1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48
49 #include "internal.h"
50 #include "pgalloc-track.h"
51
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
set_nohugeiomap(char * str)55 static int __init set_nohugeiomap(char *str)
56 {
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67
set_nohugevmalloc(char * str)68 static int __init set_nohugevmalloc(char *str)
69 {
70 vmap_allow_huge = false;
71 return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
is_vmalloc_addr(const void * x)78 bool is_vmalloc_addr(const void *x)
79 {
80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85
86 struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 pte_t *pte;
98 u64 pfn;
99 unsigned long size = PAGE_SIZE;
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(ptep_get(pte)));
107
108 #ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry, size);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118 #endif
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124 }
125
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129 {
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149 }
150
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174 }
175
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179 {
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199 }
200
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225 }
226
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230 {
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250 }
251
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276 }
277
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281 {
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305 }
306
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
309 {
310 int err;
311
312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 ioremap_max_page_shift);
314 flush_cache_vmap(addr, end);
315 if (!err)
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
318 return err;
319 }
320
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
323 {
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
331 *mask |= PGTBL_PTE_MODIFIED;
332 }
333
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
336 {
337 pmd_t *pmd;
338 unsigned long next;
339 int cleared;
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
350 continue;
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
353 vunmap_pte_range(pmd, addr, next, mask);
354
355 cond_resched();
356 } while (pmd++, addr = next, addr != end);
357 }
358
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
361 {
362 pud_t *pud;
363 unsigned long next;
364 int cleared;
365
366 pud = pud_offset(p4d, addr);
367 do {
368 next = pud_addr_end(addr, end);
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
375 continue;
376 if (pud_none_or_clear_bad(pud))
377 continue;
378 vunmap_pmd_range(pud, addr, next, mask);
379 } while (pud++, addr = next, addr != end);
380 }
381
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
384 {
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
391
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
394 *mask |= PGTBL_P4D_MODIFIED;
395
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
398 vunmap_pud_range(p4d, addr, next, mask);
399 } while (p4d++, addr = next, addr != end);
400 }
401
402 /*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
405 *
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
411 *
412 * This is an internal function only. Do not use outside mm/.
413 */
__vunmap_range_noflush(unsigned long start,unsigned long end)414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 unsigned long next;
417 pgd_t *pgd;
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
423 do {
424 next = pgd_addr_end(addr, end);
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
429 vunmap_p4d_range(pgd, addr, next, &mask);
430 } while (pgd++, addr = next, addr != end);
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
434 }
435
vunmap_range_noflush(unsigned long start,unsigned long end)436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440 }
441
442 /**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
vunmap_range(unsigned long addr,unsigned long end)451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456 }
457
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
461 {
462 int err = 0;
463 pte_t *pte;
464
465 /*
466 * nr is a running index into the array which helps higher level
467 * callers keep track of where we're up to.
468 */
469
470 pte = pte_alloc_kernel_track(pmd, addr, mask);
471 if (!pte)
472 return -ENOMEM;
473 do {
474 struct page *page = pages[*nr];
475
476 if (WARN_ON(!pte_none(ptep_get(pte)))) {
477 err = -EBUSY;
478 break;
479 }
480 if (WARN_ON(!page)) {
481 err = -ENOMEM;
482 break;
483 }
484 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
485 err = -EINVAL;
486 break;
487 }
488
489 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
490 (*nr)++;
491 } while (pte++, addr += PAGE_SIZE, addr != end);
492 *mask |= PGTBL_PTE_MODIFIED;
493
494 return err;
495 }
496
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)497 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
498 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
499 pgtbl_mod_mask *mask)
500 {
501 pmd_t *pmd;
502 unsigned long next;
503
504 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
505 if (!pmd)
506 return -ENOMEM;
507 do {
508 next = pmd_addr_end(addr, end);
509 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
510 return -ENOMEM;
511 } while (pmd++, addr = next, addr != end);
512 return 0;
513 }
514
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)515 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
516 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
517 pgtbl_mod_mask *mask)
518 {
519 pud_t *pud;
520 unsigned long next;
521
522 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
523 if (!pud)
524 return -ENOMEM;
525 do {
526 next = pud_addr_end(addr, end);
527 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
528 return -ENOMEM;
529 } while (pud++, addr = next, addr != end);
530 return 0;
531 }
532
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)533 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
534 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
535 pgtbl_mod_mask *mask)
536 {
537 p4d_t *p4d;
538 unsigned long next;
539
540 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
541 if (!p4d)
542 return -ENOMEM;
543 do {
544 next = p4d_addr_end(addr, end);
545 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
546 return -ENOMEM;
547 } while (p4d++, addr = next, addr != end);
548 return 0;
549 }
550
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)551 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
552 pgprot_t prot, struct page **pages)
553 {
554 unsigned long start = addr;
555 pgd_t *pgd;
556 unsigned long next;
557 int err = 0;
558 int nr = 0;
559 pgtbl_mod_mask mask = 0;
560
561 BUG_ON(addr >= end);
562 pgd = pgd_offset_k(addr);
563 do {
564 next = pgd_addr_end(addr, end);
565 if (pgd_bad(*pgd))
566 mask |= PGTBL_PGD_MODIFIED;
567 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
568 if (err)
569 break;
570 } while (pgd++, addr = next, addr != end);
571
572 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
573 arch_sync_kernel_mappings(start, end);
574
575 return err;
576 }
577
578 /*
579 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
580 * flush caches.
581 *
582 * The caller is responsible for calling flush_cache_vmap() after this
583 * function returns successfully and before the addresses are accessed.
584 *
585 * This is an internal function only. Do not use outside mm/.
586 */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)587 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
588 pgprot_t prot, struct page **pages, unsigned int page_shift)
589 {
590 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
591
592 WARN_ON(page_shift < PAGE_SHIFT);
593
594 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
595 page_shift == PAGE_SHIFT)
596 return vmap_small_pages_range_noflush(addr, end, prot, pages);
597
598 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
599 int err;
600
601 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
602 page_to_phys(pages[i]), prot,
603 page_shift);
604 if (err)
605 return err;
606
607 addr += 1UL << page_shift;
608 }
609
610 return 0;
611 }
612
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)613 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
614 pgprot_t prot, struct page **pages, unsigned int page_shift)
615 {
616 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
617 page_shift);
618
619 if (ret)
620 return ret;
621 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 }
623
624 /**
625 * vmap_pages_range - map pages to a kernel virtual address
626 * @addr: start of the VM area to map
627 * @end: end of the VM area to map (non-inclusive)
628 * @prot: page protection flags to use
629 * @pages: pages to map (always PAGE_SIZE pages)
630 * @page_shift: maximum shift that the pages may be mapped with, @pages must
631 * be aligned and contiguous up to at least this shift.
632 *
633 * RETURNS:
634 * 0 on success, -errno on failure.
635 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)636 static int vmap_pages_range(unsigned long addr, unsigned long end,
637 pgprot_t prot, struct page **pages, unsigned int page_shift)
638 {
639 int err;
640
641 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 flush_cache_vmap(addr, end);
643 return err;
644 }
645
is_vmalloc_or_module_addr(const void * x)646 int is_vmalloc_or_module_addr(const void *x)
647 {
648 /*
649 * ARM, x86-64 and sparc64 put modules in a special place,
650 * and fall back on vmalloc() if that fails. Others
651 * just put it in the vmalloc space.
652 */
653 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
654 unsigned long addr = (unsigned long)kasan_reset_tag(x);
655 if (addr >= MODULES_VADDR && addr < MODULES_END)
656 return 1;
657 #endif
658 return is_vmalloc_addr(x);
659 }
660 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
661
662 /*
663 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
664 * return the tail page that corresponds to the base page address, which
665 * matches small vmap mappings.
666 */
vmalloc_to_page(const void * vmalloc_addr)667 struct page *vmalloc_to_page(const void *vmalloc_addr)
668 {
669 unsigned long addr = (unsigned long) vmalloc_addr;
670 struct page *page = NULL;
671 pgd_t *pgd = pgd_offset_k(addr);
672 p4d_t *p4d;
673 pud_t *pud;
674 pmd_t *pmd;
675 pte_t *ptep, pte;
676
677 /*
678 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
679 * architectures that do not vmalloc module space
680 */
681 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
682
683 if (pgd_none(*pgd))
684 return NULL;
685 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
686 return NULL; /* XXX: no allowance for huge pgd */
687 if (WARN_ON_ONCE(pgd_bad(*pgd)))
688 return NULL;
689
690 p4d = p4d_offset(pgd, addr);
691 if (p4d_none(*p4d))
692 return NULL;
693 if (p4d_leaf(*p4d))
694 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(p4d_bad(*p4d)))
696 return NULL;
697
698 pud = pud_offset(p4d, addr);
699 if (pud_none(*pud))
700 return NULL;
701 if (pud_leaf(*pud))
702 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pud_bad(*pud)))
704 return NULL;
705
706 pmd = pmd_offset(pud, addr);
707 if (pmd_none(*pmd))
708 return NULL;
709 if (pmd_leaf(*pmd))
710 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
711 if (WARN_ON_ONCE(pmd_bad(*pmd)))
712 return NULL;
713
714 ptep = pte_offset_kernel(pmd, addr);
715 pte = ptep_get(ptep);
716 if (pte_present(pte))
717 page = pte_page(pte);
718
719 return page;
720 }
721 EXPORT_SYMBOL(vmalloc_to_page);
722
723 /*
724 * Map a vmalloc()-space virtual address to the physical page frame number.
725 */
vmalloc_to_pfn(const void * vmalloc_addr)726 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
727 {
728 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
729 }
730 EXPORT_SYMBOL(vmalloc_to_pfn);
731
732
733 /*** Global kva allocator ***/
734
735 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
736 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
737
738
739 static DEFINE_SPINLOCK(vmap_area_lock);
740 static DEFINE_SPINLOCK(free_vmap_area_lock);
741 /* Export for kexec only */
742 LIST_HEAD(vmap_area_list);
743 static struct rb_root vmap_area_root = RB_ROOT;
744 static bool vmap_initialized __read_mostly;
745
746 static struct rb_root purge_vmap_area_root = RB_ROOT;
747 static LIST_HEAD(purge_vmap_area_list);
748 static DEFINE_SPINLOCK(purge_vmap_area_lock);
749
750 /*
751 * This kmem_cache is used for vmap_area objects. Instead of
752 * allocating from slab we reuse an object from this cache to
753 * make things faster. Especially in "no edge" splitting of
754 * free block.
755 */
756 static struct kmem_cache *vmap_area_cachep;
757
758 /*
759 * This linked list is used in pair with free_vmap_area_root.
760 * It gives O(1) access to prev/next to perform fast coalescing.
761 */
762 static LIST_HEAD(free_vmap_area_list);
763
764 /*
765 * This augment red-black tree represents the free vmap space.
766 * All vmap_area objects in this tree are sorted by va->va_start
767 * address. It is used for allocation and merging when a vmap
768 * object is released.
769 *
770 * Each vmap_area node contains a maximum available free block
771 * of its sub-tree, right or left. Therefore it is possible to
772 * find a lowest match of free area.
773 */
774 static struct rb_root free_vmap_area_root = RB_ROOT;
775
776 /*
777 * Preload a CPU with one object for "no edge" split case. The
778 * aim is to get rid of allocations from the atomic context, thus
779 * to use more permissive allocation masks.
780 */
781 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
782
783 static __always_inline unsigned long
va_size(struct vmap_area * va)784 va_size(struct vmap_area *va)
785 {
786 return (va->va_end - va->va_start);
787 }
788
789 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)790 get_subtree_max_size(struct rb_node *node)
791 {
792 struct vmap_area *va;
793
794 va = rb_entry_safe(node, struct vmap_area, rb_node);
795 return va ? va->subtree_max_size : 0;
796 }
797
798 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
799 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
800
801 static void reclaim_and_purge_vmap_areas(void);
802 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
803 static void drain_vmap_area_work(struct work_struct *work);
804 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
805
806 static atomic_long_t nr_vmalloc_pages;
807
vmalloc_nr_pages(void)808 unsigned long vmalloc_nr_pages(void)
809 {
810 return atomic_long_read(&nr_vmalloc_pages);
811 }
812
813 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
find_vmap_area_exceed_addr(unsigned long addr)814 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
815 {
816 struct vmap_area *va = NULL;
817 struct rb_node *n = vmap_area_root.rb_node;
818
819 addr = (unsigned long)kasan_reset_tag((void *)addr);
820
821 while (n) {
822 struct vmap_area *tmp;
823
824 tmp = rb_entry(n, struct vmap_area, rb_node);
825 if (tmp->va_end > addr) {
826 va = tmp;
827 if (tmp->va_start <= addr)
828 break;
829
830 n = n->rb_left;
831 } else
832 n = n->rb_right;
833 }
834
835 return va;
836 }
837
__find_vmap_area(unsigned long addr,struct rb_root * root)838 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
839 {
840 struct rb_node *n = root->rb_node;
841
842 addr = (unsigned long)kasan_reset_tag((void *)addr);
843
844 while (n) {
845 struct vmap_area *va;
846
847 va = rb_entry(n, struct vmap_area, rb_node);
848 if (addr < va->va_start)
849 n = n->rb_left;
850 else if (addr >= va->va_end)
851 n = n->rb_right;
852 else
853 return va;
854 }
855
856 return NULL;
857 }
858
859 /*
860 * This function returns back addresses of parent node
861 * and its left or right link for further processing.
862 *
863 * Otherwise NULL is returned. In that case all further
864 * steps regarding inserting of conflicting overlap range
865 * have to be declined and actually considered as a bug.
866 */
867 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)868 find_va_links(struct vmap_area *va,
869 struct rb_root *root, struct rb_node *from,
870 struct rb_node **parent)
871 {
872 struct vmap_area *tmp_va;
873 struct rb_node **link;
874
875 if (root) {
876 link = &root->rb_node;
877 if (unlikely(!*link)) {
878 *parent = NULL;
879 return link;
880 }
881 } else {
882 link = &from;
883 }
884
885 /*
886 * Go to the bottom of the tree. When we hit the last point
887 * we end up with parent rb_node and correct direction, i name
888 * it link, where the new va->rb_node will be attached to.
889 */
890 do {
891 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
892
893 /*
894 * During the traversal we also do some sanity check.
895 * Trigger the BUG() if there are sides(left/right)
896 * or full overlaps.
897 */
898 if (va->va_end <= tmp_va->va_start)
899 link = &(*link)->rb_left;
900 else if (va->va_start >= tmp_va->va_end)
901 link = &(*link)->rb_right;
902 else {
903 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
904 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
905
906 return NULL;
907 }
908 } while (*link);
909
910 *parent = &tmp_va->rb_node;
911 return link;
912 }
913
914 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)915 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
916 {
917 struct list_head *list;
918
919 if (unlikely(!parent))
920 /*
921 * The red-black tree where we try to find VA neighbors
922 * before merging or inserting is empty, i.e. it means
923 * there is no free vmap space. Normally it does not
924 * happen but we handle this case anyway.
925 */
926 return NULL;
927
928 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
929 return (&parent->rb_right == link ? list->next : list);
930 }
931
932 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)933 __link_va(struct vmap_area *va, struct rb_root *root,
934 struct rb_node *parent, struct rb_node **link,
935 struct list_head *head, bool augment)
936 {
937 /*
938 * VA is still not in the list, but we can
939 * identify its future previous list_head node.
940 */
941 if (likely(parent)) {
942 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
943 if (&parent->rb_right != link)
944 head = head->prev;
945 }
946
947 /* Insert to the rb-tree */
948 rb_link_node(&va->rb_node, parent, link);
949 if (augment) {
950 /*
951 * Some explanation here. Just perform simple insertion
952 * to the tree. We do not set va->subtree_max_size to
953 * its current size before calling rb_insert_augmented().
954 * It is because we populate the tree from the bottom
955 * to parent levels when the node _is_ in the tree.
956 *
957 * Therefore we set subtree_max_size to zero after insertion,
958 * to let __augment_tree_propagate_from() puts everything to
959 * the correct order later on.
960 */
961 rb_insert_augmented(&va->rb_node,
962 root, &free_vmap_area_rb_augment_cb);
963 va->subtree_max_size = 0;
964 } else {
965 rb_insert_color(&va->rb_node, root);
966 }
967
968 /* Address-sort this list */
969 list_add(&va->list, head);
970 }
971
972 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)973 link_va(struct vmap_area *va, struct rb_root *root,
974 struct rb_node *parent, struct rb_node **link,
975 struct list_head *head)
976 {
977 __link_va(va, root, parent, link, head, false);
978 }
979
980 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)981 link_va_augment(struct vmap_area *va, struct rb_root *root,
982 struct rb_node *parent, struct rb_node **link,
983 struct list_head *head)
984 {
985 __link_va(va, root, parent, link, head, true);
986 }
987
988 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)989 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
990 {
991 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
992 return;
993
994 if (augment)
995 rb_erase_augmented(&va->rb_node,
996 root, &free_vmap_area_rb_augment_cb);
997 else
998 rb_erase(&va->rb_node, root);
999
1000 list_del_init(&va->list);
1001 RB_CLEAR_NODE(&va->rb_node);
1002 }
1003
1004 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1005 unlink_va(struct vmap_area *va, struct rb_root *root)
1006 {
1007 __unlink_va(va, root, false);
1008 }
1009
1010 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1011 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1012 {
1013 __unlink_va(va, root, true);
1014 }
1015
1016 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1017 /*
1018 * Gets called when remove the node and rotate.
1019 */
1020 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1021 compute_subtree_max_size(struct vmap_area *va)
1022 {
1023 return max3(va_size(va),
1024 get_subtree_max_size(va->rb_node.rb_left),
1025 get_subtree_max_size(va->rb_node.rb_right));
1026 }
1027
1028 static void
augment_tree_propagate_check(void)1029 augment_tree_propagate_check(void)
1030 {
1031 struct vmap_area *va;
1032 unsigned long computed_size;
1033
1034 list_for_each_entry(va, &free_vmap_area_list, list) {
1035 computed_size = compute_subtree_max_size(va);
1036 if (computed_size != va->subtree_max_size)
1037 pr_emerg("tree is corrupted: %lu, %lu\n",
1038 va_size(va), va->subtree_max_size);
1039 }
1040 }
1041 #endif
1042
1043 /*
1044 * This function populates subtree_max_size from bottom to upper
1045 * levels starting from VA point. The propagation must be done
1046 * when VA size is modified by changing its va_start/va_end. Or
1047 * in case of newly inserting of VA to the tree.
1048 *
1049 * It means that __augment_tree_propagate_from() must be called:
1050 * - After VA has been inserted to the tree(free path);
1051 * - After VA has been shrunk(allocation path);
1052 * - After VA has been increased(merging path).
1053 *
1054 * Please note that, it does not mean that upper parent nodes
1055 * and their subtree_max_size are recalculated all the time up
1056 * to the root node.
1057 *
1058 * 4--8
1059 * /\
1060 * / \
1061 * / \
1062 * 2--2 8--8
1063 *
1064 * For example if we modify the node 4, shrinking it to 2, then
1065 * no any modification is required. If we shrink the node 2 to 1
1066 * its subtree_max_size is updated only, and set to 1. If we shrink
1067 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1068 * node becomes 4--6.
1069 */
1070 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1071 augment_tree_propagate_from(struct vmap_area *va)
1072 {
1073 /*
1074 * Populate the tree from bottom towards the root until
1075 * the calculated maximum available size of checked node
1076 * is equal to its current one.
1077 */
1078 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1079
1080 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1081 augment_tree_propagate_check();
1082 #endif
1083 }
1084
1085 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1086 insert_vmap_area(struct vmap_area *va,
1087 struct rb_root *root, struct list_head *head)
1088 {
1089 struct rb_node **link;
1090 struct rb_node *parent;
1091
1092 link = find_va_links(va, root, NULL, &parent);
1093 if (link)
1094 link_va(va, root, parent, link, head);
1095 }
1096
1097 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1098 insert_vmap_area_augment(struct vmap_area *va,
1099 struct rb_node *from, struct rb_root *root,
1100 struct list_head *head)
1101 {
1102 struct rb_node **link;
1103 struct rb_node *parent;
1104
1105 if (from)
1106 link = find_va_links(va, NULL, from, &parent);
1107 else
1108 link = find_va_links(va, root, NULL, &parent);
1109
1110 if (link) {
1111 link_va_augment(va, root, parent, link, head);
1112 augment_tree_propagate_from(va);
1113 }
1114 }
1115
1116 /*
1117 * Merge de-allocated chunk of VA memory with previous
1118 * and next free blocks. If coalesce is not done a new
1119 * free area is inserted. If VA has been merged, it is
1120 * freed.
1121 *
1122 * Please note, it can return NULL in case of overlap
1123 * ranges, followed by WARN() report. Despite it is a
1124 * buggy behaviour, a system can be alive and keep
1125 * ongoing.
1126 */
1127 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1128 __merge_or_add_vmap_area(struct vmap_area *va,
1129 struct rb_root *root, struct list_head *head, bool augment)
1130 {
1131 struct vmap_area *sibling;
1132 struct list_head *next;
1133 struct rb_node **link;
1134 struct rb_node *parent;
1135 bool merged = false;
1136
1137 /*
1138 * Find a place in the tree where VA potentially will be
1139 * inserted, unless it is merged with its sibling/siblings.
1140 */
1141 link = find_va_links(va, root, NULL, &parent);
1142 if (!link)
1143 return NULL;
1144
1145 /*
1146 * Get next node of VA to check if merging can be done.
1147 */
1148 next = get_va_next_sibling(parent, link);
1149 if (unlikely(next == NULL))
1150 goto insert;
1151
1152 /*
1153 * start end
1154 * | |
1155 * |<------VA------>|<-----Next----->|
1156 * | |
1157 * start end
1158 */
1159 if (next != head) {
1160 sibling = list_entry(next, struct vmap_area, list);
1161 if (sibling->va_start == va->va_end) {
1162 sibling->va_start = va->va_start;
1163
1164 /* Free vmap_area object. */
1165 kmem_cache_free(vmap_area_cachep, va);
1166
1167 /* Point to the new merged area. */
1168 va = sibling;
1169 merged = true;
1170 }
1171 }
1172
1173 /*
1174 * start end
1175 * | |
1176 * |<-----Prev----->|<------VA------>|
1177 * | |
1178 * start end
1179 */
1180 if (next->prev != head) {
1181 sibling = list_entry(next->prev, struct vmap_area, list);
1182 if (sibling->va_end == va->va_start) {
1183 /*
1184 * If both neighbors are coalesced, it is important
1185 * to unlink the "next" node first, followed by merging
1186 * with "previous" one. Otherwise the tree might not be
1187 * fully populated if a sibling's augmented value is
1188 * "normalized" because of rotation operations.
1189 */
1190 if (merged)
1191 __unlink_va(va, root, augment);
1192
1193 sibling->va_end = va->va_end;
1194
1195 /* Free vmap_area object. */
1196 kmem_cache_free(vmap_area_cachep, va);
1197
1198 /* Point to the new merged area. */
1199 va = sibling;
1200 merged = true;
1201 }
1202 }
1203
1204 insert:
1205 if (!merged)
1206 __link_va(va, root, parent, link, head, augment);
1207
1208 return va;
1209 }
1210
1211 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1212 merge_or_add_vmap_area(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214 {
1215 return __merge_or_add_vmap_area(va, root, head, false);
1216 }
1217
1218 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1219 merge_or_add_vmap_area_augment(struct vmap_area *va,
1220 struct rb_root *root, struct list_head *head)
1221 {
1222 va = __merge_or_add_vmap_area(va, root, head, true);
1223 if (va)
1224 augment_tree_propagate_from(va);
1225
1226 return va;
1227 }
1228
1229 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1230 is_within_this_va(struct vmap_area *va, unsigned long size,
1231 unsigned long align, unsigned long vstart)
1232 {
1233 unsigned long nva_start_addr;
1234
1235 if (va->va_start > vstart)
1236 nva_start_addr = ALIGN(va->va_start, align);
1237 else
1238 nva_start_addr = ALIGN(vstart, align);
1239
1240 /* Can be overflowed due to big size or alignment. */
1241 if (nva_start_addr + size < nva_start_addr ||
1242 nva_start_addr < vstart)
1243 return false;
1244
1245 return (nva_start_addr + size <= va->va_end);
1246 }
1247
1248 /*
1249 * Find the first free block(lowest start address) in the tree,
1250 * that will accomplish the request corresponding to passing
1251 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1252 * a search length is adjusted to account for worst case alignment
1253 * overhead.
1254 */
1255 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1256 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1257 unsigned long align, unsigned long vstart, bool adjust_search_size)
1258 {
1259 struct vmap_area *va;
1260 struct rb_node *node;
1261 unsigned long length;
1262
1263 /* Start from the root. */
1264 node = root->rb_node;
1265
1266 /* Adjust the search size for alignment overhead. */
1267 length = adjust_search_size ? size + align - 1 : size;
1268
1269 while (node) {
1270 va = rb_entry(node, struct vmap_area, rb_node);
1271
1272 if (get_subtree_max_size(node->rb_left) >= length &&
1273 vstart < va->va_start) {
1274 node = node->rb_left;
1275 } else {
1276 if (is_within_this_va(va, size, align, vstart))
1277 return va;
1278
1279 /*
1280 * Does not make sense to go deeper towards the right
1281 * sub-tree if it does not have a free block that is
1282 * equal or bigger to the requested search length.
1283 */
1284 if (get_subtree_max_size(node->rb_right) >= length) {
1285 node = node->rb_right;
1286 continue;
1287 }
1288
1289 /*
1290 * OK. We roll back and find the first right sub-tree,
1291 * that will satisfy the search criteria. It can happen
1292 * due to "vstart" restriction or an alignment overhead
1293 * that is bigger then PAGE_SIZE.
1294 */
1295 while ((node = rb_parent(node))) {
1296 va = rb_entry(node, struct vmap_area, rb_node);
1297 if (is_within_this_va(va, size, align, vstart))
1298 return va;
1299
1300 if (get_subtree_max_size(node->rb_right) >= length &&
1301 vstart <= va->va_start) {
1302 /*
1303 * Shift the vstart forward. Please note, we update it with
1304 * parent's start address adding "1" because we do not want
1305 * to enter same sub-tree after it has already been checked
1306 * and no suitable free block found there.
1307 */
1308 vstart = va->va_start + 1;
1309 node = node->rb_right;
1310 break;
1311 }
1312 }
1313 }
1314 }
1315
1316 return NULL;
1317 }
1318
1319 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1320 #include <linux/random.h>
1321
1322 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1323 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1324 unsigned long align, unsigned long vstart)
1325 {
1326 struct vmap_area *va;
1327
1328 list_for_each_entry(va, head, list) {
1329 if (!is_within_this_va(va, size, align, vstart))
1330 continue;
1331
1332 return va;
1333 }
1334
1335 return NULL;
1336 }
1337
1338 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1339 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1340 unsigned long size, unsigned long align)
1341 {
1342 struct vmap_area *va_1, *va_2;
1343 unsigned long vstart;
1344 unsigned int rnd;
1345
1346 get_random_bytes(&rnd, sizeof(rnd));
1347 vstart = VMALLOC_START + rnd;
1348
1349 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1350 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1351
1352 if (va_1 != va_2)
1353 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1354 va_1, va_2, vstart);
1355 }
1356 #endif
1357
1358 enum fit_type {
1359 NOTHING_FIT = 0,
1360 FL_FIT_TYPE = 1, /* full fit */
1361 LE_FIT_TYPE = 2, /* left edge fit */
1362 RE_FIT_TYPE = 3, /* right edge fit */
1363 NE_FIT_TYPE = 4 /* no edge fit */
1364 };
1365
1366 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1367 classify_va_fit_type(struct vmap_area *va,
1368 unsigned long nva_start_addr, unsigned long size)
1369 {
1370 enum fit_type type;
1371
1372 /* Check if it is within VA. */
1373 if (nva_start_addr < va->va_start ||
1374 nva_start_addr + size > va->va_end)
1375 return NOTHING_FIT;
1376
1377 /* Now classify. */
1378 if (va->va_start == nva_start_addr) {
1379 if (va->va_end == nva_start_addr + size)
1380 type = FL_FIT_TYPE;
1381 else
1382 type = LE_FIT_TYPE;
1383 } else if (va->va_end == nva_start_addr + size) {
1384 type = RE_FIT_TYPE;
1385 } else {
1386 type = NE_FIT_TYPE;
1387 }
1388
1389 return type;
1390 }
1391
1392 static __always_inline int
adjust_va_to_fit_type(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1393 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1394 struct vmap_area *va, unsigned long nva_start_addr,
1395 unsigned long size)
1396 {
1397 struct vmap_area *lva = NULL;
1398 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1399
1400 if (type == FL_FIT_TYPE) {
1401 /*
1402 * No need to split VA, it fully fits.
1403 *
1404 * | |
1405 * V NVA V
1406 * |---------------|
1407 */
1408 unlink_va_augment(va, root);
1409 kmem_cache_free(vmap_area_cachep, va);
1410 } else if (type == LE_FIT_TYPE) {
1411 /*
1412 * Split left edge of fit VA.
1413 *
1414 * | |
1415 * V NVA V R
1416 * |-------|-------|
1417 */
1418 va->va_start += size;
1419 } else if (type == RE_FIT_TYPE) {
1420 /*
1421 * Split right edge of fit VA.
1422 *
1423 * | |
1424 * L V NVA V
1425 * |-------|-------|
1426 */
1427 va->va_end = nva_start_addr;
1428 } else if (type == NE_FIT_TYPE) {
1429 /*
1430 * Split no edge of fit VA.
1431 *
1432 * | |
1433 * L V NVA V R
1434 * |---|-------|---|
1435 */
1436 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1437 if (unlikely(!lva)) {
1438 /*
1439 * For percpu allocator we do not do any pre-allocation
1440 * and leave it as it is. The reason is it most likely
1441 * never ends up with NE_FIT_TYPE splitting. In case of
1442 * percpu allocations offsets and sizes are aligned to
1443 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1444 * are its main fitting cases.
1445 *
1446 * There are a few exceptions though, as an example it is
1447 * a first allocation (early boot up) when we have "one"
1448 * big free space that has to be split.
1449 *
1450 * Also we can hit this path in case of regular "vmap"
1451 * allocations, if "this" current CPU was not preloaded.
1452 * See the comment in alloc_vmap_area() why. If so, then
1453 * GFP_NOWAIT is used instead to get an extra object for
1454 * split purpose. That is rare and most time does not
1455 * occur.
1456 *
1457 * What happens if an allocation gets failed. Basically,
1458 * an "overflow" path is triggered to purge lazily freed
1459 * areas to free some memory, then, the "retry" path is
1460 * triggered to repeat one more time. See more details
1461 * in alloc_vmap_area() function.
1462 */
1463 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1464 if (!lva)
1465 return -1;
1466 }
1467
1468 /*
1469 * Build the remainder.
1470 */
1471 lva->va_start = va->va_start;
1472 lva->va_end = nva_start_addr;
1473
1474 /*
1475 * Shrink this VA to remaining size.
1476 */
1477 va->va_start = nva_start_addr + size;
1478 } else {
1479 return -1;
1480 }
1481
1482 if (type != FL_FIT_TYPE) {
1483 augment_tree_propagate_from(va);
1484
1485 if (lva) /* type == NE_FIT_TYPE */
1486 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1487 }
1488
1489 return 0;
1490 }
1491
1492 /*
1493 * Returns a start address of the newly allocated area, if success.
1494 * Otherwise a vend is returned that indicates failure.
1495 */
1496 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1497 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1498 unsigned long size, unsigned long align,
1499 unsigned long vstart, unsigned long vend)
1500 {
1501 bool adjust_search_size = true;
1502 unsigned long nva_start_addr;
1503 struct vmap_area *va;
1504 int ret;
1505
1506 /*
1507 * Do not adjust when:
1508 * a) align <= PAGE_SIZE, because it does not make any sense.
1509 * All blocks(their start addresses) are at least PAGE_SIZE
1510 * aligned anyway;
1511 * b) a short range where a requested size corresponds to exactly
1512 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1513 * With adjusted search length an allocation would not succeed.
1514 */
1515 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1516 adjust_search_size = false;
1517
1518 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1519 if (unlikely(!va))
1520 return vend;
1521
1522 if (va->va_start > vstart)
1523 nva_start_addr = ALIGN(va->va_start, align);
1524 else
1525 nva_start_addr = ALIGN(vstart, align);
1526
1527 /* Check the "vend" restriction. */
1528 if (nva_start_addr + size > vend)
1529 return vend;
1530
1531 /* Update the free vmap_area. */
1532 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1533 if (WARN_ON_ONCE(ret))
1534 return vend;
1535
1536 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1537 find_vmap_lowest_match_check(root, head, size, align);
1538 #endif
1539
1540 return nva_start_addr;
1541 }
1542
1543 /*
1544 * Free a region of KVA allocated by alloc_vmap_area
1545 */
free_vmap_area(struct vmap_area * va)1546 static void free_vmap_area(struct vmap_area *va)
1547 {
1548 /*
1549 * Remove from the busy tree/list.
1550 */
1551 spin_lock(&vmap_area_lock);
1552 unlink_va(va, &vmap_area_root);
1553 spin_unlock(&vmap_area_lock);
1554
1555 /*
1556 * Insert/Merge it back to the free tree/list.
1557 */
1558 spin_lock(&free_vmap_area_lock);
1559 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1560 spin_unlock(&free_vmap_area_lock);
1561 }
1562
1563 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1564 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1565 {
1566 struct vmap_area *va = NULL;
1567
1568 /*
1569 * Preload this CPU with one extra vmap_area object. It is used
1570 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1571 * a CPU that does an allocation is preloaded.
1572 *
1573 * We do it in non-atomic context, thus it allows us to use more
1574 * permissive allocation masks to be more stable under low memory
1575 * condition and high memory pressure.
1576 */
1577 if (!this_cpu_read(ne_fit_preload_node))
1578 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1579
1580 spin_lock(lock);
1581
1582 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1583 kmem_cache_free(vmap_area_cachep, va);
1584 }
1585
1586 /*
1587 * Allocate a region of KVA of the specified size and alignment, within the
1588 * vstart and vend.
1589 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags)1590 static struct vmap_area *alloc_vmap_area(unsigned long size,
1591 unsigned long align,
1592 unsigned long vstart, unsigned long vend,
1593 int node, gfp_t gfp_mask,
1594 unsigned long va_flags)
1595 {
1596 struct vmap_area *va;
1597 unsigned long freed;
1598 unsigned long addr;
1599 int purged = 0;
1600 int ret;
1601
1602 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1603 return ERR_PTR(-EINVAL);
1604
1605 if (unlikely(!vmap_initialized))
1606 return ERR_PTR(-EBUSY);
1607
1608 might_sleep();
1609 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1610
1611 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1612 if (unlikely(!va))
1613 return ERR_PTR(-ENOMEM);
1614
1615 /*
1616 * Only scan the relevant parts containing pointers to other objects
1617 * to avoid false negatives.
1618 */
1619 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1620
1621 retry:
1622 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1623 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1624 size, align, vstart, vend);
1625 spin_unlock(&free_vmap_area_lock);
1626
1627 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1628
1629 /*
1630 * If an allocation fails, the "vend" address is
1631 * returned. Therefore trigger the overflow path.
1632 */
1633 if (unlikely(addr == vend))
1634 goto overflow;
1635
1636 va->va_start = addr;
1637 va->va_end = addr + size;
1638 va->vm = NULL;
1639 va->flags = va_flags;
1640
1641 spin_lock(&vmap_area_lock);
1642 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1643 spin_unlock(&vmap_area_lock);
1644
1645 BUG_ON(!IS_ALIGNED(va->va_start, align));
1646 BUG_ON(va->va_start < vstart);
1647 BUG_ON(va->va_end > vend);
1648
1649 ret = kasan_populate_vmalloc(addr, size);
1650 if (ret) {
1651 free_vmap_area(va);
1652 return ERR_PTR(ret);
1653 }
1654
1655 return va;
1656
1657 overflow:
1658 if (!purged) {
1659 reclaim_and_purge_vmap_areas();
1660 purged = 1;
1661 goto retry;
1662 }
1663
1664 freed = 0;
1665 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1666
1667 if (freed > 0) {
1668 purged = 0;
1669 goto retry;
1670 }
1671
1672 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1673 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1674 size);
1675
1676 kmem_cache_free(vmap_area_cachep, va);
1677 return ERR_PTR(-EBUSY);
1678 }
1679
register_vmap_purge_notifier(struct notifier_block * nb)1680 int register_vmap_purge_notifier(struct notifier_block *nb)
1681 {
1682 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1683 }
1684 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1685
unregister_vmap_purge_notifier(struct notifier_block * nb)1686 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1687 {
1688 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1689 }
1690 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1691
1692 /*
1693 * lazy_max_pages is the maximum amount of virtual address space we gather up
1694 * before attempting to purge with a TLB flush.
1695 *
1696 * There is a tradeoff here: a larger number will cover more kernel page tables
1697 * and take slightly longer to purge, but it will linearly reduce the number of
1698 * global TLB flushes that must be performed. It would seem natural to scale
1699 * this number up linearly with the number of CPUs (because vmapping activity
1700 * could also scale linearly with the number of CPUs), however it is likely
1701 * that in practice, workloads might be constrained in other ways that mean
1702 * vmap activity will not scale linearly with CPUs. Also, I want to be
1703 * conservative and not introduce a big latency on huge systems, so go with
1704 * a less aggressive log scale. It will still be an improvement over the old
1705 * code, and it will be simple to change the scale factor if we find that it
1706 * becomes a problem on bigger systems.
1707 */
lazy_max_pages(void)1708 static unsigned long lazy_max_pages(void)
1709 {
1710 unsigned int log;
1711
1712 log = fls(num_online_cpus());
1713
1714 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1715 }
1716
1717 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1718
1719 /*
1720 * Serialize vmap purging. There is no actual critical section protected
1721 * by this lock, but we want to avoid concurrent calls for performance
1722 * reasons and to make the pcpu_get_vm_areas more deterministic.
1723 */
1724 static DEFINE_MUTEX(vmap_purge_lock);
1725
1726 /* for per-CPU blocks */
1727 static void purge_fragmented_blocks_allcpus(void);
1728
1729 /*
1730 * Purges all lazily-freed vmap areas.
1731 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1732 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1733 {
1734 unsigned long resched_threshold;
1735 unsigned int num_purged_areas = 0;
1736 struct list_head local_purge_list;
1737 struct vmap_area *va, *n_va;
1738
1739 lockdep_assert_held(&vmap_purge_lock);
1740
1741 spin_lock(&purge_vmap_area_lock);
1742 purge_vmap_area_root = RB_ROOT;
1743 list_replace_init(&purge_vmap_area_list, &local_purge_list);
1744 spin_unlock(&purge_vmap_area_lock);
1745
1746 if (unlikely(list_empty(&local_purge_list)))
1747 goto out;
1748
1749 start = min(start,
1750 list_first_entry(&local_purge_list,
1751 struct vmap_area, list)->va_start);
1752
1753 end = max(end,
1754 list_last_entry(&local_purge_list,
1755 struct vmap_area, list)->va_end);
1756
1757 flush_tlb_kernel_range(start, end);
1758 resched_threshold = lazy_max_pages() << 1;
1759
1760 spin_lock(&free_vmap_area_lock);
1761 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1762 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1763 unsigned long orig_start = va->va_start;
1764 unsigned long orig_end = va->va_end;
1765
1766 /*
1767 * Finally insert or merge lazily-freed area. It is
1768 * detached and there is no need to "unlink" it from
1769 * anything.
1770 */
1771 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1772 &free_vmap_area_list);
1773
1774 if (!va)
1775 continue;
1776
1777 if (is_vmalloc_or_module_addr((void *)orig_start))
1778 kasan_release_vmalloc(orig_start, orig_end,
1779 va->va_start, va->va_end);
1780
1781 atomic_long_sub(nr, &vmap_lazy_nr);
1782 num_purged_areas++;
1783
1784 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1785 cond_resched_lock(&free_vmap_area_lock);
1786 }
1787 spin_unlock(&free_vmap_area_lock);
1788
1789 out:
1790 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1791 return num_purged_areas > 0;
1792 }
1793
1794 /*
1795 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1796 */
reclaim_and_purge_vmap_areas(void)1797 static void reclaim_and_purge_vmap_areas(void)
1798
1799 {
1800 mutex_lock(&vmap_purge_lock);
1801 purge_fragmented_blocks_allcpus();
1802 __purge_vmap_area_lazy(ULONG_MAX, 0);
1803 mutex_unlock(&vmap_purge_lock);
1804 }
1805
drain_vmap_area_work(struct work_struct * work)1806 static void drain_vmap_area_work(struct work_struct *work)
1807 {
1808 unsigned long nr_lazy;
1809
1810 do {
1811 mutex_lock(&vmap_purge_lock);
1812 __purge_vmap_area_lazy(ULONG_MAX, 0);
1813 mutex_unlock(&vmap_purge_lock);
1814
1815 /* Recheck if further work is required. */
1816 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1817 } while (nr_lazy > lazy_max_pages());
1818 }
1819
1820 /*
1821 * Free a vmap area, caller ensuring that the area has been unmapped,
1822 * unlinked and flush_cache_vunmap had been called for the correct
1823 * range previously.
1824 */
free_vmap_area_noflush(struct vmap_area * va)1825 static void free_vmap_area_noflush(struct vmap_area *va)
1826 {
1827 unsigned long nr_lazy_max = lazy_max_pages();
1828 unsigned long va_start = va->va_start;
1829 unsigned long nr_lazy;
1830
1831 if (WARN_ON_ONCE(!list_empty(&va->list)))
1832 return;
1833
1834 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1835 PAGE_SHIFT, &vmap_lazy_nr);
1836
1837 /*
1838 * Merge or place it to the purge tree/list.
1839 */
1840 spin_lock(&purge_vmap_area_lock);
1841 merge_or_add_vmap_area(va,
1842 &purge_vmap_area_root, &purge_vmap_area_list);
1843 spin_unlock(&purge_vmap_area_lock);
1844
1845 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1846
1847 /* After this point, we may free va at any time */
1848 if (unlikely(nr_lazy > nr_lazy_max))
1849 schedule_work(&drain_vmap_work);
1850 }
1851
1852 /*
1853 * Free and unmap a vmap area
1854 */
free_unmap_vmap_area(struct vmap_area * va)1855 static void free_unmap_vmap_area(struct vmap_area *va)
1856 {
1857 flush_cache_vunmap(va->va_start, va->va_end);
1858 vunmap_range_noflush(va->va_start, va->va_end);
1859 if (debug_pagealloc_enabled_static())
1860 flush_tlb_kernel_range(va->va_start, va->va_end);
1861
1862 free_vmap_area_noflush(va);
1863 }
1864
find_vmap_area(unsigned long addr)1865 struct vmap_area *find_vmap_area(unsigned long addr)
1866 {
1867 struct vmap_area *va;
1868
1869 spin_lock(&vmap_area_lock);
1870 va = __find_vmap_area(addr, &vmap_area_root);
1871 spin_unlock(&vmap_area_lock);
1872
1873 return va;
1874 }
1875
find_unlink_vmap_area(unsigned long addr)1876 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1877 {
1878 struct vmap_area *va;
1879
1880 spin_lock(&vmap_area_lock);
1881 va = __find_vmap_area(addr, &vmap_area_root);
1882 if (va)
1883 unlink_va(va, &vmap_area_root);
1884 spin_unlock(&vmap_area_lock);
1885
1886 return va;
1887 }
1888
1889 /*** Per cpu kva allocator ***/
1890
1891 /*
1892 * vmap space is limited especially on 32 bit architectures. Ensure there is
1893 * room for at least 16 percpu vmap blocks per CPU.
1894 */
1895 /*
1896 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1897 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1898 * instead (we just need a rough idea)
1899 */
1900 #if BITS_PER_LONG == 32
1901 #define VMALLOC_SPACE (128UL*1024*1024)
1902 #else
1903 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1904 #endif
1905
1906 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1907 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1908 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1909 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1910 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1911 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1912 #define VMAP_BBMAP_BITS \
1913 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1914 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1915 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1916
1917 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1918
1919 /*
1920 * Purge threshold to prevent overeager purging of fragmented blocks for
1921 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1922 */
1923 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
1924
1925 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1926 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1927 #define VMAP_FLAGS_MASK 0x3
1928
1929 struct vmap_block_queue {
1930 spinlock_t lock;
1931 struct list_head free;
1932
1933 /*
1934 * An xarray requires an extra memory dynamically to
1935 * be allocated. If it is an issue, we can use rb-tree
1936 * instead.
1937 */
1938 struct xarray vmap_blocks;
1939 };
1940
1941 struct vmap_block {
1942 spinlock_t lock;
1943 struct vmap_area *va;
1944 unsigned long free, dirty;
1945 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1946 unsigned long dirty_min, dirty_max; /*< dirty range */
1947 struct list_head free_list;
1948 struct rcu_head rcu_head;
1949 struct list_head purge;
1950 unsigned int cpu;
1951 };
1952
1953 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1954 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1955
1956 /*
1957 * In order to fast access to any "vmap_block" associated with a
1958 * specific address, we use a hash.
1959 *
1960 * A per-cpu vmap_block_queue is used in both ways, to serialize
1961 * an access to free block chains among CPUs(alloc path) and it
1962 * also acts as a vmap_block hash(alloc/free paths). It means we
1963 * overload it, since we already have the per-cpu array which is
1964 * used as a hash table. When used as a hash a 'cpu' passed to
1965 * per_cpu() is not actually a CPU but rather a hash index.
1966 *
1967 * A hash function is addr_to_vb_xa() which hashes any address
1968 * to a specific index(in a hash) it belongs to. This then uses a
1969 * per_cpu() macro to access an array with generated index.
1970 *
1971 * An example:
1972 *
1973 * CPU_1 CPU_2 CPU_0
1974 * | | |
1975 * V V V
1976 * 0 10 20 30 40 50 60
1977 * |------|------|------|------|------|------|...<vmap address space>
1978 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1979 *
1980 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1981 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1982 *
1983 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1984 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1985 *
1986 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1987 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1988 *
1989 * This technique almost always avoids lock contention on insert/remove,
1990 * however xarray spinlocks protect against any contention that remains.
1991 */
1992 static struct xarray *
addr_to_vb_xa(unsigned long addr)1993 addr_to_vb_xa(unsigned long addr)
1994 {
1995 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
1996
1997 /*
1998 * Please note, nr_cpu_ids points on a highest set
1999 * possible bit, i.e. we never invoke cpumask_next()
2000 * if an index points on it which is nr_cpu_ids - 1.
2001 */
2002 if (!cpu_possible(index))
2003 index = cpumask_next(index, cpu_possible_mask);
2004
2005 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2006 }
2007
2008 /*
2009 * We should probably have a fallback mechanism to allocate virtual memory
2010 * out of partially filled vmap blocks. However vmap block sizing should be
2011 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2012 * big problem.
2013 */
2014
addr_to_vb_idx(unsigned long addr)2015 static unsigned long addr_to_vb_idx(unsigned long addr)
2016 {
2017 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2018 addr /= VMAP_BLOCK_SIZE;
2019 return addr;
2020 }
2021
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2022 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2023 {
2024 unsigned long addr;
2025
2026 addr = va_start + (pages_off << PAGE_SHIFT);
2027 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2028 return (void *)addr;
2029 }
2030
2031 /**
2032 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2033 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2034 * @order: how many 2^order pages should be occupied in newly allocated block
2035 * @gfp_mask: flags for the page level allocator
2036 *
2037 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2038 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2039 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2040 {
2041 struct vmap_block_queue *vbq;
2042 struct vmap_block *vb;
2043 struct vmap_area *va;
2044 struct xarray *xa;
2045 unsigned long vb_idx;
2046 int node, err;
2047 void *vaddr;
2048
2049 node = numa_node_id();
2050
2051 vb = kmalloc_node(sizeof(struct vmap_block),
2052 gfp_mask & GFP_RECLAIM_MASK, node);
2053 if (unlikely(!vb))
2054 return ERR_PTR(-ENOMEM);
2055
2056 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2057 VMALLOC_START, VMALLOC_END,
2058 node, gfp_mask,
2059 VMAP_RAM|VMAP_BLOCK);
2060 if (IS_ERR(va)) {
2061 kfree(vb);
2062 return ERR_CAST(va);
2063 }
2064
2065 vaddr = vmap_block_vaddr(va->va_start, 0);
2066 spin_lock_init(&vb->lock);
2067 vb->va = va;
2068 /* At least something should be left free */
2069 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2070 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2071 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2072 vb->dirty = 0;
2073 vb->dirty_min = VMAP_BBMAP_BITS;
2074 vb->dirty_max = 0;
2075 bitmap_set(vb->used_map, 0, (1UL << order));
2076 INIT_LIST_HEAD(&vb->free_list);
2077 vb->cpu = raw_smp_processor_id();
2078
2079 xa = addr_to_vb_xa(va->va_start);
2080 vb_idx = addr_to_vb_idx(va->va_start);
2081 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2082 if (err) {
2083 kfree(vb);
2084 free_vmap_area(va);
2085 return ERR_PTR(err);
2086 }
2087 /*
2088 * list_add_tail_rcu could happened in another core
2089 * rather than vb->cpu due to task migration, which
2090 * is safe as list_add_tail_rcu will ensure the list's
2091 * integrity together with list_for_each_rcu from read
2092 * side.
2093 */
2094 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2095 spin_lock(&vbq->lock);
2096 list_add_tail_rcu(&vb->free_list, &vbq->free);
2097 spin_unlock(&vbq->lock);
2098
2099 return vaddr;
2100 }
2101
free_vmap_block(struct vmap_block * vb)2102 static void free_vmap_block(struct vmap_block *vb)
2103 {
2104 struct vmap_block *tmp;
2105 struct xarray *xa;
2106
2107 xa = addr_to_vb_xa(vb->va->va_start);
2108 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2109 BUG_ON(tmp != vb);
2110
2111 spin_lock(&vmap_area_lock);
2112 unlink_va(vb->va, &vmap_area_root);
2113 spin_unlock(&vmap_area_lock);
2114
2115 free_vmap_area_noflush(vb->va);
2116 kfree_rcu(vb, rcu_head);
2117 }
2118
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2119 static bool purge_fragmented_block(struct vmap_block *vb,
2120 struct list_head *purge_list, bool force_purge)
2121 {
2122 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2123
2124 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2125 vb->dirty == VMAP_BBMAP_BITS)
2126 return false;
2127
2128 /* Don't overeagerly purge usable blocks unless requested */
2129 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2130 return false;
2131
2132 /* prevent further allocs after releasing lock */
2133 WRITE_ONCE(vb->free, 0);
2134 /* prevent purging it again */
2135 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2136 vb->dirty_min = 0;
2137 vb->dirty_max = VMAP_BBMAP_BITS;
2138 spin_lock(&vbq->lock);
2139 list_del_rcu(&vb->free_list);
2140 spin_unlock(&vbq->lock);
2141 list_add_tail(&vb->purge, purge_list);
2142 return true;
2143 }
2144
free_purged_blocks(struct list_head * purge_list)2145 static void free_purged_blocks(struct list_head *purge_list)
2146 {
2147 struct vmap_block *vb, *n_vb;
2148
2149 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2150 list_del(&vb->purge);
2151 free_vmap_block(vb);
2152 }
2153 }
2154
purge_fragmented_blocks(int cpu)2155 static void purge_fragmented_blocks(int cpu)
2156 {
2157 LIST_HEAD(purge);
2158 struct vmap_block *vb;
2159 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2160
2161 rcu_read_lock();
2162 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2163 unsigned long free = READ_ONCE(vb->free);
2164 unsigned long dirty = READ_ONCE(vb->dirty);
2165
2166 if (free + dirty != VMAP_BBMAP_BITS ||
2167 dirty == VMAP_BBMAP_BITS)
2168 continue;
2169
2170 spin_lock(&vb->lock);
2171 purge_fragmented_block(vb, &purge, true);
2172 spin_unlock(&vb->lock);
2173 }
2174 rcu_read_unlock();
2175 free_purged_blocks(&purge);
2176 }
2177
purge_fragmented_blocks_allcpus(void)2178 static void purge_fragmented_blocks_allcpus(void)
2179 {
2180 int cpu;
2181
2182 for_each_possible_cpu(cpu)
2183 purge_fragmented_blocks(cpu);
2184 }
2185
vb_alloc(unsigned long size,gfp_t gfp_mask)2186 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2187 {
2188 struct vmap_block_queue *vbq;
2189 struct vmap_block *vb;
2190 void *vaddr = NULL;
2191 unsigned int order;
2192
2193 BUG_ON(offset_in_page(size));
2194 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2195 if (WARN_ON(size == 0)) {
2196 /*
2197 * Allocating 0 bytes isn't what caller wants since
2198 * get_order(0) returns funny result. Just warn and terminate
2199 * early.
2200 */
2201 return NULL;
2202 }
2203 order = get_order(size);
2204
2205 rcu_read_lock();
2206 vbq = raw_cpu_ptr(&vmap_block_queue);
2207 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2208 unsigned long pages_off;
2209
2210 if (READ_ONCE(vb->free) < (1UL << order))
2211 continue;
2212
2213 spin_lock(&vb->lock);
2214 if (vb->free < (1UL << order)) {
2215 spin_unlock(&vb->lock);
2216 continue;
2217 }
2218
2219 pages_off = VMAP_BBMAP_BITS - vb->free;
2220 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2221 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2222 bitmap_set(vb->used_map, pages_off, (1UL << order));
2223 if (vb->free == 0) {
2224 spin_lock(&vbq->lock);
2225 list_del_rcu(&vb->free_list);
2226 spin_unlock(&vbq->lock);
2227 }
2228
2229 spin_unlock(&vb->lock);
2230 break;
2231 }
2232
2233 rcu_read_unlock();
2234
2235 /* Allocate new block if nothing was found */
2236 if (!vaddr)
2237 vaddr = new_vmap_block(order, gfp_mask);
2238
2239 return vaddr;
2240 }
2241
vb_free(unsigned long addr,unsigned long size)2242 static void vb_free(unsigned long addr, unsigned long size)
2243 {
2244 unsigned long offset;
2245 unsigned int order;
2246 struct vmap_block *vb;
2247 struct xarray *xa;
2248
2249 BUG_ON(offset_in_page(size));
2250 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2251
2252 flush_cache_vunmap(addr, addr + size);
2253
2254 order = get_order(size);
2255 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2256
2257 xa = addr_to_vb_xa(addr);
2258 vb = xa_load(xa, addr_to_vb_idx(addr));
2259
2260 spin_lock(&vb->lock);
2261 bitmap_clear(vb->used_map, offset, (1UL << order));
2262 spin_unlock(&vb->lock);
2263
2264 vunmap_range_noflush(addr, addr + size);
2265
2266 if (debug_pagealloc_enabled_static())
2267 flush_tlb_kernel_range(addr, addr + size);
2268
2269 spin_lock(&vb->lock);
2270
2271 /* Expand the not yet TLB flushed dirty range */
2272 vb->dirty_min = min(vb->dirty_min, offset);
2273 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2274
2275 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2276 if (vb->dirty == VMAP_BBMAP_BITS) {
2277 BUG_ON(vb->free);
2278 spin_unlock(&vb->lock);
2279 free_vmap_block(vb);
2280 } else
2281 spin_unlock(&vb->lock);
2282 }
2283
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2284 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2285 {
2286 LIST_HEAD(purge_list);
2287 int cpu;
2288
2289 if (unlikely(!vmap_initialized))
2290 return;
2291
2292 mutex_lock(&vmap_purge_lock);
2293
2294 for_each_possible_cpu(cpu) {
2295 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2296 struct vmap_block *vb;
2297 unsigned long idx;
2298
2299 rcu_read_lock();
2300 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2301 spin_lock(&vb->lock);
2302
2303 /*
2304 * Try to purge a fragmented block first. If it's
2305 * not purgeable, check whether there is dirty
2306 * space to be flushed.
2307 */
2308 if (!purge_fragmented_block(vb, &purge_list, false) &&
2309 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2310 unsigned long va_start = vb->va->va_start;
2311 unsigned long s, e;
2312
2313 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2314 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2315
2316 start = min(s, start);
2317 end = max(e, end);
2318
2319 /* Prevent that this is flushed again */
2320 vb->dirty_min = VMAP_BBMAP_BITS;
2321 vb->dirty_max = 0;
2322
2323 flush = 1;
2324 }
2325 spin_unlock(&vb->lock);
2326 }
2327 rcu_read_unlock();
2328 }
2329 free_purged_blocks(&purge_list);
2330
2331 if (!__purge_vmap_area_lazy(start, end) && flush)
2332 flush_tlb_kernel_range(start, end);
2333 mutex_unlock(&vmap_purge_lock);
2334 }
2335
2336 /**
2337 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2338 *
2339 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2340 * to amortize TLB flushing overheads. What this means is that any page you
2341 * have now, may, in a former life, have been mapped into kernel virtual
2342 * address by the vmap layer and so there might be some CPUs with TLB entries
2343 * still referencing that page (additional to the regular 1:1 kernel mapping).
2344 *
2345 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2346 * be sure that none of the pages we have control over will have any aliases
2347 * from the vmap layer.
2348 */
vm_unmap_aliases(void)2349 void vm_unmap_aliases(void)
2350 {
2351 unsigned long start = ULONG_MAX, end = 0;
2352 int flush = 0;
2353
2354 _vm_unmap_aliases(start, end, flush);
2355 }
2356 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2357
2358 /**
2359 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2360 * @mem: the pointer returned by vm_map_ram
2361 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2362 */
vm_unmap_ram(const void * mem,unsigned int count)2363 void vm_unmap_ram(const void *mem, unsigned int count)
2364 {
2365 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2366 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2367 struct vmap_area *va;
2368
2369 might_sleep();
2370 BUG_ON(!addr);
2371 BUG_ON(addr < VMALLOC_START);
2372 BUG_ON(addr > VMALLOC_END);
2373 BUG_ON(!PAGE_ALIGNED(addr));
2374
2375 kasan_poison_vmalloc(mem, size);
2376
2377 if (likely(count <= VMAP_MAX_ALLOC)) {
2378 debug_check_no_locks_freed(mem, size);
2379 vb_free(addr, size);
2380 return;
2381 }
2382
2383 va = find_unlink_vmap_area(addr);
2384 if (WARN_ON_ONCE(!va))
2385 return;
2386
2387 debug_check_no_locks_freed((void *)va->va_start,
2388 (va->va_end - va->va_start));
2389 free_unmap_vmap_area(va);
2390 }
2391 EXPORT_SYMBOL(vm_unmap_ram);
2392
2393 /**
2394 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2395 * @pages: an array of pointers to the pages to be mapped
2396 * @count: number of pages
2397 * @node: prefer to allocate data structures on this node
2398 *
2399 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2400 * faster than vmap so it's good. But if you mix long-life and short-life
2401 * objects with vm_map_ram(), it could consume lots of address space through
2402 * fragmentation (especially on a 32bit machine). You could see failures in
2403 * the end. Please use this function for short-lived objects.
2404 *
2405 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2406 */
vm_map_ram(struct page ** pages,unsigned int count,int node)2407 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2408 {
2409 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2410 unsigned long addr;
2411 void *mem;
2412
2413 if (likely(count <= VMAP_MAX_ALLOC)) {
2414 mem = vb_alloc(size, GFP_KERNEL);
2415 if (IS_ERR(mem))
2416 return NULL;
2417 addr = (unsigned long)mem;
2418 } else {
2419 struct vmap_area *va;
2420 va = alloc_vmap_area(size, PAGE_SIZE,
2421 VMALLOC_START, VMALLOC_END,
2422 node, GFP_KERNEL, VMAP_RAM);
2423 if (IS_ERR(va))
2424 return NULL;
2425
2426 addr = va->va_start;
2427 mem = (void *)addr;
2428 }
2429
2430 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2431 pages, PAGE_SHIFT) < 0) {
2432 vm_unmap_ram(mem, count);
2433 return NULL;
2434 }
2435
2436 /*
2437 * Mark the pages as accessible, now that they are mapped.
2438 * With hardware tag-based KASAN, marking is skipped for
2439 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2440 */
2441 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2442
2443 return mem;
2444 }
2445 EXPORT_SYMBOL(vm_map_ram);
2446
2447 static struct vm_struct *vmlist __initdata;
2448
vm_area_page_order(struct vm_struct * vm)2449 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2450 {
2451 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2452 return vm->page_order;
2453 #else
2454 return 0;
2455 #endif
2456 }
2457
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)2458 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2459 {
2460 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2461 vm->page_order = order;
2462 #else
2463 BUG_ON(order != 0);
2464 #endif
2465 }
2466
2467 /**
2468 * vm_area_add_early - add vmap area early during boot
2469 * @vm: vm_struct to add
2470 *
2471 * This function is used to add fixed kernel vm area to vmlist before
2472 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2473 * should contain proper values and the other fields should be zero.
2474 *
2475 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2476 */
vm_area_add_early(struct vm_struct * vm)2477 void __init vm_area_add_early(struct vm_struct *vm)
2478 {
2479 struct vm_struct *tmp, **p;
2480
2481 BUG_ON(vmap_initialized);
2482 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2483 if (tmp->addr >= vm->addr) {
2484 BUG_ON(tmp->addr < vm->addr + vm->size);
2485 break;
2486 } else
2487 BUG_ON(tmp->addr + tmp->size > vm->addr);
2488 }
2489 vm->next = *p;
2490 *p = vm;
2491 }
2492
2493 /**
2494 * vm_area_register_early - register vmap area early during boot
2495 * @vm: vm_struct to register
2496 * @align: requested alignment
2497 *
2498 * This function is used to register kernel vm area before
2499 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2500 * proper values on entry and other fields should be zero. On return,
2501 * vm->addr contains the allocated address.
2502 *
2503 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2504 */
vm_area_register_early(struct vm_struct * vm,size_t align)2505 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2506 {
2507 unsigned long addr = ALIGN(VMALLOC_START, align);
2508 struct vm_struct *cur, **p;
2509
2510 BUG_ON(vmap_initialized);
2511
2512 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2513 if ((unsigned long)cur->addr - addr >= vm->size)
2514 break;
2515 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2516 }
2517
2518 BUG_ON(addr > VMALLOC_END - vm->size);
2519 vm->addr = (void *)addr;
2520 vm->next = *p;
2521 *p = vm;
2522 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2523 }
2524
vmap_init_free_space(void)2525 static void vmap_init_free_space(void)
2526 {
2527 unsigned long vmap_start = 1;
2528 const unsigned long vmap_end = ULONG_MAX;
2529 struct vmap_area *busy, *free;
2530
2531 /*
2532 * B F B B B F
2533 * -|-----|.....|-----|-----|-----|.....|-
2534 * | The KVA space |
2535 * |<--------------------------------->|
2536 */
2537 list_for_each_entry(busy, &vmap_area_list, list) {
2538 if (busy->va_start - vmap_start > 0) {
2539 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2540 if (!WARN_ON_ONCE(!free)) {
2541 free->va_start = vmap_start;
2542 free->va_end = busy->va_start;
2543
2544 insert_vmap_area_augment(free, NULL,
2545 &free_vmap_area_root,
2546 &free_vmap_area_list);
2547 }
2548 }
2549
2550 vmap_start = busy->va_end;
2551 }
2552
2553 if (vmap_end - vmap_start > 0) {
2554 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2555 if (!WARN_ON_ONCE(!free)) {
2556 free->va_start = vmap_start;
2557 free->va_end = vmap_end;
2558
2559 insert_vmap_area_augment(free, NULL,
2560 &free_vmap_area_root,
2561 &free_vmap_area_list);
2562 }
2563 }
2564 }
2565
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2566 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2567 struct vmap_area *va, unsigned long flags, const void *caller)
2568 {
2569 vm->flags = flags;
2570 vm->addr = (void *)va->va_start;
2571 vm->size = va->va_end - va->va_start;
2572 vm->caller = caller;
2573 va->vm = vm;
2574 }
2575
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2576 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2577 unsigned long flags, const void *caller)
2578 {
2579 spin_lock(&vmap_area_lock);
2580 setup_vmalloc_vm_locked(vm, va, flags, caller);
2581 spin_unlock(&vmap_area_lock);
2582 }
2583
clear_vm_uninitialized_flag(struct vm_struct * vm)2584 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2585 {
2586 /*
2587 * Before removing VM_UNINITIALIZED,
2588 * we should make sure that vm has proper values.
2589 * Pair with smp_rmb() in show_numa_info().
2590 */
2591 smp_wmb();
2592 vm->flags &= ~VM_UNINITIALIZED;
2593 }
2594
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2595 static struct vm_struct *__get_vm_area_node(unsigned long size,
2596 unsigned long align, unsigned long shift, unsigned long flags,
2597 unsigned long start, unsigned long end, int node,
2598 gfp_t gfp_mask, const void *caller)
2599 {
2600 struct vmap_area *va;
2601 struct vm_struct *area;
2602 unsigned long requested_size = size;
2603
2604 BUG_ON(in_interrupt());
2605 size = ALIGN(size, 1ul << shift);
2606 if (unlikely(!size))
2607 return NULL;
2608
2609 if (flags & VM_IOREMAP)
2610 align = 1ul << clamp_t(int, get_count_order_long(size),
2611 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2612
2613 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2614 if (unlikely(!area))
2615 return NULL;
2616
2617 if (!(flags & VM_NO_GUARD))
2618 size += PAGE_SIZE;
2619
2620 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2621 if (IS_ERR(va)) {
2622 kfree(area);
2623 return NULL;
2624 }
2625
2626 setup_vmalloc_vm(area, va, flags, caller);
2627
2628 /*
2629 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2630 * best-effort approach, as they can be mapped outside of vmalloc code.
2631 * For VM_ALLOC mappings, the pages are marked as accessible after
2632 * getting mapped in __vmalloc_node_range().
2633 * With hardware tag-based KASAN, marking is skipped for
2634 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2635 */
2636 if (!(flags & VM_ALLOC))
2637 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2638 KASAN_VMALLOC_PROT_NORMAL);
2639
2640 return area;
2641 }
2642
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2643 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2644 unsigned long start, unsigned long end,
2645 const void *caller)
2646 {
2647 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2648 NUMA_NO_NODE, GFP_KERNEL, caller);
2649 }
2650
2651 /**
2652 * get_vm_area - reserve a contiguous kernel virtual area
2653 * @size: size of the area
2654 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2655 *
2656 * Search an area of @size in the kernel virtual mapping area,
2657 * and reserved it for out purposes. Returns the area descriptor
2658 * on success or %NULL on failure.
2659 *
2660 * Return: the area descriptor on success or %NULL on failure.
2661 */
get_vm_area(unsigned long size,unsigned long flags)2662 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2663 {
2664 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2665 VMALLOC_START, VMALLOC_END,
2666 NUMA_NO_NODE, GFP_KERNEL,
2667 __builtin_return_address(0));
2668 }
2669
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2670 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2671 const void *caller)
2672 {
2673 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2674 VMALLOC_START, VMALLOC_END,
2675 NUMA_NO_NODE, GFP_KERNEL, caller);
2676 }
2677
2678 /**
2679 * find_vm_area - find a continuous kernel virtual area
2680 * @addr: base address
2681 *
2682 * Search for the kernel VM area starting at @addr, and return it.
2683 * It is up to the caller to do all required locking to keep the returned
2684 * pointer valid.
2685 *
2686 * Return: the area descriptor on success or %NULL on failure.
2687 */
find_vm_area(const void * addr)2688 struct vm_struct *find_vm_area(const void *addr)
2689 {
2690 struct vmap_area *va;
2691
2692 va = find_vmap_area((unsigned long)addr);
2693 if (!va)
2694 return NULL;
2695
2696 return va->vm;
2697 }
2698
2699 /**
2700 * remove_vm_area - find and remove a continuous kernel virtual area
2701 * @addr: base address
2702 *
2703 * Search for the kernel VM area starting at @addr, and remove it.
2704 * This function returns the found VM area, but using it is NOT safe
2705 * on SMP machines, except for its size or flags.
2706 *
2707 * Return: the area descriptor on success or %NULL on failure.
2708 */
remove_vm_area(const void * addr)2709 struct vm_struct *remove_vm_area(const void *addr)
2710 {
2711 struct vmap_area *va;
2712 struct vm_struct *vm;
2713
2714 might_sleep();
2715
2716 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2717 addr))
2718 return NULL;
2719
2720 va = find_unlink_vmap_area((unsigned long)addr);
2721 if (!va || !va->vm)
2722 return NULL;
2723 vm = va->vm;
2724
2725 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2726 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2727 kasan_free_module_shadow(vm);
2728 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2729
2730 free_unmap_vmap_area(va);
2731 return vm;
2732 }
2733
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2734 static inline void set_area_direct_map(const struct vm_struct *area,
2735 int (*set_direct_map)(struct page *page))
2736 {
2737 int i;
2738
2739 /* HUGE_VMALLOC passes small pages to set_direct_map */
2740 for (i = 0; i < area->nr_pages; i++)
2741 if (page_address(area->pages[i]))
2742 set_direct_map(area->pages[i]);
2743 }
2744
2745 /*
2746 * Flush the vm mapping and reset the direct map.
2747 */
vm_reset_perms(struct vm_struct * area)2748 static void vm_reset_perms(struct vm_struct *area)
2749 {
2750 unsigned long start = ULONG_MAX, end = 0;
2751 unsigned int page_order = vm_area_page_order(area);
2752 int flush_dmap = 0;
2753 int i;
2754
2755 /*
2756 * Find the start and end range of the direct mappings to make sure that
2757 * the vm_unmap_aliases() flush includes the direct map.
2758 */
2759 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2760 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2761
2762 if (addr) {
2763 unsigned long page_size;
2764
2765 page_size = PAGE_SIZE << page_order;
2766 start = min(addr, start);
2767 end = max(addr + page_size, end);
2768 flush_dmap = 1;
2769 }
2770 }
2771
2772 /*
2773 * Set direct map to something invalid so that it won't be cached if
2774 * there are any accesses after the TLB flush, then flush the TLB and
2775 * reset the direct map permissions to the default.
2776 */
2777 set_area_direct_map(area, set_direct_map_invalid_noflush);
2778 _vm_unmap_aliases(start, end, flush_dmap);
2779 set_area_direct_map(area, set_direct_map_default_noflush);
2780 }
2781
delayed_vfree_work(struct work_struct * w)2782 static void delayed_vfree_work(struct work_struct *w)
2783 {
2784 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2785 struct llist_node *t, *llnode;
2786
2787 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2788 vfree(llnode);
2789 }
2790
2791 /**
2792 * vfree_atomic - release memory allocated by vmalloc()
2793 * @addr: memory base address
2794 *
2795 * This one is just like vfree() but can be called in any atomic context
2796 * except NMIs.
2797 */
vfree_atomic(const void * addr)2798 void vfree_atomic(const void *addr)
2799 {
2800 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2801
2802 BUG_ON(in_nmi());
2803 kmemleak_free(addr);
2804
2805 /*
2806 * Use raw_cpu_ptr() because this can be called from preemptible
2807 * context. Preemption is absolutely fine here, because the llist_add()
2808 * implementation is lockless, so it works even if we are adding to
2809 * another cpu's list. schedule_work() should be fine with this too.
2810 */
2811 if (addr && llist_add((struct llist_node *)addr, &p->list))
2812 schedule_work(&p->wq);
2813 }
2814
2815 /**
2816 * vfree - Release memory allocated by vmalloc()
2817 * @addr: Memory base address
2818 *
2819 * Free the virtually continuous memory area starting at @addr, as obtained
2820 * from one of the vmalloc() family of APIs. This will usually also free the
2821 * physical memory underlying the virtual allocation, but that memory is
2822 * reference counted, so it will not be freed until the last user goes away.
2823 *
2824 * If @addr is NULL, no operation is performed.
2825 *
2826 * Context:
2827 * May sleep if called *not* from interrupt context.
2828 * Must not be called in NMI context (strictly speaking, it could be
2829 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2830 * conventions for vfree() arch-dependent would be a really bad idea).
2831 */
vfree(const void * addr)2832 void vfree(const void *addr)
2833 {
2834 struct vm_struct *vm;
2835 int i;
2836
2837 if (unlikely(in_interrupt())) {
2838 vfree_atomic(addr);
2839 return;
2840 }
2841
2842 BUG_ON(in_nmi());
2843 kmemleak_free(addr);
2844 might_sleep();
2845
2846 if (!addr)
2847 return;
2848
2849 vm = remove_vm_area(addr);
2850 if (unlikely(!vm)) {
2851 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2852 addr);
2853 return;
2854 }
2855
2856 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2857 vm_reset_perms(vm);
2858 for (i = 0; i < vm->nr_pages; i++) {
2859 struct page *page = vm->pages[i];
2860
2861 BUG_ON(!page);
2862 if (!(vm->flags & VM_MAP_PUT_PAGES))
2863 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2864 /*
2865 * High-order allocs for huge vmallocs are split, so
2866 * can be freed as an array of order-0 allocations
2867 */
2868 __free_page(page);
2869 cond_resched();
2870 }
2871 if (!(vm->flags & VM_MAP_PUT_PAGES))
2872 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2873 kvfree(vm->pages);
2874 kfree(vm);
2875 }
2876 EXPORT_SYMBOL(vfree);
2877
2878 /**
2879 * vunmap - release virtual mapping obtained by vmap()
2880 * @addr: memory base address
2881 *
2882 * Free the virtually contiguous memory area starting at @addr,
2883 * which was created from the page array passed to vmap().
2884 *
2885 * Must not be called in interrupt context.
2886 */
vunmap(const void * addr)2887 void vunmap(const void *addr)
2888 {
2889 struct vm_struct *vm;
2890
2891 BUG_ON(in_interrupt());
2892 might_sleep();
2893
2894 if (!addr)
2895 return;
2896 vm = remove_vm_area(addr);
2897 if (unlikely(!vm)) {
2898 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2899 addr);
2900 return;
2901 }
2902 kfree(vm);
2903 }
2904 EXPORT_SYMBOL(vunmap);
2905
2906 /**
2907 * vmap - map an array of pages into virtually contiguous space
2908 * @pages: array of page pointers
2909 * @count: number of pages to map
2910 * @flags: vm_area->flags
2911 * @prot: page protection for the mapping
2912 *
2913 * Maps @count pages from @pages into contiguous kernel virtual space.
2914 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2915 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2916 * are transferred from the caller to vmap(), and will be freed / dropped when
2917 * vfree() is called on the return value.
2918 *
2919 * Return: the address of the area or %NULL on failure
2920 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2921 void *vmap(struct page **pages, unsigned int count,
2922 unsigned long flags, pgprot_t prot)
2923 {
2924 struct vm_struct *area;
2925 unsigned long addr;
2926 unsigned long size; /* In bytes */
2927
2928 might_sleep();
2929
2930 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2931 return NULL;
2932
2933 /*
2934 * Your top guard is someone else's bottom guard. Not having a top
2935 * guard compromises someone else's mappings too.
2936 */
2937 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2938 flags &= ~VM_NO_GUARD;
2939
2940 if (count > totalram_pages())
2941 return NULL;
2942
2943 size = (unsigned long)count << PAGE_SHIFT;
2944 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2945 if (!area)
2946 return NULL;
2947
2948 addr = (unsigned long)area->addr;
2949 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2950 pages, PAGE_SHIFT) < 0) {
2951 vunmap(area->addr);
2952 return NULL;
2953 }
2954
2955 if (flags & VM_MAP_PUT_PAGES) {
2956 area->pages = pages;
2957 area->nr_pages = count;
2958 }
2959 return area->addr;
2960 }
2961 EXPORT_SYMBOL(vmap);
2962
2963 #ifdef CONFIG_VMAP_PFN
2964 struct vmap_pfn_data {
2965 unsigned long *pfns;
2966 pgprot_t prot;
2967 unsigned int idx;
2968 };
2969
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2970 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2971 {
2972 struct vmap_pfn_data *data = private;
2973 unsigned long pfn = data->pfns[data->idx];
2974 pte_t ptent;
2975
2976 if (WARN_ON_ONCE(pfn_valid(pfn)))
2977 return -EINVAL;
2978
2979 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2980 set_pte_at(&init_mm, addr, pte, ptent);
2981
2982 data->idx++;
2983 return 0;
2984 }
2985
2986 /**
2987 * vmap_pfn - map an array of PFNs into virtually contiguous space
2988 * @pfns: array of PFNs
2989 * @count: number of pages to map
2990 * @prot: page protection for the mapping
2991 *
2992 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2993 * the start address of the mapping.
2994 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2995 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2996 {
2997 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2998 struct vm_struct *area;
2999
3000 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3001 __builtin_return_address(0));
3002 if (!area)
3003 return NULL;
3004 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3005 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3006 free_vm_area(area);
3007 return NULL;
3008 }
3009
3010 flush_cache_vmap((unsigned long)area->addr,
3011 (unsigned long)area->addr + count * PAGE_SIZE);
3012
3013 return area->addr;
3014 }
3015 EXPORT_SYMBOL_GPL(vmap_pfn);
3016 #endif /* CONFIG_VMAP_PFN */
3017
3018 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3019 vm_area_alloc_pages(gfp_t gfp, int nid,
3020 unsigned int order, unsigned int nr_pages, struct page **pages)
3021 {
3022 unsigned int nr_allocated = 0;
3023 gfp_t alloc_gfp = gfp;
3024 bool nofail = gfp & __GFP_NOFAIL;
3025 struct page *page;
3026 int i;
3027
3028 /*
3029 * For order-0 pages we make use of bulk allocator, if
3030 * the page array is partly or not at all populated due
3031 * to fails, fallback to a single page allocator that is
3032 * more permissive.
3033 */
3034 if (!order) {
3035 /* bulk allocator doesn't support nofail req. officially */
3036 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3037
3038 while (nr_allocated < nr_pages) {
3039 unsigned int nr, nr_pages_request;
3040
3041 /*
3042 * A maximum allowed request is hard-coded and is 100
3043 * pages per call. That is done in order to prevent a
3044 * long preemption off scenario in the bulk-allocator
3045 * so the range is [1:100].
3046 */
3047 nr_pages_request = min(100U, nr_pages - nr_allocated);
3048
3049 /* memory allocation should consider mempolicy, we can't
3050 * wrongly use nearest node when nid == NUMA_NO_NODE,
3051 * otherwise memory may be allocated in only one node,
3052 * but mempolicy wants to alloc memory by interleaving.
3053 */
3054 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3055 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3056 nr_pages_request,
3057 pages + nr_allocated);
3058
3059 else
3060 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3061 nr_pages_request,
3062 pages + nr_allocated);
3063
3064 nr_allocated += nr;
3065 cond_resched();
3066
3067 /*
3068 * If zero or pages were obtained partly,
3069 * fallback to a single page allocator.
3070 */
3071 if (nr != nr_pages_request)
3072 break;
3073 }
3074 } else if (gfp & __GFP_NOFAIL) {
3075 /*
3076 * Higher order nofail allocations are really expensive and
3077 * potentially dangerous (pre-mature OOM, disruptive reclaim
3078 * and compaction etc.
3079 */
3080 alloc_gfp &= ~__GFP_NOFAIL;
3081 }
3082
3083 /* High-order pages or fallback path if "bulk" fails. */
3084 while (nr_allocated < nr_pages) {
3085 if (!nofail && fatal_signal_pending(current))
3086 break;
3087
3088 if (nid == NUMA_NO_NODE)
3089 page = alloc_pages(alloc_gfp, order);
3090 else
3091 page = alloc_pages_node(nid, alloc_gfp, order);
3092 if (unlikely(!page))
3093 break;
3094
3095 /*
3096 * Higher order allocations must be able to be treated as
3097 * indepdenent small pages by callers (as they can with
3098 * small-page vmallocs). Some drivers do their own refcounting
3099 * on vmalloc_to_page() pages, some use page->mapping,
3100 * page->lru, etc.
3101 */
3102 if (order)
3103 split_page(page, order);
3104
3105 /*
3106 * Careful, we allocate and map page-order pages, but
3107 * tracking is done per PAGE_SIZE page so as to keep the
3108 * vm_struct APIs independent of the physical/mapped size.
3109 */
3110 for (i = 0; i < (1U << order); i++)
3111 pages[nr_allocated + i] = page + i;
3112
3113 cond_resched();
3114 nr_allocated += 1U << order;
3115 }
3116
3117 return nr_allocated;
3118 }
3119
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3120 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3121 pgprot_t prot, unsigned int page_shift,
3122 int node)
3123 {
3124 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3125 bool nofail = gfp_mask & __GFP_NOFAIL;
3126 unsigned long addr = (unsigned long)area->addr;
3127 unsigned long size = get_vm_area_size(area);
3128 unsigned long array_size;
3129 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3130 unsigned int page_order;
3131 unsigned int flags;
3132 int ret;
3133
3134 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3135
3136 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3137 gfp_mask |= __GFP_HIGHMEM;
3138
3139 /* Please note that the recursion is strictly bounded. */
3140 if (array_size > PAGE_SIZE) {
3141 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3142 area->caller);
3143 } else {
3144 area->pages = kmalloc_node(array_size, nested_gfp, node);
3145 }
3146
3147 if (!area->pages) {
3148 warn_alloc(gfp_mask, NULL,
3149 "vmalloc error: size %lu, failed to allocated page array size %lu",
3150 nr_small_pages * PAGE_SIZE, array_size);
3151 free_vm_area(area);
3152 return NULL;
3153 }
3154
3155 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3156 page_order = vm_area_page_order(area);
3157
3158 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3159 node, page_order, nr_small_pages, area->pages);
3160
3161 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3162 if (gfp_mask & __GFP_ACCOUNT) {
3163 int i;
3164
3165 for (i = 0; i < area->nr_pages; i++)
3166 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3167 }
3168
3169 /*
3170 * If not enough pages were obtained to accomplish an
3171 * allocation request, free them via vfree() if any.
3172 */
3173 if (area->nr_pages != nr_small_pages) {
3174 /*
3175 * vm_area_alloc_pages() can fail due to insufficient memory but
3176 * also:-
3177 *
3178 * - a pending fatal signal
3179 * - insufficient huge page-order pages
3180 *
3181 * Since we always retry allocations at order-0 in the huge page
3182 * case a warning for either is spurious.
3183 */
3184 if (!fatal_signal_pending(current) && page_order == 0)
3185 warn_alloc(gfp_mask, NULL,
3186 "vmalloc error: size %lu, failed to allocate pages",
3187 area->nr_pages * PAGE_SIZE);
3188 goto fail;
3189 }
3190
3191 /*
3192 * page tables allocations ignore external gfp mask, enforce it
3193 * by the scope API
3194 */
3195 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3196 flags = memalloc_nofs_save();
3197 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3198 flags = memalloc_noio_save();
3199
3200 do {
3201 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3202 page_shift);
3203 if (nofail && (ret < 0))
3204 schedule_timeout_uninterruptible(1);
3205 } while (nofail && (ret < 0));
3206
3207 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3208 memalloc_nofs_restore(flags);
3209 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3210 memalloc_noio_restore(flags);
3211
3212 if (ret < 0) {
3213 warn_alloc(gfp_mask, NULL,
3214 "vmalloc error: size %lu, failed to map pages",
3215 area->nr_pages * PAGE_SIZE);
3216 goto fail;
3217 }
3218
3219 return area->addr;
3220
3221 fail:
3222 vfree(area->addr);
3223 return NULL;
3224 }
3225
3226 /**
3227 * __vmalloc_node_range - allocate virtually contiguous memory
3228 * @size: allocation size
3229 * @align: desired alignment
3230 * @start: vm area range start
3231 * @end: vm area range end
3232 * @gfp_mask: flags for the page level allocator
3233 * @prot: protection mask for the allocated pages
3234 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3235 * @node: node to use for allocation or NUMA_NO_NODE
3236 * @caller: caller's return address
3237 *
3238 * Allocate enough pages to cover @size from the page level
3239 * allocator with @gfp_mask flags. Please note that the full set of gfp
3240 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3241 * supported.
3242 * Zone modifiers are not supported. From the reclaim modifiers
3243 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3244 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3245 * __GFP_RETRY_MAYFAIL are not supported).
3246 *
3247 * __GFP_NOWARN can be used to suppress failures messages.
3248 *
3249 * Map them into contiguous kernel virtual space, using a pagetable
3250 * protection of @prot.
3251 *
3252 * Return: the address of the area or %NULL on failure
3253 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3254 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3255 unsigned long start, unsigned long end, gfp_t gfp_mask,
3256 pgprot_t prot, unsigned long vm_flags, int node,
3257 const void *caller)
3258 {
3259 struct vm_struct *area;
3260 void *ret;
3261 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3262 unsigned long real_size = size;
3263 unsigned long real_align = align;
3264 unsigned int shift = PAGE_SHIFT;
3265
3266 if (WARN_ON_ONCE(!size))
3267 return NULL;
3268
3269 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3270 warn_alloc(gfp_mask, NULL,
3271 "vmalloc error: size %lu, exceeds total pages",
3272 real_size);
3273 return NULL;
3274 }
3275
3276 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3277 unsigned long size_per_node;
3278
3279 /*
3280 * Try huge pages. Only try for PAGE_KERNEL allocations,
3281 * others like modules don't yet expect huge pages in
3282 * their allocations due to apply_to_page_range not
3283 * supporting them.
3284 */
3285
3286 size_per_node = size;
3287 if (node == NUMA_NO_NODE)
3288 size_per_node /= num_online_nodes();
3289 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3290 shift = PMD_SHIFT;
3291 else
3292 shift = arch_vmap_pte_supported_shift(size_per_node);
3293
3294 align = max(real_align, 1UL << shift);
3295 size = ALIGN(real_size, 1UL << shift);
3296 }
3297
3298 again:
3299 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3300 VM_UNINITIALIZED | vm_flags, start, end, node,
3301 gfp_mask, caller);
3302 if (!area) {
3303 bool nofail = gfp_mask & __GFP_NOFAIL;
3304 warn_alloc(gfp_mask, NULL,
3305 "vmalloc error: size %lu, vm_struct allocation failed%s",
3306 real_size, (nofail) ? ". Retrying." : "");
3307 if (nofail) {
3308 schedule_timeout_uninterruptible(1);
3309 goto again;
3310 }
3311 goto fail;
3312 }
3313
3314 /*
3315 * Prepare arguments for __vmalloc_area_node() and
3316 * kasan_unpoison_vmalloc().
3317 */
3318 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3319 if (kasan_hw_tags_enabled()) {
3320 /*
3321 * Modify protection bits to allow tagging.
3322 * This must be done before mapping.
3323 */
3324 prot = arch_vmap_pgprot_tagged(prot);
3325
3326 /*
3327 * Skip page_alloc poisoning and zeroing for physical
3328 * pages backing VM_ALLOC mapping. Memory is instead
3329 * poisoned and zeroed by kasan_unpoison_vmalloc().
3330 */
3331 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3332 }
3333
3334 /* Take note that the mapping is PAGE_KERNEL. */
3335 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3336 }
3337
3338 /* Allocate physical pages and map them into vmalloc space. */
3339 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3340 if (!ret)
3341 goto fail;
3342
3343 /*
3344 * Mark the pages as accessible, now that they are mapped.
3345 * The condition for setting KASAN_VMALLOC_INIT should complement the
3346 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3347 * to make sure that memory is initialized under the same conditions.
3348 * Tag-based KASAN modes only assign tags to normal non-executable
3349 * allocations, see __kasan_unpoison_vmalloc().
3350 */
3351 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3352 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3353 (gfp_mask & __GFP_SKIP_ZERO))
3354 kasan_flags |= KASAN_VMALLOC_INIT;
3355 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3356 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3357
3358 /*
3359 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3360 * flag. It means that vm_struct is not fully initialized.
3361 * Now, it is fully initialized, so remove this flag here.
3362 */
3363 clear_vm_uninitialized_flag(area);
3364
3365 size = PAGE_ALIGN(size);
3366 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3367 kmemleak_vmalloc(area, size, gfp_mask);
3368
3369 return area->addr;
3370
3371 fail:
3372 if (shift > PAGE_SHIFT) {
3373 shift = PAGE_SHIFT;
3374 align = real_align;
3375 size = real_size;
3376 goto again;
3377 }
3378
3379 return NULL;
3380 }
3381
3382 /**
3383 * __vmalloc_node - allocate virtually contiguous memory
3384 * @size: allocation size
3385 * @align: desired alignment
3386 * @gfp_mask: flags for the page level allocator
3387 * @node: node to use for allocation or NUMA_NO_NODE
3388 * @caller: caller's return address
3389 *
3390 * Allocate enough pages to cover @size from the page level allocator with
3391 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3392 *
3393 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3394 * and __GFP_NOFAIL are not supported
3395 *
3396 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3397 * with mm people.
3398 *
3399 * Return: pointer to the allocated memory or %NULL on error
3400 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3401 void *__vmalloc_node(unsigned long size, unsigned long align,
3402 gfp_t gfp_mask, int node, const void *caller)
3403 {
3404 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3405 gfp_mask, PAGE_KERNEL, 0, node, caller);
3406 }
3407 /*
3408 * This is only for performance analysis of vmalloc and stress purpose.
3409 * It is required by vmalloc test module, therefore do not use it other
3410 * than that.
3411 */
3412 #ifdef CONFIG_TEST_VMALLOC_MODULE
3413 EXPORT_SYMBOL_GPL(__vmalloc_node);
3414 #endif
3415
__vmalloc(unsigned long size,gfp_t gfp_mask)3416 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3417 {
3418 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3419 __builtin_return_address(0));
3420 }
3421 EXPORT_SYMBOL(__vmalloc);
3422
3423 /**
3424 * vmalloc - allocate virtually contiguous memory
3425 * @size: allocation size
3426 *
3427 * Allocate enough pages to cover @size from the page level
3428 * allocator and map them into contiguous kernel virtual space.
3429 *
3430 * For tight control over page level allocator and protection flags
3431 * use __vmalloc() instead.
3432 *
3433 * Return: pointer to the allocated memory or %NULL on error
3434 */
vmalloc(unsigned long size)3435 void *vmalloc(unsigned long size)
3436 {
3437 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3438 __builtin_return_address(0));
3439 }
3440 EXPORT_SYMBOL(vmalloc);
3441
3442 /**
3443 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3444 * @size: allocation size
3445 * @gfp_mask: flags for the page level allocator
3446 *
3447 * Allocate enough pages to cover @size from the page level
3448 * allocator and map them into contiguous kernel virtual space.
3449 * If @size is greater than or equal to PMD_SIZE, allow using
3450 * huge pages for the memory
3451 *
3452 * Return: pointer to the allocated memory or %NULL on error
3453 */
vmalloc_huge(unsigned long size,gfp_t gfp_mask)3454 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3455 {
3456 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3457 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3458 NUMA_NO_NODE, __builtin_return_address(0));
3459 }
3460 EXPORT_SYMBOL_GPL(vmalloc_huge);
3461
3462 /**
3463 * vzalloc - allocate virtually contiguous memory with zero fill
3464 * @size: allocation size
3465 *
3466 * Allocate enough pages to cover @size from the page level
3467 * allocator and map them into contiguous kernel virtual space.
3468 * The memory allocated is set to zero.
3469 *
3470 * For tight control over page level allocator and protection flags
3471 * use __vmalloc() instead.
3472 *
3473 * Return: pointer to the allocated memory or %NULL on error
3474 */
vzalloc(unsigned long size)3475 void *vzalloc(unsigned long size)
3476 {
3477 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3478 __builtin_return_address(0));
3479 }
3480 EXPORT_SYMBOL(vzalloc);
3481
3482 /**
3483 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3484 * @size: allocation size
3485 *
3486 * The resulting memory area is zeroed so it can be mapped to userspace
3487 * without leaking data.
3488 *
3489 * Return: pointer to the allocated memory or %NULL on error
3490 */
vmalloc_user(unsigned long size)3491 void *vmalloc_user(unsigned long size)
3492 {
3493 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3494 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3495 VM_USERMAP, NUMA_NO_NODE,
3496 __builtin_return_address(0));
3497 }
3498 EXPORT_SYMBOL(vmalloc_user);
3499
3500 /**
3501 * vmalloc_node - allocate memory on a specific node
3502 * @size: allocation size
3503 * @node: numa node
3504 *
3505 * Allocate enough pages to cover @size from the page level
3506 * allocator and map them into contiguous kernel virtual space.
3507 *
3508 * For tight control over page level allocator and protection flags
3509 * use __vmalloc() instead.
3510 *
3511 * Return: pointer to the allocated memory or %NULL on error
3512 */
vmalloc_node(unsigned long size,int node)3513 void *vmalloc_node(unsigned long size, int node)
3514 {
3515 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3516 __builtin_return_address(0));
3517 }
3518 EXPORT_SYMBOL(vmalloc_node);
3519
3520 /**
3521 * vzalloc_node - allocate memory on a specific node with zero fill
3522 * @size: allocation size
3523 * @node: numa node
3524 *
3525 * Allocate enough pages to cover @size from the page level
3526 * allocator and map them into contiguous kernel virtual space.
3527 * The memory allocated is set to zero.
3528 *
3529 * Return: pointer to the allocated memory or %NULL on error
3530 */
vzalloc_node(unsigned long size,int node)3531 void *vzalloc_node(unsigned long size, int node)
3532 {
3533 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3534 __builtin_return_address(0));
3535 }
3536 EXPORT_SYMBOL(vzalloc_node);
3537
3538 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3539 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3540 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3541 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3542 #else
3543 /*
3544 * 64b systems should always have either DMA or DMA32 zones. For others
3545 * GFP_DMA32 should do the right thing and use the normal zone.
3546 */
3547 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3548 #endif
3549
3550 /**
3551 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3552 * @size: allocation size
3553 *
3554 * Allocate enough 32bit PA addressable pages to cover @size from the
3555 * page level allocator and map them into contiguous kernel virtual space.
3556 *
3557 * Return: pointer to the allocated memory or %NULL on error
3558 */
vmalloc_32(unsigned long size)3559 void *vmalloc_32(unsigned long size)
3560 {
3561 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3562 __builtin_return_address(0));
3563 }
3564 EXPORT_SYMBOL(vmalloc_32);
3565
3566 /**
3567 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3568 * @size: allocation size
3569 *
3570 * The resulting memory area is 32bit addressable and zeroed so it can be
3571 * mapped to userspace without leaking data.
3572 *
3573 * Return: pointer to the allocated memory or %NULL on error
3574 */
vmalloc_32_user(unsigned long size)3575 void *vmalloc_32_user(unsigned long size)
3576 {
3577 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3578 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3579 VM_USERMAP, NUMA_NO_NODE,
3580 __builtin_return_address(0));
3581 }
3582 EXPORT_SYMBOL(vmalloc_32_user);
3583
3584 /*
3585 * Atomically zero bytes in the iterator.
3586 *
3587 * Returns the number of zeroed bytes.
3588 */
zero_iter(struct iov_iter * iter,size_t count)3589 static size_t zero_iter(struct iov_iter *iter, size_t count)
3590 {
3591 size_t remains = count;
3592
3593 while (remains > 0) {
3594 size_t num, copied;
3595
3596 num = min_t(size_t, remains, PAGE_SIZE);
3597 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3598 remains -= copied;
3599
3600 if (copied < num)
3601 break;
3602 }
3603
3604 return count - remains;
3605 }
3606
3607 /*
3608 * small helper routine, copy contents to iter from addr.
3609 * If the page is not present, fill zero.
3610 *
3611 * Returns the number of copied bytes.
3612 */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)3613 static size_t aligned_vread_iter(struct iov_iter *iter,
3614 const char *addr, size_t count)
3615 {
3616 size_t remains = count;
3617 struct page *page;
3618
3619 while (remains > 0) {
3620 unsigned long offset, length;
3621 size_t copied = 0;
3622
3623 offset = offset_in_page(addr);
3624 length = PAGE_SIZE - offset;
3625 if (length > remains)
3626 length = remains;
3627 page = vmalloc_to_page(addr);
3628 /*
3629 * To do safe access to this _mapped_ area, we need lock. But
3630 * adding lock here means that we need to add overhead of
3631 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3632 * used. Instead of that, we'll use an local mapping via
3633 * copy_page_to_iter_nofault() and accept a small overhead in
3634 * this access function.
3635 */
3636 if (page)
3637 copied = copy_page_to_iter_nofault(page, offset,
3638 length, iter);
3639 else
3640 copied = zero_iter(iter, length);
3641
3642 addr += copied;
3643 remains -= copied;
3644
3645 if (copied != length)
3646 break;
3647 }
3648
3649 return count - remains;
3650 }
3651
3652 /*
3653 * Read from a vm_map_ram region of memory.
3654 *
3655 * Returns the number of copied bytes.
3656 */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)3657 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3658 size_t count, unsigned long flags)
3659 {
3660 char *start;
3661 struct vmap_block *vb;
3662 struct xarray *xa;
3663 unsigned long offset;
3664 unsigned int rs, re;
3665 size_t remains, n;
3666
3667 /*
3668 * If it's area created by vm_map_ram() interface directly, but
3669 * not further subdividing and delegating management to vmap_block,
3670 * handle it here.
3671 */
3672 if (!(flags & VMAP_BLOCK))
3673 return aligned_vread_iter(iter, addr, count);
3674
3675 remains = count;
3676
3677 /*
3678 * Area is split into regions and tracked with vmap_block, read out
3679 * each region and zero fill the hole between regions.
3680 */
3681 xa = addr_to_vb_xa((unsigned long) addr);
3682 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3683 if (!vb)
3684 goto finished_zero;
3685
3686 spin_lock(&vb->lock);
3687 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3688 spin_unlock(&vb->lock);
3689 goto finished_zero;
3690 }
3691
3692 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3693 size_t copied;
3694
3695 if (remains == 0)
3696 goto finished;
3697
3698 start = vmap_block_vaddr(vb->va->va_start, rs);
3699
3700 if (addr < start) {
3701 size_t to_zero = min_t(size_t, start - addr, remains);
3702 size_t zeroed = zero_iter(iter, to_zero);
3703
3704 addr += zeroed;
3705 remains -= zeroed;
3706
3707 if (remains == 0 || zeroed != to_zero)
3708 goto finished;
3709 }
3710
3711 /*it could start reading from the middle of used region*/
3712 offset = offset_in_page(addr);
3713 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3714 if (n > remains)
3715 n = remains;
3716
3717 copied = aligned_vread_iter(iter, start + offset, n);
3718
3719 addr += copied;
3720 remains -= copied;
3721
3722 if (copied != n)
3723 goto finished;
3724 }
3725
3726 spin_unlock(&vb->lock);
3727
3728 finished_zero:
3729 /* zero-fill the left dirty or free regions */
3730 return count - remains + zero_iter(iter, remains);
3731 finished:
3732 /* We couldn't copy/zero everything */
3733 spin_unlock(&vb->lock);
3734 return count - remains;
3735 }
3736
3737 /**
3738 * vread_iter() - read vmalloc area in a safe way to an iterator.
3739 * @iter: the iterator to which data should be written.
3740 * @addr: vm address.
3741 * @count: number of bytes to be read.
3742 *
3743 * This function checks that addr is a valid vmalloc'ed area, and
3744 * copy data from that area to a given buffer. If the given memory range
3745 * of [addr...addr+count) includes some valid address, data is copied to
3746 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3747 * IOREMAP area is treated as memory hole and no copy is done.
3748 *
3749 * If [addr...addr+count) doesn't includes any intersects with alive
3750 * vm_struct area, returns 0. @buf should be kernel's buffer.
3751 *
3752 * Note: In usual ops, vread() is never necessary because the caller
3753 * should know vmalloc() area is valid and can use memcpy().
3754 * This is for routines which have to access vmalloc area without
3755 * any information, as /proc/kcore.
3756 *
3757 * Return: number of bytes for which addr and buf should be increased
3758 * (same number as @count) or %0 if [addr...addr+count) doesn't
3759 * include any intersection with valid vmalloc area
3760 */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)3761 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3762 {
3763 struct vmap_area *va;
3764 struct vm_struct *vm;
3765 char *vaddr;
3766 size_t n, size, flags, remains;
3767
3768 addr = kasan_reset_tag(addr);
3769
3770 /* Don't allow overflow */
3771 if ((unsigned long) addr + count < count)
3772 count = -(unsigned long) addr;
3773
3774 remains = count;
3775
3776 spin_lock(&vmap_area_lock);
3777 va = find_vmap_area_exceed_addr((unsigned long)addr);
3778 if (!va)
3779 goto finished_zero;
3780
3781 /* no intersects with alive vmap_area */
3782 if ((unsigned long)addr + remains <= va->va_start)
3783 goto finished_zero;
3784
3785 list_for_each_entry_from(va, &vmap_area_list, list) {
3786 size_t copied;
3787
3788 if (remains == 0)
3789 goto finished;
3790
3791 vm = va->vm;
3792 flags = va->flags & VMAP_FLAGS_MASK;
3793 /*
3794 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3795 * be set together with VMAP_RAM.
3796 */
3797 WARN_ON(flags == VMAP_BLOCK);
3798
3799 if (!vm && !flags)
3800 continue;
3801
3802 if (vm && (vm->flags & VM_UNINITIALIZED))
3803 continue;
3804
3805 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3806 smp_rmb();
3807
3808 vaddr = (char *) va->va_start;
3809 size = vm ? get_vm_area_size(vm) : va_size(va);
3810
3811 if (addr >= vaddr + size)
3812 continue;
3813
3814 if (addr < vaddr) {
3815 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3816 size_t zeroed = zero_iter(iter, to_zero);
3817
3818 addr += zeroed;
3819 remains -= zeroed;
3820
3821 if (remains == 0 || zeroed != to_zero)
3822 goto finished;
3823 }
3824
3825 n = vaddr + size - addr;
3826 if (n > remains)
3827 n = remains;
3828
3829 if (flags & VMAP_RAM)
3830 copied = vmap_ram_vread_iter(iter, addr, n, flags);
3831 else if (!(vm->flags & VM_IOREMAP))
3832 copied = aligned_vread_iter(iter, addr, n);
3833 else /* IOREMAP area is treated as memory hole */
3834 copied = zero_iter(iter, n);
3835
3836 addr += copied;
3837 remains -= copied;
3838
3839 if (copied != n)
3840 goto finished;
3841 }
3842
3843 finished_zero:
3844 spin_unlock(&vmap_area_lock);
3845 /* zero-fill memory holes */
3846 return count - remains + zero_iter(iter, remains);
3847 finished:
3848 /* Nothing remains, or We couldn't copy/zero everything. */
3849 spin_unlock(&vmap_area_lock);
3850
3851 return count - remains;
3852 }
3853
3854 /**
3855 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3856 * @vma: vma to cover
3857 * @uaddr: target user address to start at
3858 * @kaddr: virtual address of vmalloc kernel memory
3859 * @pgoff: offset from @kaddr to start at
3860 * @size: size of map area
3861 *
3862 * Returns: 0 for success, -Exxx on failure
3863 *
3864 * This function checks that @kaddr is a valid vmalloc'ed area,
3865 * and that it is big enough to cover the range starting at
3866 * @uaddr in @vma. Will return failure if that criteria isn't
3867 * met.
3868 *
3869 * Similar to remap_pfn_range() (see mm/memory.c)
3870 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3871 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3872 void *kaddr, unsigned long pgoff,
3873 unsigned long size)
3874 {
3875 struct vm_struct *area;
3876 unsigned long off;
3877 unsigned long end_index;
3878
3879 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3880 return -EINVAL;
3881
3882 size = PAGE_ALIGN(size);
3883
3884 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3885 return -EINVAL;
3886
3887 area = find_vm_area(kaddr);
3888 if (!area)
3889 return -EINVAL;
3890
3891 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3892 return -EINVAL;
3893
3894 if (check_add_overflow(size, off, &end_index) ||
3895 end_index > get_vm_area_size(area))
3896 return -EINVAL;
3897 kaddr += off;
3898
3899 do {
3900 struct page *page = vmalloc_to_page(kaddr);
3901 int ret;
3902
3903 ret = vm_insert_page(vma, uaddr, page);
3904 if (ret)
3905 return ret;
3906
3907 uaddr += PAGE_SIZE;
3908 kaddr += PAGE_SIZE;
3909 size -= PAGE_SIZE;
3910 } while (size > 0);
3911
3912 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3913
3914 return 0;
3915 }
3916
3917 /**
3918 * remap_vmalloc_range - map vmalloc pages to userspace
3919 * @vma: vma to cover (map full range of vma)
3920 * @addr: vmalloc memory
3921 * @pgoff: number of pages into addr before first page to map
3922 *
3923 * Returns: 0 for success, -Exxx on failure
3924 *
3925 * This function checks that addr is a valid vmalloc'ed area, and
3926 * that it is big enough to cover the vma. Will return failure if
3927 * that criteria isn't met.
3928 *
3929 * Similar to remap_pfn_range() (see mm/memory.c)
3930 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3931 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3932 unsigned long pgoff)
3933 {
3934 return remap_vmalloc_range_partial(vma, vma->vm_start,
3935 addr, pgoff,
3936 vma->vm_end - vma->vm_start);
3937 }
3938 EXPORT_SYMBOL(remap_vmalloc_range);
3939
free_vm_area(struct vm_struct * area)3940 void free_vm_area(struct vm_struct *area)
3941 {
3942 struct vm_struct *ret;
3943 ret = remove_vm_area(area->addr);
3944 BUG_ON(ret != area);
3945 kfree(area);
3946 }
3947 EXPORT_SYMBOL_GPL(free_vm_area);
3948
3949 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3950 static struct vmap_area *node_to_va(struct rb_node *n)
3951 {
3952 return rb_entry_safe(n, struct vmap_area, rb_node);
3953 }
3954
3955 /**
3956 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3957 * @addr: target address
3958 *
3959 * Returns: vmap_area if it is found. If there is no such area
3960 * the first highest(reverse order) vmap_area is returned
3961 * i.e. va->va_start < addr && va->va_end < addr or NULL
3962 * if there are no any areas before @addr.
3963 */
3964 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3965 pvm_find_va_enclose_addr(unsigned long addr)
3966 {
3967 struct vmap_area *va, *tmp;
3968 struct rb_node *n;
3969
3970 n = free_vmap_area_root.rb_node;
3971 va = NULL;
3972
3973 while (n) {
3974 tmp = rb_entry(n, struct vmap_area, rb_node);
3975 if (tmp->va_start <= addr) {
3976 va = tmp;
3977 if (tmp->va_end >= addr)
3978 break;
3979
3980 n = n->rb_right;
3981 } else {
3982 n = n->rb_left;
3983 }
3984 }
3985
3986 return va;
3987 }
3988
3989 /**
3990 * pvm_determine_end_from_reverse - find the highest aligned address
3991 * of free block below VMALLOC_END
3992 * @va:
3993 * in - the VA we start the search(reverse order);
3994 * out - the VA with the highest aligned end address.
3995 * @align: alignment for required highest address
3996 *
3997 * Returns: determined end address within vmap_area
3998 */
3999 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4000 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4001 {
4002 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4003 unsigned long addr;
4004
4005 if (likely(*va)) {
4006 list_for_each_entry_from_reverse((*va),
4007 &free_vmap_area_list, list) {
4008 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4009 if ((*va)->va_start < addr)
4010 return addr;
4011 }
4012 }
4013
4014 return 0;
4015 }
4016
4017 /**
4018 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4019 * @offsets: array containing offset of each area
4020 * @sizes: array containing size of each area
4021 * @nr_vms: the number of areas to allocate
4022 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4023 *
4024 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4025 * vm_structs on success, %NULL on failure
4026 *
4027 * Percpu allocator wants to use congruent vm areas so that it can
4028 * maintain the offsets among percpu areas. This function allocates
4029 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4030 * be scattered pretty far, distance between two areas easily going up
4031 * to gigabytes. To avoid interacting with regular vmallocs, these
4032 * areas are allocated from top.
4033 *
4034 * Despite its complicated look, this allocator is rather simple. It
4035 * does everything top-down and scans free blocks from the end looking
4036 * for matching base. While scanning, if any of the areas do not fit the
4037 * base address is pulled down to fit the area. Scanning is repeated till
4038 * all the areas fit and then all necessary data structures are inserted
4039 * and the result is returned.
4040 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4041 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4042 const size_t *sizes, int nr_vms,
4043 size_t align)
4044 {
4045 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4046 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4047 struct vmap_area **vas, *va;
4048 struct vm_struct **vms;
4049 int area, area2, last_area, term_area;
4050 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4051 bool purged = false;
4052
4053 /* verify parameters and allocate data structures */
4054 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4055 for (last_area = 0, area = 0; area < nr_vms; area++) {
4056 start = offsets[area];
4057 end = start + sizes[area];
4058
4059 /* is everything aligned properly? */
4060 BUG_ON(!IS_ALIGNED(offsets[area], align));
4061 BUG_ON(!IS_ALIGNED(sizes[area], align));
4062
4063 /* detect the area with the highest address */
4064 if (start > offsets[last_area])
4065 last_area = area;
4066
4067 for (area2 = area + 1; area2 < nr_vms; area2++) {
4068 unsigned long start2 = offsets[area2];
4069 unsigned long end2 = start2 + sizes[area2];
4070
4071 BUG_ON(start2 < end && start < end2);
4072 }
4073 }
4074 last_end = offsets[last_area] + sizes[last_area];
4075
4076 if (vmalloc_end - vmalloc_start < last_end) {
4077 WARN_ON(true);
4078 return NULL;
4079 }
4080
4081 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4082 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4083 if (!vas || !vms)
4084 goto err_free2;
4085
4086 for (area = 0; area < nr_vms; area++) {
4087 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4088 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4089 if (!vas[area] || !vms[area])
4090 goto err_free;
4091 }
4092 retry:
4093 spin_lock(&free_vmap_area_lock);
4094
4095 /* start scanning - we scan from the top, begin with the last area */
4096 area = term_area = last_area;
4097 start = offsets[area];
4098 end = start + sizes[area];
4099
4100 va = pvm_find_va_enclose_addr(vmalloc_end);
4101 base = pvm_determine_end_from_reverse(&va, align) - end;
4102
4103 while (true) {
4104 /*
4105 * base might have underflowed, add last_end before
4106 * comparing.
4107 */
4108 if (base + last_end < vmalloc_start + last_end)
4109 goto overflow;
4110
4111 /*
4112 * Fitting base has not been found.
4113 */
4114 if (va == NULL)
4115 goto overflow;
4116
4117 /*
4118 * If required width exceeds current VA block, move
4119 * base downwards and then recheck.
4120 */
4121 if (base + end > va->va_end) {
4122 base = pvm_determine_end_from_reverse(&va, align) - end;
4123 term_area = area;
4124 continue;
4125 }
4126
4127 /*
4128 * If this VA does not fit, move base downwards and recheck.
4129 */
4130 if (base + start < va->va_start) {
4131 va = node_to_va(rb_prev(&va->rb_node));
4132 base = pvm_determine_end_from_reverse(&va, align) - end;
4133 term_area = area;
4134 continue;
4135 }
4136
4137 /*
4138 * This area fits, move on to the previous one. If
4139 * the previous one is the terminal one, we're done.
4140 */
4141 area = (area + nr_vms - 1) % nr_vms;
4142 if (area == term_area)
4143 break;
4144
4145 start = offsets[area];
4146 end = start + sizes[area];
4147 va = pvm_find_va_enclose_addr(base + end);
4148 }
4149
4150 /* we've found a fitting base, insert all va's */
4151 for (area = 0; area < nr_vms; area++) {
4152 int ret;
4153
4154 start = base + offsets[area];
4155 size = sizes[area];
4156
4157 va = pvm_find_va_enclose_addr(start);
4158 if (WARN_ON_ONCE(va == NULL))
4159 /* It is a BUG(), but trigger recovery instead. */
4160 goto recovery;
4161
4162 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4163 &free_vmap_area_list,
4164 va, start, size);
4165 if (WARN_ON_ONCE(unlikely(ret)))
4166 /* It is a BUG(), but trigger recovery instead. */
4167 goto recovery;
4168
4169 /* Allocated area. */
4170 va = vas[area];
4171 va->va_start = start;
4172 va->va_end = start + size;
4173 }
4174
4175 spin_unlock(&free_vmap_area_lock);
4176
4177 /* populate the kasan shadow space */
4178 for (area = 0; area < nr_vms; area++) {
4179 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4180 goto err_free_shadow;
4181 }
4182
4183 /* insert all vm's */
4184 spin_lock(&vmap_area_lock);
4185 for (area = 0; area < nr_vms; area++) {
4186 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4187
4188 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4189 pcpu_get_vm_areas);
4190 }
4191 spin_unlock(&vmap_area_lock);
4192
4193 /*
4194 * Mark allocated areas as accessible. Do it now as a best-effort
4195 * approach, as they can be mapped outside of vmalloc code.
4196 * With hardware tag-based KASAN, marking is skipped for
4197 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4198 */
4199 for (area = 0; area < nr_vms; area++)
4200 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4201 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4202
4203 kfree(vas);
4204 return vms;
4205
4206 recovery:
4207 /*
4208 * Remove previously allocated areas. There is no
4209 * need in removing these areas from the busy tree,
4210 * because they are inserted only on the final step
4211 * and when pcpu_get_vm_areas() is success.
4212 */
4213 while (area--) {
4214 orig_start = vas[area]->va_start;
4215 orig_end = vas[area]->va_end;
4216 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4217 &free_vmap_area_list);
4218 if (va)
4219 kasan_release_vmalloc(orig_start, orig_end,
4220 va->va_start, va->va_end);
4221 vas[area] = NULL;
4222 }
4223
4224 overflow:
4225 spin_unlock(&free_vmap_area_lock);
4226 if (!purged) {
4227 reclaim_and_purge_vmap_areas();
4228 purged = true;
4229
4230 /* Before "retry", check if we recover. */
4231 for (area = 0; area < nr_vms; area++) {
4232 if (vas[area])
4233 continue;
4234
4235 vas[area] = kmem_cache_zalloc(
4236 vmap_area_cachep, GFP_KERNEL);
4237 if (!vas[area])
4238 goto err_free;
4239 }
4240
4241 goto retry;
4242 }
4243
4244 err_free:
4245 for (area = 0; area < nr_vms; area++) {
4246 if (vas[area])
4247 kmem_cache_free(vmap_area_cachep, vas[area]);
4248
4249 kfree(vms[area]);
4250 }
4251 err_free2:
4252 kfree(vas);
4253 kfree(vms);
4254 return NULL;
4255
4256 err_free_shadow:
4257 spin_lock(&free_vmap_area_lock);
4258 /*
4259 * We release all the vmalloc shadows, even the ones for regions that
4260 * hadn't been successfully added. This relies on kasan_release_vmalloc
4261 * being able to tolerate this case.
4262 */
4263 for (area = 0; area < nr_vms; area++) {
4264 orig_start = vas[area]->va_start;
4265 orig_end = vas[area]->va_end;
4266 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4267 &free_vmap_area_list);
4268 if (va)
4269 kasan_release_vmalloc(orig_start, orig_end,
4270 va->va_start, va->va_end);
4271 vas[area] = NULL;
4272 kfree(vms[area]);
4273 }
4274 spin_unlock(&free_vmap_area_lock);
4275 kfree(vas);
4276 kfree(vms);
4277 return NULL;
4278 }
4279
4280 /**
4281 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4282 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4283 * @nr_vms: the number of allocated areas
4284 *
4285 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4286 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4287 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4288 {
4289 int i;
4290
4291 for (i = 0; i < nr_vms; i++)
4292 free_vm_area(vms[i]);
4293 kfree(vms);
4294 }
4295 #endif /* CONFIG_SMP */
4296
4297 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4298 bool vmalloc_dump_obj(void *object)
4299 {
4300 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4301 const void *caller;
4302 struct vm_struct *vm;
4303 struct vmap_area *va;
4304 unsigned long addr;
4305 unsigned int nr_pages;
4306
4307 if (!spin_trylock(&vmap_area_lock))
4308 return false;
4309 va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4310 if (!va) {
4311 spin_unlock(&vmap_area_lock);
4312 return false;
4313 }
4314
4315 vm = va->vm;
4316 if (!vm) {
4317 spin_unlock(&vmap_area_lock);
4318 return false;
4319 }
4320 addr = (unsigned long)vm->addr;
4321 caller = vm->caller;
4322 nr_pages = vm->nr_pages;
4323 spin_unlock(&vmap_area_lock);
4324 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4325 nr_pages, addr, caller);
4326 return true;
4327 }
4328 #endif
4329
4330 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)4331 static void *s_start(struct seq_file *m, loff_t *pos)
4332 __acquires(&vmap_purge_lock)
4333 __acquires(&vmap_area_lock)
4334 {
4335 mutex_lock(&vmap_purge_lock);
4336 spin_lock(&vmap_area_lock);
4337
4338 return seq_list_start(&vmap_area_list, *pos);
4339 }
4340
s_next(struct seq_file * m,void * p,loff_t * pos)4341 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4342 {
4343 return seq_list_next(p, &vmap_area_list, pos);
4344 }
4345
s_stop(struct seq_file * m,void * p)4346 static void s_stop(struct seq_file *m, void *p)
4347 __releases(&vmap_area_lock)
4348 __releases(&vmap_purge_lock)
4349 {
4350 spin_unlock(&vmap_area_lock);
4351 mutex_unlock(&vmap_purge_lock);
4352 }
4353
show_numa_info(struct seq_file * m,struct vm_struct * v)4354 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4355 {
4356 if (IS_ENABLED(CONFIG_NUMA)) {
4357 unsigned int nr, *counters = m->private;
4358 unsigned int step = 1U << vm_area_page_order(v);
4359
4360 if (!counters)
4361 return;
4362
4363 if (v->flags & VM_UNINITIALIZED)
4364 return;
4365 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4366 smp_rmb();
4367
4368 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4369
4370 for (nr = 0; nr < v->nr_pages; nr += step)
4371 counters[page_to_nid(v->pages[nr])] += step;
4372 for_each_node_state(nr, N_HIGH_MEMORY)
4373 if (counters[nr])
4374 seq_printf(m, " N%u=%u", nr, counters[nr]);
4375 }
4376 }
4377
show_purge_info(struct seq_file * m)4378 static void show_purge_info(struct seq_file *m)
4379 {
4380 struct vmap_area *va;
4381
4382 spin_lock(&purge_vmap_area_lock);
4383 list_for_each_entry(va, &purge_vmap_area_list, list) {
4384 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4385 (void *)va->va_start, (void *)va->va_end,
4386 va->va_end - va->va_start);
4387 }
4388 spin_unlock(&purge_vmap_area_lock);
4389 }
4390
s_show(struct seq_file * m,void * p)4391 static int s_show(struct seq_file *m, void *p)
4392 {
4393 struct vmap_area *va;
4394 struct vm_struct *v;
4395
4396 va = list_entry(p, struct vmap_area, list);
4397
4398 if (!va->vm) {
4399 if (va->flags & VMAP_RAM)
4400 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4401 (void *)va->va_start, (void *)va->va_end,
4402 va->va_end - va->va_start);
4403
4404 goto final;
4405 }
4406
4407 v = va->vm;
4408
4409 seq_printf(m, "0x%pK-0x%pK %7ld",
4410 v->addr, v->addr + v->size, v->size);
4411
4412 if (v->caller)
4413 seq_printf(m, " %pS", v->caller);
4414
4415 if (v->nr_pages)
4416 seq_printf(m, " pages=%d", v->nr_pages);
4417
4418 if (v->phys_addr)
4419 seq_printf(m, " phys=%pa", &v->phys_addr);
4420
4421 if (v->flags & VM_IOREMAP)
4422 seq_puts(m, " ioremap");
4423
4424 if (v->flags & VM_ALLOC)
4425 seq_puts(m, " vmalloc");
4426
4427 if (v->flags & VM_MAP)
4428 seq_puts(m, " vmap");
4429
4430 if (v->flags & VM_USERMAP)
4431 seq_puts(m, " user");
4432
4433 if (v->flags & VM_DMA_COHERENT)
4434 seq_puts(m, " dma-coherent");
4435
4436 if (is_vmalloc_addr(v->pages))
4437 seq_puts(m, " vpages");
4438
4439 show_numa_info(m, v);
4440 seq_putc(m, '\n');
4441
4442 /*
4443 * As a final step, dump "unpurged" areas.
4444 */
4445 final:
4446 if (list_is_last(&va->list, &vmap_area_list))
4447 show_purge_info(m);
4448
4449 return 0;
4450 }
4451
4452 static const struct seq_operations vmalloc_op = {
4453 .start = s_start,
4454 .next = s_next,
4455 .stop = s_stop,
4456 .show = s_show,
4457 };
4458
proc_vmalloc_init(void)4459 static int __init proc_vmalloc_init(void)
4460 {
4461 if (IS_ENABLED(CONFIG_NUMA))
4462 proc_create_seq_private("vmallocinfo", 0400, NULL,
4463 &vmalloc_op,
4464 nr_node_ids * sizeof(unsigned int), NULL);
4465 else
4466 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4467 return 0;
4468 }
4469 module_init(proc_vmalloc_init);
4470
4471 #endif
4472
vmalloc_init(void)4473 void __init vmalloc_init(void)
4474 {
4475 struct vmap_area *va;
4476 struct vm_struct *tmp;
4477 int i;
4478
4479 /*
4480 * Create the cache for vmap_area objects.
4481 */
4482 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4483
4484 for_each_possible_cpu(i) {
4485 struct vmap_block_queue *vbq;
4486 struct vfree_deferred *p;
4487
4488 vbq = &per_cpu(vmap_block_queue, i);
4489 spin_lock_init(&vbq->lock);
4490 INIT_LIST_HEAD(&vbq->free);
4491 p = &per_cpu(vfree_deferred, i);
4492 init_llist_head(&p->list);
4493 INIT_WORK(&p->wq, delayed_vfree_work);
4494 xa_init(&vbq->vmap_blocks);
4495 }
4496
4497 /* Import existing vmlist entries. */
4498 for (tmp = vmlist; tmp; tmp = tmp->next) {
4499 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4500 if (WARN_ON_ONCE(!va))
4501 continue;
4502
4503 va->va_start = (unsigned long)tmp->addr;
4504 va->va_end = va->va_start + tmp->size;
4505 va->vm = tmp;
4506 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4507 }
4508
4509 /*
4510 * Now we can initialize a free vmap space.
4511 */
4512 vmap_init_free_space();
4513 vmap_initialized = true;
4514 }
4515