992  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2993  * the start address of the mapping.
2994  */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2995 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2996 {
2997 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2998 	struct vm_struct *area;
2999 
3000 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3001 			__builtin_return_address(0));
3002 	if (!area)
3003 		return NULL;
3004 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3005 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3006 		free_vm_area(area);
3007 		return NULL;
3008 	}
3009 
3010 	flush_cache_vmap((unsigned long)area->addr,
3011 			 (unsigned long)area->addr + count * PAGE_SIZE);
3012 
3013 	return area->addr;
3014 }
3015 EXPORT_SYMBOL_GPL(vmap_pfn);
3016 #endif /* CONFIG_VMAP_PFN */
3017 
3018 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3019 vm_area_alloc_pages(gfp_t gfp, int nid,
3020 		unsigned int order, unsigned int nr_pages, struct page **pages)
3021 {
3022 	unsigned int nr_allocated = 0;
3023 	gfp_t alloc_gfp = gfp;
3024 	bool nofail = gfp & __GFP_NOFAIL;
3025 	struct page *page;
3026 	int i;
3027 
3028 	/*
3029 	 * For order-0 pages we make use of bulk allocator, if
3030 	 * the page array is partly or not at all populated due
3031 	 * to fails, fallback to a single page allocator that is
3032 	 * more permissive.
3033 	 */
3034 	if (!order) {
3035 		/* bulk allocator doesn't support nofail req. officially */
3036 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3037 
3038 		while (nr_allocated < nr_pages) {
3039 			unsigned int nr, nr_pages_request;
3040 
3041 			/*
3042 			 * A maximum allowed request is hard-coded and is 100
3043 			 * pages per call. That is done in order to prevent a
3044 			 * long preemption off scenario in the bulk-allocator
3045 			 * so the range is [1:100].
3046 			 */
3047 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3048 
3049 			/* memory allocation should consider mempolicy, we can't
3050 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3051 			 * otherwise memory may be allocated in only one node,
3052 			 * but mempolicy wants to alloc memory by interleaving.
3053 			 */
3054 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3055 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3056 							nr_pages_request,
3057 							pages + nr_allocated);
3058 
3059 			else
3060 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3061 							nr_pages_request,
3062 							pages + nr_allocated);
3063 
3064 			nr_allocated += nr;
3065 			cond_resched();
3066 
3067 			/*
3068 			 * If zero or pages were obtained partly,
3069 			 * fallback to a single page allocator.
3070 			 */
3071 			if (nr != nr_pages_request)
3072 				break;
3073 		}
3074 	} else if (gfp & __GFP_NOFAIL) {
3075 		/*
3076 		 * Higher order nofail allocations are really expensive and
3077 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3078 		 * and compaction etc.
3079 		 */
3080 		alloc_gfp &= ~__GFP_NOFAIL;
3081 	}
3082 
3083 	/* High-order pages or fallback path if "bulk" fails. */
3084 	while (nr_allocated < nr_pages) {
3085 		if (!nofail && fatal_signal_pending(current))
3086 			break;
3087 
3088 		if (nid == NUMA_NO_NODE)
3089 			page = alloc_pages(alloc_gfp, order);
3090 		else
3091 			page = alloc_pages_node(nid, alloc_gfp, order);
3092 		if (unlikely(!page))
3093 			break;
3094 
3095 		/*
3096 		 * Higher order allocations must be able to be treated as
3097 		 * indepdenent small pages by callers (as they can with
3098 		 * small-page vmallocs). Some drivers do their own refcounting
3099 		 * on vmalloc_to_page() pages, some use page->mapping,
3100 		 * page->lru, etc.
3101 		 */
3102 		if (order)
3103 			split_page(page, order);
3104 
3105 		/*
3106 		 * Careful, we allocate and map page-order pages, but
3107 		 * tracking is done per PAGE_SIZE page so as to keep the
3108 		 * vm_struct APIs independent of the physical/mapped size.
3109 		 */
3110 		for (i = 0; i < (1U << order); i++)
3111 			pages[nr_allocated + i] = page + i;
3112 
3113 		cond_resched();
3114 		nr_allocated += 1U << order;
3115 	}
3116 
3117 	return nr_allocated;
3118 }
3119 
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3120 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3121 				 pgprot_t prot, unsigned int page_shift,
3122 				 int node)
3123 {
3124 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3125 	bool nofail = gfp_mask & __GFP_NOFAIL;
3126 	unsigned long addr = (unsigned long)area->addr;
3127 	unsigned long size = get_vm_area_size(area);
3128 	unsigned long array_size;
3129 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3130 	unsigned int page_order;
3131 	unsigned int flags;
3132 	int ret;
3133 
3134 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3135 
3136 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3137 		gfp_mask |= __GFP_HIGHMEM;
3138 
3139 	/* Please note that the recursion is strictly bounded. */
3140 	if (array_size > PAGE_SIZE) {
3141 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3142 					area->caller);
3143 	} else {
3144 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3145 	}
3146 
3147 	if (!area->pages) {
3148 		warn_alloc(gfp_mask, NULL,
3149 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3150 			nr_small_pages * PAGE_SIZE, array_size);
3151 		free_vm_area(area);
3152 		return NULL;
3153 	}
3154 
3155 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3156 	page_order = vm_area_page_order(area);
3157 
3158 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3159 		node, page_order, nr_small_pages, area->pages);
3160 
3161 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3162 	if (gfp_mask & __GFP_ACCOUNT) {
3163 		int i;
3164 
3165 		for (i = 0; i < area->nr_pages; i++)
3166 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3167 	}
3168 
3169 	/*
3170 	 * If not enough pages were obtained to accomplish an
3171 	 * allocation request, free them via vfree() if any.
3172 	 */
3173 	if (area->nr_pages != nr_small_pages) {
3174 		/*
3175 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3176 		 * also:-
3177 		 *
3178 		 * - a pending fatal signal
3179 		 * - insufficient huge page-order pages
3180 		 *
3181 		 * Since we always retry allocations at order-0 in the huge page
3182 		 * case a warning for either is spurious.
3183 		 */
3184 		if (!fatal_signal_pending(current) && page_order == 0)
3185 			warn_alloc(gfp_mask, NULL,
3186 				"vmalloc error: size %lu, failed to allocate pages",
3187 				area->nr_pages * PAGE_SIZE);
3188 		goto fail;
3189 	}
3190 
3191 	/*
3192 	 * page tables allocations ignore external gfp mask, enforce it
3193 	 * by the scope API
3194 	 */
3195 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3196 		flags = memalloc_nofs_save();
3197 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3198 		flags = memalloc_noio_save();
3199 
3200 	do {
3201 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3202 			page_shift);
3203 		if (nofail && (ret < 0))
3204 			schedule_timeout_uninterruptible(1);
3205 	} while (nofail && (ret < 0));
3206 
3207 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3208 		memalloc_nofs_restore(flags);
3209 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3210 		memalloc_noio_restore(flags);
3211 
3212 	if (ret < 0) {
3213 		warn_alloc(gfp_mask, NULL,
3214 			"vmalloc error: size %lu, failed to map pages",
3215 			area->nr_pages * PAGE_SIZE);
3216 		goto fail;
3217 	}
3218 
3219 	return area->addr;
3220 
3221 fail:
3222 	vfree(area->addr);
3223 	return NULL;
3224 }
3225 
3226 /**
3227  * __vmalloc_node_range - allocate virtually contiguous memory
3228  * @size:		  allocation size
3229  * @align:		  desired alignment
3230  * @start:		  vm area range start
3231  * @end:		  vm area range end
3232  * @gfp_mask:		  flags for the page level allocator
3233  * @prot:		  protection mask for the allocated pages
3234  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3235  * @node:		  node to use for allocation or NUMA_NO_NODE
3236  * @caller:		  caller's return address
3237  *
3238  * Allocate enough pages to cover @size from the page level
3239  * allocator with @gfp_mask flags. Please note that the full set of gfp
3240  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3241  * supported.
3242  * Zone modifiers are not supported. From the reclaim modifiers
3243  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3244  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3245  * __GFP_RETRY_MAYFAIL are not supported).
3246  *
3247  * __GFP_NOWARN can be used to suppress failures messages.
3248  *
3249  * Map them into contiguous kernel virtual space, using a pagetable
3250  * protection of @prot.
3251  *
3252  * Return: the address of the area or %NULL on failure
3253  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3254 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3255 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3256 			pgprot_t prot, unsigned long vm_flags, int node,
3257 			const void *caller)
3258 {
3259 	struct vm_struct *area;
3260 	void *ret;
3261 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3262 	unsigned long real_size = size;
3263 	unsigned long real_align = align;
3264 	unsigned int shift = PAGE_SHIFT;
3265 
3266 	if (WARN_ON_ONCE(!size))
3267 		return NULL;
3268 
3269 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3270 		warn_alloc(gfp_mask, NULL,
3271 			"vmalloc error: size %lu, exceeds total pages",
3272 			real_size);
3273 		return NULL;
3274 	}
3275 
3276 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3277 		unsigned long size_per_node;
3278 
3279 		/*
3280 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3281 		 * others like modules don't yet expect huge pages in
3282 		 * their allocations due to apply_to_page_range not
3283 		 * supporting them.
3284 		 */
3285 
3286 		size_per_node = size;
3287 		if (node == NUMA_NO_NODE)
3288 			size_per_node /= num_online_nodes();
3289 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3290 			shift = PMD_SHIFT;
3291 		else
3292 			shift = arch_vmap_pte_supported_shift(size_per_node);
3293 
3294 		align = max(real_align, 1UL << shift);
3295 		size = ALIGN(real_size, 1UL << shift);
3296 	}
3297 
3298 again:
3299 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3300 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3301 				  gfp_mask, caller);
3302 	if (!area) {
3303 		bool nofail = gfp_mask & __GFP_NOFAIL;
3304 		warn_alloc(gfp_mask, NULL,
3305 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3306 			real_size, (nofail) ? ". Retrying." : "");
3307 		if (nofail) {
3308 			schedule_timeout_uninterruptible(1);
3309 			goto again;
3310 		}
3311 		goto fail;
3312 	}
3313 
3314 	/*
3315 	 * Prepare arguments for __vmalloc_area_node() and
3316 	 * kasan_unpoison_vmalloc().
3317 	 */
3318 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3319 		if (kasan_hw_tags_enabled()) {
3320 			/*
3321 			 * Modify protection bits to allow tagging.
3322 			 * This must be done before mapping.
3323 			 */
3324 			prot = arch_vmap_pgprot_tagged(prot);
3325 
3326 			/*
3327 			 * Skip page_alloc poisoning and zeroing for physical
3328 			 * pages backing VM_ALLOC mapping. Memory is instead
3329 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3330 			 */
3331 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3332 		}
3333 
3334 		/* Take note that the mapping is PAGE_KERNEL. */
3335 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3336 	}
3337 
3338 	/* Allocate physical pages and map them into vmalloc space. */
3339 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3340 	if (!ret)
3341 		goto fail;
3342 
3343 	/*
3344 	 * Mark the pages as accessible, now that they are mapped.
3345 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3346 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3347 	 * to make sure that memory is initialized under the same conditions.
3348 	 * Tag-based KASAN modes only assign tags to normal non-executable
3349 	 * allocations, see __kasan_unpoison_vmalloc().
3350 	 */
3351 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3352 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3353 	    (gfp_mask & __GFP_SKIP_ZERO))
3354 		kasan_flags |= KASAN_VMALLOC_INIT;
3355 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3356 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3357 
3358 	/*
3359 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3360 	 * flag. It means that vm_struct is not fully initialized.
3361 	 * Now, it is fully initialized, so remove this flag here.
3362 	 */
3363 	clear_vm_uninitialized_flag(area);
3364 
3365 	size = PAGE_ALIGN(size);
3366 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3367 		kmemleak_vmalloc(area, size, gfp_mask);
3368 
3369 	return area->addr;
3370 
3371 fail:
3372 	if (shift > PAGE_SHIFT) {
3373 		shift = PAGE_SHIFT;
3374 		align = real_align;
3375 		size = real_size;
3376 		goto again;
3377 	}
3378 
3379 	return NULL;
3380 }
3381 
3382 /**
3383  * __vmalloc_node - allocate virtually contiguous memory
3384  * @size:	    allocation size
3385  * @align:	    desired alignment
3386  * @gfp_mask:	    flags for the page level allocator
3387  * @node:	    node to use for allocation or NUMA_NO_NODE
3388  * @caller:	    caller's return address
3389  *
3390  * Allocate enough pages to cover @size from the page level allocator with
3391  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3392  *
3393  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3394  * and __GFP_NOFAIL are not supported
3395  *
3396  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3397  * with mm people.
3398  *
3399  * Return: pointer to the allocated memory or %NULL on error
3400  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3401 void *__vmalloc_node(unsigned long size, unsigned long align,
3402 			    gfp_t gfp_mask, int node, const void *caller)
3403 {
3404 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3405 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3406 }
3407 /*
3408  * This is only for performance analysis of vmalloc and stress purpose.
3409  * It is required by vmalloc test module, therefore do not use it other
3410  * than that.
3411  */
3412 #ifdef CONFIG_TEST_VMALLOC_MODULE
3413 EXPORT_SYMBOL_GPL(__vmalloc_node);
3414 #endif
3415 
__vmalloc(unsigned long size,gfp_t gfp_mask)3416 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3417 {
3418 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3419 				__builtin_return_address(0));
3420 }
3421 EXPORT_SYMBOL(__vmalloc);
3422 
3423 /**
3424  * vmalloc - allocate virtually contiguous memory
3425  * @size:    allocation size
3426  *
3427  * Allocate enough pages to cover @size from the page level
3428  * allocator and map them into contiguous kernel virtual space.
3429  *
3430  * For tight control over page level allocator and protection flags
3431  * use __vmalloc() instead.
3432  *
3433  * Return: pointer to the allocated memory or %NULL on error
3434  */
vmalloc(unsigned long size)3435 void *vmalloc(unsigned long size)
3436 {
3437 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3438 				__builtin_return_address(0));
3439 }
3440 EXPORT_SYMBOL(vmalloc);
3441 
3442 /**
3443  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3444  * @size:      allocation size
3445  * @gfp_mask:  flags for the page level allocator
3446  *
3447  * Allocate enough pages to cover @size from the page level
3448  * allocator and map them into contiguous kernel virtual space.
3449  * If @size is greater than or equal to PMD_SIZE, allow using
3450  * huge pages for the memory
3451  *
3452  * Return: pointer to the allocated memory or %NULL on error
3453  */
vmalloc_huge(unsigned long size,gfp_t gfp_mask)3454 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3455 {
3456 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3457 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3458 				    NUMA_NO_NODE, __builtin_return_address(0));
3459 }
3460 EXPORT_SYMBOL_GPL(vmalloc_huge);
3461 
3462 /**
3463  * vzalloc - allocate virtually contiguous memory with zero fill
3464  * @size:    allocation size
3465  *
3466  * Allocate enough pages to cover @size from the page level
3467  * allocator and map them into contiguous kernel virtual space.
3468  * The memory allocated is set to zero.
3469  *
3470  * For tight control over page level allocator and protection flags
3471  * use __vmalloc() instead.
3472  *
3473  * Return: pointer to the allocated memory or %NULL on error
3474  */
vzalloc(unsigned long size)3475 void *vzalloc(unsigned long size)
3476 {
3477 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3478 				__builtin_return_address(0));
3479 }
3480 EXPORT_SYMBOL(vzalloc);
3481 
3482 /**
3483  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3484  * @size: allocation size
3485  *
3486  * The resulting memory area is zeroed so it can be mapped to userspace
3487  * without leaking data.
3488  *
3489  * Return: pointer to the allocated memory or %NULL on error
3490  */
vmalloc_user(unsigned long size)3491 void *vmalloc_user(unsigned long size)
3492 {
3493 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3494 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3495 				    VM_USERMAP, NUMA_NO_NODE,
3496 				    __builtin_return_address(0));
3497 }
3498 EXPORT_SYMBOL(vmalloc_user);
3499 
3500 /**
3501  * vmalloc_node - allocate memory on a specific node
3502  * @size:	  allocation size
3503  * @node:	  numa node
3504  *
3505  * Allocate enough pages to cover @size from the page level
3506  * allocator and map them into contiguous kernel virtual space.
3507  *
3508  * For tight control over page level allocator and protection flags
3509  * use __vmalloc() instead.
3510  *
3511  * Return: pointer to the allocated memory or %NULL on error
3512  */
vmalloc_node(unsigned long size,int node)3513 void *vmalloc_node(unsigned long size, int node)
3514 {
3515 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3516 			__builtin_return_address(0));
3517 }
3518 EXPORT_SYMBOL(vmalloc_node);
3519 
3520 /**
3521  * vzalloc_node - allocate memory on a specific node with zero fill
3522  * @size:	allocation size
3523  * @node:	numa node
3524  *
3525  * Allocate enough pages to cover @size from the page level
3526  * allocator and map them into contiguous kernel virtual space.
3527  * The memory allocated is set to zero.
3528  *
3529  * Return: pointer to the allocated memory or %NULL on error
3530  */
vzalloc_node(unsigned long size,int node)3531 void *vzalloc_node(unsigned long size, int node)
3532 {
3533 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3534 				__builtin_return_address(0));
3535 }
3536 EXPORT_SYMBOL(vzalloc_node);
3537 
3538 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3539 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3540 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3541 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3542 #else
3543 /*
3544  * 64b systems should always have either DMA or DMA32 zones. For others
3545  * GFP_DMA32 should do the right thing and use the normal zone.
3546  */
3547 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3548 #endif
3549 
3550 /**
3551  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3552  * @size:	allocation size
3553  *
3554  * Allocate enough 32bit PA addressable pages to cover @size from the
3555  * page level allocator and map them into contiguous kernel virtual space.
3556  *
3557  * Return: pointer to the allocated memory or %NULL on error
3558  */
vmalloc_32(unsigned long size)3559 void *vmalloc_32(unsigned long size)
3560 {
3561 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3562 			__builtin_return_address(0));
3563 }
3564 EXPORT_SYMBOL(vmalloc_32);
3565 
3566 /**
3567  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3568  * @size:	     allocation size
3569  *
3570  * The resulting memory area is 32bit addressable and zeroed so it can be
3571  * mapped to userspace without leaking data.
3572  *
3573  * Return: pointer to the allocated memory or %NULL on error
3574  */
vmalloc_32_user(unsigned long size)3575 void *vmalloc_32_user(unsigned long size)
3576 {
3577 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3578 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3579 				    VM_USERMAP, NUMA_NO_NODE,
3580 				    __builtin_return_address(0));
3581 }
3582 EXPORT_SYMBOL(vmalloc_32_user);
3583 
3584 /*
3585  * Atomically zero bytes in the iterator.
3586  *
3587  * Returns the number of zeroed bytes.
3588  */
zero_iter(struct iov_iter * iter,size_t count)3589 static size_t zero_iter(struct iov_iter *iter, size_t count)
3590 {
3591 	size_t remains = count;
3592 
3593 	while (remains > 0) {
3594 		size_t num, copied;
3595 
3596 		num = min_t(size_t, remains, PAGE_SIZE);
3597 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3598 		remains -= copied;
3599 
3600 		if (copied < num)
3601 			break;
3602 	}
3603 
3604 	return count - remains;
3605 }
3606 
3607 /*
3608  * small helper routine, copy contents to iter from addr.
3609  * If the page is not present, fill zero.
3610  *
3611  * Returns the number of copied bytes.
3612  */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)3613 static size_t aligned_vread_iter(struct iov_iter *iter,
3614 				 const char *addr, size_t count)
3615 {
3616 	size_t remains = count;
3617 	struct page *page;
3618 
3619 	while (remains > 0) {
3620 		unsigned long offset, length;
3621 		size_t copied = 0;
3622 
3623 		offset = offset_in_page(addr);
3624 		length = PAGE_SIZE - offset;
3625 		if (length > remains)
3626 			length = remains;
3627 		page = vmalloc_to_page(addr);
3628 		/*
3629 		 * To do safe access to this _mapped_ area, we need lock. But
3630 		 * adding lock here means that we need to add overhead of
3631 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3632 		 * used. Instead of that, we'll use an local mapping via
3633 		 * copy_page_to_iter_nofault() and accept a small overhead in
3634 		 * this access function.
3635 		 */
3636 		if (page)
3637 			copied = copy_page_to_iter_nofault(page, offset,
3638 							   length, iter);
3639 		else
3640 			copied = zero_iter(iter, length);
3641 
3642 		addr += copied;
3643 		remains -= copied;
3644 
3645 		if (copied != length)
3646 			break;
3647 	}
3648 
3649 	return count - remains;
3650 }
3651 
3652 /*
3653  * Read from a vm_map_ram region of memory.
3654  *
3655  * Returns the number of copied bytes.
3656  */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)3657 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3658 				  size_t count, unsigned long flags)
3659 {
3660 	char *start;
3661 	struct vmap_block *vb;
3662 	struct xarray *xa;
3663 	unsigned long offset;
3664 	unsigned int rs, re;
3665 	size_t remains, n;
3666 
3667 	/*
3668 	 * If it's area created by vm_map_ram() interface directly, but
3669 	 * not further subdividing and delegating management to vmap_block,
3670 	 * handle it here.
3671 	 */
3672 	if (!(flags & VMAP_BLOCK))
3673 		return aligned_vread_iter(iter, addr, count);
3674 
3675 	remains = count;
3676 
3677 	/*
3678 	 * Area is split into regions and tracked with vmap_block, read out
3679 	 * each region and zero fill the hole between regions.
3680 	 */
3681 	xa = addr_to_vb_xa((unsigned long) addr);
3682 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3683 	if (!vb)
3684 		goto finished_zero;
3685 
3686 	spin_lock(&vb->lock);
3687 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3688 		spin_unlock(&vb->lock);
3689 		goto finished_zero;
3690 	}
3691 
3692 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3693 		size_t copied;
3694 
3695 		if (remains == 0)
3696 			goto finished;
3697 
3698 		start = vmap_block_vaddr(vb->va->va_start, rs);
3699 
3700 		if (addr < start) {
3701 			size_t to_zero = min_t(size_t, start - addr, remains);
3702 			size_t zeroed = zero_iter(iter, to_zero);
3703 
3704 			addr += zeroed;
3705 			remains -= zeroed;
3706 
3707 			if (remains == 0 || zeroed != to_zero)
3708 				goto finished;
3709 		}
3710 
3711 		/*it could start reading from the middle of used region*/
3712 		offset = offset_in_page(addr);
3713 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3714 		if (n > remains)
3715 			n = remains;
3716 
3717 		copied = aligned_vread_iter(iter, start + offset, n);
3718 
3719 		addr += copied;
3720 		remains -= copied;
3721 
3722 		if (copied != n)
3723 			goto finished;
3724 	}
3725 
3726 	spin_unlock(&vb->lock);
3727 
3728 finished_zero:
3729 	/* zero-fill the left dirty or free regions */
3730 	return count - remains + zero_iter(iter, remains);
3731 finished:
3732 	/* We couldn't copy/zero everything */
3733 	spin_unlock(&vb->lock);
3734 	return count - remains;
3735 }
3736 
3737 /**
3738  * vread_iter() - read vmalloc area in a safe way to an iterator.
3739  * @iter:         the iterator to which data should be written.
3740  * @addr:         vm address.
3741  * @count:        number of bytes to be read.
3742  *
3743  * This function checks that addr is a valid vmalloc'ed area, and
3744  * copy data from that area to a given buffer. If the given memory range
3745  * of [addr...addr+count) includes some valid address, data is copied to
3746  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3747  * IOREMAP area is treated as memory hole and no copy is done.
3748  *
3749  * If [addr...addr+count) doesn't includes any intersects with alive
3750  * vm_struct area, returns 0. @buf should be kernel's buffer.
3751  *
3752  * Note: In usual ops, vread() is never necessary because the caller
3753  * should know vmalloc() area is valid and can use memcpy().
3754  * This is for routines which have to access vmalloc area without
3755  * any information, as /proc/kcore.
3756  *
3757  * Return: number of bytes for which addr and buf should be increased
3758  * (same number as @count) or %0 if [addr...addr+count) doesn't
3759  * include any intersection with valid vmalloc area
3760  */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)3761 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3762 {
3763 	struct vmap_area *va;
3764 	struct vm_struct *vm;
3765 	char *vaddr;
3766 	size_t n, size, flags, remains;
3767 
3768 	addr = kasan_reset_tag(addr);
3769 
3770 	/* Don't allow overflow */
3771 	if ((unsigned long) addr + count < count)
3772 		count = -(unsigned long) addr;
3773 
3774 	remains = count;
3775 
3776 	spin_lock(&vmap_area_lock);
3777 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3778 	if (!va)
3779 		goto finished_zero;
3780 
3781 	/* no intersects with alive vmap_area */
3782 	if ((unsigned long)addr + remains <= va->va_start)
3783 		goto finished_zero;
3784 
3785 	list_for_each_entry_from(va, &vmap_area_list, list) {
3786 		size_t copied;
3787 
3788 		if (remains == 0)
3789 			goto finished;
3790 
3791 		vm = va->vm;
3792 		flags = va->flags & VMAP_FLAGS_MASK;
3793 		/*
3794 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3795 		 * be set together with VMAP_RAM.
3796 		 */
3797 		WARN_ON(flags == VMAP_BLOCK);
3798 
3799 		if (!vm && !flags)
3800 			continue;
3801 
3802 		if (vm && (vm->flags & VM_UNINITIALIZED))
3803 			continue;
3804 
3805 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3806 		smp_rmb();
3807 
3808 		vaddr = (char *) va->va_start;
3809 		size = vm ? get_vm_area_size(vm) : va_size(va);
3810 
3811 		if (addr >= vaddr + size)
3812 			continue;
3813 
3814 		if (addr < vaddr) {
3815 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3816 			size_t zeroed = zero_iter(iter, to_zero);
3817 
3818 			addr += zeroed;
3819 			remains -= zeroed;
3820 
3821 			if (remains == 0 || zeroed != to_zero)
3822 				goto finished;
3823 		}
3824 
3825 		n = vaddr + size - addr;
3826 		if (n > remains)
3827 			n = remains;
3828 
3829 		if (flags & VMAP_RAM)
3830 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3831 		else if (!(vm->flags & VM_IOREMAP))
3832 			copied = aligned_vread_iter(iter, addr, n);
3833 		else /* IOREMAP area is treated as memory hole */
3834 			copied = zero_iter(iter, n);
3835 
3836 		addr += copied;
3837 		remains -= copied;
3838 
3839 		if (copied != n)
3840 			goto finished;
3841 	}
3842 
3843 finished_zero:
3844 	spin_unlock(&vmap_area_lock);
3845 	/* zero-fill memory holes */
3846 	return count - remains + zero_iter(iter, remains);
3847 finished:
3848 	/* Nothing remains, or We couldn't copy/zero everything. */
3849 	spin_unlock(&vmap_area_lock);
3850 
3851 	return count - remains;
3852 }
3853 
3854 /**
3855  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3856  * @vma:		vma to cover
3857  * @uaddr:		target user address to start at
3858  * @kaddr:		virtual address of vmalloc kernel memory
3859  * @pgoff:		offset from @kaddr to start at
3860  * @size:		size of map area
3861  *
3862  * Returns:	0 for success, -Exxx on failure
3863  *
3864  * This function checks that @kaddr is a valid vmalloc'ed area,
3865  * and that it is big enough to cover the range starting at
3866  * @uaddr in @vma. Will return failure if that criteria isn't
3867  * met.
3868  *
3869  * Similar to remap_pfn_range() (see mm/memory.c)
3870  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3871 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3872 				void *kaddr, unsigned long pgoff,
3873 				unsigned long size)
3874 {
3875 	struct vm_struct *area;
3876 	unsigned long off;
3877 	unsigned long end_index;
3878 
3879 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3880 		return -EINVAL;
3881 
3882 	size = PAGE_ALIGN(size);
3883 
3884 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3885 		return -EINVAL;
3886 
3887 	area = find_vm_area(kaddr);
3888 	if (!area)
3889 		return -EINVAL;
3890 
3891 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3892 		return -EINVAL;
3893 
3894 	if (check_add_overflow(size, off, &end_index) ||
3895 	    end_index > get_vm_area_size(area))
3896 		return -EINVAL;
3897 	kaddr += off;
3898 
3899 	do {
3900 		struct page *page = vmalloc_to_page(kaddr);
3901 		int ret;
3902 
3903 		ret = vm_insert_page(vma, uaddr, page);
3904 		if (ret)
3905 			return ret;
3906 
3907 		uaddr += PAGE_SIZE;
3908 		kaddr += PAGE_SIZE;
3909 		size -= PAGE_SIZE;
3910 	} while (size > 0);
3911 
3912 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3913 
3914 	return 0;
3915 }
3916 
3917 /**
3918  * remap_vmalloc_range - map vmalloc pages to userspace
3919  * @vma:		vma to cover (map full range of vma)
3920  * @addr:		vmalloc memory
3921  * @pgoff:		number of pages into addr before first page to map
3922  *
3923  * Returns:	0 for success, -Exxx on failure
3924  *
3925  * This function checks that addr is a valid vmalloc'ed area, and
3926  * that it is big enough to cover the vma. Will return failure if
3927  * that criteria isn't met.
3928  *
3929  * Similar to remap_pfn_range() (see mm/memory.c)
3930  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3931 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3932 						unsigned long pgoff)
3933 {
3934 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3935 					   addr, pgoff,
3936 					   vma->vm_end - vma->vm_start);
3937 }
3938 EXPORT_SYMBOL(remap_vmalloc_range);
3939 
free_vm_area(struct vm_struct * area)3940 void free_vm_area(struct vm_struct *area)
3941 {
3942 	struct vm_struct *ret;
3943 	ret = remove_vm_area(area->addr);
3944 	BUG_ON(ret != area);
3945 	kfree(area);
3946 }
3947 EXPORT_SYMBOL_GPL(free_vm_area);
3948 
3949 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3950 static struct vmap_area *node_to_va(struct rb_node *n)
3951 {
3952 	return rb_entry_safe(n, struct vmap_area, rb_node);
3953 }
3954 
3955 /**
3956  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3957  * @addr: target address
3958  *
3959  * Returns: vmap_area if it is found. If there is no such area
3960  *   the first highest(reverse order) vmap_area is returned
3961  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3962  *   if there are no any areas before @addr.
3963  */
3964 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3965 pvm_find_va_enclose_addr(unsigned long addr)
3966 {
3967 	struct vmap_area *va, *tmp;
3968 	struct rb_node *n;
3969 
3970 	n = free_vmap_area_root.rb_node;
3971 	va = NULL;
3972 
3973 	while (n) {
3974 		tmp = rb_entry(n, struct vmap_area, rb_node);
3975 		if (tmp->va_start <= addr) {
3976 			va = tmp;
3977 			if (tmp->va_end >= addr)
3978 				break;
3979 
3980 			n = n->rb_right;
3981 		} else {
3982 			n = n->rb_left;
3983 		}
3984 	}
3985 
3986 	return va;
3987 }
3988 
3989 /**
3990  * pvm_determine_end_from_reverse - find the highest aligned address
3991  * of free block below VMALLOC_END
3992  * @va:
3993  *   in - the VA we start the search(reverse order);
3994  *   out - the VA with the highest aligned end address.
3995  * @align: alignment for required highest address
3996  *
3997  * Returns: determined end address within vmap_area
3998  */
3999 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4000 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4001 {
4002 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4003 	unsigned long addr;
4004 
4005 	if (likely(*va)) {
4006 		list_for_each_entry_from_reverse((*va),
4007 				&free_vmap_area_list, list) {
4008 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4009 			if ((*va)->va_start < addr)
4010 				return addr;
4011 		}
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 /**
4018  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4019  * @offsets: array containing offset of each area
4020  * @sizes: array containing size of each area
4021  * @nr_vms: the number of areas to allocate
4022  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4023  *
4024  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4025  *	    vm_structs on success, %NULL on failure
4026  *
4027  * Percpu allocator wants to use congruent vm areas so that it can
4028  * maintain the offsets among percpu areas.  This function allocates
4029  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4030  * be scattered pretty far, distance between two areas easily going up
4031  * to gigabytes.  To avoid interacting with regular vmallocs, these
4032  * areas are allocated from top.
4033  *
4034  * Despite its complicated look, this allocator is rather simple. It
4035  * does everything top-down and scans free blocks from the end looking
4036  * for matching base. While scanning, if any of the areas do not fit the
4037  * base address is pulled down to fit the area. Scanning is repeated till
4038  * all the areas fit and then all necessary data structures are inserted
4039  * and the result is returned.
4040  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4041 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4042 				     const size_t *sizes, int nr_vms,
4043 				     size_t align)
4044 {
4045 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4046 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4047 	struct vmap_area **vas, *va;
4048 	struct vm_struct **vms;
4049 	int area, area2, last_area, term_area;
4050 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4051 	bool purged = false;
4052 
4053 	/* verify parameters and allocate data structures */
4054 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4055 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4056 		start = offsets[area];
4057 		end = start + sizes[area];
4058 
4059 		/* is everything aligned properly? */
4060 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4061 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4062 
4063 		/* detect the area with the highest address */
4064 		if (start > offsets[last_area])
4065 			last_area = area;
4066 
4067 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4068 			unsigned long start2 = offsets[area2];
4069 			unsigned long end2 = start2 + sizes[area2];
4070 
4071 			BUG_ON(start2 < end && start < end2);
4072 		}
4073 	}
4074 	last_end = offsets[last_area] + sizes[last_area];
4075 
4076 	if (vmalloc_end - vmalloc_start < last_end) {
4077 		WARN_ON(true);
4078 		return NULL;
4079 	}
4080 
4081 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4082 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4083 	if (!vas || !vms)
4084 		goto err_free2;
4085 
4086 	for (area = 0; area < nr_vms; area++) {
4087 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4088 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4089 		if (!vas[area] || !vms[area])
4090 			goto err_free;
4091 	}
4092 retry:
4093 	spin_lock(&free_vmap_area_lock);
4094 
4095 	/* start scanning - we scan from the top, begin with the last area */
4096 	area = term_area = last_area;
4097 	start = offsets[area];
4098 	end = start + sizes[area];
4099 
4100 	va = pvm_find_va_enclose_addr(vmalloc_end);
4101 	base = pvm_determine_end_from_reverse(&va, align) - end;
4102 
4103 	while (true) {
4104 		/*
4105 		 * base might have underflowed, add last_end before
4106 		 * comparing.
4107 		 */
4108 		if (base + last_end < vmalloc_start + last_end)
4109 			goto overflow;
4110 
4111 		/*
4112 		 * Fitting base has not been found.
4113 		 */
4114 		if (va == NULL)
4115 			goto overflow;
4116 
4117 		/*
4118 		 * If required width exceeds current VA block, move
4119 		 * base downwards and then recheck.
4120 		 */
4121 		if (base + end > va->va_end) {
4122 			base = pvm_determine_end_from_reverse(&va, align) - end;
4123 			term_area = area;
4124 			continue;
4125 		}
4126 
4127 		/*
4128 		 * If this VA does not fit, move base downwards and recheck.
4129 		 */
4130 		if (base + start < va->va_start) {
4131 			va = node_to_va(rb_prev(&va->rb_node));
4132 			base = pvm_determine_end_from_reverse(&va, align) - end;
4133 			term_area = area;
4134 			continue;
4135 		}
4136 
4137 		/*
4138 		 * This area fits, move on to the previous one.  If
4139 		 * the previous one is the terminal one, we're done.
4140 		 */
4141 		area = (area + nr_vms - 1) % nr_vms;
4142 		if (area == term_area)
4143 			break;
4144 
4145 		start = offsets[area];
4146 		end = start + sizes[area];
4147 		va = pvm_find_va_enclose_addr(base + end);
4148 	}
4149 
4150 	/* we've found a fitting base, insert all va's */
4151 	for (area = 0; area < nr_vms; area++) {
4152 		int ret;
4153 
4154 		start = base + offsets[area];
4155 		size = sizes[area];
4156 
4157 		va = pvm_find_va_enclose_addr(start);
4158 		if (WARN_ON_ONCE(va == NULL))
4159 			/* It is a BUG(), but trigger recovery instead. */
4160 			goto recovery;
4161 
4162 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4163 					    &free_vmap_area_list,
4164 					    va, start, size);
4165 		if (WARN_ON_ONCE(unlikely(ret)))
4166 			/* It is a BUG(), but trigger recovery instead. */
4167 			goto recovery;
4168 
4169 		/* Allocated area. */
4170 		va = vas[area];
4171 		va->va_start = start;
4172 		va->va_end = start + size;
4173 	}
4174 
4175 	spin_unlock(&free_vmap_area_lock);
4176 
4177 	/* populate the kasan shadow space */
4178 	for (area = 0; area < nr_vms; area++) {
4179 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4180 			goto err_free_shadow;
4181 	}
4182 
4183 	/* insert all vm's */
4184 	spin_lock(&vmap_area_lock);
4185 	for (area = 0; area < nr_vms; area++) {
4186 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4187 
4188 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4189 				 pcpu_get_vm_areas);
4190 	}
4191 	spin_unlock(&vmap_area_lock);
4192 
4193 	/*
4194 	 * Mark allocated areas as accessible. Do it now as a best-effort
4195 	 * approach, as they can be mapped outside of vmalloc code.
4196 	 * With hardware tag-based KASAN, marking is skipped for
4197 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4198 	 */
4199 	for (area = 0; area < nr_vms; area++)
4200 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4201 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4202 
4203 	kfree(vas);
4204 	return vms;
4205 
4206 recovery:
4207 	/*
4208 	 * Remove previously allocated areas. There is no
4209 	 * need in removing these areas from the busy tree,
4210 	 * because they are inserted only on the final step
4211 	 * and when pcpu_get_vm_areas() is success.
4212 	 */
4213 	while (area--) {
4214 		orig_start = vas[area]->va_start;
4215 		orig_end = vas[area]->va_end;
4216 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4217 				&free_vmap_area_list);
4218 		if (va)
4219 			kasan_release_vmalloc(orig_start, orig_end,
4220 				va->va_start, va->va_end);
4221 		vas[area] = NULL;
4222 	}
4223 
4224 overflow:
4225 	spin_unlock(&free_vmap_area_lock);
4226 	if (!purged) {
4227 		reclaim_and_purge_vmap_areas();
4228 		purged = true;
4229 
4230 		/* Before "retry", check if we recover. */
4231 		for (area = 0; area < nr_vms; area++) {
4232 			if (vas[area])
4233 				continue;
4234 
4235 			vas[area] = kmem_cache_zalloc(
4236 				vmap_area_cachep, GFP_KERNEL);
4237 			if (!vas[area])
4238 				goto err_free;
4239 		}
4240 
4241 		goto retry;
4242 	}
4243 
4244 err_free:
4245 	for (area = 0; area < nr_vms; area++) {
4246 		if (vas[area])
4247 			kmem_cache_free(vmap_area_cachep, vas[area]);
4248 
4249 		kfree(vms[area]);
4250 	}
4251 err_free2:
4252 	kfree(vas);
4253 	kfree(vms);
4254 	return NULL;
4255 
4256 err_free_shadow:
4257 	spin_lock(&free_vmap_area_lock);
4258 	/*
4259 	 * We release all the vmalloc shadows, even the ones for regions that
4260 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4261 	 * being able to tolerate this case.
4262 	 */
4263 	for (area = 0; area < nr_vms; area++) {
4264 		orig_start = vas[area]->va_start;
4265 		orig_end = vas[area]->va_end;
4266 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4267 				&free_vmap_area_list);
4268 		if (va)
4269 			kasan_release_vmalloc(orig_start, orig_end,
4270 				va->va_start, va->va_end);
4271 		vas[area] = NULL;
4272 		kfree(vms[area]);
4273 	}
4274 	spin_unlock(&free_vmap_area_lock);
4275 	kfree(vas);
4276 	kfree(vms);
4277 	return NULL;
4278 }
4279 
4280 /**
4281  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4282  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4283  * @nr_vms: the number of allocated areas
4284  *
4285  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4286  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4287 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4288 {
4289 	int i;
4290 
4291 	for (i = 0; i < nr_vms; i++)
4292 		free_vm_area(vms[i]);
4293 	kfree(vms);
4294 }
4295 #endif	/* CONFIG_SMP */
4296 
4297 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4298 bool vmalloc_dump_obj(void *object)
4299 {
4300 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4301 	const void *caller;
4302 	struct vm_struct *vm;
4303 	struct vmap_area *va;
4304 	unsigned long addr;
4305 	unsigned int nr_pages;
4306 
4307 	if (!spin_trylock(&vmap_area_lock))
4308 		return false;
4309 	va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4310 	if (!va) {
4311 		spin_unlock(&vmap_area_lock);
4312 		return false;
4313 	}
4314 
4315 	vm = va->vm;
4316 	if (!vm) {
4317 		spin_unlock(&vmap_area_lock);
4318 		return false;
4319 	}
4320 	addr = (unsigned long)vm->addr;
4321 	caller = vm->caller;
4322 	nr_pages = vm->nr_pages;
4323 	spin_unlock(&vmap_area_lock);
4324 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4325 		nr_pages, addr, caller);
4326 	return true;
4327 }
4328 #endif
4329 
4330 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)4331 static void *s_start(struct seq_file *m, loff_t *pos)
4332 	__acquires(&vmap_purge_lock)
4333 	__acquires(&vmap_area_lock)
4334 {
4335 	mutex_lock(&vmap_purge_lock);
4336 	spin_lock(&vmap_area_lock);
4337 
4338 	return seq_list_start(&vmap_area_list, *pos);
4339 }
4340 
s_next(struct seq_file * m,void * p,loff_t * pos)4341 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4342 {
4343 	return seq_list_next(p, &vmap_area_list, pos);
4344 }
4345 
s_stop(struct seq_file * m,void * p)4346 static void s_stop(struct seq_file *m, void *p)
4347 	__releases(&vmap_area_lock)
4348 	__releases(&vmap_purge_lock)
4349 {
4350 	spin_unlock(&vmap_area_lock);
4351 	mutex_unlock(&vmap_purge_lock);
4352 }
4353 
show_numa_info(struct seq_file * m,struct vm_struct * v)4354 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4355 {
4356 	if (IS_ENABLED(CONFIG_NUMA)) {
4357 		unsigned int nr, *counters = m->private;
4358 		unsigned int step = 1U << vm_area_page_order(v);
4359 
4360 		if (!counters)
4361 			return;
4362 
4363 		if (v->flags & VM_UNINITIALIZED)
4364 			return;
4365 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4366 		smp_rmb();
4367 
4368 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4369 
4370 		for (nr = 0; nr < v->nr_pages; nr += step)
4371 			counters[page_to_nid(v->pages[nr])] += step;
4372 		for_each_node_state(nr, N_HIGH_MEMORY)
4373 			if (counters[nr])
4374 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4375 	}
4376 }
4377 
show_purge_info(struct seq_file * m)4378 static void show_purge_info(struct seq_file *m)
4379 {
4380 	struct vmap_area *va;
4381 
4382 	spin_lock(&purge_vmap_area_lock);
4383 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4384 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4385 			(void *)va->va_start, (void *)va->va_end,
4386 			va->va_end - va->va_start);
4387 	}
4388 	spin_unlock(&purge_vmap_area_lock);
4389 }
4390 
s_show(struct seq_file * m,void * p)4391 static int s_show(struct seq_file *m, void *p)
4392 {
4393 	struct vmap_area *va;
4394 	struct vm_struct *v;
4395 
4396 	va = list_entry(p, struct vmap_area, list);
4397 
4398 	if (!va->vm) {
4399 		if (va->flags & VMAP_RAM)
4400 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4401 				(void *)va->va_start, (void *)va->va_end,
4402 				va->va_end - va->va_start);
4403 
4404 		goto final;
4405 	}
4406 
4407 	v = va->vm;
4408 
4409 	seq_printf(m, "0x%pK-0x%pK %7ld",
4410 		v->addr, v->addr + v->size, v->size);
4411 
4412 	if (v->caller)
4413 		seq_printf(m, " %pS", v->caller);
4414 
4415 	if (v->nr_pages)
4416 		seq_printf(m, " pages=%d", v->nr_pages);
4417 
4418 	if (v->phys_addr)
4419 		seq_printf(m, " phys=%pa", &v->phys_addr);
4420 
4421 	if (v->flags & VM_IOREMAP)
4422 		seq_puts(m, " ioremap");
4423 
4424 	if (v->flags & VM_ALLOC)
4425 		seq_puts(m, " vmalloc");
4426 
4427 	if (v->flags & VM_MAP)
4428 		seq_puts(m, " vmap");
4429 
4430 	if (v->flags & VM_USERMAP)
4431 		seq_puts(m, " user");
4432 
4433 	if (v->flags & VM_DMA_COHERENT)
4434 		seq_puts(m, " dma-coherent");
4435 
4436 	if (is_vmalloc_addr(v->pages))
4437 		seq_puts(m, " vpages");
4438 
4439 	show_numa_info(m, v);
4440 	seq_putc(m, '\n');
4441 
4442 	/*
4443 	 * As a final step, dump "unpurged" areas.
4444 	 */
4445 final:
4446 	if (list_is_last(&va->list, &vmap_area_list))
4447 		show_purge_info(m);
4448 
4449 	return 0;
4450 }
4451 
4452 static const struct seq_operations vmalloc_op = {
4453 	.start = s_start,
4454 	.next = s_next,
4455 	.stop = s_stop,
4456 	.show = s_show,
4457 };
4458 
proc_vmalloc_init(void)4459 static int __init proc_vmalloc_init(void)
4460 {
4461 	if (IS_ENABLED(CONFIG_NUMA))
4462 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4463 				&vmalloc_op,
4464 				nr_node_ids * sizeof(unsigned int), NULL);
4465 	else
4466 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4467 	return 0;
4468 }
4469 module_init(proc_vmalloc_init);
4470 
4471 #endif
4472 
vmalloc_init(void)4473 void __init vmalloc_init(void)
4474 {
4475 	struct vmap_area *va;
4476 	struct vm_struct *tmp;
4477 	int i;
4478 
4479 	/*
4480 	 * Create the cache for vmap_area objects.
4481 	 */
4482 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4483 
4484 	for_each_possible_cpu(i) {
4485 		struct vmap_block_queue *vbq;
4486 		struct vfree_deferred *p;
4487 
4488 		vbq = &per_cpu(vmap_block_queue, i);
4489 		spin_lock_init(&vbq->lock);
4490 		INIT_LIST_HEAD(&vbq->free);
4491 		p = &per_cpu(vfree_deferred, i);
4492 		init_llist_head(&p->list);
4493 		INIT_WORK(&p->wq, delayed_vfree_work);
4494 		xa_init(&vbq->vmap_blocks);
4495 	}
4496 
4497 	/* Import existing vmlist entries. */
4498 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4499 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4500 		if (WARN_ON_ONCE(!va))
4501 			continue;
4502 
4503 		va->va_start = (unsigned long)tmp->addr;
4504 		va->va_end = va->va_start + tmp->size;
4505 		va->vm = tmp;
4506 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4507 	}
4508 
4509 	/*
4510 	 * Now we can initialize a free vmap space.
4511 	 */
4512 	vmap_init_free_space();
4513 	vmap_initialized = true;
4514 }
4515